1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_func_table;
49
50 struct loop_device {
51 int lo_number;
52 loff_t lo_offset;
53 loff_t lo_sizelimit;
54 int lo_flags;
55 char lo_file_name[LO_NAME_SIZE];
56
57 struct file * lo_backing_file;
58 struct block_device *lo_device;
59
60 gfp_t old_gfp_mask;
61
62 spinlock_t lo_lock;
63 int lo_state;
64 spinlock_t lo_work_lock;
65 struct workqueue_struct *workqueue;
66 struct work_struct rootcg_work;
67 struct list_head rootcg_cmd_list;
68 struct list_head idle_worker_list;
69 struct rb_root worker_tree;
70 struct timer_list timer;
71 bool use_dio;
72 bool sysfs_inited;
73
74 struct request_queue *lo_queue;
75 struct blk_mq_tag_set tag_set;
76 struct gendisk *lo_disk;
77 struct mutex lo_mutex;
78 bool idr_visible;
79 };
80
81 struct loop_cmd {
82 struct list_head list_entry;
83 bool use_aio; /* use AIO interface to handle I/O */
84 atomic_t ref; /* only for aio */
85 long ret;
86 struct kiocb iocb;
87 struct bio_vec *bvec;
88 struct cgroup_subsys_state *blkcg_css;
89 struct cgroup_subsys_state *memcg_css;
90 };
91
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98
99 /**
100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101 *
102 * @lo: struct loop_device
103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104 *
105 * Returns 0 on success, -EINTR otherwise.
106 *
107 * Since loop_validate_file() traverses on other "struct loop_device" if
108 * is_loop_device() is true, we need a global lock for serializing concurrent
109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110 */
loop_global_lock_killable(struct loop_device * lo,bool global)111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 int err;
114
115 if (global) {
116 err = mutex_lock_killable(&loop_validate_mutex);
117 if (err)
118 return err;
119 }
120 err = mutex_lock_killable(&lo->lo_mutex);
121 if (err && global)
122 mutex_unlock(&loop_validate_mutex);
123 return err;
124 }
125
126 /**
127 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128 *
129 * @lo: struct loop_device
130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131 */
loop_global_unlock(struct loop_device * lo,bool global)132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 mutex_unlock(&lo->lo_mutex);
135 if (global)
136 mutex_unlock(&loop_validate_mutex);
137 }
138
139 static int max_part;
140 static int part_shift;
141
get_size(loff_t offset,loff_t sizelimit,struct file * file)142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 loff_t loopsize;
145
146 /* Compute loopsize in bytes */
147 loopsize = i_size_read(file->f_mapping->host);
148 if (offset > 0)
149 loopsize -= offset;
150 /* offset is beyond i_size, weird but possible */
151 if (loopsize < 0)
152 return 0;
153
154 if (sizelimit > 0 && sizelimit < loopsize)
155 loopsize = sizelimit;
156 /*
157 * Unfortunately, if we want to do I/O on the device,
158 * the number of 512-byte sectors has to fit into a sector_t.
159 */
160 return loopsize >> 9;
161 }
162
get_loop_size(struct loop_device * lo,struct file * file)163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167
168 /*
169 * We support direct I/O only if lo_offset is aligned with the logical I/O size
170 * of backing device, and the logical block size of loop is bigger than that of
171 * the backing device.
172 */
lo_bdev_can_use_dio(struct loop_device * lo,struct block_device * backing_bdev)173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 struct block_device *backing_bdev)
175 {
176 unsigned short sb_bsize = bdev_logical_block_size(backing_bdev);
177
178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 return false;
180 if (lo->lo_offset & (sb_bsize - 1))
181 return false;
182 return true;
183 }
184
__loop_update_dio(struct loop_device * lo,bool dio)185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 struct file *file = lo->lo_backing_file;
188 struct inode *inode = file->f_mapping->host;
189 struct block_device *backing_bdev = NULL;
190 bool use_dio;
191
192 if (S_ISBLK(inode->i_mode))
193 backing_bdev = I_BDEV(inode);
194 else if (inode->i_sb->s_bdev)
195 backing_bdev = inode->i_sb->s_bdev;
196
197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199
200 if (lo->use_dio == use_dio)
201 return;
202
203 /* flush dirty pages before changing direct IO */
204 vfs_fsync(file, 0);
205
206 /*
207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 * will get updated by ioctl(LOOP_GET_STATUS)
210 */
211 if (lo->lo_state == Lo_bound)
212 blk_mq_freeze_queue(lo->lo_queue);
213 lo->use_dio = use_dio;
214 if (use_dio) {
215 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
216 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
217 } else {
218 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 }
221 if (lo->lo_state == Lo_bound)
222 blk_mq_unfreeze_queue(lo->lo_queue);
223 }
224
225 /**
226 * loop_set_size() - sets device size and notifies userspace
227 * @lo: struct loop_device to set the size for
228 * @size: new size of the loop device
229 *
230 * Callers must validate that the size passed into this function fits into
231 * a sector_t, eg using loop_validate_size()
232 */
loop_set_size(struct loop_device * lo,loff_t size)233 static void loop_set_size(struct loop_device *lo, loff_t size)
234 {
235 if (!set_capacity_and_notify(lo->lo_disk, size))
236 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
237 }
238
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)239 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
240 {
241 struct iov_iter i;
242 ssize_t bw;
243
244 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
245
246 bw = vfs_iter_write(file, &i, ppos, 0);
247
248 if (likely(bw == bvec->bv_len))
249 return 0;
250
251 printk_ratelimited(KERN_ERR
252 "loop: Write error at byte offset %llu, length %i.\n",
253 (unsigned long long)*ppos, bvec->bv_len);
254 if (bw >= 0)
255 bw = -EIO;
256 return bw;
257 }
258
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)259 static int lo_write_simple(struct loop_device *lo, struct request *rq,
260 loff_t pos)
261 {
262 struct bio_vec bvec;
263 struct req_iterator iter;
264 int ret = 0;
265
266 rq_for_each_segment(bvec, rq, iter) {
267 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
268 if (ret < 0)
269 break;
270 cond_resched();
271 }
272
273 return ret;
274 }
275
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)276 static int lo_read_simple(struct loop_device *lo, struct request *rq,
277 loff_t pos)
278 {
279 struct bio_vec bvec;
280 struct req_iterator iter;
281 struct iov_iter i;
282 ssize_t len;
283
284 rq_for_each_segment(bvec, rq, iter) {
285 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
286 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
287 if (len < 0)
288 return len;
289
290 flush_dcache_page(bvec.bv_page);
291
292 if (len != bvec.bv_len) {
293 struct bio *bio;
294
295 __rq_for_each_bio(bio, rq)
296 zero_fill_bio(bio);
297 break;
298 }
299 cond_resched();
300 }
301
302 return 0;
303 }
304
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)305 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
306 int mode)
307 {
308 /*
309 * We use fallocate to manipulate the space mappings used by the image
310 * a.k.a. discard/zerorange.
311 */
312 struct file *file = lo->lo_backing_file;
313 int ret;
314
315 mode |= FALLOC_FL_KEEP_SIZE;
316
317 if (!bdev_max_discard_sectors(lo->lo_device))
318 return -EOPNOTSUPP;
319
320 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
321 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
322 return -EIO;
323 return ret;
324 }
325
lo_req_flush(struct loop_device * lo,struct request * rq)326 static int lo_req_flush(struct loop_device *lo, struct request *rq)
327 {
328 int ret = vfs_fsync(lo->lo_backing_file, 0);
329 if (unlikely(ret && ret != -EINVAL))
330 ret = -EIO;
331
332 return ret;
333 }
334
lo_complete_rq(struct request * rq)335 static void lo_complete_rq(struct request *rq)
336 {
337 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
338 blk_status_t ret = BLK_STS_OK;
339
340 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
341 req_op(rq) != REQ_OP_READ) {
342 if (cmd->ret < 0)
343 ret = errno_to_blk_status(cmd->ret);
344 goto end_io;
345 }
346
347 /*
348 * Short READ - if we got some data, advance our request and
349 * retry it. If we got no data, end the rest with EIO.
