1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "ice_devlink.h"
9 #include "ice_eswitch.h"
10 #include "ice_fw_update.h"
11 #include "ice_dcb_lib.h"
12 
13 static int ice_active_port_option = -1;
14 
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17 	char buf[128];
18 	struct ice_orom_info pending_orom;
19 	struct ice_nvm_info pending_nvm;
20 	struct ice_netlist_info pending_netlist;
21 	struct ice_hw_dev_caps dev_caps;
22 };
23 
24 /* The following functions are used to format specific strings for various
25  * devlink info versions. The ctx parameter is used to provide the storage
26  * buffer, as well as any ancillary information calculated when the info
27  * request was made.
28  *
29  * If a version does not exist, for example when attempting to get the
30  * inactive version of flash when there is no pending update, the function
31  * should leave the buffer in the ctx structure empty.
32  */
33 
ice_info_get_dsn(struct ice_pf * pf,struct ice_info_ctx * ctx)34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36 	u8 dsn[8];
37 
38 	/* Copy the DSN into an array in Big Endian format */
39 	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40 
41 	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43 
ice_info_pba(struct ice_pf * pf,struct ice_info_ctx * ctx)44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46 	struct ice_hw *hw = &pf->hw;
47 	int status;
48 
49 	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 	if (status)
51 		/* We failed to locate the PBA, so just skip this entry */
52 		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 			status);
54 }
55 
ice_info_fw_mgmt(struct ice_pf * pf,struct ice_info_ctx * ctx)56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58 	struct ice_hw *hw = &pf->hw;
59 
60 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63 
ice_info_fw_api(struct ice_pf * pf,struct ice_info_ctx * ctx)64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66 	struct ice_hw *hw = &pf->hw;
67 
68 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 		 hw->api_min_ver, hw->api_patch);
70 }
71 
ice_info_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74 	struct ice_hw *hw = &pf->hw;
75 
76 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78 
ice_info_orom_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81 	struct ice_orom_info *orom = &pf->hw.flash.orom;
82 
83 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 		 orom->major, orom->build, orom->patch);
85 }
86 
87 static void
ice_info_pending_orom_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 			  struct ice_info_ctx *ctx)
90 {
91 	struct ice_orom_info *orom = &ctx->pending_orom;
92 
93 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 			 orom->major, orom->build, orom->patch);
96 }
97 
ice_info_nvm_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101 
102 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104 
105 static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 			 struct ice_info_ctx *ctx)
108 {
109 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
110 
111 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 			 nvm->major, nvm->minor);
114 }
115 
ice_info_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119 
120 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122 
123 static void
ice_info_pending_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
127 
128 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131 
ice_info_ddp_pkg_name(struct ice_pf * pf,struct ice_info_ctx * ctx)132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134 	struct ice_hw *hw = &pf->hw;
135 
136 	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138 
139 static void
ice_info_ddp_pkg_version(struct ice_pf * pf,struct ice_info_ctx * ctx)140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142 	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143 
144 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 		 pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147 
148 static void
ice_info_ddp_pkg_bundle_id(struct ice_pf * pf,struct ice_info_ctx * ctx)149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153 
ice_info_netlist_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157 
158 	/* The netlist version fields are BCD formatted */
159 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 		 netlist->major, netlist->minor,
161 		 netlist->type >> 16, netlist->type & 0xFFFF,
162 		 netlist->rev, netlist->cust_ver);
163 }
164 
ice_info_netlist_build(struct ice_pf * pf,struct ice_info_ctx * ctx)165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168 
169 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171 
172 static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 			     struct ice_info_ctx *ctx)
175 {
176 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
177 
178 	/* The netlist version fields are BCD formatted */
179 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 			 netlist->major, netlist->minor,
182 			 netlist->type >> 16, netlist->type & 0xFFFF,
183 			 netlist->rev, netlist->cust_ver);
184 }
185 
186 static void
ice_info_pending_netlist_build(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 			       struct ice_info_ctx *ctx)
189 {
190 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
191 
192 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195 
ice_info_cgu_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)196 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197 {
198 	u32 id, cfg_ver, fw_ver;
199 
200 	if (!ice_is_feature_supported(pf, ICE_F_CGU))
201 		return;
202 	if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203 		return;
204 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205 }
206 
ice_info_cgu_id(struct ice_pf * pf,struct ice_info_ctx * ctx)207 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208 {
209 	if (!ice_is_feature_supported(pf, ICE_F_CGU))
210 		return;
211 	snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212 }
213 
214 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217 
218 /* The combined() macro inserts both the running entry as well as a stored
219  * entry. The running entry will always report the version from the active
220  * handler. The stored entry will first try the pending handler, and fallback
221  * to the active handler if the pending function does not report a version.
222  * The pending handler should check the status of a pending update for the
223  * relevant flash component. It should only fill in the buffer in the case
224  * where a valid pending version is available. This ensures that the related
225  * stored and running versions remain in sync, and that stored versions are
226  * correctly reported as expected.
227  */
228 #define combined(key, active, pending) \
229 	running(key, active), \
230 	stored(key, pending, active)
231 
232 enum ice_version_type {
233 	ICE_VERSION_FIXED,
234 	ICE_VERSION_RUNNING,
235 	ICE_VERSION_STORED,
236 };
237 
238 static const struct ice_devlink_version {
239 	enum ice_version_type type;
240 	const char *key;
241 	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242 	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243 } ice_devlink_versions[] = {
244 	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245 	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246 	running("fw.mgmt.api", ice_info_fw_api),
247 	running("fw.mgmt.build", ice_info_fw_build),
248 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249 	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251 	running("fw.app.name", ice_info_ddp_pkg_name),
252 	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253 	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254 	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255 	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256 	fixed("cgu.id", ice_info_cgu_id),
257 	running("fw.cgu", ice_info_cgu_fw_build),
258 };
259 
260 /**
261  * ice_devlink_info_get - .info_get devlink handler
262  * @devlink: devlink instance structure
263  * @req: the devlink info request
264  * @extack: extended netdev ack structure
265  *
266  * Callback for the devlink .info_get operation. Reports information about the
267  * device.
268  *
269  * Return: zero on success or an error code on failure.
270  */
ice_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)271 static int ice_devlink_info_get(struct devlink *devlink,
272 				struct devlink_info_req *req,
273 				struct netlink_ext_ack *extack)
274 {
275 	struct ice_pf *pf = devlink_priv(devlink);
276 	struct device *dev = ice_pf_to_dev(pf);
277 	struct ice_hw *hw = &pf->hw;
278 	struct ice_info_ctx *ctx;
279 	size_t i;
280 	int err;
281 
282 	err = ice_wait_for_reset(pf, 10 * HZ);
283 	if (err) {
284 		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285 		return err;
286 	}
287 
288 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 	if (!ctx)
290 		return -ENOMEM;
291 
292 	/* discover capabilities first */
293 	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294 	if (err) {
295 		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296 			err, ice_aq_str(hw->adminq.sq_last_status));
297 		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298 		goto out_free_ctx;
299 	}
300 
301 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302 		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303 		if (err) {
304 			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305 				err, ice_aq_str(hw->adminq.sq_last_status));
306 
307 			/* disable display of pending Option ROM */
308 			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309 		}
310 	}
311 
312 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313 		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314 		if (err) {
315 			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316 				err, ice_aq_str(hw->adminq.sq_last_status));
317 
318 			/* disable display of pending Option ROM */
319 			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320 		}
321 	}
322 
323 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324 		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325 		if (err) {
326 			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327 				err, ice_aq_str(hw->adminq.sq_last_status));
328 
329 			/* disable display of pending Option ROM */
330 			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331 		}
332 	}
333 
334 	ice_info_get_dsn(pf, ctx);
335 
336 	err = devlink_info_serial_number_put(req, ctx->buf);
337 	if (err) {
338 		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339 		goto out_free_ctx;
340 	}
341 
342 	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343 		enum ice_version_type type = ice_devlink_versions[i].type;
344 		const char *key = ice_devlink_versions[i].key;
345 
346 		memset(ctx->buf, 0, sizeof(ctx->buf));
347 
348 		ice_devlink_versions[i].getter(pf, ctx);
349 
350 		/* If the default getter doesn't report a version, use the
351 		 * fallback function. This is primarily useful in the case of
352 		 * "stored" versions that want to report the same value as the
353 		 * running version in the normal case of no pending update.
