1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 * Copyright 2019 Raptor Engineering, LLC
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26
27 #include <linux/slab.h>
28
29 #include "dm_services.h"
30 #include "dc.h"
31
32 #include "dcn20/dcn20_init.h"
33
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37
38 #include "dml/dcn20/dcn20_fpu.h"
39
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20/dcn20_hubbub.h"
43 #include "dcn20/dcn20_mpc.h"
44 #include "dcn20/dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20/dcn20_dpp.h"
47 #include "dcn20/dcn20_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dce110/dce110_hwseq.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20/dcn20_opp.h"
52
53 #include "dcn20/dcn20_dsc.h"
54
55 #include "dcn20/dcn20_link_encoder.h"
56 #include "dcn20/dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20/dcn20_dccg.h"
64 #include "dcn20/dcn20_vmid.h"
65 #include "dce/dce_panel_cntl.h"
66
67 #include "navi10_ip_offset.h"
68
69 #include "dcn/dcn_2_0_0_offset.h"
70 #include "dcn/dcn_2_0_0_sh_mask.h"
71 #include "dpcs/dpcs_2_0_0_offset.h"
72 #include "dpcs/dpcs_2_0_0_sh_mask.h"
73
74 #include "nbio/nbio_2_3_offset.h"
75
76 #include "dcn20/dcn20_dwb.h"
77 #include "dcn20/dcn20_mmhubbub.h"
78
79 #include "mmhub/mmhub_2_0_0_offset.h"
80 #include "mmhub/mmhub_2_0_0_sh_mask.h"
81
82 #include "reg_helper.h"
83 #include "dce/dce_abm.h"
84 #include "dce/dce_dmcu.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 #include "vm_helper.h"
88 #include "link_enc_cfg.h"
89
90 #include "amdgpu_socbb.h"
91
92 #include "link.h"
93 #define DC_LOGGER_INIT(logger)
94
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96 #define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
97 #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
98 #define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
99 #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
100 #define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
101 #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
102 #define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
103 #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
104 #define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
105 #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
106 #define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
107 #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
108 #define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
109 #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
110 #endif
111
112
113 enum dcn20_clk_src_array_id {
114 DCN20_CLK_SRC_PLL0,
115 DCN20_CLK_SRC_PLL1,
116 DCN20_CLK_SRC_PLL2,
117 DCN20_CLK_SRC_PLL3,
118 DCN20_CLK_SRC_PLL4,
119 DCN20_CLK_SRC_PLL5,
120 DCN20_CLK_SRC_TOTAL
121 };
122
123 /* begin *********************
124 * macros to expend register list macro defined in HW object header file */
125
126 /* DCN */
127 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
128
129 #define BASE(seg) BASE_INNER(seg)
130
131 #define SR(reg_name)\
132 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
133 mm ## reg_name
134
135 #define SRI(reg_name, block, id)\
136 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 mm ## block ## id ## _ ## reg_name
138
139 #define SRI2_DWB(reg_name, block, id)\
140 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
141 mm ## reg_name
142 #define SF_DWB(reg_name, field_name, post_fix)\
143 .field_name = reg_name ## __ ## field_name ## post_fix
144
145 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \
146 .field_name = reg_name ## __ ## field_name ## post_fix
147
148 #define SRIR(var_name, reg_name, block, id)\
149 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
150 mm ## block ## id ## _ ## reg_name
151
152 #define SRII(reg_name, block, id)\
153 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154 mm ## block ## id ## _ ## reg_name
155
156 #define DCCG_SRII(reg_name, block, id)\
157 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
158 mm ## block ## id ## _ ## reg_name
159
160 #define VUPDATE_SRII(reg_name, block, id)\
161 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
162 mm ## reg_name ## _ ## block ## id
163
164 /* NBIO */
165 #define NBIO_BASE_INNER(seg) \
166 NBIO_BASE__INST0_SEG ## seg
167
168 #define NBIO_BASE(seg) \
169 NBIO_BASE_INNER(seg)
170
171 #define NBIO_SR(reg_name)\
172 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
173 mm ## reg_name
174
175 /* MMHUB */
176 #define MMHUB_BASE_INNER(seg) \
177 MMHUB_BASE__INST0_SEG ## seg
178
179 #define MMHUB_BASE(seg) \
180 MMHUB_BASE_INNER(seg)
181
182 #define MMHUB_SR(reg_name)\
183 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
184 mmMM ## reg_name
185
186 static const struct bios_registers bios_regs = {
187 NBIO_SR(BIOS_SCRATCH_3),
188 NBIO_SR(BIOS_SCRATCH_6)
189 };
190
191 #define clk_src_regs(index, pllid)\
192 [index] = {\
193 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
194 }
195
196 static const struct dce110_clk_src_regs clk_src_regs[] = {
197 clk_src_regs(0, A),
198 clk_src_regs(1, B),
199 clk_src_regs(2, C),
200 clk_src_regs(3, D),
201 clk_src_regs(4, E),
202 clk_src_regs(5, F)
203 };
204
205 static const struct dce110_clk_src_shift cs_shift = {
206 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
207 };
208
209 static const struct dce110_clk_src_mask cs_mask = {
210 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
211 };
212
213 static const struct dce_dmcu_registers dmcu_regs = {
214 DMCU_DCN10_REG_LIST()
215 };
216
217 static const struct dce_dmcu_shift dmcu_shift = {
218 DMCU_MASK_SH_LIST_DCN10(__SHIFT)
219 };
220
221 static const struct dce_dmcu_mask dmcu_mask = {
222 DMCU_MASK_SH_LIST_DCN10(_MASK)
223 };
224
225 static const struct dce_abm_registers abm_regs = {
226 ABM_DCN20_REG_LIST()
227 };
228
229 static const struct dce_abm_shift abm_shift = {
230 ABM_MASK_SH_LIST_DCN20(__SHIFT)
231 };
232
233 static const struct dce_abm_mask abm_mask = {
234 ABM_MASK_SH_LIST_DCN20(_MASK)
235 };
236
237 #define audio_regs(id)\
238 [id] = {\
239 AUD_COMMON_REG_LIST(id)\
240 }
241
242 static const struct dce_audio_registers audio_regs[] = {
243 audio_regs(0),
244 audio_regs(1),
245 audio_regs(2),
246 audio_regs(3),
247 audio_regs(4),
248 audio_regs(5),
249 audio_regs(6),
250 };
251
252 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
253 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
254 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
255 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
256
257 static const struct dce_audio_shift audio_shift = {
258 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
259 };
260
261 static const struct dce_audio_mask audio_mask = {
262 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
263 };
264
265 #define stream_enc_regs(id)\
266 [id] = {\
267 SE_DCN2_REG_LIST(id)\
268 }
269
270 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
271 stream_enc_regs(0),
272 stream_enc_regs(1),
273 stream_enc_regs(2),
274 stream_enc_regs(3),
275 stream_enc_regs(4),
276 stream_enc_regs(5),
277 };
278
279 static const struct dcn10_stream_encoder_shift se_shift = {
280 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
281 };
282
283 static const struct dcn10_stream_encoder_mask se_mask = {
284 SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
285 };
286
287
288 #define aux_regs(id)\
289 [id] = {\
290 DCN2_AUX_REG_LIST(id)\
291 }
292
293 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
294 aux_regs(0),
295 aux_regs(1),
296 aux_regs(2),
297 aux_regs(3),
298 aux_regs(4),
299 aux_regs(5)
300 };
301
302 #define hpd_regs(id)\
303 [id] = {\
304 HPD_REG_LIST(id)\
305 }
306
307 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
308 hpd_regs(0),
309 hpd_regs(1),
310 hpd_regs(2),
311 hpd_regs(3),
312 hpd_regs(4),
313 hpd_regs(5)
314 };
315
316 #define link_regs(id, phyid)\
317 [id] = {\
318 LE_DCN10_REG_LIST(id), \
319 UNIPHY_DCN2_REG_LIST(phyid), \
320 DPCS_DCN2_REG_LIST(id), \
321 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
322 }
323
324 static const struct dcn10_link_enc_registers link_enc_regs[] = {
325 link_regs(0, A),
326 link_regs(1, B),
327 link_regs(2, C),
328 link_regs(3, D),
329 link_regs(4, E),
330 link_regs(5, F)
331 };
332
333 static const struct dcn10_link_enc_shift le_shift = {
334 LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
335 DPCS_DCN2_MASK_SH_LIST(__SHIFT)
336 };
337
338 static const struct dcn10_link_enc_mask le_mask = {
339 LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
340 DPCS_DCN2_MASK_SH_LIST(_MASK)
341 };
342
343 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
344 { DCN_PANEL_CNTL_REG_LIST() }
345 };
346
347 static const struct dce_panel_cntl_shift panel_cntl_shift = {
348 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
349 };
350
351 static const struct dce_panel_cntl_mask panel_cntl_mask = {
352 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
353 };
354
355 #define ipp_regs(id)\
356 [id] = {\
357 IPP_REG_LIST_DCN20(id),\
358 }
359
360 static const struct dcn10_ipp_registers ipp_regs[] = {
361 ipp_regs(0),
362 ipp_regs(1),
363 ipp_regs(2),
364 ipp_regs(3),
365 ipp_regs(4),
366 ipp_regs(5),
367 };
368
369 static const struct dcn10_ipp_shift ipp_shift = {
370 IPP_MASK_SH_LIST_DCN20(__SHIFT)
371 };
372
373 static const struct dcn10_ipp_mask ipp_mask = {
374 IPP_MASK_SH_LIST_DCN20(_MASK),
375 };
376
377 #define opp_regs(id)\
378 [id] = {\
379 OPP_REG_LIST_DCN20(id),\
380 }
381
382 static const struct dcn20_opp_registers opp_regs[] = {
383 opp_regs(0),
384 opp_regs(1),
385 opp_regs(2),
386 opp_regs(3),
387 opp_regs(4),
388 opp_regs(5),
389 };
390
391 static const struct dcn20_opp_shift opp_shift = {
392 OPP_MASK_SH_LIST_DCN20(__SHIFT)
393 };
394
395 static const struct dcn20_opp_mask opp_mask = {
396 OPP_MASK_SH_LIST_DCN20(_MASK)
397 };
398
399 #define aux_engine_regs(id)\
400 [id] = {\
