1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3  * Copyright 2019 Raptor Engineering, LLC
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include <linux/slab.h>
28 
29 #include "dm_services.h"
30 #include "dc.h"
31 
32 #include "dcn20/dcn20_init.h"
33 
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37 
38 #include "dml/dcn20/dcn20_fpu.h"
39 
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20/dcn20_hubbub.h"
43 #include "dcn20/dcn20_mpc.h"
44 #include "dcn20/dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20/dcn20_dpp.h"
47 #include "dcn20/dcn20_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dce110/dce110_hwseq.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20/dcn20_opp.h"
52 
53 #include "dcn20/dcn20_dsc.h"
54 
55 #include "dcn20/dcn20_link_encoder.h"
56 #include "dcn20/dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20/dcn20_dccg.h"
64 #include "dcn20/dcn20_vmid.h"
65 #include "dce/dce_panel_cntl.h"
66 
67 #include "navi10_ip_offset.h"
68 
69 #include "dcn/dcn_2_0_0_offset.h"
70 #include "dcn/dcn_2_0_0_sh_mask.h"
71 #include "dpcs/dpcs_2_0_0_offset.h"
72 #include "dpcs/dpcs_2_0_0_sh_mask.h"
73 
74 #include "nbio/nbio_2_3_offset.h"
75 
76 #include "dcn20/dcn20_dwb.h"
77 #include "dcn20/dcn20_mmhubbub.h"
78 
79 #include "mmhub/mmhub_2_0_0_offset.h"
80 #include "mmhub/mmhub_2_0_0_sh_mask.h"
81 
82 #include "reg_helper.h"
83 #include "dce/dce_abm.h"
84 #include "dce/dce_dmcu.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 #include "vm_helper.h"
88 #include "link_enc_cfg.h"
89 
90 #include "amdgpu_socbb.h"
91 
92 #include "link.h"
93 #define DC_LOGGER_INIT(logger)
94 
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96 	#define mmDP0_DP_DPHY_INTERNAL_CTRL		0x210f
97 	#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
98 	#define mmDP1_DP_DPHY_INTERNAL_CTRL		0x220f
99 	#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
100 	#define mmDP2_DP_DPHY_INTERNAL_CTRL		0x230f
101 	#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
102 	#define mmDP3_DP_DPHY_INTERNAL_CTRL		0x240f
103 	#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
104 	#define mmDP4_DP_DPHY_INTERNAL_CTRL		0x250f
105 	#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
106 	#define mmDP5_DP_DPHY_INTERNAL_CTRL		0x260f
107 	#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
108 	#define mmDP6_DP_DPHY_INTERNAL_CTRL		0x270f
109 	#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX	2
110 #endif
111 
112 
113 enum dcn20_clk_src_array_id {
114 	DCN20_CLK_SRC_PLL0,
115 	DCN20_CLK_SRC_PLL1,
116 	DCN20_CLK_SRC_PLL2,
117 	DCN20_CLK_SRC_PLL3,
118 	DCN20_CLK_SRC_PLL4,
119 	DCN20_CLK_SRC_PLL5,
120 	DCN20_CLK_SRC_TOTAL
121 };
122 
123 /* begin *********************
124  * macros to expend register list macro defined in HW object header file */
125 
126 /* DCN */
127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
128 
129 #define BASE(seg) BASE_INNER(seg)
130 
131 #define SR(reg_name)\
132 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
133 					mm ## reg_name
134 
135 #define SRI(reg_name, block, id)\
136 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 					mm ## block ## id ## _ ## reg_name
138 
139 #define SRI2_DWB(reg_name, block, id)\
140 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
141 					mm ## reg_name
142 #define SF_DWB(reg_name, field_name, post_fix)\
143 	.field_name = reg_name ## __ ## field_name ## post_fix
144 
145 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
146 	.field_name = reg_name ## __ ## field_name ## post_fix
147 
148 #define SRIR(var_name, reg_name, block, id)\
149 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
150 					mm ## block ## id ## _ ## reg_name
151 
152 #define SRII(reg_name, block, id)\
153 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154 					mm ## block ## id ## _ ## reg_name
155 
156 #define DCCG_SRII(reg_name, block, id)\
157 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
158 					mm ## block ## id ## _ ## reg_name
159 
160 #define VUPDATE_SRII(reg_name, block, id)\
161 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
162 					mm ## reg_name ## _ ## block ## id
163 
164 /* NBIO */
165 #define NBIO_BASE_INNER(seg) \
166 	NBIO_BASE__INST0_SEG ## seg
167 
168 #define NBIO_BASE(seg) \
169 	NBIO_BASE_INNER(seg)
170 
171 #define NBIO_SR(reg_name)\
172 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
173 					mm ## reg_name
174 
175 /* MMHUB */
176 #define MMHUB_BASE_INNER(seg) \
177 	MMHUB_BASE__INST0_SEG ## seg
178 
179 #define MMHUB_BASE(seg) \
180 	MMHUB_BASE_INNER(seg)
181 
182 #define MMHUB_SR(reg_name)\
183 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
184 					mmMM ## reg_name
185 
186 static const struct bios_registers bios_regs = {
187 		NBIO_SR(BIOS_SCRATCH_3),
188 		NBIO_SR(BIOS_SCRATCH_6)
189 };
190 
191 #define clk_src_regs(index, pllid)\
192 [index] = {\
193 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
194 }
195 
196 static const struct dce110_clk_src_regs clk_src_regs[] = {
197 	clk_src_regs(0, A),
198 	clk_src_regs(1, B),
199 	clk_src_regs(2, C),
200 	clk_src_regs(3, D),
201 	clk_src_regs(4, E),
202 	clk_src_regs(5, F)
203 };
204 
205 static const struct dce110_clk_src_shift cs_shift = {
206 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
207 };
208 
209 static const struct dce110_clk_src_mask cs_mask = {
210 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
211 };
212 
213 static const struct dce_dmcu_registers dmcu_regs = {
214 		DMCU_DCN10_REG_LIST()
215 };
216 
217 static const struct dce_dmcu_shift dmcu_shift = {
218 		DMCU_MASK_SH_LIST_DCN10(__SHIFT)
219 };
220 
221 static const struct dce_dmcu_mask dmcu_mask = {
222 		DMCU_MASK_SH_LIST_DCN10(_MASK)
223 };
224 
225 static const struct dce_abm_registers abm_regs = {
226 		ABM_DCN20_REG_LIST()
227 };
228 
229 static const struct dce_abm_shift abm_shift = {
230 		ABM_MASK_SH_LIST_DCN20(__SHIFT)
231 };
232 
233 static const struct dce_abm_mask abm_mask = {
234 		ABM_MASK_SH_LIST_DCN20(_MASK)
235 };
236 
237 #define audio_regs(id)\
238 [id] = {\
239 		AUD_COMMON_REG_LIST(id)\
240 }
241 
242 static const struct dce_audio_registers audio_regs[] = {
243 	audio_regs(0),
244 	audio_regs(1),
245 	audio_regs(2),
246 	audio_regs(3),
247 	audio_regs(4),
248 	audio_regs(5),
249 	audio_regs(6),
250 };
251 
252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
253 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
254 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
255 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
256 
257 static const struct dce_audio_shift audio_shift = {
258 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
259 };
260 
261 static const struct dce_audio_mask audio_mask = {
262 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
263 };
264 
265 #define stream_enc_regs(id)\
266 [id] = {\
267 	SE_DCN2_REG_LIST(id)\
268 }
269 
270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
271 	stream_enc_regs(0),
272 	stream_enc_regs(1),
273 	stream_enc_regs(2),
274 	stream_enc_regs(3),
275 	stream_enc_regs(4),
276 	stream_enc_regs(5),
277 };
278 
279 static const struct dcn10_stream_encoder_shift se_shift = {
280 		SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
281 };
282 
283 static const struct dcn10_stream_encoder_mask se_mask = {
284 		SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
285 };
286 
287 
288 #define aux_regs(id)\
289 [id] = {\
290 	DCN2_AUX_REG_LIST(id)\
291 }
292 
293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
294 		aux_regs(0),
295 		aux_regs(1),
296 		aux_regs(2),
297 		aux_regs(3),
298 		aux_regs(4),
299 		aux_regs(5)
300 };
301 
302 #define hpd_regs(id)\
303 [id] = {\
304 	HPD_REG_LIST(id)\
305 }
306 
307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
308 		hpd_regs(0),
309 		hpd_regs(1),
310 		hpd_regs(2),
311 		hpd_regs(3),
312 		hpd_regs(4),
313 		hpd_regs(5)
314 };
315 
316 #define link_regs(id, phyid)\
317 [id] = {\
318 	LE_DCN10_REG_LIST(id), \
319 	UNIPHY_DCN2_REG_LIST(phyid), \
320 	DPCS_DCN2_REG_LIST(id), \
321 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
322 }
323 
324 static const struct dcn10_link_enc_registers link_enc_regs[] = {
325 	link_regs(0, A),
326 	link_regs(1, B),
327 	link_regs(2, C),
328 	link_regs(3, D),
329 	link_regs(4, E),
330 	link_regs(5, F)
331 };
332 
333 static const struct dcn10_link_enc_shift le_shift = {
334 	LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
335 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
336 };
337 
338 static const struct dcn10_link_enc_mask le_mask = {
339 	LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
340 	DPCS_DCN2_MASK_SH_LIST(_MASK)
341 };
342 
343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
344 	{ DCN_PANEL_CNTL_REG_LIST() }
345 };
346 
347 static const struct dce_panel_cntl_shift panel_cntl_shift = {
348 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
349 };
350 
351 static const struct dce_panel_cntl_mask panel_cntl_mask = {
352 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
353 };
354 
355 #define ipp_regs(id)\
356 [id] = {\
357 	IPP_REG_LIST_DCN20(id),\
358 }
359 
360 static const struct dcn10_ipp_registers ipp_regs[] = {
361 	ipp_regs(0),
362 	ipp_regs(1),
363 	ipp_regs(2),
364 	ipp_regs(3),
365 	ipp_regs(4),
366 	ipp_regs(5),
367 };
368 
369 static const struct dcn10_ipp_shift ipp_shift = {
370 		IPP_MASK_SH_LIST_DCN20(__SHIFT)
371 };
372 
373 static const struct dcn10_ipp_mask ipp_mask = {
374 		IPP_MASK_SH_LIST_DCN20(_MASK),
375 };
376 
377 #define opp_regs(id)\
378 [id] = {\
379 	OPP_REG_LIST_DCN20(id),\
380 }
381 
382 static const struct dcn20_opp_registers opp_regs[] = {
383 	opp_regs(0),
384 	opp_regs(1),
385 	opp_regs(2),
386 	opp_regs(3),
387 	opp_regs(4),
388 	opp_regs(5),
389 };
390 
391 static const struct dcn20_opp_shift opp_shift = {
392 		OPP_MASK_SH_LIST_DCN20(__SHIFT)
393 };
394 
395 static const struct dcn20_opp_mask opp_mask = {
396 		OPP_MASK_SH_LIST_DCN20(_MASK)
397 };
398 
399 #define aux_engine_regs(id)\
400 [id] = {\
401 	AUX_COMMON_REG_LIST0(id), \
402 	.AUXN_IMPCAL = 0, \
403 	.AUXP_IMPCAL = 0, \
404 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
405 }
406 
407 static const struct dce110_aux_registers aux_engine_regs[] = {
408 		aux_engine_regs(0),
