1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19
20 #include "sec.h"
21 #include "sec_crypto.h"
22
23 #define SEC_PRIORITY 4001
24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
29
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET 1
32 #define SEC_CIPHER_OFFSET 4
33 #define SEC_SCENE_OFFSET 3
34 #define SEC_DST_SGL_OFFSET 2
35 #define SEC_SRC_SGL_OFFSET 7
36 #define SEC_CKEY_OFFSET 9
37 #define SEC_CMODE_OFFSET 12
38 #define SEC_AKEY_OFFSET 5
39 #define SEC_AEAD_ALG_OFFSET 11
40 #define SEC_AUTH_OFFSET 6
41
42 #define SEC_DE_OFFSET_V3 9
43 #define SEC_SCENE_OFFSET_V3 5
44 #define SEC_CKEY_OFFSET_V3 13
45 #define SEC_CTR_CNT_OFFSET 25
46 #define SEC_CTR_CNT_ROLLOVER 2
47 #define SEC_SRC_SGL_OFFSET_V3 11
48 #define SEC_DST_SGL_OFFSET_V3 14
49 #define SEC_CALG_OFFSET_V3 4
50 #define SEC_AKEY_OFFSET_V3 9
51 #define SEC_MAC_OFFSET_V3 4
52 #define SEC_AUTH_ALG_OFFSET_V3 15
53 #define SEC_CIPHER_AUTH_V3 0xbf
54 #define SEC_AUTH_CIPHER_V3 0x40
55 #define SEC_FLAG_OFFSET 7
56 #define SEC_FLAG_MASK 0x0780
57 #define SEC_TYPE_MASK 0x0F
58 #define SEC_DONE_MASK 0x0001
59 #define SEC_ICV_MASK 0x000E
60 #define SEC_SQE_LEN_RATE_MASK 0x3
61
62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR 128
64 #define SEC_CIPHER_AUTH 0xfe
65 #define SEC_AUTH_CIPHER 0x1
66 #define SEC_MAX_MAC_LEN 64
67 #define SEC_MAX_AAD_LEN 65535
68 #define SEC_MAX_CCM_AAD_LEN 65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70
71 #define SEC_PBUF_SZ 512
72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
75 SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
81 SEC_PBUF_LEFT_SZ(depth))
82
83 #define SEC_SQE_LEN_RATE 4
84 #define SEC_SQE_CFLAG 2
85 #define SEC_SQE_AEAD_FLAG 3
86 #define SEC_SQE_DONE 0x1
87 #define SEC_ICV_ERR 0x2
88 #define MIN_MAC_LEN 4
89 #define MAC_LEN_MASK 0x1U
90 #define MAX_INPUT_DATA_LEN 0xFFFE00
91 #define BITS_MASK 0xFF
92 #define BYTE_BITS 0x8
93 #define SEC_XTS_NAME_SZ 0x3
94 #define IV_CM_CAL_NUM 2
95 #define IV_CL_MASK 0x7
96 #define IV_CL_MIN 2
97 #define IV_CL_MID 4
98 #define IV_CL_MAX 8
99 #define IV_FLAGS_OFFSET 0x6
100 #define IV_CM_OFFSET 0x3
101 #define IV_LAST_BYTE1 1
102 #define IV_LAST_BYTE2 2
103 #define IV_LAST_BYTE_MASK 0xFF
104 #define IV_CTR_INIT 0x1
105 #define IV_BYTE_OFFSET 0x8
106
107 static DEFINE_MUTEX(sec_algs_lock);
108 static unsigned int sec_available_devs;
109
110 struct sec_skcipher {
111 u64 alg_msk;
112 struct skcipher_alg alg;
113 };
114
115 struct sec_aead {
116 u64 alg_msk;
117 struct aead_alg alg;
118 };
119
120 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
sec_alloc_queue_id(struct sec_ctx * ctx,struct sec_req * req)121 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
122 {
123 if (req->c_req.encrypt)
124 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
125 ctx->hlf_q_num;
126
127 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
128 ctx->hlf_q_num;
129 }
130
sec_free_queue_id(struct sec_ctx * ctx,struct sec_req * req)131 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
132 {
133 if (req->c_req.encrypt)
134 atomic_dec(&ctx->enc_qcyclic);
135 else
136 atomic_dec(&ctx->dec_qcyclic);
137 }
138
sec_alloc_req_id(struct sec_req * req,struct sec_qp_ctx * qp_ctx)139 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
140 {
141 int req_id;
142
143 spin_lock_bh(&qp_ctx->req_lock);
144 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
145 spin_unlock_bh(&qp_ctx->req_lock);
146 if (unlikely(req_id < 0)) {
147 dev_err(req->ctx->dev, "alloc req id fail!\n");
148 return req_id;
149 }
150
151 req->qp_ctx = qp_ctx;
152 qp_ctx->req_list[req_id] = req;
153
154 return req_id;
155 }
156
sec_free_req_id(struct sec_req * req)157 static void sec_free_req_id(struct sec_req *req)
158 {
159 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
160 int req_id = req->req_id;
161
162 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
163 dev_err(req->ctx->dev, "free request id invalid!\n");
164 return;
165 }
166
167 qp_ctx->req_list[req_id] = NULL;
168 req->qp_ctx = NULL;
169
170 spin_lock_bh(&qp_ctx->req_lock);
171 idr_remove(&qp_ctx->req_idr, req_id);
172 spin_unlock_bh(&qp_ctx->req_lock);
173 }
174
pre_parse_finished_bd(struct bd_status * status,void * resp)175 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
176 {
177 struct sec_sqe *bd = resp;
178
179 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
180 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
181 status->flag = (le16_to_cpu(bd->type2.done_flag) &
182 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
183 status->tag = le16_to_cpu(bd->type2.tag);
184 status->err_type = bd->type2.error_type;
185
186 return bd->type_cipher_auth & SEC_TYPE_MASK;
187 }
188
pre_parse_finished_bd3(struct bd_status * status,void * resp)189 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
190 {
191 struct sec_sqe3 *bd3 = resp;
192
193 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
194 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
195 status->flag = (le16_to_cpu(bd3->done_flag) &
196 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
197 status->tag = le64_to_cpu(bd3->tag);
198 status->err_type = bd3->error_type;
199
200 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
201 }
202
sec_cb_status_check(struct sec_req * req,struct bd_status * status)203 static int sec_cb_status_check(struct sec_req *req,
204 struct bd_status *status)
205 {
206 struct sec_ctx *ctx = req->ctx;
207
208 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
209 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
210 req->err_type, status->done);
211 return -EIO;
212 }
213
214 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
215 if (unlikely(status->flag != SEC_SQE_CFLAG)) {
216 dev_err_ratelimited(ctx->dev, "flag[%u]\n",
217 status->flag);
218 return -EIO;
219 }
220 } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
221 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
222 status->icv == SEC_ICV_ERR)) {
223 dev_err_ratelimited(ctx->dev,
224 "flag[%u], icv[%u]\n",
225 status->flag, status->icv);
226 return -EBADMSG;
227 }
228 }
229
230 return 0;
231 }
232
sec_req_cb(struct hisi_qp * qp,void * resp)233 static void sec_req_cb(struct hisi_qp *qp, void *resp)
234 {
235 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
236 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
237 u8 type_supported = qp_ctx->ctx->type_supported;
238 struct bd_status status;
239 struct sec_ctx *ctx;
240 struct sec_req *req;
241 int err;
242 u8 type;
243
244 if (type_supported == SEC_BD_TYPE2) {
245 type = pre_parse_finished_bd(&status, resp);
246 req = qp_ctx->req_list[status.tag];
247 } else {
248 type = pre_parse_finished_bd3(&status, resp);
249 req = (void *)(uintptr_t)status.tag;
250 }
251
252 if (unlikely(type != type_supported)) {
253 atomic64_inc(&dfx->err_bd_cnt);
254 pr_err("err bd type [%u]\n", type);
255 return;
256 }
257
258 if (unlikely(!req)) {
259 atomic64_inc(&dfx->invalid_req_cnt);
260 atomic_inc(&qp->qp_status.used);
261 return;
262 }
263
264 req->err_type = status.err_type;
265 ctx = req->ctx;
266 err = sec_cb_status_check(req, &status);
267 if (err)
268 atomic64_inc(&dfx->done_flag_cnt);
269
270 atomic64_inc(&dfx->recv_cnt);
271
272 ctx->req_op->buf_unmap(ctx, req);
273
274 ctx->req_op->callback(ctx, req, err);
275 }
276
sec_bd_send(struct sec_ctx * ctx,struct sec_req * req)277 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
278 {
279 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
280 int ret;
281
282 if (ctx->fake_req_limit <=
283 atomic_read(&qp_ctx->qp->qp_status.used) &&
284 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
285 return -EBUSY;
286
287 spin_lock_bh(&qp_ctx->req_lock);
288 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
289 if (ctx->fake_req_limit <=
290 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
291 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
292 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
293 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
294 spin_unlock_bh(&qp_ctx->req_lock);
295 return -EBUSY;
296 }
297 spin_unlock_bh(&qp_ctx->req_lock);
298
299 if (unlikely(ret == -EBUSY))
300 return -ENOBUFS;
301
302 if (likely(!ret)) {
303 ret = -EINPROGRESS;
304 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
305 }
306
307 return ret;
308 }
309
310 /* Get DMA memory resources */
sec_alloc_civ_resource(struct device * dev,struct sec_alg_res * res)311 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
312 {
313 u16 q_depth = res->depth;
314 int i;
315
316 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
317 &res->c_ivin_dma, GFP_KERNEL);
318 if (!res->c_ivin)
319 return -ENOMEM;
320
321 for (i = 1; i < q_depth; i++) {
322 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
323 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
324 }
325
326 return 0;
327 }
328
sec_free_civ_resource(struct device * dev,struct sec_alg_res * res)329 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
330 {
331 if (res->c_ivin)
332 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
333 res->c_ivin, res->c_ivin_dma);
334 }
335
sec_alloc_aiv_resource(struct device * dev,struct sec_alg_res * res)336 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
337 {
338 u16 q_depth = res->depth;
339 int i;
340
341 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
342 &res->a_ivin_dma, GFP_KERNEL);
343 if (!res->a_ivin)
344 return -ENOMEM;
345
346 for (i = 1; i < q_depth; i++) {
347 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
348 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
349 }
350
351 return 0;
352 }
353
sec_free_aiv_resource(struct device * dev,struct sec_alg_res * res)354 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
355 {
356 if (res->a_ivin)
357 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
358 res->a_ivin, res->a_ivin_dma);
359 }
360
sec_alloc_mac_resource(struct device * dev,struct sec_alg_res * res)361 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
362 {
363 u16 q_depth = res->depth;
364 int i;
365
366 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
367 &res->out_mac_dma, GFP_KERNEL);
368 if (!res->out_mac)
369 return -ENOMEM;
370
371 for (i = 1; i < q_depth; i++) {
372 res[i].out_mac_dma = res->out_mac_dma +
373 i * (SEC_MAX_MAC_LEN << 1);
374 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
375 }
376
377 return 0;
378 }
379
sec_free_mac_resource(struct device * dev,struct sec_alg_res * res)380 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
381 {
382 if (res->out_mac)
383 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
384 res->out_mac, res->out_mac_dma);
385 }
386
sec_free_pbuf_resource(struct device * dev,struct sec_alg_res * res)387 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
388 {
389 if (res->pbuf)
390 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
391 res->pbuf, res->pbuf_dma);
392 }
393
394 /*
395 * To improve performance, pbuffer is used for
396 * small packets (< 512Bytes) as IOMMU translation using.
