1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE 0x04
39 #define LPSS_LTR_SIZE 0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43 #define LPSS_RESETS 0x04
44 #define LPSS_RESETS_RESET_FUNC BIT(0)
45 #define LPSS_RESETS_RESET_APB BIT(1)
46 #define LPSS_GENERAL 0x08
47 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49 #define LPSS_SW_LTR 0x10
50 #define LPSS_AUTO_LTR 0x14
51 #define LPSS_LTR_SNOOP_REQ BIT(15)
52 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US 0x800
54 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57 #define LPSS_LTR_MAX_VAL 0x3FF
58 #define LPSS_TX_INT 0x20
59 #define LPSS_TX_INT_MASK BIT(1)
60
61 #define LPSS_PRV_REG_COUNT 9
62
63 /* LPSS Flags */
64 #define LPSS_CLK BIT(0)
65 #define LPSS_CLK_GATE BIT(1)
66 #define LPSS_CLK_DIVIDER BIT(2)
67 #define LPSS_LTR BIT(3)
68 #define LPSS_SAVE_CTX BIT(4)
69 /*
70 * For some devices the DSDT AML code for another device turns off the device
71 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72 * as ctx register values.
73 * Luckily these devices always use the same ctx register values, so we can
74 * work around this by saving the ctx registers once on activation.
75 */
76 #define LPSS_SAVE_CTX_ONCE BIT(5)
77 #define LPSS_NO_D3_DELAY BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82 unsigned int flags;
83 const char *clk_con_id;
84 unsigned int prv_offset;
85 size_t prv_size_override;
86 const struct property_entry *properties;
87 void (*setup)(struct lpss_private_data *pdata);
88 bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92 .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96 struct acpi_device *adev;
97 void __iomem *mmio_base;
98 resource_size_t mmio_size;
99 unsigned int fixed_clk_rate;
100 struct clk *clk;
101 const struct lpss_device_desc *dev_desc;
102 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113 *
114 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115 * it can be powered off automatically whenever the last LPSS device goes down.
116 * In case of no power any access to the DMA controller will hang the system.
117 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118 * well as on ASuS T100TA transformer.
119 *
120 * This quirk overrides power state of entire LPSS island to keep DMA powered
121 * on whenever we have at least one other device in use.
122 */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR 0xF4
127 #define LPSS_UART_CPR_AFCE BIT(4)
128
lpss_uart_setup(struct lpss_private_data * pdata)129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131 unsigned int offset;
132 u32 val;
133
134 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135 val = readl(pdata->mmio_base + offset);
136 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138 val = readl(pdata->mmio_base + LPSS_UART_CPR);
139 if (!(val & LPSS_UART_CPR_AFCE)) {
140 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141 val = readl(pdata->mmio_base + offset);
142 val |= LPSS_GENERAL_UART_RTS_OVRD;
143 writel(val, pdata->mmio_base + offset);
144 }
145 }
146
lpss_deassert_reset(struct lpss_private_data * pdata)147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149 unsigned int offset;
150 u32 val;
151
152 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153 val = readl(pdata->mmio_base + offset);
154 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155 writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159 * BYT PWM used for backlight control by the i915 driver on systems without
160 * the Crystal Cove PMIC.
161 */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165 "pwm-lpss-platform"),
166 };
167
byt_pwm_setup(struct lpss_private_data * pdata)168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170 /* Only call pwm_add_table for the first PWM controller */
171 if (acpi_dev_uid_match(pdata->adev, 1))
172 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
173 }
174
175 #define LPSS_I2C_ENABLE 0x6c
176
byt_i2c_setup(struct lpss_private_data * pdata)177 static void byt_i2c_setup(struct lpss_private_data *pdata)
178 {
179 acpi_handle handle = pdata->adev->handle;
180 unsigned long long shared_host = 0;
181 acpi_status status;
182 u64 uid;
183
184 /* Expected to always be successfull, but better safe then sorry */
185 if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
186 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
187 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
188 if (ACPI_SUCCESS(status) && shared_host)
189 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
190 }
191
192 lpss_deassert_reset(pdata);
193
194 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
195 pdata->fixed_clk_rate = 133000000;
196
197 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
198 }
199
200 /*
201 * BSW PWM1 is used for backlight control by the i915 driver
202 * BSW PWM2 is used for backlight control for fixed (etched into the glass)
203 * touch controls on some models. These touch-controls have specialized
204 * drivers which know they need the "pwm_soc_lpss_2" con-id.
