1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 *
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 struct cec_msg *msg,
28 unsigned int la_idx);
29
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32 int i;
33
34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 if (adap->log_addrs.log_addr[i] == log_addr)
36 return i;
37 return -1;
38 }
39
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42 int i = cec_log_addr2idx(adap, log_addr);
43
44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 unsigned int *offset)
49 {
50 unsigned int loc = cec_get_edid_spa_location(edid, size);
51
52 if (offset)
53 *offset = loc;
54 if (loc == 0)
55 return CEC_PHYS_ADDR_INVALID;
56 return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 const struct drm_connector *connector)
62 {
63 memset(conn_info, 0, sizeof(*conn_info));
64 conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 conn_info->drm.card_no = connector->dev->primary->index;
66 conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69
70 /*
71 * Queue a new event for this filehandle. If ts == 0, then set it
72 * to the current time.
73 *
74 * We keep a queue of at most max_event events where max_event differs
75 * per event. If the queue becomes full, then drop the oldest event and
76 * keep track of how many events we've dropped.
77 */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)78 void cec_queue_event_fh(struct cec_fh *fh,
79 const struct cec_event *new_ev, u64 ts)
80 {
81 static const u16 max_events[CEC_NUM_EVENTS] = {
82 1, 1, 800, 800, 8, 8, 8, 8
83 };
84 struct cec_event_entry *entry;
85 unsigned int ev_idx = new_ev->event - 1;
86
87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 return;
89
90 if (ts == 0)
91 ts = ktime_get_ns();
92
93 mutex_lock(&fh->lock);
94 if (ev_idx < CEC_NUM_CORE_EVENTS)
95 entry = &fh->core_events[ev_idx];
96 else
97 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98 if (entry) {
99 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 fh->queued_events[ev_idx]) {
101 entry->ev.lost_msgs.lost_msgs +=
102 new_ev->lost_msgs.lost_msgs;
103 goto unlock;
104 }
105 entry->ev = *new_ev;
106 entry->ev.ts = ts;
107
108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 /* Add new msg at the end of the queue */
110 list_add_tail(&entry->list, &fh->events[ev_idx]);
111 fh->queued_events[ev_idx]++;
112 fh->total_queued_events++;
113 goto unlock;
114 }
115
116 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 list_add_tail(&entry->list, &fh->events[ev_idx]);
118 /* drop the oldest event */
119 entry = list_first_entry(&fh->events[ev_idx],
120 struct cec_event_entry, list);
121 list_del(&entry->list);
122 kfree(entry);
123 }
124 }
125 /* Mark that events were lost */
126 entry = list_first_entry_or_null(&fh->events[ev_idx],
127 struct cec_event_entry, list);
128 if (entry)
129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130
131 unlock:
132 mutex_unlock(&fh->lock);
133 wake_up_interruptible(&fh->wait);
134 }
135
136 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)137 static void cec_queue_event(struct cec_adapter *adap,
138 const struct cec_event *ev)
139 {
140 u64 ts = ktime_get_ns();
141 struct cec_fh *fh;
142
143 mutex_lock(&adap->devnode.lock_fhs);
144 list_for_each_entry(fh, &adap->devnode.fhs, list)
145 cec_queue_event_fh(fh, ev, ts);
146 mutex_unlock(&adap->devnode.lock_fhs);
147 }
148
149 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 bool dropped_events, ktime_t ts)
152 {
153 struct cec_event ev = {
154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 CEC_EVENT_PIN_CEC_LOW,
156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 };
158 struct cec_fh *fh;
159
160 mutex_lock(&adap->devnode.lock_fhs);
161 list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164 }
165 mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168
169 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172 struct cec_event ev = {
173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 CEC_EVENT_PIN_HPD_LOW,
175 };
176 struct cec_fh *fh;
177
178 mutex_lock(&adap->devnode.lock_fhs);
179 list_for_each_entry(fh, &adap->devnode.fhs, list)
180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181 mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184
185 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188 struct cec_event ev = {
189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 CEC_EVENT_PIN_5V_LOW,
191 };
192 struct cec_fh *fh;
193
194 mutex_lock(&adap->devnode.lock_fhs);
195 list_for_each_entry(fh, &adap->devnode.fhs, list)
196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197 mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200
201 /*
202 * Queue a new message for this filehandle.
203 *
204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205 * queue becomes full, then drop the oldest message and keep track
206 * of how many messages we've dropped.
207 */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210 static const struct cec_event ev_lost_msgs = {
211 .event = CEC_EVENT_LOST_MSGS,
212 .flags = 0,
213 {
214 .lost_msgs = { 1 },
215 },
216 };
217 struct cec_msg_entry *entry;
218
219 mutex_lock(&fh->lock);
220 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221 if (entry) {
222 entry->msg = *msg;
223 /* Add new msg at the end of the queue */
224 list_add_tail(&entry->list, &fh->msgs);
225
226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 /* All is fine if there is enough room */
228 fh->queued_msgs++;
229 mutex_unlock(&fh->lock);
230 wake_up_interruptible(&fh->wait);
231 return;
232 }
233
234 /*
235 * if the message queue is full, then drop the oldest one and
236 * send a lost message event.
237 */
238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 list_del(&entry->list);
240 kfree(entry);
241 }
242 mutex_unlock(&fh->lock);
243
244 /*
245 * We lost a message, either because kmalloc failed or the queue
246 * was full.
247 */
248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250
251 /*
252 * Queue the message for those filehandles that are in monitor mode.
253 * If valid_la is true (this message is for us or was sent by us),
254 * then pass it on to any monitoring filehandle. If this message
255 * isn't for us or from us, then only give it to filehandles that
256 * are in MONITOR_ALL mode.
257 *
258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259 * set and the CEC adapter was placed in 'monitor all' mode.
260 */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 const struct cec_msg *msg,
263 bool valid_la)
264 {
265 struct cec_fh *fh;
266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 CEC_MODE_MONITOR_ALL;
268
269 mutex_lock(&adap->devnode.lock_fhs);
270 list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 if (fh->mode_follower >= monitor_mode)
272 cec_queue_msg_fh(fh, msg);
273 }
274 mutex_unlock(&adap->devnode.lock_fhs);
275 }
276
277 /*
278 * Queue the message for follower filehandles.
279 */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281 const struct cec_msg *msg)
282 {
283 struct cec_fh *fh;
284
285 mutex_lock(&adap->devnode.lock_fhs);
286 list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 cec_queue_msg_fh(fh, msg);
289 }
290 mutex_unlock(&adap->devnode.lock_fhs);
291 }
292
293 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296 struct cec_event ev = {
297 .event = CEC_EVENT_STATE_CHANGE,
298 };
299
300 ev.state_change.phys_addr = adap->phys_addr;
301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 ev.state_change.have_conn_info =
303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 cec_queue_event(adap, &ev);
305 }
306
307 /*
308 * A CEC transmit (and a possible wait for reply) completed.
309 * If this was in blocking mode, then complete it, otherwise
310 * queue the message for userspace to dequeue later.
311 *
312 * This function is called with adap->lock held.
313 */
cec_data_completed(struct cec_data * data)314 static void cec_data_completed(struct cec_data *data)
315 {
316 /*
317 * Delete this transmit from the filehandle's xfer_list since
318 * we're done with it.
319 *
320 * Note that if the filehandle is closed before this transmit
321 * finished, then the release() function will set data->fh to NULL.
322 * Without that we would be referring to a closed filehandle.
323 */
324 if (data->fh)
325 list_del_init(&data->xfer_list);
326
327 if (data->blocking) {
328 /*
329 * Someone is blocking so mark the message as completed
330 * and call complete.
331 */
332 data->completed = true;
333 complete(&data->c);
334 } else {
335 /*
336 * No blocking, so just queue the message if needed and
337 * free the memory.
338 */
339 if (data->fh)
340 cec_queue_msg_fh(data->fh, &data->msg);
341 kfree(data);
342 }
343 }
344
345 /*
346 * A pending CEC transmit needs to be cancelled, either because the CEC
347 * adapter is disabled or the transmit takes an impossibly long time to
348 * finish, or the reply timed out.
349 *
350 * This function is called with adap->lock held.
351 */
cec_data_cancel(struct cec_data * data,u8 tx_status,u8 rx_status)352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354 struct cec_adapter *adap = data->adap;
355
356 /*
357 * It's either the current transmit, or it is a pending
358 * transmit. Take the appropriate action to clear it.
