1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 
28 #include "internal.h"
29 
30 #ifdef CONFIG_X86_INTEL_LPSS
31 
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35 
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37 
38 #define LPSS_CLK_SIZE	0x04
39 #define LPSS_LTR_SIZE	0x18
40 
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
43 #define LPSS_RESETS			0x04
44 #define LPSS_RESETS_RESET_FUNC		BIT(0)
45 #define LPSS_RESETS_RESET_APB		BIT(1)
46 #define LPSS_GENERAL			0x08
47 #define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
49 #define LPSS_SW_LTR			0x10
50 #define LPSS_AUTO_LTR			0x14
51 #define LPSS_LTR_SNOOP_REQ		BIT(15)
52 #define LPSS_LTR_SNOOP_MASK		0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US		0x800
54 #define LPSS_LTR_SNOOP_LAT_32US		0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT	5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
57 #define LPSS_LTR_MAX_VAL		0x3FF
58 #define LPSS_TX_INT			0x20
59 #define LPSS_TX_INT_MASK		BIT(1)
60 
61 #define LPSS_PRV_REG_COUNT		9
62 
63 /* LPSS Flags */
64 #define LPSS_CLK			BIT(0)
65 #define LPSS_CLK_GATE			BIT(1)
66 #define LPSS_CLK_DIVIDER		BIT(2)
67 #define LPSS_LTR			BIT(3)
68 #define LPSS_SAVE_CTX			BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE		BIT(5)
77 #define LPSS_NO_D3_DELAY		BIT(6)
78 
79 struct lpss_private_data;
80 
81 struct lpss_device_desc {
82 	unsigned int flags;
83 	const char *clk_con_id;
84 	unsigned int prv_offset;
85 	size_t prv_size_override;
86 	const struct property_entry *properties;
87 	void (*setup)(struct lpss_private_data *pdata);
88 	bool resume_from_noirq;
89 };
90 
91 static const struct lpss_device_desc lpss_dma_desc = {
92 	.flags = LPSS_CLK,
93 };
94 
95 struct lpss_private_data {
96 	struct acpi_device *adev;
97 	void __iomem *mmio_base;
98 	resource_size_t mmio_size;
99 	unsigned int fixed_clk_rate;
100 	struct clk *clk;
101 	const struct lpss_device_desc *dev_desc;
102 	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104 
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107 
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110 
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
124 
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR			0xF4
127 #define LPSS_UART_CPR_AFCE		BIT(4)
128 
lpss_uart_setup(struct lpss_private_data * pdata)129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131 	unsigned int offset;
132 	u32 val;
133 
134 	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135 	val = readl(pdata->mmio_base + offset);
136 	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137 
138 	val = readl(pdata->mmio_base + LPSS_UART_CPR);
139 	if (!(val & LPSS_UART_CPR_AFCE)) {
140 		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141 		val = readl(pdata->mmio_base + offset);
142 		val |= LPSS_GENERAL_UART_RTS_OVRD;
143 		writel(val, pdata->mmio_base + offset);
144 	}
145 }
146 
lpss_deassert_reset(struct lpss_private_data * pdata)147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149 	unsigned int offset;
150 	u32 val;
151 
152 	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153 	val = readl(pdata->mmio_base + offset);
154 	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155 	writel(val, pdata->mmio_base + offset);
156 }
157 
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163 	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165 			       "pwm-lpss-platform"),
166 };
167 
byt_pwm_setup(struct lpss_private_data * pdata)168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170 	/* Only call pwm_add_table for the first PWM controller */
171 	if (acpi_dev_uid_match(pdata->adev, 1))
172 		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
173 }
174 
175 #define LPSS_I2C_ENABLE			0x6c
176 
byt_i2c_setup(struct lpss_private_data * pdata)177 static void byt_i2c_setup(struct lpss_private_data *pdata)
178 {
179 	acpi_handle handle = pdata->adev->handle;
180 	unsigned long long shared_host = 0;
181 	acpi_status status;
182 	u64 uid;
183 
184 	/* Expected to always be successfull, but better safe then sorry */
185 	if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
186 		/* Detect I2C bus shared with PUNIT and ignore its d3 status */
187 		status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
188 		if (ACPI_SUCCESS(status) && shared_host)
189 			pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
190 	}
191 
192 	lpss_deassert_reset(pdata);
193 
194 	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
195 		pdata->fixed_clk_rate = 133000000;
196 
197 	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
198 }
199 
200 /*
201  * BSW PWM1 is used for backlight control by the i915 driver
202  * BSW PWM2 is used for backlight control for fixed (etched into the glass)
203  * touch controls on some models. These touch-controls have specialized
204  * drivers which know they need the "pwm_soc_lpss_2" con-id.