354 		 */
355 		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356 			ice_devlink_versions[i].fallback(pf, ctx);
357 
358 		/* Do not report missing versions */
359 		if (ctx->buf[0] == '\0')
360 			continue;
361 
362 		switch (type) {
363 		case ICE_VERSION_FIXED:
364 			err = devlink_info_version_fixed_put(req, key, ctx->buf);
365 			if (err) {
366 				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367 				goto out_free_ctx;
368 			}
369 			break;
370 		case ICE_VERSION_RUNNING:
371 			err = devlink_info_version_running_put(req, key, ctx->buf);
372 			if (err) {
373 				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
374 				goto out_free_ctx;
375 			}
376 			break;
377 		case ICE_VERSION_STORED:
378 			err = devlink_info_version_stored_put(req, key, ctx->buf);
379 			if (err) {
380 				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
381 				goto out_free_ctx;
382 			}
383 			break;
384 		}
385 	}
386 
387 out_free_ctx:
388 	kfree(ctx);
389 	return err;
390 }
391 
392 /**
393  * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
394  * @pf: pointer to the pf instance
395  * @extack: netlink extended ACK structure
396  *
397  * Allow user to activate new Embedded Management Processor firmware by
398  * issuing device specific EMP reset. Called in response to
399  * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
400  *
401  * Note that teardown and rebuild of the driver state happens automatically as
402  * part of an interrupt and watchdog task. This is because all physical
403  * functions on the device must be able to reset when an EMP reset occurs from
404  * any source.
405  */
406 static int
ice_devlink_reload_empr_start(struct ice_pf * pf,struct netlink_ext_ack * extack)407 ice_devlink_reload_empr_start(struct ice_pf *pf,
408 			      struct netlink_ext_ack *extack)
409 {
410 	struct device *dev = ice_pf_to_dev(pf);
411 	struct ice_hw *hw = &pf->hw;
412 	u8 pending;
413 	int err;
414 
415 	err = ice_get_pending_updates(pf, &pending, extack);
416 	if (err)
417 		return err;
418 
419 	/* pending is a bitmask of which flash banks have a pending update,
420 	 * including the main NVM bank, the Option ROM bank, and the netlist
421 	 * bank. If any of these bits are set, then there is a pending update
422 	 * waiting to be activated.
423 	 */
424 	if (!pending) {
425 		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
426 		return -ECANCELED;
427 	}
428 
429 	if (pf->fw_emp_reset_disabled) {
430 		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
431 		return -ECANCELED;
432 	}
433 
434 	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
435 
436 	err = ice_aq_nvm_update_empr(hw);
437 	if (err) {
438 		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
439 			err, ice_aq_str(hw->adminq.sq_last_status));
440 		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
441 		return err;
442 	}
443 
444 	return 0;
445 }
446 
447 /**
448  * ice_devlink_reload_down - prepare for reload
449  * @devlink: pointer to the devlink instance to reload
450  * @netns_change: if true, the network namespace is changing
451  * @action: the action to perform
452  * @limit: limits on what reload should do, such as not resetting
453  * @extack: netlink extended ACK structure
454  */
455 static int
ice_devlink_reload_down(struct devlink * devlink,bool netns_change,enum devlink_reload_action action,enum devlink_reload_limit limit,struct netlink_ext_ack * extack)456 ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
457 			enum devlink_reload_action action,
458 			enum devlink_reload_limit limit,
459 			struct netlink_ext_ack *extack)
460 {
461 	struct ice_pf *pf = devlink_priv(devlink);
462 
463 	switch (action) {
464 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
465 		if (ice_is_eswitch_mode_switchdev(pf)) {
466 			NL_SET_ERR_MSG_MOD(extack,
467 					   "Go to legacy mode before doing reinit\n");
468 			return -EOPNOTSUPP;
469 		}
470 		if (ice_is_adq_active(pf)) {
471 			NL_SET_ERR_MSG_MOD(extack,
472 					   "Turn off ADQ before doing reinit\n");
473 			return -EOPNOTSUPP;
474 		}
475 		if (ice_has_vfs(pf)) {
476 			NL_SET_ERR_MSG_MOD(extack,
477 					   "Remove all VFs before doing reinit\n");
478 			return -EOPNOTSUPP;
479 		}
480 		ice_unload(pf);
481 		return 0;
482 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
483 		return ice_devlink_reload_empr_start(pf, extack);
484 	default:
485 		WARN_ON(1);
486 		return -EOPNOTSUPP;
487 	}
488 }
489 
490 /**
491  * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
492  * @pf: pointer to the pf instance
493  * @extack: netlink extended ACK structure
494  *
495  * Wait for driver to finish rebuilding after EMP reset is completed. This
496  * includes time to wait for both the actual device reset as well as the time
497  * for the driver's rebuild to complete.
498  */
499 static int
ice_devlink_reload_empr_finish(struct ice_pf * pf,struct netlink_ext_ack * extack)500 ice_devlink_reload_empr_finish(struct ice_pf *pf,
501 			       struct netlink_ext_ack *extack)
502 {
503 	int err;
504 
505 	err = ice_wait_for_reset(pf, 60 * HZ);
506 	if (err) {
507 		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
508 		return err;
509 	}
510 
511 	return 0;
512 }
513 
514 /**
515  * ice_devlink_port_opt_speed_str - convert speed to a string
516  * @speed: speed value
517  */
ice_devlink_port_opt_speed_str(u8 speed)518 static const char *ice_devlink_port_opt_speed_str(u8 speed)
519 {
520 	switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) {
521 	case ICE_AQC_PORT_OPT_MAX_LANE_100M:
522 		return "0.1";
523 	case ICE_AQC_PORT_OPT_MAX_LANE_1G:
524 		return "1";
525 	case ICE_AQC_PORT_OPT_MAX_LANE_2500M:
526 		return "2.5";
527 	case ICE_AQC_PORT_OPT_MAX_LANE_5G:
528 		return "5";
529 	case ICE_AQC_PORT_OPT_MAX_LANE_10G:
530 		return "10";
531 	case ICE_AQC_PORT_OPT_MAX_LANE_25G:
532 		return "25";
533 	case ICE_AQC_PORT_OPT_MAX_LANE_50G:
534 		return "50";
535 	case ICE_AQC_PORT_OPT_MAX_LANE_100G:
536 		return "100";
537 	}
538 
539 	return "-";
540 }
541 
542 #define ICE_PORT_OPT_DESC_LEN	50
543 /**
544  * ice_devlink_port_options_print - Print available port split options
545  * @pf: the PF to print split port options
546  *
547  * Prints a table with available port split options and max port speeds
548  */
ice_devlink_port_options_print(struct ice_pf * pf)549 static void ice_devlink_port_options_print(struct ice_pf *pf)
550 {
551 	u8 i, j, options_count, cnt, speed, pending_idx, active_idx;
552 	struct ice_aqc_get_port_options_elem *options, *opt;
553 	struct device *dev = ice_pf_to_dev(pf);
554 	bool active_valid, pending_valid;
555 	char desc[ICE_PORT_OPT_DESC_LEN];
556 	const char *str;
557 	int status;
558 
559 	options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV,
560 			  sizeof(*options), GFP_KERNEL);
561 	if (!options)
562 		return;
563 
564 	for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) {
565 		opt = options + i * ICE_AQC_PORT_OPT_MAX;
566 		options_count = ICE_AQC_PORT_OPT_MAX;
567 		active_valid = 0;
568 
569 		status = ice_aq_get_port_options(&pf->hw, opt, &options_count,
570 						 i, true, &active_idx,
571 						 &active_valid, &pending_idx,
572 						 &pending_valid);
573 		if (status) {
574 			dev_dbg(dev, "Couldn't read port option for port %d, err %d\n",
575 				i, status);
576 			goto err;
577 		}
578 	}
579 
580 	dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n");
581 	dev_dbg(dev, "Status  Split      Quad 0          Quad 1\n");
582 	dev_dbg(dev, "        count  L0  L1  L2  L3  L4  L5  L6  L7\n");
583 
584 	for (i = 0; i < options_count; i++) {
585 		cnt = 0;
586 
587 		if (i == ice_active_port_option)
588 			str = "Active";
589 		else if ((i == pending_idx) && pending_valid)
590 			str = "Pending";
591 		else
592 			str = "";
593 
594 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
595 				"%-8s", str);
596 
597 		cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
598 				"%-6u", options[i].pmd);
599 
600 		for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) {
601 			speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed;
602 			str = ice_devlink_port_opt_speed_str(speed);
603 			cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
604 					"%3s ", str);
605 		}
606 
607 		dev_dbg(dev, "%s\n", desc);
608 	}
609 
610 err:
611 	kfree(options);
612 }
613 
614 /**
615  * ice_devlink_aq_set_port_option - Send set port option admin queue command
616  * @pf: the PF to print split port options
617  * @option_idx: selected port option
618  * @extack: extended netdev ack structure
619  *
620  * Sends set port option admin queue command with selected port option and
621  * calls NVM write activate.
