1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5 * Copyright 2011-2012 Calxeda, Inc.
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/property.h>
26 #include <linux/regmap.h>
27 #include <linux/types.h>
28 #include <linux/uaccess.h>
29
30 #include "altera_edac.h"
31 #include "edac_module.h"
32
33 #define EDAC_MOD_STR "altera_edac"
34 #define EDAC_DEVICE "Altera"
35
36 #ifdef CONFIG_EDAC_ALTERA_SDRAM
37 static const struct altr_sdram_prv_data c5_data = {
38 .ecc_ctrl_offset = CV_CTLCFG_OFST,
39 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
40 .ecc_stat_offset = CV_DRAMSTS_OFST,
41 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
42 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
43 .ecc_saddr_offset = CV_ERRADDR_OFST,
44 .ecc_daddr_offset = CV_ERRADDR_OFST,
45 .ecc_cecnt_offset = CV_SBECOUNT_OFST,
46 .ecc_uecnt_offset = CV_DBECOUNT_OFST,
47 .ecc_irq_en_offset = CV_DRAMINTR_OFST,
48 .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
49 .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
53 .ce_ue_trgr_offset = CV_CTLCFG_OFST,
54 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
55 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
56 };
57
58 static const struct altr_sdram_prv_data a10_data = {
59 .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
60 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
61 .ecc_stat_offset = A10_INTSTAT_OFST,
62 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
63 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
64 .ecc_saddr_offset = A10_SERRADDR_OFST,
65 .ecc_daddr_offset = A10_DERRADDR_OFST,
66 .ecc_irq_en_offset = A10_ERRINTEN_OFST,
67 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
68 .ecc_irq_clr_offset = A10_INTSTAT_OFST,
69 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
72 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
73 .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
74 .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
75 };
76
77 /*********************** EDAC Memory Controller Functions ****************/
78
79 /* The SDRAM controller uses the EDAC Memory Controller framework. */
80
altr_sdram_mc_err_handler(int irq,void * dev_id)81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82 {
83 struct mem_ctl_info *mci = dev_id;
84 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85 const struct altr_sdram_prv_data *priv = drvdata->data;
86 u32 status, err_count = 1, err_addr;
87
88 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89
90 if (status & priv->ecc_stat_ue_mask) {
91 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92 &err_addr);
93 if (priv->ecc_uecnt_offset)
94 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95 &err_count);
96 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97 err_count, err_addr);
98 }
99 if (status & priv->ecc_stat_ce_mask) {
100 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101 &err_addr);
102 if (priv->ecc_uecnt_offset)
103 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
104 &err_count);
105 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106 err_addr >> PAGE_SHIFT,
107 err_addr & ~PAGE_MASK, 0,
108 0, 0, -1, mci->ctl_name, "");
109 /* Clear IRQ to resume */
110 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
111 priv->ecc_irq_clr_mask);
112
113 return IRQ_HANDLED;
114 }
115 return IRQ_NONE;
116 }
117
altr_sdr_mc_err_inject_write(struct file * file,const char __user * data,size_t count,loff_t * ppos)118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119 const char __user *data,
120 size_t count, loff_t *ppos)
121 {
122 struct mem_ctl_info *mci = file->private_data;
123 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124 const struct altr_sdram_prv_data *priv = drvdata->data;
125 u32 *ptemp;
126 dma_addr_t dma_handle;
127 u32 reg, read_reg;
128
129 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130 if (!ptemp) {
131 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
132 edac_printk(KERN_ERR, EDAC_MC,
133 "Inject: Buffer Allocation error\n");
134 return -ENOMEM;
135 }
136
137 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
138 &read_reg);
139 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
140
141 /* Error are injected by writing a word while the SBE or DBE
142 * bit in the CTLCFG register is set. Reading the word will
143 * trigger the SBE or DBE error and the corresponding IRQ.
144 */
145 if (count == 3) {
146 edac_printk(KERN_ALERT, EDAC_MC,
147 "Inject Double bit error\n");
148 local_irq_disable();
149 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
150 (read_reg | priv->ue_set_mask));
151 local_irq_enable();
152 } else {
153 edac_printk(KERN_ALERT, EDAC_MC,
154 "Inject Single bit error\n");
155 local_irq_disable();
156 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
157 (read_reg | priv->ce_set_mask));
158 local_irq_enable();
159 }
160
161 ptemp[0] = 0x5A5A5A5A;
162 ptemp[1] = 0xA5A5A5A5;
163
164 /* Clear the error injection bits */
165 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
166 /* Ensure it has been written out */
167 wmb();
168
169 /*
170 * To trigger the error, we need to read the data back
171 * (the data was written with errors above).
172 * The READ_ONCE macros and printk are used to prevent the
173 * the compiler optimizing these reads out.
174 */
175 reg = READ_ONCE(ptemp[0]);
176 read_reg = READ_ONCE(ptemp[1]);
177 /* Force Read */
178 rmb();
179
180 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
181 reg, read_reg);
182
183 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
184
185 return count;
186 }
187
188 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
189 .open = simple_open,
190 .write = altr_sdr_mc_err_inject_write,
191 .llseek = generic_file_llseek,
192 };
193
altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info * mci)194 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
195 {
196 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
197 return;
198
199 if (!mci->debugfs)
200 return;
201
202 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
203 &altr_sdr_mc_debug_inject_fops);
204 }
205
206 /* Get total memory size from Open Firmware DTB */
get_total_mem(void)207 static unsigned long get_total_mem(void)
208 {
209 struct device_node *np = NULL;
210 struct resource res;
211 int ret;
212 unsigned long total_mem = 0;
213
214 for_each_node_by_type(np, "memory") {
215 ret = of_address_to_resource(np, 0, &res);
216 if (ret)
217 continue;
218
219 total_mem += resource_size(&res);
220 }
221 edac_dbg(0, "total_mem 0x%lx\n", total_mem);
222 return total_mem;
223 }
224
225 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
226 { .compatible = "altr,sdram-edac", .data = &c5_data},
227 { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
228 {},
229 };
230 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
231
a10_init(struct regmap * mc_vbase)232 static int a10_init(struct regmap *mc_vbase)
233 {
234 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
235 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
236 edac_printk(KERN_ERR, EDAC_MC,
237 "Error setting SB IRQ mode\n");
238 return -ENODEV;
239 }
240
241 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
242 edac_printk(KERN_ERR, EDAC_MC,
243 "Error setting trigger count\n");
244 return -ENODEV;
245 }
246
247 return 0;
248 }
249
a10_unmask_irq(struct platform_device * pdev,u32 mask)250 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
251 {
252 void __iomem *sm_base;
253 int ret = 0;
254
255 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
256 dev_name(&pdev->dev))) {
257 edac_printk(KERN_ERR, EDAC_MC,
258 "Unable to request mem region\n");
259 return -EBUSY;
260 }
261
262 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
263 if (!sm_base) {
264 edac_printk(KERN_ERR, EDAC_MC,
265 "Unable to ioremap device\n");
266
267 ret = -ENOMEM;
268 goto release;
269 }
270
271 iowrite32(mask, sm_base);
272
273 iounmap(sm_base);
274
275 release:
276 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
277
278 return ret;
279 }
280
altr_sdram_probe(struct platform_device * pdev)281 static int altr_sdram_probe(struct platform_device *pdev)
282 {
283 struct edac_mc_layer layers[2];
284 struct mem_ctl_info *mci;
285 struct altr_sdram_mc_data *drvdata;
286 const struct altr_sdram_prv_data *priv;
287 struct regmap *mc_vbase;
288 struct dimm_info *dimm;
289 u32 read_reg;
290 int irq, irq2, res = 0;
291 unsigned long mem_size, irqflags = 0;
292
293 /* Grab the register range from the sdr controller in device tree */
294 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
295 "altr,sdr-syscon");
296 if (IS_ERR(mc_vbase)) {
297 edac_printk(KERN_ERR, EDAC_MC,
298 "regmap for altr,sdr-syscon lookup failed.\n");