205  */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207 	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 			       "pwm-lpss-platform"),
210 	PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
211 			       "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
212 			       "pwm-lpss-platform"),
213 };
214 
bsw_pwm_setup(struct lpss_private_data * pdata)215 static void bsw_pwm_setup(struct lpss_private_data *pdata)
216 {
217 	/* Only call pwm_add_table for the first PWM controller */
218 	if (acpi_dev_uid_match(pdata->adev, 1))
219 		pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221 
222 static const struct property_entry lpt_spi_properties[] = {
223 	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224 	{ }
225 };
226 
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229 			| LPSS_SAVE_CTX,
230 	.prv_offset = 0x800,
231 	.properties = lpt_spi_properties,
232 };
233 
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236 	.prv_offset = 0x800,
237 };
238 
239 static struct property_entry uart_properties[] = {
240 	PROPERTY_ENTRY_U32("reg-io-width", 4),
241 	PROPERTY_ENTRY_U32("reg-shift", 2),
242 	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243 	{ },
244 };
245 
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248 			| LPSS_SAVE_CTX,
249 	.clk_con_id = "baudclk",
250 	.prv_offset = 0x800,
251 	.setup = lpss_uart_setup,
252 	.properties = uart_properties,
253 };
254 
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
256 	.flags = LPSS_LTR,
257 	.prv_offset = 0x1000,
258 	.prv_size_override = 0x1018,
259 };
260 
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262 	.flags = LPSS_SAVE_CTX,
263 	.prv_offset = 0x800,
264 	.setup = byt_pwm_setup,
265 };
266 
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268 	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269 	.prv_offset = 0x800,
270 	.setup = bsw_pwm_setup,
271 	.resume_from_noirq = true,
272 };
273 
274 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275 	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276 	.prv_offset = 0x800,
277 	.resume_from_noirq = true,
278 };
279 
280 static const struct lpss_device_desc byt_uart_dev_desc = {
281 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282 	.clk_con_id = "baudclk",
283 	.prv_offset = 0x800,
284 	.setup = lpss_uart_setup,
285 	.properties = uart_properties,
286 };
287 
288 static const struct lpss_device_desc bsw_uart_dev_desc = {
289 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290 			| LPSS_NO_D3_DELAY,
291 	.clk_con_id = "baudclk",
292 	.prv_offset = 0x800,
293 	.setup = lpss_uart_setup,
294 	.properties = uart_properties,
295 };
296 
297 static const struct property_entry byt_spi_properties[] = {
298 	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299 	{ }
300 };
301 
302 static const struct lpss_device_desc byt_spi_dev_desc = {
303 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304 	.prv_offset = 0x400,
305 	.properties = byt_spi_properties,
306 };
307 
308 static const struct lpss_device_desc byt_sdio_dev_desc = {
309 	.flags = LPSS_CLK,
310 };
311 
312 static const struct lpss_device_desc byt_i2c_dev_desc = {
313 	.flags = LPSS_CLK | LPSS_SAVE_CTX,
314 	.prv_offset = 0x800,
315 	.setup = byt_i2c_setup,
316 	.resume_from_noirq = true,
317 };
318 
319 static const struct lpss_device_desc bsw_i2c_dev_desc = {
320 	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321 	.prv_offset = 0x800,
322 	.setup = byt_i2c_setup,
323 	.resume_from_noirq = true,
324 };
325 
326 static const struct property_entry bsw_spi_properties[] = {
327 	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328 	{ }
329 };
330 
331 static const struct lpss_device_desc bsw_spi_dev_desc = {
332 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
333 			| LPSS_NO_D3_DELAY,
334 	.prv_offset = 0x400,
335 	.setup = lpss_deassert_reset,
336 	.properties = bsw_spi_properties,
337 };
338 
339 static const struct x86_cpu_id lpss_cpu_ids[] = {
340 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	NULL),
341 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	NULL),
342 	{}
343 };
344 
345 #else
346 
347 #define LPSS_ADDR(desc) (0UL)
348 
349 #endif /* CONFIG_X86_INTEL_LPSS */
350 
351 static const struct acpi_device_id acpi_lpss_device_ids[] = {
352 	/* Generic LPSS devices */
353 	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
354 
355 	/* Lynxpoint LPSS devices */
356 	{ "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
357 	{ "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
358 	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
359 	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
360 	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
361 	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
362 	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
363 
364 	/* BayTrail LPSS devices */
365 	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
366 	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
367 	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
368 	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
369 	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
370 
371 	/* Braswell LPSS devices */
372 	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
373 	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
374 	{ "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
375 	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
376 	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
377 	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
378 	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
379 
380 	/* Broadwell LPSS devices */
381 	{ "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
382 	{ "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