397 */
sec_alloc_pbuf_resource(struct device * dev,struct sec_alg_res * res)398 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
399 {
400 u16 q_depth = res->depth;
401 int size = SEC_PBUF_PAGE_NUM(q_depth);
402 int pbuf_page_offset;
403 int i, j, k;
404
405 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
406 &res->pbuf_dma, GFP_KERNEL);
407 if (!res->pbuf)
408 return -ENOMEM;
409
410 /*
411 * SEC_PBUF_PKG contains data pbuf, iv and
412 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
413 * Every PAGE contains six SEC_PBUF_PKG
414 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
415 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
416 * for the SEC_TOTAL_PBUF_SZ
417 */
418 for (i = 0; i <= size; i++) {
419 pbuf_page_offset = PAGE_SIZE * i;
420 for (j = 0; j < SEC_PBUF_NUM; j++) {
421 k = i * SEC_PBUF_NUM + j;
422 if (k == q_depth)
423 break;
424 res[k].pbuf = res->pbuf +
425 j * SEC_PBUF_PKG + pbuf_page_offset;
426 res[k].pbuf_dma = res->pbuf_dma +
427 j * SEC_PBUF_PKG + pbuf_page_offset;
428 }
429 }
430
431 return 0;
432 }
433
sec_alg_resource_alloc(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)434 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
435 struct sec_qp_ctx *qp_ctx)
436 {
437 struct sec_alg_res *res = qp_ctx->res;
438 struct device *dev = ctx->dev;
439 int ret;
440
441 ret = sec_alloc_civ_resource(dev, res);
442 if (ret)
443 return ret;
444
445 if (ctx->alg_type == SEC_AEAD) {
446 ret = sec_alloc_aiv_resource(dev, res);
447 if (ret)
448 goto alloc_aiv_fail;
449
450 ret = sec_alloc_mac_resource(dev, res);
451 if (ret)
452 goto alloc_mac_fail;
453 }
454 if (ctx->pbuf_supported) {
455 ret = sec_alloc_pbuf_resource(dev, res);
456 if (ret) {
457 dev_err(dev, "fail to alloc pbuf dma resource!\n");
458 goto alloc_pbuf_fail;
459 }
460 }
461
462 return 0;
463
464 alloc_pbuf_fail:
465 if (ctx->alg_type == SEC_AEAD)
466 sec_free_mac_resource(dev, qp_ctx->res);
467 alloc_mac_fail:
468 if (ctx->alg_type == SEC_AEAD)
469 sec_free_aiv_resource(dev, res);
470 alloc_aiv_fail:
471 sec_free_civ_resource(dev, res);
472 return ret;
473 }
474
sec_alg_resource_free(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)475 static void sec_alg_resource_free(struct sec_ctx *ctx,
476 struct sec_qp_ctx *qp_ctx)
477 {
478 struct device *dev = ctx->dev;
479
480 sec_free_civ_resource(dev, qp_ctx->res);
481
482 if (ctx->pbuf_supported)
483 sec_free_pbuf_resource(dev, qp_ctx->res);
484 if (ctx->alg_type == SEC_AEAD)
485 sec_free_mac_resource(dev, qp_ctx->res);
486 }
487
sec_alloc_qp_ctx_resource(struct hisi_qm * qm,struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)488 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
489 struct sec_qp_ctx *qp_ctx)
490 {
491 u16 q_depth = qp_ctx->qp->sq_depth;
492 struct device *dev = ctx->dev;
493 int ret = -ENOMEM;
494
495 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
496 if (!qp_ctx->req_list)
497 return ret;
498
499 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
500 if (!qp_ctx->res)
501 goto err_free_req_list;
502 qp_ctx->res->depth = q_depth;
503
504 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
505 if (IS_ERR(qp_ctx->c_in_pool)) {
506 dev_err(dev, "fail to create sgl pool for input!\n");
507 goto err_free_res;
508 }
509
510 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
511 if (IS_ERR(qp_ctx->c_out_pool)) {
512 dev_err(dev, "fail to create sgl pool for output!\n");
513 goto err_free_c_in_pool;
514 }
515
516 ret = sec_alg_resource_alloc(ctx, qp_ctx);
517 if (ret)
518 goto err_free_c_out_pool;
519
520 return 0;
521
522 err_free_c_out_pool:
523 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
524 err_free_c_in_pool:
525 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
526 err_free_res:
527 kfree(qp_ctx->res);
528 err_free_req_list:
529 kfree(qp_ctx->req_list);
530 return ret;
531 }
532
sec_free_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)533 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
534 {
535 struct device *dev = ctx->dev;
536
537 sec_alg_resource_free(ctx, qp_ctx);
538 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
539 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
540 kfree(qp_ctx->res);
541 kfree(qp_ctx->req_list);
542 }
543
sec_create_qp_ctx(struct hisi_qm * qm,struct sec_ctx * ctx,int qp_ctx_id,int alg_type)544 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
545 int qp_ctx_id, int alg_type)
546 {
547 struct sec_qp_ctx *qp_ctx;
548 struct hisi_qp *qp;
549 int ret;
550
551 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
552 qp = ctx->qps[qp_ctx_id];
553 qp->req_type = 0;
554 qp->qp_ctx = qp_ctx;
555 qp_ctx->qp = qp;
556 qp_ctx->ctx = ctx;
557
558 qp->req_cb = sec_req_cb;
559
560 spin_lock_init(&qp_ctx->req_lock);
561 idr_init(&qp_ctx->req_idr);
562 INIT_LIST_HEAD(&qp_ctx->backlog);
563
564 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
565 if (ret)
566 goto err_destroy_idr;
567
568 ret = hisi_qm_start_qp(qp, 0);
569 if (ret < 0)
570 goto err_resource_free;
571
572 return 0;
573
574 err_resource_free:
575 sec_free_qp_ctx_resource(ctx, qp_ctx);
576 err_destroy_idr:
577 idr_destroy(&qp_ctx->req_idr);
578 return ret;
579 }
580
sec_release_qp_ctx(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)581 static void sec_release_qp_ctx(struct sec_ctx *ctx,
582 struct sec_qp_ctx *qp_ctx)
583 {
584 hisi_qm_stop_qp(qp_ctx->qp);
585 sec_free_qp_ctx_resource(ctx, qp_ctx);
586 idr_destroy(&qp_ctx->req_idr);
587 }
588
sec_ctx_base_init(struct sec_ctx * ctx)589 static int sec_ctx_base_init(struct sec_ctx *ctx)
590 {
591 struct sec_dev *sec;
592 int i, ret;
593
594 ctx->qps = sec_create_qps();
595 if (!ctx->qps) {
596 pr_err("Can not create sec qps!\n");
597 return -ENODEV;
598 }
599
600 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
601 ctx->sec = sec;
602 ctx->dev = &sec->qm.pdev->dev;
603 ctx->hlf_q_num = sec->ctx_q_num >> 1;
604
605 ctx->pbuf_supported = ctx->sec->iommu_used;
606
607 /* Half of queue depth is taken as fake requests limit in the queue. */
608 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
609 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
610 GFP_KERNEL);
611 if (!ctx->qp_ctx) {
612 ret = -ENOMEM;
613 goto err_destroy_qps;
614 }
615
616 for (i = 0; i < sec->ctx_q_num; i++) {
617 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
618 if (ret)
619 goto err_sec_release_qp_ctx;
620 }
621
622 return 0;
623
624 err_sec_release_qp_ctx:
625 for (i = i - 1; i >= 0; i--)
626 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
627 kfree(ctx->qp_ctx);
628 err_destroy_qps:
629 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
630 return ret;
631 }
632
sec_ctx_base_uninit(struct sec_ctx * ctx)633 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
634 {
635 int i;
636
637 for (i = 0; i < ctx->sec->ctx_q_num; i++)
638 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
639
640 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
641 kfree(ctx->qp_ctx);
642 }
643
sec_cipher_init(struct sec_ctx * ctx)644 static int sec_cipher_init(struct sec_ctx *ctx)
645 {
646 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
647
648 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
649 &c_ctx->c_key_dma, GFP_KERNEL);
650 if (!c_ctx->c_key)
651 return -ENOMEM;
652
653 return 0;
654 }
655
sec_cipher_uninit(struct sec_ctx * ctx)656 static void sec_cipher_uninit(struct sec_ctx *ctx)
657 {
658 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
659
660 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
661 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
662 c_ctx->c_key, c_ctx->c_key_dma);
663 }
664
sec_auth_init(struct sec_ctx * ctx)665 static int sec_auth_init(struct sec_ctx *ctx)
666 {
667 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
668
669 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
670 &a_ctx->a_key_dma, GFP_KERNEL);
671 if (!a_ctx->a_key)
672 return -ENOMEM;
673
674 return 0;
675 }
676
sec_auth_uninit(struct sec_ctx * ctx)677 static void sec_auth_uninit(struct sec_ctx *ctx)
678 {
679 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
680
681 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
682 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
683 a_ctx->a_key, a_ctx->a_key_dma);
684 }
685
sec_skcipher_fbtfm_init(struct crypto_skcipher * tfm)686 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
687 {
688 const char *alg = crypto_tfm_alg_name(&tfm->base);
689 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
690 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
691
692 c_ctx->fallback = false;
693
694 /* Currently, only XTS mode need fallback tfm when using 192bit key */
695 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
696 return 0;
697
698 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
699 CRYPTO_ALG_NEED_FALLBACK);
700 if (IS_ERR(c_ctx->fbtfm)) {
701 pr_err("failed to alloc xts mode fallback tfm!\n");
702 return PTR_ERR(c_ctx->fbtfm);
703 }
704
705 return 0;
706 }
707
sec_skcipher_init(struct crypto_skcipher * tfm)708 static int sec_skcipher_init(struct crypto_skcipher *tfm)
709 {
710 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
711 int ret;
712
713 ctx->alg_type = SEC_SKCIPHER;
714 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
715 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
716 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
717 pr_err("get error skcipher iv size!\n");
718 return -EINVAL;
719 }
720
721 ret = sec_ctx_base_init(ctx);
722 if (ret)
723 return ret;
724
725 ret = sec_cipher_init(ctx);
726 if (ret)
727 goto err_cipher_init;
728
729 ret = sec_skcipher_fbtfm_init(tfm);
730 if (ret)