299 return -ENODEV;
300 }
301
302 /* Check specific dependencies for the module */
303 priv = device_get_match_data(&pdev->dev);
304
305 /* Validate the SDRAM controller has ECC enabled */
306 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
307 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
308 edac_printk(KERN_ERR, EDAC_MC,
309 "No ECC/ECC disabled [0x%08X]\n", read_reg);
310 return -ENODEV;
311 }
312
313 /* Grab memory size from device tree. */
314 mem_size = get_total_mem();
315 if (!mem_size) {
316 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
317 return -ENODEV;
318 }
319
320 /* Ensure the SDRAM Interrupt is disabled */
321 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
322 priv->ecc_irq_en_mask, 0)) {
323 edac_printk(KERN_ERR, EDAC_MC,
324 "Error disabling SDRAM ECC IRQ\n");
325 return -ENODEV;
326 }
327
328 /* Toggle to clear the SDRAM Error count */
329 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
330 priv->ecc_cnt_rst_mask,
331 priv->ecc_cnt_rst_mask)) {
332 edac_printk(KERN_ERR, EDAC_MC,
333 "Error clearing SDRAM ECC count\n");
334 return -ENODEV;
335 }
336
337 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
338 priv->ecc_cnt_rst_mask, 0)) {
339 edac_printk(KERN_ERR, EDAC_MC,
340 "Error clearing SDRAM ECC count\n");
341 return -ENODEV;
342 }
343
344 irq = platform_get_irq(pdev, 0);
345 if (irq < 0) {
346 edac_printk(KERN_ERR, EDAC_MC,
347 "No irq %d in DT\n", irq);
348 return irq;
349 }
350
351 /* Arria10 has a 2nd IRQ */
352 irq2 = platform_get_irq(pdev, 1);
353
354 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
355 layers[0].size = 1;
356 layers[0].is_virt_csrow = true;
357 layers[1].type = EDAC_MC_LAYER_CHANNEL;
358 layers[1].size = 1;
359 layers[1].is_virt_csrow = false;
360 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
361 sizeof(struct altr_sdram_mc_data));
362 if (!mci)
363 return -ENOMEM;
364
365 mci->pdev = &pdev->dev;
366 drvdata = mci->pvt_info;
367 drvdata->mc_vbase = mc_vbase;
368 drvdata->data = priv;
369 platform_set_drvdata(pdev, mci);
370
371 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
372 edac_printk(KERN_ERR, EDAC_MC,
373 "Unable to get managed device resource\n");
374 res = -ENOMEM;
375 goto free;
376 }
377
378 mci->mtype_cap = MEM_FLAG_DDR3;
379 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
380 mci->edac_cap = EDAC_FLAG_SECDED;
381 mci->mod_name = EDAC_MOD_STR;
382 mci->ctl_name = dev_name(&pdev->dev);
383 mci->scrub_mode = SCRUB_SW_SRC;
384 mci->dev_name = dev_name(&pdev->dev);
385
386 dimm = *mci->dimms;
387 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
388 dimm->grain = 8;
389 dimm->dtype = DEV_X8;
390 dimm->mtype = MEM_DDR3;
391 dimm->edac_mode = EDAC_SECDED;
392
393 res = edac_mc_add_mc(mci);
394 if (res < 0)
395 goto err;
396
397 /* Only the Arria10 has separate IRQs */
398 if (of_machine_is_compatible("altr,socfpga-arria10")) {
399 /* Arria10 specific initialization */
400 res = a10_init(mc_vbase);
401 if (res < 0)
402 goto err2;
403
404 res = devm_request_irq(&pdev->dev, irq2,
405 altr_sdram_mc_err_handler,
406 IRQF_SHARED, dev_name(&pdev->dev), mci);
407 if (res < 0) {
408 edac_mc_printk(mci, KERN_ERR,
409 "Unable to request irq %d\n", irq2);
410 res = -ENODEV;
411 goto err2;
412 }
413
414 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
415 if (res < 0)
416 goto err2;
417
418 irqflags = IRQF_SHARED;
419 }
420
421 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
422 irqflags, dev_name(&pdev->dev), mci);
423 if (res < 0) {
424 edac_mc_printk(mci, KERN_ERR,
425 "Unable to request irq %d\n", irq);
426 res = -ENODEV;
427 goto err2;
428 }
429
430 /* Infrastructure ready - enable the IRQ */
431 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
432 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
433 edac_mc_printk(mci, KERN_ERR,
434 "Error enabling SDRAM ECC IRQ\n");
435 res = -ENODEV;
436 goto err2;
437 }
438
439 altr_sdr_mc_create_debugfs_nodes(mci);
440
441 devres_close_group(&pdev->dev, NULL);
442
443 return 0;
444
445 err2:
446 edac_mc_del_mc(&pdev->dev);
447 err:
448 devres_release_group(&pdev->dev, NULL);
449 free:
450 edac_mc_free(mci);
451 edac_printk(KERN_ERR, EDAC_MC,
452 "EDAC Probe Failed; Error %d\n", res);
453
454 return res;
455 }
456
altr_sdram_remove(struct platform_device * pdev)457 static void altr_sdram_remove(struct platform_device *pdev)
458 {
459 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
460
461 edac_mc_del_mc(&pdev->dev);
462 edac_mc_free(mci);
463 platform_set_drvdata(pdev, NULL);
464 }
465
466 /*
467 * If you want to suspend, need to disable EDAC by removing it
468 * from the device tree or defconfig.
469 */
470 #ifdef CONFIG_PM
altr_sdram_prepare(struct device * dev)471 static int altr_sdram_prepare(struct device *dev)
472 {
473 pr_err("Suspend not allowed when EDAC is enabled.\n");
474
475 return -EPERM;
476 }
477
478 static const struct dev_pm_ops altr_sdram_pm_ops = {
479 .prepare = altr_sdram_prepare,
480 };
481 #endif
482
483 static struct platform_driver altr_sdram_edac_driver = {
484 .probe = altr_sdram_probe,
485 .remove_new = altr_sdram_remove,
486 .driver = {
487 .name = "altr_sdram_edac",
488 #ifdef CONFIG_PM
489 .pm = &altr_sdram_pm_ops,
490 #endif
491 .of_match_table = altr_sdram_ctrl_of_match,
492 },
493 };
494
495 module_platform_driver(altr_sdram_edac_driver);
496
497 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
498
499 /************************* EDAC Parent Probe *************************/
500
501 static const struct of_device_id altr_edac_device_of_match[];
502
503 static const struct of_device_id altr_edac_of_match[] = {
504 { .compatible = "altr,socfpga-ecc-manager" },
505 {},
506 };
507 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
508
altr_edac_probe(struct platform_device * pdev)509 static int altr_edac_probe(struct platform_device *pdev)
510 {
511 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
512 NULL, &pdev->dev);
513 return 0;
514 }
515
516 static struct platform_driver altr_edac_driver = {
517 .probe = altr_edac_probe,
518 .driver = {
519 .name = "socfpga_ecc_manager",
520 .of_match_table = altr_edac_of_match,
521 },
522 };
523 module_platform_driver(altr_edac_driver);
524
525 /************************* EDAC Device Functions *************************/
526
527 /*
528 * EDAC Device Functions (shared between various IPs).
529 * The discrete memories use the EDAC Device framework. The probe
530 * and error handling functions are very similar between memories
531 * so they are shared. The memory allocation and freeing for EDAC
532 * trigger testing are different for each memory.
533 */
534
535 #ifdef CONFIG_EDAC_ALTERA_OCRAM
536 static const struct edac_device_prv_data ocramecc_data;
537 #endif
538 #ifdef CONFIG_EDAC_ALTERA_L2C
539 static const struct edac_device_prv_data l2ecc_data;
540 #endif
541 #ifdef CONFIG_EDAC_ALTERA_OCRAM
542 static const struct edac_device_prv_data a10_ocramecc_data;
543 #endif
544 #ifdef CONFIG_EDAC_ALTERA_L2C
545 static const struct edac_device_prv_data a10_l2ecc_data;
546 #endif
547
altr_edac_device_handler(int irq,void * dev_id)548 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
549 {
550 irqreturn_t ret_value = IRQ_NONE;
551 struct edac_device_ctl_info *dci = dev_id;
552 struct altr_edac_device_dev *drvdata = dci->pvt_info;
553 const struct edac_device_prv_data *priv = drvdata->data;
554
555 if (irq == drvdata->sb_irq) {
556 if (priv->ce_clear_mask)
557 writel(priv->ce_clear_mask, drvdata->base);
558 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
559 ret_value = IRQ_HANDLED;
560 } else if (irq == drvdata->db_irq) {
561 if (priv->ue_clear_mask)
562 writel(priv->ue_clear_mask, drvdata->base);
563 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
564 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
565 ret_value = IRQ_HANDLED;
566 } else {
567 WARN_ON(1);
568 }
569
570 return ret_value;
571 }
572
573 static ssize_t __maybe_unused
altr_edac_device_trig(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)574 altr_edac_device_trig(struct file *file, const char __user *user_buf,
575 size_t count, loff_t *ppos)
576
577 {
578 u32 *ptemp, i, error_mask;
579 int result = 0;
580 u8 trig_type;
581 unsigned long flags;
582 struct edac_device_ctl_info *edac_dci = file->private_data;
583 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
584 const struct edac_device_prv_data *priv = drvdata->data;
585 void *generic_ptr = edac_dci->dev;
586
587 if (!user_buf || get_user(trig_type, user_buf))
588 return -EFAULT;
589
590 if (!priv->alloc_mem)
591 return -ENOMEM;
592
593 /*
594 * Note that generic_ptr is initialized to the device * but in
595 * some alloc_functions, this is overridden and returns data.