383 	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
384 	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
385 	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
386 	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
387 	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
388 
389 	/* Wildcat Point LPSS devices */
390 	{ "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
391 
392 	{ }
393 };
394 
395 #ifdef CONFIG_X86_INTEL_LPSS
396 
397 /* LPSS main clock device. */
398 static struct platform_device *lpss_clk_dev;
399 
lpt_register_clock_device(void)400 static inline void lpt_register_clock_device(void)
401 {
402 	lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
403 						       PLATFORM_DEVID_NONE,
404 						       NULL, 0);
405 }
406 
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)407 static int register_device_clock(struct acpi_device *adev,
408 				 struct lpss_private_data *pdata)
409 {
410 	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
411 	const char *devname = dev_name(&adev->dev);
412 	struct clk *clk;
413 	struct lpss_clk_data *clk_data;
414 	const char *parent, *clk_name;
415 	void __iomem *prv_base;
416 
417 	if (!lpss_clk_dev)
418 		lpt_register_clock_device();
419 
420 	if (IS_ERR(lpss_clk_dev))
421 		return PTR_ERR(lpss_clk_dev);
422 
423 	clk_data = platform_get_drvdata(lpss_clk_dev);
424 	if (!clk_data)
425 		return -ENODEV;
426 	clk = clk_data->clk;
427 
428 	if (!pdata->mmio_base
429 	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
430 		return -ENODATA;
431 
432 	parent = clk_data->name;
433 	prv_base = pdata->mmio_base + dev_desc->prv_offset;
434 
435 	if (pdata->fixed_clk_rate) {
436 		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
437 					      pdata->fixed_clk_rate);
438 		goto out;
439 	}
440 
441 	if (dev_desc->flags & LPSS_CLK_GATE) {
442 		clk = clk_register_gate(NULL, devname, parent, 0,
443 					prv_base, 0, 0, NULL);
444 		parent = devname;
445 	}
446 
447 	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
448 		/* Prevent division by zero */
449 		if (!readl(prv_base))
450 			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
451 
452 		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
453 		if (!clk_name)
454 			return -ENOMEM;
455 		clk = clk_register_fractional_divider(NULL, clk_name, parent,
456 						      0, prv_base, 1, 15, 16, 15,
457 						      CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
458 						      NULL);
459 		parent = clk_name;
460 
461 		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
462 		if (!clk_name) {
463 			kfree(parent);
464 			return -ENOMEM;
465 		}
466 		clk = clk_register_gate(NULL, clk_name, parent,
467 					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
468 					prv_base, 31, 0, NULL);
469 		kfree(parent);
470 		kfree(clk_name);
471 	}
472 out:
473 	if (IS_ERR(clk))
474 		return PTR_ERR(clk);
475 
476 	pdata->clk = clk;
477 	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
478 	return 0;
479 }
480 
481 struct lpss_device_links {
482 	const char *supplier_hid;
483 	const char *supplier_uid;
484 	const char *consumer_hid;
485 	const char *consumer_uid;
486 	u32 flags;
487 	const struct dmi_system_id *dep_missing_ids;
488 };
489 
490 /* Please keep this list sorted alphabetically by vendor and model */
491 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
492 	{
493 		.matches = {
494 			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
495 			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
496 		},
497 	},
498 	{}
499 };
500 
501 /*
502  * The _DEP method is used to identify dependencies but instead of creating
503  * device links for every handle in _DEP, only links in the following list are
504  * created. That is necessary because, in the general case, _DEP can refer to
505  * devices that might not have drivers, or that are on different buses, or where
506  * the supplier is not enumerated until after the consumer is probed.
507  */
508 static const struct lpss_device_links lpss_device_links[] = {
509 	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
510 	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
511 	/* CHT iGPU depends on PMIC I2C controller */
512 	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
513 	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
514 	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
515 	 i2c1_dep_missing_dmi_ids},
516 	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
517 	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518 	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
519 	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
520 };
521 
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)522 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
523 				  const struct lpss_device_links *link)
524 {
525 	return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
526 }
527 
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)528 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
529 				  const struct lpss_device_links *link)
530 {
531 	return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
532 }
533 
534 struct hid_uid {
535 	const char *hid;
536 	const char *uid;
537 };
538 
match_hid_uid(struct device * dev,const void * data)539 static int match_hid_uid(struct device *dev, const void *data)
540 {
541 	struct acpi_device *adev = ACPI_COMPANION(dev);
542 	const struct hid_uid *id = data;
543 
544 	if (!adev)
545 		return 0;
546 
547 	return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
548 }
549 
acpi_lpss_find_device(const char * hid,const char * uid)550 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
551 {
552 	struct device *dev;
553 
554 	struct hid_uid data = {
555 		.hid = hid,
556 		.uid = uid,
557 	};
558 
559 	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