350 */
351 if (cmd->ret) {
352 blk_update_request(rq, BLK_STS_OK, cmd->ret);
353 cmd->ret = 0;
354 blk_mq_requeue_request(rq, true);
355 } else {
356 if (cmd->use_aio) {
357 struct bio *bio = rq->bio;
358
359 while (bio) {
360 zero_fill_bio(bio);
361 bio = bio->bi_next;
362 }
363 }
364 ret = BLK_STS_IOERR;
365 end_io:
366 blk_mq_end_request(rq, ret);
367 }
368 }
369
lo_rw_aio_do_completion(struct loop_cmd * cmd)370 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
371 {
372 struct request *rq = blk_mq_rq_from_pdu(cmd);
373
374 if (!atomic_dec_and_test(&cmd->ref))
375 return;
376 kfree(cmd->bvec);
377 cmd->bvec = NULL;
378 if (likely(!blk_should_fake_timeout(rq->q)))
379 blk_mq_complete_request(rq);
380 }
381
lo_rw_aio_complete(struct kiocb * iocb,long ret)382 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
383 {
384 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
385
386 cmd->ret = ret;
387 lo_rw_aio_do_completion(cmd);
388 }
389
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)390 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
391 loff_t pos, int rw)
392 {
393 struct iov_iter iter;
394 struct req_iterator rq_iter;
395 struct bio_vec *bvec;
396 struct request *rq = blk_mq_rq_from_pdu(cmd);
397 struct bio *bio = rq->bio;
398 struct file *file = lo->lo_backing_file;
399 struct bio_vec tmp;
400 unsigned int offset;
401 int nr_bvec = 0;
402 int ret;
403
404 rq_for_each_bvec(tmp, rq, rq_iter)
405 nr_bvec++;
406
407 if (rq->bio != rq->biotail) {
408
409 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
410 GFP_NOIO);
411 if (!bvec)
412 return -EIO;
413 cmd->bvec = bvec;
414
415 /*
416 * The bios of the request may be started from the middle of
417 * the 'bvec' because of bio splitting, so we can't directly
418 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
419 * API will take care of all details for us.
420 */
421 rq_for_each_bvec(tmp, rq, rq_iter) {
422 *bvec = tmp;
423 bvec++;
424 }
425 bvec = cmd->bvec;
426 offset = 0;
427 } else {
428 /*
429 * Same here, this bio may be started from the middle of the
430 * 'bvec' because of bio splitting, so offset from the bvec
431 * must be passed to iov iterator
432 */
433 offset = bio->bi_iter.bi_bvec_done;
434 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
435 }
436 atomic_set(&cmd->ref, 2);
437
438 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
439 iter.iov_offset = offset;
440
441 cmd->iocb.ki_pos = pos;
442 cmd->iocb.ki_filp = file;
443 cmd->iocb.ki_complete = lo_rw_aio_complete;
444 cmd->iocb.ki_flags = IOCB_DIRECT;
445 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
446
447 if (rw == ITER_SOURCE)
448 ret = call_write_iter(file, &cmd->iocb, &iter);
449 else
450 ret = call_read_iter(file, &cmd->iocb, &iter);
451
452 lo_rw_aio_do_completion(cmd);
453
454 if (ret != -EIOCBQUEUED)
455 lo_rw_aio_complete(&cmd->iocb, ret);
456 return 0;
457 }
458
do_req_filebacked(struct loop_device * lo,struct request * rq)459 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
460 {
461 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
462 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
463
464 /*
465 * lo_write_simple and lo_read_simple should have been covered
466 * by io submit style function like lo_rw_aio(), one blocker
467 * is that lo_read_simple() need to call flush_dcache_page after
468 * the page is written from kernel, and it isn't easy to handle
469 * this in io submit style function which submits all segments
470 * of the req at one time. And direct read IO doesn't need to
471 * run flush_dcache_page().
472 */
473 switch (req_op(rq)) {
474 case REQ_OP_FLUSH:
475 return lo_req_flush(lo, rq);
476 case REQ_OP_WRITE_ZEROES:
477 /*
478 * If the caller doesn't want deallocation, call zeroout to
479 * write zeroes the range. Otherwise, punch them out.
480 */
481 return lo_fallocate(lo, rq, pos,
482 (rq->cmd_flags & REQ_NOUNMAP) ?
483 FALLOC_FL_ZERO_RANGE :
484 FALLOC_FL_PUNCH_HOLE);
485 case REQ_OP_DISCARD:
486 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
487 case REQ_OP_WRITE:
488 if (cmd->use_aio)
489 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
490 else
491 return lo_write_simple(lo, rq, pos);
492 case REQ_OP_READ:
493 if (cmd->use_aio)
494 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
495 else
496 return lo_read_simple(lo, rq, pos);
497 default:
498 WARN_ON_ONCE(1);
499 return -EIO;
500 }
501 }
502
loop_update_dio(struct loop_device * lo)503 static inline void loop_update_dio(struct loop_device *lo)
504 {
505 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
506 lo->use_dio);
507 }
508
loop_reread_partitions(struct loop_device * lo)509 static void loop_reread_partitions(struct loop_device *lo)
510 {
511 int rc;
512
513 mutex_lock(&lo->lo_disk->open_mutex);
514 rc = bdev_disk_changed(lo->lo_disk, false);
515 mutex_unlock(&lo->lo_disk->open_mutex);
516 if (rc)
517 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
518 __func__, lo->lo_number, lo->lo_file_name, rc);
519 }
520
is_loop_device(struct file * file)521 static inline int is_loop_device(struct file *file)
522 {
523 struct inode *i = file->f_mapping->host;
524
525 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
526 }
527
loop_validate_file(struct file * file,struct block_device * bdev)528 static int loop_validate_file(struct file *file, struct block_device *bdev)
529 {
530 struct inode *inode = file->f_mapping->host;
531 struct file *f = file;
532
533 /* Avoid recursion */
534 while (is_loop_device(f)) {
535 struct loop_device *l;
536
537 lockdep_assert_held(&loop_validate_mutex);
538 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
539 return -EBADF;
540
541 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
542 if (l->lo_state != Lo_bound)
543 return -EINVAL;
544 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
545 rmb();
546 f = l->lo_backing_file;
547 }
548 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
549 return -EINVAL;
550 return 0;
551 }
552
553 /*
554 * loop_change_fd switched the backing store of a loopback device to
555 * a new file. This is useful for operating system installers to free up
556 * the original file and in High Availability environments to switch to
557 * an alternative location for the content in case of server meltdown.
558 * This can only work if the loop device is used read-only, and if the
559 * new backing store is the same size and type as the old backing store.
560 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)561 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
562 unsigned int arg)
563 {
564 struct file *file = fget(arg);
565 struct file *old_file;
566 int error;
567 bool partscan;
568 bool is_loop;
569
570 if (!file)
571 return -EBADF;
572
573 /* suppress uevents while reconfiguring the device */
574 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
575
576 is_loop = is_loop_device(file);
577 error = loop_global_lock_killable(lo, is_loop);
578 if (error)
579 goto out_putf;
580 error = -ENXIO;
581 if (lo->lo_state != Lo_bound)
582 goto out_err;
583
584 /* the loop device has to be read-only */
585 error = -EINVAL;
586 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
587 goto out_err;
588
589 error = loop_validate_file(file, bdev);
590 if (error)
591 goto out_err;
592
593 old_file = lo->lo_backing_file;
594
595 error = -EINVAL;
596
597 /* size of the new backing store needs to be the same */
598 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
599 goto out_err;
600
601 /* and ... switch */
602 disk_force_media_change(lo->lo_disk);
603 blk_mq_freeze_queue(lo->lo_queue);
604 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
605 lo->lo_backing_file = file;
606 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
607 mapping_set_gfp_mask(file->f_mapping,
608 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
609 loop_update_dio(lo);
610 blk_mq_unfreeze_queue(lo->lo_queue);
611 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
612 loop_global_unlock(lo, is_loop);
613
614 /*
615 * Flush loop_validate_file() before fput(), for l->lo_backing_file
616 * might be pointing at old_file which might be the last reference.
617 */
618 if (!is_loop) {
619 mutex_lock(&loop_validate_mutex);
620 mutex_unlock(&loop_validate_mutex);
621 }
622 /*
623 * We must drop file reference outside of lo_mutex as dropping
624 * the file ref can take open_mutex which creates circular locking
625 * dependency.