596 */
597 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
598 if (!ptemp) {
599 edac_printk(KERN_ERR, EDAC_DEVICE,
600 "Inject: Buffer Allocation error\n");
601 return -ENOMEM;
602 }
603
604 if (trig_type == ALTR_UE_TRIGGER_CHAR)
605 error_mask = priv->ue_set_mask;
606 else
607 error_mask = priv->ce_set_mask;
608
609 edac_printk(KERN_ALERT, EDAC_DEVICE,
610 "Trigger Error Mask (0x%X)\n", error_mask);
611
612 local_irq_save(flags);
613 /* write ECC corrupted data out. */
614 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
615 /* Read data so we're in the correct state */
616 rmb();
617 if (READ_ONCE(ptemp[i]))
618 result = -1;
619 /* Toggle Error bit (it is latched), leave ECC enabled */
620 writel(error_mask, (drvdata->base + priv->set_err_ofst));
621 writel(priv->ecc_enable_mask, (drvdata->base +
622 priv->set_err_ofst));
623 ptemp[i] = i;
624 }
625 /* Ensure it has been written out */
626 wmb();
627 local_irq_restore(flags);
628
629 if (result)
630 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
631
632 /* Read out written data. ECC error caused here */
633 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
634 if (READ_ONCE(ptemp[i]) != i)
635 edac_printk(KERN_ERR, EDAC_DEVICE,
636 "Read doesn't match written data\n");
637
638 if (priv->free_mem)
639 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
640
641 return count;
642 }
643
644 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
645 .open = simple_open,
646 .write = altr_edac_device_trig,
647 .llseek = generic_file_llseek,
648 };
649
650 static ssize_t __maybe_unused
651 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
652 size_t count, loff_t *ppos);
653
654 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
655 .open = simple_open,
656 .write = altr_edac_a10_device_trig,
657 .llseek = generic_file_llseek,
658 };
659
660 static ssize_t __maybe_unused
661 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
662 size_t count, loff_t *ppos);
663
664 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
665 .open = simple_open,
666 .write = altr_edac_a10_device_trig2,
667 .llseek = generic_file_llseek,
668 };
669
altr_create_edacdev_dbgfs(struct edac_device_ctl_info * edac_dci,const struct edac_device_prv_data * priv)670 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
671 const struct edac_device_prv_data *priv)
672 {
673 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
674
675 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
676 return;
677
678 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
679 if (!drvdata->debugfs_dir)
680 return;
681
682 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
683 drvdata->debugfs_dir, edac_dci,
684 priv->inject_fops))
685 debugfs_remove_recursive(drvdata->debugfs_dir);
686 }
687
688 static const struct of_device_id altr_edac_device_of_match[] = {
689 #ifdef CONFIG_EDAC_ALTERA_L2C
690 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
691 #endif
692 #ifdef CONFIG_EDAC_ALTERA_OCRAM
693 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
694 #endif
695 {},
696 };
697 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
698
699 /*
700 * altr_edac_device_probe()
701 * This is a generic EDAC device driver that will support
702 * various Altera memory devices such as the L2 cache ECC and
703 * OCRAM ECC as well as the memories for other peripherals.
704 * Module specific initialization is done by passing the
705 * function index in the device tree.
706 */
altr_edac_device_probe(struct platform_device * pdev)707 static int altr_edac_device_probe(struct platform_device *pdev)
708 {
709 struct edac_device_ctl_info *dci;
710 struct altr_edac_device_dev *drvdata;
711 struct resource *r;
712 int res = 0;
713 struct device_node *np = pdev->dev.of_node;
714 char *ecc_name = (char *)np->name;
715 static int dev_instance;
716
717 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
718 edac_printk(KERN_ERR, EDAC_DEVICE,
719 "Unable to open devm\n");
720 return -ENOMEM;
721 }
722
723 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
724 if (!r) {
725 edac_printk(KERN_ERR, EDAC_DEVICE,
726 "Unable to get mem resource\n");
727 res = -ENODEV;
728 goto fail;
729 }
730
731 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
732 dev_name(&pdev->dev))) {
733 edac_printk(KERN_ERR, EDAC_DEVICE,
734 "%s:Error requesting mem region\n", ecc_name);
735 res = -EBUSY;
736 goto fail;
737 }
738
739 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
740 1, ecc_name, 1, 0, NULL, 0,
741 dev_instance++);
742
743 if (!dci) {
744 edac_printk(KERN_ERR, EDAC_DEVICE,
745 "%s: Unable to allocate EDAC device\n", ecc_name);
746 res = -ENOMEM;
747 goto fail;
748 }
749
750 drvdata = dci->pvt_info;
751 dci->dev = &pdev->dev;
752 platform_set_drvdata(pdev, dci);
753 drvdata->edac_dev_name = ecc_name;
754
755 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
756 if (!drvdata->base) {
757 res = -ENOMEM;
758 goto fail1;
759 }
760
761 /* Get driver specific data for this EDAC device */
762 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
763
764 /* Check specific dependencies for the module */
765 if (drvdata->data->setup) {
766 res = drvdata->data->setup(drvdata);
767 if (res)
768 goto fail1;
769 }
770
771 drvdata->sb_irq = platform_get_irq(pdev, 0);
772 res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
773 altr_edac_device_handler,
774 0, dev_name(&pdev->dev), dci);
775 if (res)
776 goto fail1;
777
778 drvdata->db_irq = platform_get_irq(pdev, 1);
779 res = devm_request_irq(&pdev->dev, drvdata->db_irq,
780 altr_edac_device_handler,
781 0, dev_name(&pdev->dev), dci);
782 if (res)
783 goto fail1;
784
785 dci->mod_name = "Altera ECC Manager";
786 dci->dev_name = drvdata->edac_dev_name;
787
788 res = edac_device_add_device(dci);
789 if (res)
790 goto fail1;
791
792 altr_create_edacdev_dbgfs(dci, drvdata->data);
793
794 devres_close_group(&pdev->dev, NULL);
795
796 return 0;
797
798 fail1:
799 edac_device_free_ctl_info(dci);
800 fail:
801 devres_release_group(&pdev->dev, NULL);
802 edac_printk(KERN_ERR, EDAC_DEVICE,
803 "%s:Error setting up EDAC device: %d\n", ecc_name, res);
804
805 return res;
806 }
807
altr_edac_device_remove(struct platform_device * pdev)808 static void altr_edac_device_remove(struct platform_device *pdev)
809 {
810 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
811 struct altr_edac_device_dev *drvdata = dci->pvt_info;
812
813 debugfs_remove_recursive(drvdata->debugfs_dir);
814 edac_device_del_device(&pdev->dev);
815 edac_device_free_ctl_info(dci);
816 }
817
818 static struct platform_driver altr_edac_device_driver = {
819 .probe = altr_edac_device_probe,
820 .remove_new = altr_edac_device_remove,
821 .driver = {
822 .name = "altr_edac_device",
823 .of_match_table = altr_edac_device_of_match,
824 },
825 };
826 module_platform_driver(altr_edac_device_driver);
827
828 /******************* Arria10 Device ECC Shared Functions *****************/
829
830 /*
831 * Test for memory's ECC dependencies upon entry because platform specific
832 * startup should have initialized the memory and enabled the ECC.
833 * Can't turn on ECC here because accessing un-initialized memory will
834 * cause CE/UE errors possibly causing an ABORT.