560 	if (dev)
561 		return dev;
562 
563 	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
564 }
565 
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)566 static void acpi_lpss_link_consumer(struct device *dev1,
567 				    const struct lpss_device_links *link)
568 {
569 	struct device *dev2;
570 
571 	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
572 	if (!dev2)
573 		return;
574 
575 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
576 	    || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
577 		device_link_add(dev2, dev1, link->flags);
578 
579 	put_device(dev2);
580 }
581 
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)582 static void acpi_lpss_link_supplier(struct device *dev1,
583 				    const struct lpss_device_links *link)
584 {
585 	struct device *dev2;
586 
587 	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
588 	if (!dev2)
589 		return;
590 
591 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
592 	    || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
593 		device_link_add(dev1, dev2, link->flags);
594 
595 	put_device(dev2);
596 }
597 
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)598 static void acpi_lpss_create_device_links(struct acpi_device *adev,
599 					  struct platform_device *pdev)
600 {
601 	int i;
602 
603 	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
604 		const struct lpss_device_links *link = &lpss_device_links[i];
605 
606 		if (acpi_lpss_is_supplier(adev, link))
607 			acpi_lpss_link_consumer(&pdev->dev, link);
608 
609 		if (acpi_lpss_is_consumer(adev, link))
610 			acpi_lpss_link_supplier(&pdev->dev, link);
611 	}
612 }
613 
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)614 static int acpi_lpss_create_device(struct acpi_device *adev,
615 				   const struct acpi_device_id *id)
616 {
617 	const struct lpss_device_desc *dev_desc;
618 	struct lpss_private_data *pdata;
619 	struct resource_entry *rentry;
620 	struct list_head resource_list;
621 	struct platform_device *pdev;
622 	int ret;
623 
624 	dev_desc = (const struct lpss_device_desc *)id->driver_data;
625 	if (!dev_desc)
626 		return -EINVAL;
627 
628 	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
629 	if (!pdata)
630 		return -ENOMEM;
631 
632 	INIT_LIST_HEAD(&resource_list);
633 	ret = acpi_dev_get_memory_resources(adev, &resource_list);
634 	if (ret < 0)
635 		goto err_out;
636 
637 	rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
638 	if (rentry) {
639 		if (dev_desc->prv_size_override)
640 			pdata->mmio_size = dev_desc->prv_size_override;
641 		else
642 			pdata->mmio_size = resource_size(rentry->res);
643 		pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
644 	}
645 
646 	acpi_dev_free_resource_list(&resource_list);
647 
648 	if (!pdata->mmio_base) {
649 		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
650 		adev->pnp.type.platform_id = 0;
651 		goto out_free;
652 	}
653 
654 	pdata->adev = adev;
655 	pdata->dev_desc = dev_desc;
656 
657 	if (dev_desc->setup)
658 		dev_desc->setup(pdata);
659 
660 	if (dev_desc->flags & LPSS_CLK) {
661 		ret = register_device_clock(adev, pdata);
662 		if (ret)
663 			goto out_free;
664 	}
665 
666 	/*
667 	 * This works around a known issue in ACPI tables where LPSS devices
668 	 * have _PS0 and _PS3 without _PSC (and no power resources), so
669 	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
670 	 */
671 	acpi_device_fix_up_power(adev);
672 
673 	adev->driver_data = pdata;
674 	pdev = acpi_create_platform_device(adev, dev_desc->properties);
675 	if (IS_ERR_OR_NULL(pdev)) {
676 		adev->driver_data = NULL;
677 		ret = PTR_ERR(pdev);
678 		goto err_out;
679 	}
680 
681 	acpi_lpss_create_device_links(adev, pdev);
682 	return 1;
683 
684 out_free:
685 	/* Skip the device, but continue the namespace scan */
686 	ret = 0;
687 err_out:
688 	kfree(pdata);
689 	return ret;
690 }
691 
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)692 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
693 {
694 	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
695 }
696 
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)697 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
698 			     unsigned int reg)
699 {
700 	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
701 }
702 
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)703 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
704 {
705 	struct acpi_device *adev = ACPI_COMPANION(dev);
706 	struct lpss_private_data *pdata;
707 	unsigned long flags;
708 	int ret;
709 
710 	if (WARN_ON(!adev))
711 		return -ENODEV;
712 
713 	spin_lock_irqsave(&dev->power.lock, flags);
714 	if (pm_runtime_suspended(dev)) {
715 		ret = -EAGAIN;
716 		goto out;
717 	}
718 	pdata = acpi_driver_data(adev);
719 	if (WARN_ON(!pdata || !pdata->mmio_base)) {
720 		ret = -ENODEV;
721 		goto out;
722 	}
723 	*val = __lpss_reg_read(pdata, reg);
724 	ret = 0;
725 
726  out:
727 	spin_unlock_irqrestore(&dev->power.lock, flags);
728 	return ret;
729 }
730 
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)731 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
732 			     char *buf)
733 {
734 	u32 ltr_value = 0;
735 	unsigned int reg;
736 	int ret;
737 
738 	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
739 	ret = lpss_reg_read(dev, reg, &ltr_value);
740 	if (ret)
741 		return ret;
742 
743 	return sysfs_emit(buf, "%08x\n", ltr_value);
744 }
745 
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)746 static ssize_t lpss_ltr_mode_show(struct device *dev,
747 				  struct device_attribute *attr, char *buf)
748 {
749 	u32 ltr_mode = 0;
750 	char *outstr;
751 	int ret;
752 
753 	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
754 	if (ret)
755 		return ret;
756 
757 	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
