1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
32 }
33 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
53 	if (!ret)
54 		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
ksz8_reset_switch(struct ksz_device * dev)61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
ksz8863_change_mtu(struct ksz_device * dev,int frame_size)79 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80 {
81 	u8 ctrl2 = 0;
82 
83 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87 
88 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90 }
91 
ksz8795_change_mtu(struct ksz_device * dev,int frame_size)92 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93 {
94 	u8 ctrl1 = 0, ctrl2 = 0;
95 	int ret;
96 
97 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99 	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 		ctrl1 |= SW_HUGE_PACKET;
101 
102 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103 	if (ret)
104 		return ret;
105 
106 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107 }
108 
ksz8_change_mtu(struct ksz_device * dev,int port,int mtu)109 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110 {
111 	u16 frame_size;
112 
113 	if (!dsa_is_cpu_port(dev->ds, port))
114 		return 0;
115 
116 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117 
118 	switch (dev->chip_id) {
119 	case KSZ8795_CHIP_ID:
120 	case KSZ8794_CHIP_ID:
121 	case KSZ8765_CHIP_ID:
122 		return ksz8795_change_mtu(dev, frame_size);
123 	case KSZ8830_CHIP_ID:
124 		return ksz8863_change_mtu(dev, frame_size);
125 	}
126 
127 	return -EOPNOTSUPP;
128 }
129 
ksz8795_set_prio_queue(struct ksz_device * dev,int port,int queue)130 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131 {
132 	u8 hi, lo;
133 
134 	/* Number of queues can only be 1, 2, or 4. */
135 	switch (queue) {
136 	case 4:
137 	case 3:
138 		queue = PORT_QUEUE_SPLIT_4;
139 		break;
140 	case 2:
141 		queue = PORT_QUEUE_SPLIT_2;
142 		break;
143 	default:
144 		queue = PORT_QUEUE_SPLIT_1;
145 	}
146 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
147 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
148 	lo &= ~PORT_QUEUE_SPLIT_L;
149 	if (queue & PORT_QUEUE_SPLIT_2)
150 		lo |= PORT_QUEUE_SPLIT_L;
151 	hi &= ~PORT_QUEUE_SPLIT_H;
152 	if (queue & PORT_QUEUE_SPLIT_4)
153 		hi |= PORT_QUEUE_SPLIT_H;
154 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
155 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
156 
157 	/* Default is port based for egress rate limit. */
158 	if (queue != PORT_QUEUE_SPLIT_1)
159 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160 			true);
161 }
162 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)163 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164 {
165 	const u32 *masks;
166 	const u16 *regs;
167 	u16 ctrl_addr;
168 	u32 data;
169 	u8 check;
170 	int loop;
171 
172 	masks = dev->info->masks;
173 	regs = dev->info->regs;
174 
175 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177 
178 	mutex_lock(&dev->alu_mutex);
179 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180 
181 	/* It is almost guaranteed to always read the valid bit because of
182 	 * slow SPI speed.
183 	 */
184 	for (loop = 2; loop > 0; loop--) {
185 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186 
187 		if (check & masks[MIB_COUNTER_VALID]) {
188 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
189 			if (check & masks[MIB_COUNTER_OVERFLOW])
190 				*cnt += MIB_COUNTER_VALUE + 1;
191 			*cnt += data & MIB_COUNTER_VALUE;
192 			break;
193 		}
194 	}
195 	mutex_unlock(&dev->alu_mutex);
196 }
197 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)198 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199 			      u64 *dropped, u64 *cnt)
200 {
201 	const u32 *masks;
202 	const u16 *regs;
203 	u16 ctrl_addr;
204 	u32 data;
205 	u8 check;
206 	int loop;
207 
208 	masks = dev->info->masks;
209 	regs = dev->info->regs;
210 
211 	addr -= dev->info->reg_mib_cnt;
212 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215 
216 	mutex_lock(&dev->alu_mutex);
217 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 
219 	/* It is almost guaranteed to always read the valid bit because of
220 	 * slow SPI speed.
221 	 */
222 	for (loop = 2; loop > 0; loop--) {
223 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224 
225 		if (check & masks[MIB_COUNTER_VALID]) {
226 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227 			if (addr < 2) {
228 				u64 total;
229 
230 				total = check & MIB_TOTAL_BYTES_H;
231 				total <<= 32;
232 				*cnt += total;
233 				*cnt += data;
234 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
235 					total = MIB_TOTAL_BYTES_H + 1;
236 					total <<= 32;
237 					*cnt += total;
238 				}
239 			} else {
240 				if (check & masks[MIB_COUNTER_OVERFLOW])
241 					*cnt += MIB_PACKET_DROPPED + 1;
242 				*cnt += data & MIB_PACKET_DROPPED;
243 			}
244 			break;
245 		}
246 	}
247 	mutex_unlock(&dev->alu_mutex);
248 }
249 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)250 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251 			      u64 *dropped, u64 *cnt)
252 {
253 	u32 *last = (u32 *)dropped;
254 	const u16 *regs;
255 	u16 ctrl_addr;
256 	u32 data;
257 	u32 cur;
258 
259 	regs = dev->info->regs;
260 
261 	addr -= dev->info->reg_mib_cnt;
262 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
264 	ctrl_addr += port;
265 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266 
267 	mutex_lock(&dev->alu_mutex);
268 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
269 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
270 	mutex_unlock(&dev->alu_mutex);
271 
272 	data &= MIB_PACKET_DROPPED;
273 	cur = last[addr];
274 	if (data != cur) {
275 		last[addr] = data;
276 		if (data < cur)
277 			data += MIB_PACKET_DROPPED + 1;
278 		data -= cur;
279 		*cnt += data;
280 	}
281 }
282 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)283 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284 		    u64 *dropped, u64 *cnt)
285 {
286 	if (ksz_is_ksz88x3(dev))
287 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288 	else
289 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290 }
291 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)292 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293 {
294 	if (ksz_is_ksz88x3(dev))
295 		return;
296 