359 */
360 if (adap->transmitting == data) {
361 adap->transmitting = NULL;
362 } else {
363 list_del_init(&data->list);
364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 if (!WARN_ON(!adap->transmit_queue_sz))
366 adap->transmit_queue_sz--;
367 }
368
369 if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 data->msg.rx_ts = ktime_get_ns();
371 data->msg.rx_status = rx_status;
372 if (!data->blocking)
373 data->msg.tx_status = 0;
374 } else {
375 data->msg.tx_ts = ktime_get_ns();
376 data->msg.tx_status |= tx_status |
377 CEC_TX_STATUS_MAX_RETRIES;
378 data->msg.tx_error_cnt++;
379 data->attempts = 0;
380 if (!data->blocking)
381 data->msg.rx_status = 0;
382 }
383
384 /* Queue transmitted message for monitoring purposes */
385 cec_queue_msg_monitor(adap, &data->msg, 1);
386
387 if (!data->blocking && data->msg.sequence)
388 /* Allow drivers to react to a canceled transmit */
389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390
391 cec_data_completed(data);
392 }
393
394 /*
395 * Flush all pending transmits and cancel any pending timeout work.
396 *
397 * This function is called with adap->lock held.
398 */
cec_flush(struct cec_adapter * adap)399 static void cec_flush(struct cec_adapter *adap)
400 {
401 struct cec_data *data, *n;
402
403 /*
404 * If the adapter is disabled, or we're asked to stop,
405 * then cancel any pending transmits.
406 */
407 while (!list_empty(&adap->transmit_queue)) {
408 data = list_first_entry(&adap->transmit_queue,
409 struct cec_data, list);
410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411 }
412 if (adap->transmitting)
413 adap->transmit_in_progress_aborted = true;
414
415 /* Cancel the pending timeout work. */
416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 if (cancel_delayed_work(&data->work))
418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 /*
420 * If cancel_delayed_work returned false, then
421 * the cec_wait_timeout function is running,
422 * which will call cec_data_completed. So no
423 * need to do anything special in that case.
424 */
425 }
426 /*
427 * If something went wrong and this counter isn't what it should
428 * be, then this will reset it back to 0. Warn if it is not 0,
429 * since it indicates a bug, either in this framework or in a
430 * CEC driver.
431 */
432 if (WARN_ON(adap->transmit_queue_sz))
433 adap->transmit_queue_sz = 0;
434 }
435
436 /*
437 * Main CEC state machine
438 *
439 * Wait until the thread should be stopped, or we are not transmitting and
440 * a new transmit message is queued up, in which case we start transmitting
441 * that message. When the adapter finished transmitting the message it will
442 * call cec_transmit_done().
443 *
444 * If the adapter is disabled, then remove all queued messages instead.
445 *
446 * If the current transmit times out, then cancel that transmit.
447 */
cec_thread_func(void * _adap)448 int cec_thread_func(void *_adap)
449 {
450 struct cec_adapter *adap = _adap;
451
452 for (;;) {
453 unsigned int signal_free_time;
454 struct cec_data *data;
455 bool timeout = false;
456 u8 attempts;
457
458 if (adap->transmit_in_progress) {
459 int err;
460
461 /*
462 * We are transmitting a message, so add a timeout
463 * to prevent the state machine to get stuck waiting
464 * for this message to finalize and add a check to
465 * see if the adapter is disabled in which case the
466 * transmit should be canceled.
467 */
468 err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 (adap->needs_hpd &&
470 (!adap->is_configured && !adap->is_configuring)) ||
471 kthread_should_stop() ||
472 (!adap->transmit_in_progress &&
473 !list_empty(&adap->transmit_queue)),
474 msecs_to_jiffies(adap->xfer_timeout_ms));
475 timeout = err == 0;
476 } else {
477 /* Otherwise we just wait for something to happen. */
478 wait_event_interruptible(adap->kthread_waitq,
479 kthread_should_stop() ||
480 (!adap->transmit_in_progress &&
481 !list_empty(&adap->transmit_queue)));
482 }
483
484 mutex_lock(&adap->lock);
485
486 if ((adap->needs_hpd &&
487 (!adap->is_configured && !adap->is_configuring)) ||
488 kthread_should_stop()) {
489 cec_flush(adap);
490 goto unlock;
491 }
492
493 if (adap->transmit_in_progress && timeout) {
494 /*
495 * If we timeout, then log that. Normally this does
496 * not happen and it is an indication of a faulty CEC
497 * adapter driver, or the CEC bus is in some weird
498 * state. On rare occasions it can happen if there is
499 * so much traffic on the bus that the adapter was
500 * unable to transmit for xfer_timeout_ms (2.1s by
501 * default).
502 */
503 if (adap->transmitting) {
504 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
505 adap->transmitting->msg.len,
506 adap->transmitting->msg.msg);
507 /* Just give up on this. */
508 cec_data_cancel(adap->transmitting,
509 CEC_TX_STATUS_TIMEOUT, 0);
510 } else {
511 pr_warn("cec-%s: transmit timed out\n", adap->name);
512 }
513 adap->transmit_in_progress = false;
514 adap->tx_timeout_cnt++;
515 goto unlock;
516 }
517
518 /*
519 * If we are still transmitting, or there is nothing new to
520 * transmit, then just continue waiting.
521 */
522 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
523 goto unlock;
524
525 /* Get a new message to transmit */
526 data = list_first_entry(&adap->transmit_queue,
527 struct cec_data, list);
528 list_del_init(&data->list);
529 if (!WARN_ON(!data->adap->transmit_queue_sz))
530 adap->transmit_queue_sz--;
531
532 /* Make this the current transmitting message */
533 adap->transmitting = data;
534
535 /*
536 * Suggested number of attempts as per the CEC 2.0 spec:
537 * 4 attempts is the default, except for 'secondary poll
538 * messages', i.e. poll messages not sent during the adapter
539 * configuration phase when it allocates logical addresses.
540 */
541 if (data->msg.len == 1 && adap->is_configured)
542 attempts = 2;
543 else
544 attempts = 4;
545
546 /* Set the suggested signal free time */
547 if (data->attempts) {
548 /* should be >= 3 data bit periods for a retry */
549 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
550 } else if (adap->last_initiator !=
551 cec_msg_initiator(&data->msg)) {
552 /* should be >= 5 data bit periods for new initiator */
553 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
554 adap->last_initiator = cec_msg_initiator(&data->msg);
555 } else {
556 /*
557 * should be >= 7 data bit periods for sending another
558 * frame immediately after another.
559 */
560 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
561 }
562 if (data->attempts == 0)
563 data->attempts = attempts;
564
565 adap->transmit_in_progress_aborted = false;
566 /* Tell the adapter to transmit, cancel on error */
567 if (call_op(adap, adap_transmit, data->attempts,
568 signal_free_time, &data->msg))
569 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
570 else
571 adap->transmit_in_progress = true;
572
573 unlock:
574 mutex_unlock(&adap->lock);
575
576 if (kthread_should_stop())
577 break;
578 }
579 return 0;
580 }
581
582 /*
583 * Called by the CEC adapter if a transmit finished.
584 */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)585 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
586 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
587 u8 error_cnt, ktime_t ts)
588 {
589 struct cec_data *data;
590 struct cec_msg *msg;
591 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
592 low_drive_cnt + error_cnt;
593 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
594 bool aborted = adap->transmit_in_progress_aborted;
595
596 dprintk(2, "%s: status 0x%02x\n", __func__, status);
597 if (attempts_made < 1)
598 attempts_made = 1;
599
600 mutex_lock(&adap->lock);
601 data = adap->transmitting;
602 if (!data) {
603 /*
604 * This might happen if a transmit was issued and the cable is
605 * unplugged while the transmit is ongoing. Ignore this
606 * transmit in that case.
607 */
608 if (!adap->transmit_in_progress)
609 dprintk(1, "%s was called without an ongoing transmit!\n",
610 __func__);
611 adap->transmit_in_progress = false;
612 goto wake_thread;
613 }
614 adap->transmit_in_progress = false;
615 adap->transmit_in_progress_aborted = false;
616
617 msg = &data->msg;
618
619 /* Drivers must fill in the status! */
620 WARN_ON(status == 0);
621 msg->tx_ts = ktime_to_ns(ts);
622 msg->tx_status |= status;
623 msg->tx_arb_lost_cnt += arb_lost_cnt;
624 msg->tx_nack_cnt += nack_cnt;
625 msg->tx_low_drive_cnt += low_drive_cnt;
626 msg->tx_error_cnt += error_cnt;
627
628 adap->tx_arb_lost_cnt += arb_lost_cnt;
629 adap->tx_low_drive_cnt += low_drive_cnt;
630 adap->tx_error_cnt += error_cnt;
631
632 /*
633 * Low Drive transmission errors should really not happen for
634 * well-behaved CEC devices and proper HDMI cables.