626 */
627 fput(old_file);
628 if (partscan)
629 loop_reread_partitions(lo);
630
631 error = 0;
632 done:
633 /* enable and uncork uevent now that we are done */
634 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
635 return error;
636
637 out_err:
638 loop_global_unlock(lo, is_loop);
639 out_putf:
640 fput(file);
641 goto done;
642 }
643
644 /* loop sysfs attributes */
645
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))646 static ssize_t loop_attr_show(struct device *dev, char *page,
647 ssize_t (*callback)(struct loop_device *, char *))
648 {
649 struct gendisk *disk = dev_to_disk(dev);
650 struct loop_device *lo = disk->private_data;
651
652 return callback(lo, page);
653 }
654
655 #define LOOP_ATTR_RO(_name) \
656 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
657 static ssize_t loop_attr_do_show_##_name(struct device *d, \
658 struct device_attribute *attr, char *b) \
659 { \
660 return loop_attr_show(d, b, loop_attr_##_name##_show); \
661 } \
662 static struct device_attribute loop_attr_##_name = \
663 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
664
loop_attr_backing_file_show(struct loop_device * lo,char * buf)665 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
666 {
667 ssize_t ret;
668 char *p = NULL;
669
670 spin_lock_irq(&lo->lo_lock);
671 if (lo->lo_backing_file)
672 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
673 spin_unlock_irq(&lo->lo_lock);
674
675 if (IS_ERR_OR_NULL(p))
676 ret = PTR_ERR(p);
677 else {
678 ret = strlen(p);
679 memmove(buf, p, ret);
680 buf[ret++] = '\n';
681 buf[ret] = 0;
682 }
683
684 return ret;
685 }
686
loop_attr_offset_show(struct loop_device * lo,char * buf)687 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
688 {
689 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
690 }
691
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)692 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
693 {
694 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
695 }
696
loop_attr_autoclear_show(struct loop_device * lo,char * buf)697 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
698 {
699 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
700
701 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
702 }
703
loop_attr_partscan_show(struct loop_device * lo,char * buf)704 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
705 {
706 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
707
708 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
709 }
710
loop_attr_dio_show(struct loop_device * lo,char * buf)711 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
712 {
713 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
714
715 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
716 }
717
718 LOOP_ATTR_RO(backing_file);
719 LOOP_ATTR_RO(offset);
720 LOOP_ATTR_RO(sizelimit);
721 LOOP_ATTR_RO(autoclear);
722 LOOP_ATTR_RO(partscan);
723 LOOP_ATTR_RO(dio);
724
725 static struct attribute *loop_attrs[] = {
726 &loop_attr_backing_file.attr,
727 &loop_attr_offset.attr,
728 &loop_attr_sizelimit.attr,
729 &loop_attr_autoclear.attr,
730 &loop_attr_partscan.attr,
731 &loop_attr_dio.attr,
732 NULL,
733 };
734
735 static struct attribute_group loop_attribute_group = {
736 .name = "loop",
737 .attrs= loop_attrs,
738 };
739
loop_sysfs_init(struct loop_device * lo)740 static void loop_sysfs_init(struct loop_device *lo)
741 {
742 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
743 &loop_attribute_group);
744 }
745
loop_sysfs_exit(struct loop_device * lo)746 static void loop_sysfs_exit(struct loop_device *lo)
747 {
748 if (lo->sysfs_inited)
749 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
750 &loop_attribute_group);
751 }
752
loop_config_discard(struct loop_device * lo)753 static void loop_config_discard(struct loop_device *lo)
754 {
755 struct file *file = lo->lo_backing_file;
756 struct inode *inode = file->f_mapping->host;
757 struct request_queue *q = lo->lo_queue;
758 u32 granularity, max_discard_sectors;
759
760 /*
761 * If the backing device is a block device, mirror its zeroing
762 * capability. Set the discard sectors to the block device's zeroing
763 * capabilities because loop discards result in blkdev_issue_zeroout(),
764 * not blkdev_issue_discard(). This maintains consistent behavior with
765 * file-backed loop devices: discarded regions read back as zero.
766 */
767 if (S_ISBLK(inode->i_mode)) {
768 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
769
770 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
771 granularity = bdev_discard_granularity(I_BDEV(inode)) ?:
772 queue_physical_block_size(backingq);
773
774 /*
775 * We use punch hole to reclaim the free space used by the
776 * image a.k.a. discard.
777 */
778 } else if (!file->f_op->fallocate) {
779 max_discard_sectors = 0;
780 granularity = 0;
781
782 } else {
783 struct kstatfs sbuf;
784
785 max_discard_sectors = UINT_MAX >> 9;
786 if (!vfs_statfs(&file->f_path, &sbuf))
787 granularity = sbuf.f_bsize;
788 else
789 max_discard_sectors = 0;
790 }
791
792 if (max_discard_sectors) {
793 q->limits.discard_granularity = granularity;
794 blk_queue_max_discard_sectors(q, max_discard_sectors);
795 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
796 } else {
797 q->limits.discard_granularity = 0;
798 blk_queue_max_discard_sectors(q, 0);
799 blk_queue_max_write_zeroes_sectors(q, 0);
800 }
801 }
802
803 struct loop_worker {
804 struct rb_node rb_node;
805 struct work_struct work;
806 struct list_head cmd_list;
807 struct list_head idle_list;
808 struct loop_device *lo;
809 struct cgroup_subsys_state *blkcg_css;
810 unsigned long last_ran_at;
811 };
812
813 static void loop_workfn(struct work_struct *work);
814
815 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)816 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
817 {
818 return !css || css == blkcg_root_css;
819 }
820 #else
queue_on_root_worker(struct cgroup_subsys_state * css)821 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
822 {
823 return !css;
824 }
825 #endif
826
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)827 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
828 {
829 struct rb_node **node, *parent = NULL;
830 struct loop_worker *cur_worker, *worker = NULL;
831 struct work_struct *work;
832 struct list_head *cmd_list;
833
834 spin_lock_irq(&lo->lo_work_lock);
835
836 if (queue_on_root_worker(cmd->blkcg_css))
837 goto queue_work;
838
839 node = &lo->worker_tree.rb_node;
840
841 while (*node) {
842 parent = *node;
843 cur_worker = container_of(*node, struct loop_worker, rb_node);
844 if (cur_worker->blkcg_css == cmd->blkcg_css) {
845 worker = cur_worker;
846 break;
847 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
848 node = &(*node)->rb_left;
849 } else {
850 node = &(*node)->rb_right;
851 }
852 }
853 if (worker)
854 goto queue_work;
855
856 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
857 /*
858 * In the event we cannot allocate a worker, just queue on the
859 * rootcg worker and issue the I/O as the rootcg
860 */
861 if (!worker) {
862 cmd->blkcg_css = NULL;
863 if (cmd->memcg_css)
864 css_put(cmd->memcg_css);
865 cmd->memcg_css = NULL;
866 goto queue_work;
867 }
868
869 worker->blkcg_css = cmd->blkcg_css;
870 css_get(worker->blkcg_css);
871 INIT_WORK(&worker->work, loop_workfn);
872 INIT_LIST_HEAD(&worker->cmd_list);
873 INIT_LIST_HEAD(&worker->idle_list);
874 worker->lo = lo;
875 rb_link_node(&worker->rb_node, parent, node);
876 rb_insert_color(&worker->rb_node, &lo->worker_tree);
877 queue_work:
878 if (worker) {
879 /*
880 * We need to remove from the idle list here while
881 * holding the lock so that the idle timer doesn't
882 * free the worker
883 */
884 if (!list_empty(&worker->idle_list))
885 list_del_init(&worker->idle_list);
886 work = &worker->work;
887 cmd_list = &worker->cmd_list;
888 } else {
889 work = &lo->rootcg_work;
890 cmd_list = &lo->rootcg_cmd_list;
891 }
892 list_add_tail(&cmd->list_entry, cmd_list);
893 queue_work(lo->workqueue, work);
894 spin_unlock_irq(&lo->lo_work_lock);
895 }
896
loop_set_timer(struct loop_device * lo)897 static void loop_set_timer(struct loop_device *lo)
898 {
899 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
900 }
901
loop_free_idle_workers(struct loop_device * lo,bool delete_all)902 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
903 {
904 struct loop_worker *pos, *worker;
905
906 spin_lock_irq(&lo->lo_work_lock);
907 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
908 idle_list) {
909 if (!delete_all &&
910 time_is_after_jiffies(worker->last_ran_at +
911 LOOP_IDLE_WORKER_TIMEOUT))
912 break;
913 list_del(&worker->idle_list);
914 rb_erase(&worker->rb_node, &lo->worker_tree);
915 css_put(worker->blkcg_css);
916 kfree(worker);
917 }
918 if (!list_empty(&lo->idle_worker_list))
919 loop_set_timer(lo);
920 spin_unlock_irq(&lo->lo_work_lock);
921 }
922
loop_free_idle_workers_timer(struct timer_list * timer)923 static void loop_free_idle_workers_timer(struct timer_list *timer)
924 {
925 struct loop_device *lo = container_of(timer, struct loop_device, timer);
926
927 return loop_free_idle_workers(lo, false);
928 }
929
loop_update_rotational(struct loop_device * lo)930 static void loop_update_rotational(struct loop_device *lo)
931 {
932 struct file *file = lo->lo_backing_file;
933 struct inode *file_inode = file->f_mapping->host;
934 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
935 struct request_queue *q = lo->lo_queue;
936 bool nonrot = true;
937
938 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
939 if (file_bdev)
940 nonrot = bdev_nonrot(file_bdev);
941
942 if (nonrot)
943 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
944 else
945 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
946 }
947
948 /**
949 * loop_set_status_from_info - configure device from loop_info
950 * @lo: struct loop_device to configure
951 * @info: struct loop_info64 to configure the device with
952 *
953 * Configures the loop device parameters according to the passed
954 * in loop_info64 configuration.
