1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 #include <uapi/linux/iommufd.h>
41
42 #include "amd_iommu.h"
43 #include "../dma-iommu.h"
44 #include "../irq_remapping.h"
45
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47
48 /* IO virtual address start page frame number */
49 #define IOVA_START_PFN (1)
50 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
51
52 /* Reserved IOVA ranges */
53 #define MSI_RANGE_START (0xfee00000)
54 #define MSI_RANGE_END (0xfeefffff)
55 #define HT_RANGE_START (0xfd00000000ULL)
56 #define HT_RANGE_END (0xffffffffffULL)
57
58 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
59
60 static DEFINE_SPINLOCK(pd_bitmap_lock);
61
62 LIST_HEAD(ioapic_map);
63 LIST_HEAD(hpet_map);
64 LIST_HEAD(acpihid_map);
65
66 const struct iommu_ops amd_iommu_ops;
67 static const struct iommu_dirty_ops amd_dirty_ops;
68
69 int amd_iommu_max_glx_val = -1;
70
71 /*
72 * general struct to manage commands send to an IOMMU
73 */
74 struct iommu_cmd {
75 u32 data[4];
76 };
77
78 struct kmem_cache *amd_iommu_irq_cache;
79
80 static void detach_device(struct device *dev);
81
82 /****************************************************************************
83 *
84 * Helper functions
85 *
86 ****************************************************************************/
87
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)88 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
89 {
90 return (pdom && (pdom->flags & PD_IOMMUV2_MASK));
91 }
92
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)93 static inline int get_acpihid_device_id(struct device *dev,
94 struct acpihid_map_entry **entry)
95 {
96 struct acpi_device *adev = ACPI_COMPANION(dev);
97 struct acpihid_map_entry *p;
98
99 if (!adev)
100 return -ENODEV;
101
102 list_for_each_entry(p, &acpihid_map, list) {
103 if (acpi_dev_hid_uid_match(adev, p->hid,
104 p->uid[0] ? p->uid : NULL)) {
105 if (entry)
106 *entry = p;
107 return p->devid;
108 }
109 }
110 return -EINVAL;
111 }
112
get_device_sbdf_id(struct device * dev)113 static inline int get_device_sbdf_id(struct device *dev)
114 {
115 int sbdf;
116
117 if (dev_is_pci(dev))
118 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
119 else
120 sbdf = get_acpihid_device_id(dev, NULL);
121
122 return sbdf;
123 }
124
get_dev_table(struct amd_iommu * iommu)125 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
126 {
127 struct dev_table_entry *dev_table;
128 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
129
130 BUG_ON(pci_seg == NULL);
131 dev_table = pci_seg->dev_table;
132 BUG_ON(dev_table == NULL);
133
134 return dev_table;
135 }
136
get_device_segment(struct device * dev)137 static inline u16 get_device_segment(struct device *dev)
138 {
139 u16 seg;
140
141 if (dev_is_pci(dev)) {
142 struct pci_dev *pdev = to_pci_dev(dev);
143
144 seg = pci_domain_nr(pdev->bus);
145 } else {
146 u32 devid = get_acpihid_device_id(dev, NULL);
147
148 seg = PCI_SBDF_TO_SEGID(devid);
149 }
150
151 return seg;
152 }
153
154 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)155 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
156 {
157 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
158
159 pci_seg->rlookup_table[devid] = iommu;
160 }
161
__rlookup_amd_iommu(u16 seg,u16 devid)162 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
163 {
164 struct amd_iommu_pci_seg *pci_seg;
165
166 for_each_pci_segment(pci_seg) {
167 if (pci_seg->id == seg)
168 return pci_seg->rlookup_table[devid];
169 }
170 return NULL;
171 }
172
rlookup_amd_iommu(struct device * dev)173 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
174 {
175 u16 seg = get_device_segment(dev);
176 int devid = get_device_sbdf_id(dev);
177
178 if (devid < 0)
179 return NULL;
180 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
181 }
182
to_pdomain(struct iommu_domain * dom)183 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
184 {
185 return container_of(dom, struct protection_domain, domain);
186 }
187
alloc_dev_data(struct amd_iommu * iommu,u16 devid)188 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
189 {
190 struct iommu_dev_data *dev_data;
191 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
192
193 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
194 if (!dev_data)
195 return NULL;
196
197 spin_lock_init(&dev_data->lock);
198 dev_data->devid = devid;
199 ratelimit_default_init(&dev_data->rs);
200
201 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
202 return dev_data;
203 }
204
search_dev_data(struct amd_iommu * iommu,u16 devid)205 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
206 {
207 struct iommu_dev_data *dev_data;
208 struct llist_node *node;
209 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
210
211 if (llist_empty(&pci_seg->dev_data_list))
212 return NULL;
213
214 node = pci_seg->dev_data_list.first;
215 llist_for_each_entry(dev_data, node, dev_data_list) {
216 if (dev_data->devid == devid)
217 return dev_data;
218 }
219
220 return NULL;
221 }
222
clone_alias(struct pci_dev * pdev,u16 alias,void * data)223 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
224 {
225 struct amd_iommu *iommu;
226 struct dev_table_entry *dev_table;
227 u16 devid = pci_dev_id(pdev);
228
229 if (devid == alias)
230 return 0;
231
232 iommu = rlookup_amd_iommu(&pdev->dev);
233 if (!iommu)
234 return 0;
235
236 amd_iommu_set_rlookup_table(iommu, alias);
237 dev_table = get_dev_table(iommu);
238 memcpy(dev_table[alias].data,
239 dev_table[devid].data,
240 sizeof(dev_table[alias].data));
241
242 return 0;
243 }
244
clone_aliases(struct amd_iommu * iommu,struct device * dev)245 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
246 {
247 struct pci_dev *pdev;
248
249 if (!dev_is_pci(dev))
250 return;
251 pdev = to_pci_dev(dev);
252
253 /*
254 * The IVRS alias stored in the alias table may not be
255 * part of the PCI DMA aliases if it's bus differs
256 * from the original device.
257 */
258 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
259
260 pci_for_each_dma_alias(pdev, clone_alias, NULL);
261 }
262
setup_aliases(struct amd_iommu * iommu,struct device * dev)263 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
264 {
265 struct pci_dev *pdev = to_pci_dev(dev);
266 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
267 u16 ivrs_alias;
268
269 /* For ACPI HID devices, there are no aliases */
270 if (!dev_is_pci(dev))
271 return;
272
273 /*
274 * Add the IVRS alias to the pci aliases if it is on the same
275 * bus. The IVRS table may know about a quirk that we don't.
276 */
277 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
278 if (ivrs_alias != pci_dev_id(pdev) &&
279 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
280 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
281
282 clone_aliases(iommu, dev);
283 }
284
find_dev_data(struct amd_iommu * iommu,u16 devid)285 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
286 {
287 struct iommu_dev_data *dev_data;
288
289 dev_data = search_dev_data(iommu, devid);
290
291 if (dev_data == NULL) {
292 dev_data = alloc_dev_data(iommu, devid);
293 if (!dev_data)
294 return NULL;
295
296 if (translation_pre_enabled(iommu))
297 dev_data->defer_attach = true;
298 }
299
300 return dev_data;
301 }
302
303 /*
304 * Find or create an IOMMU group for a acpihid device.
305 */
acpihid_device_group(struct device * dev)306 static struct iommu_group *acpihid_device_group(struct device *dev)
307 {
308 struct acpihid_map_entry *p, *entry = NULL;
309 int devid;
310
311 devid = get_acpihid_device_id(dev, &entry);
312 if (devid < 0)
313 return ERR_PTR(devid);
314
315 list_for_each_entry(p, &acpihid_map, list) {
316 if ((devid == p->devid) && p->group)
317 entry->group = p->group;
318 }
319
320 if (!entry->group)
321 entry->group = generic_device_group(dev);
322 else
323 iommu_group_ref_get(entry->group);
324
325 return entry->group;
326 }
327
pdev_pasid_supported(struct iommu_dev_data * dev_data)328 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
329 {
330 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
331 }
332
pdev_get_caps(struct pci_dev * pdev)333 static u32 pdev_get_caps(struct pci_dev *pdev)
334 {
335 int features;
336 u32 flags = 0;
337
338 if (pci_ats_supported(pdev))
339 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
340
341 if (pci_pri_supported(pdev))
342 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
343
344 features = pci_pasid_features(pdev);
345 if (features >= 0) {
346 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
347
348 if (features & PCI_PASID_CAP_EXEC)
349 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
350
351 if (features & PCI_PASID_CAP_PRIV)
352 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
353 }
354
355 return flags;
356 }
357
pdev_enable_cap_ats(struct pci_dev * pdev)358 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
359 {
360 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
361 int ret = -EINVAL;
362
363 if (dev_data->ats_enabled)
364 return 0;
365
366 if (amd_iommu_iotlb_sup &&
367 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
368 ret = pci_enable_ats(pdev, PAGE_SHIFT);
369 if (!ret) {
370 dev_data->ats_enabled = 1;
371 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
372 }
373 }
374
375 return ret;
376 }
377
pdev_disable_cap_ats(struct pci_dev * pdev)378 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
379 {
380 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
381
382 if (dev_data->ats_enabled) {
383 pci_disable_ats(pdev);
384 dev_data->ats_enabled = 0;
385 }
386 }
387
amd_iommu_pdev_enable_cap_pri(struct pci_dev * pdev)388 int amd_iommu_pdev_enable_cap_pri(struct pci_dev *pdev)
389 {
390 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
391 int ret = -EINVAL;
392
393 if (dev_data->pri_enabled)
394 return 0;
395
396 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
397 /*
398 * First reset the PRI state of the device.
399 * FIXME: Hardcode number of outstanding requests for now
400 */
401 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
402 dev_data->pri_enabled = 1;
403 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
404
405 ret = 0;
406 }
407 }
408
409 return ret;
410 }
411
amd_iommu_pdev_disable_cap_pri(struct pci_dev * pdev)412 void amd_iommu_pdev_disable_cap_pri(struct pci_dev *pdev)
413 {
414 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
415
416 if (dev_data->pri_enabled) {
417 pci_disable_pri(pdev);
418 dev_data->pri_enabled = 0;
419 }
420 }
421
pdev_enable_cap_pasid(struct pci_dev * pdev)422 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
423 {
424 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
425 int ret = -EINVAL;
426
427 if (dev_data->pasid_enabled)
428 return 0;
429
430 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
431 /* Only allow access to user-accessible pages */
432 ret = pci_enable_pasid(pdev, 0);
433 if (!ret)
434 dev_data->pasid_enabled = 1;
435 }
436
437 return ret;
438 }
439
pdev_disable_cap_pasid(struct pci_dev * pdev)440 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
441 {
442 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
443
444 if (dev_data->pasid_enabled) {
445 pci_disable_pasid(pdev);
446 dev_data->pasid_enabled = 0;
447 }
448 }
449
pdev_enable_caps(struct pci_dev * pdev)450 static void pdev_enable_caps(struct pci_dev *pdev)
451 {
452 pdev_enable_cap_ats(pdev);
453 pdev_enable_cap_pasid(pdev);
454 amd_iommu_pdev_enable_cap_pri(pdev);
455
456 }
457
pdev_disable_caps(struct pci_dev * pdev)458 static void pdev_disable_caps(struct pci_dev *pdev)
459 {
460 pdev_disable_cap_ats(pdev);
461 pdev_disable_cap_pasid(pdev);
462 amd_iommu_pdev_disable_cap_pri(pdev);
463 }
464
465 /*
466 * This function checks if the driver got a valid device from the caller to
467 * avoid dereferencing invalid pointers.
468 */
check_device(struct device * dev)469 static bool check_device(struct device *dev)
470 {
471 struct amd_iommu_pci_seg *pci_seg;
472 struct amd_iommu *iommu;
473 int devid, sbdf;
474
475 if (!dev)
476 return false;
477
478 sbdf = get_device_sbdf_id(dev);
479 if (sbdf < 0)
480 return false;
481 devid = PCI_SBDF_TO_DEVID(sbdf);
482
483 iommu = rlookup_amd_iommu(dev);
484 if (!iommu)
485 return false;
486
487 /* Out of our scope? */
488 pci_seg = iommu->pci_seg;
489 if (devid > pci_seg->last_bdf)
490 return false;
491
492 return true;
493 }
494
iommu_init_device(struct amd_iommu * iommu,struct device * dev)495 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
496 {
497 struct iommu_dev_data *dev_data;
498 int devid, sbdf;
499
500 if (dev_iommu_priv_get(dev))
501 return 0;
502
503 sbdf = get_device_sbdf_id(dev);
504 if (sbdf < 0)
505 return sbdf;
506
507 devid = PCI_SBDF_TO_DEVID(sbdf);
508 dev_data = find_dev_data(iommu, devid);
509 if (!dev_data)
510 return -ENOMEM;
511
512 dev_data->dev = dev;
513 setup_aliases(iommu, dev);
514
515 /*
516 * By default we use passthrough mode for IOMMUv2 capable device.
517 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
518 * invalid address), we ignore the capability for the device so
519 * it'll be forced to go into translation mode.
520 */
521 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
522 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
523 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
524 }
525
526 dev_iommu_priv_set(dev, dev_data);
527
528 return 0;
529 }
530
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)531 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
532 {
533 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
534 struct dev_table_entry *dev_table = get_dev_table(iommu);
535 int devid, sbdf;
536
537 sbdf = get_device_sbdf_id(dev);
538 if (sbdf < 0)
539 return;
540
541 devid = PCI_SBDF_TO_DEVID(sbdf);
542 pci_seg->rlookup_table[devid] = NULL;
543 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
544
545 setup_aliases(iommu, dev);
546 }
547
amd_iommu_uninit_device(struct device * dev)548 static void amd_iommu_uninit_device(struct device *dev)
549 {
550 struct iommu_dev_data *dev_data;
551
552 dev_data = dev_iommu_priv_get(dev);
553 if (!dev_data)
554 return;
555
556 if (dev_data->domain)
557 detach_device(dev);
558
559 /*
560 * We keep dev_data around for unplugged devices and reuse it when the
561 * device is re-plugged - not doing so would introduce a ton of races.