635 *
636 * Ditto for the 'Error' status.
637 *
638 * For the first few times that this happens, log this.
639 * Stop logging after that, since that will not add any more
640 * useful information and instead it will just flood the kernel log.
641 */
642 if (done && adap->tx_low_drive_log_cnt < 8 && msg->tx_low_drive_cnt) {
643 adap->tx_low_drive_log_cnt++;
644 dprintk(0, "low drive counter: %u (seq %u: %*ph)\n",
645 msg->tx_low_drive_cnt, msg->sequence,
646 msg->len, msg->msg);
647 }
648 if (done && adap->tx_error_log_cnt < 8 && msg->tx_error_cnt) {
649 adap->tx_error_log_cnt++;
650 dprintk(0, "error counter: %u (seq %u: %*ph)\n",
651 msg->tx_error_cnt, msg->sequence,
652 msg->len, msg->msg);
653 }
654
655 /* Mark that we're done with this transmit */
656 adap->transmitting = NULL;
657
658 /*
659 * If there are still retry attempts left and there was an error and
660 * the hardware didn't signal that it retried itself (by setting
661 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
662 */
663 if (!aborted && data->attempts > attempts_made && !done) {
664 /* Retry this message */
665 data->attempts -= attempts_made;
666 if (msg->timeout)
667 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
668 msg->len, msg->msg, data->attempts, msg->reply);
669 else
670 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
671 msg->len, msg->msg, data->attempts);
672 /* Add the message in front of the transmit queue */
673 list_add(&data->list, &adap->transmit_queue);
674 adap->transmit_queue_sz++;
675 goto wake_thread;
676 }
677
678 if (aborted && !done)
679 status |= CEC_TX_STATUS_ABORTED;
680 data->attempts = 0;
681
682 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
683 if (!(status & CEC_TX_STATUS_OK))
684 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
685
686 /* Queue transmitted message for monitoring purposes */
687 cec_queue_msg_monitor(adap, msg, 1);
688
689 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
690 msg->timeout) {
691 /*
692 * Queue the message into the wait queue if we want to wait
693 * for a reply.
694 */
695 list_add_tail(&data->list, &adap->wait_queue);
696 schedule_delayed_work(&data->work,
697 msecs_to_jiffies(msg->timeout));
698 } else {
699 /* Otherwise we're done */
700 cec_data_completed(data);
701 }
702
703 wake_thread:
704 /*
705 * Wake up the main thread to see if another message is ready
706 * for transmitting or to retry the current message.
707 */
708 wake_up_interruptible(&adap->kthread_waitq);
709 mutex_unlock(&adap->lock);
710 }
711 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
712
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)713 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
714 u8 status, ktime_t ts)
715 {
716 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
717 case CEC_TX_STATUS_OK:
718 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
719 return;
720 case CEC_TX_STATUS_ARB_LOST:
721 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
722 return;
723 case CEC_TX_STATUS_NACK:
724 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
725 return;
726 case CEC_TX_STATUS_LOW_DRIVE:
727 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
728 return;
729 case CEC_TX_STATUS_ERROR:
730 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
731 return;
732 default:
733 /* Should never happen */
734 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
735 return;
736 }
737 }
738 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
739
740 /*
741 * Called when waiting for a reply times out.
742 */
cec_wait_timeout(struct work_struct * work)743 static void cec_wait_timeout(struct work_struct *work)
744 {
745 struct cec_data *data = container_of(work, struct cec_data, work.work);
746 struct cec_adapter *adap = data->adap;
747
748 mutex_lock(&adap->lock);
749 /*
750 * Sanity check in case the timeout and the arrival of the message
751 * happened at the same time.
752 */
753 if (list_empty(&data->list))
754 goto unlock;
755
756 /* Mark the message as timed out */
757 list_del_init(&data->list);
758 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
759 unlock:
760 mutex_unlock(&adap->lock);
761 }
762
763 /*
764 * Transmit a message. The fh argument may be NULL if the transmit is not
765 * associated with a specific filehandle.
766 *
767 * This function is called with adap->lock held.
768 */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)769 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
770 struct cec_fh *fh, bool block)
771 {
772 struct cec_data *data;
773 bool is_raw = msg_is_raw(msg);
774
775 if (adap->devnode.unregistered)
776 return -ENODEV;
777
778 msg->rx_ts = 0;
779 msg->tx_ts = 0;
780 msg->rx_status = 0;
781 msg->tx_status = 0;
782 msg->tx_arb_lost_cnt = 0;
783 msg->tx_nack_cnt = 0;
784 msg->tx_low_drive_cnt = 0;
785 msg->tx_error_cnt = 0;
786 msg->sequence = 0;
787
788 if (msg->reply && msg->timeout == 0) {
789 /* Make sure the timeout isn't 0. */
790 msg->timeout = 1000;
791 }
792 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
793
794 if (!msg->timeout)
795 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
796
797 /* Sanity checks */
798 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
799 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
800 return -EINVAL;
801 }
802
803 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
804
805 if (msg->timeout)
806 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
807 __func__, msg->len, msg->msg, msg->reply,
808 !block ? ", nb" : "");
809 else
810 dprintk(2, "%s: %*ph%s\n",
811 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
812
813 if (msg->timeout && msg->len == 1) {
814 dprintk(1, "%s: can't reply to poll msg\n", __func__);
815 return -EINVAL;
816 }
817
818 if (is_raw) {
819 if (!capable(CAP_SYS_RAWIO))
820 return -EPERM;
821 } else {
822 /* A CDC-Only device can only send CDC messages */
823 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
824 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
825 dprintk(1, "%s: not a CDC message\n", __func__);
826 return -EINVAL;
827 }
828
829 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
830 msg->msg[2] = adap->phys_addr >> 8;
831 msg->msg[3] = adap->phys_addr & 0xff;
832 }
833
834 if (msg->len == 1) {
835 if (cec_msg_destination(msg) == 0xf) {
836 dprintk(1, "%s: invalid poll message\n",
837 __func__);
838 return -EINVAL;
839 }
840 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
841 /*
842 * If the destination is a logical address our
843 * adapter has already claimed, then just NACK
844 * this. It depends on the hardware what it will
845 * do with a POLL to itself (some OK this), so
846 * it is just as easy to handle it here so the
847 * behavior will be consistent.
848 */
849 msg->tx_ts = ktime_get_ns();
850 msg->tx_status = CEC_TX_STATUS_NACK |
851 CEC_TX_STATUS_MAX_RETRIES;
852 msg->tx_nack_cnt = 1;
853 msg->sequence = ++adap->sequence;
854 if (!msg->sequence)
855 msg->sequence = ++adap->sequence;
856 return 0;
857 }
858 }
859 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
860 cec_has_log_addr(adap, cec_msg_destination(msg))) {
861 dprintk(1, "%s: destination is the adapter itself\n",
862 __func__);
863 return -EINVAL;
864 }
865 if (msg->len > 1 && adap->is_configured &&
866 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
867 dprintk(1, "%s: initiator has unknown logical address %d\n",
868 __func__, cec_msg_initiator(msg));
869 return -EINVAL;
870 }
871 /*
872 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
873 * transmitted to a TV, even if the adapter is unconfigured.
874 * This makes it possible to detect or wake up displays that
875 * pull down the HPD when in standby.
876 */
877 if (!adap->is_configured && !adap->is_configuring &&
878 (msg->len > 2 ||
879 cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
880 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
881 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
882 dprintk(1, "%s: adapter is unconfigured\n", __func__);
883 return -ENONET;
884 }
885 }
886
887 if (!adap->is_configured && !adap->is_configuring) {
888 if (adap->needs_hpd) {
889 dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
890 __func__);
891 return -ENONET;
892 }
893 if (msg->reply) {
894 dprintk(1, "%s: invalid msg->reply\n", __func__);
895 return -EINVAL;
896 }
897 }
898
899 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
900 dprintk(2, "%s: transmit queue full\n", __func__);
901 return -EBUSY;
902 }
903
904 data = kzalloc(sizeof(*data), GFP_KERNEL);
905 if (!data)
906 return -ENOMEM;
907
908 msg->sequence = ++adap->sequence;
909 if (!msg->sequence)
910 msg->sequence = ++adap->sequence;
911
912 data->msg = *msg;
913 data->fh = fh;
914 data->adap = adap;
915 data->blocking = block;
916
917 init_completion(&data->c);
918 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
919
920 if (fh)
921 list_add_tail(&data->xfer_list, &fh->xfer_list);
922 else
923 INIT_LIST_HEAD(&data->xfer_list);
924
925 list_add_tail(&data->list, &adap->transmit_queue);
926 adap->transmit_queue_sz++;
927 if (!adap->transmitting)
928 wake_up_interruptible(&adap->kthread_waitq);
929
930 /* All done if we don't need to block waiting for completion */
931 if (!block)
932 return 0;
933
934 /*
935 * Release the lock and wait, retake the lock afterwards.