955 */
956 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)957 loop_set_status_from_info(struct loop_device *lo,
958 const struct loop_info64 *info)
959 {
960 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
961 return -EINVAL;
962
963 switch (info->lo_encrypt_type) {
964 case LO_CRYPT_NONE:
965 break;
966 case LO_CRYPT_XOR:
967 pr_warn("support for the xor transformation has been removed.\n");
968 return -EINVAL;
969 case LO_CRYPT_CRYPTOAPI:
970 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
971 return -EINVAL;
972 default:
973 return -EINVAL;
974 }
975
976 /* Avoid assigning overflow values */
977 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
978 return -EOVERFLOW;
979
980 lo->lo_offset = info->lo_offset;
981 lo->lo_sizelimit = info->lo_sizelimit;
982
983 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
984 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
985 lo->lo_flags = info->lo_flags;
986 return 0;
987 }
988
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)989 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
990 struct block_device *bdev,
991 const struct loop_config *config)
992 {
993 struct file *file = fget(config->fd);
994 struct inode *inode;
995 struct address_space *mapping;
996 int error;
997 loff_t size;
998 bool partscan;
999 unsigned short bsize;
1000 bool is_loop;
1001
1002 if (!file)
1003 return -EBADF;
1004 is_loop = is_loop_device(file);
1005
1006 /* This is safe, since we have a reference from open(). */
1007 __module_get(THIS_MODULE);
1008
1009 /*
1010 * If we don't hold exclusive handle for the device, upgrade to it
1011 * here to avoid changing device under exclusive owner.
1012 */
1013 if (!(mode & BLK_OPEN_EXCL)) {
1014 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1015 if (error)
1016 goto out_putf;
1017 }
1018
1019 error = loop_global_lock_killable(lo, is_loop);
1020 if (error)
1021 goto out_bdev;
1022
1023 error = -EBUSY;
1024 if (lo->lo_state != Lo_unbound)
1025 goto out_unlock;
1026
1027 error = loop_validate_file(file, bdev);
1028 if (error)
1029 goto out_unlock;
1030
1031 mapping = file->f_mapping;
1032 inode = mapping->host;
1033
1034 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1035 error = -EINVAL;
1036 goto out_unlock;
1037 }
1038
1039 if (config->block_size) {
1040 error = blk_validate_block_size(config->block_size);
1041 if (error)
1042 goto out_unlock;
1043 }
1044
1045 error = loop_set_status_from_info(lo, &config->info);
1046 if (error)
1047 goto out_unlock;
1048
1049 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1050 !file->f_op->write_iter)
1051 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1052
1053 if (!lo->workqueue) {
1054 lo->workqueue = alloc_workqueue("loop%d",
1055 WQ_UNBOUND | WQ_FREEZABLE,
1056 0, lo->lo_number);
1057 if (!lo->workqueue) {
1058 error = -ENOMEM;
1059 goto out_unlock;
1060 }
1061 }
1062
1063 /* suppress uevents while reconfiguring the device */
1064 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1065
1066 disk_force_media_change(lo->lo_disk);
1067 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1068
1069 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1070 lo->lo_device = bdev;
1071 lo->lo_backing_file = file;
1072 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1073 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1074
1075 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1076 blk_queue_write_cache(lo->lo_queue, true, false);
1077
1078 if (config->block_size)
1079 bsize = config->block_size;
1080 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1081 /* In case of direct I/O, match underlying block size */
1082 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1083 else
1084 bsize = 512;
1085
1086 blk_queue_logical_block_size(lo->lo_queue, bsize);
1087 blk_queue_physical_block_size(lo->lo_queue, bsize);
1088 blk_queue_io_min(lo->lo_queue, bsize);
1089
1090 loop_config_discard(lo);
1091 loop_update_rotational(lo);
1092 loop_update_dio(lo);
1093 loop_sysfs_init(lo);
1094
1095 size = get_loop_size(lo, file);
1096 loop_set_size(lo, size);
1097
1098 /* Order wrt reading lo_state in loop_validate_file(). */
1099 wmb();
1100
1101 lo->lo_state = Lo_bound;
1102 if (part_shift)
1103 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1104 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1105 if (partscan)
1106 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1107
1108 /* enable and uncork uevent now that we are done */
1109 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1110
1111 loop_global_unlock(lo, is_loop);
1112 if (partscan)
1113 loop_reread_partitions(lo);
1114
1115 if (!(mode & BLK_OPEN_EXCL))
1116 bd_abort_claiming(bdev, loop_configure);
1117
1118 return 0;
1119
1120 out_unlock:
1121 loop_global_unlock(lo, is_loop);
1122 out_bdev:
1123 if (!(mode & BLK_OPEN_EXCL))
1124 bd_abort_claiming(bdev, loop_configure);
1125 out_putf:
1126 fput(file);
1127 /* This is safe: open() is still holding a reference. */
1128 module_put(THIS_MODULE);
1129 return error;
1130 }
1131
__loop_clr_fd(struct loop_device * lo,bool release)1132 static void __loop_clr_fd(struct loop_device *lo, bool release)
1133 {
1134 struct file *filp;
1135 gfp_t gfp = lo->old_gfp_mask;
1136
1137 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1138 blk_queue_write_cache(lo->lo_queue, false, false);
1139
1140 /*
1141 * Freeze the request queue when unbinding on a live file descriptor and
1142 * thus an open device. When called from ->release we are guaranteed
1143 * that there is no I/O in progress already.
1144 */
1145 if (!release)
1146 blk_mq_freeze_queue(lo->lo_queue);
1147
1148 spin_lock_irq(&lo->lo_lock);
1149 filp = lo->lo_backing_file;
1150 lo->lo_backing_file = NULL;
1151 spin_unlock_irq(&lo->lo_lock);
1152
1153 lo->lo_device = NULL;
1154 lo->lo_offset = 0;
1155 lo->lo_sizelimit = 0;
1156 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1157 blk_queue_logical_block_size(lo->lo_queue, 512);
1158 blk_queue_physical_block_size(lo->lo_queue, 512);
1159 blk_queue_io_min(lo->lo_queue, 512);
1160 invalidate_disk(lo->lo_disk);
1161 loop_sysfs_exit(lo);
1162 /* let user-space know about this change */
1163 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1164 mapping_set_gfp_mask(filp->f_mapping, gfp);
1165 /* This is safe: open() is still holding a reference. */
1166 module_put(THIS_MODULE);
1167 if (!release)
1168 blk_mq_unfreeze_queue(lo->lo_queue);
1169
1170 disk_force_media_change(lo->lo_disk);
1171
1172 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1173 int err;
1174
1175 /*
1176 * open_mutex has been held already in release path, so don't
1177 * acquire it if this function is called in such case.
1178 *
1179 * If the reread partition isn't from release path, lo_refcnt
1180 * must be at least one and it can only become zero when the
1181 * current holder is released.
1182 */
1183 if (!release)
1184 mutex_lock(&lo->lo_disk->open_mutex);
1185 err = bdev_disk_changed(lo->lo_disk, false);
1186 if (!release)
1187 mutex_unlock(&lo->lo_disk->open_mutex);
1188 if (err)
1189 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1190 __func__, lo->lo_number, err);
1191 /* Device is gone, no point in returning error */
1192 }
1193
1194 /*
1195 * lo->lo_state is set to Lo_unbound here after above partscan has
1196 * finished. There cannot be anybody else entering __loop_clr_fd() as
1197 * Lo_rundown state protects us from all the other places trying to
1198 * change the 'lo' device.
1199 */
1200 lo->lo_flags = 0;
1201 if (!part_shift)
1202 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1203 mutex_lock(&lo->lo_mutex);
1204 lo->lo_state = Lo_unbound;
1205 mutex_unlock(&lo->lo_mutex);
1206
1207 /*
1208 * Need not hold lo_mutex to fput backing file. Calling fput holding
1209 * lo_mutex triggers a circular lock dependency possibility warning as
1210 * fput can take open_mutex which is usually taken before lo_mutex.
1211 */
1212 fput(filp);
1213 }
1214
loop_clr_fd(struct loop_device * lo)1215 static int loop_clr_fd(struct loop_device *lo)
1216 {
1217 int err;
1218
1219 /*
1220 * Since lo_ioctl() is called without locks held, it is possible that
1221 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1222 *
1223 * Therefore, use global lock when setting Lo_rundown state in order to
1224 * make sure that loop_validate_file() will fail if the "struct file"
1225 * which loop_configure()/loop_change_fd() found via fget() was this
1226 * loop device.
