1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 #include "vmx_onhyperv.h"
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77 {}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, 0444);
87
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
90
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, 0444);
93
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96 enable_unrestricted_guest, bool, 0444);
97
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
100
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, 0444);
103
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, 0444);
106
107 module_param(enable_apicv, bool, 0444);
108
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111
112 /*
113 * If nested=1, nested virtualization is supported, i.e., guests may use
114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115 * use VMX instructions.
116 */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, 0444);
119
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, 0444);
122
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128
129 #define MSR_BITMAP_MODE_X2APIC 1
130 #define MSR_BITMAP_MODE_X2APIC_APICV 2
131
132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
133
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON \
147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158 RTIT_STATUS_BYTECNT))
159
160 /*
161 * List of MSRs that can be directly passed to the guest.
162 * In addition to these x2apic and PT MSRs are handled specially.
163 */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165 MSR_IA32_SPEC_CTRL,
166 MSR_IA32_PRED_CMD,
167 MSR_IA32_FLUSH_CMD,
168 MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170 MSR_FS_BASE,
171 MSR_GS_BASE,
172 MSR_KERNEL_GS_BASE,
173 MSR_IA32_XFD,
174 MSR_IA32_XFD_ERR,
175 #endif
176 MSR_IA32_SYSENTER_CS,
177 MSR_IA32_SYSENTER_ESP,
178 MSR_IA32_SYSENTER_EIP,
179 MSR_CORE_C1_RES,
180 MSR_CORE_C3_RESIDENCY,
181 MSR_CORE_C6_RESIDENCY,
182 MSR_CORE_C7_RESIDENCY,
183 };
184
185 /*
186 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187 * ple_gap: upper bound on the amount of time between two successive
188 * executions of PAUSE in a loop. Also indicate if ple enabled.
189 * According to test, this time is usually smaller than 128 cycles.
190 * ple_window: upper bound on the amount of time a guest is allowed to execute
191 * in a PAUSE loop. Tests indicate that most spinlocks are held for
192 * less than 2^12 cycles
193 * Time is measured based on a counter that runs at the same rate as the TSC,
194 * refer SDM volume 3b section 21.6.13 & 22.1.3.
195 */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224
225 static const struct {
226 const char *option;
227 bool for_parse;
228 } vmentry_l1d_param[] = {
229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
231 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)240 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
241 {
242 struct page *page;
243 unsigned int i;
244
245 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247 return 0;
248 }
249
250 if (!enable_ept) {
251 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
252 return 0;
253 }
254
255 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 return 0;
258 }
259
260 /* If set to auto use the default l1tf mitigation method */
261 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
262 switch (l1tf_mitigation) {
263 case L1TF_MITIGATION_OFF:
264 l1tf = VMENTER_L1D_FLUSH_NEVER;
265 break;
266 case L1TF_MITIGATION_FLUSH_NOWARN:
267 case L1TF_MITIGATION_FLUSH:
268 case L1TF_MITIGATION_FLUSH_NOSMT:
269 l1tf = VMENTER_L1D_FLUSH_COND;
270 break;
271 case L1TF_MITIGATION_FULL:
272 case L1TF_MITIGATION_FULL_FORCE:
273 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274 break;
275 }
276 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
277 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
278 }
279
280 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
281 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
282 /*
283 * This allocation for vmx_l1d_flush_pages is not tied to a VM
284 * lifetime and so should not be charged to a memcg.
285 */
286 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
287 if (!page)
288 return -ENOMEM;
289 vmx_l1d_flush_pages = page_address(page);
290
291 /*
292 * Initialize each page with a different pattern in
293 * order to protect against KSM in the nested
294 * virtualization case.
295 */
296 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
297 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
298 PAGE_SIZE);
299 }
300 }
301
302 l1tf_vmx_mitigation = l1tf;
303
304 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
305 static_branch_enable(&vmx_l1d_should_flush);
306 else
307 static_branch_disable(&vmx_l1d_should_flush);
308
309 if (l1tf == VMENTER_L1D_FLUSH_COND)
310 static_branch_enable(&vmx_l1d_flush_cond);
311 else
312 static_branch_disable(&vmx_l1d_flush_cond);
313 return 0;
314 }
315
vmentry_l1d_flush_parse(const char * s)316 static int vmentry_l1d_flush_parse(const char *s)
317 {
318 unsigned int i;
319
320 if (s) {
321 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
322 if (vmentry_l1d_param[i].for_parse &&
323 sysfs_streq(s, vmentry_l1d_param[i].option))
324 return i;
325 }
326 }
327 return -EINVAL;
328 }
329
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
331 {
332 int l1tf, ret;
333
334 l1tf = vmentry_l1d_flush_parse(s);
335 if (l1tf < 0)
336 return l1tf;
337
338 if (!boot_cpu_has(X86_BUG_L1TF))
339 return 0;
340
341 /*
342 * Has vmx_init() run already? If not then this is the pre init
343 * parameter parsing. In that case just store the value and let
344 * vmx_init() do the proper setup after enable_ept has been
345 * established.