622  */
623 static int
ice_devlink_aq_set_port_option(struct ice_pf * pf,u8 option_idx,struct netlink_ext_ack * extack)624 ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx,
625 			       struct netlink_ext_ack *extack)
626 {
627 	struct device *dev = ice_pf_to_dev(pf);
628 	int status;
629 
630 	status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx);
631 	if (status) {
632 		dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n",
633 			status, pf->hw.adminq.sq_last_status);
634 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed");
635 		return -EIO;
636 	}
637 
638 	status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE);
639 	if (status) {
640 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
641 			status, pf->hw.adminq.sq_last_status);
642 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
643 		return -EIO;
644 	}
645 
646 	status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL);
647 	if (status) {
648 		dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n",
649 			status, pf->hw.adminq.sq_last_status);
650 		NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data");
651 		ice_release_nvm(&pf->hw);
652 		return -EIO;
653 	}
654 
655 	ice_release_nvm(&pf->hw);
656 
657 	NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split");
658 	return 0;
659 }
660 
661 /**
662  * ice_devlink_port_split - .port_split devlink handler
663  * @devlink: devlink instance structure
664  * @port: devlink port structure
665  * @count: number of ports to split to
666  * @extack: extended netdev ack structure
667  *
668  * Callback for the devlink .port_split operation.
669  *
670  * Unfortunately, the devlink expression of available options is limited
671  * to just a number, so search for an FW port option which supports
672  * the specified number. As there could be multiple FW port options with
673  * the same port split count, allow switching between them. When the same
674  * port split count request is issued again, switch to the next FW port
675  * option with the same port split count.
676  *
677  * Return: zero on success or an error code on failure.
678  */
679 static int
ice_devlink_port_split(struct devlink * devlink,struct devlink_port * port,unsigned int count,struct netlink_ext_ack * extack)680 ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port,
681 		       unsigned int count, struct netlink_ext_ack *extack)
682 {
683 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
684 	u8 i, j, active_idx, pending_idx, new_option;
685 	struct ice_pf *pf = devlink_priv(devlink);
686 	u8 option_count = ICE_AQC_PORT_OPT_MAX;
687 	struct device *dev = ice_pf_to_dev(pf);
688 	bool active_valid, pending_valid;
689 	int status;
690 
691 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
692 					 0, true, &active_idx, &active_valid,
693 					 &pending_idx, &pending_valid);
694 	if (status) {
695 		dev_dbg(dev, "Couldn't read port split options, err = %d\n",
696 			status);
697 		NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options");
698 		return -EIO;
699 	}
700 
701 	new_option = ICE_AQC_PORT_OPT_MAX;
702 	active_idx = pending_valid ? pending_idx : active_idx;
703 	for (i = 1; i <= option_count; i++) {
704 		/* In order to allow switching between FW port options with
705 		 * the same port split count, search for a new option starting
706 		 * from the active/pending option (with array wrap around).
707 		 */
708 		j = (active_idx + i) % option_count;
709 
710 		if (count == options[j].pmd) {
711 			new_option = j;
712 			break;
713 		}
714 	}
715 
716 	if (new_option == active_idx) {
717 		dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n",
718 			count);
719 		NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set");
720 		ice_devlink_port_options_print(pf);
721 		return -EINVAL;
722 	}
723 
724 	if (new_option == ICE_AQC_PORT_OPT_MAX) {
725 		dev_dbg(dev, "request to split: count: %u not found\n", count);
726 		NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config");
727 		ice_devlink_port_options_print(pf);
728 		return -EINVAL;
729 	}
730 
731 	status = ice_devlink_aq_set_port_option(pf, new_option, extack);
732 	if (status)
733 		return status;
734 
735 	ice_devlink_port_options_print(pf);
736 
737 	return 0;
738 }
739 
740 /**
741  * ice_devlink_port_unsplit - .port_unsplit devlink handler
742  * @devlink: devlink instance structure
743  * @port: devlink port structure
744  * @extack: extended netdev ack structure
745  *
746  * Callback for the devlink .port_unsplit operation.
747  * Calls ice_devlink_port_split with split count set to 1.
748  * There could be no FW option available with split count 1.
749  *
750  * Return: zero on success or an error code on failure.
751  */
752 static int
ice_devlink_port_unsplit(struct devlink * devlink,struct devlink_port * port,struct netlink_ext_ack * extack)753 ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port,
754 			 struct netlink_ext_ack *extack)
755 {
756 	return ice_devlink_port_split(devlink, port, 1, extack);
757 }
758 
759 /**
760  * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
761  * @pf: pf struct
762  *
763  * This function tears down tree exported during VF's creation.
764  */
ice_tear_down_devlink_rate_tree(struct ice_pf * pf)765 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
766 {
767 	struct devlink *devlink;
768 	struct ice_vf *vf;
769 	unsigned int bkt;
770 
771 	devlink = priv_to_devlink(pf);
772 
773 	devl_lock(devlink);
774 	mutex_lock(&pf->vfs.table_lock);
775 	ice_for_each_vf(pf, bkt, vf) {
776 		if (vf->devlink_port.devlink_rate)
777 			devl_rate_leaf_destroy(&vf->devlink_port);
778 	}
779 	mutex_unlock(&pf->vfs.table_lock);
780 
781 	devl_rate_nodes_destroy(devlink);
782 	devl_unlock(devlink);
783 }
784 
785 /**
786  * ice_enable_custom_tx - try to enable custom Tx feature
787  * @pf: pf struct
788  *
789  * This function tries to enable custom Tx feature,
790  * it's not possible to enable it, if DCB or ADQ is active.