409 		aux_engine_regs(1),
410 		aux_engine_regs(2),
411 		aux_engine_regs(3),
412 		aux_engine_regs(4),
413 		aux_engine_regs(5)
414 };
415 
416 #define tf_regs(id)\
417 [id] = {\
418 	TF_REG_LIST_DCN20(id),\
419 	TF_REG_LIST_DCN20_COMMON_APPEND(id),\
420 }
421 
422 static const struct dcn2_dpp_registers tf_regs[] = {
423 	tf_regs(0),
424 	tf_regs(1),
425 	tf_regs(2),
426 	tf_regs(3),
427 	tf_regs(4),
428 	tf_regs(5),
429 };
430 
431 static const struct dcn2_dpp_shift tf_shift = {
432 		TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
433 		TF_DEBUG_REG_LIST_SH_DCN20
434 };
435 
436 static const struct dcn2_dpp_mask tf_mask = {
437 		TF_REG_LIST_SH_MASK_DCN20(_MASK),
438 		TF_DEBUG_REG_LIST_MASK_DCN20
439 };
440 
441 #define dwbc_regs_dcn2(id)\
442 [id] = {\
443 	DWBC_COMMON_REG_LIST_DCN2_0(id),\
444 		}
445 
446 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
447 	dwbc_regs_dcn2(0),
448 };
449 
450 static const struct dcn20_dwbc_shift dwbc20_shift = {
451 	DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
452 };
453 
454 static const struct dcn20_dwbc_mask dwbc20_mask = {
455 	DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
456 };
457 
458 #define mcif_wb_regs_dcn2(id)\
459 [id] = {\
460 	MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
461 		}
462 
463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
464 	mcif_wb_regs_dcn2(0),
465 };
466 
467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
468 	MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
469 };
470 
471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
472 	MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
473 };
474 
475 static const struct dcn20_mpc_registers mpc_regs = {
476 		MPC_REG_LIST_DCN2_0(0),
477 		MPC_REG_LIST_DCN2_0(1),
478 		MPC_REG_LIST_DCN2_0(2),
479 		MPC_REG_LIST_DCN2_0(3),
480 		MPC_REG_LIST_DCN2_0(4),
481 		MPC_REG_LIST_DCN2_0(5),
482 		MPC_OUT_MUX_REG_LIST_DCN2_0(0),
483 		MPC_OUT_MUX_REG_LIST_DCN2_0(1),
484 		MPC_OUT_MUX_REG_LIST_DCN2_0(2),
485 		MPC_OUT_MUX_REG_LIST_DCN2_0(3),
486 		MPC_OUT_MUX_REG_LIST_DCN2_0(4),
487 		MPC_OUT_MUX_REG_LIST_DCN2_0(5),
488 		MPC_DBG_REG_LIST_DCN2_0()
489 };
490 
491 static const struct dcn20_mpc_shift mpc_shift = {
492 	MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
493 	MPC_DEBUG_REG_LIST_SH_DCN20
494 };
495 
496 static const struct dcn20_mpc_mask mpc_mask = {
497 	MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
498 	MPC_DEBUG_REG_LIST_MASK_DCN20
499 };
500 
501 #define tg_regs(id)\
502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
503 
504 
505 static const struct dcn_optc_registers tg_regs[] = {
506 	tg_regs(0),
507 	tg_regs(1),
508 	tg_regs(2),
509 	tg_regs(3),
510 	tg_regs(4),
511 	tg_regs(5)
512 };
513 
514 static const struct dcn_optc_shift tg_shift = {
515 	TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
516 };
517 
518 static const struct dcn_optc_mask tg_mask = {
519 	TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
520 };
521 
522 #define hubp_regs(id)\
523 [id] = {\
524 	HUBP_REG_LIST_DCN20(id)\
525 }
526 
527 static const struct dcn_hubp2_registers hubp_regs[] = {
528 		hubp_regs(0),
529 		hubp_regs(1),
530 		hubp_regs(2),
531 		hubp_regs(3),
532 		hubp_regs(4),
533 		hubp_regs(5)
534 };
535 
536 static const struct dcn_hubp2_shift hubp_shift = {
537 		HUBP_MASK_SH_LIST_DCN20(__SHIFT)
538 };
539 
540 static const struct dcn_hubp2_mask hubp_mask = {
541 		HUBP_MASK_SH_LIST_DCN20(_MASK)
542 };
543 
544 static const struct dcn_hubbub_registers hubbub_reg = {
545 		HUBBUB_REG_LIST_DCN20(0)
546 };
547 
548 static const struct dcn_hubbub_shift hubbub_shift = {
549 		HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
550 };
551 
552 static const struct dcn_hubbub_mask hubbub_mask = {
553 		HUBBUB_MASK_SH_LIST_DCN20(_MASK)
554 };
555 
556 #define vmid_regs(id)\
557 [id] = {\
558 		DCN20_VMID_REG_LIST(id)\
559 }
560 
561 static const struct dcn_vmid_registers vmid_regs[] = {
562 	vmid_regs(0),
563 	vmid_regs(1),
564 	vmid_regs(2),
565 	vmid_regs(3),
566 	vmid_regs(4),
567 	vmid_regs(5),
568 	vmid_regs(6),
569 	vmid_regs(7),
570 	vmid_regs(8),
571 	vmid_regs(9),
572 	vmid_regs(10),
573 	vmid_regs(11),
574 	vmid_regs(12),
575 	vmid_regs(13),
576 	vmid_regs(14),
577 	vmid_regs(15)
578 };
579 
580 static const struct dcn20_vmid_shift vmid_shifts = {
581 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
582 };
583 
584 static const struct dcn20_vmid_mask vmid_masks = {
585 		DCN20_VMID_MASK_SH_LIST(_MASK)
586 };
587 
588 static const struct dce110_aux_registers_shift aux_shift = {
589 		DCN_AUX_MASK_SH_LIST(__SHIFT)
590 };
591 
592 static const struct dce110_aux_registers_mask aux_mask = {
593 		DCN_AUX_MASK_SH_LIST(_MASK)
594 };
595 
map_transmitter_id_to_phy_instance(enum transmitter transmitter)596 static int map_transmitter_id_to_phy_instance(
597 	enum transmitter transmitter)
598 {
599 	switch (transmitter) {
600 	case TRANSMITTER_UNIPHY_A:
601 		return 0;
602 	break;
603 	case TRANSMITTER_UNIPHY_B:
604 		return 1;
605 	break;
606 	case TRANSMITTER_UNIPHY_C:
607 		return 2;
608 	break;
609 	case TRANSMITTER_UNIPHY_D:
610 		return 3;
611 	break;
612 	case TRANSMITTER_UNIPHY_E:
613 		return 4;
614 	break;
615 	case TRANSMITTER_UNIPHY_F:
616 		return 5;
617 	break;
618 	default:
619 		ASSERT(0);
620 		return 0;
621 	}
622 }
623 
624 #define dsc_regsDCN20(id)\
625 [id] = {\
626 	DSC_REG_LIST_DCN20(id)\
627 }
628 
629 static const struct dcn20_dsc_registers dsc_regs[] = {
630 	dsc_regsDCN20(0),
631 	dsc_regsDCN20(1),
632 	dsc_regsDCN20(2),
633 	dsc_regsDCN20(3),
634 	dsc_regsDCN20(4),
635 	dsc_regsDCN20(5)
636 };
637 
638 static const struct dcn20_dsc_shift dsc_shift = {
639 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
640 };
641 
642 static const struct dcn20_dsc_mask dsc_mask = {
643 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
644 };
645 
646 static const struct dccg_registers dccg_regs = {
647 		DCCG_REG_LIST_DCN2()
648 };
649 
650 static const struct dccg_shift dccg_shift = {
651 		DCCG_MASK_SH_LIST_DCN2(__SHIFT)
652 };
653 
654 static const struct dccg_mask dccg_mask = {
655 		DCCG_MASK_SH_LIST_DCN2(_MASK)
656 };
657 
658 static const struct resource_caps res_cap_nv10 = {
659 		.num_timing_generator = 6,
660 		.num_opp = 6,
661 		.num_video_plane = 6,
662 		.num_audio = 7,
663 		.num_stream_encoder = 6,
664 		.num_pll = 6,
665 		.num_dwb = 1,
666 		.num_ddc = 6,
667 		.num_vmid = 16,
668 		.num_dsc = 6,
669 };
670 
671 static const struct dc_plane_cap plane_cap = {
672 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
673 	.per_pixel_alpha = true,
674 
675 	.pixel_format_support = {
676 			.argb8888 = true,
677 			.nv12 = true,
678 			.fp16 = true,
679 			.p010 = true
680 	},
681 
682 	.max_upscale_factor = {
683 			.argb8888 = 16000,
684 			.nv12 = 16000,
685 			.fp16 = 1
686 	},
687 
688 	.max_downscale_factor = {
689 			.argb8888 = 250,
690 			.nv12 = 250,
691 			.fp16 = 1
692 	},
693 	16,
694 	16
695 };
696 static const struct resource_caps res_cap_nv14 = {
697 		.num_timing_generator = 5,
698 		.num_opp = 5,
699 		.num_video_plane = 5,
700 		.num_audio = 6,
701 		.num_stream_encoder = 5,
702 		.num_pll = 5,
703 		.num_dwb = 1,
704 		.num_ddc = 5,
705 		.num_vmid = 16,
706 		.num_dsc = 5,
707 };
708 
709 static const struct dc_debug_options debug_defaults_drv = {
710 		.disable_dmcu = false,
711 		.force_abm_enable = false,
712 		.timing_trace = false,
713 		.clock_trace = true,
714 		.disable_pplib_clock_request = true,
715 		.pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
716 		.force_single_disp_pipe_split = false,
717 		.disable_dcc = DCC_ENABLE,
718 		.vsr_support = true,
719 		.performance_trace = false,
720 		.max_downscale_src_width = 5120,/*upto 5K*/
721 		.disable_pplib_wm_range = false,
722 		.scl_reset_length10 = true,
723 		.sanity_checks = false,
724 		.underflow_assert_delay_us = 0xFFFFFFFF,
725 		.enable_legacy_fast_update = true,
726 		.using_dml2 = false,
727 };
728 
dcn20_dpp_destroy(struct dpp ** dpp)729 void dcn20_dpp_destroy(struct dpp **dpp)
730 {
731 	kfree(TO_DCN20_DPP(*dpp));
732 	*dpp = NULL;
733 }
734 
dcn20_dpp_create(struct dc_context * ctx,uint32_t inst)735 struct dpp *dcn20_dpp_create(
736 	struct dc_context *ctx,
737 	uint32_t inst)
738 {
739 	struct dcn20_dpp *dpp =
740 		kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
741 
742 	if (!dpp)
743 		return NULL;
744 
745 	if (dpp2_construct(dpp, ctx, inst,
746 			&tf_regs[inst], &tf_shift, &tf_mask))
747 		return &dpp->base;
748 
749 	BREAK_TO_DEBUGGER();
750 	kfree(dpp);
751 	return NULL;
752 }
753 
dcn20_ipp_create(struct dc_context * ctx,uint32_t inst)754 struct input_pixel_processor *dcn20_ipp_create(
755 	struct dc_context *ctx, uint32_t inst)
756 {
757 	struct dcn10_ipp *ipp =
758 		kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
759 
760 	if (!ipp) {
761 		BREAK_TO_DEBUGGER();
762 		return NULL;
763 	}
764 
765 	dcn20_ipp_construct(ipp, ctx, inst,
766 			&ipp_regs[inst], &ipp_shift, &ipp_mask);
767 	return &ipp->base;
768 }
769 
770 
dcn20_opp_create(struct dc_context * ctx,uint32_t inst)771 struct output_pixel_processor *dcn20_opp_create(
772 	struct dc_context *ctx, uint32_t inst)
773 {
774 	struct dcn20_opp *opp =
775 		kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
776 
777 	if (!opp) {
778 		BREAK_TO_DEBUGGER();
779 		return NULL;
780 	}
781 
782 	dcn20_opp_construct(opp, ctx, inst,
783 			&opp_regs[inst], &opp_shift, &opp_mask);
784 	return &opp->base;
785 }
786 
dcn20_aux_engine_create(struct dc_context * ctx,uint32_t inst)787 struct dce_aux *dcn20_aux_engine_create(
788 	struct dc_context *ctx,
789 	uint32_t inst)
790 {
791 	struct aux_engine_dce110 *aux_engine =
792 		kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
793 
794 	if (!aux_engine)
795 		return NULL;
796 
797 	dce110_aux_engine_construct(aux_engine, ctx, inst,
798 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
799 				    &aux_engine_regs[inst],
800 					&aux_mask,
801 					&aux_shift,
802 					ctx->dc->caps.extended_aux_timeout_support);
803 
804 	return &aux_engine->base;
805 }
806 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
807 
808 static const struct dce_i2c_registers i2c_hw_regs[] = {
809 		i2c_inst_regs(1),
810 		i2c_inst_regs(2),