731 goto err_fbtfm_init;
732
733 return 0;
734
735 err_fbtfm_init:
736 sec_cipher_uninit(ctx);
737 err_cipher_init:
738 sec_ctx_base_uninit(ctx);
739 return ret;
740 }
741
sec_skcipher_uninit(struct crypto_skcipher * tfm)742 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
743 {
744 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
745
746 if (ctx->c_ctx.fbtfm)
747 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
748
749 sec_cipher_uninit(ctx);
750 sec_ctx_base_uninit(ctx);
751 }
752
sec_skcipher_3des_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_cmode c_mode)753 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
754 const u32 keylen,
755 const enum sec_cmode c_mode)
756 {
757 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
758 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
759 int ret;
760
761 ret = verify_skcipher_des3_key(tfm, key);
762 if (ret)
763 return ret;
764
765 switch (keylen) {
766 case SEC_DES3_2KEY_SIZE:
767 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
768 break;
769 case SEC_DES3_3KEY_SIZE:
770 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
771 break;
772 default:
773 return -EINVAL;
774 }
775
776 return 0;
777 }
778
sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx * c_ctx,const u32 keylen,const enum sec_cmode c_mode)779 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
780 const u32 keylen,
781 const enum sec_cmode c_mode)
782 {
783 if (c_mode == SEC_CMODE_XTS) {
784 switch (keylen) {
785 case SEC_XTS_MIN_KEY_SIZE:
786 c_ctx->c_key_len = SEC_CKEY_128BIT;
787 break;
788 case SEC_XTS_MID_KEY_SIZE:
789 c_ctx->fallback = true;
790 break;
791 case SEC_XTS_MAX_KEY_SIZE:
792 c_ctx->c_key_len = SEC_CKEY_256BIT;
793 break;
794 default:
795 pr_err("hisi_sec2: xts mode key error!\n");
796 return -EINVAL;
797 }
798 } else {
799 if (c_ctx->c_alg == SEC_CALG_SM4 &&
800 keylen != AES_KEYSIZE_128) {
801 pr_err("hisi_sec2: sm4 key error!\n");
802 return -EINVAL;
803 } else {
804 switch (keylen) {
805 case AES_KEYSIZE_128:
806 c_ctx->c_key_len = SEC_CKEY_128BIT;
807 break;
808 case AES_KEYSIZE_192:
809 c_ctx->c_key_len = SEC_CKEY_192BIT;
810 break;
811 case AES_KEYSIZE_256:
812 c_ctx->c_key_len = SEC_CKEY_256BIT;
813 break;
814 default:
815 pr_err("hisi_sec2: aes key error!\n");
816 return -EINVAL;
817 }
818 }
819 }
820
821 return 0;
822 }
823
sec_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_calg c_alg,const enum sec_cmode c_mode)824 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
825 const u32 keylen, const enum sec_calg c_alg,
826 const enum sec_cmode c_mode)
827 {
828 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
829 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
830 struct device *dev = ctx->dev;
831 int ret;
832
833 if (c_mode == SEC_CMODE_XTS) {
834 ret = xts_verify_key(tfm, key, keylen);
835 if (ret) {
836 dev_err(dev, "xts mode key err!\n");
837 return ret;
838 }
839 }
840
841 c_ctx->c_alg = c_alg;
842 c_ctx->c_mode = c_mode;
843
844 switch (c_alg) {
845 case SEC_CALG_3DES:
846 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
847 break;
848 case SEC_CALG_AES:
849 case SEC_CALG_SM4:
850 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
851 break;
852 default:
853 dev_err(dev, "sec c_alg err!\n");
854 return -EINVAL;
855 }
856
857 if (ret) {
858 dev_err(dev, "set sec key err!\n");
859 return ret;
860 }
861
862 memcpy(c_ctx->c_key, key, keylen);
863 if (c_ctx->fallback && c_ctx->fbtfm) {
864 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
865 if (ret) {
866 dev_err(dev, "failed to set fallback skcipher key!\n");
867 return ret;
868 }
869 }
870 return 0;
871 }
872
873 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
874 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
875 u32 keylen) \
876 { \
877 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
878 }
879
GEN_SEC_SETKEY_FUNC(aes_ecb,SEC_CALG_AES,SEC_CMODE_ECB)880 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
881 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
882 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
883 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
884 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
885 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
886 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
887 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
888 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
889
890 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
891 struct scatterlist *src)
892 {
893 struct sec_aead_req *a_req = &req->aead_req;
894 struct aead_request *aead_req = a_req->aead_req;
895 struct sec_cipher_req *c_req = &req->c_req;
896 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
897 struct device *dev = ctx->dev;
898 int copy_size, pbuf_length;
899 int req_id = req->req_id;
900 struct crypto_aead *tfm;
901 size_t authsize;
902 u8 *mac_offset;
903
904 if (ctx->alg_type == SEC_AEAD)
905 copy_size = aead_req->cryptlen + aead_req->assoclen;
906 else
907 copy_size = c_req->c_len;
908
909 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
910 qp_ctx->res[req_id].pbuf, copy_size);
911 if (unlikely(pbuf_length != copy_size)) {
912 dev_err(dev, "copy src data to pbuf error!\n");
913 return -EINVAL;
914 }
915 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
916 tfm = crypto_aead_reqtfm(aead_req);
917 authsize = crypto_aead_authsize(tfm);
918 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
919 memcpy(a_req->out_mac, mac_offset, authsize);
920 }
921
922 req->in_dma = qp_ctx->res[req_id].pbuf_dma;
923 c_req->c_out_dma = req->in_dma;
924
925 return 0;
926 }
927
sec_cipher_pbuf_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * dst)928 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
929 struct scatterlist *dst)
930 {
931 struct aead_request *aead_req = req->aead_req.aead_req;
932 struct sec_cipher_req *c_req = &req->c_req;
933 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
934 int copy_size, pbuf_length;
935 int req_id = req->req_id;
936
937 if (ctx->alg_type == SEC_AEAD)
938 copy_size = c_req->c_len + aead_req->assoclen;
939 else
940 copy_size = c_req->c_len;
941
942 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
943 qp_ctx->res[req_id].pbuf, copy_size);
944 if (unlikely(pbuf_length != copy_size))
945 dev_err(ctx->dev, "copy pbuf data to dst error!\n");
946 }
947
sec_aead_mac_init(struct sec_aead_req * req)948 static int sec_aead_mac_init(struct sec_aead_req *req)
949 {
950 struct aead_request *aead_req = req->aead_req;
951 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
952 size_t authsize = crypto_aead_authsize(tfm);
953 u8 *mac_out = req->out_mac;
954 struct scatterlist *sgl = aead_req->src;
955 size_t copy_size;
956 off_t skip_size;
957
958 /* Copy input mac */
959 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
960 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
961 authsize, skip_size);
962 if (unlikely(copy_size != authsize))
963 return -EINVAL;
964
965 return 0;
966 }
967
sec_cipher_map(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)968 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
969 struct scatterlist *src, struct scatterlist *dst)
970 {
971 struct sec_cipher_req *c_req = &req->c_req;
972 struct sec_aead_req *a_req = &req->aead_req;
973 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
974 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
975 struct device *dev = ctx->dev;
976 int ret;
977
978 if (req->use_pbuf) {
979 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
980 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
981 if (ctx->alg_type == SEC_AEAD) {
982 a_req->a_ivin = res->a_ivin;
983 a_req->a_ivin_dma = res->a_ivin_dma;
984 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
985 a_req->out_mac_dma = res->pbuf_dma +
986 SEC_PBUF_MAC_OFFSET;
987 }
988 ret = sec_cipher_pbuf_map(ctx, req, src);
989
990 return ret;
991 }
992 c_req->c_ivin = res->c_ivin;
993 c_req->c_ivin_dma = res->c_ivin_dma;
994 if (ctx->alg_type == SEC_AEAD) {
995 a_req->a_ivin = res->a_ivin;
996 a_req->a_ivin_dma = res->a_ivin_dma;
997 a_req->out_mac = res->out_mac;
998 a_req->out_mac_dma = res->out_mac_dma;
999 }
1000
1001 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1002 qp_ctx->c_in_pool,
1003 req->req_id,
1004 &req->in_dma);
1005 if (IS_ERR(req->in)) {
1006 dev_err(dev, "fail to dma map input sgl buffers!\n");
1007 return PTR_ERR(req->in);
1008 }
1009
1010 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1011 ret = sec_aead_mac_init(a_req);
1012 if (unlikely(ret)) {
1013 dev_err(dev, "fail to init mac data for ICV!\n");
1014 hisi_acc_sg_buf_unmap(dev, src, req->in);
1015 return ret;
1016 }
1017 }
1018
1019 if (dst == src) {
1020 c_req->c_out = req->in;
1021 c_req->c_out_dma = req->in_dma;
1022 } else {
1023 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1024 qp_ctx->c_out_pool,
1025 req->req_id,
1026 &c_req->c_out_dma);
1027
1028 if (IS_ERR(c_req->c_out)) {
1029 dev_err(dev, "fail to dma map output sgl buffers!\n");
1030 hisi_acc_sg_buf_unmap(dev, src, req->in);
1031 return PTR_ERR(c_req->c_out);
1032 }
1033 }
1034
1035 return 0;
1036 }
1037
sec_cipher_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)1038 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1039 struct scatterlist *src, struct scatterlist *dst)
1040 {
1041 struct sec_cipher_req *c_req = &req->c_req;
1042 struct device *dev = ctx->dev;
1043
1044 if (req->use_pbuf) {
1045 sec_cipher_pbuf_unmap(ctx, req, dst);
1046 } else {
1047 if (dst != src)
1048 hisi_acc_sg_buf_unmap(dev, src, req->in);
1049
1050 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1051 }