791  */
ice_enable_custom_tx(struct ice_pf * pf)792 static bool ice_enable_custom_tx(struct ice_pf *pf)
793 {
794 	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
795 	struct device *dev = ice_pf_to_dev(pf);
796 
797 	if (pi->is_custom_tx_enabled)
798 		/* already enabled, return true */
799 		return true;
800 
801 	if (ice_is_adq_active(pf)) {
802 		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
803 		return false;
804 	}
805 
806 	if (ice_is_dcb_active(pf)) {
807 		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
808 		return false;
809 	}
810 
811 	pi->is_custom_tx_enabled = true;
812 
813 	return true;
814 }
815 
816 /**
817  * ice_traverse_tx_tree - traverse Tx scheduler tree
818  * @devlink: devlink struct
819  * @node: current node, used for recursion
820  * @tc_node: tc_node struct, that is treated as a root
821  * @pf: pf struct
822  *
823  * This function traverses Tx scheduler tree and exports
824  * entire structure to the devlink-rate.
825  */
ice_traverse_tx_tree(struct devlink * devlink,struct ice_sched_node * node,struct ice_sched_node * tc_node,struct ice_pf * pf)826 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
827 				 struct ice_sched_node *tc_node, struct ice_pf *pf)
828 {
829 	struct devlink_rate *rate_node = NULL;
830 	struct ice_vf *vf;
831 	int i;
832 
833 	if (node->rate_node)
834 		/* already added, skip to the next */
835 		goto traverse_children;
836 
837 	if (node->parent == tc_node) {
838 		/* create root node */
839 		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
840 	} else if (node->vsi_handle &&
841 		   pf->vsi[node->vsi_handle]->vf) {
842 		vf = pf->vsi[node->vsi_handle]->vf;
843 		if (!vf->devlink_port.devlink_rate)
844 			/* leaf nodes doesn't have children
845 			 * so we don't set rate_node
846 			 */
847 			devl_rate_leaf_create(&vf->devlink_port, node,
848 					      node->parent->rate_node);
849 	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
850 		   node->parent->rate_node) {
851 		rate_node = devl_rate_node_create(devlink, node, node->name,
852 						  node->parent->rate_node);
853 	}
854 
855 	if (rate_node && !IS_ERR(rate_node))
856 		node->rate_node = rate_node;
857 
858 traverse_children:
859 	for (i = 0; i < node->num_children; i++)
860 		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
861 }
862 
863 /**
864  * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
865  * @devlink: devlink struct
866  * @vsi: main vsi struct
867  *
868  * This function finds a root node, then calls ice_traverse_tx tree, which
869  * traverses the tree and exports it's contents to devlink rate.
870  */
ice_devlink_rate_init_tx_topology(struct devlink * devlink,struct ice_vsi * vsi)871 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
872 {
873 	struct ice_port_info *pi = vsi->port_info;
874 	struct ice_sched_node *tc_node;
875 	struct ice_pf *pf = vsi->back;
876 	int i;
877 
878 	tc_node = pi->root->children[0];
879 	mutex_lock(&pi->sched_lock);
880 	devl_lock(devlink);
881 	for (i = 0; i < tc_node->num_children; i++)
882 		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
883 	devl_unlock(devlink);
884 	mutex_unlock(&pi->sched_lock);
885 
886 	return 0;
887 }
888 
ice_clear_rate_nodes(struct ice_sched_node * node)889 static void ice_clear_rate_nodes(struct ice_sched_node *node)
890 {
891 	node->rate_node = NULL;
892 
893 	for (int i = 0; i < node->num_children; i++)
894 		ice_clear_rate_nodes(node->children[i]);
895 }
896 
897 /**
898  * ice_devlink_rate_clear_tx_topology - clear node->rate_node
899  * @vsi: main vsi struct
900  *
901  * Clear rate_node to cleanup creation of Tx topology.
902  *
903  */
ice_devlink_rate_clear_tx_topology(struct ice_vsi * vsi)904 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
905 {
906 	struct ice_port_info *pi = vsi->port_info;
907 
908 	mutex_lock(&pi->sched_lock);
909 	ice_clear_rate_nodes(pi->root->children[0]);
910 	mutex_unlock(&pi->sched_lock);
911 }
912 
913 /**
914  * ice_set_object_tx_share - sets node scheduling parameter
915  * @pi: devlink struct instance
916  * @node: node struct instance
917  * @bw: bandwidth in bytes per second
918  * @extack: extended netdev ack structure
919  *
920  * This function sets ICE_MIN_BW scheduling BW limit.
921  */
ice_set_object_tx_share(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)922 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
923 				   u64 bw, struct netlink_ext_ack *extack)
924 {
925 	int status;
926 
927 	mutex_lock(&pi->sched_lock);
928 	/* converts bytes per second to kilo bits per second */
929 	node->tx_share = div_u64(bw, 125);
930 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
931 	mutex_unlock(&pi->sched_lock);
932 
933 	if (status)
934 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
935 
936 	return status;
937 }
938 
939 /**
940  * ice_set_object_tx_max - sets node scheduling parameter
941  * @pi: devlink struct instance
942  * @node: node struct instance
943  * @bw: bandwidth in bytes per second
944  * @extack: extended netdev ack structure
945  *
946  * This function sets ICE_MAX_BW scheduling BW limit.
947  */
ice_set_object_tx_max(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)948 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
949 				 u64 bw, struct netlink_ext_ack *extack)
950 {
951 	int status;
952 
953 	mutex_lock(&pi->sched_lock);
954 	/* converts bytes per second value to kilo bits per second */
955 	node->tx_max = div_u64(bw, 125);
956 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
957 	mutex_unlock(&pi->sched_lock);
958 
959 	if (status)
960 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
961 
962 	return status;
963 }
964 
965 /**
966  * ice_set_object_tx_priority - sets node scheduling parameter
967  * @pi: devlink struct instance
968  * @node: node struct instance
969  * @priority: value representing priority for strict priority arbitration
970  * @extack: extended netdev ack structure
971  *
972  * This function sets priority of node among siblings.
973  */
ice_set_object_tx_priority(struct ice_port_info * pi,struct ice_sched_node * node,u32 priority,struct netlink_ext_ack * extack)974 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
975 				      u32 priority, struct netlink_ext_ack *extack)
976 {
977 	int status;
978 
979 	if (priority >= 8) {
980 		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
981 		return -EINVAL;
982 	}
983 
984 	mutex_lock(&pi->sched_lock);
985 	node->tx_priority = priority;
986 	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
987 	mutex_unlock(&pi->sched_lock);
988 
989 	if (status)
990 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
991 
992 	return status;
993 }
994 
995 /**
996  * ice_set_object_tx_weight - sets node scheduling parameter
997  * @pi: devlink struct instance
998  * @node: node struct instance
999  * @weight: value represeting relative weight for WFQ arbitration
1000  * @extack: extended netdev ack structure
1001  *
1002  * This function sets node weight for WFQ algorithm.