811 		i2c_inst_regs(3),
812 		i2c_inst_regs(4),
813 		i2c_inst_regs(5),
814 		i2c_inst_regs(6),
815 };
816 
817 static const struct dce_i2c_shift i2c_shifts = {
818 		I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
819 };
820 
821 static const struct dce_i2c_mask i2c_masks = {
822 		I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
823 };
824 
dcn20_i2c_hw_create(struct dc_context * ctx,uint32_t inst)825 struct dce_i2c_hw *dcn20_i2c_hw_create(
826 	struct dc_context *ctx,
827 	uint32_t inst)
828 {
829 	struct dce_i2c_hw *dce_i2c_hw =
830 		kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
831 
832 	if (!dce_i2c_hw)
833 		return NULL;
834 
835 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
836 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
837 
838 	return dce_i2c_hw;
839 }
dcn20_mpc_create(struct dc_context * ctx)840 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
841 {
842 	struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
843 					  GFP_ATOMIC);
844 
845 	if (!mpc20)
846 		return NULL;
847 
848 	dcn20_mpc_construct(mpc20, ctx,
849 			&mpc_regs,
850 			&mpc_shift,
851 			&mpc_mask,
852 			6);
853 
854 	return &mpc20->base;
855 }
856 
dcn20_hubbub_create(struct dc_context * ctx)857 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
858 {
859 	int i;
860 	struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
861 					  GFP_ATOMIC);
862 
863 	if (!hubbub)
864 		return NULL;
865 
866 	hubbub2_construct(hubbub, ctx,
867 			&hubbub_reg,
868 			&hubbub_shift,
869 			&hubbub_mask);
870 
871 	for (i = 0; i < res_cap_nv10.num_vmid; i++) {
872 		struct dcn20_vmid *vmid = &hubbub->vmid[i];
873 
874 		vmid->ctx = ctx;
875 
876 		vmid->regs = &vmid_regs[i];
877 		vmid->shifts = &vmid_shifts;
878 		vmid->masks = &vmid_masks;
879 	}
880 
881 	return &hubbub->base;
882 }
883 
dcn20_timing_generator_create(struct dc_context * ctx,uint32_t instance)884 struct timing_generator *dcn20_timing_generator_create(
885 		struct dc_context *ctx,
886 		uint32_t instance)
887 {
888 	struct optc *tgn10 =
889 		kzalloc(sizeof(struct optc), GFP_ATOMIC);
890 
891 	if (!tgn10)
892 		return NULL;
893 
894 	tgn10->base.inst = instance;
895 	tgn10->base.ctx = ctx;
896 
897 	tgn10->tg_regs = &tg_regs[instance];
898 	tgn10->tg_shift = &tg_shift;
899 	tgn10->tg_mask = &tg_mask;
900 
901 	dcn20_timing_generator_init(tgn10);
902 
903 	return &tgn10->base;
904 }
905 
906 static const struct encoder_feature_support link_enc_feature = {
907 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
908 		.max_hdmi_pixel_clock = 600000,
909 		.hdmi_ycbcr420_supported = true,
910 		.dp_ycbcr420_supported = true,
911 		.fec_supported = true,
912 		.flags.bits.IS_HBR2_CAPABLE = true,
913 		.flags.bits.IS_HBR3_CAPABLE = true,
914 		.flags.bits.IS_TPS3_CAPABLE = true,
915 		.flags.bits.IS_TPS4_CAPABLE = true
916 };
917 
dcn20_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)918 struct link_encoder *dcn20_link_encoder_create(
919 	struct dc_context *ctx,
920 	const struct encoder_init_data *enc_init_data)
921 {
922 	struct dcn20_link_encoder *enc20 =
923 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
924 	int link_regs_id;
925 
926 	if (!enc20)
927 		return NULL;
928 
929 	link_regs_id =
930 		map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
931 
932 	dcn20_link_encoder_construct(enc20,
933 				      enc_init_data,
934 				      &link_enc_feature,
935 				      &link_enc_regs[link_regs_id],
936 				      &link_enc_aux_regs[enc_init_data->channel - 1],
937 				      &link_enc_hpd_regs[enc_init_data->hpd_source],
938 				      &le_shift,
939 				      &le_mask);
940 
941 	return &enc20->enc10.base;
942 }
943 
dcn20_panel_cntl_create(const struct panel_cntl_init_data * init_data)944 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
945 {
946 	struct dce_panel_cntl *panel_cntl =
947 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
948 
949 	if (!panel_cntl)
950 		return NULL;
951 
952 	dce_panel_cntl_construct(panel_cntl,
953 			init_data,
954 			&panel_cntl_regs[init_data->inst],
955 			&panel_cntl_shift,
956 			&panel_cntl_mask);
957 
958 	return &panel_cntl->base;
959 }
960 
dcn20_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)961 static struct clock_source *dcn20_clock_source_create(
962 	struct dc_context *ctx,
963 	struct dc_bios *bios,
964 	enum clock_source_id id,
965 	const struct dce110_clk_src_regs *regs,
966 	bool dp_clk_src)
967 {
968 	struct dce110_clk_src *clk_src =
969 		kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
970 
971 	if (!clk_src)
972 		return NULL;
973 
974 	if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
975 			regs, &cs_shift, &cs_mask)) {
976 		clk_src->base.dp_clk_src = dp_clk_src;
977 		return &clk_src->base;
978 	}
979 
980 	kfree(clk_src);
981 	BREAK_TO_DEBUGGER();
982 	return NULL;
983 }
984 
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)985 static void read_dce_straps(
986 	struct dc_context *ctx,
987 	struct resource_straps *straps)
988 {
989 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
990 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
991 }
992 
dcn20_create_audio(struct dc_context * ctx,unsigned int inst)993 static struct audio *dcn20_create_audio(
994 		struct dc_context *ctx, unsigned int inst)
995 {
996 	return dce_audio_create(ctx, inst,
997 			&audio_regs[inst], &audio_shift, &audio_mask);
998 }
999 
dcn20_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1000 struct stream_encoder *dcn20_stream_encoder_create(
1001 	enum engine_id eng_id,
1002 	struct dc_context *ctx)
1003 {
1004 	struct dcn10_stream_encoder *enc1 =
1005 		kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1006 
1007 	if (!enc1)
1008 		return NULL;
1009 
1010 	if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1011 		if (eng_id >= ENGINE_ID_DIGD)
1012 			eng_id++;
1013 	}
1014 
1015 	dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1016 					&stream_enc_regs[eng_id],
1017 					&se_shift, &se_mask);
1018 
1019 	return &enc1->base;
1020 }
1021 
1022 static const struct dce_hwseq_registers hwseq_reg = {
1023 		HWSEQ_DCN2_REG_LIST()
1024 };
1025 
1026 static const struct dce_hwseq_shift hwseq_shift = {
1027 		HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1028 };
1029 
1030 static const struct dce_hwseq_mask hwseq_mask = {
1031 		HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1032 };
1033 
dcn20_hwseq_create(struct dc_context * ctx)1034 struct dce_hwseq *dcn20_hwseq_create(
1035 	struct dc_context *ctx)
1036 {
1037 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1038 
1039 	if (hws) {
1040 		hws->ctx = ctx;
1041 		hws->regs = &hwseq_reg;
1042 		hws->shifts = &hwseq_shift;
1043 		hws->masks = &hwseq_mask;
1044 	}
1045 	return hws;
1046 }
1047 
1048 static const struct resource_create_funcs res_create_funcs = {
1049 	.read_dce_straps = read_dce_straps,
1050 	.create_audio = dcn20_create_audio,
1051 	.create_stream_encoder = dcn20_stream_encoder_create,
1052 	.create_hwseq = dcn20_hwseq_create,
1053 };
1054 
1055 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1056 
dcn20_clock_source_destroy(struct clock_source ** clk_src)1057 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1058 {
1059 	kfree(TO_DCE110_CLK_SRC(*clk_src));
1060 	*clk_src = NULL;
1061 }
1062 
1063 
dcn20_dsc_create(struct dc_context * ctx,uint32_t inst)1064 struct display_stream_compressor *dcn20_dsc_create(
1065 	struct dc_context *ctx, uint32_t inst)
1066 {
1067 	struct dcn20_dsc *dsc =
1068 		kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1069 
1070 	if (!dsc) {
1071 		BREAK_TO_DEBUGGER();
1072 		return NULL;
1073 	}
1074 
1075 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1076 	return &dsc->base;
1077 }
1078 
dcn20_dsc_destroy(struct display_stream_compressor ** dsc)1079 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1080 {
1081 	kfree(container_of(*dsc, struct dcn20_dsc, base));
1082 	*dsc = NULL;
1083 }
1084 
1085 
dcn20_resource_destruct(struct dcn20_resource_pool * pool)1086 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1087 {
1088 	unsigned int i;
1089 
1090 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1091 		if (pool->base.stream_enc[i] != NULL) {
1092 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1093 			pool->base.stream_enc[i] = NULL;
1094 		}
1095 	}
1096 
1097 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1098 		if (pool->base.dscs[i] != NULL)
1099 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1100 	}
1101 
1102 	if (pool->base.mpc != NULL) {
1103 		kfree(TO_DCN20_MPC(pool->base.mpc));
1104 		pool->base.mpc = NULL;
1105 	}
1106 	if (pool->base.hubbub != NULL) {
1107 		kfree(pool->base.hubbub);
1108 		pool->base.hubbub = NULL;
1109 	}
1110 	for (i = 0; i < pool->base.pipe_count; i++) {
1111 		if (pool->base.dpps[i] != NULL)
1112 			dcn20_dpp_destroy(&pool->base.dpps[i]);
1113 
1114 		if (pool->base.ipps[i] != NULL)
1115 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1116 
1117 		if (pool->base.hubps[i] != NULL) {
1118 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1119 			pool->base.hubps[i] = NULL;
1120 		}
1121 
1122 		if (pool->base.irqs != NULL) {
1123 			dal_irq_service_destroy(&pool->base.irqs);
1124 		}
1125 	}
1126 
1127 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1128 		if (pool->base.engines[i] != NULL)
1129 			dce110_engine_destroy(&pool->base.engines[i]);
1130 		if (pool->base.hw_i2cs[i] != NULL) {
1131 			kfree(pool->base.hw_i2cs[i]);
1132 			pool->base.hw_i2cs[i] = NULL;
1133 		}
1134 		if (pool->base.sw_i2cs[i] != NULL) {
1135 			kfree(pool->base.sw_i2cs[i]);
1136 			pool->base.sw_i2cs[i] = NULL;
1137 		}
1138 	}
1139 
1140 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1141 		if (pool->base.opps[i] != NULL)
1142 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1143 	}
1144 
1145 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1146 		if (pool->base.timing_generators[i] != NULL)	{
1147 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1148 			pool->base.timing_generators[i] = NULL;
1149 		}
1150 	}
1151 
1152 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1153 		if (pool->base.dwbc[i] != NULL) {
1154 			kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1155 			pool->base.dwbc[i] = NULL;