936 */
937 mutex_unlock(&adap->lock);
938 wait_for_completion_killable(&data->c);
939 if (!data->completed)
940 cancel_delayed_work_sync(&data->work);
941 mutex_lock(&adap->lock);
942
943 /* Cancel the transmit if it was interrupted */
944 if (!data->completed) {
945 if (data->msg.tx_status & CEC_TX_STATUS_OK)
946 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
947 else
948 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
949 }
950
951 /* The transmit completed (possibly with an error) */
952 *msg = data->msg;
953 if (WARN_ON(!list_empty(&data->list)))
954 list_del(&data->list);
955 if (WARN_ON(!list_empty(&data->xfer_list)))
956 list_del(&data->xfer_list);
957 kfree(data);
958 return 0;
959 }
960
961 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)962 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
963 bool block)
964 {
965 int ret;
966
967 mutex_lock(&adap->lock);
968 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
969 mutex_unlock(&adap->lock);
970 return ret;
971 }
972 EXPORT_SYMBOL_GPL(cec_transmit_msg);
973
974 /*
975 * I don't like forward references but without this the low-level
976 * cec_received_msg() function would come after a bunch of high-level
977 * CEC protocol handling functions. That was very confusing.
978 */
979 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
980 bool is_reply);
981
982 #define DIRECTED 0x80
983 #define BCAST1_4 0x40
984 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
985 #define BCAST (BCAST1_4 | BCAST2_0)
986 #define BOTH (BCAST | DIRECTED)
987
988 /*
989 * Specify minimum length and whether the message is directed, broadcast
990 * or both. Messages that do not match the criteria are ignored as per
991 * the CEC specification.
992 */
993 static const u8 cec_msg_size[256] = {
994 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
995 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
996 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
997 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
998 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
999 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
1000 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
1001 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
1002 [CEC_MSG_STANDBY] = 2 | BOTH,
1003 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
1004 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
1005 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
1006 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
1007 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
1008 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
1009 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
1010 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
1011 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
1012 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
1013 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
1014 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1015 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1016 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1017 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1018 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1019 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1020 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1021 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1022 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1023 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1024 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1025 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1026 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1027 [CEC_MSG_PLAY] = 3 | DIRECTED,
1028 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1029 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1030 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1031 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1032 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1033 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1034 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1035 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1036 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1037 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1038 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1039 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1040 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1041 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1042 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1043 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1044 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1045 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1046 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1047 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1048 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1049 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1050 [CEC_MSG_ABORT] = 2 | DIRECTED,
1051 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1052 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1053 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1054 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1055 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1056 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1057 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1058 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1059 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1060 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1061 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1062 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1063 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1064 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1065 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1066 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1067 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1068 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1069 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1070 };
1071
1072 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1073 void cec_received_msg_ts(struct cec_adapter *adap,
1074 struct cec_msg *msg, ktime_t ts)
1075 {
1076 struct cec_data *data;
1077 u8 msg_init = cec_msg_initiator(msg);
1078 u8 msg_dest = cec_msg_destination(msg);
1079 u8 cmd = msg->msg[1];
1080 bool is_reply = false;
1081 bool valid_la = true;
1082 bool monitor_valid_la = true;
1083 u8 min_len = 0;
1084
1085 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1086 return;
1087
1088 if (adap->devnode.unregistered)
1089 return;
1090
1091 /*
1092 * Some CEC adapters will receive the messages that they transmitted.
1093 * This test filters out those messages by checking if we are the
1094 * initiator, and just returning in that case.
1095 *
1096 * Note that this won't work if this is an Unregistered device.
1097 *
1098 * It is bad practice if the hardware receives the message that it
1099 * transmitted and luckily most CEC adapters behave correctly in this
1100 * respect.
1101 */
1102 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1103 cec_has_log_addr(adap, msg_init))
1104 return;
1105
1106 msg->rx_ts = ktime_to_ns(ts);
1107 msg->rx_status = CEC_RX_STATUS_OK;
1108 msg->sequence = msg->reply = msg->timeout = 0;
1109 msg->tx_status = 0;
1110 msg->tx_ts = 0;
1111 msg->tx_arb_lost_cnt = 0;
1112 msg->tx_nack_cnt = 0;
1113 msg->tx_low_drive_cnt = 0;
1114 msg->tx_error_cnt = 0;
1115 msg->flags = 0;
1116 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1117
1118 mutex_lock(&adap->lock);
1119 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1120
1121 if (!adap->transmit_in_progress)
1122 adap->last_initiator = 0xff;
1123
1124 /* Check if this message was for us (directed or broadcast). */
1125 if (!cec_msg_is_broadcast(msg)) {
1126 valid_la = cec_has_log_addr(adap, msg_dest);
1127 monitor_valid_la = valid_la;
1128 }
1129
1130 /*
1131 * Check if the length is not too short or if the message is a
1132 * broadcast message where a directed message was expected or
1133 * vice versa. If so, then the message has to be ignored (according
1134 * to section CEC 7.3 and CEC 12.2).
1135 */
1136 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1137 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1138
1139 min_len = cec_msg_size[cmd] & 0x1f;
1140 if (msg->len < min_len)
1141 valid_la = false;
1142 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1143 valid_la = false;
1144 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1145 valid_la = false;
1146 else if (cec_msg_is_broadcast(msg) &&
1147 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1148 !(dir_fl & BCAST1_4))
1149 valid_la = false;
1150 }
1151 if (valid_la && min_len) {
1152 /* These messages have special length requirements */
1153 switch (cmd) {
1154 case CEC_MSG_TIMER_STATUS:
1155 if (msg->msg[2] & 0x10) {
1156 switch (msg->msg[2] & 0xf) {
1157 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1158 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1159 if (msg->len < 5)
1160 valid_la = false;
1161 break;
1162 }
1163 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1164 if (msg->len < 5)
1165 valid_la = false;
1166 }
1167 break;
1168 case CEC_MSG_RECORD_ON:
1169 switch (msg->msg[2]) {
1170 case CEC_OP_RECORD_SRC_OWN:
1171 break;
1172 case CEC_OP_RECORD_SRC_DIGITAL:
1173 if (msg->len < 10)
1174 valid_la = false;
1175 break;
1176 case CEC_OP_RECORD_SRC_ANALOG:
1177 if (msg->len < 7)
1178 valid_la = false;
1179 break;
1180 case CEC_OP_RECORD_SRC_EXT_PLUG:
1181 if (msg->len < 4)
1182 valid_la = false;
1183 break;
1184 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1185 if (msg->len < 5)
1186 valid_la = false;
1187 break;
1188 }
1189 break;
1190 }
1191 }
1192
1193 /* It's a valid message and not a poll or CDC message */
1194 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1195 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1196
1197 /* The aborted command is in msg[2] */
1198 if (abort)
1199 cmd = msg->msg[2];
1200
1201 /*
1202 * Walk over all transmitted messages that are waiting for a
1203 * reply.
1204 */
1205 list_for_each_entry(data, &adap->wait_queue, list) {
1206 struct cec_msg *dst = &data->msg;
1207
1208 /*
1209 * The *only* CEC message that has two possible replies
1210 * is CEC_MSG_INITIATE_ARC.
1211 * In this case allow either of the two replies.