1003  */
ice_set_object_tx_weight(struct ice_port_info * pi,struct ice_sched_node * node,u32 weight,struct netlink_ext_ack * extack)1004 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
1005 				    u32 weight, struct netlink_ext_ack *extack)
1006 {
1007 	int status;
1008 
1009 	if (weight > 200 || weight < 1) {
1010 		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
1011 		return -EINVAL;
1012 	}
1013 
1014 	mutex_lock(&pi->sched_lock);
1015 	node->tx_weight = weight;
1016 	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
1017 	mutex_unlock(&pi->sched_lock);
1018 
1019 	if (status)
1020 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
1021 
1022 	return status;
1023 }
1024 
1025 /**
1026  * ice_get_pi_from_dev_rate - get port info from devlink_rate
1027  * @rate_node: devlink struct instance
1028  *
1029  * This function returns corresponding port_info struct of devlink_rate
1030  */
ice_get_pi_from_dev_rate(struct devlink_rate * rate_node)1031 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
1032 {
1033 	struct ice_pf *pf = devlink_priv(rate_node->devlink);
1034 
1035 	return ice_get_main_vsi(pf)->port_info;
1036 }
1037 
ice_devlink_rate_node_new(struct devlink_rate * rate_node,void ** priv,struct netlink_ext_ack * extack)1038 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
1039 				     struct netlink_ext_ack *extack)
1040 {
1041 	struct ice_sched_node *node;
1042 	struct ice_port_info *pi;
1043 
1044 	pi = ice_get_pi_from_dev_rate(rate_node);
1045 
1046 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1047 		return -EBUSY;
1048 
1049 	/* preallocate memory for ice_sched_node */
1050 	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
1051 	*priv = node;
1052 
1053 	return 0;
1054 }
1055 
ice_devlink_rate_node_del(struct devlink_rate * rate_node,void * priv,struct netlink_ext_ack * extack)1056 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
1057 				     struct netlink_ext_ack *extack)
1058 {
1059 	struct ice_sched_node *node, *tc_node;
1060 	struct ice_port_info *pi;
1061 
1062 	pi = ice_get_pi_from_dev_rate(rate_node);
1063 	tc_node = pi->root->children[0];
1064 	node = priv;
1065 
1066 	if (!rate_node->parent || !node || tc_node == node || !extack)
1067 		return 0;
1068 
1069 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1070 		return -EBUSY;
1071 
1072 	/* can't allow to delete a node with children */
1073 	if (node->num_children)
1074 		return -EINVAL;
1075 
1076 	mutex_lock(&pi->sched_lock);
1077 	ice_free_sched_node(pi, node);
1078 	mutex_unlock(&pi->sched_lock);
1079 
1080 	return 0;
1081 }
1082 
ice_devlink_rate_leaf_tx_max_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1083 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1084 					    u64 tx_max, struct netlink_ext_ack *extack)
1085 {
1086 	struct ice_sched_node *node = priv;
1087 
1088 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1089 		return -EBUSY;
1090 
1091 	if (!node)
1092 		return 0;
1093 
1094 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1095 				     node, tx_max, extack);
1096 }
1097 
ice_devlink_rate_leaf_tx_share_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1098 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1099 					      u64 tx_share, struct netlink_ext_ack *extack)
1100 {
1101 	struct ice_sched_node *node = priv;
1102 
1103 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1104 		return -EBUSY;
1105 
1106 	if (!node)
1107 		return 0;
1108 
1109 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1110 				       tx_share, extack);
1111 }
1112 
ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1113 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1114 						 u32 tx_priority, struct netlink_ext_ack *extack)
1115 {
1116 	struct ice_sched_node *node = priv;
1117 
1118 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1119 		return -EBUSY;
1120 
1121 	if (!node)
1122 		return 0;
1123 
1124 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1125 					  tx_priority, extack);
1126 }
1127 
ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1128 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1129 					       u32 tx_weight, struct netlink_ext_ack *extack)
1130 {
1131 	struct ice_sched_node *node = priv;
1132 
1133 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1134 		return -EBUSY;
1135 
1136 	if (!node)
1137 		return 0;
1138 
1139 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1140 					tx_weight, extack);
1141 }
1142 
ice_devlink_rate_node_tx_max_set(struct devlink_rate * rate_node,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1143 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1144 					    u64 tx_max, struct netlink_ext_ack *extack)
1145 {
1146 	struct ice_sched_node *node = priv;
1147 
1148 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1149 		return -EBUSY;
1150 
1151 	if (!node)
1152 		return 0;
1153 
1154 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1155 				     node, tx_max, extack);
1156 }
1157 
ice_devlink_rate_node_tx_share_set(struct devlink_rate * rate_node,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1158 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1159 					      u64 tx_share, struct netlink_ext_ack *extack)
1160 {
1161 	struct ice_sched_node *node = priv;
1162 
1163 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1164 		return -EBUSY;
1165 
1166 	if (!node)
1167 		return 0;
1168 
1169 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1170 				       node, tx_share, extack);
1171 }
1172 
ice_devlink_rate_node_tx_priority_set(struct devlink_rate * rate_node,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1173 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1174 						 u32 tx_priority, struct netlink_ext_ack *extack)
1175 {
1176 	struct ice_sched_node *node = priv;
1177 
1178 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1179 		return -EBUSY;
1180 
1181 	if (!node)
1182 		return 0;
1183 
1184 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1185 					  node, tx_priority, extack);
1186 }
1187 
ice_devlink_rate_node_tx_weight_set(struct devlink_rate * rate_node,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1188 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1189 					       u32 tx_weight, struct netlink_ext_ack *extack)
1190 {
1191 	struct ice_sched_node *node = priv;
1192 
1193 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1194 		return -EBUSY;
1195 
1196 	if (!node)
1197 		return 0;
1198 
1199 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1200 					node, tx_weight, extack);
1201 }
1202 
ice_devlink_set_parent(struct devlink_rate * devlink_rate,struct devlink_rate * parent,void * priv,void * parent_priv,struct netlink_ext_ack * extack)1203 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1204 				  struct devlink_rate *parent,
1205 				  void *priv, void *parent_priv,
1206 				  struct netlink_ext_ack *extack)
1207 {
1208 	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1209 	struct ice_sched_node *tc_node, *node, *parent_node;
1210 	u16 num_nodes_added;
1211 	u32 first_node_teid;
1212 	u32 node_teid;
1213 	int status;
1214 
1215 	tc_node = pi->root->children[0];
1216 	node = priv;
1217 
1218 	if (!extack)
1219 		return 0;
1220 
1221 	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1222 		return -EBUSY;
1223 
1224 	if (!parent) {
1225 		if (!node || tc_node == node || node->num_children)
1226 			return -EINVAL;
1227 
1228 		mutex_lock(&pi->sched_lock);
1229 		ice_free_sched_node(pi, node);
1230 		mutex_unlock(&pi->sched_lock);
1231 
1232 		return 0;
1233 	}
1234 
1235 	parent_node = parent_priv;
1236 
1237 	/* if the node doesn't exist, create it */
1238 	if (!node->parent) {
1239 		mutex_lock(&pi->sched_lock);
1240 		status = ice_sched_add_elems(pi, tc_node, parent_node,
1241 					     parent_node->tx_sched_layer + 1,
1242 					     1, &num_nodes_added, &first_node_teid,
1243 					     &node);
1244 		mutex_unlock(&pi->sched_lock);
1245 
1246 		if (status) {
1247 			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1248 			return status;
1249 		}
1250 
1251 		if (devlink_rate->tx_share)
1252 			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1253 		if (devlink_rate->tx_max)
1254 			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1255 		if (devlink_rate->tx_priority)