205 */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 "pwm-lpss-platform"),
210 PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
211 "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
212 "pwm-lpss-platform"),
213 };
214
bsw_pwm_setup(struct lpss_private_data * pdata)215 static void bsw_pwm_setup(struct lpss_private_data *pdata)
216 {
217 /* Only call pwm_add_table for the first PWM controller */
218 if (acpi_dev_uid_match(pdata->adev, 1))
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct property_entry lpt_spi_properties[] = {
223 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224 { }
225 };
226
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229 | LPSS_SAVE_CTX,
230 .prv_offset = 0x800,
231 .properties = lpt_spi_properties,
232 };
233
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236 .prv_offset = 0x800,
237 };
238
239 static struct property_entry uart_properties[] = {
240 PROPERTY_ENTRY_U32("reg-io-width", 4),
241 PROPERTY_ENTRY_U32("reg-shift", 2),
242 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243 { },
244 };
245
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248 | LPSS_SAVE_CTX,
249 .clk_con_id = "baudclk",
250 .prv_offset = 0x800,
251 .setup = lpss_uart_setup,
252 .properties = uart_properties,
253 };
254
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
256 .flags = LPSS_LTR,
257 .prv_offset = 0x1000,
258 .prv_size_override = 0x1018,
259 };
260
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX,
263 .prv_offset = 0x800,
264 .setup = byt_pwm_setup,
265 };
266
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269 .prv_offset = 0x800,
270 .setup = bsw_pwm_setup,
271 .resume_from_noirq = true,
272 };
273
274 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276 .prv_offset = 0x800,
277 .resume_from_noirq = true,
278 };
279
280 static const struct lpss_device_desc byt_uart_dev_desc = {
281 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282 .clk_con_id = "baudclk",
283 .prv_offset = 0x800,
284 .setup = lpss_uart_setup,
285 .properties = uart_properties,
286 };
287
288 static const struct lpss_device_desc bsw_uart_dev_desc = {
289 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290 | LPSS_NO_D3_DELAY,
291 .clk_con_id = "baudclk",
292 .prv_offset = 0x800,
293 .setup = lpss_uart_setup,
294 .properties = uart_properties,
295 };
296
297 static const struct property_entry byt_spi_properties[] = {
298 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299 { }
300 };
301
302 static const struct lpss_device_desc byt_spi_dev_desc = {
303 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304 .prv_offset = 0x400,
305 .properties = byt_spi_properties,
306 };
307
308 static const struct lpss_device_desc byt_sdio_dev_desc = {
309 .flags = LPSS_CLK,
310 };
311
312 static const struct lpss_device_desc byt_i2c_dev_desc = {
313 .flags = LPSS_CLK | LPSS_SAVE_CTX,
314 .prv_offset = 0x800,
315 .setup = byt_i2c_setup,
316 .resume_from_noirq = true,
317 };
318
319 static const struct lpss_device_desc bsw_i2c_dev_desc = {
320 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321 .prv_offset = 0x800,
322 .setup = byt_i2c_setup,
323 .resume_from_noirq = true,
324 };
325
326 static const struct property_entry bsw_spi_properties[] = {
327 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328 { }
329 };
330
331 static const struct lpss_device_desc bsw_spi_dev_desc = {
332 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
333 | LPSS_NO_D3_DELAY,
334 .prv_offset = 0x400,
335 .setup = lpss_deassert_reset,
336 .properties = bsw_spi_properties,
337 };
338
339 static const struct x86_cpu_id lpss_cpu_ids[] = {
340 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
341 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
342 {}
343 };
344
345 #else
346
347 #define LPSS_ADDR(desc) (0UL)
348
349 #endif /* CONFIG_X86_INTEL_LPSS */
350
351 static const struct acpi_device_id acpi_lpss_device_ids[] = {
352 /* Generic LPSS devices */
353 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
354
355 /* Lynxpoint LPSS devices */
356 { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
357 { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
358 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
359 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
360 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
361 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
362 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
363
364 /* BayTrail LPSS devices */
365 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
366 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
367 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
368 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
369 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
370
371 /* Braswell LPSS devices */
372 { "80862286", LPSS_ADDR(lpss_dma_desc) },
373 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
374 { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
375 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
376 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
377 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
378 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
379
380 /* Broadwell LPSS devices */
381 { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
382 { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
383 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
384 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
385 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
386 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
387 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
388
389 /* Wildcat Point LPSS devices */
390 { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
391
392 { }
393 };
394
395 #ifdef CONFIG_X86_INTEL_LPSS
396
397 /* LPSS main clock device. */
398 static struct platform_device *lpss_clk_dev;
399