835 */
836 static int __maybe_unused
altr_check_ecc_deps(struct altr_edac_device_dev * device)837 altr_check_ecc_deps(struct altr_edac_device_dev *device)
838 {
839 void __iomem *base = device->base;
840 const struct edac_device_prv_data *prv = device->data;
841
842 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
843 return 0;
844
845 edac_printk(KERN_ERR, EDAC_DEVICE,
846 "%s: No ECC present or ECC disabled.\n",
847 device->edac_dev_name);
848 return -ENODEV;
849 }
850
altr_edac_a10_ecc_irq(int irq,void * dev_id)851 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
852 {
853 struct altr_edac_device_dev *dci = dev_id;
854 void __iomem *base = dci->base;
855
856 if (irq == dci->sb_irq) {
857 writel(ALTR_A10_ECC_SERRPENA,
858 base + ALTR_A10_ECC_INTSTAT_OFST);
859 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
860
861 return IRQ_HANDLED;
862 } else if (irq == dci->db_irq) {
863 writel(ALTR_A10_ECC_DERRPENA,
864 base + ALTR_A10_ECC_INTSTAT_OFST);
865 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
866 if (dci->data->panic)
867 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
868
869 return IRQ_HANDLED;
870 }
871
872 WARN_ON(1);
873
874 return IRQ_NONE;
875 }
876
877 /******************* Arria10 Memory Buffer Functions *********************/
878
a10_get_irq_mask(struct device_node * np)879 static inline int a10_get_irq_mask(struct device_node *np)
880 {
881 int irq;
882 const u32 *handle = of_get_property(np, "interrupts", NULL);
883
884 if (!handle)
885 return -ENODEV;
886 irq = be32_to_cpup(handle);
887 return irq;
888 }
889
ecc_set_bits(u32 bit_mask,void __iomem * ioaddr)890 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
891 {
892 u32 value = readl(ioaddr);
893
894 value |= bit_mask;
895 writel(value, ioaddr);
896 }
897
ecc_clear_bits(u32 bit_mask,void __iomem * ioaddr)898 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
899 {
900 u32 value = readl(ioaddr);
901
902 value &= ~bit_mask;
903 writel(value, ioaddr);
904 }
905
ecc_test_bits(u32 bit_mask,void __iomem * ioaddr)906 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
907 {
908 u32 value = readl(ioaddr);
909
910 return (value & bit_mask) ? 1 : 0;
911 }
912
913 /*
914 * This function uses the memory initialization block in the Arria10 ECC
915 * controller to initialize/clear the entire memory data and ECC data.
916 */
altr_init_memory_port(void __iomem * ioaddr,int port)917 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
918 {
919 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
920 u32 init_mask, stat_mask, clear_mask;
921 int ret = 0;
922
923 if (port) {
924 init_mask = ALTR_A10_ECC_INITB;
925 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
926 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
927 } else {
928 init_mask = ALTR_A10_ECC_INITA;
929 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
930 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
931 }
932
933 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
934 while (limit--) {
935 if (ecc_test_bits(stat_mask,
936 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
937 break;
938 udelay(1);
939 }
940 if (limit < 0)
941 ret = -EBUSY;
942
943 /* Clear any pending ECC interrupts */
944 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
945
946 return ret;
947 }
948
949 static __init int __maybe_unused
altr_init_a10_ecc_block(struct device_node * np,u32 irq_mask,u32 ecc_ctrl_en_mask,bool dual_port)950 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
951 u32 ecc_ctrl_en_mask, bool dual_port)
952 {
953 int ret = 0;
954 void __iomem *ecc_block_base;
955 struct regmap *ecc_mgr_map;
956 char *ecc_name;
957 struct device_node *np_eccmgr;
958
959 ecc_name = (char *)np->name;
960
961 /* Get the ECC Manager - parent of the device EDACs */
962 np_eccmgr = of_get_parent(np);
963
964 ecc_mgr_map =
965 altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
966 "altr,sysmgr-syscon");
967
968 of_node_put(np_eccmgr);
969 if (IS_ERR(ecc_mgr_map)) {
970 edac_printk(KERN_ERR, EDAC_DEVICE,
971 "Unable to get syscon altr,sysmgr-syscon\n");
972 return -ENODEV;
973 }
974
975 /* Map the ECC Block */
976 ecc_block_base = of_iomap(np, 0);
977 if (!ecc_block_base) {
978 edac_printk(KERN_ERR, EDAC_DEVICE,
979 "Unable to map %s ECC block\n", ecc_name);
980 return -ENODEV;
981 }
982
983 /* Disable ECC */
984 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
985 writel(ALTR_A10_ECC_SERRINTEN,
986 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
987 ecc_clear_bits(ecc_ctrl_en_mask,
988 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
989 /* Ensure all writes complete */
990 wmb();
991 /* Use HW initialization block to initialize memory for ECC */
992 ret = altr_init_memory_port(ecc_block_base, 0);
993 if (ret) {
994 edac_printk(KERN_ERR, EDAC_DEVICE,
995 "ECC: cannot init %s PORTA memory\n", ecc_name);
996 goto out;
997 }
998
999 if (dual_port) {
1000 ret = altr_init_memory_port(ecc_block_base, 1);
1001 if (ret) {
1002 edac_printk(KERN_ERR, EDAC_DEVICE,
1003 "ECC: cannot init %s PORTB memory\n",
1004 ecc_name);
1005 goto out;
1006 }
1007 }
1008
1009 /* Interrupt mode set to every SBERR */
1010 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1011 ALTR_A10_ECC_INTMODE);
1012 /* Enable ECC */
1013 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1014 ALTR_A10_ECC_CTRL_OFST));
1015 writel(ALTR_A10_ECC_SERRINTEN,
1016 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1017 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1018 /* Ensure all writes complete */
1019 wmb();
1020 out:
1021 iounmap(ecc_block_base);
1022 return ret;
1023 }
1024
1025 static int validate_parent_available(struct device_node *np);
1026 static const struct of_device_id altr_edac_a10_device_of_match[];
altr_init_a10_ecc_device_type(char * compat)1027 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1028 {
1029 int irq;
1030 struct device_node *child, *np;
1031
1032 np = of_find_compatible_node(NULL, NULL,
1033 "altr,socfpga-a10-ecc-manager");
1034 if (!np) {
1035 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1036 return -ENODEV;
1037 }
1038
1039 for_each_child_of_node(np, child) {
1040 const struct of_device_id *pdev_id;
1041 const struct edac_device_prv_data *prv;
1042
1043 if (!of_device_is_available(child))
1044 continue;
1045 if (!of_device_is_compatible(child, compat))
1046 continue;
1047
1048 if (validate_parent_available(child))
1049 continue;
1050
1051 irq = a10_get_irq_mask(child);
1052 if (irq < 0)
1053 continue;
1054
1055 /* Get matching node and check for valid result */
1056 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1057 if (IS_ERR_OR_NULL(pdev_id))
1058 continue;
1059
1060 /* Validate private data pointer before dereferencing */
1061 prv = pdev_id->data;
1062 if (!prv)
1063 continue;
1064
1065 altr_init_a10_ecc_block(child, BIT(irq),
1066 prv->ecc_enable_mask, 0);
1067 }
1068
1069 of_node_put(np);
1070 return 0;
1071 }
1072
1073 /*********************** SDRAM EDAC Device Functions *********************/
1074
1075 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1076
1077 /*
1078 * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1079 * register if ECC is enabled. Linux checks the ECC Enable register to
1080 * determine ECC status.
1081 * Use an SMC call (which always works) to determine ECC enablement.