401 AUX_COMMON_REG_LIST0(id), \
402 .AUXN_IMPCAL = 0, \
403 .AUXP_IMPCAL = 0, \
404 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
405 }
406
407 static const struct dce110_aux_registers aux_engine_regs[] = {
408 aux_engine_regs(0),
409 aux_engine_regs(1),
410 aux_engine_regs(2),
411 aux_engine_regs(3),
412 aux_engine_regs(4),
413 aux_engine_regs(5)
414 };
415
416 #define tf_regs(id)\
417 [id] = {\
418 TF_REG_LIST_DCN20(id),\
419 TF_REG_LIST_DCN20_COMMON_APPEND(id),\
420 }
421
422 static const struct dcn2_dpp_registers tf_regs[] = {
423 tf_regs(0),
424 tf_regs(1),
425 tf_regs(2),
426 tf_regs(3),
427 tf_regs(4),
428 tf_regs(5),
429 };
430
431 static const struct dcn2_dpp_shift tf_shift = {
432 TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
433 TF_DEBUG_REG_LIST_SH_DCN20
434 };
435
436 static const struct dcn2_dpp_mask tf_mask = {
437 TF_REG_LIST_SH_MASK_DCN20(_MASK),
438 TF_DEBUG_REG_LIST_MASK_DCN20
439 };
440
441 #define dwbc_regs_dcn2(id)\
442 [id] = {\
443 DWBC_COMMON_REG_LIST_DCN2_0(id),\
444 }
445
446 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
447 dwbc_regs_dcn2(0),
448 };
449
450 static const struct dcn20_dwbc_shift dwbc20_shift = {
451 DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
452 };
453
454 static const struct dcn20_dwbc_mask dwbc20_mask = {
455 DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
456 };
457
458 #define mcif_wb_regs_dcn2(id)\
459 [id] = {\
460 MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
461 }
462
463 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
464 mcif_wb_regs_dcn2(0),
465 };
466
467 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
468 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
469 };
470
471 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
472 MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
473 };
474
475 static const struct dcn20_mpc_registers mpc_regs = {
476 MPC_REG_LIST_DCN2_0(0),
477 MPC_REG_LIST_DCN2_0(1),
478 MPC_REG_LIST_DCN2_0(2),
479 MPC_REG_LIST_DCN2_0(3),
480 MPC_REG_LIST_DCN2_0(4),
481 MPC_REG_LIST_DCN2_0(5),
482 MPC_OUT_MUX_REG_LIST_DCN2_0(0),
483 MPC_OUT_MUX_REG_LIST_DCN2_0(1),
484 MPC_OUT_MUX_REG_LIST_DCN2_0(2),
485 MPC_OUT_MUX_REG_LIST_DCN2_0(3),
486 MPC_OUT_MUX_REG_LIST_DCN2_0(4),
487 MPC_OUT_MUX_REG_LIST_DCN2_0(5),
488 MPC_DBG_REG_LIST_DCN2_0()
489 };
490
491 static const struct dcn20_mpc_shift mpc_shift = {
492 MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
493 MPC_DEBUG_REG_LIST_SH_DCN20
494 };
495
496 static const struct dcn20_mpc_mask mpc_mask = {
497 MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
498 MPC_DEBUG_REG_LIST_MASK_DCN20
499 };
500
501 #define tg_regs(id)\
502 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
503
504
505 static const struct dcn_optc_registers tg_regs[] = {
506 tg_regs(0),
507 tg_regs(1),
508 tg_regs(2),
509 tg_regs(3),
510 tg_regs(4),
511 tg_regs(5)
512 };
513
514 static const struct dcn_optc_shift tg_shift = {
515 TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
516 };
517
518 static const struct dcn_optc_mask tg_mask = {
519 TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
520 };
521
522 #define hubp_regs(id)\
523 [id] = {\
524 HUBP_REG_LIST_DCN20(id)\
525 }
526
527 static const struct dcn_hubp2_registers hubp_regs[] = {
528 hubp_regs(0),
529 hubp_regs(1),
530 hubp_regs(2),
531 hubp_regs(3),
532 hubp_regs(4),
533 hubp_regs(5)
534 };
535
536 static const struct dcn_hubp2_shift hubp_shift = {
537 HUBP_MASK_SH_LIST_DCN20(__SHIFT)
538 };
539
540 static const struct dcn_hubp2_mask hubp_mask = {
541 HUBP_MASK_SH_LIST_DCN20(_MASK)
542 };
543
544 static const struct dcn_hubbub_registers hubbub_reg = {
545 HUBBUB_REG_LIST_DCN20(0)
546 };
547
548 static const struct dcn_hubbub_shift hubbub_shift = {
549 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
550 };
551
552 static const struct dcn_hubbub_mask hubbub_mask = {
553 HUBBUB_MASK_SH_LIST_DCN20(_MASK)
554 };
555
556 #define vmid_regs(id)\
557 [id] = {\
558 DCN20_VMID_REG_LIST(id)\
559 }
560
561 static const struct dcn_vmid_registers vmid_regs[] = {
562 vmid_regs(0),
563 vmid_regs(1),
564 vmid_regs(2),
565 vmid_regs(3),
566 vmid_regs(4),
567 vmid_regs(5),
568 vmid_regs(6),
569 vmid_regs(7),
570 vmid_regs(8),
571 vmid_regs(9),
572 vmid_regs(10),
573 vmid_regs(11),
574 vmid_regs(12),
575 vmid_regs(13),
576 vmid_regs(14),
577 vmid_regs(15)
578 };
579
580 static const struct dcn20_vmid_shift vmid_shifts = {
581 DCN20_VMID_MASK_SH_LIST(__SHIFT)
582 };
583
584 static const struct dcn20_vmid_mask vmid_masks = {
585 DCN20_VMID_MASK_SH_LIST(_MASK)
586 };
587
588 static const struct dce110_aux_registers_shift aux_shift = {
589 DCN_AUX_MASK_SH_LIST(__SHIFT)
590 };
591
592 static const struct dce110_aux_registers_mask aux_mask = {
593 DCN_AUX_MASK_SH_LIST(_MASK)
594 };
595
map_transmitter_id_to_phy_instance(enum transmitter transmitter)596 static int map_transmitter_id_to_phy_instance(
597 enum transmitter transmitter)
598 {
599 switch (transmitter) {
600 case TRANSMITTER_UNIPHY_A:
601 return 0;
602 break;
603 case TRANSMITTER_UNIPHY_B:
604 return 1;
605 break;
606 case TRANSMITTER_UNIPHY_C:
607 return 2;
608 break;
609 case TRANSMITTER_UNIPHY_D:
610 return 3;
611 break;
612 case TRANSMITTER_UNIPHY_E:
613 return 4;
614 break;
615 case TRANSMITTER_UNIPHY_F:
616 return 5;
617 break;
618 default:
619 ASSERT(0);
620 return 0;
621 }
622 }
623
624 #define dsc_regsDCN20(id)\
625 [id] = {\
626 DSC_REG_LIST_DCN20(id)\
627 }
628
629 static const struct dcn20_dsc_registers dsc_regs[] = {
630 dsc_regsDCN20(0),
631 dsc_regsDCN20(1),
632 dsc_regsDCN20(2),
633 dsc_regsDCN20(3),
634 dsc_regsDCN20(4),
635 dsc_regsDCN20(5)
636 };
637
638 static const struct dcn20_dsc_shift dsc_shift = {
639 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
640 };
641
642 static const struct dcn20_dsc_mask dsc_mask = {
643 DSC_REG_LIST_SH_MASK_DCN20(_MASK)
644 };
645
646 static const struct dccg_registers dccg_regs = {
647 DCCG_REG_LIST_DCN2()
648 };
649
650 static const struct dccg_shift dccg_shift = {
651 DCCG_MASK_SH_LIST_DCN2(__SHIFT)
652 };
653
654 static const struct dccg_mask dccg_mask = {
655 DCCG_MASK_SH_LIST_DCN2(_MASK)
656 };
657
658 static const struct resource_caps res_cap_nv10 = {
659 .num_timing_generator = 6,
660 .num_opp = 6,
661 .num_video_plane = 6,
662 .num_audio = 7,
663 .num_stream_encoder = 6,
664 .num_pll = 6,
665 .num_dwb = 1,
666 .num_ddc = 6,
667 .num_vmid = 16,
668 .num_dsc = 6,
669 };
670
671 static const struct dc_plane_cap plane_cap = {
672 .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
673 .per_pixel_alpha = true,
674
675 .pixel_format_support = {
676 .argb8888 = true,
677 .nv12 = true,
678 .fp16 = true,
679 .p010 = true
680 },
681
682 .max_upscale_factor = {
683 .argb8888 = 16000,
684 .nv12 = 16000,
685 .fp16 = 1
686 },
687
688 .max_downscale_factor = {
689 .argb8888 = 250,
690 .nv12 = 250,
691 .fp16 = 1
692 },
693 16,
694 16
695 };
696 static const struct resource_caps res_cap_nv14 = {
697 .num_timing_generator = 5,
698 .num_opp = 5,
699 .num_video_plane = 5,
700 .num_audio = 6,
701 .num_stream_encoder = 5,
702 .num_pll = 5,
703 .num_dwb = 1,
704 .num_ddc = 5,
705 .num_vmid = 16,
706 .num_dsc = 5,
707 };
708
709 static const struct dc_debug_options debug_defaults_drv = {
710 .disable_dmcu = false,
711 .force_abm_enable = false,
712 .timing_trace = false,
713 .clock_trace = true,
714 .disable_pplib_clock_request = true,
715 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
716 .force_single_disp_pipe_split = false,
717 .disable_dcc = DCC_ENABLE,
718 .vsr_support = true,
719 .performance_trace = false,
720 .max_downscale_src_width = 5120,/*upto 5K*/
721 .disable_pplib_wm_range = false,
722 .scl_reset_length10 = true,
723 .sanity_checks = false,
724 .underflow_assert_delay_us = 0xFFFFFFFF,
725 .enable_legacy_fast_update = true,
726 .using_dml2 = false,
727 };
728
dcn20_dpp_destroy(struct dpp ** dpp)729 void dcn20_dpp_destroy(struct dpp **dpp)
730 {
731 kfree(TO_DCN20_DPP(*dpp));
732 *dpp = NULL;
733 }
734
dcn20_dpp_create(struct dc_context * ctx,uint32_t inst)735 struct dpp *dcn20_dpp_create(
736 struct dc_context *ctx,
737 uint32_t inst)
738 {
739 struct dcn20_dpp *dpp =
740 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
741
742 if (!dpp)
743 return NULL;
744
745 if (dpp2_construct(dpp, ctx, inst,
746 &tf_regs[inst], &tf_shift, &tf_mask))
747 return &dpp->base;
748
749 BREAK_TO_DEBUGGER();
750 kfree(dpp);
751 return NULL;
752 }
753
dcn20_ipp_create(struct dc_context * ctx,uint32_t inst)754 struct input_pixel_processor *dcn20_ipp_create(
755 struct dc_context *ctx, uint32_t inst)
756 {
757 struct dcn10_ipp *ipp =
758 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
759
760 if (!ipp) {
761 BREAK_TO_DEBUGGER();
762 return NULL;
763 }
764
765 dcn20_ipp_construct(ipp, ctx, inst,
766 &ipp_regs[inst], &ipp_shift, &ipp_mask);
767 return &ipp->base;
768 }
769
770
dcn20_opp_create(struct dc_context * ctx,uint32_t inst)771 struct output_pixel_processor *dcn20_opp_create(
772 struct dc_context *ctx, uint32_t inst)
773 {
774 struct dcn20_opp *opp =
775 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
776
777 if (!opp) {
778 BREAK_TO_DEBUGGER();
779 return NULL;
780 }
781
782 dcn20_opp_construct(opp, ctx, inst,
783 &opp_regs[inst], &opp_shift, &opp_mask);
784 return &opp->base;
785 }
786
dcn20_aux_engine_create(struct dc_context * ctx,uint32_t inst)787 struct dce_aux *dcn20_aux_engine_create(
788 struct dc_context *ctx,
789 uint32_t inst)
790 {
791 struct aux_engine_dce110 *aux_engine =
792 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
793
794 if (!aux_engine)
795 return NULL;
796
797 dce110_aux_engine_construct(aux_engine, ctx, inst,
798 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
799 &aux_engine_regs[inst],
800 &aux_mask,
801 &aux_shift,
802 ctx->dc->caps.extended_aux_timeout_support);
803
804 return &aux_engine->base;
805 }