lpt_register_clock_device(void)400 static inline void lpt_register_clock_device(void)
401 {
402 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
403 PLATFORM_DEVID_NONE,
404 NULL, 0);
405 }
406
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)407 static int register_device_clock(struct acpi_device *adev,
408 struct lpss_private_data *pdata)
409 {
410 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
411 const char *devname = dev_name(&adev->dev);
412 struct clk *clk;
413 struct lpss_clk_data *clk_data;
414 const char *parent, *clk_name;
415 void __iomem *prv_base;
416
417 if (!lpss_clk_dev)
418 lpt_register_clock_device();
419
420 if (IS_ERR(lpss_clk_dev))
421 return PTR_ERR(lpss_clk_dev);
422
423 clk_data = platform_get_drvdata(lpss_clk_dev);
424 if (!clk_data)
425 return -ENODEV;
426 clk = clk_data->clk;
427
428 if (!pdata->mmio_base
429 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
430 return -ENODATA;
431
432 parent = clk_data->name;
433 prv_base = pdata->mmio_base + dev_desc->prv_offset;
434
435 if (pdata->fixed_clk_rate) {
436 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
437 pdata->fixed_clk_rate);
438 goto out;
439 }
440
441 if (dev_desc->flags & LPSS_CLK_GATE) {
442 clk = clk_register_gate(NULL, devname, parent, 0,
443 prv_base, 0, 0, NULL);
444 parent = devname;
445 }
446
447 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
448 /* Prevent division by zero */
449 if (!readl(prv_base))
450 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
451
452 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
453 if (!clk_name)
454 return -ENOMEM;
455 clk = clk_register_fractional_divider(NULL, clk_name, parent,
456 0, prv_base, 1, 15, 16, 15,
457 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
458 NULL);
459 parent = clk_name;
460
461 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
462 if (!clk_name) {
463 kfree(parent);
464 return -ENOMEM;
465 }
466 clk = clk_register_gate(NULL, clk_name, parent,
467 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
468 prv_base, 31, 0, NULL);
469 kfree(parent);
470 kfree(clk_name);
471 }
472 out:
473 if (IS_ERR(clk))
474 return PTR_ERR(clk);
475
476 pdata->clk = clk;
477 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
478 return 0;
479 }
480
481 struct lpss_device_links {
482 const char *supplier_hid;
483 const char *supplier_uid;
484 const char *consumer_hid;
485 const char *consumer_uid;
486 u32 flags;
487 const struct dmi_system_id *dep_missing_ids;
488 };
489
490 /* Please keep this list sorted alphabetically by vendor and model */
491 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
492 {
493 .matches = {
494 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
495 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
496 },
497 },
498 {}
499 };
500
501 /*
502 * The _DEP method is used to identify dependencies but instead of creating
503 * device links for every handle in _DEP, only links in the following list are
504 * created. That is necessary because, in the general case, _DEP can refer to
505 * devices that might not have drivers, or that are on different buses, or where
506 * the supplier is not enumerated until after the consumer is probed.
507 */
508 static const struct lpss_device_links lpss_device_links[] = {
509 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
510 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
511 /* CHT iGPU depends on PMIC I2C controller */
512 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
513 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
514 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
515 i2c1_dep_missing_dmi_ids},
516 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
517 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
519 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
520 };
521
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)522 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
523 const struct lpss_device_links *link)
524 {
525 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
526 }
527
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)528 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
529 const struct lpss_device_links *link)
530 {
531 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
532 }
533
534 struct hid_uid {
535 const char *hid;
536 const char *uid;
537 };
538
match_hid_uid(struct device * dev,const void * data)539 static int match_hid_uid(struct device *dev, const void *data)
540 {
541 struct acpi_device *adev = ACPI_COMPANION(dev);
542 const struct hid_uid *id = data;
543
544 if (!adev)
545 return 0;
546
547 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
548 }
549
acpi_lpss_find_device(const char * hid,const char * uid)550 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
551 {
552 struct device *dev;
553
554 struct hid_uid data = {
555 .hid = hid,
556 .uid = uid,
557 };
558
559 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
560 if (dev)
561 return dev;
562
563 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
564 }
565
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)566 static void acpi_lpss_link_consumer(struct device *dev1,
567 const struct lpss_device_links *link)
568 {
569 struct device *dev2;
570
571 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
572 if (!dev2)
573 return;
574
575 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
576 || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
577 device_link_add(dev2, dev1, link->flags);
578
579 put_device(dev2);
580 }
581
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)582 static void acpi_lpss_link_supplier(struct device *dev1,
583 const struct lpss_device_links *link)
584 {
585 struct device *dev2;
586
587 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
588 if (!dev2)
589 return;
590
591 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
592 || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
593 device_link_add(dev1, dev2, link->flags);