562 */
563 }
564
565 /****************************************************************************
566 *
567 * Interrupt handling functions
568 *
569 ****************************************************************************/
570
dump_dte_entry(struct amd_iommu * iommu,u16 devid)571 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
572 {
573 int i;
574 struct dev_table_entry *dev_table = get_dev_table(iommu);
575
576 for (i = 0; i < 4; ++i)
577 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
578 }
579
dump_command(unsigned long phys_addr)580 static void dump_command(unsigned long phys_addr)
581 {
582 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
583 int i;
584
585 for (i = 0; i < 4; ++i)
586 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
587 }
588
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)589 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
590 {
591 struct iommu_dev_data *dev_data = NULL;
592 int devid, vmg_tag, flags;
593 struct pci_dev *pdev;
594 u64 spa;
595
596 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
597 vmg_tag = (event[1]) & 0xFFFF;
598 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
599 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
600
601 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
602 devid & 0xff);
603 if (pdev)
604 dev_data = dev_iommu_priv_get(&pdev->dev);
605
606 if (dev_data) {
607 if (__ratelimit(&dev_data->rs)) {
608 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
609 vmg_tag, spa, flags);
610 }
611 } else {
612 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
613 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 vmg_tag, spa, flags);
615 }
616
617 if (pdev)
618 pci_dev_put(pdev);
619 }
620
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)621 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
622 {
623 struct iommu_dev_data *dev_data = NULL;
624 int devid, flags_rmp, vmg_tag, flags;
625 struct pci_dev *pdev;
626 u64 gpa;
627
628 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
629 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
630 vmg_tag = (event[1]) & 0xFFFF;
631 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
632 gpa = ((u64)event[3] << 32) | event[2];
633
634 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
635 devid & 0xff);
636 if (pdev)
637 dev_data = dev_iommu_priv_get(&pdev->dev);
638
639 if (dev_data) {
640 if (__ratelimit(&dev_data->rs)) {
641 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
642 vmg_tag, gpa, flags_rmp, flags);
643 }
644 } else {
645 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
646 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 vmg_tag, gpa, flags_rmp, flags);
648 }
649
650 if (pdev)
651 pci_dev_put(pdev);
652 }
653
654 #define IS_IOMMU_MEM_TRANSACTION(flags) \
655 (((flags) & EVENT_FLAG_I) == 0)
656
657 #define IS_WRITE_REQUEST(flags) \
658 ((flags) & EVENT_FLAG_RW)
659
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)660 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
661 u16 devid, u16 domain_id,
662 u64 address, int flags)
663 {
664 struct iommu_dev_data *dev_data = NULL;
665 struct pci_dev *pdev;
666
667 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
668 devid & 0xff);
669 if (pdev)
670 dev_data = dev_iommu_priv_get(&pdev->dev);
671
672 if (dev_data) {
673 /*
674 * If this is a DMA fault (for which the I(nterrupt)
675 * bit will be unset), allow report_iommu_fault() to
676 * prevent logging it.
677 */
678 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
679 /* Device not attached to domain properly */
680 if (dev_data->domain == NULL) {
681 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
682 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
683 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
684 PCI_FUNC(devid), domain_id);
685 goto out;
686 }
687
688 if (!report_iommu_fault(&dev_data->domain->domain,
689 &pdev->dev, address,
690 IS_WRITE_REQUEST(flags) ?
691 IOMMU_FAULT_WRITE :
692 IOMMU_FAULT_READ))
693 goto out;
694 }
695
696 if (__ratelimit(&dev_data->rs)) {
697 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
698 domain_id, address, flags);
699 }
700 } else {
701 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
702 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
703 domain_id, address, flags);
704 }
705
706 out:
707 if (pdev)
708 pci_dev_put(pdev);
709 }
710
iommu_print_event(struct amd_iommu * iommu,void * __evt)711 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
712 {
713 struct device *dev = iommu->iommu.dev;
714 int type, devid, flags, tag;
715 volatile u32 *event = __evt;
716 int count = 0;
717 u64 address;
718 u32 pasid;
719
720 retry:
721 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
722 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
723 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
724 (event[1] & EVENT_DOMID_MASK_LO);
725 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
726 address = (u64)(((u64)event[3]) << 32) | event[2];
727
728 if (type == 0) {
729 /* Did we hit the erratum? */
730 if (++count == LOOP_TIMEOUT) {
731 pr_err("No event written to event log\n");
732 return;
733 }
734 udelay(1);
735 goto retry;
736 }
737
738 if (type == EVENT_TYPE_IO_FAULT) {
739 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
740 return;
741 }
742
743 switch (type) {
744 case EVENT_TYPE_ILL_DEV:
745 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
746 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
747 pasid, address, flags);
748 dump_dte_entry(iommu, devid);
749 break;
750 case EVENT_TYPE_DEV_TAB_ERR:
751 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
752 "address=0x%llx flags=0x%04x]\n",
753 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
754 address, flags);
755 break;
756 case EVENT_TYPE_PAGE_TAB_ERR:
757 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
758 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
759 pasid, address, flags);
760 break;
761 case EVENT_TYPE_ILL_CMD:
762 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
763 dump_command(address);
764 break;
765 case EVENT_TYPE_CMD_HARD_ERR:
766 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
767 address, flags);
768 break;
769 case EVENT_TYPE_IOTLB_INV_TO:
770 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
771 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
772 address);
773 break;
774 case EVENT_TYPE_INV_DEV_REQ:
775 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
776 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
777 pasid, address, flags);
778 break;
779 case EVENT_TYPE_RMP_FAULT:
780 amd_iommu_report_rmp_fault(iommu, event);
781 break;
782 case EVENT_TYPE_RMP_HW_ERR:
783 amd_iommu_report_rmp_hw_error(iommu, event);
784 break;
785 case EVENT_TYPE_INV_PPR_REQ:
786 pasid = PPR_PASID(*((u64 *)__evt));
787 tag = event[1] & 0x03FF;
788 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
789 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
790 pasid, address, flags, tag);
791 break;
792 default:
793 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
794 event[0], event[1], event[2], event[3]);
795 }
796
797 /*
798 * To detect the hardware errata 732 we need to clear the
799 * entry back to zero. This issue does not exist on SNP
800 * enabled system. Also this buffer is not writeable on
801 * SNP enabled system.
802 */
803 if (!amd_iommu_snp_en)
804 memset(__evt, 0, 4 * sizeof(u32));
805 }
806
iommu_poll_events(struct amd_iommu * iommu)807 static void iommu_poll_events(struct amd_iommu *iommu)
808 {
809 u32 head, tail;
810
811 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
812 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
813
814 while (head != tail) {
815 iommu_print_event(iommu, iommu->evt_buf + head);
816 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
817 }
818
819 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
820 }
821
iommu_poll_ppr_log(struct amd_iommu * iommu)822 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
823 {
824 u32 head, tail;
825
826 if (iommu->ppr_log == NULL)
827 return;
828
829 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
830 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
831
832 while (head != tail) {
833 volatile u64 *raw;
834 u64 entry[2];
835 int i;
836
837 raw = (u64 *)(iommu->ppr_log + head);
838
839 /*
840 * Hardware bug: Interrupt may arrive before the entry is
841 * written to memory. If this happens we need to wait for the
842 * entry to arrive.
843 */
844 for (i = 0; i < LOOP_TIMEOUT; ++i) {
845 if (PPR_REQ_TYPE(raw[0]) != 0)
846 break;
847 udelay(1);
848 }
849
850 /* Avoid memcpy function-call overhead */
851 entry[0] = raw[0];
852 entry[1] = raw[1];
853
854 /*
855 * To detect the hardware errata 733 we need to clear the
856 * entry back to zero. This issue does not exist on SNP
857 * enabled system. Also this buffer is not writeable on
858 * SNP enabled system.
859 */
860 if (!amd_iommu_snp_en)
861 raw[0] = raw[1] = 0UL;
862
863 /* Update head pointer of hardware ring-buffer */
864 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
865 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
866
867 /* TODO: PPR Handler will be added when we add IOPF support */
868
869 /* Refresh ring-buffer information */
870 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
871 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
872 }
873 }
874
875 #ifdef CONFIG_IRQ_REMAP
876 static int (*iommu_ga_log_notifier)(u32);
877
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))878 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
879 {
880 iommu_ga_log_notifier = notifier;
881
882 return 0;
883 }
884 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
885
iommu_poll_ga_log(struct amd_iommu * iommu)886 static void iommu_poll_ga_log(struct amd_iommu *iommu)
887 {
888 u32 head, tail;
889
890 if (iommu->ga_log == NULL)
891 return;
892
893 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
894 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
895
896 while (head != tail) {
897 volatile u64 *raw;
898 u64 log_entry;
899
900 raw = (u64 *)(iommu->ga_log + head);
901
902 /* Avoid memcpy function-call overhead */
903 log_entry = *raw;
904
905 /* Update head pointer of hardware ring-buffer */
906 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
907 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
908
909 /* Handle GA entry */
910 switch (GA_REQ_TYPE(log_entry)) {
911 case GA_GUEST_NR:
912 if (!iommu_ga_log_notifier)
913 break;
914
915 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
916 __func__, GA_DEVID(log_entry),
917 GA_TAG(log_entry));
918
919 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
920 pr_err("GA log notifier failed.\n");
921 break;
922 default:
923 break;
924 }
925 }
926 }
927
928 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)929 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
930 {
931 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
932 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
933 return;
934
935 dev_set_msi_domain(dev, iommu->ir_domain);
936 }
937
938 #else /* CONFIG_IRQ_REMAP */
939 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)940 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
941 #endif /* !CONFIG_IRQ_REMAP */
942
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))943 static void amd_iommu_handle_irq(void *data, const char *evt_type,
944 u32 int_mask, u32 overflow_mask,
945 void (*int_handler)(struct amd_iommu *),
946 void (*overflow_handler)(struct amd_iommu *))
947 {
948 struct amd_iommu *iommu = (struct amd_iommu *) data;
949 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
950 u32 mask = int_mask | overflow_mask;
951
952 while (status & mask) {
953 /* Enable interrupt sources again */
954 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
955
956 if (int_handler) {
957 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
958 iommu->index, evt_type);
959 int_handler(iommu);
960 }
961
962 if ((status & overflow_mask) && overflow_handler)
963 overflow_handler(iommu);
964
965 /*
966 * Hardware bug: ERBT1312
967 * When re-enabling interrupt (by writing 1
968 * to clear the bit), the hardware might also try to set
969 * the interrupt bit in the event status register.
970 * In this scenario, the bit will be set, and disable
971 * subsequent interrupts.
972 *
973 * Workaround: The IOMMU driver should read back the
974 * status register and check if the interrupt bits are cleared.
975 * If not, driver will need to go through the interrupt handler
976 * again and re-clear the bits
977 */
978 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
979 }
980 }
981
amd_iommu_int_thread_evtlog(int irq,void * data)982 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
983 {
984 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
985 MMIO_STATUS_EVT_OVERFLOW_MASK,
986 iommu_poll_events, amd_iommu_restart_event_logging);
987
988 return IRQ_HANDLED;
989 }
990
amd_iommu_int_thread_pprlog(int irq,void * data)991 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
992 {
993 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
994 MMIO_STATUS_PPR_OVERFLOW_MASK,
995 iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
996
997 return IRQ_HANDLED;
998 }
999
amd_iommu_int_thread_galog(int irq,void * data)1000 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1001 {
1002 #ifdef CONFIG_IRQ_REMAP
1003 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1004 MMIO_STATUS_GALOG_OVERFLOW_MASK,
1005 iommu_poll_ga_log, amd_iommu_restart_ga_log);
1006 #endif
1007
1008 return IRQ_HANDLED;
1009 }
1010
amd_iommu_int_thread(int irq,void * data)1011 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1012 {
1013 amd_iommu_int_thread_evtlog(irq, data);
1014 amd_iommu_int_thread_pprlog(irq, data);
1015 amd_iommu_int_thread_galog(irq, data);
1016
1017 return IRQ_HANDLED;
1018 }
1019
amd_iommu_int_handler(int irq,void * data)1020 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1021 {
1022 return IRQ_WAKE_THREAD;
1023 }
1024
1025 /****************************************************************************
1026 *
1027 * IOMMU command queuing functions
1028 *
1029 ****************************************************************************/
1030
wait_on_sem(struct amd_iommu * iommu,u64 data)1031 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1032 {
1033 int i = 0;
1034
1035 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1036 udelay(1);
1037 i += 1;
1038 }
1039
1040 if (i == LOOP_TIMEOUT) {
1041 pr_alert("Completion-Wait loop timed out\n");
1042 return -EIO;
1043 }
1044
1045 return 0;
1046 }
1047
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1048 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1049 struct iommu_cmd *cmd)
1050 {
1051 u8 *target;
1052 u32 tail;
1053
1054 /* Copy command to buffer */
1055 tail = iommu->cmd_buf_tail;
1056 target = iommu->cmd_buf + tail;
1057 memcpy(target, cmd, sizeof(*cmd));
1058
1059 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1060 iommu->cmd_buf_tail = tail;
1061
1062 /* Tell the IOMMU about it */
1063 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1064 }
1065
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1066 static void build_completion_wait(struct iommu_cmd *cmd,
1067 struct amd_iommu *iommu,
1068 u64 data)
1069 {
1070 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1071
1072 memset(cmd, 0, sizeof(*cmd));
1073 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1074 cmd->data[1] = upper_32_bits(paddr);
1075 cmd->data[2] = lower_32_bits(data);
1076 cmd->data[3] = upper_32_bits(data);
1077 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1078 }
1079
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1080 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1081 {
1082 memset(cmd, 0, sizeof(*cmd));
1083 cmd->data[0] = devid;
1084 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1085 }
1086
1087 /*
1088 * Builds an invalidation address which is suitable for one page or multiple
1089 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1090 */
build_inv_address(u64 address,size_t size)1091 static inline u64 build_inv_address(u64 address, size_t size)
1092 {
1093 u64 pages, end, msb_diff;
1094
1095 pages = iommu_num_pages(address, size, PAGE_SIZE);
1096
1097 if (pages == 1)
1098 return address & PAGE_MASK;
1099
1100 end = address + size - 1;
1101
1102 /*
1103 * msb_diff would hold the index of the most significant bit that
1104 * flipped between the start and end.