806 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
807
808 static const struct dce_i2c_registers i2c_hw_regs[] = {
809 i2c_inst_regs(1),
810 i2c_inst_regs(2),
811 i2c_inst_regs(3),
812 i2c_inst_regs(4),
813 i2c_inst_regs(5),
814 i2c_inst_regs(6),
815 };
816
817 static const struct dce_i2c_shift i2c_shifts = {
818 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
819 };
820
821 static const struct dce_i2c_mask i2c_masks = {
822 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
823 };
824
dcn20_i2c_hw_create(struct dc_context * ctx,uint32_t inst)825 struct dce_i2c_hw *dcn20_i2c_hw_create(
826 struct dc_context *ctx,
827 uint32_t inst)
828 {
829 struct dce_i2c_hw *dce_i2c_hw =
830 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
831
832 if (!dce_i2c_hw)
833 return NULL;
834
835 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
836 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
837
838 return dce_i2c_hw;
839 }
dcn20_mpc_create(struct dc_context * ctx)840 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
841 {
842 struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
843 GFP_ATOMIC);
844
845 if (!mpc20)
846 return NULL;
847
848 dcn20_mpc_construct(mpc20, ctx,
849 &mpc_regs,
850 &mpc_shift,
851 &mpc_mask,
852 6);
853
854 return &mpc20->base;
855 }
856
dcn20_hubbub_create(struct dc_context * ctx)857 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
858 {
859 int i;
860 struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
861 GFP_ATOMIC);
862
863 if (!hubbub)
864 return NULL;
865
866 hubbub2_construct(hubbub, ctx,
867 &hubbub_reg,
868 &hubbub_shift,
869 &hubbub_mask);
870
871 for (i = 0; i < res_cap_nv10.num_vmid; i++) {
872 struct dcn20_vmid *vmid = &hubbub->vmid[i];
873
874 vmid->ctx = ctx;
875
876 vmid->regs = &vmid_regs[i];
877 vmid->shifts = &vmid_shifts;
878 vmid->masks = &vmid_masks;
879 }
880
881 return &hubbub->base;
882 }
883
dcn20_timing_generator_create(struct dc_context * ctx,uint32_t instance)884 struct timing_generator *dcn20_timing_generator_create(
885 struct dc_context *ctx,
886 uint32_t instance)
887 {
888 struct optc *tgn10 =
889 kzalloc(sizeof(struct optc), GFP_ATOMIC);
890
891 if (!tgn10)
892 return NULL;
893
894 tgn10->base.inst = instance;
895 tgn10->base.ctx = ctx;
896
897 tgn10->tg_regs = &tg_regs[instance];
898 tgn10->tg_shift = &tg_shift;
899 tgn10->tg_mask = &tg_mask;
900
901 dcn20_timing_generator_init(tgn10);
902
903 return &tgn10->base;
904 }
905
906 static const struct encoder_feature_support link_enc_feature = {
907 .max_hdmi_deep_color = COLOR_DEPTH_121212,
908 .max_hdmi_pixel_clock = 600000,
909 .hdmi_ycbcr420_supported = true,
910 .dp_ycbcr420_supported = true,
911 .fec_supported = true,
912 .flags.bits.IS_HBR2_CAPABLE = true,
913 .flags.bits.IS_HBR3_CAPABLE = true,
914 .flags.bits.IS_TPS3_CAPABLE = true,
915 .flags.bits.IS_TPS4_CAPABLE = true
916 };
917
dcn20_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)918 struct link_encoder *dcn20_link_encoder_create(
919 struct dc_context *ctx,
920 const struct encoder_init_data *enc_init_data)
921 {
922 struct dcn20_link_encoder *enc20 =
923 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
924 int link_regs_id;
925
926 if (!enc20)
927 return NULL;
928
929 link_regs_id =
930 map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
931
932 dcn20_link_encoder_construct(enc20,
933 enc_init_data,
934 &link_enc_feature,
935 &link_enc_regs[link_regs_id],
936 &link_enc_aux_regs[enc_init_data->channel - 1],
937 &link_enc_hpd_regs[enc_init_data->hpd_source],
938 &le_shift,
939 &le_mask);
940
941 return &enc20->enc10.base;
942 }
943
dcn20_panel_cntl_create(const struct panel_cntl_init_data * init_data)944 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
945 {
946 struct dce_panel_cntl *panel_cntl =
947 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
948
949 if (!panel_cntl)
950 return NULL;
951
952 dce_panel_cntl_construct(panel_cntl,
953 init_data,
954 &panel_cntl_regs[init_data->inst],
955 &panel_cntl_shift,
956 &panel_cntl_mask);
957
958 return &panel_cntl->base;
959 }
960
dcn20_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)961 static struct clock_source *dcn20_clock_source_create(
962 struct dc_context *ctx,
963 struct dc_bios *bios,
964 enum clock_source_id id,
965 const struct dce110_clk_src_regs *regs,
966 bool dp_clk_src)
967 {
968 struct dce110_clk_src *clk_src =
969 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
970
971 if (!clk_src)
972 return NULL;
973
974 if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
975 regs, &cs_shift, &cs_mask)) {
976 clk_src->base.dp_clk_src = dp_clk_src;
977 return &clk_src->base;
978 }
979
980 kfree(clk_src);
981 BREAK_TO_DEBUGGER();
982 return NULL;
983 }
984
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)985 static void read_dce_straps(
986 struct dc_context *ctx,
987 struct resource_straps *straps)
988 {
989 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
990 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
991 }
992
dcn20_create_audio(struct dc_context * ctx,unsigned int inst)993 static struct audio *dcn20_create_audio(
994 struct dc_context *ctx, unsigned int inst)
995 {
996 return dce_audio_create(ctx, inst,
997 &audio_regs[inst], &audio_shift, &audio_mask);
998 }
999
dcn20_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1000 struct stream_encoder *dcn20_stream_encoder_create(
1001 enum engine_id eng_id,
1002 struct dc_context *ctx)
1003 {
1004 struct dcn10_stream_encoder *enc1 =
1005 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1006
1007 if (!enc1)
1008 return NULL;
1009
1010 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1011 if (eng_id >= ENGINE_ID_DIGD)
1012 eng_id++;
1013 }
1014
1015 dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1016 &stream_enc_regs[eng_id],
1017 &se_shift, &se_mask);
1018
1019 return &enc1->base;
1020 }
1021
1022 static const struct dce_hwseq_registers hwseq_reg = {
1023 HWSEQ_DCN2_REG_LIST()
1024 };
1025
1026 static const struct dce_hwseq_shift hwseq_shift = {
1027 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1028 };
1029
1030 static const struct dce_hwseq_mask hwseq_mask = {
1031 HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1032 };
1033
dcn20_hwseq_create(struct dc_context * ctx)1034 struct dce_hwseq *dcn20_hwseq_create(
1035 struct dc_context *ctx)
1036 {
1037 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1038
1039 if (hws) {
1040 hws->ctx = ctx;
1041 hws->regs = &hwseq_reg;
1042 hws->shifts = &hwseq_shift;
1043 hws->masks = &hwseq_mask;
1044 }
1045 return hws;
1046 }
1047
1048 static const struct resource_create_funcs res_create_funcs = {
1049 .read_dce_straps = read_dce_straps,
1050 .create_audio = dcn20_create_audio,
1051 .create_stream_encoder = dcn20_stream_encoder_create,
1052 .create_hwseq = dcn20_hwseq_create,
1053 };
1054
1055 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1056
dcn20_clock_source_destroy(struct clock_source ** clk_src)1057 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1058 {
1059 kfree(TO_DCE110_CLK_SRC(*clk_src));
1060 *clk_src = NULL;
1061 }
1062
1063
dcn20_dsc_create(struct dc_context * ctx,uint32_t inst)1064 struct display_stream_compressor *dcn20_dsc_create(
1065 struct dc_context *ctx, uint32_t inst)
1066 {
1067 struct dcn20_dsc *dsc =
1068 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1069
1070 if (!dsc) {
1071 BREAK_TO_DEBUGGER();
1072 return NULL;
1073 }
1074
1075 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1076 return &dsc->base;
1077 }
1078
dcn20_dsc_destroy(struct display_stream_compressor ** dsc)1079 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1080 {
1081 kfree(container_of(*dsc, struct dcn20_dsc, base));
1082 *dsc = NULL;
1083 }
1084
1085
dcn20_resource_destruct(struct dcn20_resource_pool * pool)1086 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1087 {
1088 unsigned int i;
1089
1090 for (i = 0; i < pool->base.stream_enc_count; i++) {
1091 if (pool->base.stream_enc[i] != NULL) {
1092 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1093 pool->base.stream_enc[i] = NULL;
1094 }
1095 }
1096
1097 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1098 if (pool->base.dscs[i] != NULL)
1099 dcn20_dsc_destroy(&pool->base.dscs[i]);
1100 }
1101
1102 if (pool->base.mpc != NULL) {
1103 kfree(TO_DCN20_MPC(pool->base.mpc));
1104 pool->base.mpc = NULL;
1105 }
1106 if (pool->base.hubbub != NULL) {
1107 kfree(pool->base.hubbub);
1108 pool->base.hubbub = NULL;
1109 }
1110 for (i = 0; i < pool->base.pipe_count; i++) {
1111 if (pool->base.dpps[i] != NULL)
1112 dcn20_dpp_destroy(&pool->base.dpps[i]);
1113
1114 if (pool->base.ipps[i] != NULL)
1115 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1116
1117 if (pool->base.hubps[i] != NULL) {
1118 kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1119 pool->base.hubps[i] = NULL;
1120 }
1121
1122 if (pool->base.irqs != NULL) {
1123 dal_irq_service_destroy(&pool->base.irqs);
1124 }
1125 }
1126
1127 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1128 if (pool->base.engines[i] != NULL)
1129 dce110_engine_destroy(&pool->base.engines[i]);
1130 if (pool->base.hw_i2cs[i] != NULL) {
1131 kfree(pool->base.hw_i2cs[i]);
1132 pool->base.hw_i2cs[i] = NULL;
1133 }
1134 if (pool->base.sw_i2cs[i] != NULL) {
1135 kfree(pool->base.sw_i2cs[i]);
1136 pool->base.sw_i2cs[i] = NULL;
1137 }
1138 }
1139
1140 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1141 if (pool->base.opps[i] != NULL)
1142 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1143 }
1144
1145 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1146 if (pool->base.timing_generators[i] != NULL) {
1147 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1148 pool->base.timing_generators[i] = NULL;
1149 }
1150 }
1151
1152 for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1153 if (pool->base.dwbc[i] != NULL) {
1154 kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1155 pool->base.dwbc[i] = NULL;