1212 */
1213 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1214 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1215 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1216 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1217 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1218 dst->reply = cmd;
1219
1220 /* Does the command match? */
1221 if ((abort && cmd != dst->msg[1]) ||
1222 (!abort && cmd != dst->reply))
1223 continue;
1224
1225 /* Does the addressing match? */
1226 if (msg_init != cec_msg_destination(dst) &&
1227 !cec_msg_is_broadcast(dst))
1228 continue;
1229
1230 /* We got a reply */
1231 memcpy(dst->msg, msg->msg, msg->len);
1232 dst->len = msg->len;
1233 dst->rx_ts = msg->rx_ts;
1234 dst->rx_status = msg->rx_status;
1235 if (abort)
1236 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1237 msg->flags = dst->flags;
1238 msg->sequence = dst->sequence;
1239 /* Remove it from the wait_queue */
1240 list_del_init(&data->list);
1241
1242 /* Cancel the pending timeout work */
1243 if (!cancel_delayed_work(&data->work)) {
1244 mutex_unlock(&adap->lock);
1245 cancel_delayed_work_sync(&data->work);
1246 mutex_lock(&adap->lock);
1247 }
1248 /*
1249 * Mark this as a reply, provided someone is still
1250 * waiting for the answer.
1251 */
1252 if (data->fh)
1253 is_reply = true;
1254 cec_data_completed(data);
1255 break;
1256 }
1257 }
1258 mutex_unlock(&adap->lock);
1259
1260 /* Pass the message on to any monitoring filehandles */
1261 cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1262
1263 /* We're done if it is not for us or a poll message */
1264 if (!valid_la || msg->len <= 1)
1265 return;
1266
1267 if (adap->log_addrs.log_addr_mask == 0)
1268 return;
1269
1270 /*
1271 * Process the message on the protocol level. If is_reply is true,
1272 * then cec_receive_notify() won't pass on the reply to the listener(s)
1273 * since that was already done by cec_data_completed() above.
1274 */
1275 cec_receive_notify(adap, msg, is_reply);
1276 }
1277 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1278
1279 /* Logical Address Handling */
1280
1281 /*
1282 * Attempt to claim a specific logical address.
1283 *
1284 * This function is called with adap->lock held.
1285 */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1286 static int cec_config_log_addr(struct cec_adapter *adap,
1287 unsigned int idx,
1288 unsigned int log_addr)
1289 {
1290 struct cec_log_addrs *las = &adap->log_addrs;
1291 struct cec_msg msg = { };
1292 const unsigned int max_retries = 2;
1293 unsigned int i;
1294 int err;
1295
1296 if (cec_has_log_addr(adap, log_addr))
1297 return 0;
1298
1299 /* Send poll message */
1300 msg.len = 1;
1301 msg.msg[0] = (log_addr << 4) | log_addr;
1302
1303 for (i = 0; i < max_retries; i++) {
1304 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1305
1306 /*
1307 * While trying to poll the physical address was reset
1308 * and the adapter was unconfigured, so bail out.
1309 */
1310 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1311 return -EINTR;
1312
1313 /* Also bail out if the PA changed while configuring. */
1314 if (adap->must_reconfigure)
1315 return -EINTR;
1316
1317 if (err)
1318 return err;
1319
1320 /*
1321 * The message was aborted or timed out due to a disconnect or
1322 * unconfigure, just bail out.
1323 */
1324 if (msg.tx_status &
1325 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1326 return -EINTR;
1327 if (msg.tx_status & CEC_TX_STATUS_OK)
1328 return 0;
1329 if (msg.tx_status & CEC_TX_STATUS_NACK)
1330 break;
1331 /*
1332 * Retry up to max_retries times if the message was neither
1333 * OKed or NACKed. This can happen due to e.g. a Lost
1334 * Arbitration condition.
1335 */
1336 }
1337
1338 /*
1339 * If we are unable to get an OK or a NACK after max_retries attempts
1340 * (and note that each attempt already consists of four polls), then
1341 * we assume that something is really weird and that it is not a
1342 * good idea to try and claim this logical address.
1343 */
1344 if (i == max_retries) {
1345 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1346 log_addr, msg.tx_status);
1347 return 0;
1348 }
1349
1350 /*
1351 * Message not acknowledged, so this logical
1352 * address is free to use.
1353 */
1354 err = call_op(adap, adap_log_addr, log_addr);
1355 if (err)
1356 return err;
1357
1358 las->log_addr[idx] = log_addr;
1359 las->log_addr_mask |= 1 << log_addr;
1360 return 1;
1361 }
1362
1363 /*
1364 * Unconfigure the adapter: clear all logical addresses and send
1365 * the state changed event.
1366 *
1367 * This function is called with adap->lock held.
1368 */
cec_adap_unconfigure(struct cec_adapter * adap)1369 static void cec_adap_unconfigure(struct cec_adapter *adap)
1370 {
1371 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1372 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1373 adap->log_addrs.log_addr_mask = 0;
1374 adap->is_configured = false;
1375 cec_flush(adap);
1376 wake_up_interruptible(&adap->kthread_waitq);
1377 cec_post_state_event(adap);
1378 call_void_op(adap, adap_unconfigured);
1379 }
1380
1381 /*
1382 * Attempt to claim the required logical addresses.
1383 */
cec_config_thread_func(void * arg)1384 static int cec_config_thread_func(void *arg)
1385 {
1386 /* The various LAs for each type of device */
1387 static const u8 tv_log_addrs[] = {
1388 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1389 CEC_LOG_ADDR_INVALID
1390 };
1391 static const u8 record_log_addrs[] = {
1392 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1393 CEC_LOG_ADDR_RECORD_3,
1394 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1395 CEC_LOG_ADDR_INVALID
1396 };
1397 static const u8 tuner_log_addrs[] = {
1398 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1399 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1400 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1401 CEC_LOG_ADDR_INVALID
1402 };
1403 static const u8 playback_log_addrs[] = {
1404 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1405 CEC_LOG_ADDR_PLAYBACK_3,
1406 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1407 CEC_LOG_ADDR_INVALID
1408 };
1409 static const u8 audiosystem_log_addrs[] = {
1410 CEC_LOG_ADDR_AUDIOSYSTEM,
1411 CEC_LOG_ADDR_INVALID
1412 };
1413 static const u8 specific_use_log_addrs[] = {
1414 CEC_LOG_ADDR_SPECIFIC,
1415 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1416 CEC_LOG_ADDR_INVALID
1417 };
1418 static const u8 *type2addrs[6] = {
1419 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1420 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1421 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1422 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1423 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1424 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1425 };
1426 static const u16 type2mask[] = {
1427 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1428 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1429 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1430 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1431 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1432 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1433 };
1434 struct cec_adapter *adap = arg;
1435 struct cec_log_addrs *las = &adap->log_addrs;
1436 int err;
1437 int i, j;
1438
1439 mutex_lock(&adap->lock);
1440 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1441 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1442 las->log_addr_mask = 0;
1443
1444 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1445 goto configured;
1446
1447 reconfigure:
1448 for (i = 0; i < las->num_log_addrs; i++) {
1449 unsigned int type = las->log_addr_type[i];
1450 const u8 *la_list;
1451 u8 last_la;
1452
1453 /*
1454 * The TV functionality can only map to physical address 0.
1455 * For any other address, try the Specific functionality
1456 * instead as per the spec.
1457 */
1458 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1459 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1460
1461 la_list = type2addrs[type];
1462 last_la = las->log_addr[i];
1463 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1464 if (last_la == CEC_LOG_ADDR_INVALID ||
1465 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1466 !((1 << last_la) & type2mask[type]))
1467 last_la = la_list[0];
1468
1469 err = cec_config_log_addr(adap, i, last_la);
1470
1471 if (adap->must_reconfigure) {
1472 adap->must_reconfigure = false;
1473 las->log_addr_mask = 0;
1474 goto reconfigure;
1475 }
1476
1477 if (err > 0) /* Reused last LA */
1478 continue;
1479
1480 if (err < 0)
1481 goto unconfigure;
1482
1483 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1484 /* Tried this one already, skip it */
1485 if (la_list[j] == last_la)
1486 continue;
1487 /* The backup addresses are CEC 2.0 specific */
1488 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1489 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1490 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1491 continue;
1492
1493 err = cec_config_log_addr(adap, i, la_list[j]);
1494 if (err == 0) /* LA is in use */
1495 continue;
1496 if (err < 0)
1497 goto unconfigure;
1498 /* Done, claimed an LA */
1499 break;
1500 }
1501
1502 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1503 dprintk(1, "could not claim LA %d\n", i);
1504 }
1505
1506 if (adap->log_addrs.log_addr_mask == 0 &&
1507 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1508 goto unconfigure;
1509
1510 configured:
1511 if (adap->log_addrs.log_addr_mask == 0) {
1512 /* Fall back to unregistered */
1513 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1514 las->log_addr_mask = 1 << las->log_addr[0];
1515 for (i = 1; i < las->num_log_addrs; i++)
1516 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1517 }
1518 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1519 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1520 adap->is_configured = true;
1521 adap->is_configuring = false;
1522 adap->must_reconfigure = false;
1523 cec_post_state_event(adap);
1524
1525 /*
1526 * Now post the Report Features and Report Physical Address broadcast
1527 * messages. Note that these are non-blocking transmits, meaning that
1528 * they are just queued up and once adap->lock is unlocked the main
1529 * thread will kick in and start transmitting these.