346 */
347 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
348 vmentry_l1d_flush_param = l1tf;
349 return 0;
350 }
351
352 mutex_lock(&vmx_l1d_flush_mutex);
353 ret = vmx_setup_l1d_flush(l1tf);
354 mutex_unlock(&vmx_l1d_flush_mutex);
355 return ret;
356 }
357
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
359 {
360 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
361 return sysfs_emit(s, "???\n");
362
363 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
364 }
365
vmx_disable_fb_clear(struct vcpu_vmx * vmx)366 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
367 {
368 u64 msr;
369
370 if (!vmx->disable_fb_clear)
371 return;
372
373 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
374 msr |= FB_CLEAR_DIS;
375 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
376 /* Cache the MSR value to avoid reading it later */
377 vmx->msr_ia32_mcu_opt_ctrl = msr;
378 }
379
vmx_enable_fb_clear(struct vcpu_vmx * vmx)380 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
381 {
382 if (!vmx->disable_fb_clear)
383 return;
384
385 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
386 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
387 }
388
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)389 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
390 {
391 /*
392 * Disable VERW's behavior of clearing CPU buffers for the guest if the
393 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
394 * the mitigation. Disabling the clearing behavior provides a
395 * performance boost for guests that aren't aware that manually clearing
396 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
397 * and VM-Exit.
398 */
399 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
400 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
401 !boot_cpu_has_bug(X86_BUG_MDS) &&
402 !boot_cpu_has_bug(X86_BUG_TAA);
403
404 /*
405 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
406 * at VMEntry. Skip the MSR read/write when a guest has no use case to
407 * execute VERW.
408 */
409 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
410 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
411 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
413 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
414 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
415 vmx->disable_fb_clear = false;
416 }
417
418 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
419 .set = vmentry_l1d_flush_set,
420 .get = vmentry_l1d_flush_get,
421 };
422 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
423
424 static u32 vmx_segment_access_rights(struct kvm_segment *var);
425
426 void vmx_vmexit(void);
427
428 #define vmx_insn_failed(fmt...) \
429 do { \
430 WARN_ONCE(1, fmt); \
431 pr_warn_ratelimited(fmt); \
432 } while (0)
433
vmread_error(unsigned long field)434 noinline void vmread_error(unsigned long field)
435 {
436 vmx_insn_failed("vmread failed: field=%lx\n", field);
437 }
438
439 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)440 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
441 {
442 if (fault) {
443 kvm_spurious_fault();
444 } else {
445 instrumentation_begin();
446 vmread_error(field);
447 instrumentation_end();
448 }
449 }
450 #endif
451
vmwrite_error(unsigned long field,unsigned long value)452 noinline void vmwrite_error(unsigned long field, unsigned long value)
453 {
454 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
455 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
456 }
457
vmclear_error(struct vmcs * vmcs,u64 phys_addr)458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
459 {
460 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
461 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
462 }
463
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
465 {
466 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
467 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
468 }
469
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
471 {
472 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
473 ext, vpid, gva);
474 }
475
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