1156 		}
1157 		if (pool->base.mcif_wb[i] != NULL) {
1158 			kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1159 			pool->base.mcif_wb[i] = NULL;
1160 		}
1161 	}
1162 
1163 	for (i = 0; i < pool->base.audio_count; i++) {
1164 		if (pool->base.audios[i])
1165 			dce_aud_destroy(&pool->base.audios[i]);
1166 	}
1167 
1168 	for (i = 0; i < pool->base.clk_src_count; i++) {
1169 		if (pool->base.clock_sources[i] != NULL) {
1170 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1171 			pool->base.clock_sources[i] = NULL;
1172 		}
1173 	}
1174 
1175 	if (pool->base.dp_clock_source != NULL) {
1176 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1177 		pool->base.dp_clock_source = NULL;
1178 	}
1179 
1180 
1181 	if (pool->base.abm != NULL)
1182 		dce_abm_destroy(&pool->base.abm);
1183 
1184 	if (pool->base.dmcu != NULL)
1185 		dce_dmcu_destroy(&pool->base.dmcu);
1186 
1187 	if (pool->base.dccg != NULL)
1188 		dcn_dccg_destroy(&pool->base.dccg);
1189 
1190 	if (pool->base.pp_smu != NULL)
1191 		dcn20_pp_smu_destroy(&pool->base.pp_smu);
1192 
1193 	if (pool->base.oem_device != NULL) {
1194 		struct dc *dc = pool->base.oem_device->ctx->dc;
1195 
1196 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1197 	}
1198 }
1199 
dcn20_hubp_create(struct dc_context * ctx,uint32_t inst)1200 struct hubp *dcn20_hubp_create(
1201 	struct dc_context *ctx,
1202 	uint32_t inst)
1203 {
1204 	struct dcn20_hubp *hubp2 =
1205 		kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1206 
1207 	if (!hubp2)
1208 		return NULL;
1209 
1210 	if (hubp2_construct(hubp2, ctx, inst,
1211 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1212 		return &hubp2->base;
1213 
1214 	BREAK_TO_DEBUGGER();
1215 	kfree(hubp2);
1216 	return NULL;
1217 }
1218 
get_pixel_clock_parameters(struct pipe_ctx * pipe_ctx,struct pixel_clk_params * pixel_clk_params)1219 static void get_pixel_clock_parameters(
1220 	struct pipe_ctx *pipe_ctx,
1221 	struct pixel_clk_params *pixel_clk_params)
1222 {
1223 	const struct dc_stream_state *stream = pipe_ctx->stream;
1224 	struct pipe_ctx *odm_pipe;
1225 	int opp_cnt = 1;
1226 	struct dc_link *link = stream->link;
1227 	struct link_encoder *link_enc = NULL;
1228 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1229 	struct dce_hwseq *hws = dc->hwseq;
1230 
1231 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1232 		opp_cnt++;
1233 
1234 	pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1235 
1236 	link_enc = link_enc_cfg_get_link_enc(link);
1237 	if (link_enc)
1238 		pixel_clk_params->encoder_object_id = link_enc->id;
1239 
1240 	pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1241 	pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1242 	/* TODO: un-hardcode*/
1243 	/* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1244 	pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1245 		LINK_RATE_REF_FREQ_IN_KHZ;
1246 	pixel_clk_params->flags.ENABLE_SS = 0;
1247 	pixel_clk_params->color_depth =
1248 		stream->timing.display_color_depth;
1249 	pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1250 	pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1251 
1252 	if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1253 		pixel_clk_params->color_depth = COLOR_DEPTH_888;
1254 
1255 	if (opp_cnt == 4)
1256 		pixel_clk_params->requested_pix_clk_100hz /= 4;
1257 	else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1258 		pixel_clk_params->requested_pix_clk_100hz /= 2;
1259 	else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1260 		if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1261 			pixel_clk_params->requested_pix_clk_100hz /= 2;
1262 	}
1263 
1264 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1265 		pixel_clk_params->requested_pix_clk_100hz *= 2;
1266 
1267 }
1268 
build_clamping_params(struct dc_stream_state * stream)1269 static void build_clamping_params(struct dc_stream_state *stream)
1270 {
1271 	stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1272 	stream->clamping.c_depth = stream->timing.display_color_depth;
1273 	stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1274 }
1275 
dcn20_build_pipe_pix_clk_params(struct pipe_ctx * pipe_ctx)1276 void dcn20_build_pipe_pix_clk_params(struct pipe_ctx *pipe_ctx)
1277 {
1278 	get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1279 	pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1280 			pipe_ctx->clock_source,
1281 			&pipe_ctx->stream_res.pix_clk_params,
1282 			&pipe_ctx->pll_settings);
1283 }
1284 
build_pipe_hw_param(struct pipe_ctx * pipe_ctx)1285 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1286 {
1287 
1288 	dcn20_build_pipe_pix_clk_params(pipe_ctx);
1289 
1290 	pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1291 
1292 	resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1293 					&pipe_ctx->stream->bit_depth_params);
1294 	build_clamping_params(pipe_ctx->stream);
1295 
1296 	return DC_OK;
1297 }
1298 
dcn20_build_mapped_resource(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)1299 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1300 {
1301 	enum dc_status status = DC_OK;
1302 	struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
1303 
1304 	if (!pipe_ctx)
1305 		return DC_ERROR_UNEXPECTED;
1306 
1307 
1308 	status = build_pipe_hw_param(pipe_ctx);
1309 
1310 	return status;
1311 }
1312 
1313 
dcn20_acquire_dsc(const struct dc * dc,struct resource_context * res_ctx,struct display_stream_compressor ** dsc,int pipe_idx)1314 void dcn20_acquire_dsc(const struct dc *dc,
1315 			struct resource_context *res_ctx,
1316 			struct display_stream_compressor **dsc,
1317 			int pipe_idx)
1318 {
1319 	int i;
1320 	const struct resource_pool *pool = dc->res_pool;
1321 	struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1322 
1323 	ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1324 	*dsc = NULL;
1325 
1326 	/* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1327 	if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1328 		*dsc = pool->dscs[pipe_idx];
1329 		res_ctx->is_dsc_acquired[pipe_idx] = true;
1330 		return;
1331 	}
1332 
1333 	/* Return old DSC to avoid the need for re-programming */
1334 	if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1335 		*dsc = dsc_old;
1336 		res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1337 		return ;
1338 	}
1339 
1340 	/* Find first free DSC */
1341 	for (i = 0; i < pool->res_cap->num_dsc; i++)
1342 		if (!res_ctx->is_dsc_acquired[i]) {
1343 			*dsc = pool->dscs[i];
1344 			res_ctx->is_dsc_acquired[i] = true;
1345 			break;
1346 		}
1347 }
1348 
dcn20_release_dsc(struct resource_context * res_ctx,const struct resource_pool * pool,struct display_stream_compressor ** dsc)1349 void dcn20_release_dsc(struct resource_context *res_ctx,
1350 			const struct resource_pool *pool,
1351 			struct display_stream_compressor **dsc)
1352 {
1353 	int i;
1354 
1355 	for (i = 0; i < pool->res_cap->num_dsc; i++)
1356 		if (pool->dscs[i] == *dsc) {
1357 			res_ctx->is_dsc_acquired[i] = false;
1358 			*dsc = NULL;
1359 			break;
1360 		}
1361 }
1362 
1363 
1364 
dcn20_add_dsc_to_stream_resource(struct dc * dc,struct dc_state * dc_ctx,struct dc_stream_state * dc_stream)1365 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1366 		struct dc_state *dc_ctx,
1367 		struct dc_stream_state *dc_stream)
1368 {
1369 	enum dc_status result = DC_OK;
1370 	int i;
1371 
1372 	/* Get a DSC if required and available */
1373 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1374 		struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1375 
1376 		if (pipe_ctx->top_pipe)
1377 			continue;
1378 
1379 		if (pipe_ctx->stream != dc_stream)
1380 			continue;
1381 
1382 		if (pipe_ctx->stream_res.dsc)
1383 			continue;
1384 
1385 		dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1386 
1387 		/* The number of DSCs can be less than the number of pipes */
1388 		if (!pipe_ctx->stream_res.dsc) {
1389 			result = DC_NO_DSC_RESOURCE;
1390 		}
1391 
1392 		break;
1393 	}
1394 
1395 	return result;
1396 }
1397 
1398 
remove_dsc_from_stream_resource(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1399 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1400 		struct dc_state *new_ctx,
1401 		struct dc_stream_state *dc_stream)
1402 {
1403 	struct pipe_ctx *pipe_ctx = NULL;
1404 	int i;
1405 
1406 	for (i = 0; i < MAX_PIPES; i++) {
1407 		if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1408 			pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1409 
1410 			if (pipe_ctx->stream_res.dsc)
1411 				dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1412 		}
1413 	}
1414 
1415 	if (!pipe_ctx)
1416 		return DC_ERROR_UNEXPECTED;
1417 	else
1418 		return DC_OK;
1419 }
1420 
1421 
dcn20_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1422 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1423 {
1424 	enum dc_status result = DC_ERROR_UNEXPECTED;
1425 
1426 	result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1427 
1428 	if (result == DC_OK)
1429 		result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1430 
1431 	/* Get a DSC if required and available */
1432 	if (result == DC_OK && dc_stream->timing.flags.DSC)
1433 		result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1434 
1435 	if (result == DC_OK)
1436 		result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1437 
1438 	return result;
1439 }
1440 
1441 
dcn20_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1442 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1443 {
1444 	enum dc_status result = DC_OK;
1445 
1446 	result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1447 
1448 	return result;
1449 }
1450 
1451 /**
1452  * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1453  *
1454  * @dc: DC object with resource pool info required for pipe split
1455  * @res_ctx: Persistent state of resources
1456  * @prev_odm_pipe: Reference to the previous ODM pipe
1457  * @next_odm_pipe: Reference to the next ODM pipe
1458  *
1459  * This function takes a logically active pipe and a logically free pipe and
1460  * halves all the scaling parameters that need to be halved while populating
1461  * the free pipe with the required resources and configuring the next/previous
1462  * ODM pipe pointers.