1082 */
altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev * device)1083 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1084 {
1085 const struct edac_device_prv_data *prv = device->data;
1086 unsigned long sdram_ecc_addr;
1087 struct arm_smccc_res result;
1088 struct device_node *np;
1089 phys_addr_t sdram_addr;
1090 u32 read_reg;
1091 int ret;
1092
1093 np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1094 if (!np)
1095 goto sdram_err;
1096
1097 sdram_addr = of_translate_address(np, of_get_address(np, 0,
1098 NULL, NULL));
1099 of_node_put(np);
1100 sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1101 arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1102 0, 0, 0, 0, 0, 0, &result);
1103 read_reg = (unsigned int)result.a1;
1104 ret = (int)result.a0;
1105 if (!ret && (read_reg & prv->ecc_enable_mask))
1106 return 0;
1107
1108 sdram_err:
1109 edac_printk(KERN_ERR, EDAC_DEVICE,
1110 "%s: No ECC present or ECC disabled.\n",
1111 device->edac_dev_name);
1112 return -ENODEV;
1113 }
1114
1115 static const struct edac_device_prv_data s10_sdramecc_data = {
1116 .setup = altr_s10_sdram_check_ecc_deps,
1117 .ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1118 .ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1119 .ecc_enable_mask = ALTR_S10_ECC_EN,
1120 .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1121 .ce_set_mask = ALTR_S10_ECC_TSERRA,
1122 .ue_set_mask = ALTR_S10_ECC_TDERRA,
1123 .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1124 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1125 .inject_fops = &altr_edac_a10_device_inject_fops,
1126 };
1127 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1128
1129 /*********************** OCRAM EDAC Device Functions *********************/
1130
1131 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1132
ocram_alloc_mem(size_t size,void ** other)1133 static void *ocram_alloc_mem(size_t size, void **other)
1134 {
1135 struct device_node *np;
1136 struct gen_pool *gp;
1137 void *sram_addr;
1138
1139 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1140 if (!np)
1141 return NULL;
1142
1143 gp = of_gen_pool_get(np, "iram", 0);
1144 of_node_put(np);
1145 if (!gp)
1146 return NULL;
1147
1148 sram_addr = (void *)gen_pool_alloc(gp, size);
1149 if (!sram_addr)
1150 return NULL;
1151
1152 memset(sram_addr, 0, size);
1153 /* Ensure data is written out */
1154 wmb();
1155
1156 /* Remember this handle for freeing later */
1157 *other = gp;
1158
1159 return sram_addr;
1160 }
1161
ocram_free_mem(void * p,size_t size,void * other)1162 static void ocram_free_mem(void *p, size_t size, void *other)
1163 {
1164 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1165 }
1166
1167 static const struct edac_device_prv_data ocramecc_data = {
1168 .setup = altr_check_ecc_deps,
1169 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1170 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1171 .alloc_mem = ocram_alloc_mem,
1172 .free_mem = ocram_free_mem,
1173 .ecc_enable_mask = ALTR_OCR_ECC_EN,
1174 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1175 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1176 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1177 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1178 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1179 .inject_fops = &altr_edac_device_inject_fops,
1180 };
1181
1182 static int __maybe_unused
altr_check_ocram_deps_init(struct altr_edac_device_dev * device)1183 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1184 {
1185 void __iomem *base = device->base;
1186 int ret;
1187
1188 ret = altr_check_ecc_deps(device);
1189 if (ret)
1190 return ret;
1191
1192 /* Verify OCRAM has been initialized */
1193 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1194 (base + ALTR_A10_ECC_INITSTAT_OFST)))
1195 return -ENODEV;
1196
1197 /* Enable IRQ on Single Bit Error */
1198 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1199 /* Ensure all writes complete */
1200 wmb();
1201
1202 return 0;
1203 }
1204
1205 static const struct edac_device_prv_data a10_ocramecc_data = {
1206 .setup = altr_check_ocram_deps_init,
1207 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1208 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1209 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1210 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1211 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1212 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1213 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1214 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1215 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1216 .inject_fops = &altr_edac_a10_device_inject2_fops,
1217 /*
1218 * OCRAM panic on uncorrectable error because sleep/resume
1219 * functions and FPGA contents are stored in OCRAM. Prefer
1220 * a kernel panic over executing/loading corrupted data.
1221 */
1222 .panic = true,
1223 };
1224
1225 #endif /* CONFIG_EDAC_ALTERA_OCRAM */
1226
1227 /********************* L2 Cache EDAC Device Functions ********************/
1228
1229 #ifdef CONFIG_EDAC_ALTERA_L2C
1230
l2_alloc_mem(size_t size,void ** other)1231 static void *l2_alloc_mem(size_t size, void **other)
1232 {
1233 struct device *dev = *other;
1234 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1235
1236 if (!ptemp)
1237 return NULL;
1238
1239 /* Make sure everything is written out */
1240 wmb();
1241
1242 /*
1243 * Clean all cache levels up to LoC (includes L2)
1244 * This ensures the corrupted data is written into
1245 * L2 cache for readback test (which causes ECC error).
1246 */
1247 flush_cache_all();
1248
1249 return ptemp;
1250 }
1251
l2_free_mem(void * p,size_t size,void * other)1252 static void l2_free_mem(void *p, size_t size, void *other)
1253 {
1254 struct device *dev = other;
1255
1256 if (dev && p)
1257 devm_kfree(dev, p);
1258 }
1259
1260 /*
1261 * altr_l2_check_deps()
1262 * Test for L2 cache ECC dependencies upon entry because
1263 * platform specific startup should have initialized the L2
1264 * memory and enabled the ECC.
1265 * Bail if ECC is not enabled.
1266 * Note that L2 Cache Enable is forced at build time.
1267 */
altr_l2_check_deps(struct altr_edac_device_dev * device)1268 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1269 {
1270 void __iomem *base = device->base;
1271 const struct edac_device_prv_data *prv = device->data;
1272
1273 if ((readl(base) & prv->ecc_enable_mask) ==
1274 prv->ecc_enable_mask)
1275 return 0;
1276
1277 edac_printk(KERN_ERR, EDAC_DEVICE,
1278 "L2: No ECC present, or ECC disabled\n");
1279 return -ENODEV;
1280 }
1281
altr_edac_a10_l2_irq(int irq,void * dev_id)1282 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1283 {
1284 struct altr_edac_device_dev *dci = dev_id;
1285
1286 if (irq == dci->sb_irq) {
1287 regmap_write(dci->edac->ecc_mgr_map,
1288 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1289 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1290 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1291
1292 return IRQ_HANDLED;
1293 } else if (irq == dci->db_irq) {
1294 regmap_write(dci->edac->ecc_mgr_map,
1295 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1296 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1297 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1298 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1299
1300 return IRQ_HANDLED;
1301 }
1302
1303 WARN_ON(1);
1304
1305 return IRQ_NONE;
1306 }
1307
1308 static const struct edac_device_prv_data l2ecc_data = {
1309 .setup = altr_l2_check_deps,
1310 .ce_clear_mask = 0,
1311 .ue_clear_mask = 0,
1312 .alloc_mem = l2_alloc_mem,
1313 .free_mem = l2_free_mem,
1314 .ecc_enable_mask = ALTR_L2_ECC_EN,
1315 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1316 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1317 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1318 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1319 .inject_fops = &altr_edac_device_inject_fops,
1320 };
1321
1322 static const struct edac_device_prv_data a10_l2ecc_data = {
1323 .setup = altr_l2_check_deps,
1324 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1325 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1326 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1327 .alloc_mem = l2_alloc_mem,
1328 .free_mem = l2_free_mem,
1329 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1330 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1331 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1332 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1333 .ecc_irq_handler = altr_edac_a10_l2_irq,
1334 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1335 .inject_fops = &altr_edac_device_inject_fops,
1336 };
1337
1338 #endif /* CONFIG_EDAC_ALTERA_L2C */
1339
1340 /********************* Ethernet Device Functions ********************/
1341
1342 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1343
socfpga_init_ethernet_ecc(struct altr_edac_device_dev * dev)1344 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1345 {
1346 int ret;
1347
1348 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1349 if (ret)
1350 return ret;
1351
1352 return altr_check_ecc_deps(dev);
1353 }
1354
1355 static const struct edac_device_prv_data a10_enetecc_data = {
1356 .setup = socfpga_init_ethernet_ecc,
1357 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1358 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1359 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1360 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1361 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1362 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1363 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1364 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1365 .inject_fops = &altr_edac_a10_device_inject2_fops,
1366 };
1367
1368 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1369
1370 /********************** NAND Device Functions **********************/
1371
1372 #ifdef CONFIG_EDAC_ALTERA_NAND
1373
socfpga_init_nand_ecc(struct altr_edac_device_dev * device)1374 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1375 {
1376 int ret;
1377
1378 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1379 if (ret)
1380 return ret;
1381
1382 return altr_check_ecc_deps(device);
1383 }
1384
1385 static const struct edac_device_prv_data a10_nandecc_data = {
1386 .setup = socfpga_init_nand_ecc,
1387 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1388 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1389 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1390 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1391 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1392 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1393 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1394 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1395 .inject_fops = &altr_edac_a10_device_inject_fops,
1396 };
1397
1398 #endif /* CONFIG_EDAC_ALTERA_NAND */
1399
1400 /********************** DMA Device Functions **********************/
1401
1402 #ifdef CONFIG_EDAC_ALTERA_DMA
1403