758 	return sprintf(buf, "%s\n", outstr);
759 }
760 
761 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
762 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
763 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
764 
765 static struct attribute *lpss_attrs[] = {
766 	&dev_attr_auto_ltr.attr,
767 	&dev_attr_sw_ltr.attr,
768 	&dev_attr_ltr_mode.attr,
769 	NULL,
770 };
771 
772 static const struct attribute_group lpss_attr_group = {
773 	.attrs = lpss_attrs,
774 	.name = "lpss_ltr",
775 };
776 
acpi_lpss_set_ltr(struct device * dev,s32 val)777 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
778 {
779 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
780 	u32 ltr_mode, ltr_val;
781 
782 	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
783 	if (val < 0) {
784 		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
785 			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
786 			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
787 		}
788 		return;
789 	}
790 	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
791 	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
792 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
793 		val = LPSS_LTR_MAX_VAL;
794 	} else if (val > LPSS_LTR_MAX_VAL) {
795 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
796 		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
797 	} else {
798 		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
799 	}
800 	ltr_val |= val;
801 	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
802 	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
803 		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
804 		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
805 	}
806 }
807 
808 #ifdef CONFIG_PM
809 /**
810  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
811  * @dev: LPSS device
812  * @pdata: pointer to the private data of the LPSS device
813  *
814  * Most LPSS devices have private registers which may loose their context when
815  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
816  * prv_reg_ctx array.
817  */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)818 static void acpi_lpss_save_ctx(struct device *dev,
819 			       struct lpss_private_data *pdata)
820 {
821 	unsigned int i;
822 
823 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
824 		unsigned long offset = i * sizeof(u32);
825 
826 		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
827 		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
828 			pdata->prv_reg_ctx[i], offset);
829 	}
830 }
831 
832 /**
833  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
834  * @dev: LPSS device
835  * @pdata: pointer to the private data of the LPSS device
836  *
837  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
838  */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)839 static void acpi_lpss_restore_ctx(struct device *dev,
840 				  struct lpss_private_data *pdata)
841 {
842 	unsigned int i;
843 
844 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845 		unsigned long offset = i * sizeof(u32);
846 
847 		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
848 		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
849 			pdata->prv_reg_ctx[i], offset);
850 	}
851 }
852 
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)853 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
854 {
855 	/*
856 	 * The following delay is needed or the subsequent write operations may
857 	 * fail. The LPSS devices are actually PCI devices and the PCI spec
858 	 * expects 10ms delay before the device can be accessed after D3 to D0
859 	 * transition. However some platforms like BSW does not need this delay.
860 	 */
861 	unsigned int delay = 10;	/* default 10ms delay */
862 
863 	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
864 		delay = 0;
865 
866 	msleep(delay);
867 }
868 
acpi_lpss_activate(struct device * dev)869 static int acpi_lpss_activate(struct device *dev)
870 {
871 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
872 	int ret;
873 
874 	ret = acpi_dev_resume(dev);
875 	if (ret)
876 		return ret;
877 
878 	acpi_lpss_d3_to_d0_delay(pdata);
879 
880 	/*
881 	 * This is called only on ->probe() stage where a device is either in
882 	 * known state defined by BIOS or most likely powered off. Due to this
883 	 * we have to deassert reset line to be sure that ->probe() will
884 	 * recognize the device.
885 	 */
886 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
887 		lpss_deassert_reset(pdata);
888 
889 #ifdef CONFIG_PM
890 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
891 		acpi_lpss_save_ctx(dev, pdata);
892 #endif
893 
894 	return 0;
895 }
896 
acpi_lpss_dismiss(struct device * dev)897 static void acpi_lpss_dismiss(struct device *dev)
898 {
899 	acpi_dev_suspend(dev, false);
900 }
901 
902 /* IOSF SB for LPSS island */
903 #define LPSS_IOSF_UNIT_LPIOEP		0xA0
904 #define LPSS_IOSF_UNIT_LPIO1		0xAB
905 #define LPSS_IOSF_UNIT_LPIO2		0xAC
906 
907 #define LPSS_IOSF_PMCSR			0x84
908 #define LPSS_PMCSR_D0			0
909 #define LPSS_PMCSR_D3hot		3
910 #define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
911 
912 #define LPSS_IOSF_GPIODEF0		0x154
913 #define LPSS_GPIODEF0_DMA1_D3		BIT(2)
914 #define LPSS_GPIODEF0_DMA2_D3		BIT(3)
915 #define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
916 #define LPSS_GPIODEF0_DMA_LLP		BIT(13)
917 
918 static DEFINE_MUTEX(lpss_iosf_mutex);
919 static bool lpss_iosf_d3_entered = true;
920 
lpss_iosf_enter_d3_state(void)921 static void lpss_iosf_enter_d3_state(void)
922 {
923 	u32 value1 = 0;
924 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
925 	u32 value2 = LPSS_PMCSR_D3hot;
926 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
927 	/*
928 	 * PMC provides an information about actual status of the LPSS devices.