1052 }
1053
sec_skcipher_sgl_map(struct sec_ctx * ctx,struct sec_req * req)1054 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1055 {
1056 struct skcipher_request *sq = req->c_req.sk_req;
1057
1058 return sec_cipher_map(ctx, req, sq->src, sq->dst);
1059 }
1060
sec_skcipher_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1061 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1062 {
1063 struct skcipher_request *sq = req->c_req.sk_req;
1064
1065 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1066 }
1067
sec_aead_aes_set_key(struct sec_cipher_ctx * c_ctx,struct crypto_authenc_keys * keys)1068 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1069 struct crypto_authenc_keys *keys)
1070 {
1071 switch (keys->enckeylen) {
1072 case AES_KEYSIZE_128:
1073 c_ctx->c_key_len = SEC_CKEY_128BIT;
1074 break;
1075 case AES_KEYSIZE_192:
1076 c_ctx->c_key_len = SEC_CKEY_192BIT;
1077 break;
1078 case AES_KEYSIZE_256:
1079 c_ctx->c_key_len = SEC_CKEY_256BIT;
1080 break;
1081 default:
1082 pr_err("hisi_sec2: aead aes key error!\n");
1083 return -EINVAL;
1084 }
1085 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1086
1087 return 0;
1088 }
1089
sec_aead_auth_set_key(struct sec_auth_ctx * ctx,struct crypto_authenc_keys * keys)1090 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1091 struct crypto_authenc_keys *keys)
1092 {
1093 struct crypto_shash *hash_tfm = ctx->hash_tfm;
1094 int blocksize, digestsize, ret;
1095
1096 if (!keys->authkeylen) {
1097 pr_err("hisi_sec2: aead auth key error!\n");
1098 return -EINVAL;
1099 }
1100
1101 blocksize = crypto_shash_blocksize(hash_tfm);
1102 digestsize = crypto_shash_digestsize(hash_tfm);
1103 if (keys->authkeylen > blocksize) {
1104 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1105 keys->authkeylen, ctx->a_key);
1106 if (ret) {
1107 pr_err("hisi_sec2: aead auth digest error!\n");
1108 return -EINVAL;
1109 }
1110 ctx->a_key_len = digestsize;
1111 } else {
1112 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1113 ctx->a_key_len = keys->authkeylen;
1114 }
1115
1116 return 0;
1117 }
1118
sec_aead_setauthsize(struct crypto_aead * aead,unsigned int authsize)1119 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1120 {
1121 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1122 struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1123 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1124
1125 if (unlikely(a_ctx->fallback_aead_tfm))
1126 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1127
1128 return 0;
1129 }
1130
sec_aead_fallback_setkey(struct sec_auth_ctx * a_ctx,struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1131 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1132 struct crypto_aead *tfm, const u8 *key,
1133 unsigned int keylen)
1134 {
1135 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1136 crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1137 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1138 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1139 }
1140
sec_aead_setkey(struct crypto_aead * tfm,const u8 * key,const u32 keylen,const enum sec_hash_alg a_alg,const enum sec_calg c_alg,const enum sec_mac_len mac_len,const enum sec_cmode c_mode)1141 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1142 const u32 keylen, const enum sec_hash_alg a_alg,
1143 const enum sec_calg c_alg,
1144 const enum sec_mac_len mac_len,
1145 const enum sec_cmode c_mode)
1146 {
1147 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1148 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1149 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1150 struct device *dev = ctx->dev;
1151 struct crypto_authenc_keys keys;
1152 int ret;
1153
1154 ctx->a_ctx.a_alg = a_alg;
1155 ctx->c_ctx.c_alg = c_alg;
1156 ctx->a_ctx.mac_len = mac_len;
1157 c_ctx->c_mode = c_mode;
1158
1159 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1160 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1161 if (ret) {
1162 dev_err(dev, "set sec aes ccm cipher key err!\n");
1163 return ret;
1164 }
1165 memcpy(c_ctx->c_key, key, keylen);
1166
1167 if (unlikely(a_ctx->fallback_aead_tfm)) {
1168 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1169 if (ret)
1170 return ret;
1171 }
1172
1173 return 0;
1174 }
1175
1176 ret = crypto_authenc_extractkeys(&keys, key, keylen);
1177 if (ret)
1178 goto bad_key;
1179
1180 ret = sec_aead_aes_set_key(c_ctx, &keys);
1181 if (ret) {
1182 dev_err(dev, "set sec cipher key err!\n");
1183 goto bad_key;
1184 }
1185
1186 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1187 if (ret) {
1188 dev_err(dev, "set sec auth key err!\n");
1189 goto bad_key;
1190 }
1191
1192 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
1193 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1194 ret = -EINVAL;
1195 dev_err(dev, "MAC or AUTH key length error!\n");
1196 goto bad_key;
1197 }
1198
1199 return 0;
1200
1201 bad_key:
1202 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1203 return ret;
1204 }
1205
1206
1207 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
1208 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
1209 u32 keylen) \
1210 { \
1211 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1212 }
1213
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1,SEC_A_HMAC_SHA1,SEC_CALG_AES,SEC_HMAC_SHA1_MAC,SEC_CMODE_CBC)1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1215 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1217 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1219 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1220 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1221 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1222 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1223 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1224 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1225 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1226 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1227 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1228
1229 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1230 {
1231 struct aead_request *aq = req->aead_req.aead_req;
1232
1233 return sec_cipher_map(ctx, req, aq->src, aq->dst);
1234 }
1235
sec_aead_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1236 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1237 {
1238 struct aead_request *aq = req->aead_req.aead_req;
1239
1240 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1241 }
1242
sec_request_transfer(struct sec_ctx * ctx,struct sec_req * req)1243 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1244 {
1245 int ret;
1246
1247 ret = ctx->req_op->buf_map(ctx, req);
1248 if (unlikely(ret))
1249 return ret;
1250
1251 ctx->req_op->do_transfer(ctx, req);
1252
1253 ret = ctx->req_op->bd_fill(ctx, req);
1254 if (unlikely(ret))
1255 goto unmap_req_buf;
1256
1257 return ret;
1258
1259 unmap_req_buf:
1260 ctx->req_op->buf_unmap(ctx, req);
1261 return ret;
1262 }
1263
sec_request_untransfer(struct sec_ctx * ctx,struct sec_req * req)1264 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1265 {
1266 ctx->req_op->buf_unmap(ctx, req);
1267 }
1268
sec_skcipher_copy_iv(struct sec_ctx * ctx,struct sec_req * req)1269 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1270 {
1271 struct skcipher_request *sk_req = req->c_req.sk_req;
1272 struct sec_cipher_req *c_req = &req->c_req;
1273
1274 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1275 }
1276
sec_skcipher_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1277 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1278 {
1279 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1280 struct sec_cipher_req *c_req = &req->c_req;
1281 struct sec_sqe *sec_sqe = &req->sec_sqe;
1282 u8 scene, sa_type, da_type;
1283 u8 bd_type, cipher;
1284 u8 de = 0;
1285
1286 memset(sec_sqe, 0, sizeof(struct sec_sqe));
1287
1288 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1289 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1290 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1291 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1292
1293 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1294 SEC_CMODE_OFFSET);
1295 sec_sqe->type2.c_alg = c_ctx->c_alg;
1296 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1297 SEC_CKEY_OFFSET);
1298
1299 bd_type = SEC_BD_TYPE2;
1300 if (c_req->encrypt)
1301 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1302 else
1303 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1304 sec_sqe->type_cipher_auth = bd_type | cipher;
1305
1306 /* Set destination and source address type */
1307 if (req->use_pbuf) {
1308 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1309 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1310 } else {
1311 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1312 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1313 }
1314
1315 sec_sqe->sdm_addr_type |= da_type;
1316 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1317 if (req->in_dma != c_req->c_out_dma)
1318 de = 0x1 << SEC_DE_OFFSET;
1319
1320 sec_sqe->sds_sa_type = (de | scene | sa_type);
1321
1322 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1323 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1324
1325 return 0;
1326 }
1327
sec_skcipher_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1328 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1329 {
1330 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1331 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1332 struct sec_cipher_req *c_req = &req->c_req;
1333 u32 bd_param = 0;
1334 u16 cipher;
1335