socfpga_init_dma_ecc(struct altr_edac_device_dev * device)1404 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1405 {
1406 int ret;
1407
1408 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1409 if (ret)
1410 return ret;
1411
1412 return altr_check_ecc_deps(device);
1413 }
1414
1415 static const struct edac_device_prv_data a10_dmaecc_data = {
1416 .setup = socfpga_init_dma_ecc,
1417 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1418 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1419 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1420 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1421 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1422 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1423 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1424 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1425 .inject_fops = &altr_edac_a10_device_inject_fops,
1426 };
1427
1428 #endif /* CONFIG_EDAC_ALTERA_DMA */
1429
1430 /********************** USB Device Functions **********************/
1431
1432 #ifdef CONFIG_EDAC_ALTERA_USB
1433
socfpga_init_usb_ecc(struct altr_edac_device_dev * device)1434 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1435 {
1436 int ret;
1437
1438 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1439 if (ret)
1440 return ret;
1441
1442 return altr_check_ecc_deps(device);
1443 }
1444
1445 static const struct edac_device_prv_data a10_usbecc_data = {
1446 .setup = socfpga_init_usb_ecc,
1447 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1448 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1449 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1450 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1451 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1452 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1453 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1454 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1455 .inject_fops = &altr_edac_a10_device_inject2_fops,
1456 };
1457
1458 #endif /* CONFIG_EDAC_ALTERA_USB */
1459
1460 /********************** QSPI Device Functions **********************/
1461
1462 #ifdef CONFIG_EDAC_ALTERA_QSPI
1463
socfpga_init_qspi_ecc(struct altr_edac_device_dev * device)1464 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1465 {
1466 int ret;
1467
1468 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1469 if (ret)
1470 return ret;
1471
1472 return altr_check_ecc_deps(device);
1473 }
1474
1475 static const struct edac_device_prv_data a10_qspiecc_data = {
1476 .setup = socfpga_init_qspi_ecc,
1477 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1478 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1479 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1480 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1481 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1482 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1483 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1484 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1485 .inject_fops = &altr_edac_a10_device_inject_fops,
1486 };
1487
1488 #endif /* CONFIG_EDAC_ALTERA_QSPI */
1489
1490 /********************* SDMMC Device Functions **********************/
1491
1492 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1493
1494 static const struct edac_device_prv_data a10_sdmmceccb_data;
altr_portb_setup(struct altr_edac_device_dev * device)1495 static int altr_portb_setup(struct altr_edac_device_dev *device)
1496 {
1497 struct edac_device_ctl_info *dci;
1498 struct altr_edac_device_dev *altdev;
1499 char *ecc_name = "sdmmcb-ecc";
1500 int edac_idx, rc;
1501 struct device_node *np;
1502 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1503
1504 rc = altr_check_ecc_deps(device);
1505 if (rc)
1506 return rc;
1507
1508 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1509 if (!np) {
1510 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1511 return -ENODEV;
1512 }
1513
1514 /* Create the PortB EDAC device */
1515 edac_idx = edac_device_alloc_index();
1516 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1517 ecc_name, 1, 0, NULL, 0, edac_idx);
1518 if (!dci) {
1519 edac_printk(KERN_ERR, EDAC_DEVICE,
1520 "%s: Unable to allocate PortB EDAC device\n",
1521 ecc_name);
1522 return -ENOMEM;
1523 }
1524
1525 /* Initialize the PortB EDAC device structure from PortA structure */
1526 altdev = dci->pvt_info;
1527 *altdev = *device;
1528
1529 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1530 return -ENOMEM;
1531
1532 /* Update PortB specific values */
1533 altdev->edac_dev_name = ecc_name;
1534 altdev->edac_idx = edac_idx;
1535 altdev->edac_dev = dci;
1536 altdev->data = prv;
1537 dci->dev = &altdev->ddev;
1538 dci->ctl_name = "Altera ECC Manager";
1539 dci->mod_name = ecc_name;
1540 dci->dev_name = ecc_name;
1541
1542 /*
1543 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1544 *
1545 * FIXME: Instead of ifdefs with different architectures the driver
1546 * should properly use compatibles.
1547 */
1548 #ifdef CONFIG_64BIT
1549 altdev->sb_irq = irq_of_parse_and_map(np, 1);
1550 #else
1551 altdev->sb_irq = irq_of_parse_and_map(np, 2);
1552 #endif
1553 if (!altdev->sb_irq) {
1554 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1555 rc = -ENODEV;
1556 goto err_release_group_1;
1557 }
1558 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1559 prv->ecc_irq_handler,
1560 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1561 ecc_name, altdev);
1562 if (rc) {
1563 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1564 goto err_release_group_1;
1565 }
1566
1567 #ifdef CONFIG_64BIT
1568 /* Use IRQ to determine SError origin instead of assigning IRQ */
1569 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1570 if (rc) {
1571 edac_printk(KERN_ERR, EDAC_DEVICE,
1572 "Error PortB DBIRQ alloc\n");
1573 goto err_release_group_1;
1574 }
1575 #else
1576 altdev->db_irq = irq_of_parse_and_map(np, 3);
1577 if (!altdev->db_irq) {
1578 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1579 rc = -ENODEV;
1580 goto err_release_group_1;
1581 }
1582 rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1583 prv->ecc_irq_handler,
1584 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1585 ecc_name, altdev);
1586 if (rc) {
1587 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1588 goto err_release_group_1;
1589 }
1590 #endif
1591
1592 rc = edac_device_add_device(dci);
1593 if (rc) {
1594 edac_printk(KERN_ERR, EDAC_DEVICE,
1595 "edac_device_add_device portB failed\n");
1596 rc = -ENOMEM;
1597 goto err_release_group_1;
1598 }
1599 altr_create_edacdev_dbgfs(dci, prv);
1600
1601 list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1602
1603 devres_remove_group(&altdev->ddev, altr_portb_setup);
1604
1605 return 0;
1606
1607 err_release_group_1:
1608 edac_device_free_ctl_info(dci);
1609 devres_release_group(&altdev->ddev, altr_portb_setup);
1610 edac_printk(KERN_ERR, EDAC_DEVICE,
1611 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1612 return rc;
1613 }
1614
socfpga_init_sdmmc_ecc(struct altr_edac_device_dev * device)1615 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1616 {
1617 int rc = -ENODEV;
1618 struct device_node *child;
1619
1620 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1621 if (!child)
1622 return -ENODEV;
1623
1624 if (!of_device_is_available(child))
1625 goto exit;
1626
1627 if (validate_parent_available(child))
1628 goto exit;
1629
1630 /* Init portB */
1631 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1632 a10_sdmmceccb_data.ecc_enable_mask, 1);
1633 if (rc)
1634 goto exit;
1635
1636 /* Setup portB */
1637 return altr_portb_setup(device);
1638
1639 exit:
1640 of_node_put(child);
1641 return rc;
1642 }
1643
altr_edac_a10_ecc_irq_portb(int irq,void * dev_id)1644 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1645 {
1646 struct altr_edac_device_dev *ad = dev_id;
1647 void __iomem *base = ad->base;
1648 const struct edac_device_prv_data *priv = ad->data;
1649
1650 if (irq == ad->sb_irq) {
1651 writel(priv->ce_clear_mask,
1652 base + ALTR_A10_ECC_INTSTAT_OFST);
1653 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1654 return IRQ_HANDLED;
1655 } else if (irq == ad->db_irq) {
1656 writel(priv->ue_clear_mask,
1657 base + ALTR_A10_ECC_INTSTAT_OFST);
1658 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1659 return IRQ_HANDLED;
1660 }
1661
1662 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1663
1664 return IRQ_NONE;
1665 }
1666
1667 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1668 .setup = socfpga_init_sdmmc_ecc,
1669 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1670 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1671 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1672 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1673 .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1674 .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1675 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1676 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1677 .inject_fops = &altr_edac_a10_device_inject_fops,
1678 };
1679
1680 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1681 .setup = socfpga_init_sdmmc_ecc,
1682 .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1683 .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1684 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1685 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1686 .ce_set_mask = ALTR_A10_ECC_TSERRB,
1687 .ue_set_mask = ALTR_A10_ECC_TDERRB,
1688 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1689 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1690 .inject_fops = &altr_edac_a10_device_inject_fops,
1691 };
1692
1693 #endif /* CONFIG_EDAC_ALTERA_SDMMC */
1694
1695 /********************* Arria10 EDAC Device Functions *************************/
1696 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1697 #ifdef CONFIG_EDAC_ALTERA_L2C
1698 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1699 #endif
1700 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1701 { .compatible = "altr,socfpga-a10-ocram-ecc",
1702 .data = &a10_ocramecc_data },
1703 #endif
1704 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1705 { .compatible = "altr,socfpga-eth-mac-ecc",
1706 .data = &a10_enetecc_data },
1707 #endif
1708 #ifdef CONFIG_EDAC_ALTERA_NAND
1709 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1710 #endif
1711 #ifdef CONFIG_EDAC_ALTERA_DMA
1712 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1713 #endif
1714 #ifdef CONFIG_EDAC_ALTERA_USB
1715 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1716 #endif
1717 #ifdef CONFIG_EDAC_ALTERA_QSPI
1718 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1719 #endif
1720 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1721 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1722 #endif
1723 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1724 { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1725 #endif
1726 {},
1727 };
1728 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1729
1730 /*
1731 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1732 * because 2 IRQs are shared among the all ECC peripherals. The ECC
1733 * manager manages the IRQs and the children.