1227 */
1228 err = loop_global_lock_killable(lo, true);
1229 if (err)
1230 return err;
1231 if (lo->lo_state != Lo_bound) {
1232 loop_global_unlock(lo, true);
1233 return -ENXIO;
1234 }
1235 /*
1236 * If we've explicitly asked to tear down the loop device,
1237 * and it has an elevated reference count, set it for auto-teardown when
1238 * the last reference goes away. This stops $!~#$@ udev from
1239 * preventing teardown because it decided that it needs to run blkid on
1240 * the loopback device whenever they appear. xfstests is notorious for
1241 * failing tests because blkid via udev races with a losetup
1242 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1243 * command to fail with EBUSY.
1244 */
1245 if (disk_openers(lo->lo_disk) > 1) {
1246 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1247 loop_global_unlock(lo, true);
1248 return 0;
1249 }
1250 lo->lo_state = Lo_rundown;
1251 loop_global_unlock(lo, true);
1252
1253 __loop_clr_fd(lo, false);
1254 return 0;
1255 }
1256
1257 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1258 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1259 {
1260 int err;
1261 int prev_lo_flags;
1262 bool partscan = false;
1263 bool size_changed = false;
1264
1265 err = mutex_lock_killable(&lo->lo_mutex);
1266 if (err)
1267 return err;
1268 if (lo->lo_state != Lo_bound) {
1269 err = -ENXIO;
1270 goto out_unlock;
1271 }
1272
1273 if (lo->lo_offset != info->lo_offset ||
1274 lo->lo_sizelimit != info->lo_sizelimit) {
1275 size_changed = true;
1276 sync_blockdev(lo->lo_device);
1277 invalidate_bdev(lo->lo_device);
1278 }
1279
1280 /* I/O need to be drained during transfer transition */
1281 blk_mq_freeze_queue(lo->lo_queue);
1282
1283 prev_lo_flags = lo->lo_flags;
1284
1285 err = loop_set_status_from_info(lo, info);
1286 if (err)
1287 goto out_unfreeze;
1288
1289 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1290 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1291 /* For those flags, use the previous values instead */
1292 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1293 /* For flags that can't be cleared, use previous values too */
1294 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1295
1296 if (size_changed) {
1297 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1298 lo->lo_backing_file);
1299 loop_set_size(lo, new_size);
1300 }
1301
1302 /* update dio if lo_offset or transfer is changed */
1303 __loop_update_dio(lo, lo->use_dio);
1304
1305 out_unfreeze:
1306 blk_mq_unfreeze_queue(lo->lo_queue);
1307
1308 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1309 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1310 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1311 partscan = true;
1312 }
1313 out_unlock:
1314 mutex_unlock(&lo->lo_mutex);
1315 if (partscan)
1316 loop_reread_partitions(lo);
1317
1318 return err;
1319 }
1320
1321 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1322 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1323 {
1324 struct path path;
1325 struct kstat stat;
1326 int ret;
1327
1328 ret = mutex_lock_killable(&lo->lo_mutex);
1329 if (ret)
1330 return ret;
1331 if (lo->lo_state != Lo_bound) {
1332 mutex_unlock(&lo->lo_mutex);
1333 return -ENXIO;
1334 }
1335
1336 memset(info, 0, sizeof(*info));
1337 info->lo_number = lo->lo_number;
1338 info->lo_offset = lo->lo_offset;
1339 info->lo_sizelimit = lo->lo_sizelimit;
1340 info->lo_flags = lo->lo_flags;
1341 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1342
1343 /* Drop lo_mutex while we call into the filesystem. */
1344 path = lo->lo_backing_file->f_path;
1345 path_get(&path);
1346 mutex_unlock(&lo->lo_mutex);
1347 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1348 if (!ret) {
1349 info->lo_device = huge_encode_dev(stat.dev);
1350 info->lo_inode = stat.ino;
1351 info->lo_rdevice = huge_encode_dev(stat.rdev);
1352 }
1353 path_put(&path);
1354 return ret;
1355 }
1356
1357 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1358 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1359 {
1360 memset(info64, 0, sizeof(*info64));
1361 info64->lo_number = info->lo_number;
1362 info64->lo_device = info->lo_device;
1363 info64->lo_inode = info->lo_inode;
1364 info64->lo_rdevice = info->lo_rdevice;
1365 info64->lo_offset = info->lo_offset;
1366 info64->lo_sizelimit = 0;
1367 info64->lo_flags = info->lo_flags;
1368 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1369 }
1370
1371 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1372 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1373 {
1374 memset(info, 0, sizeof(*info));
1375 info->lo_number = info64->lo_number;
1376 info->lo_device = info64->lo_device;
1377 info->lo_inode = info64->lo_inode;
1378 info->lo_rdevice = info64->lo_rdevice;
1379 info->lo_offset = info64->lo_offset;
1380 info->lo_flags = info64->lo_flags;
1381 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1382
1383 /* error in case values were truncated */
1384 if (info->lo_device != info64->lo_device ||
1385 info->lo_rdevice != info64->lo_rdevice ||
1386 info->lo_inode != info64->lo_inode ||
1387 info->lo_offset != info64->lo_offset)
1388 return -EOVERFLOW;
1389
1390 return 0;
1391 }
1392
1393 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1394 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1395 {
1396 struct loop_info info;
1397 struct loop_info64 info64;
1398
1399 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1400 return -EFAULT;
1401 loop_info64_from_old(&info, &info64);
1402 return loop_set_status(lo, &info64);
1403 }
1404
1405 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1406 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1407 {
1408 struct loop_info64 info64;
1409
1410 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1411 return -EFAULT;
1412 return loop_set_status(lo, &info64);
1413 }
1414
1415 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1416 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1417 struct loop_info info;
1418 struct loop_info64 info64;
1419 int err;
1420
1421 if (!arg)
1422 return -EINVAL;
1423 err = loop_get_status(lo, &info64);
1424 if (!err)
1425 err = loop_info64_to_old(&info64, &info);
1426 if (!err && copy_to_user(arg, &info, sizeof(info)))
1427 err = -EFAULT;
1428
1429 return err;
1430 }
1431
1432 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1433 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1434 struct loop_info64 info64;
1435 int err;
1436
1437 if (!arg)
1438 return -EINVAL;
1439 err = loop_get_status(lo, &info64);
1440 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1441 err = -EFAULT;
1442
1443 return err;
1444 }
1445
loop_set_capacity(struct loop_device * lo)1446 static int loop_set_capacity(struct loop_device *lo)
1447 {
1448 loff_t size;
1449
1450 if (unlikely(lo->lo_state != Lo_bound))
1451 return -ENXIO;
1452
1453 size = get_loop_size(lo, lo->lo_backing_file);
1454 loop_set_size(lo, size);
1455
1456 return 0;
1457 }
1458
loop_set_dio(struct loop_device * lo,unsigned long arg)1459 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1460 {
1461 int error = -ENXIO;
1462 if (lo->lo_state != Lo_bound)
1463 goto out;
1464
1465 __loop_update_dio(lo, !!arg);
1466 if (lo->use_dio == !!arg)
1467 return 0;
1468 error = -EINVAL;
1469 out:
1470 return error;
1471 }
1472
loop_set_block_size(struct loop_device * lo,unsigned long arg)1473 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1474 {
1475 int err = 0;
1476
1477 if (lo->lo_state != Lo_bound)
1478 return -ENXIO;
1479
1480 err = blk_validate_block_size(arg);
1481 if (err)
1482 return err;
1483
1484 if (lo->lo_queue->limits.logical_block_size == arg)
1485 return 0;
1486
1487 sync_blockdev(lo->lo_device);
1488 invalidate_bdev(lo->lo_device);
1489
1490 blk_mq_freeze_queue(lo->lo_queue);
1491 blk_queue_logical_block_size(lo->lo_queue, arg);
1492 blk_queue_physical_block_size(lo->lo_queue, arg);
1493 blk_queue_io_min(lo->lo_queue, arg);
1494 loop_update_dio(lo);
1495 blk_mq_unfreeze_queue(lo->lo_queue);
1496
1497 return err;
1498 }
1499
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1500 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1501 unsigned long arg)
1502 {
1503 int err;
1504
1505 err = mutex_lock_killable(&lo->lo_mutex);
1506 if (err)
1507 return err;
1508 switch (cmd) {
1509 case LOOP_SET_CAPACITY:
1510 err = loop_set_capacity(lo);
1511 break;
1512 case LOOP_SET_DIRECT_IO:
1513 err = loop_set_dio(lo, arg);
1514 break;
1515 case LOOP_SET_BLOCK_SIZE:
1516 err = loop_set_block_size(lo, arg);
1517 break;
1518 default:
1519 err = -EINVAL;
1520 }
1521 mutex_unlock(&lo->lo_mutex);
1522 return err;
1523 }
1524
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1525 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1526 unsigned int cmd, unsigned long arg)
1527 {
1528 struct loop_device *lo = bdev->bd_disk->private_data;
1529 void __user *argp = (void __user *) arg;
1530 int err;
1531
1532 switch (cmd) {
1533 case LOOP_SET_FD: {
1534 /*
1535 * Legacy case - pass in a zeroed out struct loop_config with
1536 * only the file descriptor set , which corresponds with the
1537 * default parameters we'd have used otherwise.