1530 *
1531 * If after this function is done (but before one or more of these
1532 * messages are actually transmitted) the CEC adapter is unconfigured,
1533 * then any remaining messages will be dropped by the main thread.
1534 */
1535 for (i = 0; i < las->num_log_addrs; i++) {
1536 struct cec_msg msg = {};
1537
1538 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1539 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1540 continue;
1541
1542 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1543
1544 /* Report Features must come first according to CEC 2.0 */
1545 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1546 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1547 cec_fill_msg_report_features(adap, &msg, i);
1548 cec_transmit_msg_fh(adap, &msg, NULL, false);
1549 }
1550
1551 /* Report Physical Address */
1552 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1553 las->primary_device_type[i]);
1554 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1555 las->log_addr[i],
1556 cec_phys_addr_exp(adap->phys_addr));
1557 cec_transmit_msg_fh(adap, &msg, NULL, false);
1558
1559 /* Report Vendor ID */
1560 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1561 cec_msg_device_vendor_id(&msg,
1562 adap->log_addrs.vendor_id);
1563 cec_transmit_msg_fh(adap, &msg, NULL, false);
1564 }
1565 }
1566 adap->kthread_config = NULL;
1567 complete(&adap->config_completion);
1568 mutex_unlock(&adap->lock);
1569 call_void_op(adap, configured);
1570 return 0;
1571
1572 unconfigure:
1573 for (i = 0; i < las->num_log_addrs; i++)
1574 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1575 cec_adap_unconfigure(adap);
1576 adap->is_configuring = false;
1577 adap->must_reconfigure = false;
1578 adap->kthread_config = NULL;
1579 complete(&adap->config_completion);
1580 mutex_unlock(&adap->lock);
1581 return 0;
1582 }
1583
1584 /*
1585 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1586 * logical addresses.
1587 *
1588 * This function is called with adap->lock held.
1589 */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1590 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1591 {
1592 if (WARN_ON(adap->is_configuring || adap->is_configured))
1593 return;
1594
1595 init_completion(&adap->config_completion);
1596
1597 /* Ready to kick off the thread */
1598 adap->is_configuring = true;
1599 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1600 "ceccfg-%s", adap->name);
1601 if (IS_ERR(adap->kthread_config)) {
1602 adap->kthread_config = NULL;
1603 adap->is_configuring = false;
1604 } else if (block) {
1605 mutex_unlock(&adap->lock);
1606 wait_for_completion(&adap->config_completion);
1607 mutex_lock(&adap->lock);
1608 }
1609 }
1610
1611 /*
1612 * Helper function to enable/disable the CEC adapter.
1613 *
1614 * This function is called with adap->lock held.
1615 */
cec_adap_enable(struct cec_adapter * adap)1616 int cec_adap_enable(struct cec_adapter *adap)
1617 {
1618 bool enable;
1619 int ret = 0;
1620
1621 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1622 adap->log_addrs.num_log_addrs;
1623 if (adap->needs_hpd)
1624 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1625
1626 if (adap->devnode.unregistered)
1627 enable = false;
1628
1629 if (enable == adap->is_enabled)
1630 return 0;
1631
1632 /* serialize adap_enable */
1633 mutex_lock(&adap->devnode.lock);
1634 if (enable) {
1635 adap->last_initiator = 0xff;
1636 adap->transmit_in_progress = false;
1637 adap->tx_low_drive_log_cnt = 0;
1638 adap->tx_error_log_cnt = 0;
1639 ret = adap->ops->adap_enable(adap, true);
1640 if (!ret) {
1641 /*
1642 * Enable monitor-all/pin modes if needed. We warn, but
1643 * continue if this fails as this is not a critical error.
1644 */
1645 if (adap->monitor_all_cnt)
1646 WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1647 if (adap->monitor_pin_cnt)
1648 WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1649 }
1650 } else {
1651 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1652 if (adap->monitor_all_cnt)
1653 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1654 if (adap->monitor_pin_cnt)
1655 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1656 WARN_ON(adap->ops->adap_enable(adap, false));
1657 adap->last_initiator = 0xff;
1658 adap->transmit_in_progress = false;
1659 adap->transmit_in_progress_aborted = false;
1660 if (adap->transmitting)
1661 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1662 }
1663 if (!ret)
1664 adap->is_enabled = enable;
1665 wake_up_interruptible(&adap->kthread_waitq);
1666 mutex_unlock(&adap->devnode.lock);
1667 return ret;
1668 }
1669
1670 /* Set a new physical address and send an event notifying userspace of this.
1671 *
1672 * This function is called with adap->lock held.
1673 */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1674 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1675 {
1676 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1677 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1678
1679 if (phys_addr == adap->phys_addr)
1680 return;
1681 if (!becomes_invalid && adap->devnode.unregistered)
1682 return;
1683
1684 dprintk(1, "new physical address %x.%x.%x.%x\n",
1685 cec_phys_addr_exp(phys_addr));
1686 if (becomes_invalid || !is_invalid) {
1687 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1688 cec_post_state_event(adap);
1689 cec_adap_unconfigure(adap);
1690 if (becomes_invalid) {
1691 cec_adap_enable(adap);
1692 return;
1693 }
1694 }
1695
1696 adap->phys_addr = phys_addr;
1697 if (is_invalid)
1698 cec_adap_enable(adap);
1699
1700 cec_post_state_event(adap);
1701 if (!adap->log_addrs.num_log_addrs)
1702 return;
1703 if (adap->is_configuring)
1704 adap->must_reconfigure = true;
1705 else
1706 cec_claim_log_addrs(adap, block);
1707 }
1708
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1709 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1710 {
1711 if (IS_ERR_OR_NULL(adap))
1712 return;
1713
1714 mutex_lock(&adap->lock);
1715 __cec_s_phys_addr(adap, phys_addr, block);
1716 mutex_unlock(&adap->lock);
1717 }
1718 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1719
1720 /*
1721 * Note: In the drm subsystem, prefer calling (if possible):
1722 *
1723 * cec_s_phys_addr(adap, connector->display_info.source_physical_address, false);
1724 */
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1725 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1726 const struct edid *edid)
1727 {
1728 u16 pa = CEC_PHYS_ADDR_INVALID;
1729
1730 if (edid && edid->extensions)
1731 pa = cec_get_edid_phys_addr((const u8 *)edid,
1732 EDID_LENGTH * (edid->extensions + 1), NULL);
1733 cec_s_phys_addr(adap, pa, false);
1734 }
1735 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1736
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1737 void cec_s_conn_info(struct cec_adapter *adap,
1738 const struct cec_connector_info *conn_info)
1739 {
1740 if (IS_ERR_OR_NULL(adap))
1741 return;
1742
1743 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1744 return;
1745
1746 mutex_lock(&adap->lock);
1747 if (conn_info)
1748 adap->conn_info = *conn_info;
1749 else
1750 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1751 cec_post_state_event(adap);
1752 mutex_unlock(&adap->lock);
1753 }
1754 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1755
1756 /*
1757 * Called from either the ioctl or a driver to set the logical addresses.
1758 *
1759 * This function is called with adap->lock held.
1760 */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1761 int __cec_s_log_addrs(struct cec_adapter *adap,
1762 struct cec_log_addrs *log_addrs, bool block)
1763 {
1764 u16 type_mask = 0;
1765 int err;
1766 int i;
1767
1768 if (adap->devnode.unregistered)
1769 return -ENODEV;
1770
1771 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1772 if (!adap->log_addrs.num_log_addrs)
1773 return 0;
1774 if (adap->is_configuring || adap->is_configured)
1775 cec_adap_unconfigure(adap);
1776 adap->log_addrs.num_log_addrs = 0;
1777 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1778 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1779 adap->log_addrs.osd_name[0] = '\0';
1780 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1781 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1782 cec_adap_enable(adap);
1783 return 0;
1784 }
1785
1786 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1787 /*
1788 * Sanitize log_addrs fields if a CDC-Only device is
1789 * requested.