297 	/* enable the port for flush/freeze function */
298 	if (freeze)
299 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
300 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
301 
302 	/* disable the port after freeze is done */
303 	if (!freeze)
304 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
305 }
306 
ksz8_port_init_cnt(struct ksz_device * dev,int port)307 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308 {
309 	struct ksz_port_mib *mib = &dev->ports[port].mib;
310 	u64 *dropped;
311 
312 	if (!ksz_is_ksz88x3(dev)) {
313 		/* flush all enabled port MIB counters */
314 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
315 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
316 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
317 	}
318 
319 	mib->cnt_ptr = 0;
320 
321 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324 					&mib->counters[mib->cnt_ptr]);
325 		++mib->cnt_ptr;
326 	}
327 
328 	/* last one in storage */
329 	dropped = &mib->counters[dev->info->mib_cnt];
330 
331 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332 	while (mib->cnt_ptr < dev->info->mib_cnt) {
333 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334 					dropped, &mib->counters[mib->cnt_ptr]);
335 		++mib->cnt_ptr;
336 	}
337 }
338 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)339 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340 {
341 	const u16 *regs;
342 	u16 ctrl_addr;
343 	int ret;
344 
345 	regs = dev->info->regs;
346 
347 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
348 
349 	mutex_lock(&dev->alu_mutex);
350 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
351 	if (ret)
352 		goto unlock_alu;
353 
354 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
355 unlock_alu:
356 	mutex_unlock(&dev->alu_mutex);
357 
358 	return ret;
359 }
360 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)361 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
362 {
363 	const u16 *regs;
364 	u16 ctrl_addr;
365 	int ret;
366 
367 	regs = dev->info->regs;
368 
369 	ctrl_addr = IND_ACC_TABLE(table) | addr;
370 
371 	mutex_lock(&dev->alu_mutex);
372 	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
373 	if (ret)
374 		goto unlock_alu;
375 
376 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
377 unlock_alu:
378 	mutex_unlock(&dev->alu_mutex);
379 
380 	return ret;
381 }
382 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)383 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
384 {
385 	int timeout = 100;
386 	const u32 *masks;
387 	const u16 *regs;
388 
389 	masks = dev->info->masks;
390 	regs = dev->info->regs;
391 
392 	do {
393 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
394 		timeout--;
395 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
396 
397 	/* Entry is not ready for accessing. */
398 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
399 		return -EAGAIN;
400 	/* Entry is ready for accessing. */
401 	} else {
402 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
403 
404 		/* There is no valid entry in the table. */
405 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
406 			return -ENXIO;
407 	}
408 	return 0;
409 }
410 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u8 * timestamp,u16 * entries)411 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
412 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
413 {
414 	u32 data_hi, data_lo;
415 	const u8 *shifts;
416 	const u32 *masks;
417 	const u16 *regs;
418 	u16 ctrl_addr;
419 	u8 data;
420 	int rc;
421 
422 	shifts = dev->info->shifts;
423 	masks = dev->info->masks;
424 	regs = dev->info->regs;
425 
426 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
427 
428 	mutex_lock(&dev->alu_mutex);
429 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
430 
431 	rc = ksz8_valid_dyn_entry(dev, &data);
432 	if (rc == -EAGAIN) {
433 		if (addr == 0)
434 			*entries = 0;
435 	} else if (rc == -ENXIO) {
436 		*entries = 0;
437 	/* At least one valid entry in the table. */
438 	} else {
439 		u64 buf = 0;
440 		int cnt;
441 
442 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
443 		data_hi = (u32)(buf >> 32);
444 		data_lo = (u32)buf;
445 
446 		/* Check out how many valid entry in the table. */
447 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
448 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
449 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
450 			shifts[DYNAMIC_MAC_ENTRIES];
451 		*entries = cnt + 1;
452 
453 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
454 			shifts[DYNAMIC_MAC_FID];
455 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
456 			shifts[DYNAMIC_MAC_SRC_PORT];
457 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
458 			shifts[DYNAMIC_MAC_TIMESTAMP];
459 
460 		mac_addr[5] = (u8)data_lo;
461 		mac_addr[4] = (u8)(data_lo >> 8);
462 		mac_addr[3] = (u8)(data_lo >> 16);
463 		mac_addr[2] = (u8)(data_lo >> 24);
464 
465 		mac_addr[1] = (u8)data_hi;
466 		mac_addr[0] = (u8)(data_hi >> 8);
467 		rc = 0;
468 	}
469 	mutex_unlock(&dev->alu_mutex);
470 
471 	return rc;
472 }
473 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)474 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
475 				struct alu_struct *alu, bool *valid)
476 {
477 	u32 data_hi, data_lo;
478 	const u8 *shifts;
479 	const u32 *masks;
480 	u64 data;
481 	int ret;
482 
483 	shifts = dev->info->shifts;
484 	masks = dev->info->masks;
485 
486 	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
487 	if (ret)
488 		return ret;
489 
490 	data_hi = data >> 32;
491 	data_lo = (u32)data;
492 
493 	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
494 			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
495 		*valid = false;
496 		return 0;
497 	}
498 
499 	alu->mac[5] = (u8)data_lo;
500 	alu->mac[4] = (u8)(data_lo >> 8);
501 	alu->mac[3] = (u8)(data_lo >> 16);
502 	alu->mac[2] = (u8)(data_lo >> 24);
503 	alu->mac[1] = (u8)data_hi;
504 	alu->mac[0] = (u8)(data_hi >> 8);
505 	alu->port_forward =
506 		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
507 			shifts[STATIC_MAC_FWD_PORTS];
508 	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
509 
510 	/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
511 	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
512 	 * static MAC table compared to doing write.