594
595 put_device(dev2);
596 }
597
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)598 static void acpi_lpss_create_device_links(struct acpi_device *adev,
599 struct platform_device *pdev)
600 {
601 int i;
602
603 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
604 const struct lpss_device_links *link = &lpss_device_links[i];
605
606 if (acpi_lpss_is_supplier(adev, link))
607 acpi_lpss_link_consumer(&pdev->dev, link);
608
609 if (acpi_lpss_is_consumer(adev, link))
610 acpi_lpss_link_supplier(&pdev->dev, link);
611 }
612 }
613
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)614 static int acpi_lpss_create_device(struct acpi_device *adev,
615 const struct acpi_device_id *id)
616 {
617 const struct lpss_device_desc *dev_desc;
618 struct lpss_private_data *pdata;
619 struct resource_entry *rentry;
620 struct list_head resource_list;
621 struct platform_device *pdev;
622 int ret;
623
624 dev_desc = (const struct lpss_device_desc *)id->driver_data;
625 if (!dev_desc)
626 return -EINVAL;
627
628 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
629 if (!pdata)
630 return -ENOMEM;
631
632 INIT_LIST_HEAD(&resource_list);
633 ret = acpi_dev_get_memory_resources(adev, &resource_list);
634 if (ret < 0)
635 goto err_out;
636
637 rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
638 if (rentry) {
639 if (dev_desc->prv_size_override)
640 pdata->mmio_size = dev_desc->prv_size_override;
641 else
642 pdata->mmio_size = resource_size(rentry->res);
643 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
644 }
645
646 acpi_dev_free_resource_list(&resource_list);
647
648 if (!pdata->mmio_base) {
649 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
650 adev->pnp.type.platform_id = 0;
651 goto out_free;
652 }
653
654 pdata->adev = adev;
655 pdata->dev_desc = dev_desc;
656
657 if (dev_desc->setup)
658 dev_desc->setup(pdata);
659
660 if (dev_desc->flags & LPSS_CLK) {
661 ret = register_device_clock(adev, pdata);
662 if (ret)
663 goto out_free;
664 }
665
666 /*
667 * This works around a known issue in ACPI tables where LPSS devices
668 * have _PS0 and _PS3 without _PSC (and no power resources), so
669 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
670 */
671 acpi_device_fix_up_power(adev);
672
673 adev->driver_data = pdata;
674 pdev = acpi_create_platform_device(adev, dev_desc->properties);
675 if (IS_ERR_OR_NULL(pdev)) {
676 adev->driver_data = NULL;
677 ret = PTR_ERR(pdev);
678 goto err_out;
679 }
680
681 acpi_lpss_create_device_links(adev, pdev);
682 return 1;
683
684 out_free:
685 /* Skip the device, but continue the namespace scan */
686 ret = 0;
687 err_out:
688 kfree(pdata);
689 return ret;
690 }
691
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)692 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693 {
694 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695 }
696
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)697 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698 unsigned int reg)
699 {
700 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701 }
702
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)703 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704 {
705 struct acpi_device *adev = ACPI_COMPANION(dev);
706 struct lpss_private_data *pdata;
707 unsigned long flags;
708 int ret;
709
710 if (WARN_ON(!adev))
711 return -ENODEV;
712
713 spin_lock_irqsave(&dev->power.lock, flags);
714 if (pm_runtime_suspended(dev)) {
715 ret = -EAGAIN;
716 goto out;
717 }
718 pdata = acpi_driver_data(adev);
719 if (WARN_ON(!pdata || !pdata->mmio_base)) {
720 ret = -ENODEV;
721 goto out;
722 }
723 *val = __lpss_reg_read(pdata, reg);
724 ret = 0;
725
726 out:
727 spin_unlock_irqrestore(&dev->power.lock, flags);
728 return ret;
729 }
730
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)731 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732 char *buf)
733 {
734 u32 ltr_value = 0;
735 unsigned int reg;
736 int ret;
737
738 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739 ret = lpss_reg_read(dev, reg, <r_value);
740 if (ret)
741 return ret;
742
743 return sysfs_emit(buf, "%08x\n", ltr_value);
744 }
745
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)746 static ssize_t lpss_ltr_mode_show(struct device *dev,
747 struct device_attribute *attr, char *buf)
748 {
749 u32 ltr_mode = 0;
750 char *outstr;
751 int ret;
752
753 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
754 if (ret)
755 return ret;
756
757 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758 return sprintf(buf, "%s\n", outstr);
759 }
760
761 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764
765 static struct attribute *lpss_attrs[] = {
766 &dev_attr_auto_ltr.attr,
767 &dev_attr_sw_ltr.attr,
768 &dev_attr_ltr_mode.attr,
769 NULL,
770 };
771
772 static const struct attribute_group lpss_attr_group = {
773 .attrs = lpss_attrs,
774 .name = "lpss_ltr",
775 };
776
acpi_lpss_set_ltr(struct device * dev,s32 val)777 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778 {
779 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780 u32 ltr_mode, ltr_val;
781
782 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783 if (val < 0) {
784 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787 }
788 return;
789 }
790 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793 val = LPSS_LTR_MAX_VAL;
794 } else if (val > LPSS_LTR_MAX_VAL) {
795 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797 } else {
798 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799 }
800 ltr_val |= val;
801 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805 }
806 }
807
808 #ifdef CONFIG_PM
809 /**
810 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811 * @dev: LPSS device
812 * @pdata: pointer to the private data of the LPSS device
813 *
814 * Most LPSS devices have private registers which may loose their context when
815 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816 * prv_reg_ctx array.