929 	 * Here we read the values related to LPSS power island, i.e. LPSS
930 	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
931 	 */
932 	u32 func_dis, d3_sts_0, pmc_status;
933 	int ret;
934 
935 	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
936 	if (ret)
937 		return;
938 
939 	mutex_lock(&lpss_iosf_mutex);
940 
941 	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
942 	if (ret)
943 		goto exit;
944 
945 	/*
946 	 * Get the status of entire LPSS power island per device basis.
947 	 * Shutdown both LPSS DMA controllers if and only if all other devices
948 	 * are already in D3hot.
949 	 */
950 	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
951 	if (pmc_status)
952 		goto exit;
953 
954 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
955 			LPSS_IOSF_PMCSR, value2, mask2);
956 
957 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
958 			LPSS_IOSF_PMCSR, value2, mask2);
959 
960 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
961 			LPSS_IOSF_GPIODEF0, value1, mask1);
962 
963 	lpss_iosf_d3_entered = true;
964 
965 exit:
966 	mutex_unlock(&lpss_iosf_mutex);
967 }
968 
lpss_iosf_exit_d3_state(void)969 static void lpss_iosf_exit_d3_state(void)
970 {
971 	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
972 		     LPSS_GPIODEF0_DMA_LLP;
973 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
974 	u32 value2 = LPSS_PMCSR_D0;
975 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
976 
977 	mutex_lock(&lpss_iosf_mutex);
978 
979 	if (!lpss_iosf_d3_entered)
980 		goto exit;
981 
982 	lpss_iosf_d3_entered = false;
983 
984 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
985 			LPSS_IOSF_GPIODEF0, value1, mask1);
986 
987 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
988 			LPSS_IOSF_PMCSR, value2, mask2);
989 
990 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
991 			LPSS_IOSF_PMCSR, value2, mask2);
992 
993 exit:
994 	mutex_unlock(&lpss_iosf_mutex);
995 }
996 
acpi_lpss_suspend(struct device * dev,bool wakeup)997 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
998 {
999 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1000 	int ret;
1001 
1002 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1003 		acpi_lpss_save_ctx(dev, pdata);
1004 
1005 	ret = acpi_dev_suspend(dev, wakeup);
1006 
1007 	/*
1008 	 * This call must be last in the sequence, otherwise PMC will return
1009 	 * wrong status for devices being about to be powered off. See
1010 	 * lpss_iosf_enter_d3_state() for further information.
1011 	 */
1012 	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1013 	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1014 		lpss_iosf_enter_d3_state();
1015 
1016 	return ret;
1017 }
1018 
acpi_lpss_resume(struct device * dev)1019 static int acpi_lpss_resume(struct device *dev)
1020 {
1021 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1022 	int ret;
1023 
1024 	/*
1025 	 * This call is kept first to be in symmetry with
1026 	 * acpi_lpss_runtime_suspend() one.
1027 	 */
1028 	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1029 		lpss_iosf_exit_d3_state();
1030 
1031 	ret = acpi_dev_resume(dev);
1032 	if (ret)
1033 		return ret;
1034 
1035 	acpi_lpss_d3_to_d0_delay(pdata);
1036 
1037 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1038 		acpi_lpss_restore_ctx(dev, pdata);
1039 
1040 	return 0;
1041 }
1042 
1043 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1044 static int acpi_lpss_do_suspend_late(struct device *dev)
1045 {
1046 	int ret;
1047 
1048 	if (dev_pm_skip_suspend(dev))
1049 		return 0;
1050 
1051 	ret = pm_generic_suspend_late(dev);
1052 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1053 }
1054 
acpi_lpss_suspend_late(struct device * dev)1055 static int acpi_lpss_suspend_late(struct device *dev)
1056 {
1057 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1058 
1059 	if (pdata->dev_desc->resume_from_noirq)
1060 		return 0;
1061 
1062 	return acpi_lpss_do_suspend_late(dev);
1063 }
1064 
acpi_lpss_suspend_noirq(struct device * dev)1065 static int acpi_lpss_suspend_noirq(struct device *dev)
1066 {
1067 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1068 	int ret;
1069 
1070 	if (pdata->dev_desc->resume_from_noirq) {
1071 		/*
1072 		 * The driver's ->suspend_late callback will be invoked by
1073 		 * acpi_lpss_do_suspend_late(), with the assumption that the
1074 		 * driver really wanted to run that code in ->suspend_noirq, but
1075 		 * it could not run after acpi_dev_suspend() and the driver
1076 		 * expected the latter to be called in the "late" phase.