1256 			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1257 		if (devlink_rate->tx_weight)
1258 			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1259 	} else {
1260 		node_teid = le32_to_cpu(node->info.node_teid);
1261 		mutex_lock(&pi->sched_lock);
1262 		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1263 		mutex_unlock(&pi->sched_lock);
1264 
1265 		if (status)
1266 			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1267 	}
1268 
1269 	return status;
1270 }
1271 
1272 /**
1273  * ice_devlink_reload_up - do reload up after reinit
1274  * @devlink: pointer to the devlink instance reloading
1275  * @action: the action requested
1276  * @limit: limits imposed by userspace, such as not resetting
1277  * @actions_performed: on return, indicate what actions actually performed
1278  * @extack: netlink extended ACK structure
1279  */
1280 static int
ice_devlink_reload_up(struct devlink * devlink,enum devlink_reload_action action,enum devlink_reload_limit limit,u32 * actions_performed,struct netlink_ext_ack * extack)1281 ice_devlink_reload_up(struct devlink *devlink,
1282 		      enum devlink_reload_action action,
1283 		      enum devlink_reload_limit limit,
1284 		      u32 *actions_performed,
1285 		      struct netlink_ext_ack *extack)
1286 {
1287 	struct ice_pf *pf = devlink_priv(devlink);
1288 
1289 	switch (action) {
1290 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1291 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1292 		return ice_load(pf);
1293 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1294 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1295 		return ice_devlink_reload_empr_finish(pf, extack);
1296 	default:
1297 		WARN_ON(1);
1298 		return -EOPNOTSUPP;
1299 	}
1300 }
1301 
1302 static const struct devlink_ops ice_devlink_ops = {
1303 	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1304 	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1305 			  BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1306 	.reload_down = ice_devlink_reload_down,
1307 	.reload_up = ice_devlink_reload_up,
1308 	.eswitch_mode_get = ice_eswitch_mode_get,
1309 	.eswitch_mode_set = ice_eswitch_mode_set,
1310 	.info_get = ice_devlink_info_get,
1311 	.flash_update = ice_devlink_flash_update,
1312 
1313 	.rate_node_new = ice_devlink_rate_node_new,
1314 	.rate_node_del = ice_devlink_rate_node_del,
1315 
1316 	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1317 	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1318 	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1319 	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1320 
1321 	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1322 	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1323 	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1324 	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1325 
1326 	.rate_leaf_parent_set = ice_devlink_set_parent,
1327 	.rate_node_parent_set = ice_devlink_set_parent,
1328 };
1329 
1330 static int
ice_devlink_enable_roce_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1331 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1332 			    struct devlink_param_gset_ctx *ctx)
1333 {
1334 	struct ice_pf *pf = devlink_priv(devlink);
1335 
1336 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1337 
1338 	return 0;
1339 }
1340 
1341 static int
ice_devlink_enable_roce_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1342 ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1343 			    struct devlink_param_gset_ctx *ctx)
1344 {
1345 	struct ice_pf *pf = devlink_priv(devlink);
1346 	bool roce_ena = ctx->val.vbool;
1347 	int ret;
1348 
1349 	if (!roce_ena) {
1350 		ice_unplug_aux_dev(pf);
1351 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1352 		return 0;
1353 	}
1354 
1355 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1356 	ret = ice_plug_aux_dev(pf);
1357 	if (ret)
1358 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1359 
1360 	return ret;
1361 }
1362 
1363 static int
ice_devlink_enable_roce_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1364 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1365 				 union devlink_param_value val,
1366 				 struct netlink_ext_ack *extack)
1367 {
1368 	struct ice_pf *pf = devlink_priv(devlink);
1369 
1370 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1371 		return -EOPNOTSUPP;
1372 
1373 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1374 		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1375 		return -EOPNOTSUPP;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 static int
ice_devlink_enable_iw_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1382 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1383 			  struct devlink_param_gset_ctx *ctx)
1384 {
1385 	struct ice_pf *pf = devlink_priv(devlink);
1386 
1387 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1388 
1389 	return 0;
1390 }
1391 
1392 static int
ice_devlink_enable_iw_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1393 ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1394 			  struct devlink_param_gset_ctx *ctx)
1395 {
1396 	struct ice_pf *pf = devlink_priv(devlink);
1397 	bool iw_ena = ctx->val.vbool;
1398 	int ret;
1399 
1400 	if (!iw_ena) {
1401 		ice_unplug_aux_dev(pf);
1402 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1403 		return 0;
1404 	}
1405 
1406 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1407 	ret = ice_plug_aux_dev(pf);
1408 	if (ret)
1409 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1410 
1411 	return ret;
1412 }
1413 
1414 static int
ice_devlink_enable_iw_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1415 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1416 			       union devlink_param_value val,
1417 			       struct netlink_ext_ack *extack)
1418 {
1419 	struct ice_pf *pf = devlink_priv(devlink);
1420 
1421 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1422 		return -EOPNOTSUPP;
1423 
1424 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1425 		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1426 		return -EOPNOTSUPP;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 static const struct devlink_param ice_devlink_params[] = {
1433 	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1434 			      ice_devlink_enable_roce_get,
1435 			      ice_devlink_enable_roce_set,
1436 			      ice_devlink_enable_roce_validate),
1437 	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1438 			      ice_devlink_enable_iw_get,
1439 			      ice_devlink_enable_iw_set,
1440 			      ice_devlink_enable_iw_validate),
1441 
1442 };
1443 
ice_devlink_free(void * devlink_ptr)1444 static void ice_devlink_free(void *devlink_ptr)
1445 {
1446 	devlink_free((struct devlink *)devlink_ptr);
1447 }
1448 
1449 /**
1450  * ice_allocate_pf - Allocate devlink and return PF structure pointer
1451  * @dev: the device to allocate for
1452  *
1453  * Allocate a devlink instance for this device and return the private area as
1454  * the PF structure. The devlink memory is kept track of through devres by
1455  * adding an action to remove it when unwinding.
1456  */
ice_allocate_pf(struct device * dev)1457 struct ice_pf *ice_allocate_pf(struct device *dev)
1458 {
1459 	struct devlink *devlink;
1460 
1461 	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1462 	if (!devlink)
1463 		return NULL;
1464 
1465 	/* Add an action to teardown the devlink when unwinding the driver */
1466 	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1467 		return NULL;
1468 
1469 	return devlink_priv(devlink);
1470 }
1471 
1472 /**
1473  * ice_devlink_register - Register devlink interface for this PF
1474  * @pf: the PF to register the devlink for.
1475  *
1476  * Register the devlink instance associated with this physical function.
1477  *
1478  * Return: zero on success or an error code on failure.
1479  */
ice_devlink_register(struct ice_pf * pf)1480 void ice_devlink_register(struct ice_pf *pf)
1481 {
1482 	struct devlink *devlink = priv_to_devlink(pf);
1483 
1484 	devlink_register(devlink);
1485 }
1486 
1487 /**
1488  * ice_devlink_unregister - Unregister devlink resources for this PF.
1489  * @pf: the PF structure to cleanup
1490  *
1491  * Releases resources used by devlink and cleans up associated memory.