817 */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)818 static void acpi_lpss_save_ctx(struct device *dev,
819 struct lpss_private_data *pdata)
820 {
821 unsigned int i;
822
823 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824 unsigned long offset = i * sizeof(u32);
825
826 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828 pdata->prv_reg_ctx[i], offset);
829 }
830 }
831
832 /**
833 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834 * @dev: LPSS device
835 * @pdata: pointer to the private data of the LPSS device
836 *
837 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838 */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)839 static void acpi_lpss_restore_ctx(struct device *dev,
840 struct lpss_private_data *pdata)
841 {
842 unsigned int i;
843
844 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845 unsigned long offset = i * sizeof(u32);
846
847 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849 pdata->prv_reg_ctx[i], offset);
850 }
851 }
852
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)853 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854 {
855 /*
856 * The following delay is needed or the subsequent write operations may
857 * fail. The LPSS devices are actually PCI devices and the PCI spec
858 * expects 10ms delay before the device can be accessed after D3 to D0
859 * transition. However some platforms like BSW does not need this delay.
860 */
861 unsigned int delay = 10; /* default 10ms delay */
862
863 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864 delay = 0;
865
866 msleep(delay);
867 }
868
acpi_lpss_activate(struct device * dev)869 static int acpi_lpss_activate(struct device *dev)
870 {
871 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872 int ret;
873
874 ret = acpi_dev_resume(dev);
875 if (ret)
876 return ret;
877
878 acpi_lpss_d3_to_d0_delay(pdata);
879
880 /*
881 * This is called only on ->probe() stage where a device is either in
882 * known state defined by BIOS or most likely powered off. Due to this
883 * we have to deassert reset line to be sure that ->probe() will
884 * recognize the device.
885 */
886 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
887 lpss_deassert_reset(pdata);
888
889 #ifdef CONFIG_PM
890 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
891 acpi_lpss_save_ctx(dev, pdata);
892 #endif
893
894 return 0;
895 }
896
acpi_lpss_dismiss(struct device * dev)897 static void acpi_lpss_dismiss(struct device *dev)
898 {
899 acpi_dev_suspend(dev, false);
900 }
901
902 /* IOSF SB for LPSS island */
903 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
904 #define LPSS_IOSF_UNIT_LPIO1 0xAB
905 #define LPSS_IOSF_UNIT_LPIO2 0xAC
906
907 #define LPSS_IOSF_PMCSR 0x84
908 #define LPSS_PMCSR_D0 0
909 #define LPSS_PMCSR_D3hot 3
910 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
911
912 #define LPSS_IOSF_GPIODEF0 0x154
913 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
914 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
915 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
916 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
917
918 static DEFINE_MUTEX(lpss_iosf_mutex);
919 static bool lpss_iosf_d3_entered = true;
920
lpss_iosf_enter_d3_state(void)921 static void lpss_iosf_enter_d3_state(void)
922 {
923 u32 value1 = 0;
924 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
925 u32 value2 = LPSS_PMCSR_D3hot;
926 u32 mask2 = LPSS_PMCSR_Dx_MASK;
927 /*
928 * PMC provides an information about actual status of the LPSS devices.
929 * Here we read the values related to LPSS power island, i.e. LPSS
930 * devices, excluding both LPSS DMA controllers, along with SCC domain.