1077 		 */
1078 		ret = acpi_lpss_do_suspend_late(dev);
1079 		if (ret)
1080 			return ret;
1081 	}
1082 
1083 	return acpi_subsys_suspend_noirq(dev);
1084 }
1085 
acpi_lpss_do_resume_early(struct device * dev)1086 static int acpi_lpss_do_resume_early(struct device *dev)
1087 {
1088 	int ret = acpi_lpss_resume(dev);
1089 
1090 	return ret ? ret : pm_generic_resume_early(dev);
1091 }
1092 
acpi_lpss_resume_early(struct device * dev)1093 static int acpi_lpss_resume_early(struct device *dev)
1094 {
1095 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1096 
1097 	if (pdata->dev_desc->resume_from_noirq)
1098 		return 0;
1099 
1100 	if (dev_pm_skip_resume(dev))
1101 		return 0;
1102 
1103 	return acpi_lpss_do_resume_early(dev);
1104 }
1105 
acpi_lpss_resume_noirq(struct device * dev)1106 static int acpi_lpss_resume_noirq(struct device *dev)
1107 {
1108 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1109 	int ret;
1110 
1111 	/* Follow acpi_subsys_resume_noirq(). */
1112 	if (dev_pm_skip_resume(dev))
1113 		return 0;
1114 
1115 	ret = pm_generic_resume_noirq(dev);
1116 	if (ret)
1117 		return ret;
1118 
1119 	if (!pdata->dev_desc->resume_from_noirq)
1120 		return 0;
1121 
1122 	/*
1123 	 * The driver's ->resume_early callback will be invoked by
1124 	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1125 	 * really wanted to run that code in ->resume_noirq, but it could not
1126 	 * run before acpi_dev_resume() and the driver expected the latter to be
1127 	 * called in the "early" phase.
1128 	 */
1129 	return acpi_lpss_do_resume_early(dev);
1130 }
1131 
acpi_lpss_do_restore_early(struct device * dev)1132 static int acpi_lpss_do_restore_early(struct device *dev)
1133 {
1134 	int ret = acpi_lpss_resume(dev);
1135 
1136 	return ret ? ret : pm_generic_restore_early(dev);
1137 }
1138 
acpi_lpss_restore_early(struct device * dev)1139 static int acpi_lpss_restore_early(struct device *dev)
1140 {
1141 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1142 
1143 	if (pdata->dev_desc->resume_from_noirq)
1144 		return 0;
1145 
1146 	return acpi_lpss_do_restore_early(dev);
1147 }
1148 
acpi_lpss_restore_noirq(struct device * dev)1149 static int acpi_lpss_restore_noirq(struct device *dev)
1150 {
1151 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1152 	int ret;
1153 
1154 	ret = pm_generic_restore_noirq(dev);
1155 	if (ret)
1156 		return ret;
1157 
1158 	if (!pdata->dev_desc->resume_from_noirq)
1159 		return 0;
1160 
1161 	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1162 	return acpi_lpss_do_restore_early(dev);
1163 }
1164 
acpi_lpss_do_poweroff_late(struct device * dev)1165 static int acpi_lpss_do_poweroff_late(struct device *dev)
1166 {
1167 	int ret = pm_generic_poweroff_late(dev);
1168 
1169 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1170 }
1171 
acpi_lpss_poweroff_late(struct device * dev)1172 static int acpi_lpss_poweroff_late(struct device *dev)
1173 {
1174 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1175 
1176 	if (dev_pm_skip_suspend(dev))
1177 		return 0;
1178 
1179 	if (pdata->dev_desc->resume_from_noirq)
1180 		return 0;
1181 
1182 	return acpi_lpss_do_poweroff_late(dev);
1183 }
1184 
acpi_lpss_poweroff_noirq(struct device * dev)1185 static int acpi_lpss_poweroff_noirq(struct device *dev)
1186 {
1187 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1188 
1189 	if (dev_pm_skip_suspend(dev))
1190 		return 0;
1191 
1192 	if (pdata->dev_desc->resume_from_noirq) {
1193 		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1194 		int ret = acpi_lpss_do_poweroff_late(dev);
1195 
1196 		if (ret)
1197 			return ret;
1198 	}
1199 
1200 	return pm_generic_poweroff_noirq(dev);
1201 }
1202 #endif /* CONFIG_PM_SLEEP */
1203 
acpi_lpss_runtime_suspend(struct device * dev)1204 static int acpi_lpss_runtime_suspend(struct device *dev)
1205 {
1206 	int ret = pm_generic_runtime_suspend(dev);
1207 
1208 	return ret ? ret : acpi_lpss_suspend(dev, true);
1209 }
1210 
acpi_lpss_runtime_resume(struct device * dev)1211 static int acpi_lpss_runtime_resume(struct device *dev)
1212 {
1213 	int ret = acpi_lpss_resume(dev);
1214 
1215 	return ret ? ret : pm_generic_runtime_resume(dev);
1216 }
1217 #endif /* CONFIG_PM */