1156 }
1157 if (pool->base.mcif_wb[i] != NULL) {
1158 kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1159 pool->base.mcif_wb[i] = NULL;
1160 }
1161 }
1162
1163 for (i = 0; i < pool->base.audio_count; i++) {
1164 if (pool->base.audios[i])
1165 dce_aud_destroy(&pool->base.audios[i]);
1166 }
1167
1168 for (i = 0; i < pool->base.clk_src_count; i++) {
1169 if (pool->base.clock_sources[i] != NULL) {
1170 dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1171 pool->base.clock_sources[i] = NULL;
1172 }
1173 }
1174
1175 if (pool->base.dp_clock_source != NULL) {
1176 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1177 pool->base.dp_clock_source = NULL;
1178 }
1179
1180
1181 if (pool->base.abm != NULL)
1182 dce_abm_destroy(&pool->base.abm);
1183
1184 if (pool->base.dmcu != NULL)
1185 dce_dmcu_destroy(&pool->base.dmcu);
1186
1187 if (pool->base.dccg != NULL)
1188 dcn_dccg_destroy(&pool->base.dccg);
1189
1190 if (pool->base.pp_smu != NULL)
1191 dcn20_pp_smu_destroy(&pool->base.pp_smu);
1192
1193 if (pool->base.oem_device != NULL) {
1194 struct dc *dc = pool->base.oem_device->ctx->dc;
1195
1196 dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1197 }
1198 }
1199
dcn20_hubp_create(struct dc_context * ctx,uint32_t inst)1200 struct hubp *dcn20_hubp_create(
1201 struct dc_context *ctx,
1202 uint32_t inst)
1203 {
1204 struct dcn20_hubp *hubp2 =
1205 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1206
1207 if (!hubp2)
1208 return NULL;
1209
1210 if (hubp2_construct(hubp2, ctx, inst,
1211 &hubp_regs[inst], &hubp_shift, &hubp_mask))
1212 return &hubp2->base;
1213
1214 BREAK_TO_DEBUGGER();
1215 kfree(hubp2);
1216 return NULL;
1217 }
1218
get_pixel_clock_parameters(struct pipe_ctx * pipe_ctx,struct pixel_clk_params * pixel_clk_params)1219 static void get_pixel_clock_parameters(
1220 struct pipe_ctx *pipe_ctx,
1221 struct pixel_clk_params *pixel_clk_params)
1222 {
1223 const struct dc_stream_state *stream = pipe_ctx->stream;
1224 struct pipe_ctx *odm_pipe;
1225 int opp_cnt = 1;
1226 struct dc_link *link = stream->link;
1227 struct link_encoder *link_enc = NULL;
1228 struct dc *dc = pipe_ctx->stream->ctx->dc;
1229 struct dce_hwseq *hws = dc->hwseq;
1230
1231 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1232 opp_cnt++;
1233
1234 pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1235
1236 link_enc = link_enc_cfg_get_link_enc(link);
1237 if (link_enc)
1238 pixel_clk_params->encoder_object_id = link_enc->id;
1239
1240 pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1241 pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1242 /* TODO: un-hardcode*/
1243 /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1244 pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1245 LINK_RATE_REF_FREQ_IN_KHZ;
1246 pixel_clk_params->flags.ENABLE_SS = 0;
1247 pixel_clk_params->color_depth =
1248 stream->timing.display_color_depth;
1249 pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1250 pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1251
1252 if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1253 pixel_clk_params->color_depth = COLOR_DEPTH_888;
1254
1255 if (opp_cnt == 4)
1256 pixel_clk_params->requested_pix_clk_100hz /= 4;
1257 else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1258 pixel_clk_params->requested_pix_clk_100hz /= 2;
1259 else if (hws->funcs.is_dp_dig_pixel_rate_div_policy) {
1260 if (hws->funcs.is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1261 pixel_clk_params->requested_pix_clk_100hz /= 2;
1262 }
1263
1264 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1265 pixel_clk_params->requested_pix_clk_100hz *= 2;
1266
1267 }
1268
build_clamping_params(struct dc_stream_state * stream)1269 static void build_clamping_params(struct dc_stream_state *stream)
1270 {
1271 stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1272 stream->clamping.c_depth = stream->timing.display_color_depth;
1273 stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1274 }
1275
dcn20_build_pipe_pix_clk_params(struct pipe_ctx * pipe_ctx)1276 void dcn20_build_pipe_pix_clk_params(struct pipe_ctx *pipe_ctx)
1277 {
1278 get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1279 pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1280 pipe_ctx->clock_source,
1281 &pipe_ctx->stream_res.pix_clk_params,
1282 &pipe_ctx->pll_settings);
1283 }
1284
build_pipe_hw_param(struct pipe_ctx * pipe_ctx)1285 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1286 {
1287
1288 dcn20_build_pipe_pix_clk_params(pipe_ctx);
1289
1290 pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1291
1292 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1293 &pipe_ctx->stream->bit_depth_params);
1294 build_clamping_params(pipe_ctx->stream);
1295
1296 return DC_OK;
1297 }
1298
dcn20_build_mapped_resource(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)1299 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1300 {
1301 enum dc_status status = DC_OK;
1302 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
1303
1304 if (!pipe_ctx)
1305 return DC_ERROR_UNEXPECTED;
1306
1307
1308 status = build_pipe_hw_param(pipe_ctx);
1309
1310 return status;
1311 }
1312
1313
dcn20_acquire_dsc(const struct dc * dc,struct resource_context * res_ctx,struct display_stream_compressor ** dsc,int pipe_idx)1314 void dcn20_acquire_dsc(const struct dc *dc,
1315 struct resource_context *res_ctx,
1316 struct display_stream_compressor **dsc,
1317 int pipe_idx)
1318 {
1319 int i;
1320 const struct resource_pool *pool = dc->res_pool;
1321 struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1322
1323 ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1324 *dsc = NULL;
1325
1326 /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1327 if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1328 *dsc = pool->dscs[pipe_idx];
1329 res_ctx->is_dsc_acquired[pipe_idx] = true;
1330 return;
1331 }
1332
1333 /* Return old DSC to avoid the need for re-programming */
1334 if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1335 *dsc = dsc_old;
1336 res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1337 return ;
1338 }
1339
1340 /* Find first free DSC */
1341 for (i = 0; i < pool->res_cap->num_dsc; i++)
1342 if (!res_ctx->is_dsc_acquired[i]) {
1343 *dsc = pool->dscs[i];
1344 res_ctx->is_dsc_acquired[i] = true;
1345 break;
1346 }
1347 }
1348
dcn20_release_dsc(struct resource_context * res_ctx,const struct resource_pool * pool,struct display_stream_compressor ** dsc)1349 void dcn20_release_dsc(struct resource_context *res_ctx,
1350 const struct resource_pool *pool,
1351 struct display_stream_compressor **dsc)
1352 {
1353 int i;
1354
1355 for (i = 0; i < pool->res_cap->num_dsc; i++)
1356 if (pool->dscs[i] == *dsc) {
1357 res_ctx->is_dsc_acquired[i] = false;
1358 *dsc = NULL;
1359 break;
1360 }
1361 }
1362
1363
1364
dcn20_add_dsc_to_stream_resource(struct dc * dc,struct dc_state * dc_ctx,struct dc_stream_state * dc_stream)1365 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1366 struct dc_state *dc_ctx,
1367 struct dc_stream_state *dc_stream)
1368 {
1369 enum dc_status result = DC_OK;
1370 int i;
1371
1372 /* Get a DSC if required and available */
1373 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1374 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1375
1376 if (pipe_ctx->top_pipe)
1377 continue;
1378
1379 if (pipe_ctx->stream != dc_stream)
1380 continue;
1381
1382 if (pipe_ctx->stream_res.dsc)
1383 continue;
1384
1385 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1386
1387 /* The number of DSCs can be less than the number of pipes */
1388 if (!pipe_ctx->stream_res.dsc) {
1389 result = DC_NO_DSC_RESOURCE;
1390 }
1391
1392 break;
1393 }
1394
1395 return result;
1396 }
1397
1398
remove_dsc_from_stream_resource(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1399 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1400 struct dc_state *new_ctx,
1401 struct dc_stream_state *dc_stream)
1402 {
1403 struct pipe_ctx *pipe_ctx = NULL;
1404 int i;
1405
1406 for (i = 0; i < MAX_PIPES; i++) {
1407 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1408 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1409
1410 if (pipe_ctx->stream_res.dsc)
1411 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1412 }
1413 }
1414
1415 if (!pipe_ctx)
1416 return DC_ERROR_UNEXPECTED;
1417 else
1418 return DC_OK;
1419 }
1420
1421
dcn20_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1422 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1423 {
1424 enum dc_status result = DC_ERROR_UNEXPECTED;
1425
1426 result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1427
1428 if (result == DC_OK)
1429 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1430
1431 /* Get a DSC if required and available */
1432 if (result == DC_OK && dc_stream->timing.flags.DSC)
1433 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1434
1435 if (result == DC_OK)
1436 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1437
1438 return result;
1439 }
1440
1441
dcn20_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1442 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1443 {
1444 enum dc_status result = DC_OK;
1445
1446 result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1447
1448 return result;
1449 }
1450
1451 /**
1452 * dcn20_split_stream_for_odm - Check if stream can be splited for ODM
1453 *
1454 * @dc: DC object with resource pool info required for pipe split
1455 * @res_ctx: Persistent state of resources
1456 * @prev_odm_pipe: Reference to the previous ODM pipe
1457 * @next_odm_pipe: Reference to the next ODM pipe
1458 *
1459 * This function takes a logically active pipe and a logically free pipe and
1460 * halves all the scaling parameters that need to be halved while populating
1461 * the free pipe with the required resources and configuring the next/previous
1462 * ODM pipe pointers.