1463  *
1464  * Return:
1465  * Return true if split stream for ODM is possible, otherwise, return false.
1466  */
dcn20_split_stream_for_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * prev_odm_pipe,struct pipe_ctx * next_odm_pipe)1467 bool dcn20_split_stream_for_odm(
1468 		const struct dc *dc,
1469 		struct resource_context *res_ctx,
1470 		struct pipe_ctx *prev_odm_pipe,
1471 		struct pipe_ctx *next_odm_pipe)
1472 {
1473 	int pipe_idx = next_odm_pipe->pipe_idx;
1474 	const struct resource_pool *pool = dc->res_pool;
1475 
1476 	*next_odm_pipe = *prev_odm_pipe;
1477 
1478 	next_odm_pipe->pipe_idx = pipe_idx;
1479 	next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1480 	next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1481 	next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1482 	next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1483 	next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1484 	next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1485 	next_odm_pipe->stream_res.dsc = NULL;
1486 	if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1487 		next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1488 		next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1489 	}
1490 	if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1491 		prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1492 		next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1493 	}
1494 	if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1495 		prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1496 		next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1497 	}
1498 	prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1499 	next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1500 
1501 	if (prev_odm_pipe->plane_state) {
1502 		struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1503 		int new_width;
1504 
1505 		/* HACTIVE halved for odm combine */
1506 		sd->h_active /= 2;
1507 		/* Calculate new vp and recout for left pipe */
1508 		/* Need at least 16 pixels width per side */
1509 		if (sd->recout.x + 16 >= sd->h_active)
1510 			return false;
1511 		new_width = sd->h_active - sd->recout.x;
1512 		sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1513 				sd->ratios.horz, sd->recout.width - new_width));
1514 		sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1515 				sd->ratios.horz_c, sd->recout.width - new_width));
1516 		sd->recout.width = new_width;
1517 
1518 		/* Calculate new vp and recout for right pipe */
1519 		sd = &next_odm_pipe->plane_res.scl_data;
1520 		/* HACTIVE halved for odm combine */
1521 		sd->h_active /= 2;
1522 		/* Need at least 16 pixels width per side */
1523 		if (new_width <= 16)
1524 			return false;
1525 		new_width = sd->recout.width + sd->recout.x - sd->h_active;
1526 		sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1527 				sd->ratios.horz, sd->recout.width - new_width));
1528 		sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1529 				sd->ratios.horz_c, sd->recout.width - new_width));
1530 		sd->recout.width = new_width;
1531 		sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1532 				sd->ratios.horz, sd->h_active - sd->recout.x));
1533 		sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1534 				sd->ratios.horz_c, sd->h_active - sd->recout.x));
1535 		sd->recout.x = 0;
1536 	}
1537 	if (!next_odm_pipe->top_pipe)
1538 		next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1539 	else
1540 		next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1541 	if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1542 		dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1543 		ASSERT(next_odm_pipe->stream_res.dsc);
1544 		if (next_odm_pipe->stream_res.dsc == NULL)
1545 			return false;
1546 	}
1547 
1548 	return true;
1549 }
1550 
dcn20_split_stream_for_mpc(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * primary_pipe,struct pipe_ctx * secondary_pipe)1551 void dcn20_split_stream_for_mpc(
1552 		struct resource_context *res_ctx,
1553 		const struct resource_pool *pool,
1554 		struct pipe_ctx *primary_pipe,
1555 		struct pipe_ctx *secondary_pipe)
1556 {
1557 	int pipe_idx = secondary_pipe->pipe_idx;
1558 	struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1559 
1560 	*secondary_pipe = *primary_pipe;
1561 	secondary_pipe->bottom_pipe = sec_bot_pipe;
1562 
1563 	secondary_pipe->pipe_idx = pipe_idx;
1564 	secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1565 	secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1566 	secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1567 	secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1568 	secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1569 	secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1570 	secondary_pipe->stream_res.dsc = NULL;
1571 	if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1572 		ASSERT(!secondary_pipe->bottom_pipe);
1573 		secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1574 		secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1575 	}
1576 	primary_pipe->bottom_pipe = secondary_pipe;
1577 	secondary_pipe->top_pipe = primary_pipe;
1578 
1579 	ASSERT(primary_pipe->plane_state);
1580 }
1581 
dcn20_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1582 unsigned int dcn20_calc_max_scaled_time(
1583 		unsigned int time_per_pixel,
1584 		enum mmhubbub_wbif_mode mode,
1585 		unsigned int urgent_watermark)
1586 {
1587 	unsigned int time_per_byte = 0;
1588 	unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1589 	unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1590 	unsigned int small_free_entry, max_free_entry;
1591 	unsigned int buf_lh_capability;
1592 	unsigned int max_scaled_time;
1593 
1594 	if (mode == PACKED_444) /* packed mode */
1595 		time_per_byte = time_per_pixel/4;
1596 	else if (mode == PLANAR_420_8BPC)
1597 		time_per_byte  = time_per_pixel;
1598 	else if (mode == PLANAR_420_10BPC) /* p010 */
1599 		time_per_byte  = time_per_pixel * 819/1024;
1600 
1601 	if (time_per_byte == 0)
1602 		time_per_byte = 1;
1603 
1604 	small_free_entry  = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1605 	max_free_entry    = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1606 	buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1607 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1608 	return max_scaled_time;
1609 }
1610 
dcn20_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1611 void dcn20_set_mcif_arb_params(
1612 		struct dc *dc,
1613 		struct dc_state *context,
1614 		display_e2e_pipe_params_st *pipes,
1615 		int pipe_cnt)
1616 {
1617 	enum mmhubbub_wbif_mode wbif_mode;
1618 	struct mcif_arb_params *wb_arb_params;
1619 	int i, j, dwb_pipe;
1620 
1621 	/* Writeback MCIF_WB arbitration parameters */
1622 	dwb_pipe = 0;
1623 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1624 
1625 		if (!context->res_ctx.pipe_ctx[i].stream)
1626 			continue;
1627 
1628 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1629 			if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1630 				continue;
1631 
1632 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1633 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1634 
1635 			if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1636 				if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1637 					wbif_mode = PLANAR_420_8BPC;
1638 				else
1639 					wbif_mode = PLANAR_420_10BPC;
1640 			} else
1641 				wbif_mode = PACKED_444;
1642 
1643 			DC_FP_START();
1644 			dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1645 			DC_FP_END();
1646 
1647 			wb_arb_params->slice_lines = 32;
1648 			wb_arb_params->arbitration_slice = 2;
1649 			wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1650 				wbif_mode,
1651 				wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1652 
1653 			dwb_pipe++;
1654 
1655 			if (dwb_pipe >= MAX_DWB_PIPES)
1656 				return;
1657 		}
1658 		if (dwb_pipe >= MAX_DWB_PIPES)
1659 			return;
1660 	}
1661 }
1662 
dcn20_validate_dsc(struct dc * dc,struct dc_state * new_ctx)1663 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1664 {
1665 	int i;
1666 
1667 	/* Validate DSC config, dsc count validation is already done */
1668 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1669 		struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1670 		struct dc_stream_state *stream = pipe_ctx->stream;
1671 		struct dsc_config dsc_cfg;
1672 		struct pipe_ctx *odm_pipe;
1673 		int opp_cnt = 1;
1674 
1675 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1676 			opp_cnt++;
1677 
1678 		/* Only need to validate top pipe */
1679 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1680 			continue;
1681 
1682 		dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1683 				+ stream->timing.h_border_right) / opp_cnt;
1684 		dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1685 				+ stream->timing.v_border_bottom;
1686 		dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1687 		dsc_cfg.color_depth = stream->timing.display_color_depth;
1688 		dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1689 		dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1690 		dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1691 
1692 		if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1693 			return false;
1694 	}
1695 	return true;
1696 }
1697 
dcn20_find_secondary_pipe(struct dc * dc,struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1698 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1699 		struct resource_context *res_ctx,
1700 		const struct resource_pool *pool,
1701 		const struct pipe_ctx *primary_pipe)
1702 {
1703 	struct pipe_ctx *secondary_pipe = NULL;
1704 
1705 	if (dc && primary_pipe) {
1706 		int j;
1707 		int preferred_pipe_idx = 0;
1708 
1709 		/* first check the prev dc state:
1710 		 * if this primary pipe has a bottom pipe in prev. state
1711 		 * and if the bottom pipe is still available (which it should be),
1712 		 * pick that pipe as secondary
1713 		 * Same logic applies for ODM pipes
1714 		 */
1715 		if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1716 			preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1717 			if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1718 				secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1719 				secondary_pipe->pipe_idx = preferred_pipe_idx;
1720 			}
1721 		}
1722 		if (secondary_pipe == NULL &&
1723 				dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1724 			preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1725 			if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1726 				secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1727 				secondary_pipe->pipe_idx = preferred_pipe_idx;
1728 			}
1729 		}
1730 
1731 		/*
1732 		 * if this primary pipe does not have a bottom pipe in prev. state
1733 		 * start backward and find a pipe that did not used to be a bottom pipe in
1734 		 * prev. dc state. This way we make sure we keep the same assignment as
1735 		 * last state and will not have to reprogram every pipe
1736 		 */
1737 		if (secondary_pipe == NULL) {
1738 			for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1739 				if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1740 						&& dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1741 					preferred_pipe_idx = j;
1742 
1743 					if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1744 						secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1745 						secondary_pipe->pipe_idx = preferred_pipe_idx;
1746 						break;
1747 					}
1748 				}
1749 			}
1750 		}
1751 		/*
1752 		 * We should never hit this assert unless assignments are shuffled around
1753 		 * if this happens we will prob. hit a vsync tdr
1754 		 */
1755 		ASSERT(secondary_pipe);
1756 		/*
1757 		 * search backwards for the second pipe to keep pipe
1758 		 * assignment more consistent
1759 		 */
1760 		if (secondary_pipe == NULL) {
1761 			for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1762 				preferred_pipe_idx = j;
1763 
1764 				if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1765 					secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1766 					secondary_pipe->pipe_idx = preferred_pipe_idx;
1767 					break;
1768 				}
1769 			}
1770 		}
1771 	}
1772 
1773 	return secondary_pipe;
1774 }
1775 
dcn20_merge_pipes_for_validate(struct dc * dc,struct dc_state * context)1776 void dcn20_merge_pipes_for_validate(
1777 		struct dc *dc,
1778 		struct dc_state *context)
1779 {
1780 	int i;
1781 
1782 	/* merge previously split odm pipes since mode support needs to make the decision */
1783 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1784 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1785 		struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1786 
1787 		if (pipe->prev_odm_pipe)
1788 			continue;
1789 
1790 		pipe->next_odm_pipe = NULL;
1791 		while (odm_pipe) {
1792 			struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1793 
1794 			odm_pipe->plane_state = NULL;
1795 			odm_pipe->stream = NULL;
1796 			odm_pipe->top_pipe = NULL;
1797 			odm_pipe->bottom_pipe = NULL;
1798 			odm_pipe->prev_odm_pipe = NULL;
1799 			odm_pipe->next_odm_pipe = NULL;
1800 			if (odm_pipe->stream_res.dsc)
1801 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1802 			/* Clear plane_res and stream_res */
1803 			memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1804 			memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1805 			odm_pipe = next_odm_pipe;
1806 		}
1807 		if (pipe->plane_state)
1808 			resource_build_scaling_params(pipe);
1809 	}
1810 
1811 	/* merge previously mpc split pipes since mode support needs to make the decision */
1812 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1813 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1814 		struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1815 
1816 		if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1817 			continue;
1818 
1819 		pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1820 		if (hsplit_pipe->bottom_pipe)
1821 			hsplit_pipe->bottom_pipe->top_pipe = pipe;
1822 		hsplit_pipe->plane_state = NULL;
1823 		hsplit_pipe->stream = NULL;
1824 		hsplit_pipe->top_pipe = NULL;
1825 		hsplit_pipe->bottom_pipe = NULL;
1826 
1827 		/* Clear plane_res and stream_res */
1828 		memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1829 		memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1830 		if (pipe->plane_state)
1831 			resource_build_scaling_params(pipe);
1832 	}
1833 }
1834 
dcn20_validate_apply_pipe_split_flags(struct dc * dc,struct dc_state * context,int vlevel,int * split,bool * merge)1835 int dcn20_validate_apply_pipe_split_flags(
1836 		struct dc *dc,
1837 		struct dc_state *context,
1838 		int vlevel,
1839 		int *split,
1840 		bool *merge)
1841 {
1842 	int i, pipe_idx, vlevel_split;
1843 	int plane_count = 0;
1844 	bool force_split = false;
1845 	bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1846 	struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1847 	int max_mpc_comb = v->maxMpcComb;
1848 
1849 	if (context->stream_count > 1) {
1850 		if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1851 			avoid_split = true;
1852 	} else if (dc->debug.force_single_disp_pipe_split)
1853 			force_split = true;
1854 
1855 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1856 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1857 
1858 		/**
1859 		 * Workaround for avoiding pipe-split in cases where we'd split
1860 		 * planes that are too small, resulting in splits that aren't
1861 		 * valid for the scaler.