1218 
1219 static struct dev_pm_domain acpi_lpss_pm_domain = {
1220 #ifdef CONFIG_PM
1221 	.activate = acpi_lpss_activate,
1222 	.dismiss = acpi_lpss_dismiss,
1223 #endif
1224 	.ops = {
1225 #ifdef CONFIG_PM
1226 #ifdef CONFIG_PM_SLEEP
1227 		.prepare = acpi_subsys_prepare,
1228 		.complete = acpi_subsys_complete,
1229 		.suspend = acpi_subsys_suspend,
1230 		.suspend_late = acpi_lpss_suspend_late,
1231 		.suspend_noirq = acpi_lpss_suspend_noirq,
1232 		.resume_noirq = acpi_lpss_resume_noirq,
1233 		.resume_early = acpi_lpss_resume_early,
1234 		.freeze = acpi_subsys_freeze,
1235 		.poweroff = acpi_subsys_poweroff,
1236 		.poweroff_late = acpi_lpss_poweroff_late,
1237 		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1238 		.restore_noirq = acpi_lpss_restore_noirq,
1239 		.restore_early = acpi_lpss_restore_early,
1240 #endif
1241 		.runtime_suspend = acpi_lpss_runtime_suspend,
1242 		.runtime_resume = acpi_lpss_runtime_resume,
1243 #endif
1244 	},
1245 };
1246 
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1247 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1248 				     unsigned long action, void *data)
1249 {
1250 	struct platform_device *pdev = to_platform_device(data);
1251 	struct lpss_private_data *pdata;
1252 	struct acpi_device *adev;
1253 	const struct acpi_device_id *id;
1254 
1255 	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1256 	if (!id || !id->driver_data)
1257 		return 0;
1258 
1259 	adev = ACPI_COMPANION(&pdev->dev);
1260 	if (!adev)
1261 		return 0;
1262 
1263 	pdata = acpi_driver_data(adev);
1264 	if (!pdata)
1265 		return 0;
1266 
1267 	if (pdata->mmio_base &&
1268 	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1269 		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1270 		return 0;
1271 	}
1272 
1273 	switch (action) {
1274 	case BUS_NOTIFY_BIND_DRIVER:
1275 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1276 		break;
1277 	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1278 	case BUS_NOTIFY_UNBOUND_DRIVER:
1279 		dev_pm_domain_set(&pdev->dev, NULL);
1280 		break;
1281 	case BUS_NOTIFY_ADD_DEVICE:
1282 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1283 		if (pdata->dev_desc->flags & LPSS_LTR)
1284 			return sysfs_create_group(&pdev->dev.kobj,
1285 						  &lpss_attr_group);
1286 		break;
1287 	case BUS_NOTIFY_DEL_DEVICE:
1288 		if (pdata->dev_desc->flags & LPSS_LTR)
1289 			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1290 		dev_pm_domain_set(&pdev->dev, NULL);
1291 		break;
1292 	default:
1293 		break;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static struct notifier_block acpi_lpss_nb = {
1300 	.notifier_call = acpi_lpss_platform_notify,
1301 };
1302 
acpi_lpss_bind(struct device * dev)1303 static void acpi_lpss_bind(struct device *dev)
1304 {
1305 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1306 
1307 	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1308 		return;
1309 
1310 	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1311 		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1312 	else
1313 		dev_err(dev, "MMIO size insufficient to access LTR\n");
1314 }
1315 
acpi_lpss_unbind(struct device * dev)1316 static void acpi_lpss_unbind(struct device *dev)
1317 {
1318 	dev->power.set_latency_tolerance = NULL;
1319 }
1320 
1321 static struct acpi_scan_handler lpss_handler = {
1322 	.ids = acpi_lpss_device_ids,
1323 	.attach = acpi_lpss_create_device,
1324 	.bind = acpi_lpss_bind,
1325 	.unbind = acpi_lpss_unbind,
1326 };
1327 
acpi_lpss_init(void)1328 void __init acpi_lpss_init(void)
1329 {
1330 	const struct x86_cpu_id *id;
1331 	int ret;
1332 
1333 	ret = lpss_atom_clk_init();
1334 	if (ret)
1335 		return;
1336 
1337 	id = x86_match_cpu(lpss_cpu_ids);
1338 	if (id)
1339 		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1340 
1341 	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1342 	acpi_scan_add_handler(&lpss_handler);
1343 }
1344 
1345 #else
1346 
1347 static struct acpi_scan_handler lpss_handler = {
1348 	.ids = acpi_lpss_device_ids,
1349 };
1350 
acpi_lpss_init(void)1351 void __init acpi_lpss_init(void)
1352 {
1353 	acpi_scan_add_handler(&lpss_handler);
1354 }
1355 
1356 #endif /* CONFIG_X86_INTEL_LPSS */
1357