1105 */
1106 msb_diff = fls64(end ^ address) - 1;
1107
1108 /*
1109 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1110 * between the start and the end, invalidate everything.
1111 */
1112 if (unlikely(msb_diff > 51)) {
1113 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1114 } else {
1115 /*
1116 * The msb-bit must be clear on the address. Just set all the
1117 * lower bits.
1118 */
1119 address |= (1ull << msb_diff) - 1;
1120 }
1121
1122 /* Clear bits 11:0 */
1123 address &= PAGE_MASK;
1124
1125 /* Set the size bit - we flush more than one 4kb page */
1126 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1127 }
1128
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1129 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1130 size_t size, u16 domid,
1131 ioasid_t pasid, bool gn)
1132 {
1133 u64 inv_address = build_inv_address(address, size);
1134
1135 memset(cmd, 0, sizeof(*cmd));
1136
1137 cmd->data[1] |= domid;
1138 cmd->data[2] = lower_32_bits(inv_address);
1139 cmd->data[3] = upper_32_bits(inv_address);
1140 /* PDE bit - we want to flush everything, not only the PTEs */
1141 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1142 if (gn) {
1143 cmd->data[0] |= pasid;
1144 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1145 }
1146 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1147 }
1148
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1149 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1150 u64 address, size_t size,
1151 ioasid_t pasid, bool gn)
1152 {
1153 u64 inv_address = build_inv_address(address, size);
1154
1155 memset(cmd, 0, sizeof(*cmd));
1156
1157 cmd->data[0] = devid;
1158 cmd->data[0] |= (qdep & 0xff) << 24;
1159 cmd->data[1] = devid;
1160 cmd->data[2] = lower_32_bits(inv_address);
1161 cmd->data[3] = upper_32_bits(inv_address);
1162 if (gn) {
1163 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1164 cmd->data[1] |= (pasid & 0xff) << 16;
1165 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1166 }
1167
1168 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1169 }
1170
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1171 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1172 int status, int tag, u8 gn)
1173 {
1174 memset(cmd, 0, sizeof(*cmd));
1175
1176 cmd->data[0] = devid;
1177 if (gn) {
1178 cmd->data[1] = pasid;
1179 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1180 }
1181 cmd->data[3] = tag & 0x1ff;
1182 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1183
1184 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1185 }
1186
build_inv_all(struct iommu_cmd * cmd)1187 static void build_inv_all(struct iommu_cmd *cmd)
1188 {
1189 memset(cmd, 0, sizeof(*cmd));
1190 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1191 }
1192
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1193 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1194 {
1195 memset(cmd, 0, sizeof(*cmd));
1196 cmd->data[0] = devid;
1197 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1198 }
1199
1200 /*
1201 * Writes the command to the IOMMUs command buffer and informs the
1202 * hardware about the new command.
1203 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1204 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1205 struct iommu_cmd *cmd,
1206 bool sync)
1207 {
1208 unsigned int count = 0;
1209 u32 left, next_tail;
1210
1211 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1212 again:
1213 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1214
1215 if (left <= 0x20) {
1216 /* Skip udelay() the first time around */
1217 if (count++) {
1218 if (count == LOOP_TIMEOUT) {
1219 pr_err("Command buffer timeout\n");
1220 return -EIO;
1221 }
1222
1223 udelay(1);
1224 }
1225
1226 /* Update head and recheck remaining space */
1227 iommu->cmd_buf_head = readl(iommu->mmio_base +
1228 MMIO_CMD_HEAD_OFFSET);
1229
1230 goto again;
1231 }
1232
1233 copy_cmd_to_buffer(iommu, cmd);
1234
1235 /* Do we need to make sure all commands are processed? */
1236 iommu->need_sync = sync;
1237
1238 return 0;
1239 }
1240
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1241 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1242 struct iommu_cmd *cmd,
1243 bool sync)
1244 {
1245 unsigned long flags;
1246 int ret;
1247
1248 raw_spin_lock_irqsave(&iommu->lock, flags);
1249 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1250 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1251
1252 return ret;
1253 }
1254
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1255 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1256 {
1257 return iommu_queue_command_sync(iommu, cmd, true);
1258 }
1259
1260 /*
1261 * This function queues a completion wait command into the command
1262 * buffer of an IOMMU
1263 */
iommu_completion_wait(struct amd_iommu * iommu)1264 static int iommu_completion_wait(struct amd_iommu *iommu)
1265 {
1266 struct iommu_cmd cmd;
1267 unsigned long flags;
1268 int ret;
1269 u64 data;
1270
1271 if (!iommu->need_sync)
1272 return 0;
1273
1274 data = atomic64_add_return(1, &iommu->cmd_sem_val);
1275 build_completion_wait(&cmd, iommu, data);
1276
1277 raw_spin_lock_irqsave(&iommu->lock, flags);
1278
1279 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1280 if (ret)
1281 goto out_unlock;
1282
1283 ret = wait_on_sem(iommu, data);
1284
1285 out_unlock:
1286 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1287
1288 return ret;
1289 }
1290
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1291 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1292 {
1293 struct iommu_cmd cmd;
1294
1295 build_inv_dte(&cmd, devid);
1296
1297 return iommu_queue_command(iommu, &cmd);
1298 }
1299
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1300 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1301 {
1302 u32 devid;
1303 u16 last_bdf = iommu->pci_seg->last_bdf;
1304
1305 for (devid = 0; devid <= last_bdf; ++devid)
1306 iommu_flush_dte(iommu, devid);
1307
1308 iommu_completion_wait(iommu);
1309 }
1310
1311 /*
1312 * This function uses heavy locking and may disable irqs for some time. But
1313 * this is no issue because it is only called during resume.
1314 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1315 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1316 {
1317 u32 dom_id;
1318 u16 last_bdf = iommu->pci_seg->last_bdf;
1319
1320 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1321 struct iommu_cmd cmd;
1322 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1323 dom_id, IOMMU_NO_PASID, false);
1324 iommu_queue_command(iommu, &cmd);
1325 }
1326
1327 iommu_completion_wait(iommu);
1328 }
1329
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1330 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1331 {
1332 struct iommu_cmd cmd;
1333
1334 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1335 dom_id, IOMMU_NO_PASID, false);
1336 iommu_queue_command(iommu, &cmd);
1337
1338 iommu_completion_wait(iommu);
1339 }
1340
amd_iommu_flush_all(struct amd_iommu * iommu)1341 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1342 {
1343 struct iommu_cmd cmd;
1344
1345 build_inv_all(&cmd);
1346
1347 iommu_queue_command(iommu, &cmd);
1348 iommu_completion_wait(iommu);
1349 }
1350
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1351 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1352 {
1353 struct iommu_cmd cmd;
1354
1355 build_inv_irt(&cmd, devid);
1356
1357 iommu_queue_command(iommu, &cmd);
1358 }
1359
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1360 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1361 {
1362 u32 devid;
1363 u16 last_bdf = iommu->pci_seg->last_bdf;
1364
1365 if (iommu->irtcachedis_enabled)
1366 return;
1367
1368 for (devid = 0; devid <= last_bdf; devid++)
1369 iommu_flush_irt(iommu, devid);
1370
1371 iommu_completion_wait(iommu);
1372 }
1373
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1374 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1375 {
1376 if (check_feature(FEATURE_IA)) {
1377 amd_iommu_flush_all(iommu);
1378 } else {
1379 amd_iommu_flush_dte_all(iommu);
1380 amd_iommu_flush_irt_all(iommu);
1381 amd_iommu_flush_tlb_all(iommu);
1382 }
1383 }
1384
1385 /*
1386 * Command send function for flushing on-device TLB
1387 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1388 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1389 size_t size, ioasid_t pasid, bool gn)
1390 {
1391 struct amd_iommu *iommu;
1392 struct iommu_cmd cmd;
1393 int qdep;
1394
1395 qdep = dev_data->ats_qdep;
1396 iommu = rlookup_amd_iommu(dev_data->dev);
1397 if (!iommu)
1398 return -EINVAL;
1399
1400 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1401 size, pasid, gn);
1402
1403 return iommu_queue_command(iommu, &cmd);
1404 }
1405
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1406 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1407 {
1408 struct amd_iommu *iommu = data;
1409
1410 return iommu_flush_dte(iommu, alias);
1411 }
1412
1413 /*
1414 * Command send function for invalidating a device table entry
1415 */
device_flush_dte(struct iommu_dev_data * dev_data)1416 static int device_flush_dte(struct iommu_dev_data *dev_data)
1417 {
1418 struct amd_iommu *iommu;
1419 struct pci_dev *pdev = NULL;
1420 struct amd_iommu_pci_seg *pci_seg;
1421 u16 alias;
1422 int ret;
1423
1424 iommu = rlookup_amd_iommu(dev_data->dev);
1425 if (!iommu)
1426 return -EINVAL;
1427
1428 if (dev_is_pci(dev_data->dev))
1429 pdev = to_pci_dev(dev_data->dev);
1430
1431 if (pdev)
1432 ret = pci_for_each_dma_alias(pdev,
1433 device_flush_dte_alias, iommu);
1434 else
1435 ret = iommu_flush_dte(iommu, dev_data->devid);
1436 if (ret)
1437 return ret;
1438
1439 pci_seg = iommu->pci_seg;
1440 alias = pci_seg->alias_table[dev_data->devid];
1441 if (alias != dev_data->devid) {
1442 ret = iommu_flush_dte(iommu, alias);
1443 if (ret)
1444 return ret;
1445 }
1446
1447 if (dev_data->ats_enabled) {
1448 /* Invalidate the entire contents of an IOTLB */
1449 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1450 IOMMU_NO_PASID, false);
1451 }
1452
1453 return ret;
1454 }
1455
1456 /*
1457 * TLB invalidation function which is called from the mapping functions.
1458 * It invalidates a single PTE if the range to flush is within a single
1459 * page. Otherwise it flushes the whole TLB of the IOMMU.
1460 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1461 static void __domain_flush_pages(struct protection_domain *domain,
1462 u64 address, size_t size)
1463 {
1464 struct iommu_dev_data *dev_data;
1465 struct iommu_cmd cmd;
1466 int ret = 0, i;
1467 ioasid_t pasid = IOMMU_NO_PASID;
1468 bool gn = false;
1469
1470 if (pdom_is_v2_pgtbl_mode(domain))
1471 gn = true;
1472
1473 build_inv_iommu_pages(&cmd, address, size, domain->id, pasid, gn);
1474
1475 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1476 if (!domain->dev_iommu[i])
1477 continue;
1478
1479 /*
1480 * Devices of this domain are behind this IOMMU
1481 * We need a TLB flush
1482 */
1483 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1484 }
1485
1486 list_for_each_entry(dev_data, &domain->dev_list, list) {
1487
1488 if (!dev_data->ats_enabled)
1489 continue;
1490
1491 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1492 }
1493
1494 WARN_ON(ret);
1495 }
1496
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1497 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1498 u64 address, size_t size)
1499 {
1500 if (likely(!amd_iommu_np_cache)) {
1501 __domain_flush_pages(domain, address, size);
1502
1503 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1504 amd_iommu_domain_flush_complete(domain);
1505
1506 return;
1507 }
1508
1509 /*
1510 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1511 * In such setups it is best to avoid flushes of ranges which are not
1512 * naturally aligned, since it would lead to flushes of unmodified
1513 * PTEs. Such flushes would require the hypervisor to do more work than
1514 * necessary. Therefore, perform repeated flushes of aligned ranges
1515 * until you cover the range. Each iteration flushes the smaller
1516 * between the natural alignment of the address that we flush and the
1517 * greatest naturally aligned region that fits in the range.
1518 */
1519 while (size != 0) {
1520 int addr_alignment = __ffs(address);
1521 int size_alignment = __fls(size);
1522 int min_alignment;
1523 size_t flush_size;
1524
1525 /*
1526 * size is always non-zero, but address might be zero, causing
1527 * addr_alignment to be negative. As the casting of the
1528 * argument in __ffs(address) to long might trim the high bits
1529 * of the address on x86-32, cast to long when doing the check.
1530 */
1531 if (likely((unsigned long)address != 0))
1532 min_alignment = min(addr_alignment, size_alignment);
1533 else
1534 min_alignment = size_alignment;
1535
1536 flush_size = 1ul << min_alignment;
1537
1538 __domain_flush_pages(domain, address, flush_size);
1539 address += flush_size;
1540 size -= flush_size;
1541 }
1542
1543 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1544 amd_iommu_domain_flush_complete(domain);
1545 }
1546
1547 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1548 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1549 {
1550 amd_iommu_domain_flush_pages(domain, 0,
1551 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1552 }
1553
amd_iommu_domain_flush_complete(struct protection_domain * domain)1554 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1555 {
1556 int i;
1557
1558 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1559 if (domain && !domain->dev_iommu[i])
1560 continue;
1561
1562 /*
1563 * Devices of this domain are behind this IOMMU
1564 * We need to wait for completion of all commands.