1492  */
ice_devlink_unregister(struct ice_pf * pf)1493 void ice_devlink_unregister(struct ice_pf *pf)
1494 {
1495 	devlink_unregister(priv_to_devlink(pf));
1496 }
1497 
1498 /**
1499  * ice_devlink_set_switch_id - Set unique switch id based on pci dsn
1500  * @pf: the PF to create a devlink port for
1501  * @ppid: struct with switch id information
1502  */
1503 static void
ice_devlink_set_switch_id(struct ice_pf * pf,struct netdev_phys_item_id * ppid)1504 ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
1505 {
1506 	struct pci_dev *pdev = pf->pdev;
1507 	u64 id;
1508 
1509 	id = pci_get_dsn(pdev);
1510 
1511 	ppid->id_len = sizeof(id);
1512 	put_unaligned_be64(id, &ppid->id);
1513 }
1514 
ice_devlink_register_params(struct ice_pf * pf)1515 int ice_devlink_register_params(struct ice_pf *pf)
1516 {
1517 	struct devlink *devlink = priv_to_devlink(pf);
1518 
1519 	return devlink_params_register(devlink, ice_devlink_params,
1520 				       ARRAY_SIZE(ice_devlink_params));
1521 }
1522 
ice_devlink_unregister_params(struct ice_pf * pf)1523 void ice_devlink_unregister_params(struct ice_pf *pf)
1524 {
1525 	devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params,
1526 				  ARRAY_SIZE(ice_devlink_params));
1527 }
1528 
1529 /**
1530  * ice_devlink_set_port_split_options - Set port split options
1531  * @pf: the PF to set port split options
1532  * @attrs: devlink attributes
1533  *
1534  * Sets devlink port split options based on available FW port options
1535  */
1536 static void
ice_devlink_set_port_split_options(struct ice_pf * pf,struct devlink_port_attrs * attrs)1537 ice_devlink_set_port_split_options(struct ice_pf *pf,
1538 				   struct devlink_port_attrs *attrs)
1539 {
1540 	struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
1541 	u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX;
1542 	bool active_valid, pending_valid;
1543 	int status;
1544 
1545 	status = ice_aq_get_port_options(&pf->hw, options, &option_count,
1546 					 0, true, &active_idx, &active_valid,
1547 					 &pending_idx, &pending_valid);
1548 	if (status) {
1549 		dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n",
1550 			status);
1551 		return;
1552 	}
1553 
1554 	/* find the biggest available port split count */
1555 	for (i = 0; i < option_count; i++)
1556 		attrs->lanes = max_t(int, attrs->lanes, options[i].pmd);
1557 
1558 	attrs->splittable = attrs->lanes ? 1 : 0;
1559 	ice_active_port_option = active_idx;
1560 }
1561 
1562 static const struct devlink_port_ops ice_devlink_port_ops = {
1563 	.port_split = ice_devlink_port_split,
1564 	.port_unsplit = ice_devlink_port_unsplit,
1565 };
1566 
1567 /**
1568  * ice_devlink_create_pf_port - Create a devlink port for this PF
1569  * @pf: the PF to create a devlink port for
1570  *
1571  * Create and register a devlink_port for this PF.
1572  *
1573  * Return: zero on success or an error code on failure.
1574  */
ice_devlink_create_pf_port(struct ice_pf * pf)1575 int ice_devlink_create_pf_port(struct ice_pf *pf)
1576 {
1577 	struct devlink_port_attrs attrs = {};
1578 	struct devlink_port *devlink_port;
1579 	struct devlink *devlink;
1580 	struct ice_vsi *vsi;
1581 	struct device *dev;
1582 	int err;
1583 
1584 	dev = ice_pf_to_dev(pf);
1585 
1586 	devlink_port = &pf->devlink_port;
1587 
1588 	vsi = ice_get_main_vsi(pf);
1589 	if (!vsi)
1590 		return -EIO;
1591 
1592 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
1593 	attrs.phys.port_number = pf->hw.bus.func;
1594 
1595 	/* As FW supports only port split options for whole device,
1596 	 * set port split options only for first PF.
1597 	 */
1598 	if (pf->hw.pf_id == 0)
1599 		ice_devlink_set_port_split_options(pf, &attrs);
1600 
1601 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1602 
1603 	devlink_port_attrs_set(devlink_port, &attrs);
1604 	devlink = priv_to_devlink(pf);
1605 
1606 	err = devlink_port_register_with_ops(devlink, devlink_port, vsi->idx,
1607 					     &ice_devlink_port_ops);
1608 	if (err) {
1609 		dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
1610 			pf->hw.pf_id, err);
1611 		return err;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 /**
1618  * ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
1619  * @pf: the PF to cleanup
1620  *
1621  * Unregisters the devlink_port structure associated with this PF.
1622  */
ice_devlink_destroy_pf_port(struct ice_pf * pf)1623 void ice_devlink_destroy_pf_port(struct ice_pf *pf)
1624 {
1625 	devlink_port_unregister(&pf->devlink_port);
1626 }
1627 
1628 /**
1629  * ice_devlink_create_vf_port - Create a devlink port for this VF
1630  * @vf: the VF to create a port for
1631  *
1632  * Create and register a devlink_port for this VF.
1633  *
1634  * Return: zero on success or an error code on failure.
1635  */
ice_devlink_create_vf_port(struct ice_vf * vf)1636 int ice_devlink_create_vf_port(struct ice_vf *vf)
1637 {
1638 	struct devlink_port_attrs attrs = {};
1639 	struct devlink_port *devlink_port;
1640 	struct devlink *devlink;
1641 	struct ice_vsi *vsi;
1642 	struct device *dev;
1643 	struct ice_pf *pf;
1644 	int err;
1645 
1646 	pf = vf->pf;
1647 	dev = ice_pf_to_dev(pf);
1648 	devlink_port = &vf->devlink_port;
1649 
1650 	vsi = ice_get_vf_vsi(vf);
1651 	if (!vsi)
1652 		return -EINVAL;
1653 
1654 	attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
1655 	attrs.pci_vf.pf = pf->hw.bus.func;
1656 	attrs.pci_vf.vf = vf->vf_id;
1657 
1658 	ice_devlink_set_switch_id(pf, &attrs.switch_id);
1659 
1660 	devlink_port_attrs_set(devlink_port, &attrs);
1661 	devlink = priv_to_devlink(pf);
1662 
1663 	err = devlink_port_register(devlink, devlink_port, vsi->idx);
1664 	if (err) {
1665 		dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
1666 			vf->vf_id, err);
1667 		return err;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 /**
1674  * ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
1675  * @vf: the VF to cleanup
1676  *
1677  * Unregisters the devlink_port structure associated with this VF.
1678  */
ice_devlink_destroy_vf_port(struct ice_vf * vf)1679 void ice_devlink_destroy_vf_port(struct ice_vf *vf)
1680 {
1681 	devl_rate_leaf_destroy(&vf->devlink_port);
1682 	devlink_port_unregister(&vf->devlink_port);
1683 }
1684 
1685 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1686 
1687 static const struct devlink_region_ops ice_nvm_region_ops;
1688 static const struct devlink_region_ops ice_sram_region_ops;
1689 
1690 /**
1691  * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1692  * @devlink: the devlink instance
1693  * @ops: the devlink region to snapshot
1694  * @extack: extended ACK response structure
1695  * @data: on exit points to snapshot data buffer
1696  *
1697  * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1698  * the nvm-flash or shadow-ram region.
1699  *
1700  * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1701  * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1702  * interface.
1703  *
1704  * @returns zero on success, and updates the data pointer. Returns a non-zero
1705  * error code on failure.