513 	 */
514 	if (ksz_is_ksz87xx(dev))
515 		data_hi >>= 1;
516 	alu->is_static = true;
517 	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
518 	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
519 		shifts[STATIC_MAC_FID];
520 
521 	*valid = true;
522 
523 	return 0;
524 }
525 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)526 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
527 				struct alu_struct *alu)
528 {
529 	u32 data_hi, data_lo;
530 	const u8 *shifts;
531 	const u32 *masks;
532 	u64 data;
533 
534 	shifts = dev->info->shifts;
535 	masks = dev->info->masks;
536 
537 	data_lo = ((u32)alu->mac[2] << 24) |
538 		((u32)alu->mac[3] << 16) |
539 		((u32)alu->mac[4] << 8) | alu->mac[5];
540 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
541 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
542 
543 	if (alu->is_override)
544 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
545 	if (alu->is_use_fid) {
546 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
547 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
548 	}
549 	if (alu->is_static)
550 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
551 	else
552 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
553 
554 	data = (u64)data_hi << 32 | data_lo;
555 
556 	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
557 }
558 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)559 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
560 			   u8 *member, u8 *valid)
561 {
562 	const u8 *shifts;
563 	const u32 *masks;
564 
565 	shifts = dev->info->shifts;
566 	masks = dev->info->masks;
567 
568 	*fid = vlan & masks[VLAN_TABLE_FID];
569 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
570 			shifts[VLAN_TABLE_MEMBERSHIP_S];
571 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
572 }
573 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)574 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
575 			 u16 *vlan)
576 {
577 	const u8 *shifts;
578 	const u32 *masks;
579 
580 	shifts = dev->info->shifts;
581 	masks = dev->info->masks;
582 
583 	*vlan = fid;
584 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
585 	if (valid)
586 		*vlan |= masks[VLAN_TABLE_VALID];
587 }
588 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)589 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
590 {
591 	const u8 *shifts;
592 	u64 data;
593 	int i;
594 
595 	shifts = dev->info->shifts;
596 
597 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
598 	addr *= 4;
599 	for (i = 0; i < 4; i++) {
600 		dev->vlan_cache[addr + i].table[0] = (u16)data;
601 		data >>= shifts[VLAN_TABLE];
602 	}
603 }
604 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)605 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
606 {
607 	int index;
608 	u16 *data;
609 	u16 addr;
610 	u64 buf;
611 
612 	data = (u16 *)&buf;
613 	addr = vid / 4;
614 	index = vid & 3;
615 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
616 	*vlan = data[index];
617 }
618 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)619 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
620 {
621 	int index;
622 	u16 *data;
623 	u16 addr;
624 	u64 buf;
625 
626 	data = (u16 *)&buf;
627 	addr = vid / 4;
628 	index = vid & 3;
629 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
630 	data[index] = vlan;
631 	dev->vlan_cache[vid].table[0] = vlan;
632 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
633 }
634 
635 /**
636  * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
637  *		     Control register (Reg. 31).
638  * @dev: The KSZ device instance.
639  * @port: The port number to be read.
640  * @val: The value read from the SMI interface.
641  *
642  * This function reads the SMI interface and translates the hardware register
643  * bit values into their corresponding control settings for a MIIM PHY Control
644  * register.
645  *
646  * Return: 0 on success, error code on failure.
647  */
ksz8_r_phy_ctrl(struct ksz_device * dev,int port,u16 * val)648 static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
649 {
650 	const u16 *regs = dev->info->regs;
651 	u8 reg_val;
652 	int ret;
653 
654 	*val = 0;
655 
656 	ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], &reg_val);
657 	if (ret < 0)
658 		return ret;
659 
660 	if (reg_val & PORT_MDIX_STATUS)
661 		*val |= KSZ886X_CTRL_MDIX_STAT;
662 
663 	ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, &reg_val);
664 	if (ret < 0)
665 		return ret;
666 
667 	if (reg_val & PORT_FORCE_LINK)
668 		*val |= KSZ886X_CTRL_FORCE_LINK;
669 
670 	if (reg_val & PORT_POWER_SAVING)
671 		*val |= KSZ886X_CTRL_PWRSAVE;
672 
673 	if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
674 		*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
675 
676 	return 0;
677 }
678 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)679 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
680 {
681 	u8 restart, speed, ctrl, link;
682 	int processed = true;
683 	const u16 *regs;
684 	u8 val1, val2;
685 	u16 data = 0;
686 	u8 p = phy;
687 	int ret;
688 
689 	regs = dev->info->regs;
690 
691 	switch (reg) {
692 	case MII_BMCR:
693 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
694 		if (ret)
695 			return ret;
696 
697 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
698 		if (ret)
699 			return ret;
700 
701 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
702 		if (ret)
703 			return ret;
704 
705 		if (restart & PORT_PHY_LOOPBACK)
706 			data |= BMCR_LOOPBACK;
707 		if (ctrl & PORT_FORCE_100_MBIT)
708 			data |= BMCR_SPEED100;
709 		if (ksz_is_ksz88x3(dev)) {
710 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
711 				data |= BMCR_ANENABLE;
712 		} else {
713 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
714 				data |= BMCR_ANENABLE;
715 		}
716 		if (restart & PORT_POWER_DOWN)
717 			data |= BMCR_PDOWN;
718 		if (restart & PORT_AUTO_NEG_RESTART)
719 			data |= BMCR_ANRESTART;
720 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
721 			data |= BMCR_FULLDPLX;
722 		if (speed & PORT_HP_MDIX)
723 			data |= KSZ886X_BMCR_HP_MDIX;
724 		if (restart & PORT_FORCE_MDIX)
725 			data |= KSZ886X_BMCR_FORCE_MDI;
726 		if (restart & PORT_AUTO_MDIX_DISABLE)