1336 memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1337
1338 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1339 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1340 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1341 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1342
1343 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1344 c_ctx->c_mode;
1345 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1346 SEC_CKEY_OFFSET_V3);
1347
1348 if (c_req->encrypt)
1349 cipher = SEC_CIPHER_ENC;
1350 else
1351 cipher = SEC_CIPHER_DEC;
1352 sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1353
1354 /* Set the CTR counter mode is 128bit rollover */
1355 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1356 SEC_CTR_CNT_OFFSET);
1357
1358 if (req->use_pbuf) {
1359 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1360 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1361 } else {
1362 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1363 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1364 }
1365
1366 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1367 if (req->in_dma != c_req->c_out_dma)
1368 bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1369
1370 bd_param |= SEC_BD_TYPE3;
1371 sec_sqe3->bd_param = cpu_to_le32(bd_param);
1372
1373 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1374 sec_sqe3->tag = cpu_to_le64(req);
1375
1376 return 0;
1377 }
1378
1379 /* increment counter (128-bit int) */
ctr_iv_inc(__u8 * counter,__u8 bits,__u32 nums)1380 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1381 {
1382 do {
1383 --bits;
1384 nums += counter[bits];
1385 counter[bits] = nums & BITS_MASK;
1386 nums >>= BYTE_BITS;
1387 } while (bits && nums);
1388 }
1389
sec_update_iv(struct sec_req * req,enum sec_alg_type alg_type)1390 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1391 {
1392 struct aead_request *aead_req = req->aead_req.aead_req;
1393 struct skcipher_request *sk_req = req->c_req.sk_req;
1394 u32 iv_size = req->ctx->c_ctx.ivsize;
1395 struct scatterlist *sgl;
1396 unsigned int cryptlen;
1397 size_t sz;
1398 u8 *iv;
1399
1400 if (req->c_req.encrypt)
1401 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1402 else
1403 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1404
1405 if (alg_type == SEC_SKCIPHER) {
1406 iv = sk_req->iv;
1407 cryptlen = sk_req->cryptlen;
1408 } else {
1409 iv = aead_req->iv;
1410 cryptlen = aead_req->cryptlen;
1411 }
1412
1413 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1414 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1415 cryptlen - iv_size);
1416 if (unlikely(sz != iv_size))
1417 dev_err(req->ctx->dev, "copy output iv error!\n");
1418 } else {
1419 sz = cryptlen / iv_size;
1420 if (cryptlen % iv_size)
1421 sz += 1;
1422 ctr_iv_inc(iv, iv_size, sz);
1423 }
1424 }
1425
sec_back_req_clear(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)1426 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1427 struct sec_qp_ctx *qp_ctx)
1428 {
1429 struct sec_req *backlog_req = NULL;
1430
1431 spin_lock_bh(&qp_ctx->req_lock);
1432 if (ctx->fake_req_limit >=
1433 atomic_read(&qp_ctx->qp->qp_status.used) &&
1434 !list_empty(&qp_ctx->backlog)) {
1435 backlog_req = list_first_entry(&qp_ctx->backlog,
1436 typeof(*backlog_req), backlog_head);
1437 list_del(&backlog_req->backlog_head);
1438 }
1439 spin_unlock_bh(&qp_ctx->req_lock);
1440
1441 return backlog_req;
1442 }
1443
sec_skcipher_callback(struct sec_ctx * ctx,struct sec_req * req,int err)1444 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1445 int err)
1446 {
1447 struct skcipher_request *sk_req = req->c_req.sk_req;
1448 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1449 struct skcipher_request *backlog_sk_req;
1450 struct sec_req *backlog_req;
1451
1452 sec_free_req_id(req);
1453
1454 /* IV output at encrypto of CBC/CTR mode */
1455 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1456 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1457 sec_update_iv(req, SEC_SKCIPHER);
1458
1459 while (1) {
1460 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1461 if (!backlog_req)
1462 break;
1463
1464 backlog_sk_req = backlog_req->c_req.sk_req;
1465 skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1466 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1467 }
1468
1469 skcipher_request_complete(sk_req, err);
1470 }
1471
set_aead_auth_iv(struct sec_ctx * ctx,struct sec_req * req)1472 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1473 {
1474 struct aead_request *aead_req = req->aead_req.aead_req;
1475 struct sec_cipher_req *c_req = &req->c_req;
1476 struct sec_aead_req *a_req = &req->aead_req;
1477 size_t authsize = ctx->a_ctx.mac_len;
1478 u32 data_size = aead_req->cryptlen;
1479 u8 flage = 0;
1480 u8 cm, cl;
1481
1482 /* the specification has been checked in aead_iv_demension_check() */
1483 cl = c_req->c_ivin[0] + 1;
1484 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1485 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1486 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1487
1488 /* the last 3bit is L' */
1489 flage |= c_req->c_ivin[0] & IV_CL_MASK;
1490
1491 /* the M' is bit3~bit5, the Flags is bit6 */
1492 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1493 flage |= cm << IV_CM_OFFSET;
1494 if (aead_req->assoclen)
1495 flage |= 0x01 << IV_FLAGS_OFFSET;
1496
1497 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1498 a_req->a_ivin[0] = flage;
1499
1500 /*
1501 * the last 32bit is counter's initial number,
1502 * but the nonce uses the first 16bit
1503 * the tail 16bit fill with the cipher length
1504 */
1505 if (!c_req->encrypt)
1506 data_size = aead_req->cryptlen - authsize;
1507
1508 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1509 data_size & IV_LAST_BYTE_MASK;
1510 data_size >>= IV_BYTE_OFFSET;
1511 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1512 data_size & IV_LAST_BYTE_MASK;
1513 }
1514
sec_aead_set_iv(struct sec_ctx * ctx,struct sec_req * req)1515 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1516 {
1517 struct aead_request *aead_req = req->aead_req.aead_req;
1518 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1519 size_t authsize = crypto_aead_authsize(tfm);
1520 struct sec_cipher_req *c_req = &req->c_req;
1521 struct sec_aead_req *a_req = &req->aead_req;
1522
1523 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1524
1525 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1526 /*
1527 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1528 * the counter must set to 0x01
1529 */
1530 ctx->a_ctx.mac_len = authsize;
1531 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1532 set_aead_auth_iv(ctx, req);
1533 }
1534
1535 /* GCM 12Byte Cipher_IV == Auth_IV */
1536 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1537 ctx->a_ctx.mac_len = authsize;
1538 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1539 }
1540 }
1541
sec_auth_bd_fill_xcm(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1542 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1543 struct sec_req *req, struct sec_sqe *sec_sqe)
1544 {
1545 struct sec_aead_req *a_req = &req->aead_req;
1546 struct aead_request *aq = a_req->aead_req;
1547
1548 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1549 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1550
1551 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1552 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1553 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1554 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1555
1556 if (dir)
1557 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1558 else
1559 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1560
1561 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1562 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1563 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1564
1565 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1566 }
1567
sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1568 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1569 struct sec_req *req, struct sec_sqe3 *sqe3)
1570 {
1571 struct sec_aead_req *a_req = &req->aead_req;
1572 struct aead_request *aq = a_req->aead_req;
1573
1574 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1575 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1576
1577 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1578 sqe3->a_key_addr = sqe3->c_key_addr;
1579 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1580 sqe3->auth_mac_key |= SEC_NO_AUTH;
1581
1582 if (dir)
1583 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1584 else
1585 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1586
1587 sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1588 sqe3->auth_src_offset = cpu_to_le16(0x0);
1589 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1590 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1591 }
1592
sec_auth_bd_fill_ex(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1593 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1594 struct sec_req *req, struct sec_sqe *sec_sqe)
1595 {
1596 struct sec_aead_req *a_req = &req->aead_req;
1597 struct sec_cipher_req *c_req = &req->c_req;
1598 struct aead_request *aq = a_req->aead_req;
1599
1600 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1601
1602 sec_sqe->type2.mac_key_alg =
1603 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1604
1605 sec_sqe->type2.mac_key_alg |=
1606 cpu_to_le32((u32)((ctx->a_key_len) /
1607 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1608
1609 sec_sqe->type2.mac_key_alg |=
1610 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1611
1612 if (dir) {