1862 		 */
1863 		if (pipe->plane_state &&
1864 		    (pipe->plane_state->dst_rect.width <= 16 ||
1865 		     pipe->plane_state->dst_rect.height <= 16 ||
1866 		     pipe->plane_state->src_rect.width <= 16 ||
1867 		     pipe->plane_state->src_rect.height <= 16))
1868 			avoid_split = true;
1869 
1870 		/* TODO: fix dc bugs and remove this split threshold thing */
1871 		if (pipe->stream && !pipe->prev_odm_pipe &&
1872 				(!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1873 			++plane_count;
1874 	}
1875 	if (plane_count > dc->res_pool->pipe_count / 2)
1876 		avoid_split = true;
1877 
1878 	/* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1879 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1880 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1881 		struct dc_crtc_timing timing;
1882 
1883 		if (!pipe->stream)
1884 			continue;
1885 		else {
1886 			timing = pipe->stream->timing;
1887 			if (timing.h_border_left + timing.h_border_right
1888 					+ timing.v_border_top + timing.v_border_bottom > 0) {
1889 				avoid_split = true;
1890 				break;
1891 			}
1892 		}
1893 	}
1894 
1895 	/* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1896 	if (avoid_split) {
1897 		for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1898 			if (!context->res_ctx.pipe_ctx[i].stream)
1899 				continue;
1900 
1901 			for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1902 				if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1903 						v->ModeSupport[vlevel][0])
1904 					break;
1905 			/* Impossible to not split this pipe */
1906 			if (vlevel > context->bw_ctx.dml.soc.num_states)
1907 				vlevel = vlevel_split;
1908 			else
1909 				max_mpc_comb = 0;
1910 			pipe_idx++;
1911 		}
1912 		v->maxMpcComb = max_mpc_comb;
1913 	}
1914 
1915 	/* Split loop sets which pipe should be split based on dml outputs and dc flags */
1916 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1917 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1918 		int pipe_plane = v->pipe_plane[pipe_idx];
1919 		bool split4mpc = context->stream_count == 1 && plane_count == 1
1920 				&& dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1921 
1922 		if (!context->res_ctx.pipe_ctx[i].stream)
1923 			continue;
1924 
1925 		if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1926 			split[i] = 4;
1927 		else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1928 				split[i] = 2;
1929 
1930 		if ((pipe->stream->view_format ==
1931 				VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1932 				pipe->stream->view_format ==
1933 				VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1934 				(pipe->stream->timing.timing_3d_format ==
1935 				TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1936 				 pipe->stream->timing.timing_3d_format ==
1937 				TIMING_3D_FORMAT_SIDE_BY_SIDE))
1938 			split[i] = 2;
1939 		if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1940 			split[i] = 2;
1941 			v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1942 		}
1943 		if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1944 			split[i] = 4;
1945 			v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1946 		}
1947 		/*420 format workaround*/
1948 		if (pipe->stream->timing.h_addressable > 7680 &&
1949 				pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1950 			split[i] = 4;
1951 		}
1952 		v->ODMCombineEnabled[pipe_plane] =
1953 			v->ODMCombineEnablePerState[vlevel][pipe_plane];
1954 
1955 		if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1956 			if (resource_get_mpc_slice_count(pipe) == 2) {
1957 				/*If need split for mpc but 2 way split already*/
1958 				if (split[i] == 4)
1959 					split[i] = 2; /* 2 -> 4 MPC */
1960 				else if (split[i] == 2)
1961 					split[i] = 0; /* 2 -> 2 MPC */
1962 				else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1963 					merge[i] = true; /* 2 -> 1 MPC */
1964 			} else if (resource_get_mpc_slice_count(pipe) == 4) {
1965 				/*If need split for mpc but 4 way split already*/
1966 				if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1967 						|| !pipe->bottom_pipe)) {
1968 					merge[i] = true; /* 4 -> 2 MPC */
1969 				} else if (split[i] == 0 && pipe->top_pipe &&
1970 						pipe->top_pipe->plane_state == pipe->plane_state)
1971 					merge[i] = true; /* 4 -> 1 MPC */
1972 				split[i] = 0;
1973 			} else if (resource_get_odm_slice_count(pipe) > 1) {
1974 				/* ODM -> MPC transition */
1975 				if (pipe->prev_odm_pipe) {
1976 					split[i] = 0;
1977 					merge[i] = true;
1978 				}
1979 			}
1980 		} else {
1981 			if (resource_get_odm_slice_count(pipe) == 2) {
1982 				/*If need split for odm but 2 way split already*/
1983 				if (split[i] == 4)
1984 					split[i] = 2; /* 2 -> 4 ODM */
1985 				else if (split[i] == 2)
1986 					split[i] = 0; /* 2 -> 2 ODM */
1987 				else if (pipe->prev_odm_pipe) {
1988 					ASSERT(0); /* NOT expected yet */
1989 					merge[i] = true; /* exit ODM */
1990 				}
1991 			} else if (resource_get_odm_slice_count(pipe) == 4) {
1992 				/*If need split for odm but 4 way split already*/
1993 				if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
1994 						|| !pipe->next_odm_pipe)) {
1995 					merge[i] = true; /* 4 -> 2 ODM */
1996 				} else if (split[i] == 0 && pipe->prev_odm_pipe) {
1997 					ASSERT(0); /* NOT expected yet */
1998 					merge[i] = true; /* exit ODM */
1999 				}
2000 				split[i] = 0;
2001 			} else if (resource_get_mpc_slice_count(pipe) > 1) {
2002 				/* MPC -> ODM transition */
2003 				ASSERT(0); /* NOT expected yet */
2004 				if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2005 					split[i] = 0;
2006 					merge[i] = true;
2007 				}
2008 			}
2009 		}
2010 
2011 		/* Adjust dppclk when split is forced, do not bother with dispclk */
2012 		if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
2013 			DC_FP_START();
2014 			dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2015 			DC_FP_END();
2016 		}
2017 		pipe_idx++;
2018 	}
2019 
2020 	return vlevel;
2021 }
2022 
dcn20_fast_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * pipe_split_from,int * vlevel_out,bool fast_validate)2023 bool dcn20_fast_validate_bw(
2024 		struct dc *dc,
2025 		struct dc_state *context,
2026 		display_e2e_pipe_params_st *pipes,
2027 		int *pipe_cnt_out,
2028 		int *pipe_split_from,
2029 		int *vlevel_out,
2030 		bool fast_validate)
2031 {
2032 	bool out = false;
2033 	int split[MAX_PIPES] = { 0 };
2034 	int pipe_cnt, i, pipe_idx, vlevel;
2035 
2036 	ASSERT(pipes);
2037 	if (!pipes)
2038 		return false;
2039 
2040 	dcn20_merge_pipes_for_validate(dc, context);
2041 
2042 	DC_FP_START();
2043 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2044 	DC_FP_END();
2045 
2046 	*pipe_cnt_out = pipe_cnt;
2047 
2048 	if (!pipe_cnt) {
2049 		out = true;
2050 		goto validate_out;
2051 	}
2052 
2053 	vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2054 
2055 	if (vlevel > context->bw_ctx.dml.soc.num_states)
2056 		goto validate_fail;
2057 
2058 	vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2059 
2060 	/*initialize pipe_just_split_from to invalid idx*/
2061 	for (i = 0; i < MAX_PIPES; i++)
2062 		pipe_split_from[i] = -1;
2063 
2064 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2065 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2066 		struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2067 
2068 		if (!pipe->stream || pipe_split_from[i] >= 0)
2069 			continue;
2070 
2071 		pipe_idx++;
2072 
2073 		if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2074 			hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2075 			ASSERT(hsplit_pipe);
2076 			if (!dcn20_split_stream_for_odm(
2077 					dc, &context->res_ctx,
2078 					pipe, hsplit_pipe))
2079 				goto validate_fail;
2080 			pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2081 			dcn20_build_mapped_resource(dc, context, pipe->stream);
2082 		}
2083 
2084 		if (!pipe->plane_state)
2085 			continue;
2086 		/* Skip 2nd half of already split pipe */
2087 		if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2088 			continue;
2089 
2090 		/* We do not support mpo + odm at the moment */
2091 		if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2092 				&& context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2093 			goto validate_fail;
2094 
2095 		if (split[i] == 2) {
2096 			if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2097 				/* pipe not split previously needs split */
2098 				hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2099 				ASSERT(hsplit_pipe);
2100 				if (!hsplit_pipe) {
2101 					DC_FP_START();
2102 					dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2103 					DC_FP_END();
2104 					continue;
2105 				}
2106 				if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2107 					if (!dcn20_split_stream_for_odm(
2108 							dc, &context->res_ctx,
2109 							pipe, hsplit_pipe))
2110 						goto validate_fail;
2111 					dcn20_build_mapped_resource(dc, context, pipe->stream);
2112 				} else {
2113 					dcn20_split_stream_for_mpc(
2114 							&context->res_ctx, dc->res_pool,
2115 							pipe, hsplit_pipe);
2116 					resource_build_scaling_params(pipe);
2117 					resource_build_scaling_params(hsplit_pipe);
2118 				}
2119 				pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2120 			}
2121 		} else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2122 			/* merge should already have been done */
2123 			ASSERT(0);
2124 		}
2125 	}
2126 	/* Actual dsc count per stream dsc validation*/
2127 	if (!dcn20_validate_dsc(dc, context)) {
2128 		context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2129 				DML_FAIL_DSC_VALIDATION_FAILURE;
2130 		goto validate_fail;
2131 	}
2132 
2133 	*vlevel_out = vlevel;
2134 
2135 	out = true;
2136 	goto validate_out;
2137 
2138 validate_fail:
2139 	out = false;
2140 
2141 validate_out:
2142 	return out;
2143 }
2144 
dcn20_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2145 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2146 		bool fast_validate)
2147 {
2148 	bool voltage_supported;
2149 	display_e2e_pipe_params_st *pipes;
2150 
2151 	pipes = kcalloc(dc->res_pool->pipe_count, sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2152 	if (!pipes)
2153 		return false;
2154 
2155 	DC_FP_START();
2156 	voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate, pipes);
2157 	DC_FP_END();
2158 
2159 	kfree(pipes);
2160 	return voltage_supported;
2161 }
2162 
dcn20_acquire_free_pipe_for_layer(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,const struct pipe_ctx * opp_head)2163 struct pipe_ctx *dcn20_acquire_free_pipe_for_layer(
2164 		const struct dc_state *cur_ctx,
2165 		struct dc_state *new_ctx,
2166 		const struct resource_pool *pool,
2167 		const struct pipe_ctx *opp_head)
2168 {
2169 	struct resource_context *res_ctx = &new_ctx->res_ctx;
2170 	struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(res_ctx, opp_head->stream);
2171 	struct pipe_ctx *sec_dpp_pipe = resource_find_free_secondary_pipe_legacy(res_ctx, pool, otg_master);