1734 * Based on xgene_edac.c peripheral code.
1735 */
1736
1737 static ssize_t __maybe_unused
altr_edac_a10_device_trig(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1738 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1739 size_t count, loff_t *ppos)
1740 {
1741 struct edac_device_ctl_info *edac_dci = file->private_data;
1742 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1743 const struct edac_device_prv_data *priv = drvdata->data;
1744 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1745 unsigned long flags;
1746 u8 trig_type;
1747
1748 if (!user_buf || get_user(trig_type, user_buf))
1749 return -EFAULT;
1750
1751 local_irq_save(flags);
1752 if (trig_type == ALTR_UE_TRIGGER_CHAR)
1753 writel(priv->ue_set_mask, set_addr);
1754 else
1755 writel(priv->ce_set_mask, set_addr);
1756
1757 /* Ensure the interrupt test bits are set */
1758 wmb();
1759 local_irq_restore(flags);
1760
1761 return count;
1762 }
1763
1764 /*
1765 * The Stratix10 EDAC Error Injection Functions differ from Arria10
1766 * slightly. A few Arria10 peripherals can use this injection function.
1767 * Inject the error into the memory and then readback to trigger the IRQ.
1768 */
1769 static ssize_t __maybe_unused
altr_edac_a10_device_trig2(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1770 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1771 size_t count, loff_t *ppos)
1772 {
1773 struct edac_device_ctl_info *edac_dci = file->private_data;
1774 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1775 const struct edac_device_prv_data *priv = drvdata->data;
1776 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1777 unsigned long flags;
1778 u8 trig_type;
1779
1780 if (!user_buf || get_user(trig_type, user_buf))
1781 return -EFAULT;
1782
1783 local_irq_save(flags);
1784 if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1785 writel(priv->ue_set_mask, set_addr);
1786 } else {
1787 /* Setup read/write of 4 bytes */
1788 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1789 /* Setup Address to 0 */
1790 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1791 /* Setup accctrl to read & ecc & data override */
1792 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1793 /* Kick it. */
1794 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1795 /* Setup write for single bit change */
1796 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1797 drvdata->base + ECC_BLK_WDATA0_OFST);
1798 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1799 drvdata->base + ECC_BLK_WDATA1_OFST);
1800 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1801 drvdata->base + ECC_BLK_WDATA2_OFST);
1802 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1803 drvdata->base + ECC_BLK_WDATA3_OFST);
1804
1805 /* Copy Read ECC to Write ECC */
1806 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1807 drvdata->base + ECC_BLK_WECC0_OFST);
1808 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1809 drvdata->base + ECC_BLK_WECC1_OFST);
1810 /* Setup accctrl to write & ecc override & data override */
1811 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1812 /* Kick it. */
1813 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1814 /* Setup accctrl to read & ecc overwrite & data overwrite */
1815 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1816 /* Kick it. */
1817 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1818 }
1819
1820 /* Ensure the interrupt test bits are set */
1821 wmb();
1822 local_irq_restore(flags);
1823
1824 return count;
1825 }
1826
altr_edac_a10_irq_handler(struct irq_desc * desc)1827 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1828 {
1829 int dberr, bit, sm_offset, irq_status;
1830 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1831 struct irq_chip *chip = irq_desc_get_chip(desc);
1832 int irq = irq_desc_get_irq(desc);
1833 unsigned long bits;
1834
1835 dberr = (irq == edac->db_irq) ? 1 : 0;
1836 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1837 A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1838
1839 chained_irq_enter(chip, desc);
1840
1841 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1842
1843 bits = irq_status;
1844 for_each_set_bit(bit, &bits, 32)
1845 generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1846
1847 chained_irq_exit(chip, desc);
1848 }
1849
validate_parent_available(struct device_node * np)1850 static int validate_parent_available(struct device_node *np)
1851 {
1852 struct device_node *parent;
1853 int ret = 0;
1854
1855 /* SDRAM must be present for Linux (implied parent) */
1856 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1857 return 0;
1858
1859 /* Ensure parent device is enabled if parent node exists */
1860 parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1861 if (parent && !of_device_is_available(parent))
1862 ret = -ENODEV;
1863
1864 of_node_put(parent);
1865 return ret;
1866 }
1867
get_s10_sdram_edac_resource(struct device_node * np,struct resource * res)1868 static int get_s10_sdram_edac_resource(struct device_node *np,
1869 struct resource *res)
1870 {
1871 struct device_node *parent;
1872 int ret;
1873
1874 parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1875 if (!parent)
1876 return -ENODEV;
1877
1878 ret = of_address_to_resource(parent, 0, res);
1879 of_node_put(parent);
1880
1881 return ret;
1882 }
1883
altr_edac_a10_device_add(struct altr_arria10_edac * edac,struct device_node * np)1884 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1885 struct device_node *np)
1886 {
1887 struct edac_device_ctl_info *dci;
1888 struct altr_edac_device_dev *altdev;
1889 char *ecc_name = (char *)np->name;
1890 struct resource res;
1891 int edac_idx;
1892 int rc = 0;
1893 const struct edac_device_prv_data *prv;
1894 /* Get matching node and check for valid result */
1895 const struct of_device_id *pdev_id =
1896 of_match_node(altr_edac_a10_device_of_match, np);
1897 if (IS_ERR_OR_NULL(pdev_id))
1898 return -ENODEV;
1899
1900 /* Get driver specific data for this EDAC device */
1901 prv = pdev_id->data;
1902 if (IS_ERR_OR_NULL(prv))
1903 return -ENODEV;
1904
1905 if (validate_parent_available(np))
1906 return -ENODEV;
1907
1908 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1909 return -ENOMEM;
1910
1911 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1912 rc = get_s10_sdram_edac_resource(np, &res);
1913 else
1914 rc = of_address_to_resource(np, 0, &res);
1915
1916 if (rc < 0) {
1917 edac_printk(KERN_ERR, EDAC_DEVICE,
1918 "%s: no resource address\n", ecc_name);
1919 goto err_release_group;
1920 }
1921
1922 edac_idx = edac_device_alloc_index();
1923 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1924 1, ecc_name, 1, 0, NULL, 0,
1925 edac_idx);
1926
1927 if (!dci) {
1928 edac_printk(KERN_ERR, EDAC_DEVICE,
1929 "%s: Unable to allocate EDAC device\n", ecc_name);
1930 rc = -ENOMEM;
1931 goto err_release_group;
1932 }
1933
1934 altdev = dci->pvt_info;
1935 dci->dev = edac->dev;
1936 altdev->edac_dev_name = ecc_name;
1937 altdev->edac_idx = edac_idx;
1938 altdev->edac = edac;
1939 altdev->edac_dev = dci;
1940 altdev->data = prv;
1941 altdev->ddev = *edac->dev;
1942 dci->dev = &altdev->ddev;
1943 dci->ctl_name = "Altera ECC Manager";
1944 dci->mod_name = ecc_name;
1945 dci->dev_name = ecc_name;
1946
1947 altdev->base = devm_ioremap_resource(edac->dev, &res);
1948 if (IS_ERR(altdev->base)) {
1949 rc = PTR_ERR(altdev->base);
1950 goto err_release_group1;
1951 }
1952
1953 /* Check specific dependencies for the module */
1954 if (altdev->data->setup) {
1955 rc = altdev->data->setup(altdev);
1956 if (rc)
1957 goto err_release_group1;
1958 }
1959
1960 altdev->sb_irq = irq_of_parse_and_map(np, 0);
1961 if (!altdev->sb_irq) {
1962 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1963 rc = -ENODEV;
1964 goto err_release_group1;
1965 }
1966 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1967 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1968 ecc_name, altdev);