1538 */
1539 struct loop_config config;
1540
1541 memset(&config, 0, sizeof(config));
1542 config.fd = arg;
1543
1544 return loop_configure(lo, mode, bdev, &config);
1545 }
1546 case LOOP_CONFIGURE: {
1547 struct loop_config config;
1548
1549 if (copy_from_user(&config, argp, sizeof(config)))
1550 return -EFAULT;
1551
1552 return loop_configure(lo, mode, bdev, &config);
1553 }
1554 case LOOP_CHANGE_FD:
1555 return loop_change_fd(lo, bdev, arg);
1556 case LOOP_CLR_FD:
1557 return loop_clr_fd(lo);
1558 case LOOP_SET_STATUS:
1559 err = -EPERM;
1560 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1561 err = loop_set_status_old(lo, argp);
1562 break;
1563 case LOOP_GET_STATUS:
1564 return loop_get_status_old(lo, argp);
1565 case LOOP_SET_STATUS64:
1566 err = -EPERM;
1567 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1568 err = loop_set_status64(lo, argp);
1569 break;
1570 case LOOP_GET_STATUS64:
1571 return loop_get_status64(lo, argp);
1572 case LOOP_SET_CAPACITY:
1573 case LOOP_SET_DIRECT_IO:
1574 case LOOP_SET_BLOCK_SIZE:
1575 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1576 return -EPERM;
1577 fallthrough;
1578 default:
1579 err = lo_simple_ioctl(lo, cmd, arg);
1580 break;
1581 }
1582
1583 return err;
1584 }
1585
1586 #ifdef CONFIG_COMPAT
1587 struct compat_loop_info {
1588 compat_int_t lo_number; /* ioctl r/o */
1589 compat_dev_t lo_device; /* ioctl r/o */
1590 compat_ulong_t lo_inode; /* ioctl r/o */
1591 compat_dev_t lo_rdevice; /* ioctl r/o */
1592 compat_int_t lo_offset;
1593 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1594 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1595 compat_int_t lo_flags; /* ioctl r/o */
1596 char lo_name[LO_NAME_SIZE];
1597 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1598 compat_ulong_t lo_init[2];
1599 char reserved[4];
1600 };
1601
1602 /*
1603 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1604 * - noinlined to reduce stack space usage in main part of driver
1605 */
1606 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1607 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1608 struct loop_info64 *info64)
1609 {
1610 struct compat_loop_info info;
1611
1612 if (copy_from_user(&info, arg, sizeof(info)))
1613 return -EFAULT;
1614
1615 memset(info64, 0, sizeof(*info64));
1616 info64->lo_number = info.lo_number;
1617 info64->lo_device = info.lo_device;
1618 info64->lo_inode = info.lo_inode;
1619 info64->lo_rdevice = info.lo_rdevice;
1620 info64->lo_offset = info.lo_offset;
1621 info64->lo_sizelimit = 0;
1622 info64->lo_flags = info.lo_flags;
1623 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1624 return 0;
1625 }
1626
1627 /*
1628 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1629 * - noinlined to reduce stack space usage in main part of driver
1630 */
1631 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1632 loop_info64_to_compat(const struct loop_info64 *info64,
1633 struct compat_loop_info __user *arg)
1634 {
1635 struct compat_loop_info info;
1636
1637 memset(&info, 0, sizeof(info));
1638 info.lo_number = info64->lo_number;
1639 info.lo_device = info64->lo_device;
1640 info.lo_inode = info64->lo_inode;
1641 info.lo_rdevice = info64->lo_rdevice;
1642 info.lo_offset = info64->lo_offset;
1643 info.lo_flags = info64->lo_flags;
1644 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1645
1646 /* error in case values were truncated */
1647 if (info.lo_device != info64->lo_device ||
1648 info.lo_rdevice != info64->lo_rdevice ||
1649 info.lo_inode != info64->lo_inode ||
1650 info.lo_offset != info64->lo_offset)
1651 return -EOVERFLOW;
1652
1653 if (copy_to_user(arg, &info, sizeof(info)))
1654 return -EFAULT;
1655 return 0;
1656 }
1657
1658 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1659 loop_set_status_compat(struct loop_device *lo,
1660 const struct compat_loop_info __user *arg)
1661 {
1662 struct loop_info64 info64;
1663 int ret;
1664
1665 ret = loop_info64_from_compat(arg, &info64);
1666 if (ret < 0)
1667 return ret;
1668 return loop_set_status(lo, &info64);
1669 }
1670
1671 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1672 loop_get_status_compat(struct loop_device *lo,
1673 struct compat_loop_info __user *arg)
1674 {
1675 struct loop_info64 info64;
1676 int err;
1677
1678 if (!arg)
1679 return -EINVAL;
1680 err = loop_get_status(lo, &info64);
1681 if (!err)
1682 err = loop_info64_to_compat(&info64, arg);
1683 return err;
1684 }
1685
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1686 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1687 unsigned int cmd, unsigned long arg)
1688 {
1689 struct loop_device *lo = bdev->bd_disk->private_data;
1690 int err;
1691
1692 switch(cmd) {
1693 case LOOP_SET_STATUS:
1694 err = loop_set_status_compat(lo,
1695 (const struct compat_loop_info __user *)arg);
1696 break;
1697 case LOOP_GET_STATUS:
1698 err = loop_get_status_compat(lo,
1699 (struct compat_loop_info __user *)arg);
1700 break;
1701 case LOOP_SET_CAPACITY:
1702 case LOOP_CLR_FD:
1703 case LOOP_GET_STATUS64:
1704 case LOOP_SET_STATUS64:
1705 case LOOP_CONFIGURE:
1706 arg = (unsigned long) compat_ptr(arg);
1707 fallthrough;
1708 case LOOP_SET_FD:
1709 case LOOP_CHANGE_FD:
1710 case LOOP_SET_BLOCK_SIZE:
1711 case LOOP_SET_DIRECT_IO:
1712 err = lo_ioctl(bdev, mode, cmd, arg);
1713 break;
1714 default:
1715 err = -ENOIOCTLCMD;
1716 break;
1717 }
1718 return err;
1719 }
1720 #endif
1721
lo_release(struct gendisk * disk)1722 static void lo_release(struct gendisk *disk)
1723 {
1724 struct loop_device *lo = disk->private_data;
1725
1726 if (disk_openers(disk) > 0)
1727 return;
1728
1729 mutex_lock(&lo->lo_mutex);
1730 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) {
1731 lo->lo_state = Lo_rundown;
1732 mutex_unlock(&lo->lo_mutex);
1733 /*
1734 * In autoclear mode, stop the loop thread
1735 * and remove configuration after last close.
1736 */
1737 __loop_clr_fd(lo, true);
1738 return;
1739 }
1740 mutex_unlock(&lo->lo_mutex);
1741 }
1742
lo_free_disk(struct gendisk * disk)1743 static void lo_free_disk(struct gendisk *disk)
1744 {
1745 struct loop_device *lo = disk->private_data;
1746
1747 if (lo->workqueue)
1748 destroy_workqueue(lo->workqueue);
1749 loop_free_idle_workers(lo, true);
1750 timer_shutdown_sync(&lo->timer);
1751 mutex_destroy(&lo->lo_mutex);
1752 kfree(lo);
1753 }
1754
1755 static const struct block_device_operations lo_fops = {
1756 .owner = THIS_MODULE,
1757 .release = lo_release,
1758 .ioctl = lo_ioctl,
1759 #ifdef CONFIG_COMPAT
1760 .compat_ioctl = lo_compat_ioctl,
1761 #endif
1762 .free_disk = lo_free_disk,
1763 };
1764
1765 /*
1766 * And now the modules code and kernel interface.
1767 */
1768
1769 /*
1770 * If max_loop is specified, create that many devices upfront.