1565 */
1566 iommu_completion_wait(amd_iommus[i]);
1567 }
1568 }
1569
1570 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1571 static void domain_flush_np_cache(struct protection_domain *domain,
1572 dma_addr_t iova, size_t size)
1573 {
1574 if (unlikely(amd_iommu_np_cache)) {
1575 unsigned long flags;
1576
1577 spin_lock_irqsave(&domain->lock, flags);
1578 amd_iommu_domain_flush_pages(domain, iova, size);
1579 spin_unlock_irqrestore(&domain->lock, flags);
1580 }
1581 }
1582
1583
1584 /*
1585 * This function flushes the DTEs for all devices in domain
1586 */
domain_flush_devices(struct protection_domain * domain)1587 static void domain_flush_devices(struct protection_domain *domain)
1588 {
1589 struct iommu_dev_data *dev_data;
1590
1591 list_for_each_entry(dev_data, &domain->dev_list, list)
1592 device_flush_dte(dev_data);
1593 }
1594
1595 /****************************************************************************
1596 *
1597 * The next functions belong to the domain allocation. A domain is
1598 * allocated for every IOMMU as the default domain. If device isolation
1599 * is enabled, every device get its own domain. The most important thing
1600 * about domains is the page table mapping the DMA address space they
1601 * contain.
1602 *
1603 ****************************************************************************/
1604
domain_id_alloc(void)1605 static u16 domain_id_alloc(void)
1606 {
1607 int id;
1608
1609 spin_lock(&pd_bitmap_lock);
1610 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1611 BUG_ON(id == 0);
1612 if (id > 0 && id < MAX_DOMAIN_ID)
1613 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1614 else
1615 id = 0;
1616 spin_unlock(&pd_bitmap_lock);
1617
1618 return id;
1619 }
1620
domain_id_free(int id)1621 static void domain_id_free(int id)
1622 {
1623 spin_lock(&pd_bitmap_lock);
1624 if (id > 0 && id < MAX_DOMAIN_ID)
1625 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1626 spin_unlock(&pd_bitmap_lock);
1627 }
1628
free_gcr3_tbl_level1(u64 * tbl)1629 static void free_gcr3_tbl_level1(u64 *tbl)
1630 {
1631 u64 *ptr;
1632 int i;
1633
1634 for (i = 0; i < 512; ++i) {
1635 if (!(tbl[i] & GCR3_VALID))
1636 continue;
1637
1638 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1639
1640 free_page((unsigned long)ptr);
1641 }
1642 }
1643
free_gcr3_tbl_level2(u64 * tbl)1644 static void free_gcr3_tbl_level2(u64 *tbl)
1645 {
1646 u64 *ptr;
1647 int i;
1648
1649 for (i = 0; i < 512; ++i) {
1650 if (!(tbl[i] & GCR3_VALID))
1651 continue;
1652
1653 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1654
1655 free_gcr3_tbl_level1(ptr);
1656 }
1657 }
1658
free_gcr3_table(struct protection_domain * domain)1659 static void free_gcr3_table(struct protection_domain *domain)
1660 {
1661 if (domain->glx == 2)
1662 free_gcr3_tbl_level2(domain->gcr3_tbl);
1663 else if (domain->glx == 1)
1664 free_gcr3_tbl_level1(domain->gcr3_tbl);
1665 else
1666 BUG_ON(domain->glx != 0);
1667
1668 free_page((unsigned long)domain->gcr3_tbl);
1669 }
1670
1671 /*
1672 * Number of GCR3 table levels required. Level must be 4-Kbyte
1673 * page and can contain up to 512 entries.
1674 */
get_gcr3_levels(int pasids)1675 static int get_gcr3_levels(int pasids)
1676 {
1677 int levels;
1678
1679 if (pasids == -1)
1680 return amd_iommu_max_glx_val;
1681
1682 levels = get_count_order(pasids);
1683
1684 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1685 }
1686
1687 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
setup_gcr3_table(struct protection_domain * domain,int pasids)1688 static int setup_gcr3_table(struct protection_domain *domain, int pasids)
1689 {
1690 int levels = get_gcr3_levels(pasids);
1691
1692 if (levels > amd_iommu_max_glx_val)
1693 return -EINVAL;
1694
1695 domain->gcr3_tbl = alloc_pgtable_page(domain->nid, GFP_ATOMIC);
1696 if (domain->gcr3_tbl == NULL)
1697 return -ENOMEM;
1698
1699 domain->glx = levels;
1700 domain->flags |= PD_IOMMUV2_MASK;
1701
1702 amd_iommu_domain_update(domain);
1703
1704 return 0;
1705 }
1706
set_dte_entry(struct amd_iommu * iommu,u16 devid,struct protection_domain * domain,bool ats,bool ppr)1707 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1708 struct protection_domain *domain, bool ats, bool ppr)
1709 {
1710 u64 pte_root = 0;
1711 u64 flags = 0;
1712 u32 old_domid;
1713 struct dev_table_entry *dev_table = get_dev_table(iommu);
1714
1715 if (domain->iop.mode != PAGE_MODE_NONE)
1716 pte_root = iommu_virt_to_phys(domain->iop.root);
1717
1718 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1719 << DEV_ENTRY_MODE_SHIFT;
1720
1721 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1722
1723 /*
1724 * When SNP is enabled, Only set TV bit when IOMMU
1725 * page translation is in use.
1726 */
1727 if (!amd_iommu_snp_en || (domain->id != 0))
1728 pte_root |= DTE_FLAG_TV;
1729
1730 flags = dev_table[devid].data[1];
1731
1732 if (ats)
1733 flags |= DTE_FLAG_IOTLB;
1734
1735 if (ppr)
1736 pte_root |= 1ULL << DEV_ENTRY_PPR;
1737
1738 if (domain->dirty_tracking)
1739 pte_root |= DTE_FLAG_HAD;
1740
1741 if (domain->flags & PD_IOMMUV2_MASK) {
1742 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1743 u64 glx = domain->glx;
1744 u64 tmp;
1745
1746 pte_root |= DTE_FLAG_GV;
1747 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1748
1749 /* First mask out possible old values for GCR3 table */
1750 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1751 flags &= ~tmp;
1752
1753 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1754 flags &= ~tmp;
1755
1756 /* Encode GCR3 table into DTE */
1757 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1758 pte_root |= tmp;
1759
1760 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1761 flags |= tmp;
1762
1763 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1764 flags |= tmp;
1765
1766 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1767 dev_table[devid].data[2] |=
1768 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1769 }
1770
1771 if (domain->flags & PD_GIOV_MASK)
1772 pte_root |= DTE_FLAG_GIOV;
1773 }
1774
1775 flags &= ~DEV_DOMID_MASK;
1776 flags |= domain->id;
1777
1778 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1779 dev_table[devid].data[1] = flags;
1780 dev_table[devid].data[0] = pte_root;
1781
1782 /*
1783 * A kdump kernel might be replacing a domain ID that was copied from
1784 * the previous kernel--if so, it needs to flush the translation cache
1785 * entries for the old domain ID that is being overwritten
1786 */
1787 if (old_domid) {
1788 amd_iommu_flush_tlb_domid(iommu, old_domid);
1789 }
1790 }
1791
clear_dte_entry(struct amd_iommu * iommu,u16 devid)1792 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1793 {
1794 struct dev_table_entry *dev_table = get_dev_table(iommu);
1795
1796 /* remove entry from the device table seen by the hardware */
1797 dev_table[devid].data[0] = DTE_FLAG_V;
1798
1799 if (!amd_iommu_snp_en)
1800 dev_table[devid].data[0] |= DTE_FLAG_TV;
1801
1802 dev_table[devid].data[1] &= DTE_FLAG_MASK;
1803
1804 amd_iommu_apply_erratum_63(iommu, devid);
1805 }
1806
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1807 static void do_attach(struct iommu_dev_data *dev_data,
1808 struct protection_domain *domain)
1809 {
1810 struct amd_iommu *iommu;
1811 bool ats;
1812
1813 iommu = rlookup_amd_iommu(dev_data->dev);
1814 if (!iommu)
1815 return;
1816 ats = dev_data->ats_enabled;
1817
1818 /* Update data structures */
1819 dev_data->domain = domain;
1820 list_add(&dev_data->list, &domain->dev_list);
1821
1822 /* Update NUMA Node ID */
1823 if (domain->nid == NUMA_NO_NODE)
1824 domain->nid = dev_to_node(dev_data->dev);
1825
1826 /* Do reference counting */
1827 domain->dev_iommu[iommu->index] += 1;
1828 domain->dev_cnt += 1;
1829
1830 /* Update device table */
1831 set_dte_entry(iommu, dev_data->devid, domain,
1832 ats, dev_data->ppr);
1833 clone_aliases(iommu, dev_data->dev);
1834
1835 device_flush_dte(dev_data);
1836 }
1837
do_detach(struct iommu_dev_data * dev_data)1838 static void do_detach(struct iommu_dev_data *dev_data)
1839 {
1840 struct protection_domain *domain = dev_data->domain;
1841 struct amd_iommu *iommu;
1842
1843 iommu = rlookup_amd_iommu(dev_data->dev);
1844 if (!iommu)
1845 return;
1846
1847 /* Update data structures */
1848 dev_data->domain = NULL;
1849 list_del(&dev_data->list);
1850 clear_dte_entry(iommu, dev_data->devid);
1851 clone_aliases(iommu, dev_data->dev);
1852
1853 /* Flush the DTE entry */
1854 device_flush_dte(dev_data);
1855
1856 /* Flush IOTLB and wait for the flushes to finish */
1857 amd_iommu_domain_flush_all(domain);
1858
1859 /* decrease reference counters - needs to happen after the flushes */
1860 domain->dev_iommu[iommu->index] -= 1;
1861 domain->dev_cnt -= 1;
1862 }
1863
1864 /*
1865 * If a device is not yet associated with a domain, this function makes the
1866 * device visible in the domain
1867 */
attach_device(struct device * dev,struct protection_domain * domain)1868 static int attach_device(struct device *dev,
1869 struct protection_domain *domain)
1870 {
1871 struct iommu_dev_data *dev_data;
1872 unsigned long flags;
1873 int ret = 0;
1874
1875 spin_lock_irqsave(&domain->lock, flags);
1876
1877 dev_data = dev_iommu_priv_get(dev);
1878
1879 spin_lock(&dev_data->lock);
1880
1881 if (dev_data->domain != NULL) {
1882 ret = -EBUSY;
1883 goto out;
1884 }
1885
1886 if (dev_is_pci(dev))
1887 pdev_enable_caps(to_pci_dev(dev));
1888
1889 do_attach(dev_data, domain);
1890
1891 out:
1892 spin_unlock(&dev_data->lock);
1893
1894 spin_unlock_irqrestore(&domain->lock, flags);
1895
1896 return ret;
1897 }
1898
1899 /*
1900 * Removes a device from a protection domain (with devtable_lock held)
1901 */
detach_device(struct device * dev)1902 static void detach_device(struct device *dev)
1903 {
1904 struct protection_domain *domain;
1905 struct iommu_dev_data *dev_data;
1906 unsigned long flags;
1907
1908 dev_data = dev_iommu_priv_get(dev);
1909 domain = dev_data->domain;
1910
1911 spin_lock_irqsave(&domain->lock, flags);
1912
1913 spin_lock(&dev_data->lock);
1914
1915 /*
1916 * First check if the device is still attached. It might already
1917 * be detached from its domain because the generic
1918 * iommu_detach_group code detached it and we try again here in
1919 * our alias handling.
1920 */
1921 if (WARN_ON(!dev_data->domain))
1922 goto out;
1923
1924 do_detach(dev_data);
1925
1926 if (dev_is_pci(dev))
1927 pdev_disable_caps(to_pci_dev(dev));
1928
1929 out:
1930 spin_unlock(&dev_data->lock);
1931
1932 spin_unlock_irqrestore(&domain->lock, flags);
1933 }
1934
amd_iommu_probe_device(struct device * dev)1935 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1936 {
1937 struct iommu_device *iommu_dev;
1938 struct amd_iommu *iommu;
1939 int ret;
1940
1941 if (!check_device(dev))
1942 return ERR_PTR(-ENODEV);
1943
1944 iommu = rlookup_amd_iommu(dev);
1945 if (!iommu)
1946 return ERR_PTR(-ENODEV);
1947
1948 /* Not registered yet? */
1949 if (!iommu->iommu.ops)
1950 return ERR_PTR(-ENODEV);
1951
1952 if (dev_iommu_priv_get(dev))
1953 return &iommu->iommu;
1954
1955 ret = iommu_init_device(iommu, dev);
1956 if (ret) {
1957 if (ret != -ENOTSUPP)
1958 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1959 iommu_dev = ERR_PTR(ret);
1960 iommu_ignore_device(iommu, dev);
1961 } else {
1962 amd_iommu_set_pci_msi_domain(dev, iommu);
1963 iommu_dev = &iommu->iommu;
1964 }
1965
1966 iommu_completion_wait(iommu);
1967
1968 return iommu_dev;
1969 }
1970
amd_iommu_probe_finalize(struct device * dev)1971 static void amd_iommu_probe_finalize(struct device *dev)
1972 {
1973 /* Domains are initialized for this device - have a look what we ended up with */
1974 set_dma_ops(dev, NULL);
1975 iommu_setup_dma_ops(dev, 0, U64_MAX);
1976 }
1977
amd_iommu_release_device(struct device * dev)1978 static void amd_iommu_release_device(struct device *dev)
1979 {
1980 struct amd_iommu *iommu;
1981
1982 if (!check_device(dev))
1983 return;
1984
1985 iommu = rlookup_amd_iommu(dev);
1986 if (!iommu)
1987 return;
1988
1989 amd_iommu_uninit_device(dev);
1990 iommu_completion_wait(iommu);
1991 }
1992
amd_iommu_device_group(struct device * dev)1993 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1994 {
1995 if (dev_is_pci(dev))
1996 return pci_device_group(dev);
1997
1998 return acpihid_device_group(dev);
1999 }
2000
2001 /*****************************************************************************
2002 *
2003 * The next functions belong to the dma_ops mapping/unmapping code.