727 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
728 		if (restart & PORT_TX_DISABLE)
729 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
730 		if (restart & PORT_LED_OFF)
731 			data |= KSZ886X_BMCR_DISABLE_LED;
732 		break;
733 	case MII_BMSR:
734 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
735 		if (ret)
736 			return ret;
737 
738 		data = BMSR_100FULL |
739 		       BMSR_100HALF |
740 		       BMSR_10FULL |
741 		       BMSR_10HALF |
742 		       BMSR_ANEGCAPABLE;
743 		if (link & PORT_AUTO_NEG_COMPLETE)
744 			data |= BMSR_ANEGCOMPLETE;
745 		if (link & PORT_STAT_LINK_GOOD)
746 			data |= BMSR_LSTATUS;
747 		break;
748 	case MII_PHYSID1:
749 		data = KSZ8795_ID_HI;
750 		break;
751 	case MII_PHYSID2:
752 		if (ksz_is_ksz88x3(dev))
753 			data = KSZ8863_ID_LO;
754 		else
755 			data = KSZ8795_ID_LO;
756 		break;
757 	case MII_ADVERTISE:
758 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
759 		if (ret)
760 			return ret;
761 
762 		data = ADVERTISE_CSMA;
763 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
764 			data |= ADVERTISE_PAUSE_CAP;
765 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
766 			data |= ADVERTISE_100FULL;
767 		if (ctrl & PORT_AUTO_NEG_100BTX)
768 			data |= ADVERTISE_100HALF;
769 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
770 			data |= ADVERTISE_10FULL;
771 		if (ctrl & PORT_AUTO_NEG_10BT)
772 			data |= ADVERTISE_10HALF;
773 		break;
774 	case MII_LPA:
775 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
776 		if (ret)
777 			return ret;
778 
779 		data = LPA_SLCT;
780 		if (link & PORT_REMOTE_SYM_PAUSE)
781 			data |= LPA_PAUSE_CAP;
782 		if (link & PORT_REMOTE_100BTX_FD)
783 			data |= LPA_100FULL;
784 		if (link & PORT_REMOTE_100BTX)
785 			data |= LPA_100HALF;
786 		if (link & PORT_REMOTE_10BT_FD)
787 			data |= LPA_10FULL;
788 		if (link & PORT_REMOTE_10BT)
789 			data |= LPA_10HALF;
790 		if (data & ~LPA_SLCT)
791 			data |= LPA_LPACK;
792 		break;
793 	case PHY_REG_LINK_MD:
794 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
795 		if (ret)
796 			return ret;
797 
798 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
799 		if (ret)
800 			return ret;
801 
802 		if (val1 & PORT_START_CABLE_DIAG)
803 			data |= PHY_START_CABLE_DIAG;
804 
805 		if (val1 & PORT_CABLE_10M_SHORT)
806 			data |= PHY_CABLE_10M_SHORT;
807 
808 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
809 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
810 
811 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
812 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
813 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
814 		break;
815 	case PHY_REG_PHY_CTRL:
816 		ret = ksz8_r_phy_ctrl(dev, p, &data);
817 		if (ret)
818 			return ret;
819 
820 		break;
821 	default:
822 		processed = false;
823 		break;
824 	}
825 	if (processed)
826 		*val = data;
827 
828 	return 0;
829 }
830 
831 /**
832  * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
833  *		     Control register (Reg. 31).
834  * @dev: The KSZ device instance.
835  * @port: The port number to be configured.
836  * @val: The register value to be written.
837  *
838  * This function translates control settings from a MIIM PHY Control register
839  * into their corresponding hardware register bit values for the SMI
840  * interface.
841  *
842  * Return: 0 on success, error code on failure.
843  */
ksz8_w_phy_ctrl(struct ksz_device * dev,int port,u16 val)844 static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
845 {
846 	u8 reg_val = 0;
847 	int ret;
848 
849 	if (val & KSZ886X_CTRL_FORCE_LINK)
850 		reg_val |= PORT_FORCE_LINK;
851 
852 	if (val & KSZ886X_CTRL_PWRSAVE)
853 		reg_val |= PORT_POWER_SAVING;
854 
855 	if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
856 		reg_val |= PORT_PHY_REMOTE_LOOPBACK;
857 
858 	ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
859 			PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
860 	return ret;
861 }
862 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)863 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
864 {
865 	u8 restart, speed, ctrl, data;
866 	const u16 *regs;
867 	u8 p = phy;
868 	int ret;
869 
870 	regs = dev->info->regs;
871 
872 	switch (reg) {
873 	case MII_BMCR:
874 
875 		/* Do not support PHY reset function. */
876 		if (val & BMCR_RESET)
877 			break;
878 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
879 		if (ret)
880 			return ret;
881 
882 		data = speed;
883 		if (val & KSZ886X_BMCR_HP_MDIX)
884 			data |= PORT_HP_MDIX;
885 		else
886 			data &= ~PORT_HP_MDIX;
887 
888 		if (data != speed) {
889 			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
890 			if (ret)
891 				return ret;
892 		}
893 
894 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
895 		if (ret)
896 			return ret;
897 
898 		data = ctrl;
899 		if (ksz_is_ksz88x3(dev)) {
900 			if ((val & BMCR_ANENABLE))
901 				data |= PORT_AUTO_NEG_ENABLE;
902 			else
903 				data &= ~PORT_AUTO_NEG_ENABLE;
904 		} else {
905 			if (!(val & BMCR_ANENABLE))
906 				data |= PORT_AUTO_NEG_DISABLE;
907 			else
908 				data &= ~PORT_AUTO_NEG_DISABLE;
909 
910 			/* Fiber port does not support auto-negotiation. */
911 			if (dev->ports[p].fiber)
912 				data |= PORT_AUTO_NEG_DISABLE;
913 		}
914 
915 		if (val & BMCR_SPEED100)
916 			data |= PORT_FORCE_100_MBIT;
917 		else
918 			data &= ~PORT_FORCE_100_MBIT;
919 		if (val & BMCR_FULLDPLX)
920 			data |= PORT_FORCE_FULL_DUPLEX;
921 		else
922 			data &= ~PORT_FORCE_FULL_DUPLEX;
923 
924 		if (data != ctrl) {
925 			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
926 			if (ret)
927 				return ret;
928 		}
929 
930 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
931 		if (ret)
932 			return ret;
933 
934 		data = restart;
935 		if (val & KSZ886X_BMCR_DISABLE_LED)
936 			data |= PORT_LED_OFF;
937 		else
938 			data &= ~PORT_LED_OFF;
939 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
940 			data |= PORT_TX_DISABLE;
941 		else
942 			data &= ~PORT_TX_DISABLE;
943 		if (val & BMCR_ANRESTART)
944 			data |= PORT_AUTO_NEG_RESTART;
945 		else
946 			data &= ~(PORT_AUTO_NEG_RESTART);
947 		if (val & BMCR_PDOWN)
948 			data |= PORT_POWER_DOWN;