477 {
478 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
479 ext, eptp, gpa);
480 }
481
482 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
483 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
484 /*
485 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
486 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
487 */
488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
489
490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
491 static DEFINE_SPINLOCK(vmx_vpid_lock);
492
493 struct vmcs_config vmcs_config __ro_after_init;
494 struct vmx_capability vmx_capability __ro_after_init;
495
496 #define VMX_SEGMENT_FIELD(seg) \
497 [VCPU_SREG_##seg] = { \
498 .selector = GUEST_##seg##_SELECTOR, \
499 .base = GUEST_##seg##_BASE, \
500 .limit = GUEST_##seg##_LIMIT, \
501 .ar_bytes = GUEST_##seg##_AR_BYTES, \
502 }
503
504 static const struct kvm_vmx_segment_field {
505 unsigned selector;
506 unsigned base;
507 unsigned limit;
508 unsigned ar_bytes;
509 } kvm_vmx_segment_fields[] = {
510 VMX_SEGMENT_FIELD(CS),
511 VMX_SEGMENT_FIELD(DS),
512 VMX_SEGMENT_FIELD(ES),
513 VMX_SEGMENT_FIELD(FS),
514 VMX_SEGMENT_FIELD(GS),
515 VMX_SEGMENT_FIELD(SS),
516 VMX_SEGMENT_FIELD(TR),
517 VMX_SEGMENT_FIELD(LDTR),
518 };
519
vmx_segment_cache_clear(struct vcpu_vmx * vmx)520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
521 {
522 vmx->segment_cache.bitmask = 0;
523 }
524
525 static unsigned long host_idt_base;
526
527 #if IS_ENABLED(CONFIG_HYPERV)
528 static struct kvm_x86_ops vmx_x86_ops __initdata;
529
530 static bool __read_mostly enlightened_vmcs = true;
531 module_param(enlightened_vmcs, bool, 0444);
532
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
534 {
535 struct hv_enlightened_vmcs *evmcs;
536 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
537
538 if (partition_assist_page == INVALID_PAGE)
539 return -ENOMEM;
540
541 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
542
543 evmcs->partition_assist_page = partition_assist_page;
544 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
545 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
546
547 return 0;
548 }
549
hv_init_evmcs(void)550 static __init void hv_init_evmcs(void)
551 {
552 int cpu;
553
554 if (!enlightened_vmcs)
555 return;
556
557 /*
558 * Enlightened VMCS usage should be recommended and the host needs
559 * to support eVMCS v1 or above.
560 */
561 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
562 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
563 KVM_EVMCS_VERSION) {
564
565 /* Check that we have assist pages on all online CPUs */
566 for_each_online_cpu(cpu) {
567 if (!hv_get_vp_assist_page(cpu)) {
568 enlightened_vmcs = false;
569 break;
570 }
571 }
572
573 if (enlightened_vmcs) {
574 pr_info("Using Hyper-V Enlightened VMCS\n");
575 static_branch_enable(&__kvm_is_using_evmcs);
576 }
577
578 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
579 vmx_x86_ops.enable_l2_tlb_flush
580 = hv_enable_l2_tlb_flush;
581
582 } else {
583 enlightened_vmcs = false;
584 }
585 }
586
hv_reset_evmcs(void)587 static void hv_reset_evmcs(void)
588 {
589 struct hv_vp_assist_page *vp_ap;
590
591 if (!kvm_is_using_evmcs())
592 return;
593
594 /*
595 * KVM should enable eVMCS if and only if all CPUs have a VP assist
596 * page, and should reject CPU onlining if eVMCS is enabled the CPU
597 * doesn't have a VP assist page allocated.
598 */
599 vp_ap = hv_get_vp_assist_page(smp_processor_id());
600 if (WARN_ON_ONCE(!vp_ap))
601 return;
602
603 /*
604 * Reset everything to support using non-enlightened VMCS access later
605 * (e.g. when we reload the module with enlightened_vmcs=0)
606 */
607 vp_ap->nested_control.features.directhypercall = 0;
608 vp_ap->current_nested_vmcs = 0;
609 vp_ap->enlighten_vmentry = 0;
610 }
611
612 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)613 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)614 static void hv_reset_evmcs(void) {}
615 #endif /* IS_ENABLED(CONFIG_HYPERV) */
616
617 /*
618 * Comment's format: document - errata name - stepping - processor name.