1463 *
1464 * Return:
1465 * Return true if split stream for ODM is possible, otherwise, return false.
1466 */
dcn20_split_stream_for_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * prev_odm_pipe,struct pipe_ctx * next_odm_pipe)1467 bool dcn20_split_stream_for_odm(
1468 const struct dc *dc,
1469 struct resource_context *res_ctx,
1470 struct pipe_ctx *prev_odm_pipe,
1471 struct pipe_ctx *next_odm_pipe)
1472 {
1473 int pipe_idx = next_odm_pipe->pipe_idx;
1474 const struct resource_pool *pool = dc->res_pool;
1475
1476 *next_odm_pipe = *prev_odm_pipe;
1477
1478 next_odm_pipe->pipe_idx = pipe_idx;
1479 next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1480 next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1481 next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1482 next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1483 next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1484 next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1485 next_odm_pipe->stream_res.dsc = NULL;
1486 if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1487 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1488 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1489 }
1490 if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1491 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1492 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1493 }
1494 if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1495 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1496 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1497 }
1498 prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1499 next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1500
1501 if (prev_odm_pipe->plane_state) {
1502 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1503 int new_width;
1504
1505 /* HACTIVE halved for odm combine */
1506 sd->h_active /= 2;
1507 /* Calculate new vp and recout for left pipe */
1508 /* Need at least 16 pixels width per side */
1509 if (sd->recout.x + 16 >= sd->h_active)
1510 return false;
1511 new_width = sd->h_active - sd->recout.x;
1512 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1513 sd->ratios.horz, sd->recout.width - new_width));
1514 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1515 sd->ratios.horz_c, sd->recout.width - new_width));
1516 sd->recout.width = new_width;
1517
1518 /* Calculate new vp and recout for right pipe */
1519 sd = &next_odm_pipe->plane_res.scl_data;
1520 /* HACTIVE halved for odm combine */
1521 sd->h_active /= 2;
1522 /* Need at least 16 pixels width per side */
1523 if (new_width <= 16)
1524 return false;
1525 new_width = sd->recout.width + sd->recout.x - sd->h_active;
1526 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1527 sd->ratios.horz, sd->recout.width - new_width));
1528 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1529 sd->ratios.horz_c, sd->recout.width - new_width));
1530 sd->recout.width = new_width;
1531 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1532 sd->ratios.horz, sd->h_active - sd->recout.x));
1533 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1534 sd->ratios.horz_c, sd->h_active - sd->recout.x));
1535 sd->recout.x = 0;
1536 }
1537 if (!next_odm_pipe->top_pipe)
1538 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1539 else
1540 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1541 if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1542 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1543 ASSERT(next_odm_pipe->stream_res.dsc);
1544 if (next_odm_pipe->stream_res.dsc == NULL)
1545 return false;
1546 }
1547
1548 return true;
1549 }
1550
dcn20_split_stream_for_mpc(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * primary_pipe,struct pipe_ctx * secondary_pipe)1551 void dcn20_split_stream_for_mpc(
1552 struct resource_context *res_ctx,
1553 const struct resource_pool *pool,
1554 struct pipe_ctx *primary_pipe,
1555 struct pipe_ctx *secondary_pipe)
1556 {
1557 int pipe_idx = secondary_pipe->pipe_idx;
1558 struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1559
1560 *secondary_pipe = *primary_pipe;
1561 secondary_pipe->bottom_pipe = sec_bot_pipe;
1562
1563 secondary_pipe->pipe_idx = pipe_idx;
1564 secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1565 secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1566 secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1567 secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1568 secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1569 secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1570 secondary_pipe->stream_res.dsc = NULL;
1571 if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1572 ASSERT(!secondary_pipe->bottom_pipe);
1573 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1574 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1575 }
1576 primary_pipe->bottom_pipe = secondary_pipe;
1577 secondary_pipe->top_pipe = primary_pipe;
1578
1579 ASSERT(primary_pipe->plane_state);
1580 }
1581
dcn20_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1582 unsigned int dcn20_calc_max_scaled_time(
1583 unsigned int time_per_pixel,
1584 enum mmhubbub_wbif_mode mode,
1585 unsigned int urgent_watermark)
1586 {
1587 unsigned int time_per_byte = 0;
1588 unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1589 unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1590 unsigned int small_free_entry, max_free_entry;
1591 unsigned int buf_lh_capability;
1592 unsigned int max_scaled_time;
1593
1594 if (mode == PACKED_444) /* packed mode */
1595 time_per_byte = time_per_pixel/4;
1596 else if (mode == PLANAR_420_8BPC)
1597 time_per_byte = time_per_pixel;
1598 else if (mode == PLANAR_420_10BPC) /* p010 */
1599 time_per_byte = time_per_pixel * 819/1024;
1600
1601 if (time_per_byte == 0)
1602 time_per_byte = 1;
1603
1604 small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1605 max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1606 buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1607 max_scaled_time = buf_lh_capability - urgent_watermark;
1608 return max_scaled_time;
1609 }
1610
dcn20_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1611 void dcn20_set_mcif_arb_params(
1612 struct dc *dc,
1613 struct dc_state *context,
1614 display_e2e_pipe_params_st *pipes,
1615 int pipe_cnt)
1616 {
1617 enum mmhubbub_wbif_mode wbif_mode;
1618 struct mcif_arb_params *wb_arb_params;
1619 int i, j, dwb_pipe;
1620
1621 /* Writeback MCIF_WB arbitration parameters */
1622 dwb_pipe = 0;
1623 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1624
1625 if (!context->res_ctx.pipe_ctx[i].stream)
1626 continue;
1627
1628 for (j = 0; j < MAX_DWB_PIPES; j++) {
1629 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1630 continue;
1631
1632 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1633 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1634
1635 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1636 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1637 wbif_mode = PLANAR_420_8BPC;
1638 else
1639 wbif_mode = PLANAR_420_10BPC;
1640 } else
1641 wbif_mode = PACKED_444;
1642
1643 DC_FP_START();
1644 dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1645 DC_FP_END();
1646
1647 wb_arb_params->slice_lines = 32;
1648 wb_arb_params->arbitration_slice = 2;
1649 wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1650 wbif_mode,
1651 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1652
1653 dwb_pipe++;
1654
1655 if (dwb_pipe >= MAX_DWB_PIPES)
1656 return;
1657 }
1658 if (dwb_pipe >= MAX_DWB_PIPES)
1659 return;
1660 }
1661 }
1662
dcn20_validate_dsc(struct dc * dc,struct dc_state * new_ctx)1663 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1664 {
1665 int i;
1666
1667 /* Validate DSC config, dsc count validation is already done */
1668 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1669 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1670 struct dc_stream_state *stream = pipe_ctx->stream;
1671 struct dsc_config dsc_cfg;
1672 struct pipe_ctx *odm_pipe;
1673 int opp_cnt = 1;
1674
1675 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1676 opp_cnt++;
1677
1678 /* Only need to validate top pipe */
1679 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1680 continue;
1681
1682 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1683 + stream->timing.h_border_right) / opp_cnt;
1684 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1685 + stream->timing.v_border_bottom;
1686 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1687 dsc_cfg.color_depth = stream->timing.display_color_depth;
1688 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1689 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1690 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1691
1692 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1693 return false;
1694 }
1695 return true;
1696 }
1697
dcn20_find_secondary_pipe(struct dc * dc,struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1698 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1699 struct resource_context *res_ctx,
1700 const struct resource_pool *pool,
1701 const struct pipe_ctx *primary_pipe)
1702 {
1703 struct pipe_ctx *secondary_pipe = NULL;
1704
1705 if (dc && primary_pipe) {
1706 int j;
1707 int preferred_pipe_idx = 0;
1708
1709 /* first check the prev dc state:
1710 * if this primary pipe has a bottom pipe in prev. state
1711 * and if the bottom pipe is still available (which it should be),
1712 * pick that pipe as secondary
1713 * Same logic applies for ODM pipes
1714 */
1715 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1716 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1717 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1718 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1719 secondary_pipe->pipe_idx = preferred_pipe_idx;
1720 }
1721 }
1722 if (secondary_pipe == NULL &&
1723 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1724 preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1725 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1726 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1727 secondary_pipe->pipe_idx = preferred_pipe_idx;
1728 }
1729 }
1730
1731 /*
1732 * if this primary pipe does not have a bottom pipe in prev. state
1733 * start backward and find a pipe that did not used to be a bottom pipe in
1734 * prev. dc state. This way we make sure we keep the same assignment as
1735 * last state and will not have to reprogram every pipe
1736 */
1737 if (secondary_pipe == NULL) {
1738 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1739 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1740 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1741 preferred_pipe_idx = j;
1742
1743 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1744 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1745 secondary_pipe->pipe_idx = preferred_pipe_idx;
1746 break;
1747 }
1748 }
1749 }
1750 }
1751 /*
1752 * We should never hit this assert unless assignments are shuffled around
1753 * if this happens we will prob. hit a vsync tdr
1754 */
1755 ASSERT(secondary_pipe);
1756 /*
1757 * search backwards for the second pipe to keep pipe
1758 * assignment more consistent
1759 */
1760 if (secondary_pipe == NULL) {
1761 for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1762 preferred_pipe_idx = j;
1763
1764 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1765 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1766 secondary_pipe->pipe_idx = preferred_pipe_idx;
1767 break;
1768 }
1769 }
1770 }
1771 }
1772
1773 return secondary_pipe;
1774 }
1775
dcn20_merge_pipes_for_validate(struct dc * dc,struct dc_state * context)1776 void dcn20_merge_pipes_for_validate(
1777 struct dc *dc,
1778 struct dc_state *context)
1779 {
1780 int i;
1781
1782 /* merge previously split odm pipes since mode support needs to make the decision */
1783 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1784 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1785 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1786
1787 if (pipe->prev_odm_pipe)
1788 continue;
1789
1790 pipe->next_odm_pipe = NULL;
1791 while (odm_pipe) {
1792 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1793
1794 odm_pipe->plane_state = NULL;
1795 odm_pipe->stream = NULL;
1796 odm_pipe->top_pipe = NULL;
1797 odm_pipe->bottom_pipe = NULL;
1798 odm_pipe->prev_odm_pipe = NULL;
1799 odm_pipe->next_odm_pipe = NULL;
1800 if (odm_pipe->stream_res.dsc)
1801 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1802 /* Clear plane_res and stream_res */
1803 memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1804 memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1805 odm_pipe = next_odm_pipe;
1806 }
1807 if (pipe->plane_state)
1808 resource_build_scaling_params(pipe);
1809 }
1810
1811 /* merge previously mpc split pipes since mode support needs to make the decision */
1812 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1813 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1814 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1815
1816 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1817 continue;
1818
1819 pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1820 if (hsplit_pipe->bottom_pipe)
1821 hsplit_pipe->bottom_pipe->top_pipe = pipe;
1822 hsplit_pipe->plane_state = NULL;
1823 hsplit_pipe->stream = NULL;
1824 hsplit_pipe->top_pipe = NULL;
1825 hsplit_pipe->bottom_pipe = NULL;
1826
1827 /* Clear plane_res and stream_res */
1828 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1829 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1830 if (pipe->plane_state)
1831 resource_build_scaling_params(pipe);
1832 }
1833 }
1834
dcn20_validate_apply_pipe_split_flags(struct dc * dc,struct dc_state * context,int vlevel,int * split,bool * merge)1835 int dcn20_validate_apply_pipe_split_flags(
1836 struct dc *dc,
1837 struct dc_state *context,
1838 int vlevel,
1839 int *split,
1840 bool *merge)
1841 {
1842 int i, pipe_idx, vlevel_split;
1843 int plane_count = 0;
1844 bool force_split = false;
1845 bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1846 struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1847 int max_mpc_comb = v->maxMpcComb;
1848
1849 if (context->stream_count > 1) {
1850 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1851 avoid_split = true;
1852 } else if (dc->debug.force_single_disp_pipe_split)
1853 force_split = true;
1854
1855 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1856 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1857
1858 /**
1859 * Workaround for avoiding pipe-split in cases where we'd split
1860 * planes that are too small, resulting in splits that aren't
1861 * valid for the scaler.