949 		else
950 			data &= ~PORT_POWER_DOWN;
951 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
952 			data |= PORT_AUTO_MDIX_DISABLE;
953 		else
954 			data &= ~PORT_AUTO_MDIX_DISABLE;
955 		if (val & KSZ886X_BMCR_FORCE_MDI)
956 			data |= PORT_FORCE_MDIX;
957 		else
958 			data &= ~PORT_FORCE_MDIX;
959 		if (val & BMCR_LOOPBACK)
960 			data |= PORT_PHY_LOOPBACK;
961 		else
962 			data &= ~PORT_PHY_LOOPBACK;
963 
964 		if (data != restart) {
965 			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
966 					  data);
967 			if (ret)
968 				return ret;
969 		}
970 		break;
971 	case MII_ADVERTISE:
972 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
973 		if (ret)
974 			return ret;
975 
976 		data = ctrl;
977 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
978 			  PORT_AUTO_NEG_100BTX_FD |
979 			  PORT_AUTO_NEG_100BTX |
980 			  PORT_AUTO_NEG_10BT_FD |
981 			  PORT_AUTO_NEG_10BT);
982 		if (val & ADVERTISE_PAUSE_CAP)
983 			data |= PORT_AUTO_NEG_SYM_PAUSE;
984 		if (val & ADVERTISE_100FULL)
985 			data |= PORT_AUTO_NEG_100BTX_FD;
986 		if (val & ADVERTISE_100HALF)
987 			data |= PORT_AUTO_NEG_100BTX;
988 		if (val & ADVERTISE_10FULL)
989 			data |= PORT_AUTO_NEG_10BT_FD;
990 		if (val & ADVERTISE_10HALF)
991 			data |= PORT_AUTO_NEG_10BT;
992 
993 		if (data != ctrl) {
994 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
995 			if (ret)
996 				return ret;
997 		}
998 		break;
999 	case PHY_REG_LINK_MD:
1000 		if (val & PHY_START_CABLE_DIAG)
1001 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1002 		break;
1003 
1004 	case PHY_REG_PHY_CTRL:
1005 		ret = ksz8_w_phy_ctrl(dev, p, val);
1006 		if (ret)
1007 			return ret;
1008 		break;
1009 	default:
1010 		break;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)1016 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1017 {
1018 	u8 data;
1019 
1020 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1021 	data &= ~PORT_VLAN_MEMBERSHIP;
1022 	data |= (member & dev->port_mask);
1023 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1024 }
1025 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1026 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1027 {
1028 	u8 learn[DSA_MAX_PORTS];
1029 	int first, index, cnt;
1030 	const u16 *regs;
1031 
1032 	regs = dev->info->regs;
1033 
1034 	if ((uint)port < dev->info->port_cnt) {
1035 		first = port;
1036 		cnt = port + 1;
1037 	} else {
1038 		/* Flush all ports. */
1039 		first = 0;
1040 		cnt = dev->info->port_cnt;
1041 	}
1042 	for (index = first; index < cnt; index++) {
1043 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1044 		if (!(learn[index] & PORT_LEARN_DISABLE))
1045 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1046 				    learn[index] | PORT_LEARN_DISABLE);
1047 	}
1048 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1049 	for (index = first; index < cnt; index++) {
1050 		if (!(learn[index] & PORT_LEARN_DISABLE))
1051 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1052 	}
1053 }
1054 
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)1055 int ksz8_fdb_dump(struct ksz_device *dev, int port,
1056 		  dsa_fdb_dump_cb_t *cb, void *data)
1057 {
1058 	int ret = 0;
1059 	u16 i = 0;
1060 	u16 entries = 0;
1061 	u8 timestamp = 0;
1062 	u8 fid;
1063 	u8 src_port;
1064 	u8 mac[ETH_ALEN];
1065 
1066 	do {
1067 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1068 					   &timestamp, &entries);
1069 		if (!ret && port == src_port) {
1070 			ret = cb(mac, fid, false, data);
1071 			if (ret)
1072 				break;
1073 		}
1074 		i++;
1075 	} while (i < entries);
1076 	if (i >= entries)
1077 		ret = 0;
1078 
1079 	return ret;
1080 }
1081 
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1082 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1083 			    const unsigned char *addr, u16 vid)
1084 {
1085 	struct alu_struct alu;
1086 	int index, ret;
1087 	int empty = 0;
1088 
1089 	alu.port_forward = 0;
1090 	for (index = 0; index < dev->info->num_statics; index++) {
1091 		bool valid;
1092 
1093 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1094 		if (ret)
1095 			return ret;
1096 		if (!valid) {
1097 			/* Remember the first empty entry. */
1098 			if (!empty)
1099 				empty = index + 1;
1100 			continue;
1101 		}
1102 
1103 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1104 			break;
1105 	}
1106 
1107 	/* no available entry */
1108 	if (index == dev->info->num_statics && !empty)
1109 		return -ENOSPC;
1110 
1111 	/* add entry */
1112 	if (index == dev->info->num_statics) {
1113 		index = empty - 1;
1114 		memset(&alu, 0, sizeof(alu));
1115 		memcpy(alu.mac, addr, ETH_ALEN);
1116 		alu.is_static = true;
1117 	}
1118 	alu.port_forward |= BIT(port);
1119 	if (vid) {
1120 		alu.is_use_fid = true;
1121 
1122 		/* Need a way to map VID to FID. */
1123 		alu.fid = vid;
1124 	}
1125 
1126 	return ksz8_w_sta_mac_table(dev, index, &alu);
1127 }
1128 
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1129 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1130 			    const unsigned char *addr, u16 vid)
1131 {
1132 	struct alu_struct alu;
1133 	int index, ret;
1134 
1135 	for (index = 0; index < dev->info->num_statics; index++) {
1136 		bool valid;
1137 
1138 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1139 		if (ret)
1140 			return ret;
1141 		if (!valid)
1142 			continue;
1143 
1144 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1145 			break;
1146 	}
1147 
1148 	/* no available entry */
1149 	if (index == dev->info->num_statics)
1150 		return 0;
1151 
1152 	/* clear port */
1153 	alu.port_forward &= ~BIT(port);
1154 	if (!alu.port_forward)
1155 		alu.is_static = false;
1156 
1157 	return ksz8_w_sta_mac_table(dev, index, &alu);
1158 }
1159 
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1160 int ksz8_mdb_add(struct ksz_device *dev, int port,
1161 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1162 {
1163 	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1164 }
1165 
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1166 int ksz8_mdb_del(struct ksz_device *dev, int port,
1167 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1168 {
1169 	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1170 }