1771 * This also becomes a hard limit. If max_loop is not specified,
1772 * the default isn't a hard limit (as before commit 85c50197716c
1773 * changed the default value from 0 for max_loop=0 reasons), just
1774 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1775 * init time. Loop devices can be requested on-demand with the
1776 * /dev/loop-control interface, or be instantiated by accessing
1777 * a 'dead' device node.
1778 */
1779 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1780
1781 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1782 static bool max_loop_specified;
1783
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1784 static int max_loop_param_set_int(const char *val,
1785 const struct kernel_param *kp)
1786 {
1787 int ret;
1788
1789 ret = param_set_int(val, kp);
1790 if (ret < 0)
1791 return ret;
1792
1793 max_loop_specified = true;
1794 return 0;
1795 }
1796
1797 static const struct kernel_param_ops max_loop_param_ops = {
1798 .set = max_loop_param_set_int,
1799 .get = param_get_int,
1800 };
1801
1802 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1803 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1804 #else
1805 module_param(max_loop, int, 0444);
1806 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1807 #endif
1808
1809 module_param(max_part, int, 0444);
1810 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1811
1812 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1813
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1814 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1815 {
1816 int qd, ret;
1817
1818 ret = kstrtoint(s, 0, &qd);
1819 if (ret < 0)
1820 return ret;
1821 if (qd < 1)
1822 return -EINVAL;
1823 hw_queue_depth = qd;
1824 return 0;
1825 }
1826
1827 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1828 .set = loop_set_hw_queue_depth,
1829 .get = param_get_int,
1830 };
1831
1832 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1833 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1834
1835 MODULE_LICENSE("GPL");
1836 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1837
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1838 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1839 const struct blk_mq_queue_data *bd)
1840 {
1841 struct request *rq = bd->rq;
1842 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1843 struct loop_device *lo = rq->q->queuedata;
1844
1845 blk_mq_start_request(rq);
1846
1847 if (lo->lo_state != Lo_bound)
1848 return BLK_STS_IOERR;
1849
1850 switch (req_op(rq)) {
1851 case REQ_OP_FLUSH:
1852 case REQ_OP_DISCARD:
1853 case REQ_OP_WRITE_ZEROES:
1854 cmd->use_aio = false;
1855 break;
1856 default:
1857 cmd->use_aio = lo->use_dio;
1858 break;
1859 }
1860
1861 /* always use the first bio's css */
1862 cmd->blkcg_css = NULL;
1863 cmd->memcg_css = NULL;
1864 #ifdef CONFIG_BLK_CGROUP
1865 if (rq->bio) {
1866 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1867 #ifdef CONFIG_MEMCG
1868 if (cmd->blkcg_css) {
1869 cmd->memcg_css =
1870 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1871 &memory_cgrp_subsys);
1872 }
1873 #endif
1874 }
1875 #endif
1876 loop_queue_work(lo, cmd);
1877
1878 return BLK_STS_OK;
1879 }
1880
loop_handle_cmd(struct loop_cmd * cmd)1881 static void loop_handle_cmd(struct loop_cmd *cmd)
1882 {
1883 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1884 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1885 struct request *rq = blk_mq_rq_from_pdu(cmd);
1886 const bool write = op_is_write(req_op(rq));
1887 struct loop_device *lo = rq->q->queuedata;
1888 int ret = 0;
1889 struct mem_cgroup *old_memcg = NULL;
1890 const bool use_aio = cmd->use_aio;
1891
1892 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1893 ret = -EIO;
1894 goto failed;
1895 }
1896
1897 if (cmd_blkcg_css)
1898 kthread_associate_blkcg(cmd_blkcg_css);
1899 if (cmd_memcg_css)
1900 old_memcg = set_active_memcg(
1901 mem_cgroup_from_css(cmd_memcg_css));
1902
1903 /*
1904 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1905 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1906 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1907 * not yet been completed.
1908 */
1909 ret = do_req_filebacked(lo, rq);
1910
1911 if (cmd_blkcg_css)
1912 kthread_associate_blkcg(NULL);
1913
1914 if (cmd_memcg_css) {
1915 set_active_memcg(old_memcg);
1916 css_put(cmd_memcg_css);
1917 }
1918 failed:
1919 /* complete non-aio request */
1920 if (!use_aio || ret) {
1921 if (ret == -EOPNOTSUPP)
1922 cmd->ret = ret;
1923 else
1924 cmd->ret = ret ? -EIO : 0;
1925 if (likely(!blk_should_fake_timeout(rq->q)))
1926 blk_mq_complete_request(rq);
1927 }
1928 }
1929
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1930 static void loop_process_work(struct loop_worker *worker,
1931 struct list_head *cmd_list, struct loop_device *lo)
1932 {
1933 int orig_flags = current->flags;
1934 struct loop_cmd *cmd;
1935
1936 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1937 spin_lock_irq(&lo->lo_work_lock);
1938 while (!list_empty(cmd_list)) {
1939 cmd = container_of(
1940 cmd_list->next, struct loop_cmd, list_entry);
1941 list_del(cmd_list->next);
1942 spin_unlock_irq(&lo->lo_work_lock);
1943
1944 loop_handle_cmd(cmd);
1945 cond_resched();
1946
1947 spin_lock_irq(&lo->lo_work_lock);
1948 }
1949
1950 /*
1951 * We only add to the idle list if there are no pending cmds
1952 * *and* the worker will not run again which ensures that it
1953 * is safe to free any worker on the idle list
1954 */
1955 if (worker && !work_pending(&worker->work)) {
1956 worker->last_ran_at = jiffies;
1957 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1958 loop_set_timer(lo);
1959 }
1960 spin_unlock_irq(&lo->lo_work_lock);
1961 current->flags = orig_flags;
1962 }
1963
loop_workfn(struct work_struct * work)1964 static void loop_workfn(struct work_struct *work)
1965 {
1966 struct loop_worker *worker =
1967 container_of(work, struct loop_worker, work);
1968 loop_process_work(worker, &worker->cmd_list, worker->lo);
1969 }
1970
loop_rootcg_workfn(struct work_struct * work)1971 static void loop_rootcg_workfn(struct work_struct *work)
1972 {
1973 struct loop_device *lo =
1974 container_of(work, struct loop_device, rootcg_work);
1975 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1976 }
1977
1978 static const struct blk_mq_ops loop_mq_ops = {
1979 .queue_rq = loop_queue_rq,
1980 .complete = lo_complete_rq,
1981 };
1982
loop_add(int i)1983 static int loop_add(int i)
1984 {
1985 struct loop_device *lo;
1986 struct gendisk *disk;
1987 int err;
1988
1989 err = -ENOMEM;
1990 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1991 if (!lo)
1992 goto out;
1993 lo->worker_tree = RB_ROOT;
1994 INIT_LIST_HEAD(&lo->idle_worker_list);
1995 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
1996 lo->lo_state = Lo_unbound;
1997
1998 err = mutex_lock_killable(&loop_ctl_mutex);
1999 if (err)
2000 goto out_free_dev;
2001
2002 /* allocate id, if @id >= 0, we're requesting that specific id */
2003 if (i >= 0) {
2004 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2005 if (err == -ENOSPC)
2006 err = -EEXIST;
2007 } else {
2008 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2009 }
2010 mutex_unlock(&loop_ctl_mutex);
2011 if (err < 0)
2012 goto out_free_dev;
2013 i = err;
2014
2015 lo->tag_set.ops = &loop_mq_ops;
2016 lo->tag_set.nr_hw_queues = 1;
2017 lo->tag_set.queue_depth = hw_queue_depth;
2018 lo->tag_set.numa_node = NUMA_NO_NODE;
2019 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2020 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2021 BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2022 lo->tag_set.driver_data = lo;
2023
2024 err = blk_mq_alloc_tag_set(&lo->tag_set);
2025 if (err)
2026 goto out_free_idr;
2027
2028 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2029 if (IS_ERR(disk)) {
2030 err = PTR_ERR(disk);
2031 goto out_cleanup_tags;
2032 }
2033 lo->lo_queue = lo->lo_disk->queue;
2034
2035 /* random number picked from the history block max_sectors cap */
2036 blk_queue_max_hw_sectors(lo->lo_queue, 2560u);
2037
2038 /*
2039 * By default, we do buffer IO, so it doesn't make sense to enable
2040 * merge because the I/O submitted to backing file is handled page by
2041 * page. For directio mode, merge does help to dispatch bigger request
2042 * to underlayer disk. We will enable merge once directio is enabled.