2172 
2173 	ASSERT(otg_master);
2174 
2175 	if (!sec_dpp_pipe)
2176 		return NULL;
2177 
2178 	sec_dpp_pipe->stream = opp_head->stream;
2179 	sec_dpp_pipe->stream_res.tg = opp_head->stream_res.tg;
2180 	sec_dpp_pipe->stream_res.opp = opp_head->stream_res.opp;
2181 
2182 	sec_dpp_pipe->plane_res.hubp = pool->hubps[sec_dpp_pipe->pipe_idx];
2183 	sec_dpp_pipe->plane_res.ipp = pool->ipps[sec_dpp_pipe->pipe_idx];
2184 	sec_dpp_pipe->plane_res.dpp = pool->dpps[sec_dpp_pipe->pipe_idx];
2185 	sec_dpp_pipe->plane_res.mpcc_inst = pool->dpps[sec_dpp_pipe->pipe_idx]->inst;
2186 
2187 	return sec_dpp_pipe;
2188 }
2189 
dcn20_get_dcc_compression_cap(const struct dc * dc,const struct dc_dcc_surface_param * input,struct dc_surface_dcc_cap * output)2190 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2191 		const struct dc_dcc_surface_param *input,
2192 		struct dc_surface_dcc_cap *output)
2193 {
2194 	return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2195 			dc->res_pool->hubbub,
2196 			input,
2197 			output);
2198 }
2199 
dcn20_destroy_resource_pool(struct resource_pool ** pool)2200 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2201 {
2202 	struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2203 
2204 	dcn20_resource_destruct(dcn20_pool);
2205 	kfree(dcn20_pool);
2206 	*pool = NULL;
2207 }
2208 
2209 
2210 static struct dc_cap_funcs cap_funcs = {
2211 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2212 };
2213 
2214 
dcn20_patch_unknown_plane_state(struct dc_plane_state * plane_state)2215 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2216 {
2217 	enum surface_pixel_format surf_pix_format = plane_state->format;
2218 	unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2219 
2220 	plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S;
2221 	if (bpp == 64)
2222 		plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D;
2223 
2224 	return DC_OK;
2225 }
2226 
dcn20_release_pipe(struct dc_state * context,struct pipe_ctx * pipe,const struct resource_pool * pool)2227 void dcn20_release_pipe(struct dc_state *context,
2228 			struct pipe_ctx *pipe,
2229 			const struct resource_pool *pool)
2230 {
2231 	if (resource_is_pipe_type(pipe, OPP_HEAD) && pipe->stream_res.dsc)
2232 		dcn20_release_dsc(&context->res_ctx, pool, &pipe->stream_res.dsc);
2233 	memset(pipe, 0, sizeof(*pipe));
2234 }
2235 
2236 static const struct resource_funcs dcn20_res_pool_funcs = {
2237 	.destroy = dcn20_destroy_resource_pool,
2238 	.link_enc_create = dcn20_link_encoder_create,
2239 	.panel_cntl_create = dcn20_panel_cntl_create,
2240 	.validate_bandwidth = dcn20_validate_bandwidth,
2241 	.acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer,
2242 	.release_pipe = dcn20_release_pipe,
2243 	.add_stream_to_ctx = dcn20_add_stream_to_ctx,
2244 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2245 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2246 	.populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2247 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2248 	.set_mcif_arb_params = dcn20_set_mcif_arb_params,
2249 	.populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2250 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2251 };
2252 
dcn20_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)2253 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2254 {
2255 	int i;
2256 	uint32_t pipe_count = pool->res_cap->num_dwb;
2257 
2258 	for (i = 0; i < pipe_count; i++) {
2259 		struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2260 						    GFP_KERNEL);
2261 
2262 		if (!dwbc20) {
2263 			dm_error("DC: failed to create dwbc20!\n");
2264 			return false;
2265 		}
2266 		dcn20_dwbc_construct(dwbc20, ctx,
2267 				&dwbc20_regs[i],
2268 				&dwbc20_shift,
2269 				&dwbc20_mask,
2270 				i);
2271 		pool->dwbc[i] = &dwbc20->base;
2272 	}
2273 	return true;
2274 }
2275 
dcn20_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)2276 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2277 {
2278 	int i;
2279 	uint32_t pipe_count = pool->res_cap->num_dwb;
2280 
2281 	ASSERT(pipe_count > 0);
2282 
2283 	for (i = 0; i < pipe_count; i++) {
2284 		struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2285 						    GFP_KERNEL);
2286 
2287 		if (!mcif_wb20) {
2288 			dm_error("DC: failed to create mcif_wb20!\n");
2289 			return false;
2290 		}
2291 
2292 		dcn20_mmhubbub_construct(mcif_wb20, ctx,
2293 				&mcif_wb20_regs[i],
2294 				&mcif_wb20_shift,
2295 				&mcif_wb20_mask,
2296 				i);
2297 
2298 		pool->mcif_wb[i] = &mcif_wb20->base;
2299 	}
2300 	return true;
2301 }
2302 
dcn20_pp_smu_create(struct dc_context * ctx)2303 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2304 {
2305 	struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2306 
2307 	if (!pp_smu)
2308 		return pp_smu;
2309 
2310 	dm_pp_get_funcs(ctx, pp_smu);
2311 
2312 	if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2313 		pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2314 
2315 	return pp_smu;
2316 }
2317 
dcn20_pp_smu_destroy(struct pp_smu_funcs ** pp_smu)2318 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2319 {
2320 	if (pp_smu && *pp_smu) {
2321 		kfree(*pp_smu);
2322 		*pp_smu = NULL;
2323 	}
2324 }
2325 
get_asic_rev_soc_bb(uint32_t hw_internal_rev)2326 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2327 	uint32_t hw_internal_rev)
2328 {
2329 	if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2330 		return &dcn2_0_nv14_soc;
2331 
2332 	if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2333 		return &dcn2_0_nv12_soc;
2334 
2335 	return &dcn2_0_soc;
2336 }
2337 
get_asic_rev_ip_params(uint32_t hw_internal_rev)2338 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2339 	uint32_t hw_internal_rev)
2340 {
2341 	/* NV14 */
2342 	if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2343 		return &dcn2_0_nv14_ip;
2344 
2345 	/* NV12 and NV10 */
2346 	return &dcn2_0_ip;
2347 }
2348 
get_dml_project_version(uint32_t hw_internal_rev)2349 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2350 {
2351 	return DML_PROJECT_NAVI10v2;
2352 }
2353 
init_soc_bounding_box(struct dc * dc,struct dcn20_resource_pool * pool)2354 static bool init_soc_bounding_box(struct dc *dc,
2355 				  struct dcn20_resource_pool *pool)
2356 {
2357 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2358 			get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2359 	struct _vcs_dpi_ip_params_st *loaded_ip =
2360 			get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2361 
2362 	DC_LOGGER_INIT(dc->ctx->logger);
2363 
2364 	if (pool->base.pp_smu) {
2365 		struct pp_smu_nv_clock_table max_clocks = {0};
2366 		unsigned int uclk_states[8] = {0};
2367 		unsigned int num_states = 0;
2368 		enum pp_smu_status status;
2369 		bool clock_limits_available = false;
2370 		bool uclk_states_available = false;
2371 
2372 		if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2373 			status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2374 				(&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2375 
2376 			uclk_states_available = (status == PP_SMU_RESULT_OK);
2377 		}
2378 
2379 		if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2380 			status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2381 					(&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2382 			/* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2383 			 */
2384 			if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2385 				max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2386 			clock_limits_available = (status == PP_SMU_RESULT_OK);
2387 		}
2388 
2389 		if (clock_limits_available && uclk_states_available && num_states) {
2390 			DC_FP_START();
2391 			dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2392 			DC_FP_END();
2393 		} else if (clock_limits_available) {
2394 			DC_FP_START();
2395 			dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2396 			DC_FP_END();
2397 		}
2398 	}
2399 
2400 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2401 	loaded_ip->max_num_dpp = pool->base.pipe_count;
2402 	DC_FP_START();
2403 	dcn20_patch_bounding_box(dc, loaded_bb);
2404 	DC_FP_END();
2405 	return true;
2406 }
2407 
dcn20_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn20_resource_pool * pool)2408 static bool dcn20_resource_construct(
2409 	uint8_t num_virtual_links,
2410 	struct dc *dc,
2411 	struct dcn20_resource_pool *pool)
2412 {
2413 	int i;
2414 	struct dc_context *ctx = dc->ctx;
2415 	struct irq_service_init_data init_data;
2416 	struct ddc_service_init_data ddc_init_data = {0};
2417 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2418 			get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2419 	struct _vcs_dpi_ip_params_st *loaded_ip =
2420 			get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2421 	enum dml_project dml_project_version =
2422 			get_dml_project_version(ctx->asic_id.hw_internal_rev);
2423 
2424 	ctx->dc_bios->regs = &bios_regs;
2425 	pool->base.funcs = &dcn20_res_pool_funcs;
2426 
2427 	if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2428 		pool->base.res_cap = &res_cap_nv14;
2429 		pool->base.pipe_count = 5;
2430 		pool->base.mpcc_count = 5;
2431 	} else {
2432 		pool->base.res_cap = &res_cap_nv10;
2433 		pool->base.pipe_count = 6;
2434 		pool->base.mpcc_count = 6;
2435 	}
2436 	/*************************************************
2437 	 *  Resource + asic cap harcoding                *
2438 	 *************************************************/
2439 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2440 
2441 	dc->caps.max_downscale_ratio = 200;
2442 	dc->caps.i2c_speed_in_khz = 100;
2443 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2444 	dc->caps.max_cursor_size = 256;
2445 	dc->caps.min_horizontal_blanking_period = 80;
2446 	dc->caps.dmdata_alloc_size = 2048;
2447 
2448 	dc->caps.max_slave_planes = 1;
2449 	dc->caps.max_slave_yuv_planes = 1;
2450 	dc->caps.max_slave_rgb_planes = 1;
2451 	dc->caps.post_blend_color_processing = true;
2452 	dc->caps.force_dp_tps4_for_cp2520 = true;
2453 	dc->caps.extended_aux_timeout_support = true;
2454 
2455 	/* Color pipeline capabilities */
2456 	dc->caps.color.dpp.dcn_arch = 1;
2457 	dc->caps.color.dpp.input_lut_shared = 0;
2458 	dc->caps.color.dpp.icsc = 1;
2459 	dc->caps.color.dpp.dgam_ram = 1;
2460 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2461 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2462 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2463 	dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2464 	dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2465 	dc->caps.color.dpp.post_csc = 0;
2466 	dc->caps.color.dpp.gamma_corr = 0;
2467 	dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2468 
2469 	dc->caps.color.dpp.hw_3d_lut = 1;
2470 	dc->caps.color.dpp.ogam_ram = 1;
2471 	// no OGAM ROM on DCN2, only MPC ROM