1171 
ksz8_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1172 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1173 		 u16 vid, struct dsa_db db)
1174 {
1175 	return ksz8_add_sta_mac(dev, port, addr, vid);
1176 }
1177 
ksz8_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1178 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1179 		 u16 vid, struct dsa_db db)
1180 {
1181 	return ksz8_del_sta_mac(dev, port, addr, vid);
1182 }
1183 
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1184 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1185 			     struct netlink_ext_ack *extack)
1186 {
1187 	if (ksz_is_ksz88x3(dev))
1188 		return -ENOTSUPP;
1189 
1190 	/* Discard packets with VID not enabled on the switch */
1191 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1192 
1193 	/* Discard packets with VID not enabled on the ingress port */
1194 	for (port = 0; port < dev->phy_port_cnt; ++port)
1195 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1196 			     flag);
1197 
1198 	return 0;
1199 }
1200 
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1201 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1202 {
1203 	if (ksz_is_ksz88x3(dev)) {
1204 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1205 			0x03 << (4 - 2 * port), state);
1206 	} else {
1207 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1208 	}
1209 }
1210 
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1211 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1212 		       const struct switchdev_obj_port_vlan *vlan,
1213 		       struct netlink_ext_ack *extack)
1214 {
1215 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1216 	struct ksz_port *p = &dev->ports[port];
1217 	u16 data, new_pvid = 0;
1218 	u8 fid, member, valid;
1219 
1220 	if (ksz_is_ksz88x3(dev))
1221 		return -ENOTSUPP;
1222 
1223 	/* If a VLAN is added with untagged flag different from the
1224 	 * port's Remove Tag flag, we need to change the latter.
1225 	 * Ignore VID 0, which is always untagged.
1226 	 * Ignore CPU port, which will always be tagged.
1227 	 */
1228 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1229 	    port != dev->cpu_port) {
1230 		unsigned int vid;
1231 
1232 		/* Reject attempts to add a VLAN that requires the
1233 		 * Remove Tag flag to be changed, unless there are no
1234 		 * other VLANs currently configured.
1235 		 */
1236 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1237 			/* Skip the VID we are going to add or reconfigure */
1238 			if (vid == vlan->vid)
1239 				continue;
1240 
1241 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1242 				       &fid, &member, &valid);
1243 			if (valid && (member & BIT(port)))
1244 				return -EINVAL;
1245 		}
1246 
1247 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1248 		p->remove_tag = untagged;
1249 	}
1250 
1251 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1252 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1253 
1254 	/* First time to setup the VLAN entry. */
1255 	if (!valid) {
1256 		/* Need to find a way to map VID to FID. */
1257 		fid = 1;
1258 		valid = 1;
1259 	}
1260 	member |= BIT(port);
1261 
1262 	ksz8_to_vlan(dev, fid, member, valid, &data);
1263 	ksz8_w_vlan_table(dev, vlan->vid, data);
1264 
1265 	/* change PVID */
1266 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1267 		new_pvid = vlan->vid;
1268 
1269 	if (new_pvid) {
1270 		u16 vid;
1271 
1272 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1273 		vid &= ~VLAN_VID_MASK;
1274 		vid |= new_pvid;
1275 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1276 
1277 		ksz8_port_enable_pvid(dev, port, true);
1278 	}
1279 
1280 	return 0;
1281 }
1282 
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1283 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1284 		       const struct switchdev_obj_port_vlan *vlan)
1285 {
1286 	u16 data, pvid;
1287 	u8 fid, member, valid;
1288 
1289 	if (ksz_is_ksz88x3(dev))
1290 		return -ENOTSUPP;
1291 
1292 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1293 	pvid = pvid & 0xFFF;
1294 
1295 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1296 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1297 
1298 	member &= ~BIT(port);
1299 
1300 	/* Invalidate the entry if no more member. */
1301 	if (!member) {
1302 		fid = 0;
1303 		valid = 0;
1304 	}
1305 
1306 	ksz8_to_vlan(dev, fid, member, valid, &data);
1307 	ksz8_w_vlan_table(dev, vlan->vid, data);
1308 
1309 	if (pvid == vlan->vid)
1310 		ksz8_port_enable_pvid(dev, port, false);
1311 
1312 	return 0;
1313 }
1314 
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1315 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1316 			 struct dsa_mall_mirror_tc_entry *mirror,
1317 			 bool ingress, struct netlink_ext_ack *extack)
1318 {
1319 	if (ingress) {
1320 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1321 		dev->mirror_rx |= BIT(port);
1322 	} else {
1323 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1324 		dev->mirror_tx |= BIT(port);
1325 	}
1326 
1327 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1328 
1329 	/* configure mirror port */
1330 	if (dev->mirror_rx || dev->mirror_tx)
1331 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1332 			     PORT_MIRROR_SNIFFER, true);
1333 
1334 	return 0;
1335 }
1336 
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1337 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1338 			  struct dsa_mall_mirror_tc_entry *mirror)
1339 {
1340 	u8 data;
1341 
1342 	if (mirror->ingress) {
1343 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1344 		dev->mirror_rx &= ~BIT(port);
1345 	} else {
1346 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1347 		dev->mirror_tx &= ~BIT(port);
1348 	}
1349 
1350 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1351 
1352 	if (!dev->mirror_rx && !dev->mirror_tx)
1353 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1354 			     PORT_MIRROR_SNIFFER, false);
1355 }
1356 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1357 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1358 {
1359 	struct ksz_port *p = &dev->ports[port];
1360 
1361 	if (!ksz_is_ksz87xx(dev))
1362 		return;
1363 