2043 */
2044 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2045
2046 /*
2047 * Disable partition scanning by default. The in-kernel partition
2048 * scanning can be requested individually per-device during its
2049 * setup. Userspace can always add and remove partitions from all
2050 * devices. The needed partition minors are allocated from the
2051 * extended minor space, the main loop device numbers will continue
2052 * to match the loop minors, regardless of the number of partitions
2053 * used.
2054 *
2055 * If max_part is given, partition scanning is globally enabled for
2056 * all loop devices. The minors for the main loop devices will be
2057 * multiples of max_part.
2058 *
2059 * Note: Global-for-all-devices, set-only-at-init, read-only module
2060 * parameteters like 'max_loop' and 'max_part' make things needlessly
2061 * complicated, are too static, inflexible and may surprise
2062 * userspace tools. Parameters like this in general should be avoided.
2063 */
2064 if (!part_shift)
2065 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2066 mutex_init(&lo->lo_mutex);
2067 lo->lo_number = i;
2068 spin_lock_init(&lo->lo_lock);
2069 spin_lock_init(&lo->lo_work_lock);
2070 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2071 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2072 disk->major = LOOP_MAJOR;
2073 disk->first_minor = i << part_shift;
2074 disk->minors = 1 << part_shift;
2075 disk->fops = &lo_fops;
2076 disk->private_data = lo;
2077 disk->queue = lo->lo_queue;
2078 disk->events = DISK_EVENT_MEDIA_CHANGE;
2079 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2080 sprintf(disk->disk_name, "loop%d", i);
2081 /* Make this loop device reachable from pathname. */
2082 err = add_disk(disk);
2083 if (err)
2084 goto out_cleanup_disk;
2085
2086 /* Show this loop device. */
2087 mutex_lock(&loop_ctl_mutex);
2088 lo->idr_visible = true;
2089 mutex_unlock(&loop_ctl_mutex);
2090
2091 return i;
2092
2093 out_cleanup_disk:
2094 put_disk(disk);
2095 out_cleanup_tags:
2096 blk_mq_free_tag_set(&lo->tag_set);
2097 out_free_idr:
2098 mutex_lock(&loop_ctl_mutex);
2099 idr_remove(&loop_index_idr, i);
2100 mutex_unlock(&loop_ctl_mutex);
2101 out_free_dev:
2102 kfree(lo);
2103 out:
2104 return err;
2105 }
2106
loop_remove(struct loop_device * lo)2107 static void loop_remove(struct loop_device *lo)
2108 {
2109 /* Make this loop device unreachable from pathname. */
2110 del_gendisk(lo->lo_disk);
2111 blk_mq_free_tag_set(&lo->tag_set);
2112
2113 mutex_lock(&loop_ctl_mutex);
2114 idr_remove(&loop_index_idr, lo->lo_number);
2115 mutex_unlock(&loop_ctl_mutex);
2116
2117 put_disk(lo->lo_disk);
2118 }
2119
2120 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2121 static void loop_probe(dev_t dev)
2122 {
2123 int idx = MINOR(dev) >> part_shift;
2124
2125 if (max_loop_specified && max_loop && idx >= max_loop)
2126 return;
2127 loop_add(idx);
2128 }
2129 #else
2130 #define loop_probe NULL
2131 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2132
loop_control_remove(int idx)2133 static int loop_control_remove(int idx)
2134 {
2135 struct loop_device *lo;
2136 int ret;
2137
2138 if (idx < 0) {
2139 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2140 return -EINVAL;
2141 }
2142
2143 /* Hide this loop device for serialization. */
2144 ret = mutex_lock_killable(&loop_ctl_mutex);
2145 if (ret)
2146 return ret;
2147 lo = idr_find(&loop_index_idr, idx);
2148 if (!lo || !lo->idr_visible)
2149 ret = -ENODEV;
2150 else
2151 lo->idr_visible = false;
2152 mutex_unlock(&loop_ctl_mutex);
2153 if (ret)
2154 return ret;
2155
2156 /* Check whether this loop device can be removed. */
2157 ret = mutex_lock_killable(&lo->lo_mutex);
2158 if (ret)
2159 goto mark_visible;
2160 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2161 mutex_unlock(&lo->lo_mutex);
2162 ret = -EBUSY;
2163 goto mark_visible;
2164 }
2165 /* Mark this loop device as no more bound, but not quite unbound yet */
2166 lo->lo_state = Lo_deleting;
2167 mutex_unlock(&lo->lo_mutex);
2168
2169 loop_remove(lo);
2170 return 0;
2171
2172 mark_visible:
2173 /* Show this loop device again. */
2174 mutex_lock(&loop_ctl_mutex);
2175 lo->idr_visible = true;
2176 mutex_unlock(&loop_ctl_mutex);
2177 return ret;
2178 }
2179
loop_control_get_free(int idx)2180 static int loop_control_get_free(int idx)
2181 {
2182 struct loop_device *lo;
2183 int id, ret;
2184
2185 ret = mutex_lock_killable(&loop_ctl_mutex);
2186 if (ret)
2187 return ret;
2188 idr_for_each_entry(&loop_index_idr, lo, id) {
2189 /* Hitting a race results in creating a new loop device which is harmless. */
2190 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2191 goto found;
2192 }
2193 mutex_unlock(&loop_ctl_mutex);
2194 return loop_add(-1);
2195 found:
2196 mutex_unlock(&loop_ctl_mutex);
2197 return id;
2198 }
2199
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2200 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2201 unsigned long parm)
2202 {
2203 switch (cmd) {
2204 case LOOP_CTL_ADD:
2205 return loop_add(parm);
2206 case LOOP_CTL_REMOVE:
2207 return loop_control_remove(parm);
2208 case LOOP_CTL_GET_FREE:
2209 return loop_control_get_free(parm);
2210 default:
2211 return -ENOSYS;
2212 }
2213 }
2214
2215 static const struct file_operations loop_ctl_fops = {
2216 .open = nonseekable_open,
2217 .unlocked_ioctl = loop_control_ioctl,
2218 .compat_ioctl = loop_control_ioctl,
2219 .owner = THIS_MODULE,
2220 .llseek = noop_llseek,
2221 };
2222
2223 static struct miscdevice loop_misc = {
2224 .minor = LOOP_CTRL_MINOR,
2225 .name = "loop-control",
2226 .fops = &loop_ctl_fops,
2227 };
2228
2229 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2230 MODULE_ALIAS("devname:loop-control");
2231
loop_init(void)2232 static int __init loop_init(void)
2233 {
2234 int i;
2235 int err;
2236
2237 part_shift = 0;
2238 if (max_part > 0) {
2239 part_shift = fls(max_part);
2240
2241 /*
2242 * Adjust max_part according to part_shift as it is exported
2243 * to user space so that user can decide correct minor number
2244 * if [s]he want to create more devices.
2245 *
2246 * Note that -1 is required because partition 0 is reserved
2247 * for the whole disk.
2248 */
2249 max_part = (1UL << part_shift) - 1;
2250 }
2251
2252 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2253 err = -EINVAL;
2254 goto err_out;
2255 }
2256
2257 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2258 err = -EINVAL;
2259 goto err_out;
2260 }
2261
2262 err = misc_register(&loop_misc);
2263 if (err < 0)
2264 goto err_out;
2265
2266
2267 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2268 err = -EIO;
2269 goto misc_out;
2270 }
2271
2272 /* pre-create number of devices given by config or max_loop */
2273 for (i = 0; i < max_loop; i++)
2274 loop_add(i);
2275
2276 printk(KERN_INFO "loop: module loaded\n");
2277 return 0;
2278
2279 misc_out:
2280 misc_deregister(&loop_misc);
2281 err_out:
2282 return err;
2283 }
2284
loop_exit(void)2285 static void __exit loop_exit(void)
2286 {
2287 struct loop_device *lo;
2288 int id;
2289
2290 unregister_blkdev(LOOP_MAJOR, "loop");
2291 misc_deregister(&loop_misc);
2292
2293 /*
2294 * There is no need to use loop_ctl_mutex here, for nobody else can
2295 * access loop_index_idr when this module is unloading (unless forced
2296 * module unloading is requested). If this is not a clean unloading,
2297 * we have no means to avoid kernel crash.
2298 */
2299 idr_for_each_entry(&loop_index_idr, lo, id)
2300 loop_remove(lo);
2301
2302 idr_destroy(&loop_index_idr);
2303 }
2304
2305 module_init(loop_init);
2306 module_exit(loop_exit);
2307
2308 #ifndef MODULE
max_loop_setup(char * str)2309 static int __init max_loop_setup(char *str)
2310 {
2311 max_loop = simple_strtol(str, NULL, 0);
2312 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2313 max_loop_specified = true;
2314 #endif
2315 return 1;
2316 }
2317
2318 __setup("max_loop=", max_loop_setup);
2319 #endif
2320