931 */
932 u32 func_dis, d3_sts_0, pmc_status;
933 int ret;
934
935 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
936 if (ret)
937 return;
938
939 mutex_lock(&lpss_iosf_mutex);
940
941 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
942 if (ret)
943 goto exit;
944
945 /*
946 * Get the status of entire LPSS power island per device basis.
947 * Shutdown both LPSS DMA controllers if and only if all other devices
948 * are already in D3hot.
949 */
950 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
951 if (pmc_status)
952 goto exit;
953
954 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
955 LPSS_IOSF_PMCSR, value2, mask2);
956
957 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
958 LPSS_IOSF_PMCSR, value2, mask2);
959
960 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
961 LPSS_IOSF_GPIODEF0, value1, mask1);
962
963 lpss_iosf_d3_entered = true;
964
965 exit:
966 mutex_unlock(&lpss_iosf_mutex);
967 }
968
lpss_iosf_exit_d3_state(void)969 static void lpss_iosf_exit_d3_state(void)
970 {
971 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
972 LPSS_GPIODEF0_DMA_LLP;
973 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
974 u32 value2 = LPSS_PMCSR_D0;
975 u32 mask2 = LPSS_PMCSR_Dx_MASK;
976
977 mutex_lock(&lpss_iosf_mutex);
978
979 if (!lpss_iosf_d3_entered)
980 goto exit;
981
982 lpss_iosf_d3_entered = false;
983
984 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
985 LPSS_IOSF_GPIODEF0, value1, mask1);
986
987 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
988 LPSS_IOSF_PMCSR, value2, mask2);
989
990 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
991 LPSS_IOSF_PMCSR, value2, mask2);
992
993 exit:
994 mutex_unlock(&lpss_iosf_mutex);
995 }
996
acpi_lpss_suspend(struct device * dev,bool wakeup)997 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
998 {
999 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1000 int ret;
1001
1002 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1003 acpi_lpss_save_ctx(dev, pdata);
1004
1005 ret = acpi_dev_suspend(dev, wakeup);
1006
1007 /*
1008 * This call must be last in the sequence, otherwise PMC will return
1009 * wrong status for devices being about to be powered off. See
1010 * lpss_iosf_enter_d3_state() for further information.
1011 */
1012 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1013 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1014 lpss_iosf_enter_d3_state();
1015
1016 return ret;
1017 }
1018
acpi_lpss_resume(struct device * dev)1019 static int acpi_lpss_resume(struct device *dev)
1020 {
1021 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1022 int ret;
1023
1024 /*
1025 * This call is kept first to be in symmetry with
1026 * acpi_lpss_runtime_suspend() one.
1027 */
1028 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1029 lpss_iosf_exit_d3_state();
1030
1031 ret = acpi_dev_resume(dev);
1032 if (ret)
1033 return ret;
1034
1035 acpi_lpss_d3_to_d0_delay(pdata);
1036
1037 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1038 acpi_lpss_restore_ctx(dev, pdata);
1039
1040 return 0;
1041 }
1042
1043 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1044 static int acpi_lpss_do_suspend_late(struct device *dev)
1045 {
1046 int ret;
1047
1048 if (dev_pm_skip_suspend(dev))
1049 return 0;
1050
1051 ret = pm_generic_suspend_late(dev);
1052 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1053 }
1054
acpi_lpss_suspend_late(struct device * dev)1055 static int acpi_lpss_suspend_late(struct device *dev)
1056 {
1057 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1058
1059 if (pdata->dev_desc->resume_from_noirq)
1060 return 0;
1061
1062 return acpi_lpss_do_suspend_late(dev);
1063 }
1064
acpi_lpss_suspend_noirq(struct device * dev)1065 static int acpi_lpss_suspend_noirq(struct device *dev)
1066 {
1067 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1068 int ret;
1069
1070 if (pdata->dev_desc->resume_from_noirq) {
1071 /*
1072 * The driver's ->suspend_late callback will be invoked by
1073 * acpi_lpss_do_suspend_late(), with the assumption that the
1074 * driver really wanted to run that code in ->suspend_noirq, but
1075 * it could not run after acpi_dev_suspend() and the driver
1076 * expected the latter to be called in the "late" phase.