1364 	if (!p->interface && dev->compat_interface) {
1365 		dev_warn(dev->dev,
1366 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1367 			 "Please update your device tree.\n",
1368 			 port);
1369 		p->interface = dev->compat_interface;
1370 	}
1371 }
1372 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1373 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1374 {
1375 	struct dsa_switch *ds = dev->ds;
1376 	const u32 *masks;
1377 	u8 member;
1378 
1379 	masks = dev->info->masks;
1380 
1381 	/* enable broadcast storm limit */
1382 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1383 
1384 	if (!ksz_is_ksz88x3(dev))
1385 		ksz8795_set_prio_queue(dev, port, 4);
1386 
1387 	/* disable DiffServ priority */
1388 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1389 
1390 	/* replace priority */
1391 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1392 		     masks[PORT_802_1P_REMAPPING], false);
1393 
1394 	/* enable 802.1p priority */
1395 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1396 
1397 	if (cpu_port)
1398 		member = dsa_user_ports(ds);
1399 	else
1400 		member = BIT(dsa_upstream_port(ds, port));
1401 
1402 	ksz8_cfg_port_member(dev, port, member);
1403 }
1404 
ksz88x3_config_rmii_clk(struct ksz_device * dev)1405 static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1406 {
1407 	struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1408 	bool rmii_clk_internal;
1409 
1410 	if (!ksz_is_ksz88x3(dev))
1411 		return;
1412 
1413 	rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1414 						  "microchip,rmii-clk-internal");
1415 
1416 	ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1417 		KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1418 }
1419 
ksz8_config_cpu_port(struct dsa_switch * ds)1420 void ksz8_config_cpu_port(struct dsa_switch *ds)
1421 {
1422 	struct ksz_device *dev = ds->priv;
1423 	struct ksz_port *p;
1424 	const u32 *masks;
1425 	const u16 *regs;
1426 	u8 remote;
1427 	int i;
1428 
1429 	masks = dev->info->masks;
1430 	regs = dev->info->regs;
1431 
1432 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1433 
1434 	ksz8_port_setup(dev, dev->cpu_port, true);
1435 
1436 	ksz8795_cpu_interface_select(dev, dev->cpu_port);
1437 	ksz88x3_config_rmii_clk(dev);
1438 
1439 	for (i = 0; i < dev->phy_port_cnt; i++) {
1440 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1441 	}
1442 	for (i = 0; i < dev->phy_port_cnt; i++) {
1443 		p = &dev->ports[i];
1444 
1445 		if (!ksz_is_ksz88x3(dev)) {
1446 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1447 			if (remote & KSZ8_PORT_FIBER_MODE)
1448 				p->fiber = 1;
1449 		}
1450 		if (p->fiber)
1451 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1452 				     PORT_FORCE_FLOW_CTRL, true);
1453 		else
1454 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1455 				     PORT_FORCE_FLOW_CTRL, false);
1456 	}
1457 }
1458 
1459 /**
1460  * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1461  * @dev: The KSZ device instance.
1462  * @port: The port number to configure.
1463  * @duplex: The desired duplex mode.
1464  * @tx_pause: If true, enables transmit pause.
1465  * @rx_pause: If true, enables receive pause.
1466  *
1467  * Description:
1468  * The function configures flow control settings for a given port based on the
1469  * desired settings and current duplex mode.
1470  *
1471  * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1472  * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1473  * determines how flow control is handled on the port:
1474  *    "1 = will always enable full-duplex flow control on the port, regardless
1475  *         of AN result.
1476  *     0 = full-duplex flow control is enabled based on AN result."
1477  *
1478  * This means that the flow control behavior depends on the state of this bit:
1479  * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1480  *   force flow control on the port.
1481  * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1482  *   flow control based on the AN results.
1483  *
1484  * However, there is a potential limitation in this configuration. It is
1485  * currently not possible to force disable flow control on a port if we still
1486  * advertise pause support. While such a configuration is not currently
1487  * supported by Linux, and may not make practical sense, it's important to be
1488  * aware of this limitation when working with the KSZ8873 and similar devices.
1489  */
ksz8_phy_port_link_up(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)1490 static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1491 				  bool tx_pause, bool rx_pause)
1492 {
1493 	const u16 *regs = dev->info->regs;
1494 	u8 sctrl = 0;
1495 
1496 	/* The KSZ8795 switch differs from the KSZ8873 by supporting
1497 	 * asymmetric pause control. However, since a single bit is used to
1498 	 * control both RX and TX pause, we can't enforce asymmetric pause
1499 	 * control - both TX and RX pause will be either enabled or disabled
1500 	 * together.
1501 	 *
1502 	 * If auto-negotiation is enabled, we usually allow the flow control to
1503 	 * be determined by the auto-negotiation process based on the
1504 	 * capabilities of both link partners. However, for KSZ8873, the
1505 	 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1506 	 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1507 	 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1508 	 * properly cleared.
1509 	 *
1510 	 * In the absence of pause auto-negotiation, we will enforce symmetric
1511 	 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1512 	 *
1513 	 * Autoneg Pause Autoneg      rx,tx	PORT_FORCE_FLOW_CTRL
1514 	 * 1		1		x	0
1515 	 * 0		1		x	0 (flow control probably disabled)
1516 	 * x		0		1	1 (flow control force enabled)
1517 	 * 1		0		0	0 (flow control still depends on
1518 	 *					   aneg result due to hardware)
1519 	 * 0		0		0	0 (flow control probably disabled)
1520 	 */
1521 	if (dev->ports[port].manual_flow && tx_pause)
1522 		sctrl |= PORT_FORCE_FLOW_CTRL;
1523 
1524 	ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1525 }
1526 
1527 /**
1528  * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1529  * @dev: The KSZ device instance.