1706  */
ice_devlink_nvm_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1707 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1708 				    const struct devlink_region_ops *ops,
1709 				    struct netlink_ext_ack *extack, u8 **data)
1710 {
1711 	struct ice_pf *pf = devlink_priv(devlink);
1712 	struct device *dev = ice_pf_to_dev(pf);
1713 	struct ice_hw *hw = &pf->hw;
1714 	bool read_shadow_ram;
1715 	u8 *nvm_data, *tmp, i;
1716 	u32 nvm_size, left;
1717 	s8 num_blks;
1718 	int status;
1719 
1720 	if (ops == &ice_nvm_region_ops) {
1721 		read_shadow_ram = false;
1722 		nvm_size = hw->flash.flash_size;
1723 	} else if (ops == &ice_sram_region_ops) {
1724 		read_shadow_ram = true;
1725 		nvm_size = hw->flash.sr_words * 2u;
1726 	} else {
1727 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1728 		return -EOPNOTSUPP;
1729 	}
1730 
1731 	nvm_data = vzalloc(nvm_size);
1732 	if (!nvm_data)
1733 		return -ENOMEM;
1734 
1735 	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1736 	tmp = nvm_data;
1737 	left = nvm_size;
1738 
1739 	/* Some systems take longer to read the NVM than others which causes the
1740 	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1741 	 * this by breaking the reads of the NVM into smaller chunks that will
1742 	 * probably not take as long. This has some overhead since we are
1743 	 * increasing the number of AQ commands, but it should always work
1744 	 */
1745 	for (i = 0; i < num_blks; i++) {
1746 		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1747 
1748 		status = ice_acquire_nvm(hw, ICE_RES_READ);
1749 		if (status) {
1750 			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1751 				status, hw->adminq.sq_last_status);
1752 			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1753 			vfree(nvm_data);
1754 			return -EIO;
1755 		}
1756 
1757 		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1758 					   &read_sz, tmp, read_shadow_ram);
1759 		if (status) {
1760 			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1761 				read_sz, status, hw->adminq.sq_last_status);
1762 			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1763 			ice_release_nvm(hw);
1764 			vfree(nvm_data);
1765 			return -EIO;
1766 		}
1767 		ice_release_nvm(hw);
1768 
1769 		tmp += read_sz;
1770 		left -= read_sz;
1771 	}
1772 
1773 	*data = nvm_data;
1774 
1775 	return 0;
1776 }
1777 
1778 /**
1779  * ice_devlink_nvm_read - Read a portion of NVM flash contents
1780  * @devlink: the devlink instance
1781  * @ops: the devlink region to snapshot
1782  * @extack: extended ACK response structure
1783  * @offset: the offset to start at
1784  * @size: the amount to read
1785  * @data: the data buffer to read into
1786  *
1787  * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1788  * read a section of the NVM contents.
1789  *
1790  * It reads from either the nvm-flash or shadow-ram region contents.
1791  *
1792  * @returns zero on success, and updates the data pointer. Returns a non-zero
1793  * error code on failure.
1794  */
ice_devlink_nvm_read(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u64 offset,u32 size,u8 * data)1795 static int ice_devlink_nvm_read(struct devlink *devlink,
1796 				const struct devlink_region_ops *ops,
1797 				struct netlink_ext_ack *extack,
1798 				u64 offset, u32 size, u8 *data)
1799 {
1800 	struct ice_pf *pf = devlink_priv(devlink);
1801 	struct device *dev = ice_pf_to_dev(pf);
1802 	struct ice_hw *hw = &pf->hw;
1803 	bool read_shadow_ram;
1804 	u64 nvm_size;
1805 	int status;
1806 
1807 	if (ops == &ice_nvm_region_ops) {
1808 		read_shadow_ram = false;
1809 		nvm_size = hw->flash.flash_size;
1810 	} else if (ops == &ice_sram_region_ops) {
1811 		read_shadow_ram = true;
1812 		nvm_size = hw->flash.sr_words * 2u;
1813 	} else {
1814 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1815 		return -EOPNOTSUPP;
1816 	}
1817 
1818 	if (offset + size >= nvm_size) {
1819 		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1820 		return -ERANGE;
1821 	}
1822 
1823 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1824 	if (status) {
1825 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1826 			status, hw->adminq.sq_last_status);
1827 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1828 		return -EIO;
1829 	}
1830 
1831 	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1832 				   read_shadow_ram);
1833 	if (status) {
1834 		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1835 			size, status, hw->adminq.sq_last_status);
1836 		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1837 		ice_release_nvm(hw);
1838 		return -EIO;
1839 	}
1840 	ice_release_nvm(hw);
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1847  * @devlink: the devlink instance
1848  * @ops: the devlink region being snapshotted
1849  * @extack: extended ACK response structure
1850  * @data: on exit points to snapshot data buffer
1851  *
1852  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1853  * the device-caps devlink region. It captures a snapshot of the device
1854  * capabilities reported by firmware.
1855  *
1856  * @returns zero on success, and updates the data pointer. Returns a non-zero
1857  * error code on failure.
1858  */
1859 static int
ice_devlink_devcaps_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1860 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1861 			     const struct devlink_region_ops *ops,
1862 			     struct netlink_ext_ack *extack, u8 **data)
1863 {
1864 	struct ice_pf *pf = devlink_priv(devlink);
1865 	struct device *dev = ice_pf_to_dev(pf);
1866 	struct ice_hw *hw = &pf->hw;
1867 	void *devcaps;
1868 	int status;
1869 
1870 	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1871 	if (!devcaps)
1872 		return -ENOMEM;
1873 
1874 	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1875 				  ice_aqc_opc_list_dev_caps, NULL);
1876 	if (status) {
1877 		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1878 			status, hw->adminq.sq_last_status);
1879 		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1880 		vfree(devcaps);
1881 		return status;
1882 	}
1883 
1884 	*data = (u8 *)devcaps;
1885 
1886 	return 0;
1887 }
1888 
1889 static const struct devlink_region_ops ice_nvm_region_ops = {
1890 	.name = "nvm-flash",
1891 	.destructor = vfree,
1892 	.snapshot = ice_devlink_nvm_snapshot,
1893 	.read = ice_devlink_nvm_read,
1894 };
1895 
1896 static const struct devlink_region_ops ice_sram_region_ops = {
1897 	.name = "shadow-ram",
1898 	.destructor = vfree,
1899 	.snapshot = ice_devlink_nvm_snapshot,
1900 	.read = ice_devlink_nvm_read,
1901 };
1902 
1903 static const struct devlink_region_ops ice_devcaps_region_ops = {
1904 	.name = "device-caps",
1905 	.destructor = vfree,
1906 	.snapshot = ice_devlink_devcaps_snapshot,
1907 };
1908 
1909 /**
1910  * ice_devlink_init_regions - Initialize devlink regions
1911  * @pf: the PF device structure
1912  *
1913  * Create devlink regions used to enable access to dump the contents of the
1914  * flash memory on the device.
1915  */
ice_devlink_init_regions(struct ice_pf * pf)1916 void ice_devlink_init_regions(struct ice_pf *pf)
1917 {
1918 	struct devlink *devlink = priv_to_devlink(pf);
1919 	struct device *dev = ice_pf_to_dev(pf);
1920 	u64 nvm_size, sram_size;
1921 
1922 	nvm_size = pf->hw.flash.flash_size;
1923 	pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
1924 					       nvm_size);
1925 	if (IS_ERR(pf->nvm_region)) {
1926 		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
1927 			PTR_ERR(pf->nvm_region));
1928 		pf->nvm_region = NULL;
1929 	}
1930 
1931 	sram_size = pf->hw.flash.sr_words * 2u;
1932 	pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops,
1933 						1, sram_size);
1934 	if (IS_ERR(pf->sram_region)) {
1935 		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
1936 			PTR_ERR(pf->sram_region));
1937 		pf->sram_region = NULL;
1938 	}
1939 
1940 	pf->devcaps_region = devlink_region_create(devlink,
1941 						   &ice_devcaps_region_ops, 10,
1942 						   ICE_AQ_MAX_BUF_LEN);
1943 	if (IS_ERR(pf->devcaps_region)) {
1944 		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
1945 			PTR_ERR(pf->devcaps_region));
1946 		pf->devcaps_region = NULL;
1947 	}
1948 }
1949 
1950 /**
1951  * ice_devlink_destroy_regions - Destroy devlink regions
1952  * @pf: the PF device structure
1953  *
1954  * Remove previously created regions for this PF.
1955  */
ice_devlink_destroy_regions(struct ice_pf * pf)1956 void ice_devlink_destroy_regions(struct ice_pf *pf)
1957 {
1958 	if (pf->nvm_region)
1959 		devlink_region_destroy(pf->nvm_region);
1960 
1961 	if (pf->sram_region)
1962 		devlink_region_destroy(pf->sram_region);
1963 
1964 	if (pf->devcaps_region)
1965 		devlink_region_destroy(pf->devcaps_region);
1966 }
1967