1862 */
1863 if (pipe->plane_state &&
1864 (pipe->plane_state->dst_rect.width <= 16 ||
1865 pipe->plane_state->dst_rect.height <= 16 ||
1866 pipe->plane_state->src_rect.width <= 16 ||
1867 pipe->plane_state->src_rect.height <= 16))
1868 avoid_split = true;
1869
1870 /* TODO: fix dc bugs and remove this split threshold thing */
1871 if (pipe->stream && !pipe->prev_odm_pipe &&
1872 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1873 ++plane_count;
1874 }
1875 if (plane_count > dc->res_pool->pipe_count / 2)
1876 avoid_split = true;
1877
1878 /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1879 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1880 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1881 struct dc_crtc_timing timing;
1882
1883 if (!pipe->stream)
1884 continue;
1885 else {
1886 timing = pipe->stream->timing;
1887 if (timing.h_border_left + timing.h_border_right
1888 + timing.v_border_top + timing.v_border_bottom > 0) {
1889 avoid_split = true;
1890 break;
1891 }
1892 }
1893 }
1894
1895 /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1896 if (avoid_split) {
1897 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1898 if (!context->res_ctx.pipe_ctx[i].stream)
1899 continue;
1900
1901 for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1902 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1903 v->ModeSupport[vlevel][0])
1904 break;
1905 /* Impossible to not split this pipe */
1906 if (vlevel > context->bw_ctx.dml.soc.num_states)
1907 vlevel = vlevel_split;
1908 else
1909 max_mpc_comb = 0;
1910 pipe_idx++;
1911 }
1912 v->maxMpcComb = max_mpc_comb;
1913 }
1914
1915 /* Split loop sets which pipe should be split based on dml outputs and dc flags */
1916 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1917 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1918 int pipe_plane = v->pipe_plane[pipe_idx];
1919 bool split4mpc = context->stream_count == 1 && plane_count == 1
1920 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1921
1922 if (!context->res_ctx.pipe_ctx[i].stream)
1923 continue;
1924
1925 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1926 split[i] = 4;
1927 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1928 split[i] = 2;
1929
1930 if ((pipe->stream->view_format ==
1931 VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1932 pipe->stream->view_format ==
1933 VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1934 (pipe->stream->timing.timing_3d_format ==
1935 TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1936 pipe->stream->timing.timing_3d_format ==
1937 TIMING_3D_FORMAT_SIDE_BY_SIDE))
1938 split[i] = 2;
1939 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1940 split[i] = 2;
1941 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1942 }
1943 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1944 split[i] = 4;
1945 v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1946 }
1947 /*420 format workaround*/
1948 if (pipe->stream->timing.h_addressable > 7680 &&
1949 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1950 split[i] = 4;
1951 }
1952 v->ODMCombineEnabled[pipe_plane] =
1953 v->ODMCombineEnablePerState[vlevel][pipe_plane];
1954
1955 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1956 if (resource_get_mpc_slice_count(pipe) == 2) {
1957 /*If need split for mpc but 2 way split already*/
1958 if (split[i] == 4)
1959 split[i] = 2; /* 2 -> 4 MPC */
1960 else if (split[i] == 2)
1961 split[i] = 0; /* 2 -> 2 MPC */
1962 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1963 merge[i] = true; /* 2 -> 1 MPC */
1964 } else if (resource_get_mpc_slice_count(pipe) == 4) {
1965 /*If need split for mpc but 4 way split already*/
1966 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1967 || !pipe->bottom_pipe)) {
1968 merge[i] = true; /* 4 -> 2 MPC */
1969 } else if (split[i] == 0 && pipe->top_pipe &&
1970 pipe->top_pipe->plane_state == pipe->plane_state)
1971 merge[i] = true; /* 4 -> 1 MPC */
1972 split[i] = 0;
1973 } else if (resource_get_odm_slice_count(pipe) > 1) {
1974 /* ODM -> MPC transition */
1975 if (pipe->prev_odm_pipe) {
1976 split[i] = 0;
1977 merge[i] = true;
1978 }
1979 }
1980 } else {
1981 if (resource_get_odm_slice_count(pipe) == 2) {
1982 /*If need split for odm but 2 way split already*/
1983 if (split[i] == 4)
1984 split[i] = 2; /* 2 -> 4 ODM */
1985 else if (split[i] == 2)
1986 split[i] = 0; /* 2 -> 2 ODM */
1987 else if (pipe->prev_odm_pipe) {
1988 ASSERT(0); /* NOT expected yet */
1989 merge[i] = true; /* exit ODM */
1990 }
1991 } else if (resource_get_odm_slice_count(pipe) == 4) {
1992 /*If need split for odm but 4 way split already*/
1993 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
1994 || !pipe->next_odm_pipe)) {
1995 merge[i] = true; /* 4 -> 2 ODM */
1996 } else if (split[i] == 0 && pipe->prev_odm_pipe) {
1997 ASSERT(0); /* NOT expected yet */
1998 merge[i] = true; /* exit ODM */
1999 }
2000 split[i] = 0;
2001 } else if (resource_get_mpc_slice_count(pipe) > 1) {
2002 /* MPC -> ODM transition */
2003 ASSERT(0); /* NOT expected yet */
2004 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2005 split[i] = 0;
2006 merge[i] = true;
2007 }
2008 }
2009 }
2010
2011 /* Adjust dppclk when split is forced, do not bother with dispclk */
2012 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
2013 DC_FP_START();
2014 dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2015 DC_FP_END();
2016 }
2017 pipe_idx++;
2018 }
2019
2020 return vlevel;
2021 }
2022
dcn20_fast_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * pipe_split_from,int * vlevel_out,bool fast_validate)2023 bool dcn20_fast_validate_bw(
2024 struct dc *dc,
2025 struct dc_state *context,
2026 display_e2e_pipe_params_st *pipes,
2027 int *pipe_cnt_out,
2028 int *pipe_split_from,
2029 int *vlevel_out,
2030 bool fast_validate)
2031 {
2032 bool out = false;
2033 int split[MAX_PIPES] = { 0 };
2034 int pipe_cnt, i, pipe_idx, vlevel;
2035
2036 ASSERT(pipes);
2037 if (!pipes)
2038 return false;
2039
2040 dcn20_merge_pipes_for_validate(dc, context);
2041
2042 DC_FP_START();
2043 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2044 DC_FP_END();
2045
2046 *pipe_cnt_out = pipe_cnt;
2047
2048 if (!pipe_cnt) {
2049 out = true;
2050 goto validate_out;
2051 }
2052
2053 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2054
2055 if (vlevel > context->bw_ctx.dml.soc.num_states)
2056 goto validate_fail;
2057
2058 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2059
2060 /*initialize pipe_just_split_from to invalid idx*/
2061 for (i = 0; i < MAX_PIPES; i++)
2062 pipe_split_from[i] = -1;
2063
2064 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2065 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2066 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2067
2068 if (!pipe->stream || pipe_split_from[i] >= 0)
2069 continue;
2070
2071 pipe_idx++;
2072
2073 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2074 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2075 ASSERT(hsplit_pipe);
2076 if (!dcn20_split_stream_for_odm(
2077 dc, &context->res_ctx,
2078 pipe, hsplit_pipe))
2079 goto validate_fail;
2080 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2081 dcn20_build_mapped_resource(dc, context, pipe->stream);
2082 }
2083
2084 if (!pipe->plane_state)
2085 continue;
2086 /* Skip 2nd half of already split pipe */
2087 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2088 continue;
2089
2090 /* We do not support mpo + odm at the moment */
2091 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2092 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2093 goto validate_fail;
2094
2095 if (split[i] == 2) {
2096 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2097 /* pipe not split previously needs split */
2098 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2099 ASSERT(hsplit_pipe);
2100 if (!hsplit_pipe) {
2101 DC_FP_START();
2102 dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2103 DC_FP_END();
2104 continue;
2105 }
2106 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2107 if (!dcn20_split_stream_for_odm(
2108 dc, &context->res_ctx,
2109 pipe, hsplit_pipe))
2110 goto validate_fail;
2111 dcn20_build_mapped_resource(dc, context, pipe->stream);
2112 } else {
2113 dcn20_split_stream_for_mpc(
2114 &context->res_ctx, dc->res_pool,
2115 pipe, hsplit_pipe);
2116 resource_build_scaling_params(pipe);
2117 resource_build_scaling_params(hsplit_pipe);
2118 }
2119 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2120 }
2121 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2122 /* merge should already have been done */
2123 ASSERT(0);
2124 }
2125 }
2126 /* Actual dsc count per stream dsc validation*/
2127 if (!dcn20_validate_dsc(dc, context)) {
2128 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2129 DML_FAIL_DSC_VALIDATION_FAILURE;
2130 goto validate_fail;
2131 }
2132
2133 *vlevel_out = vlevel;
2134
2135 out = true;
2136 goto validate_out;
2137
2138 validate_fail:
2139 out = false;
2140
2141 validate_out:
2142 return out;
2143 }
2144
dcn20_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2145 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2146 bool fast_validate)
2147 {
2148 bool voltage_supported;
2149 display_e2e_pipe_params_st *pipes;
2150
2151 pipes = kcalloc(dc->res_pool->pipe_count, sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2152 if (!pipes)
2153 return false;
2154
2155 DC_FP_START();
2156 voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate, pipes);
2157 DC_FP_END();
2158
2159 kfree(pipes);
2160 return voltage_supported;
2161 }
2162
dcn20_acquire_free_pipe_for_layer(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,const struct pipe_ctx * opp_head)2163 struct pipe_ctx *dcn20_acquire_free_pipe_for_layer(
2164 const struct dc_state *cur_ctx,
2165 struct dc_state *new_ctx,
2166 const struct resource_pool *pool,
2167 const struct pipe_ctx *opp_head)
2168 {
2169 struct resource_context *res_ctx = &new_ctx->res_ctx;
2170 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(res_ctx, opp_head->stream);
2171 struct pipe_ctx *sec_dpp_pipe = resource_find_free_secondary_pipe_legacy(res_ctx, pool, otg_master);
2172
2173 ASSERT(otg_master);
2174
2175 if (!sec_dpp_pipe)
2176 return NULL;
2177
2178 sec_dpp_pipe->stream = opp_head->stream;
2179 sec_dpp_pipe->stream_res.tg = opp_head->stream_res.tg;