1613 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1614 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1615 } else {
1616 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1617 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1618 }
1619 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1620
1621 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1622
1623 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1624 }
1625
sec_aead_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1626 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1627 {
1628 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1629 struct sec_sqe *sec_sqe = &req->sec_sqe;
1630 int ret;
1631
1632 ret = sec_skcipher_bd_fill(ctx, req);
1633 if (unlikely(ret)) {
1634 dev_err(ctx->dev, "skcipher bd fill is error!\n");
1635 return ret;
1636 }
1637
1638 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1639 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1640 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1641 else
1642 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1643
1644 return 0;
1645 }
1646
sec_auth_bd_fill_ex_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1647 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1648 struct sec_req *req, struct sec_sqe3 *sqe3)
1649 {
1650 struct sec_aead_req *a_req = &req->aead_req;
1651 struct sec_cipher_req *c_req = &req->c_req;
1652 struct aead_request *aq = a_req->aead_req;
1653
1654 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1655
1656 sqe3->auth_mac_key |=
1657 cpu_to_le32((u32)(ctx->mac_len /
1658 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1659
1660 sqe3->auth_mac_key |=
1661 cpu_to_le32((u32)(ctx->a_key_len /
1662 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1663
1664 sqe3->auth_mac_key |=
1665 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1666
1667 if (dir) {
1668 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1669 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1670 } else {
1671 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1672 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1673 }
1674 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1675
1676 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1677
1678 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1679 }
1680
sec_aead_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1681 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1682 {
1683 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1684 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1685 int ret;
1686
1687 ret = sec_skcipher_bd_fill_v3(ctx, req);
1688 if (unlikely(ret)) {
1689 dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1690 return ret;
1691 }
1692
1693 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1694 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1695 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1696 req, sec_sqe3);
1697 else
1698 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1699 req, sec_sqe3);
1700
1701 return 0;
1702 }
1703
sec_aead_callback(struct sec_ctx * c,struct sec_req * req,int err)1704 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1705 {
1706 struct aead_request *a_req = req->aead_req.aead_req;
1707 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1708 struct sec_aead_req *aead_req = &req->aead_req;
1709 struct sec_cipher_req *c_req = &req->c_req;
1710 size_t authsize = crypto_aead_authsize(tfm);
1711 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1712 struct aead_request *backlog_aead_req;
1713 struct sec_req *backlog_req;
1714 size_t sz;
1715
1716 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1717 sec_update_iv(req, SEC_AEAD);
1718
1719 /* Copy output mac */
1720 if (!err && c_req->encrypt) {
1721 struct scatterlist *sgl = a_req->dst;
1722
1723 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1724 aead_req->out_mac,
1725 authsize, a_req->cryptlen +
1726 a_req->assoclen);
1727 if (unlikely(sz != authsize)) {
1728 dev_err(c->dev, "copy out mac err!\n");
1729 err = -EINVAL;
1730 }
1731 }
1732
1733 sec_free_req_id(req);
1734
1735 while (1) {
1736 backlog_req = sec_back_req_clear(c, qp_ctx);
1737 if (!backlog_req)
1738 break;
1739
1740 backlog_aead_req = backlog_req->aead_req.aead_req;
1741 aead_request_complete(backlog_aead_req, -EINPROGRESS);
1742 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1743 }
1744
1745 aead_request_complete(a_req, err);
1746 }
1747
sec_request_uninit(struct sec_ctx * ctx,struct sec_req * req)1748 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1749 {
1750 sec_free_req_id(req);
1751 sec_free_queue_id(ctx, req);
1752 }
1753
sec_request_init(struct sec_ctx * ctx,struct sec_req * req)1754 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1755 {
1756 struct sec_qp_ctx *qp_ctx;
1757 int queue_id;
1758
1759 /* To load balance */
1760 queue_id = sec_alloc_queue_id(ctx, req);
1761 qp_ctx = &ctx->qp_ctx[queue_id];
1762
1763 req->req_id = sec_alloc_req_id(req, qp_ctx);
1764 if (unlikely(req->req_id < 0)) {
1765 sec_free_queue_id(ctx, req);
1766 return req->req_id;
1767 }
1768
1769 return 0;
1770 }
1771
sec_process(struct sec_ctx * ctx,struct sec_req * req)1772 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1773 {
1774 struct sec_cipher_req *c_req = &req->c_req;
1775 int ret;
1776
1777 ret = sec_request_init(ctx, req);
1778 if (unlikely(ret))
1779 return ret;
1780
1781 ret = sec_request_transfer(ctx, req);
1782 if (unlikely(ret))
1783 goto err_uninit_req;
1784
1785 /* Output IV as decrypto */
1786 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1787 ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1788 sec_update_iv(req, ctx->alg_type);
1789
1790 ret = ctx->req_op->bd_send(ctx, req);
1791 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1792 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1793 dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1794 goto err_send_req;
1795 }
1796
1797 return ret;
1798
1799 err_send_req:
1800 /* As failing, restore the IV from user */
1801 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1802 if (ctx->alg_type == SEC_SKCIPHER)
1803 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1804 ctx->c_ctx.ivsize);
1805 else
1806 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1807 ctx->c_ctx.ivsize);
1808 }
1809
1810 sec_request_untransfer(ctx, req);
1811 err_uninit_req:
1812 sec_request_uninit(ctx, req);
1813 return ret;
1814 }
1815
1816 static const struct sec_req_op sec_skcipher_req_ops = {
1817 .buf_map = sec_skcipher_sgl_map,
1818 .buf_unmap = sec_skcipher_sgl_unmap,
1819 .do_transfer = sec_skcipher_copy_iv,
1820 .bd_fill = sec_skcipher_bd_fill,
1821 .bd_send = sec_bd_send,
1822 .callback = sec_skcipher_callback,
1823 .process = sec_process,
1824 };
1825
1826 static const struct sec_req_op sec_aead_req_ops = {
1827 .buf_map = sec_aead_sgl_map,
1828 .buf_unmap = sec_aead_sgl_unmap,
1829 .do_transfer = sec_aead_set_iv,
1830 .bd_fill = sec_aead_bd_fill,
1831 .bd_send = sec_bd_send,
1832 .callback = sec_aead_callback,
1833 .process = sec_process,
1834 };
1835
1836 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1837 .buf_map = sec_skcipher_sgl_map,
1838 .buf_unmap = sec_skcipher_sgl_unmap,
1839 .do_transfer = sec_skcipher_copy_iv,
1840 .bd_fill = sec_skcipher_bd_fill_v3,
1841 .bd_send = sec_bd_send,
1842 .callback = sec_skcipher_callback,
1843 .process = sec_process,
1844 };
1845
1846 static const struct sec_req_op sec_aead_req_ops_v3 = {
1847 .buf_map = sec_aead_sgl_map,
1848 .buf_unmap = sec_aead_sgl_unmap,
1849 .do_transfer = sec_aead_set_iv,
1850 .bd_fill = sec_aead_bd_fill_v3,
1851 .bd_send = sec_bd_send,
1852 .callback = sec_aead_callback,
1853 .process = sec_process,
1854 };
1855
sec_skcipher_ctx_init(struct crypto_skcipher * tfm)1856 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1857 {
1858 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1859 int ret;
1860
1861 ret = sec_skcipher_init(tfm);
1862 if (ret)
1863 return ret;
1864
1865 if (ctx->sec->qm.ver < QM_HW_V3) {
1866 ctx->type_supported = SEC_BD_TYPE2;
1867 ctx->req_op = &sec_skcipher_req_ops;
1868 } else {
1869 ctx->type_supported = SEC_BD_TYPE3;
1870 ctx->req_op = &sec_skcipher_req_ops_v3;
1871 }
1872
1873 return ret;
1874 }
1875
sec_skcipher_ctx_exit(struct crypto_skcipher * tfm)1876 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1877 {
1878 sec_skcipher_uninit(tfm);
1879 }
1880
sec_aead_init(struct crypto_aead * tfm)1881 static int sec_aead_init(struct crypto_aead *tfm)
1882 {
1883 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1884 int ret;
1885
1886 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1887 ctx->alg_type = SEC_AEAD;
1888 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1889 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1890 ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1891 pr_err("get error aead iv size!\n");
1892 return -EINVAL;
1893 }
1894
1895 ret = sec_ctx_base_init(ctx);
1896 if (ret)
1897 return ret;
1898 if (ctx->sec->qm.ver < QM_HW_V3) {
1899 ctx->type_supported = SEC_BD_TYPE2;
1900 ctx->req_op = &sec_aead_req_ops;
1901 } else {
1902 ctx->type_supported = SEC_BD_TYPE3;
1903 ctx->req_op = &sec_aead_req_ops_v3;
1904 }
1905
1906 ret = sec_auth_init(ctx);
1907 if (ret)
1908 goto err_auth_init;
1909
1910 ret = sec_cipher_init(ctx);
1911 if (ret)
1912 goto err_cipher_init;
1913
1914 return ret;
1915
1916 err_cipher_init:
1917 sec_auth_uninit(ctx);
1918 err_auth_init:
1919 sec_ctx_base_uninit(ctx);
1920 return ret;
1921 }
1922
sec_aead_exit(struct crypto_aead * tfm)1923 static void sec_aead_exit(struct crypto_aead *tfm)