1790 */
1791 log_addrs->num_log_addrs = 1;
1792 log_addrs->osd_name[0] = '\0';
1793 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1794 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1795 /*
1796 * This is just an internal convention since a CDC-Only device
1797 * doesn't have to be a switch. But switches already use
1798 * unregistered, so it makes some kind of sense to pick this
1799 * as the primary device. Since a CDC-Only device never sends
1800 * any 'normal' CEC messages this primary device type is never
1801 * sent over the CEC bus.
1802 */
1803 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1804 log_addrs->all_device_types[0] = 0;
1805 log_addrs->features[0][0] = 0;
1806 log_addrs->features[0][1] = 0;
1807 }
1808
1809 /* Ensure the osd name is 0-terminated */
1810 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1811
1812 /* Sanity checks */
1813 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1814 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1815 return -EINVAL;
1816 }
1817
1818 /*
1819 * Vendor ID is a 24 bit number, so check if the value is
1820 * within the correct range.
1821 */
1822 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1823 (log_addrs->vendor_id & 0xff000000) != 0) {
1824 dprintk(1, "invalid vendor ID\n");
1825 return -EINVAL;
1826 }
1827
1828 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1829 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1830 dprintk(1, "invalid CEC version\n");
1831 return -EINVAL;
1832 }
1833
1834 if (log_addrs->num_log_addrs > 1)
1835 for (i = 0; i < log_addrs->num_log_addrs; i++)
1836 if (log_addrs->log_addr_type[i] ==
1837 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1838 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1839 return -EINVAL;
1840 }
1841
1842 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1843 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1844 u8 *features = log_addrs->features[i];
1845 bool op_is_dev_features = false;
1846 unsigned int j;
1847
1848 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1849 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1850 dprintk(1, "unknown logical address type\n");
1851 return -EINVAL;
1852 }
1853 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1854 dprintk(1, "duplicate logical address type\n");
1855 return -EINVAL;
1856 }
1857 type_mask |= 1 << log_addrs->log_addr_type[i];
1858 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1859 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1860 /* Record already contains the playback functionality */
1861 dprintk(1, "invalid record + playback combination\n");
1862 return -EINVAL;
1863 }
1864 if (log_addrs->primary_device_type[i] >
1865 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1866 dprintk(1, "unknown primary device type\n");
1867 return -EINVAL;
1868 }
1869 if (log_addrs->primary_device_type[i] == 2) {
1870 dprintk(1, "invalid primary device type\n");
1871 return -EINVAL;
1872 }
1873 for (j = 0; j < feature_sz; j++) {
1874 if ((features[j] & 0x80) == 0) {
1875 if (op_is_dev_features)
1876 break;
1877 op_is_dev_features = true;
1878 }
1879 }
1880 if (!op_is_dev_features || j == feature_sz) {
1881 dprintk(1, "malformed features\n");
1882 return -EINVAL;
1883 }
1884 /* Zero unused part of the feature array */
1885 memset(features + j + 1, 0, feature_sz - j - 1);
1886 }
1887
1888 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1889 if (log_addrs->num_log_addrs > 2) {
1890 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1891 return -EINVAL;
1892 }
1893 if (log_addrs->num_log_addrs == 2) {
1894 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1895 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1896 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1897 return -EINVAL;
1898 }
1899 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1900 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1901 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1902 return -EINVAL;
1903 }
1904 }
1905 }
1906
1907 /* Zero unused LAs */
1908 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1909 log_addrs->primary_device_type[i] = 0;
1910 log_addrs->log_addr_type[i] = 0;
1911 log_addrs->all_device_types[i] = 0;
1912 memset(log_addrs->features[i], 0,
1913 sizeof(log_addrs->features[i]));
1914 }
1915
1916 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1917 adap->log_addrs = *log_addrs;
1918 err = cec_adap_enable(adap);
1919 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1920 cec_claim_log_addrs(adap, block);
1921 return err;
1922 }
1923
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1924 int cec_s_log_addrs(struct cec_adapter *adap,
1925 struct cec_log_addrs *log_addrs, bool block)
1926 {
1927 int err;
1928
1929 mutex_lock(&adap->lock);
1930 err = __cec_s_log_addrs(adap, log_addrs, block);
1931 mutex_unlock(&adap->lock);
1932 return err;
1933 }
1934 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1935
1936 /* High-level core CEC message handling */
1937
1938 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1939 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1940 struct cec_msg *msg,
1941 unsigned int la_idx)
1942 {
1943 const struct cec_log_addrs *las = &adap->log_addrs;
1944 const u8 *features = las->features[la_idx];
1945 bool op_is_dev_features = false;
1946 unsigned int idx;
1947
1948 /* Report Features */
1949 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1950 msg->len = 4;
1951 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1952 msg->msg[2] = adap->log_addrs.cec_version;
1953 msg->msg[3] = las->all_device_types[la_idx];
1954
1955 /* Write RC Profiles first, then Device Features */
1956 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1957 msg->msg[msg->len++] = features[idx];
1958 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1959 if (op_is_dev_features)
1960 break;
1961 op_is_dev_features = true;
1962 }
1963 }
1964 }
1965
1966 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1967 static int cec_feature_abort_reason(struct cec_adapter *adap,
1968 struct cec_msg *msg, u8 reason)
1969 {
1970 struct cec_msg tx_msg = { };
1971
1972 /*
1973 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1974 * message!
1975 */
1976 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1977 return 0;
1978 /* Don't Feature Abort messages from 'Unregistered' */
1979 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1980 return 0;
1981 cec_msg_set_reply_to(&tx_msg, msg);
1982 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1983 return cec_transmit_msg(adap, &tx_msg, false);
1984 }
1985
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1986 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1987 {
1988 return cec_feature_abort_reason(adap, msg,
1989 CEC_OP_ABORT_UNRECOGNIZED_OP);
1990 }
1991
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1992 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1993 {
1994 return cec_feature_abort_reason(adap, msg,
1995 CEC_OP_ABORT_REFUSED);
1996 }
1997
1998 /*
1999 * Called when a CEC message is received. This function will do any
2000 * necessary core processing. The is_reply bool is true if this message
2001 * is a reply to an earlier transmit.
2002 *
2003 * The message is either a broadcast message or a valid directed message.
2004 */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)2005 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
2006 bool is_reply)
2007 {
2008 bool is_broadcast = cec_msg_is_broadcast(msg);
2009 u8 dest_laddr = cec_msg_destination(msg);
2010 u8 init_laddr = cec_msg_initiator(msg);
2011 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
2012 int la_idx = cec_log_addr2idx(adap, dest_laddr);
2013 bool from_unregistered = init_laddr == 0xf;
2014 struct cec_msg tx_cec_msg = { };
2015
2016 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
2017
2018 /* If this is a CDC-Only device, then ignore any non-CDC messages */
2019 if (cec_is_cdc_only(&adap->log_addrs) &&
2020 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
2021 return 0;
2022
2023 /* Allow drivers to process the message first */
2024 if (adap->ops->received && !adap->devnode.unregistered &&
2025 adap->ops->received(adap, msg) != -ENOMSG)
2026 return 0;
2027
2028 /*
2029 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
2030 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
2031 * handled by the CEC core, even if the passthrough mode is on.
2032 * The others are just ignored if passthrough mode is on.
2033 */
2034 switch (msg->msg[1]) {
2035 case CEC_MSG_GET_CEC_VERSION:
2036 case CEC_MSG_ABORT:
2037 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2038 case CEC_MSG_GIVE_OSD_NAME:
2039 /*
2040 * These messages reply with a directed message, so ignore if
2041 * the initiator is Unregistered.
2042 */
2043 if (!adap->passthrough && from_unregistered)
2044 return 0;
2045 fallthrough;
2046 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2047 case CEC_MSG_GIVE_FEATURES:
2048 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2049 /*
2050 * Skip processing these messages if the passthrough mode
2051 * is on.
2052 */
2053 if (adap->passthrough)
2054 goto skip_processing;
2055 /* Ignore if addressing is wrong */
2056 if (is_broadcast)
2057 return 0;
2058 break;
2059
2060 case CEC_MSG_USER_CONTROL_PRESSED:
2061 case CEC_MSG_USER_CONTROL_RELEASED:
2062 /* Wrong addressing mode: don't process */
2063 if (is_broadcast || from_unregistered)
2064 goto skip_processing;
2065 break;
2066
2067 case CEC_MSG_REPORT_PHYSICAL_ADDR:
2068 /*
2069 * This message is always processed, regardless of the
2070 * passthrough setting.