2472 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2473 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2474 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2475 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2476 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2477 	dc->caps.color.dpp.ocsc = 0;
2478 
2479 	dc->caps.color.mpc.gamut_remap = 0;
2480 	dc->caps.color.mpc.num_3dluts = 0;
2481 	dc->caps.color.mpc.shared_3d_lut = 0;
2482 	dc->caps.color.mpc.ogam_ram = 1;
2483 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2484 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2485 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2486 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2487 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2488 	dc->caps.color.mpc.ocsc = 1;
2489 
2490 	dc->caps.dp_hdmi21_pcon_support = true;
2491 
2492 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2493 		dc->debug = debug_defaults_drv;
2494 
2495 	//dcn2.0x
2496 	dc->work_arounds.dedcn20_305_wa = true;
2497 
2498 	// Init the vm_helper
2499 	if (dc->vm_helper)
2500 		vm_helper_init(dc->vm_helper, 16);
2501 
2502 	/*************************************************
2503 	 *  Create resources                             *
2504 	 *************************************************/
2505 
2506 	pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2507 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2508 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2509 				&clk_src_regs[0], false);
2510 	pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2511 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2512 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2513 				&clk_src_regs[1], false);
2514 	pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2515 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2516 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2517 				&clk_src_regs[2], false);
2518 	pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2519 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2520 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2521 				&clk_src_regs[3], false);
2522 	pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2523 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2524 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2525 				&clk_src_regs[4], false);
2526 	pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2527 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2528 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2529 				&clk_src_regs[5], false);
2530 	pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2531 	/* todo: not reuse phy_pll registers */
2532 	pool->base.dp_clock_source =
2533 			dcn20_clock_source_create(ctx, ctx->dc_bios,
2534 				CLOCK_SOURCE_ID_DP_DTO,
2535 				&clk_src_regs[0], true);
2536 
2537 	for (i = 0; i < pool->base.clk_src_count; i++) {
2538 		if (pool->base.clock_sources[i] == NULL) {
2539 			dm_error("DC: failed to create clock sources!\n");
2540 			BREAK_TO_DEBUGGER();
2541 			goto create_fail;
2542 		}
2543 	}
2544 
2545 	pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2546 	if (pool->base.dccg == NULL) {
2547 		dm_error("DC: failed to create dccg!\n");
2548 		BREAK_TO_DEBUGGER();
2549 		goto create_fail;
2550 	}
2551 
2552 	pool->base.dmcu = dcn20_dmcu_create(ctx,
2553 			&dmcu_regs,
2554 			&dmcu_shift,
2555 			&dmcu_mask);
2556 	if (pool->base.dmcu == NULL) {
2557 		dm_error("DC: failed to create dmcu!\n");
2558 		BREAK_TO_DEBUGGER();
2559 		goto create_fail;
2560 	}
2561 
2562 	pool->base.abm = dce_abm_create(ctx,
2563 			&abm_regs,
2564 			&abm_shift,
2565 			&abm_mask);
2566 	if (pool->base.abm == NULL) {
2567 		dm_error("DC: failed to create abm!\n");
2568 		BREAK_TO_DEBUGGER();
2569 		goto create_fail;
2570 	}
2571 
2572 	pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2573 
2574 
2575 	if (!init_soc_bounding_box(dc, pool)) {
2576 		dm_error("DC: failed to initialize soc bounding box!\n");
2577 		BREAK_TO_DEBUGGER();
2578 		goto create_fail;
2579 	}
2580 
2581 	dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2582 
2583 	if (!dc->debug.disable_pplib_wm_range) {
2584 		struct pp_smu_wm_range_sets ranges = {0};
2585 		int i = 0;
2586 
2587 		ranges.num_reader_wm_sets = 0;
2588 
2589 		if (loaded_bb->num_states == 1) {
2590 			ranges.reader_wm_sets[0].wm_inst = i;
2591 			ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2592 			ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2593 			ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2594 			ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2595 
2596 			ranges.num_reader_wm_sets = 1;
2597 		} else if (loaded_bb->num_states > 1) {
2598 			for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2599 				ranges.reader_wm_sets[i].wm_inst = i;
2600 				ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2601 				ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2602 				DC_FP_START();
2603 				dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2604 				DC_FP_END();
2605 
2606 				ranges.num_reader_wm_sets = i + 1;
2607 			}
2608 
2609 			ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2610 			ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2611 		}
2612 
2613 		ranges.num_writer_wm_sets = 1;
2614 
2615 		ranges.writer_wm_sets[0].wm_inst = 0;
2616 		ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2617 		ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2618 		ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2619 		ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2620 
2621 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2622 		if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2623 			pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2624 	}
2625 
2626 	init_data.ctx = dc->ctx;
2627 	pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2628 	if (!pool->base.irqs)
2629 		goto create_fail;
2630 
2631 	/* mem input -> ipp -> dpp -> opp -> TG */
2632 	for (i = 0; i < pool->base.pipe_count; i++) {
2633 		pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2634 		if (pool->base.hubps[i] == NULL) {
2635 			BREAK_TO_DEBUGGER();
2636 			dm_error(
2637 				"DC: failed to create memory input!\n");
2638 			goto create_fail;
2639 		}
2640 
2641 		pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2642 		if (pool->base.ipps[i] == NULL) {
2643 			BREAK_TO_DEBUGGER();
2644 			dm_error(
2645 				"DC: failed to create input pixel processor!\n");
2646 			goto create_fail;
2647 		}
2648 
2649 		pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2650 		if (pool->base.dpps[i] == NULL) {
2651 			BREAK_TO_DEBUGGER();
2652 			dm_error(
2653 				"DC: failed to create dpps!\n");
2654 			goto create_fail;
2655 		}
2656 	}
2657 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2658 		pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2659 		if (pool->base.engines[i] == NULL) {
2660 			BREAK_TO_DEBUGGER();
2661 			dm_error(
2662 				"DC:failed to create aux engine!!\n");
2663 			goto create_fail;
2664 		}
2665 		pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2666 		if (pool->base.hw_i2cs[i] == NULL) {
2667 			BREAK_TO_DEBUGGER();
2668 			dm_error(
2669 				"DC:failed to create hw i2c!!\n");
2670 			goto create_fail;
2671 		}
2672 		pool->base.sw_i2cs[i] = NULL;
2673 	}
2674 
2675 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2676 		pool->base.opps[i] = dcn20_opp_create(ctx, i);
2677 		if (pool->base.opps[i] == NULL) {
2678 			BREAK_TO_DEBUGGER();
2679 			dm_error(
2680 				"DC: failed to create output pixel processor!\n");
2681 			goto create_fail;
2682 		}
2683 	}
2684 
2685 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2686 		pool->base.timing_generators[i] = dcn20_timing_generator_create(
2687 				ctx, i);
2688 		if (pool->base.timing_generators[i] == NULL) {
2689 			BREAK_TO_DEBUGGER();
2690 			dm_error("DC: failed to create tg!\n");
2691 			goto create_fail;
2692 		}
2693 	}
2694 
2695 	pool->base.timing_generator_count = i;
2696 
2697 	pool->base.mpc = dcn20_mpc_create(ctx);
2698 	if (pool->base.mpc == NULL) {
2699 		BREAK_TO_DEBUGGER();
2700 		dm_error("DC: failed to create mpc!\n");
2701 		goto create_fail;
2702 	}
2703 
2704 	pool->base.hubbub = dcn20_hubbub_create(ctx);
2705 	if (pool->base.hubbub == NULL) {
2706 		BREAK_TO_DEBUGGER();
2707 		dm_error("DC: failed to create hubbub!\n");
2708 		goto create_fail;
2709 	}
2710 
2711 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2712 		pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2713 		if (pool->base.dscs[i] == NULL) {
2714 			BREAK_TO_DEBUGGER();
2715 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2716 			goto create_fail;
2717 		}
2718 	}
2719 
2720 	if (!dcn20_dwbc_create(ctx, &pool->base)) {
2721 		BREAK_TO_DEBUGGER();
2722 		dm_error("DC: failed to create dwbc!\n");
2723 		goto create_fail;
2724 	}
2725 	if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2726 		BREAK_TO_DEBUGGER();
2727 		dm_error("DC: failed to create mcif_wb!\n");
2728 		goto create_fail;
2729 	}
2730 
2731 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2732 			&res_create_funcs))
2733 		goto create_fail;
2734 
2735 	dcn20_hw_sequencer_construct(dc);
2736 
2737 	// IF NV12, set PG function pointer to NULL. It's not that
2738 	// PG isn't supported for NV12, it's that we don't want to
2739 	// program the registers because that will cause more power
2740 	// to be consumed. We could have created dcn20_init_hw to get
2741 	// the same effect by checking ASIC rev, but there was a
2742 	// request at some point to not check ASIC rev on hw sequencer.
2743 	if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2744 		dc->hwseq->funcs.enable_power_gating_plane = NULL;
2745 		dc->debug.disable_dpp_power_gate = true;
2746 		dc->debug.disable_hubp_power_gate = true;
2747 	}
2748 
2749 
2750 	dc->caps.max_planes =  pool->base.pipe_count;
2751 
2752 	for (i = 0; i < dc->caps.max_planes; ++i)
2753 		dc->caps.planes[i] = plane_cap;
2754 
2755 	dc->cap_funcs = cap_funcs;
2756 
2757 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2758 		ddc_init_data.ctx = dc->ctx;
2759 		ddc_init_data.link = NULL;
2760 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2761 		ddc_init_data.id.enum_id = 0;
2762 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2763 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2764 	} else {
2765 		pool->base.oem_device = NULL;
2766 	}
2767 
2768 	return true;
2769 
2770 create_fail:
2771 
2772 	dcn20_resource_destruct(pool);
2773 
2774 	return false;
2775 }
2776 
dcn20_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2777 struct resource_pool *dcn20_create_resource_pool(
2778 		const struct dc_init_data *init_data,
2779 		struct dc *dc)
2780 {
2781 	struct dcn20_resource_pool *pool =
2782 		kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2783 
2784 	if (!pool)
2785 		return NULL;
2786 
2787 	if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2788 		return &pool->base;
2789 
2790 	BREAK_TO_DEBUGGER();
2791 	kfree(pool);
2792 	return NULL;
2793 }
2794