1077 */
1078 ret = acpi_lpss_do_suspend_late(dev);
1079 if (ret)
1080 return ret;
1081 }
1082
1083 return acpi_subsys_suspend_noirq(dev);
1084 }
1085
acpi_lpss_do_resume_early(struct device * dev)1086 static int acpi_lpss_do_resume_early(struct device *dev)
1087 {
1088 int ret = acpi_lpss_resume(dev);
1089
1090 return ret ? ret : pm_generic_resume_early(dev);
1091 }
1092
acpi_lpss_resume_early(struct device * dev)1093 static int acpi_lpss_resume_early(struct device *dev)
1094 {
1095 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1096
1097 if (pdata->dev_desc->resume_from_noirq)
1098 return 0;
1099
1100 if (dev_pm_skip_resume(dev))
1101 return 0;
1102
1103 return acpi_lpss_do_resume_early(dev);
1104 }
1105
acpi_lpss_resume_noirq(struct device * dev)1106 static int acpi_lpss_resume_noirq(struct device *dev)
1107 {
1108 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1109 int ret;
1110
1111 /* Follow acpi_subsys_resume_noirq(). */
1112 if (dev_pm_skip_resume(dev))
1113 return 0;
1114
1115 ret = pm_generic_resume_noirq(dev);
1116 if (ret)
1117 return ret;
1118
1119 if (!pdata->dev_desc->resume_from_noirq)
1120 return 0;
1121
1122 /*
1123 * The driver's ->resume_early callback will be invoked by
1124 * acpi_lpss_do_resume_early(), with the assumption that the driver
1125 * really wanted to run that code in ->resume_noirq, but it could not
1126 * run before acpi_dev_resume() and the driver expected the latter to be
1127 * called in the "early" phase.
1128 */
1129 return acpi_lpss_do_resume_early(dev);
1130 }
1131
acpi_lpss_do_restore_early(struct device * dev)1132 static int acpi_lpss_do_restore_early(struct device *dev)
1133 {
1134 int ret = acpi_lpss_resume(dev);
1135
1136 return ret ? ret : pm_generic_restore_early(dev);
1137 }
1138
acpi_lpss_restore_early(struct device * dev)1139 static int acpi_lpss_restore_early(struct device *dev)
1140 {
1141 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1142
1143 if (pdata->dev_desc->resume_from_noirq)
1144 return 0;
1145
1146 return acpi_lpss_do_restore_early(dev);
1147 }
1148
acpi_lpss_restore_noirq(struct device * dev)1149 static int acpi_lpss_restore_noirq(struct device *dev)
1150 {
1151 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1152 int ret;
1153
1154 ret = pm_generic_restore_noirq(dev);
1155 if (ret)
1156 return ret;
1157
1158 if (!pdata->dev_desc->resume_from_noirq)
1159 return 0;
1160
1161 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1162 return acpi_lpss_do_restore_early(dev);
1163 }
1164
acpi_lpss_do_poweroff_late(struct device * dev)1165 static int acpi_lpss_do_poweroff_late(struct device *dev)
1166 {
1167 int ret = pm_generic_poweroff_late(dev);
1168
1169 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1170 }
1171
acpi_lpss_poweroff_late(struct device * dev)1172 static int acpi_lpss_poweroff_late(struct device *dev)
1173 {
1174 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1175
1176 if (dev_pm_skip_suspend(dev))
1177 return 0;
1178
1179 if (pdata->dev_desc->resume_from_noirq)
1180 return 0;
1181
1182 return acpi_lpss_do_poweroff_late(dev);
1183 }
1184
acpi_lpss_poweroff_noirq(struct device * dev)1185 static int acpi_lpss_poweroff_noirq(struct device *dev)
1186 {
1187 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1188
1189 if (dev_pm_skip_suspend(dev))
1190 return 0;
1191
1192 if (pdata->dev_desc->resume_from_noirq) {
1193 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1194 int ret = acpi_lpss_do_poweroff_late(dev);
1195
1196 if (ret)
1197 return ret;
1198 }
1199
1200 return pm_generic_poweroff_noirq(dev);
1201 }
1202 #endif /* CONFIG_PM_SLEEP */
1203
acpi_lpss_runtime_suspend(struct device * dev)1204 static int acpi_lpss_runtime_suspend(struct device *dev)
1205 {
1206 int ret = pm_generic_runtime_suspend(dev);
1207
1208 return ret ? ret : acpi_lpss_suspend(dev, true);
1209 }
1210
acpi_lpss_runtime_resume(struct device * dev)1211 static int acpi_lpss_runtime_resume(struct device *dev)
1212 {
1213 int ret = acpi_lpss_resume(dev);
1214
1215 return ret ? ret : pm_generic_runtime_resume(dev);
1216 }