2180 sec_dpp_pipe->stream_res.opp = opp_head->stream_res.opp;
2181
2182 sec_dpp_pipe->plane_res.hubp = pool->hubps[sec_dpp_pipe->pipe_idx];
2183 sec_dpp_pipe->plane_res.ipp = pool->ipps[sec_dpp_pipe->pipe_idx];
2184 sec_dpp_pipe->plane_res.dpp = pool->dpps[sec_dpp_pipe->pipe_idx];
2185 sec_dpp_pipe->plane_res.mpcc_inst = pool->dpps[sec_dpp_pipe->pipe_idx]->inst;
2186
2187 return sec_dpp_pipe;
2188 }
2189
dcn20_get_dcc_compression_cap(const struct dc * dc,const struct dc_dcc_surface_param * input,struct dc_surface_dcc_cap * output)2190 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2191 const struct dc_dcc_surface_param *input,
2192 struct dc_surface_dcc_cap *output)
2193 {
2194 return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2195 dc->res_pool->hubbub,
2196 input,
2197 output);
2198 }
2199
dcn20_destroy_resource_pool(struct resource_pool ** pool)2200 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2201 {
2202 struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2203
2204 dcn20_resource_destruct(dcn20_pool);
2205 kfree(dcn20_pool);
2206 *pool = NULL;
2207 }
2208
2209
2210 static struct dc_cap_funcs cap_funcs = {
2211 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2212 };
2213
2214
dcn20_patch_unknown_plane_state(struct dc_plane_state * plane_state)2215 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2216 {
2217 enum surface_pixel_format surf_pix_format = plane_state->format;
2218 unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2219
2220 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_S;
2221 if (bpp == 64)
2222 plane_state->tiling_info.gfx9.swizzle = DC_SW_64KB_D;
2223
2224 return DC_OK;
2225 }
2226
dcn20_release_pipe(struct dc_state * context,struct pipe_ctx * pipe,const struct resource_pool * pool)2227 void dcn20_release_pipe(struct dc_state *context,
2228 struct pipe_ctx *pipe,
2229 const struct resource_pool *pool)
2230 {
2231 if (resource_is_pipe_type(pipe, OPP_HEAD) && pipe->stream_res.dsc)
2232 dcn20_release_dsc(&context->res_ctx, pool, &pipe->stream_res.dsc);
2233 memset(pipe, 0, sizeof(*pipe));
2234 }
2235
2236 static const struct resource_funcs dcn20_res_pool_funcs = {
2237 .destroy = dcn20_destroy_resource_pool,
2238 .link_enc_create = dcn20_link_encoder_create,
2239 .panel_cntl_create = dcn20_panel_cntl_create,
2240 .validate_bandwidth = dcn20_validate_bandwidth,
2241 .acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer,
2242 .release_pipe = dcn20_release_pipe,
2243 .add_stream_to_ctx = dcn20_add_stream_to_ctx,
2244 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2245 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2246 .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2247 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2248 .set_mcif_arb_params = dcn20_set_mcif_arb_params,
2249 .populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2250 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2251 };
2252
dcn20_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)2253 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2254 {
2255 int i;
2256 uint32_t pipe_count = pool->res_cap->num_dwb;
2257
2258 for (i = 0; i < pipe_count; i++) {
2259 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2260 GFP_KERNEL);
2261
2262 if (!dwbc20) {
2263 dm_error("DC: failed to create dwbc20!\n");
2264 return false;
2265 }
2266 dcn20_dwbc_construct(dwbc20, ctx,
2267 &dwbc20_regs[i],
2268 &dwbc20_shift,
2269 &dwbc20_mask,
2270 i);
2271 pool->dwbc[i] = &dwbc20->base;
2272 }
2273 return true;
2274 }
2275
dcn20_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)2276 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2277 {
2278 int i;
2279 uint32_t pipe_count = pool->res_cap->num_dwb;
2280
2281 ASSERT(pipe_count > 0);
2282
2283 for (i = 0; i < pipe_count; i++) {
2284 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2285 GFP_KERNEL);
2286
2287 if (!mcif_wb20) {
2288 dm_error("DC: failed to create mcif_wb20!\n");
2289 return false;
2290 }
2291
2292 dcn20_mmhubbub_construct(mcif_wb20, ctx,
2293 &mcif_wb20_regs[i],
2294 &mcif_wb20_shift,
2295 &mcif_wb20_mask,
2296 i);
2297
2298 pool->mcif_wb[i] = &mcif_wb20->base;
2299 }
2300 return true;
2301 }
2302
dcn20_pp_smu_create(struct dc_context * ctx)2303 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2304 {
2305 struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2306
2307 if (!pp_smu)
2308 return pp_smu;
2309
2310 dm_pp_get_funcs(ctx, pp_smu);
2311
2312 if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2313 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2314
2315 return pp_smu;
2316 }
2317
dcn20_pp_smu_destroy(struct pp_smu_funcs ** pp_smu)2318 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2319 {
2320 if (pp_smu && *pp_smu) {
2321 kfree(*pp_smu);
2322 *pp_smu = NULL;
2323 }
2324 }
2325
get_asic_rev_soc_bb(uint32_t hw_internal_rev)2326 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2327 uint32_t hw_internal_rev)
2328 {
2329 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2330 return &dcn2_0_nv14_soc;
2331
2332 if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2333 return &dcn2_0_nv12_soc;
2334
2335 return &dcn2_0_soc;
2336 }
2337
get_asic_rev_ip_params(uint32_t hw_internal_rev)2338 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2339 uint32_t hw_internal_rev)
2340 {
2341 /* NV14 */
2342 if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2343 return &dcn2_0_nv14_ip;
2344
2345 /* NV12 and NV10 */
2346 return &dcn2_0_ip;
2347 }
2348
get_dml_project_version(uint32_t hw_internal_rev)2349 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2350 {
2351 return DML_PROJECT_NAVI10v2;
2352 }
2353
init_soc_bounding_box(struct dc * dc,struct dcn20_resource_pool * pool)2354 static bool init_soc_bounding_box(struct dc *dc,
2355 struct dcn20_resource_pool *pool)
2356 {
2357 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2358 get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2359 struct _vcs_dpi_ip_params_st *loaded_ip =
2360 get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2361
2362 DC_LOGGER_INIT(dc->ctx->logger);
2363
2364 if (pool->base.pp_smu) {
2365 struct pp_smu_nv_clock_table max_clocks = {0};
2366 unsigned int uclk_states[8] = {0};
2367 unsigned int num_states = 0;
2368 enum pp_smu_status status;
2369 bool clock_limits_available = false;
2370 bool uclk_states_available = false;
2371
2372 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2373 status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2374 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2375
2376 uclk_states_available = (status == PP_SMU_RESULT_OK);
2377 }
2378
2379 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2380 status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2381 (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2382 /* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2383 */
2384 if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2385 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2386 clock_limits_available = (status == PP_SMU_RESULT_OK);
2387 }
2388
2389 if (clock_limits_available && uclk_states_available && num_states) {
2390 DC_FP_START();
2391 dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2392 DC_FP_END();
2393 } else if (clock_limits_available) {
2394 DC_FP_START();
2395 dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2396 DC_FP_END();
2397 }
2398 }
2399
2400 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2401 loaded_ip->max_num_dpp = pool->base.pipe_count;
2402 DC_FP_START();
2403 dcn20_patch_bounding_box(dc, loaded_bb);
2404 DC_FP_END();
2405 return true;
2406 }
2407
dcn20_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn20_resource_pool * pool)2408 static bool dcn20_resource_construct(
2409 uint8_t num_virtual_links,
2410 struct dc *dc,
2411 struct dcn20_resource_pool *pool)
2412 {
2413 int i;
2414 struct dc_context *ctx = dc->ctx;
2415 struct irq_service_init_data init_data;
2416 struct ddc_service_init_data ddc_init_data = {0};
2417 struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2418 get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2419 struct _vcs_dpi_ip_params_st *loaded_ip =
2420 get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2421 enum dml_project dml_project_version =
2422 get_dml_project_version(ctx->asic_id.hw_internal_rev);
2423
2424 ctx->dc_bios->regs = &bios_regs;
2425 pool->base.funcs = &dcn20_res_pool_funcs;
2426
2427 if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2428 pool->base.res_cap = &res_cap_nv14;
2429 pool->base.pipe_count = 5;
2430 pool->base.mpcc_count = 5;
2431 } else {
2432 pool->base.res_cap = &res_cap_nv10;
2433 pool->base.pipe_count = 6;
2434 pool->base.mpcc_count = 6;
2435 }
2436 /*************************************************
2437 * Resource + asic cap harcoding *
2438 *************************************************/
2439 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2440
2441 dc->caps.max_downscale_ratio = 200;
2442 dc->caps.i2c_speed_in_khz = 100;
2443 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2444 dc->caps.max_cursor_size = 256;
2445 dc->caps.min_horizontal_blanking_period = 80;
2446 dc->caps.dmdata_alloc_size = 2048;
2447
2448 dc->caps.max_slave_planes = 1;
2449 dc->caps.max_slave_yuv_planes = 1;
2450 dc->caps.max_slave_rgb_planes = 1;
2451 dc->caps.post_blend_color_processing = true;
2452 dc->caps.force_dp_tps4_for_cp2520 = true;
2453 dc->caps.extended_aux_timeout_support = true;
2454
2455 /* Color pipeline capabilities */
2456 dc->caps.color.dpp.dcn_arch = 1;
2457 dc->caps.color.dpp.input_lut_shared = 0;
2458 dc->caps.color.dpp.icsc = 1;
2459 dc->caps.color.dpp.dgam_ram = 1;
2460 dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2461 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2462 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2463 dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2464 dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2465 dc->caps.color.dpp.post_csc = 0;
2466 dc->caps.color.dpp.gamma_corr = 0;
2467 dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2468
2469 dc->caps.color.dpp.hw_3d_lut = 1;
2470 dc->caps.color.dpp.ogam_ram = 1;
2471 // no OGAM ROM on DCN2, only MPC ROM