2004 *
2005 *****************************************************************************/
2006
update_device_table(struct protection_domain * domain)2007 static void update_device_table(struct protection_domain *domain)
2008 {
2009 struct iommu_dev_data *dev_data;
2010
2011 list_for_each_entry(dev_data, &domain->dev_list, list) {
2012 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
2013
2014 if (!iommu)
2015 continue;
2016 set_dte_entry(iommu, dev_data->devid, domain,
2017 dev_data->ats_enabled, dev_data->ppr);
2018 clone_aliases(iommu, dev_data->dev);
2019 }
2020 }
2021
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)2022 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
2023 {
2024 update_device_table(domain);
2025 domain_flush_devices(domain);
2026 }
2027
amd_iommu_domain_update(struct protection_domain * domain)2028 void amd_iommu_domain_update(struct protection_domain *domain)
2029 {
2030 /* Update device table */
2031 amd_iommu_update_and_flush_device_table(domain);
2032
2033 /* Flush domain TLB(s) and wait for completion */
2034 amd_iommu_domain_flush_all(domain);
2035 }
2036
2037 /*****************************************************************************
2038 *
2039 * The following functions belong to the exported interface of AMD IOMMU
2040 *
2041 * This interface allows access to lower level functions of the IOMMU
2042 * like protection domain handling and assignement of devices to domains
2043 * which is not possible with the dma_ops interface.
2044 *
2045 *****************************************************************************/
2046
cleanup_domain(struct protection_domain * domain)2047 static void cleanup_domain(struct protection_domain *domain)
2048 {
2049 struct iommu_dev_data *entry;
2050
2051 lockdep_assert_held(&domain->lock);
2052
2053 if (!domain->dev_cnt)
2054 return;
2055
2056 while (!list_empty(&domain->dev_list)) {
2057 entry = list_first_entry(&domain->dev_list,
2058 struct iommu_dev_data, list);
2059 BUG_ON(!entry->domain);
2060 do_detach(entry);
2061 }
2062 WARN_ON(domain->dev_cnt != 0);
2063 }
2064
protection_domain_free(struct protection_domain * domain)2065 static void protection_domain_free(struct protection_domain *domain)
2066 {
2067 if (!domain)
2068 return;
2069
2070 if (domain->iop.pgtbl_cfg.tlb)
2071 free_io_pgtable_ops(&domain->iop.iop.ops);
2072
2073 if (domain->flags & PD_IOMMUV2_MASK)
2074 free_gcr3_table(domain);
2075
2076 if (domain->iop.root)
2077 free_page((unsigned long)domain->iop.root);
2078
2079 if (domain->id)
2080 domain_id_free(domain->id);
2081
2082 kfree(domain);
2083 }
2084
protection_domain_init_v1(struct protection_domain * domain,int mode)2085 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2086 {
2087 u64 *pt_root = NULL;
2088
2089 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2090
2091 if (mode != PAGE_MODE_NONE) {
2092 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2093 if (!pt_root)
2094 return -ENOMEM;
2095 }
2096
2097 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2098
2099 return 0;
2100 }
2101
protection_domain_init_v2(struct protection_domain * domain)2102 static int protection_domain_init_v2(struct protection_domain *domain)
2103 {
2104 domain->flags |= PD_GIOV_MASK;
2105
2106 domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2107
2108 if (setup_gcr3_table(domain, 1))
2109 return -ENOMEM;
2110
2111 return 0;
2112 }
2113
protection_domain_alloc(unsigned int type)2114 static struct protection_domain *protection_domain_alloc(unsigned int type)
2115 {
2116 struct io_pgtable_ops *pgtbl_ops;
2117 struct protection_domain *domain;
2118 int pgtable;
2119 int ret;
2120
2121 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2122 if (!domain)
2123 return NULL;
2124
2125 domain->id = domain_id_alloc();
2126 if (!domain->id)
2127 goto out_err;
2128
2129 spin_lock_init(&domain->lock);
2130 INIT_LIST_HEAD(&domain->dev_list);
2131 domain->nid = NUMA_NO_NODE;
2132
2133 switch (type) {
2134 /* No need to allocate io pgtable ops in passthrough mode */
2135 case IOMMU_DOMAIN_IDENTITY:
2136 return domain;
2137 case IOMMU_DOMAIN_DMA:
2138 pgtable = amd_iommu_pgtable;
2139 break;
2140 /*
2141 * Force IOMMU v1 page table when allocating
2142 * domain for pass-through devices.
2143 */
2144 case IOMMU_DOMAIN_UNMANAGED:
2145 pgtable = AMD_IOMMU_V1;
2146 break;
2147 default:
2148 goto out_err;
2149 }
2150
2151 switch (pgtable) {
2152 case AMD_IOMMU_V1:
2153 ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL);
2154 break;
2155 case AMD_IOMMU_V2:
2156 ret = protection_domain_init_v2(domain);
2157 break;
2158 default:
2159 ret = -EINVAL;
2160 break;
2161 }
2162
2163 if (ret)
2164 goto out_err;
2165
2166 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2167 if (!pgtbl_ops)
2168 goto out_err;
2169
2170 return domain;
2171 out_err:
2172 protection_domain_free(domain);
2173 return NULL;
2174 }
2175
dma_max_address(void)2176 static inline u64 dma_max_address(void)
2177 {
2178 if (amd_iommu_pgtable == AMD_IOMMU_V1)
2179 return ~0ULL;
2180
2181 /* V2 with 4/5 level page table */
2182 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2183 }
2184
amd_iommu_hd_support(struct amd_iommu * iommu)2185 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2186 {
2187 return iommu && (iommu->features & FEATURE_HDSUP);
2188 }
2189
do_iommu_domain_alloc(unsigned int type,struct device * dev,u32 flags)2190 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2191 struct device *dev, u32 flags)
2192 {
2193 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2194 struct protection_domain *domain;
2195 struct amd_iommu *iommu = NULL;
2196
2197 if (dev) {
2198 iommu = rlookup_amd_iommu(dev);
2199 if (!iommu)
2200 return ERR_PTR(-ENODEV);
2201 }
2202
2203 /*
2204 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2205 * default to use IOMMU_DOMAIN_DMA[_FQ].
2206 */
2207 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2208 return ERR_PTR(-EINVAL);
2209
2210 if (dirty_tracking && !amd_iommu_hd_support(iommu))
2211 return ERR_PTR(-EOPNOTSUPP);
2212
2213 domain = protection_domain_alloc(type);
2214 if (!domain)
2215 return ERR_PTR(-ENOMEM);
2216
2217 domain->domain.geometry.aperture_start = 0;
2218 domain->domain.geometry.aperture_end = dma_max_address();
2219 domain->domain.geometry.force_aperture = true;
2220
2221 if (iommu) {
2222 domain->domain.type = type;
2223 domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap;
2224 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2225
2226 if (dirty_tracking)
2227 domain->domain.dirty_ops = &amd_dirty_ops;
2228 }
2229
2230 return &domain->domain;
2231 }
2232
amd_iommu_domain_alloc(unsigned int type)2233 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2234 {
2235 struct iommu_domain *domain;
2236
2237 domain = do_iommu_domain_alloc(type, NULL, 0);
2238 if (IS_ERR(domain))
2239 return NULL;
2240
2241 return domain;
2242 }
2243
2244 static struct iommu_domain *
amd_iommu_domain_alloc_user(struct device * dev,u32 flags,struct iommu_domain * parent,const struct iommu_user_data * user_data)2245 amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
2246 struct iommu_domain *parent,
2247 const struct iommu_user_data *user_data)
2248
2249 {
2250 unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2251
2252 if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
2253 return ERR_PTR(-EOPNOTSUPP);
2254
2255 return do_iommu_domain_alloc(type, dev, flags);
2256 }
2257
amd_iommu_domain_free(struct iommu_domain * dom)2258 static void amd_iommu_domain_free(struct iommu_domain *dom)
2259 {
2260 struct protection_domain *domain;
2261 unsigned long flags;
2262
2263 if (!dom)
2264 return;
2265
2266 domain = to_pdomain(dom);
2267
2268 spin_lock_irqsave(&domain->lock, flags);
2269
2270 cleanup_domain(domain);
2271
2272 spin_unlock_irqrestore(&domain->lock, flags);
2273
2274 protection_domain_free(domain);
2275 }
2276
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2277 static int amd_iommu_attach_device(struct iommu_domain *dom,
2278 struct device *dev)
2279 {
2280 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2281 struct protection_domain *domain = to_pdomain(dom);
2282 struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2283 int ret;
2284
2285 /*
2286 * Skip attach device to domain if new domain is same as
2287 * devices current domain
2288 */
2289 if (dev_data->domain == domain)
2290 return 0;
2291
2292 dev_data->defer_attach = false;
2293
2294 /*
2295 * Restrict to devices with compatible IOMMU hardware support
2296 * when enforcement of dirty tracking is enabled.
2297 */
2298 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2299 return -EINVAL;
2300
2301 if (dev_data->domain)
2302 detach_device(dev);
2303
2304 ret = attach_device(dev, domain);
2305
2306 #ifdef CONFIG_IRQ_REMAP
2307 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2308 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2309 dev_data->use_vapic = 1;
2310 else
2311 dev_data->use_vapic = 0;
2312 }
2313 #endif
2314
2315 iommu_completion_wait(iommu);
2316
2317 return ret;
2318 }
2319
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2320 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2321 unsigned long iova, size_t size)
2322 {
2323 struct protection_domain *domain = to_pdomain(dom);
2324 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2325
2326 if (ops->map_pages)
2327 domain_flush_np_cache(domain, iova, size);
2328 return 0;
2329 }
2330
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2331 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2332 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2333 int iommu_prot, gfp_t gfp, size_t *mapped)
2334 {
2335 struct protection_domain *domain = to_pdomain(dom);
2336 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2337 int prot = 0;
2338 int ret = -EINVAL;
2339
2340 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2341 (domain->iop.mode == PAGE_MODE_NONE))
2342 return -EINVAL;
2343
2344 if (iommu_prot & IOMMU_READ)
2345 prot |= IOMMU_PROT_IR;
2346 if (iommu_prot & IOMMU_WRITE)
2347 prot |= IOMMU_PROT_IW;
2348
2349 if (ops->map_pages) {
2350 ret = ops->map_pages(ops, iova, paddr, pgsize,
2351 pgcount, prot, gfp, mapped);
2352 }
2353
2354 return ret;
2355 }
2356
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2357 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2358 struct iommu_iotlb_gather *gather,
2359 unsigned long iova, size_t size)
2360 {
2361 /*
2362 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2363 * Unless we run in a virtual machine, which can be inferred according
2364 * to whether "non-present cache" is on, it is probably best to prefer
2365 * (potentially) too extensive TLB flushing (i.e., more misses) over
2366 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2367 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2368 * the guest, and the trade-off is different: unnecessary TLB flushes
2369 * should be avoided.