2071 *
2072 * Exception: don't process if wrong addressing mode.
2073 */
2074 if (!is_broadcast)
2075 goto skip_processing;
2076 break;
2077
2078 default:
2079 break;
2080 }
2081
2082 cec_msg_set_reply_to(&tx_cec_msg, msg);
2083
2084 switch (msg->msg[1]) {
2085 /* The following messages are processed but still passed through */
2086 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2087 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2088
2089 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2090 cec_phys_addr_exp(pa), init_laddr);
2091 break;
2092 }
2093
2094 case CEC_MSG_USER_CONTROL_PRESSED:
2095 if (!(adap->capabilities & CEC_CAP_RC) ||
2096 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2097 break;
2098
2099 #ifdef CONFIG_MEDIA_CEC_RC
2100 switch (msg->msg[2]) {
2101 /*
2102 * Play function, this message can have variable length
2103 * depending on the specific play function that is used.
2104 */
2105 case CEC_OP_UI_CMD_PLAY_FUNCTION:
2106 if (msg->len == 2)
2107 rc_keydown(adap->rc, RC_PROTO_CEC,
2108 msg->msg[2], 0);
2109 else
2110 rc_keydown(adap->rc, RC_PROTO_CEC,
2111 msg->msg[2] << 8 | msg->msg[3], 0);
2112 break;
2113 /*
2114 * Other function messages that are not handled.
2115 * Currently the RC framework does not allow to supply an
2116 * additional parameter to a keypress. These "keys" contain
2117 * other information such as channel number, an input number
2118 * etc.
2119 * For the time being these messages are not processed by the
2120 * framework and are simply forwarded to the user space.
2121 */
2122 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2123 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2124 case CEC_OP_UI_CMD_TUNE_FUNCTION:
2125 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2126 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2127 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2128 break;
2129 default:
2130 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2131 break;
2132 }
2133 #endif
2134 break;
2135
2136 case CEC_MSG_USER_CONTROL_RELEASED:
2137 if (!(adap->capabilities & CEC_CAP_RC) ||
2138 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2139 break;
2140 #ifdef CONFIG_MEDIA_CEC_RC
2141 rc_keyup(adap->rc);
2142 #endif
2143 break;
2144
2145 /*
2146 * The remaining messages are only processed if the passthrough mode
2147 * is off.
2148 */
2149 case CEC_MSG_GET_CEC_VERSION:
2150 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2151 return cec_transmit_msg(adap, &tx_cec_msg, false);
2152
2153 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2154 /* Do nothing for CEC switches using addr 15 */
2155 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2156 return 0;
2157 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2158 return cec_transmit_msg(adap, &tx_cec_msg, false);
2159
2160 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2161 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2162 return cec_feature_abort(adap, msg);
2163 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2164 return cec_transmit_msg(adap, &tx_cec_msg, false);
2165
2166 case CEC_MSG_ABORT:
2167 /* Do nothing for CEC switches */
2168 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2169 return 0;
2170 return cec_feature_refused(adap, msg);
2171
2172 case CEC_MSG_GIVE_OSD_NAME: {
2173 if (adap->log_addrs.osd_name[0] == 0)
2174 return cec_feature_abort(adap, msg);
2175 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2176 return cec_transmit_msg(adap, &tx_cec_msg, false);
2177 }
2178
2179 case CEC_MSG_GIVE_FEATURES:
2180 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2181 return cec_feature_abort(adap, msg);
2182 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2183 return cec_transmit_msg(adap, &tx_cec_msg, false);
2184
2185 default:
2186 /*
2187 * Unprocessed messages are aborted if userspace isn't doing
2188 * any processing either.
2189 */
2190 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2191 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2192 return cec_feature_abort(adap, msg);
2193 break;
2194 }
2195
2196 skip_processing:
2197 /* If this was a reply, then we're done, unless otherwise specified */
2198 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2199 return 0;
2200
2201 /*
2202 * Send to the exclusive follower if there is one, otherwise send
2203 * to all followers.
2204 */
2205 if (adap->cec_follower)
2206 cec_queue_msg_fh(adap->cec_follower, msg);
2207 else
2208 cec_queue_msg_followers(adap, msg);
2209 return 0;
2210 }
2211
2212 /*
2213 * Helper functions to keep track of the 'monitor all' use count.
2214 *
2215 * These functions are called with adap->lock held.
2216 */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2217 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2218 {
2219 int ret;
2220
2221 if (adap->monitor_all_cnt++)
2222 return 0;
2223
2224 ret = cec_adap_enable(adap);
2225 if (ret)
2226 adap->monitor_all_cnt--;
2227 return ret;
2228 }
2229
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2230 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2231 {
2232 if (WARN_ON(!adap->monitor_all_cnt))
2233 return;
2234 if (--adap->monitor_all_cnt)
2235 return;
2236 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2237 cec_adap_enable(adap);
2238 }
2239
2240 /*
2241 * Helper functions to keep track of the 'monitor pin' use count.
2242 *
2243 * These functions are called with adap->lock held.
2244 */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2245 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2246 {
2247 int ret;
2248
2249 if (adap->monitor_pin_cnt++)
2250 return 0;
2251
2252 ret = cec_adap_enable(adap);
2253 if (ret)
2254 adap->monitor_pin_cnt--;
2255 return ret;
2256 }
2257
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2258 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2259 {
2260 if (WARN_ON(!adap->monitor_pin_cnt))
2261 return;
2262 if (--adap->monitor_pin_cnt)
2263 return;
2264 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2265 cec_adap_enable(adap);
2266 }
2267
2268 #ifdef CONFIG_DEBUG_FS
2269 /*
2270 * Log the current state of the CEC adapter.
2271 * Very useful for debugging.
2272 */
cec_adap_status(struct seq_file * file,void * priv)2273 int cec_adap_status(struct seq_file *file, void *priv)
2274 {
2275 struct cec_adapter *adap = dev_get_drvdata(file->private);
2276 struct cec_data *data;
2277
2278 mutex_lock(&adap->lock);
2279 seq_printf(file, "enabled: %d\n", adap->is_enabled);
2280 seq_printf(file, "configured: %d\n", adap->is_configured);
2281 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2282 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2283 cec_phys_addr_exp(adap->phys_addr));
2284 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2285 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2286 if (adap->cec_follower)
2287 seq_printf(file, "has CEC follower%s\n",
2288 adap->passthrough ? " (in passthrough mode)" : "");
2289 if (adap->cec_initiator)
2290 seq_puts(file, "has CEC initiator\n");
2291 if (adap->monitor_all_cnt)
2292 seq_printf(file, "file handles in Monitor All mode: %u\n",
2293 adap->monitor_all_cnt);
2294 if (adap->monitor_pin_cnt)
2295 seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2296 adap->monitor_pin_cnt);
2297 if (adap->tx_timeout_cnt) {
2298 seq_printf(file, "transmit timeout count: %u\n",
2299 adap->tx_timeout_cnt);
2300 adap->tx_timeout_cnt = 0;
2301 }
2302 if (adap->tx_low_drive_cnt) {
2303 seq_printf(file, "transmit low drive count: %u\n",
2304 adap->tx_low_drive_cnt);
2305 adap->tx_low_drive_cnt = 0;
2306 }
2307 if (adap->tx_arb_lost_cnt) {
2308 seq_printf(file, "transmit arbitration lost count: %u\n",
2309 adap->tx_arb_lost_cnt);
2310 adap->tx_arb_lost_cnt = 0;
2311 }
2312 if (adap->tx_error_cnt) {
2313 seq_printf(file, "transmit error count: %u\n",
2314 adap->tx_error_cnt);
2315 adap->tx_error_cnt = 0;
2316 }
2317 data = adap->transmitting;
2318 if (data)
2319 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2320 data->msg.len, data->msg.msg, data->msg.reply,
2321 data->msg.timeout);
2322 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2323 list_for_each_entry(data, &adap->transmit_queue, list) {
2324 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2325 data->msg.len, data->msg.msg, data->msg.reply,
2326 data->msg.timeout);
2327 }
2328 list_for_each_entry(data, &adap->wait_queue, list) {
2329 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2330 data->msg.len, data->msg.msg, data->msg.reply,
2331 data->msg.timeout);
2332 }
2333
2334 call_void_op(adap, adap_status, file);
2335 mutex_unlock(&adap->lock);
2336 return 0;
2337 }
2338 #endif
2339