1217 #endif /* CONFIG_PM */
1218
1219 static struct dev_pm_domain acpi_lpss_pm_domain = {
1220 #ifdef CONFIG_PM
1221 .activate = acpi_lpss_activate,
1222 .dismiss = acpi_lpss_dismiss,
1223 #endif
1224 .ops = {
1225 #ifdef CONFIG_PM
1226 #ifdef CONFIG_PM_SLEEP
1227 .prepare = acpi_subsys_prepare,
1228 .complete = acpi_subsys_complete,
1229 .suspend = acpi_subsys_suspend,
1230 .suspend_late = acpi_lpss_suspend_late,
1231 .suspend_noirq = acpi_lpss_suspend_noirq,
1232 .resume_noirq = acpi_lpss_resume_noirq,
1233 .resume_early = acpi_lpss_resume_early,
1234 .freeze = acpi_subsys_freeze,
1235 .poweroff = acpi_subsys_poweroff,
1236 .poweroff_late = acpi_lpss_poweroff_late,
1237 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1238 .restore_noirq = acpi_lpss_restore_noirq,
1239 .restore_early = acpi_lpss_restore_early,
1240 #endif
1241 .runtime_suspend = acpi_lpss_runtime_suspend,
1242 .runtime_resume = acpi_lpss_runtime_resume,
1243 #endif
1244 },
1245 };
1246
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1247 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1248 unsigned long action, void *data)
1249 {
1250 struct platform_device *pdev = to_platform_device(data);
1251 struct lpss_private_data *pdata;
1252 struct acpi_device *adev;
1253 const struct acpi_device_id *id;
1254
1255 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1256 if (!id || !id->driver_data)
1257 return 0;
1258
1259 adev = ACPI_COMPANION(&pdev->dev);
1260 if (!adev)
1261 return 0;
1262
1263 pdata = acpi_driver_data(adev);
1264 if (!pdata)
1265 return 0;
1266
1267 if (pdata->mmio_base &&
1268 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1269 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1270 return 0;
1271 }
1272
1273 switch (action) {
1274 case BUS_NOTIFY_BIND_DRIVER:
1275 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276 break;
1277 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1278 case BUS_NOTIFY_UNBOUND_DRIVER:
1279 dev_pm_domain_set(&pdev->dev, NULL);
1280 break;
1281 case BUS_NOTIFY_ADD_DEVICE:
1282 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1283 if (pdata->dev_desc->flags & LPSS_LTR)
1284 return sysfs_create_group(&pdev->dev.kobj,
1285 &lpss_attr_group);
1286 break;
1287 case BUS_NOTIFY_DEL_DEVICE:
1288 if (pdata->dev_desc->flags & LPSS_LTR)
1289 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1290 dev_pm_domain_set(&pdev->dev, NULL);
1291 break;
1292 default:
1293 break;
1294 }
1295
1296 return 0;
1297 }
1298
1299 static struct notifier_block acpi_lpss_nb = {
1300 .notifier_call = acpi_lpss_platform_notify,
1301 };
1302
acpi_lpss_bind(struct device * dev)1303 static void acpi_lpss_bind(struct device *dev)
1304 {
1305 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1306
1307 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1308 return;
1309
1310 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1311 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1312 else
1313 dev_err(dev, "MMIO size insufficient to access LTR\n");
1314 }
1315
acpi_lpss_unbind(struct device * dev)1316 static void acpi_lpss_unbind(struct device *dev)
1317 {
1318 dev->power.set_latency_tolerance = NULL;
1319 }
1320
1321 static struct acpi_scan_handler lpss_handler = {
1322 .ids = acpi_lpss_device_ids,
1323 .attach = acpi_lpss_create_device,
1324 .bind = acpi_lpss_bind,
1325 .unbind = acpi_lpss_unbind,
1326 };
1327
acpi_lpss_init(void)1328 void __init acpi_lpss_init(void)
1329 {
1330 const struct x86_cpu_id *id;
1331 int ret;
1332
1333 ret = lpss_atom_clk_init();
1334 if (ret)
1335 return;
1336
1337 id = x86_match_cpu(lpss_cpu_ids);
1338 if (id)
1339 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1340
1341 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1342 acpi_scan_add_handler(&lpss_handler);
1343 }
1344
1345 #else
1346
1347 static struct acpi_scan_handler lpss_handler = {
1348 .ids = acpi_lpss_device_ids,
1349 };
1350
acpi_lpss_init(void)1351 void __init acpi_lpss_init(void)
1352 {
1353 acpi_scan_add_handler(&lpss_handler);
1354 }
1355
1356 #endif /* CONFIG_X86_INTEL_LPSS */
1357