2370 */
2371 if (amd_iommu_np_cache &&
2372 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2373 iommu_iotlb_sync(domain, gather);
2374
2375 iommu_iotlb_gather_add_range(gather, iova, size);
2376 }
2377
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2378 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2379 size_t pgsize, size_t pgcount,
2380 struct iommu_iotlb_gather *gather)
2381 {
2382 struct protection_domain *domain = to_pdomain(dom);
2383 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2384 size_t r;
2385
2386 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2387 (domain->iop.mode == PAGE_MODE_NONE))
2388 return 0;
2389
2390 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2391
2392 if (r)
2393 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2394
2395 return r;
2396 }
2397
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2398 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2399 dma_addr_t iova)
2400 {
2401 struct protection_domain *domain = to_pdomain(dom);
2402 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2403
2404 return ops->iova_to_phys(ops, iova);
2405 }
2406
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2407 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2408 {
2409 switch (cap) {
2410 case IOMMU_CAP_CACHE_COHERENCY:
2411 return true;
2412 case IOMMU_CAP_NOEXEC:
2413 return false;
2414 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2415 return amdr_ivrs_remap_support;
2416 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2417 return true;
2418 case IOMMU_CAP_DEFERRED_FLUSH:
2419 return true;
2420 case IOMMU_CAP_DIRTY_TRACKING: {
2421 struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2422
2423 return amd_iommu_hd_support(iommu);
2424 }
2425 default:
2426 break;
2427 }
2428
2429 return false;
2430 }
2431
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2432 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2433 bool enable)
2434 {
2435 struct protection_domain *pdomain = to_pdomain(domain);
2436 struct dev_table_entry *dev_table;
2437 struct iommu_dev_data *dev_data;
2438 bool domain_flush = false;
2439 struct amd_iommu *iommu;
2440 unsigned long flags;
2441 u64 pte_root;
2442
2443 spin_lock_irqsave(&pdomain->lock, flags);
2444 if (!(pdomain->dirty_tracking ^ enable)) {
2445 spin_unlock_irqrestore(&pdomain->lock, flags);
2446 return 0;
2447 }
2448
2449 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2450 iommu = rlookup_amd_iommu(dev_data->dev);
2451 if (!iommu)
2452 continue;
2453
2454 dev_table = get_dev_table(iommu);
2455 pte_root = dev_table[dev_data->devid].data[0];
2456
2457 pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2458 pte_root & ~DTE_FLAG_HAD);
2459
2460 /* Flush device DTE */
2461 dev_table[dev_data->devid].data[0] = pte_root;
2462 device_flush_dte(dev_data);
2463 domain_flush = true;
2464 }
2465
2466 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2467 if (domain_flush)
2468 amd_iommu_domain_flush_all(pdomain);
2469
2470 pdomain->dirty_tracking = enable;
2471 spin_unlock_irqrestore(&pdomain->lock, flags);
2472
2473 return 0;
2474 }
2475
amd_iommu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)2476 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2477 unsigned long iova, size_t size,
2478 unsigned long flags,
2479 struct iommu_dirty_bitmap *dirty)
2480 {
2481 struct protection_domain *pdomain = to_pdomain(domain);
2482 struct io_pgtable_ops *ops = &pdomain->iop.iop.ops;
2483 unsigned long lflags;
2484
2485 if (!ops || !ops->read_and_clear_dirty)
2486 return -EOPNOTSUPP;
2487
2488 spin_lock_irqsave(&pdomain->lock, lflags);
2489 if (!pdomain->dirty_tracking && dirty->bitmap) {
2490 spin_unlock_irqrestore(&pdomain->lock, lflags);
2491 return -EINVAL;
2492 }
2493 spin_unlock_irqrestore(&pdomain->lock, lflags);
2494
2495 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2496 }
2497
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2498 static void amd_iommu_get_resv_regions(struct device *dev,
2499 struct list_head *head)
2500 {
2501 struct iommu_resv_region *region;
2502 struct unity_map_entry *entry;
2503 struct amd_iommu *iommu;
2504 struct amd_iommu_pci_seg *pci_seg;
2505 int devid, sbdf;
2506
2507 sbdf = get_device_sbdf_id(dev);
2508 if (sbdf < 0)
2509 return;
2510
2511 devid = PCI_SBDF_TO_DEVID(sbdf);
2512 iommu = rlookup_amd_iommu(dev);
2513 if (!iommu)
2514 return;
2515 pci_seg = iommu->pci_seg;
2516
2517 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2518 int type, prot = 0;
2519 size_t length;
2520
2521 if (devid < entry->devid_start || devid > entry->devid_end)
2522 continue;
2523
2524 type = IOMMU_RESV_DIRECT;
2525 length = entry->address_end - entry->address_start;
2526 if (entry->prot & IOMMU_PROT_IR)
2527 prot |= IOMMU_READ;
2528 if (entry->prot & IOMMU_PROT_IW)
2529 prot |= IOMMU_WRITE;
2530 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2531 /* Exclusion range */
2532 type = IOMMU_RESV_RESERVED;
2533
2534 region = iommu_alloc_resv_region(entry->address_start,
2535 length, prot, type,
2536 GFP_KERNEL);
2537 if (!region) {
2538 dev_err(dev, "Out of memory allocating dm-regions\n");
2539 return;
2540 }
2541 list_add_tail(®ion->list, head);
2542 }
2543
2544 region = iommu_alloc_resv_region(MSI_RANGE_START,
2545 MSI_RANGE_END - MSI_RANGE_START + 1,
2546 0, IOMMU_RESV_MSI, GFP_KERNEL);
2547 if (!region)
2548 return;
2549 list_add_tail(®ion->list, head);
2550
2551 region = iommu_alloc_resv_region(HT_RANGE_START,
2552 HT_RANGE_END - HT_RANGE_START + 1,
2553 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2554 if (!region)
2555 return;
2556 list_add_tail(®ion->list, head);
2557 }
2558
amd_iommu_is_attach_deferred(struct device * dev)2559 bool amd_iommu_is_attach_deferred(struct device *dev)
2560 {
2561 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2562
2563 return dev_data->defer_attach;
2564 }
2565
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2566 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2567 {
2568 struct protection_domain *dom = to_pdomain(domain);
2569 unsigned long flags;
2570
2571 spin_lock_irqsave(&dom->lock, flags);
2572 amd_iommu_domain_flush_all(dom);
2573 spin_unlock_irqrestore(&dom->lock, flags);
2574 }
2575
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2576 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2577 struct iommu_iotlb_gather *gather)
2578 {
2579 struct protection_domain *dom = to_pdomain(domain);
2580 unsigned long flags;
2581
2582 spin_lock_irqsave(&dom->lock, flags);
2583 amd_iommu_domain_flush_pages(dom, gather->start,
2584 gather->end - gather->start + 1);
2585 spin_unlock_irqrestore(&dom->lock, flags);
2586 }
2587
amd_iommu_def_domain_type(struct device * dev)2588 static int amd_iommu_def_domain_type(struct device *dev)
2589 {
2590 struct iommu_dev_data *dev_data;
2591
2592 dev_data = dev_iommu_priv_get(dev);
2593 if (!dev_data)
2594 return 0;
2595
2596 /*
2597 * Do not identity map IOMMUv2 capable devices when:
2598 * - memory encryption is active, because some of those devices
2599 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2600 * and require remapping.
2601 * - SNP is enabled, because it prohibits DTE[Mode]=0.
2602 */
2603 if (pdev_pasid_supported(dev_data) &&
2604 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2605 !amd_iommu_snp_en) {
2606 return IOMMU_DOMAIN_IDENTITY;
2607 }
2608
2609 return 0;
2610 }
2611
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2612 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2613 {
2614 /* IOMMU_PTE_FC is always set */
2615 return true;
2616 }
2617
2618 static const struct iommu_dirty_ops amd_dirty_ops = {
2619 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
2620 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2621 };
2622
2623 const struct iommu_ops amd_iommu_ops = {
2624 .capable = amd_iommu_capable,
2625 .domain_alloc = amd_iommu_domain_alloc,
2626 .domain_alloc_user = amd_iommu_domain_alloc_user,
2627 .probe_device = amd_iommu_probe_device,
2628 .release_device = amd_iommu_release_device,
2629 .probe_finalize = amd_iommu_probe_finalize,
2630 .device_group = amd_iommu_device_group,
2631 .get_resv_regions = amd_iommu_get_resv_regions,
2632 .is_attach_deferred = amd_iommu_is_attach_deferred,
2633 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2634 .def_domain_type = amd_iommu_def_domain_type,
2635 .default_domain_ops = &(const struct iommu_domain_ops) {
2636 .attach_dev = amd_iommu_attach_device,
2637 .map_pages = amd_iommu_map_pages,
2638 .unmap_pages = amd_iommu_unmap_pages,
2639 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2640 .iova_to_phys = amd_iommu_iova_to_phys,
2641 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2642 .iotlb_sync = amd_iommu_iotlb_sync,
2643 .free = amd_iommu_domain_free,
2644 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2645 }
2646 };
2647
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,size_t size)2648 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2649 u64 address, size_t size)
2650 {
2651 struct iommu_dev_data *dev_data;
2652 struct iommu_cmd cmd;
2653 int i, ret;
2654
2655 if (!(domain->flags & PD_IOMMUV2_MASK))
2656 return -EINVAL;
2657
2658 build_inv_iommu_pages(&cmd, address, size, domain->id, pasid, true);
2659
2660 /*
2661 * IOMMU TLB needs to be flushed before Device TLB to
2662 * prevent device TLB refill from IOMMU TLB
2663 */
2664 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2665 if (domain->dev_iommu[i] == 0)
2666 continue;
2667
2668 ret = iommu_queue_command(amd_iommus[i], &cmd);
2669 if (ret != 0)
2670 goto out;
2671 }
2672
2673 /* Wait until IOMMU TLB flushes are complete */
2674 amd_iommu_domain_flush_complete(domain);
2675
2676 /* Now flush device TLBs */
2677 list_for_each_entry(dev_data, &domain->dev_list, list) {
2678 struct amd_iommu *iommu;
2679 int qdep;
2680
2681 /*
2682 There might be non-IOMMUv2 capable devices in an IOMMUv2
2683 * domain.
2684 */
2685 if (!dev_data->ats_enabled)
2686 continue;
2687
2688 qdep = dev_data->ats_qdep;
2689 iommu = rlookup_amd_iommu(dev_data->dev);
2690 if (!iommu)
2691 continue;
2692 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep,
2693 address, size, pasid, true);
2694
2695 ret = iommu_queue_command(iommu, &cmd);
2696 if (ret != 0)
2697 goto out;
2698 }
2699
2700 /* Wait until all device TLBs are flushed */
2701 amd_iommu_domain_flush_complete(domain);
2702
2703 ret = 0;
2704
2705 out:
2706
2707 return ret;
2708 }
2709
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2710 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2711 u64 address)
2712 {
2713 return __flush_pasid(domain, pasid, address, PAGE_SIZE);
2714 }
2715
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2716 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2717 u64 address)
2718 {
2719 struct protection_domain *domain = to_pdomain(dom);
2720 unsigned long flags;
2721 int ret;
2722
2723 spin_lock_irqsave(&domain->lock, flags);
2724 ret = __amd_iommu_flush_page(domain, pasid, address);
2725 spin_unlock_irqrestore(&domain->lock, flags);
2726
2727 return ret;
2728 }
2729
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2730 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2731 {
2732 return __flush_pasid(domain, pasid, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
2733 }
2734
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2735 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2736 {
2737 struct protection_domain *domain = to_pdomain(dom);
2738 unsigned long flags;
2739 int ret;
2740
2741 spin_lock_irqsave(&domain->lock, flags);
2742 ret = __amd_iommu_flush_tlb(domain, pasid);
2743 spin_unlock_irqrestore(&domain->lock, flags);
2744
2745 return ret;
2746 }
2747
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2748 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2749 {
2750 int index;
2751 u64 *pte;
2752
2753 while (true) {
2754
2755 index = (pasid >> (9 * level)) & 0x1ff;
2756 pte = &root[index];
2757
2758 if (level == 0)
2759 break;
2760
2761 if (!(*pte & GCR3_VALID)) {
2762 if (!alloc)
2763 return NULL;
2764
2765 root = (void *)get_zeroed_page(GFP_ATOMIC);
2766 if (root == NULL)
2767 return NULL;
2768
2769 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2770 }
2771
2772 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2773
2774 level -= 1;
2775 }
2776
2777 return pte;
2778 }
2779
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)2780 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2781 unsigned long cr3)
2782 {
2783 u64 *pte;
2784
2785 if (domain->iop.mode != PAGE_MODE_NONE)
2786 return -EINVAL;
2787
2788 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2789 if (pte == NULL)
2790 return -ENOMEM;
2791
2792 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2793
2794 return __amd_iommu_flush_tlb(domain, pasid);
2795 }
2796
__clear_gcr3(struct protection_domain * domain,u32 pasid)2797 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2798 {
2799 u64 *pte;
2800
2801 if (domain->iop.mode != PAGE_MODE_NONE)
2802 return -EINVAL;
2803
2804 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2805 if (pte == NULL)
2806 return 0;
2807
2808 *pte = 0;
2809
2810 return __amd_iommu_flush_tlb(domain, pasid);
2811 }
2812
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)2813 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2814 unsigned long cr3)
2815 {
2816 struct protection_domain *domain = to_pdomain(dom);
2817 unsigned long flags;
2818 int ret;
2819
2820 spin_lock_irqsave(&domain->lock, flags);
2821 ret = __set_gcr3(domain, pasid, cr3);
2822 spin_unlock_irqrestore(&domain->lock, flags);
2823
2824 return ret;
2825 }
2826
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)2827 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2828 {
2829 struct protection_domain *domain = to_pdomain(dom);
2830 unsigned long flags;
2831 int ret;
2832
2833 spin_lock_irqsave(&domain->lock, flags);
2834 ret = __clear_gcr3(domain, pasid);
2835 spin_unlock_irqrestore(&domain->lock, flags);
2836
2837 return ret;
2838 }
2839
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)2840 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2841 int status, int tag)
2842 {
2843 struct iommu_dev_data *dev_data;
2844 struct amd_iommu *iommu;
2845 struct iommu_cmd cmd;
2846
2847 dev_data = dev_iommu_priv_get(&pdev->dev);
2848 iommu = rlookup_amd_iommu(&pdev->dev);
2849 if (!iommu)
2850 return -ENODEV;
2851
2852 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2853 tag, dev_data->pri_tlp);
2854
2855 return iommu_queue_command(iommu, &cmd);
2856 }
2857
2858 #ifdef CONFIG_IRQ_REMAP
2859
2860 /*****************************************************************************
2861 *
2862 * Interrupt Remapping Implementation
2863 *
2864 *****************************************************************************/
2865
2866 static struct irq_chip amd_ir_chip;
2867 static DEFINE_SPINLOCK(iommu_table_lock);
2868
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)2869 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2870 {
2871 int ret;
2872 u64 data;
2873 unsigned long flags;
2874 struct iommu_cmd cmd, cmd2;
2875
2876 if (iommu->irtcachedis_enabled)
2877 return;
2878
2879 build_inv_irt(&cmd, devid);
2880 data = atomic64_add_return(1, &iommu->cmd_sem_val);
2881 build_completion_wait(&cmd2, iommu, data);
2882
2883 raw_spin_lock_irqsave(&iommu->lock, flags);
2884 ret = __iommu_queue_command_sync(iommu, &cmd, true);
2885 if (ret)
2886 goto out;
2887 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2888 if (ret)
2889 goto out;
2890 wait_on_sem(iommu, data);
2891 out:
2892 raw_spin_unlock_irqrestore(&iommu->lock, flags);
2893 }
2894
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2895 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2896 struct irq_remap_table *table)
2897 {
2898 u64 dte;
2899 struct dev_table_entry *dev_table = get_dev_table(iommu);