2472 dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2473 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2474 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2475 dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2476 dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2477 dc->caps.color.dpp.ocsc = 0;
2478
2479 dc->caps.color.mpc.gamut_remap = 0;
2480 dc->caps.color.mpc.num_3dluts = 0;
2481 dc->caps.color.mpc.shared_3d_lut = 0;
2482 dc->caps.color.mpc.ogam_ram = 1;
2483 dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2484 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2485 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2486 dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2487 dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2488 dc->caps.color.mpc.ocsc = 1;
2489
2490 dc->caps.dp_hdmi21_pcon_support = true;
2491
2492 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2493 dc->debug = debug_defaults_drv;
2494
2495 //dcn2.0x
2496 dc->work_arounds.dedcn20_305_wa = true;
2497
2498 // Init the vm_helper
2499 if (dc->vm_helper)
2500 vm_helper_init(dc->vm_helper, 16);
2501
2502 /*************************************************
2503 * Create resources *
2504 *************************************************/
2505
2506 pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2507 dcn20_clock_source_create(ctx, ctx->dc_bios,
2508 CLOCK_SOURCE_COMBO_PHY_PLL0,
2509 &clk_src_regs[0], false);
2510 pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2511 dcn20_clock_source_create(ctx, ctx->dc_bios,
2512 CLOCK_SOURCE_COMBO_PHY_PLL1,
2513 &clk_src_regs[1], false);
2514 pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2515 dcn20_clock_source_create(ctx, ctx->dc_bios,
2516 CLOCK_SOURCE_COMBO_PHY_PLL2,
2517 &clk_src_regs[2], false);
2518 pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2519 dcn20_clock_source_create(ctx, ctx->dc_bios,
2520 CLOCK_SOURCE_COMBO_PHY_PLL3,
2521 &clk_src_regs[3], false);
2522 pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2523 dcn20_clock_source_create(ctx, ctx->dc_bios,
2524 CLOCK_SOURCE_COMBO_PHY_PLL4,
2525 &clk_src_regs[4], false);
2526 pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2527 dcn20_clock_source_create(ctx, ctx->dc_bios,
2528 CLOCK_SOURCE_COMBO_PHY_PLL5,
2529 &clk_src_regs[5], false);
2530 pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2531 /* todo: not reuse phy_pll registers */
2532 pool->base.dp_clock_source =
2533 dcn20_clock_source_create(ctx, ctx->dc_bios,
2534 CLOCK_SOURCE_ID_DP_DTO,
2535 &clk_src_regs[0], true);
2536
2537 for (i = 0; i < pool->base.clk_src_count; i++) {
2538 if (pool->base.clock_sources[i] == NULL) {
2539 dm_error("DC: failed to create clock sources!\n");
2540 BREAK_TO_DEBUGGER();
2541 goto create_fail;
2542 }
2543 }
2544
2545 pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2546 if (pool->base.dccg == NULL) {
2547 dm_error("DC: failed to create dccg!\n");
2548 BREAK_TO_DEBUGGER();
2549 goto create_fail;
2550 }
2551
2552 pool->base.dmcu = dcn20_dmcu_create(ctx,
2553 &dmcu_regs,
2554 &dmcu_shift,
2555 &dmcu_mask);
2556 if (pool->base.dmcu == NULL) {
2557 dm_error("DC: failed to create dmcu!\n");
2558 BREAK_TO_DEBUGGER();
2559 goto create_fail;
2560 }
2561
2562 pool->base.abm = dce_abm_create(ctx,
2563 &abm_regs,
2564 &abm_shift,
2565 &abm_mask);
2566 if (pool->base.abm == NULL) {
2567 dm_error("DC: failed to create abm!\n");
2568 BREAK_TO_DEBUGGER();
2569 goto create_fail;
2570 }
2571
2572 pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2573
2574
2575 if (!init_soc_bounding_box(dc, pool)) {
2576 dm_error("DC: failed to initialize soc bounding box!\n");
2577 BREAK_TO_DEBUGGER();
2578 goto create_fail;
2579 }
2580
2581 dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2582
2583 if (!dc->debug.disable_pplib_wm_range) {
2584 struct pp_smu_wm_range_sets ranges = {0};
2585 int i = 0;
2586
2587 ranges.num_reader_wm_sets = 0;
2588
2589 if (loaded_bb->num_states == 1) {
2590 ranges.reader_wm_sets[0].wm_inst = i;
2591 ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2592 ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2593 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2594 ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2595
2596 ranges.num_reader_wm_sets = 1;
2597 } else if (loaded_bb->num_states > 1) {
2598 for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2599 ranges.reader_wm_sets[i].wm_inst = i;
2600 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2601 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2602 DC_FP_START();
2603 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2604 DC_FP_END();
2605
2606 ranges.num_reader_wm_sets = i + 1;
2607 }
2608
2609 ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2610 ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2611 }
2612
2613 ranges.num_writer_wm_sets = 1;
2614
2615 ranges.writer_wm_sets[0].wm_inst = 0;
2616 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2617 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2618 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2619 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2620
2621 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2622 if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2623 pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2624 }
2625
2626 init_data.ctx = dc->ctx;
2627 pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2628 if (!pool->base.irqs)
2629 goto create_fail;
2630
2631 /* mem input -> ipp -> dpp -> opp -> TG */
2632 for (i = 0; i < pool->base.pipe_count; i++) {
2633 pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2634 if (pool->base.hubps[i] == NULL) {
2635 BREAK_TO_DEBUGGER();
2636 dm_error(
2637 "DC: failed to create memory input!\n");
2638 goto create_fail;
2639 }
2640
2641 pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2642 if (pool->base.ipps[i] == NULL) {
2643 BREAK_TO_DEBUGGER();
2644 dm_error(
2645 "DC: failed to create input pixel processor!\n");
2646 goto create_fail;
2647 }
2648
2649 pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2650 if (pool->base.dpps[i] == NULL) {
2651 BREAK_TO_DEBUGGER();
2652 dm_error(
2653 "DC: failed to create dpps!\n");
2654 goto create_fail;
2655 }
2656 }
2657 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2658 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2659 if (pool->base.engines[i] == NULL) {
2660 BREAK_TO_DEBUGGER();
2661 dm_error(
2662 "DC:failed to create aux engine!!\n");
2663 goto create_fail;
2664 }
2665 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2666 if (pool->base.hw_i2cs[i] == NULL) {
2667 BREAK_TO_DEBUGGER();
2668 dm_error(
2669 "DC:failed to create hw i2c!!\n");
2670 goto create_fail;
2671 }
2672 pool->base.sw_i2cs[i] = NULL;
2673 }
2674
2675 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2676 pool->base.opps[i] = dcn20_opp_create(ctx, i);
2677 if (pool->base.opps[i] == NULL) {
2678 BREAK_TO_DEBUGGER();
2679 dm_error(
2680 "DC: failed to create output pixel processor!\n");
2681 goto create_fail;
2682 }
2683 }
2684
2685 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2686 pool->base.timing_generators[i] = dcn20_timing_generator_create(
2687 ctx, i);
2688 if (pool->base.timing_generators[i] == NULL) {
2689 BREAK_TO_DEBUGGER();
2690 dm_error("DC: failed to create tg!\n");
2691 goto create_fail;
2692 }
2693 }
2694
2695 pool->base.timing_generator_count = i;
2696
2697 pool->base.mpc = dcn20_mpc_create(ctx);
2698 if (pool->base.mpc == NULL) {
2699 BREAK_TO_DEBUGGER();
2700 dm_error("DC: failed to create mpc!\n");
2701 goto create_fail;
2702 }
2703
2704 pool->base.hubbub = dcn20_hubbub_create(ctx);
2705 if (pool->base.hubbub == NULL) {
2706 BREAK_TO_DEBUGGER();
2707 dm_error("DC: failed to create hubbub!\n");
2708 goto create_fail;
2709 }
2710
2711 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2712 pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2713 if (pool->base.dscs[i] == NULL) {
2714 BREAK_TO_DEBUGGER();
2715 dm_error("DC: failed to create display stream compressor %d!\n", i);
2716 goto create_fail;
2717 }
2718 }
2719
2720 if (!dcn20_dwbc_create(ctx, &pool->base)) {
2721 BREAK_TO_DEBUGGER();
2722 dm_error("DC: failed to create dwbc!\n");
2723 goto create_fail;
2724 }
2725 if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2726 BREAK_TO_DEBUGGER();
2727 dm_error("DC: failed to create mcif_wb!\n");
2728 goto create_fail;
2729 }
2730
2731 if (!resource_construct(num_virtual_links, dc, &pool->base,
2732 &res_create_funcs))
2733 goto create_fail;
2734
2735 dcn20_hw_sequencer_construct(dc);
2736
2737 // IF NV12, set PG function pointer to NULL. It's not that
2738 // PG isn't supported for NV12, it's that we don't want to
2739 // program the registers because that will cause more power
2740 // to be consumed. We could have created dcn20_init_hw to get
2741 // the same effect by checking ASIC rev, but there was a
2742 // request at some point to not check ASIC rev on hw sequencer.
2743 if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2744 dc->hwseq->funcs.enable_power_gating_plane = NULL;
2745 dc->debug.disable_dpp_power_gate = true;
2746 dc->debug.disable_hubp_power_gate = true;
2747 }
2748
2749
2750 dc->caps.max_planes = pool->base.pipe_count;
2751
2752 for (i = 0; i < dc->caps.max_planes; ++i)
2753 dc->caps.planes[i] = plane_cap;
2754
2755 dc->cap_funcs = cap_funcs;
2756
2757 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2758 ddc_init_data.ctx = dc->ctx;
2759 ddc_init_data.link = NULL;
2760 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2761 ddc_init_data.id.enum_id = 0;
2762 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2763 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2764 } else {
2765 pool->base.oem_device = NULL;
2766 }
2767
2768 return true;
2769
2770 create_fail:
2771
2772 dcn20_resource_destruct(pool);
2773
2774 return false;
2775 }
2776
dcn20_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2777 struct resource_pool *dcn20_create_resource_pool(
2778 const struct dc_init_data *init_data,
2779 struct dc *dc)
2780 {
2781 struct dcn20_resource_pool *pool =
2782 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2783
2784 if (!pool)
2785 return NULL;
2786
2787 if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2788 return &pool->base;
2789
2790 BREAK_TO_DEBUGGER();
2791 kfree(pool);
2792 return NULL;
2793 }
2794