1924 {
1925 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1926
1927 sec_cipher_uninit(ctx);
1928 sec_auth_uninit(ctx);
1929 sec_ctx_base_uninit(ctx);
1930 }
1931
sec_aead_ctx_init(struct crypto_aead * tfm,const char * hash_name)1932 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1933 {
1934 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1935 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1936 int ret;
1937
1938 ret = sec_aead_init(tfm);
1939 if (ret) {
1940 pr_err("hisi_sec2: aead init error!\n");
1941 return ret;
1942 }
1943
1944 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1945 if (IS_ERR(auth_ctx->hash_tfm)) {
1946 dev_err(ctx->dev, "aead alloc shash error!\n");
1947 sec_aead_exit(tfm);
1948 return PTR_ERR(auth_ctx->hash_tfm);
1949 }
1950
1951 return 0;
1952 }
1953
sec_aead_ctx_exit(struct crypto_aead * tfm)1954 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1955 {
1956 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1957
1958 crypto_free_shash(ctx->a_ctx.hash_tfm);
1959 sec_aead_exit(tfm);
1960 }
1961
sec_aead_xcm_ctx_init(struct crypto_aead * tfm)1962 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1963 {
1964 struct aead_alg *alg = crypto_aead_alg(tfm);
1965 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1966 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1967 const char *aead_name = alg->base.cra_name;
1968 int ret;
1969
1970 ret = sec_aead_init(tfm);
1971 if (ret) {
1972 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1973 return ret;
1974 }
1975
1976 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1977 CRYPTO_ALG_NEED_FALLBACK |
1978 CRYPTO_ALG_ASYNC);
1979 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1980 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1981 sec_aead_exit(tfm);
1982 return PTR_ERR(a_ctx->fallback_aead_tfm);
1983 }
1984 a_ctx->fallback = false;
1985
1986 return 0;
1987 }
1988
sec_aead_xcm_ctx_exit(struct crypto_aead * tfm)1989 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1990 {
1991 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1992
1993 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1994 sec_aead_exit(tfm);
1995 }
1996
sec_aead_sha1_ctx_init(struct crypto_aead * tfm)1997 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1998 {
1999 return sec_aead_ctx_init(tfm, "sha1");
2000 }
2001
sec_aead_sha256_ctx_init(struct crypto_aead * tfm)2002 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2003 {
2004 return sec_aead_ctx_init(tfm, "sha256");
2005 }
2006
sec_aead_sha512_ctx_init(struct crypto_aead * tfm)2007 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2008 {
2009 return sec_aead_ctx_init(tfm, "sha512");
2010 }
2011
sec_skcipher_cryptlen_check(struct sec_ctx * ctx,struct sec_req * sreq)2012 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2013 struct sec_req *sreq)
2014 {
2015 u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2016 struct device *dev = ctx->dev;
2017 u8 c_mode = ctx->c_ctx.c_mode;
2018 int ret = 0;
2019
2020 switch (c_mode) {
2021 case SEC_CMODE_XTS:
2022 if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2023 dev_err(dev, "skcipher XTS mode input length error!\n");
2024 ret = -EINVAL;
2025 }
2026 break;
2027 case SEC_CMODE_ECB:
2028 case SEC_CMODE_CBC:
2029 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2030 dev_err(dev, "skcipher AES input length error!\n");
2031 ret = -EINVAL;
2032 }
2033 break;
2034 case SEC_CMODE_CTR:
2035 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2036 dev_err(dev, "skcipher HW version error!\n");
2037 ret = -EINVAL;
2038 }
2039 break;
2040 default:
2041 ret = -EINVAL;
2042 }
2043
2044 return ret;
2045 }
2046
sec_skcipher_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2047 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2048 {
2049 struct skcipher_request *sk_req = sreq->c_req.sk_req;
2050 struct device *dev = ctx->dev;
2051 u8 c_alg = ctx->c_ctx.c_alg;
2052
2053 if (unlikely(!sk_req->src || !sk_req->dst ||
2054 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2055 dev_err(dev, "skcipher input param error!\n");
2056 return -EINVAL;
2057 }
2058 sreq->c_req.c_len = sk_req->cryptlen;
2059
2060 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2061 sreq->use_pbuf = true;
2062 else
2063 sreq->use_pbuf = false;
2064
2065 if (c_alg == SEC_CALG_3DES) {
2066 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2067 dev_err(dev, "skcipher 3des input length error!\n");
2068 return -EINVAL;
2069 }
2070 return 0;
2071 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2072 return sec_skcipher_cryptlen_check(ctx, sreq);
2073 }
2074
2075 dev_err(dev, "skcipher algorithm error!\n");
2076
2077 return -EINVAL;
2078 }
2079
sec_skcipher_soft_crypto(struct sec_ctx * ctx,struct skcipher_request * sreq,bool encrypt)2080 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2081 struct skcipher_request *sreq, bool encrypt)
2082 {
2083 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2084 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2085 struct device *dev = ctx->dev;
2086 int ret;
2087
2088 if (!c_ctx->fbtfm) {
2089 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2090 return -EINVAL;
2091 }
2092
2093 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2094
2095 /* software need sync mode to do crypto */
2096 skcipher_request_set_callback(subreq, sreq->base.flags,
2097 NULL, NULL);
2098 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2099 sreq->cryptlen, sreq->iv);
2100 if (encrypt)
2101 ret = crypto_skcipher_encrypt(subreq);
2102 else
2103 ret = crypto_skcipher_decrypt(subreq);
2104
2105 skcipher_request_zero(subreq);
2106
2107 return ret;
2108 }
2109
sec_skcipher_crypto(struct skcipher_request * sk_req,bool encrypt)2110 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2111 {
2112 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2113 struct sec_req *req = skcipher_request_ctx(sk_req);
2114 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2115 int ret;
2116
2117 if (!sk_req->cryptlen) {
2118 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2119 return -EINVAL;
2120 return 0;
2121 }
2122
2123 req->flag = sk_req->base.flags;
2124 req->c_req.sk_req = sk_req;
2125 req->c_req.encrypt = encrypt;
2126 req->ctx = ctx;
2127
2128 ret = sec_skcipher_param_check(ctx, req);
2129 if (unlikely(ret))
2130 return -EINVAL;
2131
2132 if (unlikely(ctx->c_ctx.fallback))
2133 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2134
2135 return ctx->req_op->process(ctx, req);
2136 }
2137
sec_skcipher_encrypt(struct skcipher_request * sk_req)2138 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2139 {
2140 return sec_skcipher_crypto(sk_req, true);
2141 }
2142
sec_skcipher_decrypt(struct skcipher_request * sk_req)2143 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2144 {
2145 return sec_skcipher_crypto(sk_req, false);
2146 }
2147
2148 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2149 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2150 {\
2151 .base = {\
2152 .cra_name = sec_cra_name,\
2153 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2154 .cra_priority = SEC_PRIORITY,\
2155 .cra_flags = CRYPTO_ALG_ASYNC |\
2156 CRYPTO_ALG_NEED_FALLBACK,\
2157 .cra_blocksize = blk_size,\
2158 .cra_ctxsize = sizeof(struct sec_ctx),\
2159 .cra_module = THIS_MODULE,\
2160 },\
2161 .init = ctx_init,\
2162 .exit = ctx_exit,\
2163 .setkey = sec_set_key,\
2164 .decrypt = sec_skcipher_decrypt,\
2165 .encrypt = sec_skcipher_encrypt,\
2166 .min_keysize = sec_min_key_size,\
2167 .max_keysize = sec_max_key_size,\
2168 .ivsize = iv_size,\
2169 }
2170
2171 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2172 max_key_size, blk_size, iv_size) \
2173 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2174 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2175
2176 static struct sec_skcipher sec_skciphers[] = {
2177 {
2178 .alg_msk = BIT(0),
2179 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2180 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2181 },
2182 {
2183 .alg_msk = BIT(1),
2184 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2185 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2186 },
2187 {
2188 .alg_msk = BIT(2),
2189 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
2190 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2191 },
2192 {
2193 .alg_msk = BIT(3),
2194 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
2195 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2196 },
2197 {
2198 .alg_msk = BIT(12),
2199 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
2200 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2201 },
2202 {
2203 .alg_msk = BIT(13),
2204 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2205 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2206 },
2207 {
2208 .alg_msk = BIT(14),
2209 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
2210 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2211 },
2212 {
2213 .alg_msk = BIT(23),
2214 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2215 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2216 },
2217 {
2218 .alg_msk = BIT(24),
2219 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2220 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2221 DES3_EDE_BLOCK_SIZE),
2222 },
2223 };
2224
aead_iv_demension_check(struct aead_request * aead_req)2225 static int aead_iv_demension_check(struct aead_request *aead_req)
2226 {
2227 u8 cl;
2228
2229 cl = aead_req->iv[0] + 1;
2230 if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2231 return -EINVAL;
2232
2233 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2234 return -EOVERFLOW;