2900
2901 dte = dev_table[devid].data[2];
2902 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2903 dte |= iommu_virt_to_phys(table->table);
2904 dte |= DTE_IRQ_REMAP_INTCTL;
2905 dte |= DTE_INTTABLEN;
2906 dte |= DTE_IRQ_REMAP_ENABLE;
2907
2908 dev_table[devid].data[2] = dte;
2909 }
2910
get_irq_table(struct amd_iommu * iommu,u16 devid)2911 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2912 {
2913 struct irq_remap_table *table;
2914 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2915
2916 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2917 "%s: no iommu for devid %x:%x\n",
2918 __func__, pci_seg->id, devid))
2919 return NULL;
2920
2921 table = pci_seg->irq_lookup_table[devid];
2922 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2923 __func__, pci_seg->id, devid))
2924 return NULL;
2925
2926 return table;
2927 }
2928
__alloc_irq_table(void)2929 static struct irq_remap_table *__alloc_irq_table(void)
2930 {
2931 struct irq_remap_table *table;
2932
2933 table = kzalloc(sizeof(*table), GFP_KERNEL);
2934 if (!table)
2935 return NULL;
2936
2937 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2938 if (!table->table) {
2939 kfree(table);
2940 return NULL;
2941 }
2942 raw_spin_lock_init(&table->lock);
2943
2944 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2945 memset(table->table, 0,
2946 MAX_IRQS_PER_TABLE * sizeof(u32));
2947 else
2948 memset(table->table, 0,
2949 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2950 return table;
2951 }
2952
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2953 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2954 struct irq_remap_table *table)
2955 {
2956 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2957
2958 pci_seg->irq_lookup_table[devid] = table;
2959 set_dte_irq_entry(iommu, devid, table);
2960 iommu_flush_dte(iommu, devid);
2961 }
2962
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)2963 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2964 void *data)
2965 {
2966 struct irq_remap_table *table = data;
2967 struct amd_iommu_pci_seg *pci_seg;
2968 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2969
2970 if (!iommu)
2971 return -EINVAL;
2972
2973 pci_seg = iommu->pci_seg;
2974 pci_seg->irq_lookup_table[alias] = table;
2975 set_dte_irq_entry(iommu, alias, table);
2976 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2977
2978 return 0;
2979 }
2980
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev)2981 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2982 u16 devid, struct pci_dev *pdev)
2983 {
2984 struct irq_remap_table *table = NULL;
2985 struct irq_remap_table *new_table = NULL;
2986 struct amd_iommu_pci_seg *pci_seg;
2987 unsigned long flags;
2988 u16 alias;
2989
2990 spin_lock_irqsave(&iommu_table_lock, flags);
2991
2992 pci_seg = iommu->pci_seg;
2993 table = pci_seg->irq_lookup_table[devid];
2994 if (table)
2995 goto out_unlock;
2996
2997 alias = pci_seg->alias_table[devid];
2998 table = pci_seg->irq_lookup_table[alias];
2999 if (table) {
3000 set_remap_table_entry(iommu, devid, table);
3001 goto out_wait;
3002 }
3003 spin_unlock_irqrestore(&iommu_table_lock, flags);
3004
3005 /* Nothing there yet, allocate new irq remapping table */
3006 new_table = __alloc_irq_table();
3007 if (!new_table)
3008 return NULL;
3009
3010 spin_lock_irqsave(&iommu_table_lock, flags);
3011
3012 table = pci_seg->irq_lookup_table[devid];
3013 if (table)
3014 goto out_unlock;
3015
3016 table = pci_seg->irq_lookup_table[alias];
3017 if (table) {
3018 set_remap_table_entry(iommu, devid, table);
3019 goto out_wait;
3020 }
3021
3022 table = new_table;
3023 new_table = NULL;
3024
3025 if (pdev)
3026 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3027 table);
3028 else
3029 set_remap_table_entry(iommu, devid, table);
3030
3031 if (devid != alias)
3032 set_remap_table_entry(iommu, alias, table);
3033
3034 out_wait:
3035 iommu_completion_wait(iommu);
3036
3037 out_unlock:
3038 spin_unlock_irqrestore(&iommu_table_lock, flags);
3039
3040 if (new_table) {
3041 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3042 kfree(new_table);
3043 }
3044 return table;
3045 }
3046
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev)3047 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3048 bool align, struct pci_dev *pdev)
3049 {
3050 struct irq_remap_table *table;
3051 int index, c, alignment = 1;
3052 unsigned long flags;
3053
3054 table = alloc_irq_table(iommu, devid, pdev);
3055 if (!table)
3056 return -ENODEV;
3057
3058 if (align)
3059 alignment = roundup_pow_of_two(count);
3060
3061 raw_spin_lock_irqsave(&table->lock, flags);
3062
3063 /* Scan table for free entries */
3064 for (index = ALIGN(table->min_index, alignment), c = 0;
3065 index < MAX_IRQS_PER_TABLE;) {
3066 if (!iommu->irte_ops->is_allocated(table, index)) {
3067 c += 1;
3068 } else {
3069 c = 0;
3070 index = ALIGN(index + 1, alignment);
3071 continue;
3072 }
3073
3074 if (c == count) {
3075 for (; c != 0; --c)
3076 iommu->irte_ops->set_allocated(table, index - c + 1);
3077
3078 index -= count - 1;
3079 goto out;
3080 }
3081
3082 index++;
3083 }
3084
3085 index = -ENOSPC;
3086
3087 out:
3088 raw_spin_unlock_irqrestore(&table->lock, flags);
3089
3090 return index;
3091 }
3092
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3093 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3094 struct irte_ga *irte)
3095 {
3096 struct irq_remap_table *table;
3097 struct irte_ga *entry;
3098 unsigned long flags;
3099 u128 old;
3100
3101 table = get_irq_table(iommu, devid);
3102 if (!table)
3103 return -ENOMEM;
3104
3105 raw_spin_lock_irqsave(&table->lock, flags);
3106
3107 entry = (struct irte_ga *)table->table;
3108 entry = &entry[index];
3109
3110 /*
3111 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3112 * and it cannot be updated by the hardware or other processors
3113 * behind us, so the return value of cmpxchg16 should be the
3114 * same as the old value.
3115 */
3116 old = entry->irte;
3117 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3118
3119 raw_spin_unlock_irqrestore(&table->lock, flags);
3120
3121 return 0;
3122 }
3123
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3124 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3125 struct irte_ga *irte)
3126 {
3127 bool ret;
3128
3129 ret = __modify_irte_ga(iommu, devid, index, irte);
3130 if (ret)
3131 return ret;
3132
3133 iommu_flush_irt_and_complete(iommu, devid);
3134
3135 return 0;
3136 }
3137
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3138 static int modify_irte(struct amd_iommu *iommu,
3139 u16 devid, int index, union irte *irte)
3140 {
3141 struct irq_remap_table *table;
3142 unsigned long flags;
3143
3144 table = get_irq_table(iommu, devid);
3145 if (!table)
3146 return -ENOMEM;
3147
3148 raw_spin_lock_irqsave(&table->lock, flags);
3149 table->table[index] = irte->val;
3150 raw_spin_unlock_irqrestore(&table->lock, flags);
3151
3152 iommu_flush_irt_and_complete(iommu, devid);
3153
3154 return 0;
3155 }
3156
free_irte(struct amd_iommu * iommu,u16 devid,int index)3157 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3158 {
3159 struct irq_remap_table *table;
3160 unsigned long flags;
3161
3162 table = get_irq_table(iommu, devid);
3163 if (!table)
3164 return;
3165
3166 raw_spin_lock_irqsave(&table->lock, flags);
3167 iommu->irte_ops->clear_allocated(table, index);
3168 raw_spin_unlock_irqrestore(&table->lock, flags);
3169
3170 iommu_flush_irt_and_complete(iommu, devid);
3171 }
3172
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3173 static void irte_prepare(void *entry,
3174 u32 delivery_mode, bool dest_mode,
3175 u8 vector, u32 dest_apicid, int devid)
3176 {
3177 union irte *irte = (union irte *) entry;
3178
3179 irte->val = 0;
3180 irte->fields.vector = vector;
3181 irte->fields.int_type = delivery_mode;
3182 irte->fields.destination = dest_apicid;
3183 irte->fields.dm = dest_mode;
3184 irte->fields.valid = 1;
3185 }
3186
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3187 static void irte_ga_prepare(void *entry,
3188 u32 delivery_mode, bool dest_mode,
3189 u8 vector, u32 dest_apicid, int devid)
3190 {
3191 struct irte_ga *irte = (struct irte_ga *) entry;
3192
3193 irte->lo.val = 0;
3194 irte->hi.val = 0;
3195 irte->lo.fields_remap.int_type = delivery_mode;
3196 irte->lo.fields_remap.dm = dest_mode;
3197 irte->hi.fields.vector = vector;
3198 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3199 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3200 irte->lo.fields_remap.valid = 1;
3201 }
3202
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3203 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3204 {
3205 union irte *irte = (union irte *) entry;
3206
3207 irte->fields.valid = 1;
3208 modify_irte(iommu, devid, index, irte);
3209 }
3210
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3211 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3212 {
3213 struct irte_ga *irte = (struct irte_ga *) entry;
3214
3215 irte->lo.fields_remap.valid = 1;
3216 modify_irte_ga(iommu, devid, index, irte);
3217 }
3218
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3219 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3220 {
3221 union irte *irte = (union irte *) entry;
3222
3223 irte->fields.valid = 0;
3224 modify_irte(iommu, devid, index, irte);
3225 }
3226
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3227 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3228 {
3229 struct irte_ga *irte = (struct irte_ga *) entry;
3230
3231 irte->lo.fields_remap.valid = 0;
3232 modify_irte_ga(iommu, devid, index, irte);
3233 }
3234
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3235 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3236 u8 vector, u32 dest_apicid)
3237 {
3238 union irte *irte = (union irte *) entry;
3239
3240 irte->fields.vector = vector;
3241 irte->fields.destination = dest_apicid;
3242 modify_irte(iommu, devid, index, irte);
3243 }
3244
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3245 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3246 u8 vector, u32 dest_apicid)
3247 {
3248 struct irte_ga *irte = (struct irte_ga *) entry;
3249
3250 if (!irte->lo.fields_remap.guest_mode) {
3251 irte->hi.fields.vector = vector;
3252 irte->lo.fields_remap.destination =
3253 APICID_TO_IRTE_DEST_LO(dest_apicid);
3254 irte->hi.fields.destination =
3255 APICID_TO_IRTE_DEST_HI(dest_apicid);
3256 modify_irte_ga(iommu, devid, index, irte);
3257 }
3258 }
3259
3260 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3261 static void irte_set_allocated(struct irq_remap_table *table, int index)
3262 {
3263 table->table[index] = IRTE_ALLOCATED;
3264 }
3265
irte_ga_set_allocated(struct irq_remap_table * table,int index)3266 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3267 {
3268 struct irte_ga *ptr = (struct irte_ga *)table->table;
3269 struct irte_ga *irte = &ptr[index];
3270
3271 memset(&irte->lo.val, 0, sizeof(u64));
3272 memset(&irte->hi.val, 0, sizeof(u64));
3273 irte->hi.fields.vector = 0xff;
3274 }
3275
irte_is_allocated(struct irq_remap_table * table,int index)3276 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3277 {
3278 union irte *ptr = (union irte *)table->table;
3279 union irte *irte = &ptr[index];
3280
3281 return irte->val != 0;
3282 }
3283
irte_ga_is_allocated(struct irq_remap_table * table,int index)3284 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3285 {
3286 struct irte_ga *ptr = (struct irte_ga *)table->table;
3287 struct irte_ga *irte = &ptr[index];
3288
3289 return irte->hi.fields.vector != 0;
3290 }
3291
irte_clear_allocated(struct irq_remap_table * table,int index)3292 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3293 {
3294 table->table[index] = 0;
3295 }
3296
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3297 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3298 {
3299 struct irte_ga *ptr = (struct irte_ga *)table->table;
3300 struct irte_ga *irte = &ptr[index];
3301
3302 memset(&irte->lo.val, 0, sizeof(u64));
3303 memset(&irte->hi.val, 0, sizeof(u64));
3304 }
3305
get_devid(struct irq_alloc_info * info)3306 static int get_devid(struct irq_alloc_info *info)
3307 {
3308 switch (info->type) {
3309 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3310 return get_ioapic_devid(info->devid);
3311 case X86_IRQ_ALLOC_TYPE_HPET:
3312 return get_hpet_devid(info->devid);
3313 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3314 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3315 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3316 default:
3317 WARN_ON_ONCE(1);
3318 return -1;
3319 }
3320 }
3321
3322 struct irq_remap_ops amd_iommu_irq_ops = {
3323 .prepare = amd_iommu_prepare,
3324 .enable = amd_iommu_enable,
3325 .disable = amd_iommu_disable,
3326 .reenable = amd_iommu_reenable,
3327 .enable_faulting = amd_iommu_enable_faulting,
3328 };
3329
fill_msi_msg(struct msi_msg * msg,u32 index)3330 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3331 {
3332 msg->data = index;
3333 msg->address_lo = 0;
3334 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3335 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3336 }
3337
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3338 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3339 struct irq_cfg *irq_cfg,
3340 struct irq_alloc_info *info,
3341 int devid, int index, int sub_handle)
3342 {
3343 struct irq_2_irte *irte_info = &data->irq_2_irte;
3344 struct amd_iommu *iommu = data->iommu;
3345
3346 if (!iommu)
3347 return;
3348
3349 data->irq_2_irte.devid = devid;
3350 data->irq_2_irte.index = index + sub_handle;
3351 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3352 apic->dest_mode_logical, irq_cfg->vector,
3353 irq_cfg->dest_apicid, devid);
3354
3355 switch (info->type) {
3356 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3357 case X86_IRQ_ALLOC_TYPE_HPET:
3358 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3359 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3360 fill_msi_msg(&data->msi_entry, irte_info->index);
3361 break;
3362
3363 default:
3364 BUG_ON(1);
3365 break;
3366 }
3367 }
3368
3369 struct amd_irte_ops irte_32_ops = {
3370 .prepare = irte_prepare,
3371 .activate = irte_activate,
3372 .deactivate = irte_deactivate,
3373 .set_affinity = irte_set_affinity,
3374 .set_allocated = irte_set_allocated,
3375 .is_allocated = irte_is_allocated,
3376 .clear_allocated = irte_clear_allocated,
3377 };
3378
3379 struct amd_irte_ops irte_128_ops = {
3380 .prepare = irte_ga_prepare,
3381 .activate = irte_ga_activate,
3382 .deactivate = irte_ga_deactivate,
3383 .set_affinity = irte_ga_set_affinity,
3384 .set_allocated = irte_ga_set_allocated,
3385 .is_allocated = irte_ga_is_allocated,
3386 .clear_allocated = irte_ga_clear_allocated,
3387 };
3388
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3389 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3390 unsigned int nr_irqs, void *arg)
3391 {
3392 struct irq_alloc_info *info = arg;
3393 struct irq_data *irq_data;
3394 struct amd_ir_data *data = NULL;
3395 struct amd_iommu *iommu;
3396 struct irq_cfg *cfg;
3397 int i, ret, devid, seg, sbdf;
3398 int index;
3399
3400 if (!info)
3401 return -EINVAL;
3402 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3403 return -EINVAL;
3404
3405 sbdf = get_devid(info);
3406 if (sbdf < 0)
3407 return -EINVAL;
3408
3409 seg = PCI_SBDF_TO_SEGID(sbdf);
3410 devid = PCI_SBDF_TO_DEVID(sbdf);
3411 iommu = __rlookup_amd_iommu(seg, devid);
3412 if (!iommu)
3413 return -EINVAL;
3414
3415 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3416 if (ret < 0)
3417 return ret;
3418
3419 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3420 struct irq_remap_table *table;
3421
3422 table = alloc_irq_table(iommu, devid, NULL);
3423 if (table) {
3424 if (!table->min_index) {
3425 /*
3426 * Keep the first 32 indexes free for IOAPIC
3427 * interrupts.