1530  * @speed: The desired link speed.
1531  * @duplex: The desired duplex mode.
1532  * @tx_pause: If true, enables transmit pause.
1533  * @rx_pause: If true, enables receive pause.
1534  *
1535  * Description:
1536  * The function configures flow control and speed settings for the CPU
1537  * port of the switch based on the desired settings, current duplex mode, and
1538  * speed.
1539  */
ksz8_cpu_port_link_up(struct ksz_device * dev,int speed,int duplex,bool tx_pause,bool rx_pause)1540 static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1541 				  bool tx_pause, bool rx_pause)
1542 {
1543 	const u16 *regs = dev->info->regs;
1544 	u8 ctrl = 0;
1545 
1546 	/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1547 	 * at least on KSZ8873. They can have different values depending on your
1548 	 * board setup.
1549 	 */
1550 	if (tx_pause || rx_pause)
1551 		ctrl |= SW_FLOW_CTRL;
1552 
1553 	if (duplex == DUPLEX_HALF)
1554 		ctrl |= SW_HALF_DUPLEX;
1555 
1556 	/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1557 	 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1558 	 */
1559 	if (speed == SPEED_10)
1560 		ctrl |= SW_10_MBIT;
1561 
1562 	ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1563 		 SW_10_MBIT, ctrl);
1564 }
1565 
ksz8_phylink_mac_link_up(struct ksz_device * dev,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)1566 void ksz8_phylink_mac_link_up(struct ksz_device *dev, int port,
1567 			      unsigned int mode, phy_interface_t interface,
1568 			      struct phy_device *phydev, int speed, int duplex,
1569 			      bool tx_pause, bool rx_pause)
1570 {
1571 	/* If the port is the CPU port, apply special handling. Only the CPU
1572 	 * port is configured via global registers.
1573 	 */
1574 	if (dev->cpu_port == port)
1575 		ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1576 	else if (dev->info->internal_phy[port])
1577 		ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1578 }
1579 
ksz8_handle_global_errata(struct dsa_switch * ds)1580 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1581 {
1582 	struct ksz_device *dev = ds->priv;
1583 	int ret = 0;
1584 
1585 	/* KSZ87xx Errata DS80000687C.
1586 	 * Module 2: Link drops with some EEE link partners.
1587 	 *   An issue with the EEE next page exchange between the
1588 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1589 	 *   the link dropping.
1590 	 */
1591 	if (dev->info->ksz87xx_eee_link_erratum)
1592 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1593 
1594 	return ret;
1595 }
1596 
ksz8_enable_stp_addr(struct ksz_device * dev)1597 int ksz8_enable_stp_addr(struct ksz_device *dev)
1598 {
1599 	struct alu_struct alu;
1600 
1601 	/* Setup STP address for STP operation. */
1602 	memset(&alu, 0, sizeof(alu));
1603 	ether_addr_copy(alu.mac, eth_stp_addr);
1604 	alu.is_static = true;
1605 	alu.is_override = true;
1606 	alu.port_forward = dev->info->cpu_ports;
1607 
1608 	return ksz8_w_sta_mac_table(dev, 0, &alu);
1609 }
1610 
ksz8_setup(struct dsa_switch * ds)1611 int ksz8_setup(struct dsa_switch *ds)
1612 {
1613 	struct ksz_device *dev = ds->priv;
1614 	int i;
1615 
1616 	ds->mtu_enforcement_ingress = true;
1617 
1618 	/* We rely on software untagging on the CPU port, so that we
1619 	 * can support both tagged and untagged VLANs
1620 	 */
1621 	ds->untag_bridge_pvid = true;
1622 
1623 	/* VLAN filtering is partly controlled by the global VLAN
1624 	 * Enable flag
1625 	 */
1626 	ds->vlan_filtering_is_global = true;
1627 
1628 	/* Enable automatic fast aging when link changed detected. */
1629 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1630 
1631 	/* Enable aggressive back off algorithm in half duplex mode. */
1632 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1633 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1634 
1635 	/*
1636 	 * Make sure unicast VLAN boundary is set as default and
1637 	 * enable no excessive collision drop.
1638 	 */
1639 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1640 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1641 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1642 
1643 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1644 
1645 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1646 
1647 	if (!ksz_is_ksz88x3(dev))
1648 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1649 
1650 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1651 		ksz8_r_vlan_entries(dev, i);
1652 
1653 	return ksz8_handle_global_errata(ds);
1654 }
1655 
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1656 void ksz8_get_caps(struct ksz_device *dev, int port,
1657 		   struct phylink_config *config)
1658 {
1659 	config->mac_capabilities = MAC_10 | MAC_100;
1660 
1661 	/* Silicon Errata Sheet (DS80000830A):
1662 	 * "Port 1 does not respond to received flow control PAUSE frames"
1663 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1664 	 * switches.
1665 	 */
1666 	if (!ksz_is_ksz88x3(dev) || port)
1667 		config->mac_capabilities |= MAC_SYM_PAUSE;
1668 
1669 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1670 	if (!ksz_is_ksz88x3(dev))
1671 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1672 }
1673 
ksz8_get_port_addr(int port,int offset)1674 u32 ksz8_get_port_addr(int port, int offset)
1675 {
1676 	return PORT_CTRL_ADDR(port, offset);
1677 }
1678 
ksz8_switch_init(struct ksz_device * dev)1679 int ksz8_switch_init(struct ksz_device *dev)
1680 {
1681 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1682 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1683 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1684 
1685 	return 0;
1686 }
1687 
ksz8_switch_exit(struct ksz_device * dev)1688 void ksz8_switch_exit(struct ksz_device *dev)
1689 {
1690 	ksz8_reset_switch(dev);
1691 }
1692 
1693 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1694 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1695 MODULE_LICENSE("GPL");
1696