2235
2236 return 0;
2237 }
2238
sec_aead_spec_check(struct sec_ctx * ctx,struct sec_req * sreq)2239 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2240 {
2241 struct aead_request *req = sreq->aead_req.aead_req;
2242 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2243 size_t authsize = crypto_aead_authsize(tfm);
2244 u8 c_mode = ctx->c_ctx.c_mode;
2245 struct device *dev = ctx->dev;
2246 int ret;
2247
2248 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2249 req->assoclen > SEC_MAX_AAD_LEN)) {
2250 dev_err(dev, "aead input spec error!\n");
2251 return -EINVAL;
2252 }
2253
2254 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2255 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2256 authsize & MAC_LEN_MASK)))) {
2257 dev_err(dev, "aead input mac length error!\n");
2258 return -EINVAL;
2259 }
2260
2261 if (c_mode == SEC_CMODE_CCM) {
2262 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2263 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2264 return -EINVAL;
2265 }
2266 ret = aead_iv_demension_check(req);
2267 if (ret) {
2268 dev_err(dev, "aead input iv param error!\n");
2269 return ret;
2270 }
2271 }
2272
2273 if (sreq->c_req.encrypt)
2274 sreq->c_req.c_len = req->cryptlen;
2275 else
2276 sreq->c_req.c_len = req->cryptlen - authsize;
2277 if (c_mode == SEC_CMODE_CBC) {
2278 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2279 dev_err(dev, "aead crypto length error!\n");
2280 return -EINVAL;
2281 }
2282 }
2283
2284 return 0;
2285 }
2286
sec_aead_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2287 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2288 {
2289 struct aead_request *req = sreq->aead_req.aead_req;
2290 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2291 size_t authsize = crypto_aead_authsize(tfm);
2292 struct device *dev = ctx->dev;
2293 u8 c_alg = ctx->c_ctx.c_alg;
2294
2295 if (unlikely(!req->src || !req->dst)) {
2296 dev_err(dev, "aead input param error!\n");
2297 return -EINVAL;
2298 }
2299
2300 if (ctx->sec->qm.ver == QM_HW_V2) {
2301 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2302 req->cryptlen <= authsize))) {
2303 ctx->a_ctx.fallback = true;
2304 return -EINVAL;
2305 }
2306 }
2307
2308 /* Support AES or SM4 */
2309 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2310 dev_err(dev, "aead crypto alg error!\n");
2311 return -EINVAL;
2312 }
2313
2314 if (unlikely(sec_aead_spec_check(ctx, sreq)))
2315 return -EINVAL;
2316
2317 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2318 SEC_PBUF_SZ)
2319 sreq->use_pbuf = true;
2320 else
2321 sreq->use_pbuf = false;
2322
2323 return 0;
2324 }
2325
sec_aead_soft_crypto(struct sec_ctx * ctx,struct aead_request * aead_req,bool encrypt)2326 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2327 struct aead_request *aead_req,
2328 bool encrypt)
2329 {
2330 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2331 struct device *dev = ctx->dev;
2332 struct aead_request *subreq;
2333 int ret;
2334
2335 /* Kunpeng920 aead mode not support input 0 size */
2336 if (!a_ctx->fallback_aead_tfm) {
2337 dev_err(dev, "aead fallback tfm is NULL!\n");
2338 return -EINVAL;
2339 }
2340
2341 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2342 if (!subreq)
2343 return -ENOMEM;
2344
2345 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2346 aead_request_set_callback(subreq, aead_req->base.flags,
2347 aead_req->base.complete, aead_req->base.data);
2348 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2349 aead_req->cryptlen, aead_req->iv);
2350 aead_request_set_ad(subreq, aead_req->assoclen);
2351
2352 if (encrypt)
2353 ret = crypto_aead_encrypt(subreq);
2354 else
2355 ret = crypto_aead_decrypt(subreq);
2356 aead_request_free(subreq);
2357
2358 return ret;
2359 }
2360
sec_aead_crypto(struct aead_request * a_req,bool encrypt)2361 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2362 {
2363 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2364 struct sec_req *req = aead_request_ctx(a_req);
2365 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2366 int ret;
2367
2368 req->flag = a_req->base.flags;
2369 req->aead_req.aead_req = a_req;
2370 req->c_req.encrypt = encrypt;
2371 req->ctx = ctx;
2372
2373 ret = sec_aead_param_check(ctx, req);
2374 if (unlikely(ret)) {
2375 if (ctx->a_ctx.fallback)
2376 return sec_aead_soft_crypto(ctx, a_req, encrypt);
2377 return -EINVAL;
2378 }
2379
2380 return ctx->req_op->process(ctx, req);
2381 }
2382
sec_aead_encrypt(struct aead_request * a_req)2383 static int sec_aead_encrypt(struct aead_request *a_req)
2384 {
2385 return sec_aead_crypto(a_req, true);
2386 }
2387
sec_aead_decrypt(struct aead_request * a_req)2388 static int sec_aead_decrypt(struct aead_request *a_req)
2389 {
2390 return sec_aead_crypto(a_req, false);
2391 }
2392
2393 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2394 ctx_exit, blk_size, iv_size, max_authsize)\
2395 {\
2396 .base = {\
2397 .cra_name = sec_cra_name,\
2398 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2399 .cra_priority = SEC_PRIORITY,\
2400 .cra_flags = CRYPTO_ALG_ASYNC |\
2401 CRYPTO_ALG_NEED_FALLBACK,\
2402 .cra_blocksize = blk_size,\
2403 .cra_ctxsize = sizeof(struct sec_ctx),\
2404 .cra_module = THIS_MODULE,\
2405 },\
2406 .init = ctx_init,\
2407 .exit = ctx_exit,\
2408 .setkey = sec_set_key,\
2409 .setauthsize = sec_aead_setauthsize,\
2410 .decrypt = sec_aead_decrypt,\
2411 .encrypt = sec_aead_encrypt,\
2412 .ivsize = iv_size,\
2413 .maxauthsize = max_authsize,\
2414 }
2415
2416 static struct sec_aead sec_aeads[] = {
2417 {
2418 .alg_msk = BIT(6),
2419 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2420 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2421 AES_BLOCK_SIZE),
2422 },
2423 {
2424 .alg_msk = BIT(7),
2425 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2426 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2427 AES_BLOCK_SIZE),
2428 },
2429 {
2430 .alg_msk = BIT(17),
2431 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2432 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2433 AES_BLOCK_SIZE),
2434 },
2435 {
2436 .alg_msk = BIT(18),
2437 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2438 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2439 AES_BLOCK_SIZE),
2440 },
2441 {
2442 .alg_msk = BIT(43),
2443 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2444 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2445 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2446 },
2447 {
2448 .alg_msk = BIT(44),
2449 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2450 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2451 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2452 },
2453 {
2454 .alg_msk = BIT(45),
2455 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2456 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2457 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2458 },
2459 };
2460
sec_unregister_skcipher(u64 alg_mask,int end)2461 static void sec_unregister_skcipher(u64 alg_mask, int end)
2462 {
2463 int i;
2464
2465 for (i = 0; i < end; i++)
2466 if (sec_skciphers[i].alg_msk & alg_mask)
2467 crypto_unregister_skcipher(&sec_skciphers[i].alg);
2468 }
2469
sec_register_skcipher(u64 alg_mask)2470 static int sec_register_skcipher(u64 alg_mask)
2471 {
2472 int i, ret, count;
2473
2474 count = ARRAY_SIZE(sec_skciphers);
2475
2476 for (i = 0; i < count; i++) {
2477 if (!(sec_skciphers[i].alg_msk & alg_mask))
2478 continue;
2479
2480 ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2481 if (ret)
2482 goto err;
2483 }
2484
2485 return 0;
2486
2487 err:
2488 sec_unregister_skcipher(alg_mask, i);
2489
2490 return ret;
2491 }
2492
sec_unregister_aead(u64 alg_mask,int end)2493 static void sec_unregister_aead(u64 alg_mask, int end)
2494 {
2495 int i;
2496
2497 for (i = 0; i < end; i++)
2498 if (sec_aeads[i].alg_msk & alg_mask)
2499 crypto_unregister_aead(&sec_aeads[i].alg);
2500 }
2501
sec_register_aead(u64 alg_mask)2502 static int sec_register_aead(u64 alg_mask)
2503 {
2504 int i, ret, count;
2505
2506 count = ARRAY_SIZE(sec_aeads);
2507
2508 for (i = 0; i < count; i++) {
2509 if (!(sec_aeads[i].alg_msk & alg_mask))
2510 continue;
2511
2512 ret = crypto_register_aead(&sec_aeads[i].alg);
2513 if (ret)
2514 goto err;
2515 }
2516
2517 return 0;
2518
2519 err:
2520 sec_unregister_aead(alg_mask, i);
2521
2522 return ret;
2523 }
2524
sec_register_to_crypto(struct hisi_qm * qm)2525 int sec_register_to_crypto(struct hisi_qm *qm)
2526 {
2527 u64 alg_mask;
2528 int ret = 0;
2529
2530 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2531 SEC_DRV_ALG_BITMAP_LOW_IDX);
2532
2533 mutex_lock(&sec_algs_lock);
2534 if (sec_available_devs) {
2535 sec_available_devs++;
2536 goto unlock;
2537 }
2538
2539 ret = sec_register_skcipher(alg_mask);
2540 if (ret)
2541 goto unlock;
2542
2543 ret = sec_register_aead(alg_mask);
2544 if (ret)
2545 goto unreg_skcipher;
2546
2547 sec_available_devs++;
2548 mutex_unlock(&sec_algs_lock);
2549
2550 return 0;
2551
2552 unreg_skcipher:
2553 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2554 unlock:
2555 mutex_unlock(&sec_algs_lock);
2556 return ret;
2557 }
2558
sec_unregister_from_crypto(struct hisi_qm * qm)2559 void sec_unregister_from_crypto(struct hisi_qm *qm)
2560 {
2561 u64 alg_mask;
2562
2563 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2564 SEC_DRV_ALG_BITMAP_LOW_IDX);
2565
2566 mutex_lock(&sec_algs_lock);
2567 if (--sec_available_devs)
2568 goto unlock;
2569
2570 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2571 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2572
2573 unlock:
2574 mutex_unlock(&sec_algs_lock);
2575 }
2576