3428 */
3429 table->min_index = 32;
3430 for (i = 0; i < 32; ++i)
3431 iommu->irte_ops->set_allocated(table, i);
3432 }
3433 WARN_ON(table->min_index != 32);
3434 index = info->ioapic.pin;
3435 } else {
3436 index = -ENOMEM;
3437 }
3438 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3439 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3440 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3441
3442 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3443 msi_desc_to_pci_dev(info->desc));
3444 } else {
3445 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3446 }
3447
3448 if (index < 0) {
3449 pr_warn("Failed to allocate IRTE\n");
3450 ret = index;
3451 goto out_free_parent;
3452 }
3453
3454 for (i = 0; i < nr_irqs; i++) {
3455 irq_data = irq_domain_get_irq_data(domain, virq + i);
3456 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3457 if (!cfg) {
3458 ret = -EINVAL;
3459 goto out_free_data;
3460 }
3461
3462 ret = -ENOMEM;
3463 data = kzalloc(sizeof(*data), GFP_KERNEL);
3464 if (!data)
3465 goto out_free_data;
3466
3467 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3468 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3469 else
3470 data->entry = kzalloc(sizeof(struct irte_ga),
3471 GFP_KERNEL);
3472 if (!data->entry) {
3473 kfree(data);
3474 goto out_free_data;
3475 }
3476
3477 data->iommu = iommu;
3478 irq_data->hwirq = (devid << 16) + i;
3479 irq_data->chip_data = data;
3480 irq_data->chip = &amd_ir_chip;
3481 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3482 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3483 }
3484
3485 return 0;
3486
3487 out_free_data:
3488 for (i--; i >= 0; i--) {
3489 irq_data = irq_domain_get_irq_data(domain, virq + i);
3490 if (irq_data)
3491 kfree(irq_data->chip_data);
3492 }
3493 for (i = 0; i < nr_irqs; i++)
3494 free_irte(iommu, devid, index + i);
3495 out_free_parent:
3496 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3497 return ret;
3498 }
3499
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3500 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3501 unsigned int nr_irqs)
3502 {
3503 struct irq_2_irte *irte_info;
3504 struct irq_data *irq_data;
3505 struct amd_ir_data *data;
3506 int i;
3507
3508 for (i = 0; i < nr_irqs; i++) {
3509 irq_data = irq_domain_get_irq_data(domain, virq + i);
3510 if (irq_data && irq_data->chip_data) {
3511 data = irq_data->chip_data;
3512 irte_info = &data->irq_2_irte;
3513 free_irte(data->iommu, irte_info->devid, irte_info->index);
3514 kfree(data->entry);
3515 kfree(data);
3516 }
3517 }
3518 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3519 }
3520
3521 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3522 struct amd_ir_data *ir_data,
3523 struct irq_2_irte *irte_info,
3524 struct irq_cfg *cfg);
3525
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3526 static int irq_remapping_activate(struct irq_domain *domain,
3527 struct irq_data *irq_data, bool reserve)
3528 {
3529 struct amd_ir_data *data = irq_data->chip_data;
3530 struct irq_2_irte *irte_info = &data->irq_2_irte;
3531 struct amd_iommu *iommu = data->iommu;
3532 struct irq_cfg *cfg = irqd_cfg(irq_data);
3533
3534 if (!iommu)
3535 return 0;
3536
3537 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3538 irte_info->index);
3539 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3540 return 0;
3541 }
3542
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3543 static void irq_remapping_deactivate(struct irq_domain *domain,
3544 struct irq_data *irq_data)
3545 {
3546 struct amd_ir_data *data = irq_data->chip_data;
3547 struct irq_2_irte *irte_info = &data->irq_2_irte;
3548 struct amd_iommu *iommu = data->iommu;
3549
3550 if (iommu)
3551 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3552 irte_info->index);
3553 }
3554
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3555 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3556 enum irq_domain_bus_token bus_token)
3557 {
3558 struct amd_iommu *iommu;
3559 int devid = -1;
3560
3561 if (!amd_iommu_irq_remap)
3562 return 0;
3563
3564 if (x86_fwspec_is_ioapic(fwspec))
3565 devid = get_ioapic_devid(fwspec->param[0]);
3566 else if (x86_fwspec_is_hpet(fwspec))
3567 devid = get_hpet_devid(fwspec->param[0]);
3568
3569 if (devid < 0)
3570 return 0;
3571 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3572
3573 return iommu && iommu->ir_domain == d;
3574 }
3575
3576 static const struct irq_domain_ops amd_ir_domain_ops = {
3577 .select = irq_remapping_select,
3578 .alloc = irq_remapping_alloc,
3579 .free = irq_remapping_free,
3580 .activate = irq_remapping_activate,
3581 .deactivate = irq_remapping_deactivate,
3582 };
3583
amd_iommu_activate_guest_mode(void * data)3584 int amd_iommu_activate_guest_mode(void *data)
3585 {
3586 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3587 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3588 u64 valid;
3589
3590 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3591 return 0;
3592
3593 valid = entry->lo.fields_vapic.valid;
3594
3595 entry->lo.val = 0;
3596 entry->hi.val = 0;
3597
3598 entry->lo.fields_vapic.valid = valid;
3599 entry->lo.fields_vapic.guest_mode = 1;
3600 entry->lo.fields_vapic.ga_log_intr = 1;
3601 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3602 entry->hi.fields.vector = ir_data->ga_vector;
3603 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3604
3605 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3606 ir_data->irq_2_irte.index, entry);
3607 }
3608 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3609
amd_iommu_deactivate_guest_mode(void * data)3610 int amd_iommu_deactivate_guest_mode(void *data)
3611 {
3612 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3613 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3614 struct irq_cfg *cfg = ir_data->cfg;
3615 u64 valid;
3616
3617 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3618 !entry || !entry->lo.fields_vapic.guest_mode)
3619 return 0;
3620
3621 valid = entry->lo.fields_remap.valid;
3622
3623 entry->lo.val = 0;
3624 entry->hi.val = 0;
3625
3626 entry->lo.fields_remap.valid = valid;
3627 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3628 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3629 entry->hi.fields.vector = cfg->vector;
3630 entry->lo.fields_remap.destination =
3631 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3632 entry->hi.fields.destination =
3633 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3634
3635 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3636 ir_data->irq_2_irte.index, entry);
3637 }
3638 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3639
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3640 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3641 {
3642 int ret;
3643 struct amd_iommu_pi_data *pi_data = vcpu_info;
3644 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3645 struct amd_ir_data *ir_data = data->chip_data;
3646 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3647 struct iommu_dev_data *dev_data;
3648
3649 if (ir_data->iommu == NULL)
3650 return -EINVAL;
3651
3652 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3653
3654 /* Note:
3655 * This device has never been set up for guest mode.
3656 * we should not modify the IRTE
3657 */
3658 if (!dev_data || !dev_data->use_vapic)
3659 return 0;
3660
3661 ir_data->cfg = irqd_cfg(data);
3662 pi_data->ir_data = ir_data;
3663
3664 /* Note:
3665 * SVM tries to set up for VAPIC mode, but we are in
3666 * legacy mode. So, we force legacy mode instead.
3667 */
3668 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3669 pr_debug("%s: Fall back to using intr legacy remap\n",
3670 __func__);
3671 pi_data->is_guest_mode = false;
3672 }
3673
3674 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3675 if (pi_data->is_guest_mode) {
3676 ir_data->ga_root_ptr = (pi_data->base >> 12);
3677 ir_data->ga_vector = vcpu_pi_info->vector;
3678 ir_data->ga_tag = pi_data->ga_tag;
3679 ret = amd_iommu_activate_guest_mode(ir_data);
3680 if (!ret)
3681 ir_data->cached_ga_tag = pi_data->ga_tag;
3682 } else {
3683 ret = amd_iommu_deactivate_guest_mode(ir_data);
3684
3685 /*
3686 * This communicates the ga_tag back to the caller
3687 * so that it can do all the necessary clean up.
3688 */
3689 if (!ret)
3690 ir_data->cached_ga_tag = 0;
3691 }
3692
3693 return ret;
3694 }
3695
3696
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3697 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3698 struct amd_ir_data *ir_data,
3699 struct irq_2_irte *irte_info,
3700 struct irq_cfg *cfg)
3701 {
3702
3703 /*
3704 * Atomically updates the IRTE with the new destination, vector
3705 * and flushes the interrupt entry cache.
3706 */
3707 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3708 irte_info->index, cfg->vector,
3709 cfg->dest_apicid);
3710 }
3711
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3712 static int amd_ir_set_affinity(struct irq_data *data,
3713 const struct cpumask *mask, bool force)
3714 {
3715 struct amd_ir_data *ir_data = data->chip_data;
3716 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3717 struct irq_cfg *cfg = irqd_cfg(data);
3718 struct irq_data *parent = data->parent_data;
3719 struct amd_iommu *iommu = ir_data->iommu;
3720 int ret;
3721
3722 if (!iommu)
3723 return -ENODEV;
3724
3725 ret = parent->chip->irq_set_affinity(parent, mask, force);
3726 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3727 return ret;
3728
3729 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3730 /*
3731 * After this point, all the interrupts will start arriving
3732 * at the new destination. So, time to cleanup the previous
3733 * vector allocation.
3734 */
3735 vector_schedule_cleanup(cfg);
3736
3737 return IRQ_SET_MASK_OK_DONE;
3738 }
3739
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3740 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3741 {
3742 struct amd_ir_data *ir_data = irq_data->chip_data;
3743
3744 *msg = ir_data->msi_entry;
3745 }
3746
3747 static struct irq_chip amd_ir_chip = {
3748 .name = "AMD-IR",
3749 .irq_ack = apic_ack_irq,
3750 .irq_set_affinity = amd_ir_set_affinity,
3751 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3752 .irq_compose_msi_msg = ir_compose_msi_msg,
3753 };
3754
3755 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3756 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
3757 MSI_FLAG_MULTI_PCI_MSI |
3758 MSI_FLAG_PCI_IMS,
3759 .prefix = "IR-",
3760 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3761 };
3762
3763 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3764 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
3765 MSI_FLAG_MULTI_PCI_MSI,
3766 .prefix = "vIR-",
3767 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3768 };
3769
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3770 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3771 {
3772 struct fwnode_handle *fn;
3773
3774 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3775 if (!fn)
3776 return -ENOMEM;
3777 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3778 fn, &amd_ir_domain_ops, iommu);
3779 if (!iommu->ir_domain) {
3780 irq_domain_free_fwnode(fn);
3781 return -ENOMEM;
3782 }
3783
3784 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3785 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3786 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3787
3788 if (amd_iommu_np_cache)
3789 iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3790 else
3791 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3792
3793 return 0;
3794 }
3795
amd_iommu_update_ga(int cpu,bool is_run,void * data)3796 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3797 {
3798 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3799 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3800
3801 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3802 !entry || !entry->lo.fields_vapic.guest_mode)
3803 return 0;
3804
3805 if (!ir_data->iommu)
3806 return -ENODEV;
3807
3808 if (cpu >= 0) {
3809 entry->lo.fields_vapic.destination =
3810 APICID_TO_IRTE_DEST_LO(cpu);
3811 entry->hi.fields.destination =
3812 APICID_TO_IRTE_DEST_HI(cpu);
3813 }
3814 entry->lo.fields_vapic.is_run = is_run;
3815
3816 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3817 ir_data->irq_2_irte.index, entry);
3818 }
3819 EXPORT_SYMBOL(amd_iommu_update_ga);
3820 #endif
3821