1969 if (rc) {
1970 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1971 goto err_release_group1;
1972 }
1973
1974 #ifdef CONFIG_64BIT
1975 /* Use IRQ to determine SError origin instead of assigning IRQ */
1976 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1977 if (rc) {
1978 edac_printk(KERN_ERR, EDAC_DEVICE,
1979 "Unable to parse DB IRQ index\n");
1980 goto err_release_group1;
1981 }
1982 #else
1983 altdev->db_irq = irq_of_parse_and_map(np, 1);
1984 if (!altdev->db_irq) {
1985 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1986 rc = -ENODEV;
1987 goto err_release_group1;
1988 }
1989 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1990 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1991 ecc_name, altdev);
1992 if (rc) {
1993 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1994 goto err_release_group1;
1995 }
1996 #endif
1997
1998 rc = edac_device_add_device(dci);
1999 if (rc) {
2000 dev_err(edac->dev, "edac_device_add_device failed\n");
2001 rc = -ENOMEM;
2002 goto err_release_group1;
2003 }
2004
2005 altr_create_edacdev_dbgfs(dci, prv);
2006
2007 list_add(&altdev->next, &edac->a10_ecc_devices);
2008
2009 devres_remove_group(edac->dev, altr_edac_a10_device_add);
2010
2011 return 0;
2012
2013 err_release_group1:
2014 edac_device_free_ctl_info(dci);
2015 err_release_group:
2016 devres_release_group(edac->dev, NULL);
2017 edac_printk(KERN_ERR, EDAC_DEVICE,
2018 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2019
2020 return rc;
2021 }
2022
a10_eccmgr_irq_mask(struct irq_data * d)2023 static void a10_eccmgr_irq_mask(struct irq_data *d)
2024 {
2025 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2026
2027 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2028 BIT(d->hwirq));
2029 }
2030
a10_eccmgr_irq_unmask(struct irq_data * d)2031 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2032 {
2033 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2034
2035 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2036 BIT(d->hwirq));
2037 }
2038
a10_eccmgr_irqdomain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)2039 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2040 irq_hw_number_t hwirq)
2041 {
2042 struct altr_arria10_edac *edac = d->host_data;
2043
2044 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2045 irq_set_chip_data(irq, edac);
2046 irq_set_noprobe(irq);
2047
2048 return 0;
2049 }
2050
2051 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2052 .map = a10_eccmgr_irqdomain_map,
2053 .xlate = irq_domain_xlate_twocell,
2054 };
2055
2056 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2057 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2058
2059 #ifdef CONFIG_64BIT
2060 /* panic routine issues reboot on non-zero panic_timeout */
2061 extern int panic_timeout;
2062
2063 /*
2064 * The double bit error is handled through SError which is fatal. This is
2065 * called as a panic notifier to printout ECC error info as part of the panic.
2066 */
s10_edac_dberr_handler(struct notifier_block * this,unsigned long event,void * ptr)2067 static int s10_edac_dberr_handler(struct notifier_block *this,
2068 unsigned long event, void *ptr)
2069 {
2070 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2071 int err_addr, dberror;
2072
2073 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2074 &dberror);
2075 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2076 if (dberror & S10_DBE_IRQ_MASK) {
2077 struct list_head *position;
2078 struct altr_edac_device_dev *ed;
2079 struct arm_smccc_res result;
2080
2081 /* Find the matching DBE in the list of devices */
2082 list_for_each(position, &edac->a10_ecc_devices) {
2083 ed = list_entry(position, struct altr_edac_device_dev,
2084 next);
2085 if (!(BIT(ed->db_irq) & dberror))
2086 continue;
2087
2088 writel(ALTR_A10_ECC_DERRPENA,
2089 ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2090 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2091 regmap_write(edac->ecc_mgr_map,
2092 S10_SYSMGR_UE_ADDR_OFST, err_addr);
2093 edac_printk(KERN_ERR, EDAC_DEVICE,
2094 "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2095 ed->edac_dev_name, err_addr);
2096 break;
2097 }
2098 /* Notify the System through SMC. Reboot delay = 1 second */
2099 panic_timeout = 1;
2100 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2101 0, 0, &result);
2102 }
2103
2104 return NOTIFY_DONE;
2105 }
2106 #endif
2107
2108 /****************** Arria 10 EDAC Probe Function *********************/
altr_edac_a10_probe(struct platform_device * pdev)2109 static int altr_edac_a10_probe(struct platform_device *pdev)
2110 {
2111 struct altr_arria10_edac *edac;
2112 struct device_node *child;
2113
2114 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2115 if (!edac)
2116 return -ENOMEM;
2117
2118 edac->dev = &pdev->dev;
2119 platform_set_drvdata(pdev, edac);
2120 INIT_LIST_HEAD(&edac->a10_ecc_devices);
2121
2122 edac->ecc_mgr_map =
2123 altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2124 "altr,sysmgr-syscon");
2125
2126 if (IS_ERR(edac->ecc_mgr_map)) {
2127 edac_printk(KERN_ERR, EDAC_DEVICE,
2128 "Unable to get syscon altr,sysmgr-syscon\n");
2129 return PTR_ERR(edac->ecc_mgr_map);
2130 }
2131
2132 edac->irq_chip.name = pdev->dev.of_node->name;
2133 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2134 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2135 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2136 &a10_eccmgr_ic_ops, edac);
2137 if (!edac->domain) {
2138 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2139 return -ENOMEM;
2140 }
2141
2142 edac->sb_irq = platform_get_irq(pdev, 0);
2143 if (edac->sb_irq < 0)
2144 return edac->sb_irq;
2145
2146 irq_set_chained_handler_and_data(edac->sb_irq,
2147 altr_edac_a10_irq_handler,
2148 edac);
2149
2150 #ifdef CONFIG_64BIT
2151 {
2152 int dberror, err_addr;
2153
2154 edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2155 atomic_notifier_chain_register(&panic_notifier_list,
2156 &edac->panic_notifier);
2157
2158 /* Printout a message if uncorrectable error previously. */
2159 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2160 &dberror);
2161 if (dberror) {
2162 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2163 &err_addr);
2164 edac_printk(KERN_ERR, EDAC_DEVICE,
2165 "Previous Boot UE detected[0x%X] @ 0x%X\n",
2166 dberror, err_addr);
2167 /* Reset the sticky registers */
2168 regmap_write(edac->ecc_mgr_map,
2169 S10_SYSMGR_UE_VAL_OFST, 0);
2170 regmap_write(edac->ecc_mgr_map,
2171 S10_SYSMGR_UE_ADDR_OFST, 0);
2172 }
2173 }
2174 #else
2175 edac->db_irq = platform_get_irq(pdev, 1);
2176 if (edac->db_irq < 0)
2177 return edac->db_irq;
2178
2179 irq_set_chained_handler_and_data(edac->db_irq,
2180 altr_edac_a10_irq_handler, edac);
2181 #endif
2182
2183 for_each_child_of_node(pdev->dev.of_node, child) {
2184 if (!of_device_is_available(child))
2185 continue;
2186
2187 if (of_match_node(altr_edac_a10_device_of_match, child))
2188 altr_edac_a10_device_add(edac, child);
2189
2190 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2191 else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2192 of_platform_populate(pdev->dev.of_node,
2193 altr_sdram_ctrl_of_match,
2194 NULL, &pdev->dev);
2195 #endif
2196 }
2197
2198 return 0;
2199 }
2200
2201 static const struct of_device_id altr_edac_a10_of_match[] = {
2202 { .compatible = "altr,socfpga-a10-ecc-manager" },
2203 { .compatible = "altr,socfpga-s10-ecc-manager" },
2204 {},
2205 };
2206 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2207
2208 static struct platform_driver altr_edac_a10_driver = {
2209 .probe = altr_edac_a10_probe,
2210 .driver = {
2211 .name = "socfpga_a10_ecc_manager",
2212 .of_match_table = altr_edac_a10_of_match,
2213 },
2214 };
2215 module_platform_driver(altr_edac_a10_driver);
2216
2217 MODULE_AUTHOR("Thor Thayer");
2218 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2219