619 * Refer from
620 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
621 */
622 static u32 vmx_preemption_cpu_tfms[] = {
623 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
624 0x000206E6,
625 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
626 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
627 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
628 0x00020652,
629 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
630 0x00020655,
631 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
632 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
633 /*
634 * 320767.pdf - AAP86 - B1 -
635 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
636 */
637 0x000106E5,
638 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
639 0x000106A0,
640 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
641 0x000106A1,
642 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
643 0x000106A4,
644 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
645 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
646 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
647 0x000106A5,
648 /* Xeon E3-1220 V2 */
649 0x000306A8,
650 };
651
cpu_has_broken_vmx_preemption_timer(void)652 static inline bool cpu_has_broken_vmx_preemption_timer(void)
653 {
654 u32 eax = cpuid_eax(0x00000001), i;
655
656 /* Clear the reserved bits */
657 eax &= ~(0x3U << 14 | 0xfU << 28);
658 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
659 if (eax == vmx_preemption_cpu_tfms[i])
660 return true;
661
662 return false;
663 }
664
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)665 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
666 {
667 return flexpriority_enabled && lapic_in_kernel(vcpu);
668 }
669
possible_passthrough_msr_slot(u32 msr)670 static int possible_passthrough_msr_slot(u32 msr)
671 {
672 u32 i;
673
674 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
675 if (vmx_possible_passthrough_msrs[i] == msr)
676 return i;
677
678 return -ENOENT;
679 }
680
is_valid_passthrough_msr(u32 msr)681 static bool is_valid_passthrough_msr(u32 msr)
682 {
683 bool r;
684
685 switch (msr) {
686 case 0x800 ... 0x8ff:
687 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
688 return true;
689 case MSR_IA32_RTIT_STATUS:
690 case MSR_IA32_RTIT_OUTPUT_BASE:
691 case MSR_IA32_RTIT_OUTPUT_MASK:
692 case MSR_IA32_RTIT_CR3_MATCH:
693 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
694 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
695 case MSR_LBR_SELECT:
696 case MSR_LBR_TOS:
697 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
698 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
699 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
700 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
701 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
702 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
703 return true;
704 }
705
706 r = possible_passthrough_msr_slot(msr) != -ENOENT;
707
708 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
709
710 return r;
711 }
712
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)713 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
714 {
715 int i;
716
717 i = kvm_find_user_return_msr(msr);
718 if (i >= 0)
719 return &vmx->guest_uret_msrs[i];
720 return NULL;
721 }
722
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)723 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
724 struct vmx_uret_msr *msr, u64 data)
725 {
726 unsigned int slot = msr - vmx->guest_uret_msrs;
727 int ret = 0;
728
729 if (msr->load_into_hardware) {
730 preempt_disable();
731 ret = kvm_set_user_return_msr(slot, data, msr->mask);
732 preempt_enable();
733 }
734 if (!ret)
735 msr->data = data;
736 return ret;
737 }
738
739 /*
740 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
741 *
742 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
743 * atomically track post-VMXON state, e.g. this may be called in NMI context.
744 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
745 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
746 * magically in RM, VM86, compat mode, or at CPL>0.
747 */
kvm_cpu_vmxoff(void)748 static int kvm_cpu_vmxoff(void)
749 {
750 asm goto("1: vmxoff\n\t"
751 _ASM_EXTABLE(1b, %l[fault])
752 ::: "cc", "memory" : fault);
753
754 cr4_clear_bits(X86_CR4_VMXE);
755 return 0;
756
757 fault:
758 cr4_clear_bits(X86_CR4_VMXE);
759 return -EIO;
760 }
761
vmx_emergency_disable(void)762 static void vmx_emergency_disable(void)
763 {
764 int cpu = raw_smp_processor_id();
765 struct loaded_vmcs *v;
766
767 kvm_rebooting = true;
768
769 /*
770 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
771 * set in task context. If this races with VMX is disabled by an NMI,
772 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
773 * kvm_rebooting set.
774 */
775 if (!(__read_cr4() & X86_CR4_VMXE))
776 return;
777
778 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
779 loaded_vmcss_on_cpu_link)
780 vmcs_clear(v->vmcs);
781
782 kvm_cpu_vmxoff();
783 }
784
__loaded_vmcs_clear(void * arg)785 static void __loaded_vmcs_clear(void *arg)
786 {
787 struct loaded_vmcs *loaded_vmcs = arg;
788 int cpu = raw_smp_processor_id();
789
790 if (loaded_vmcs->cpu != cpu)
791 return; /* vcpu migration can race with cpu offline */
792 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
793 per_cpu(current_vmcs, cpu) = NULL;
794
795 vmcs_clear(loaded_vmcs->vmcs);
796 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
797 vmcs_clear(loaded_vmcs->shadow_vmcs);
798
799 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
800
801 /*
802 * Ensure all writes to loaded_vmcs, including deleting it from its
803 * current percpu list, complete before setting loaded_vmcs->cpu to
804 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
805 * and add loaded_vmcs to its percpu list before it's deleted from this
806 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
807 */
808 smp_wmb();
809
810 loaded_vmcs->cpu = -1;
811 loaded_vmcs->launched = 0;
812 }
813
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)814 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
815 {
816 int cpu = loaded_vmcs->cpu;
817
818 if (cpu != -1)
819 smp_call_function_single(cpu,
820 __loaded_vmcs_clear, loaded_vmcs, 1);
821 }
822
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)823 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
824 unsigned field)
825 {
826 bool ret;
827 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
828
829 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
830 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
831 vmx->segment_cache.bitmask = 0;
832 }
833 ret = vmx->segment_cache.bitmask & mask;
834 vmx->segment_cache.bitmask |= mask;
835 return ret;
836 }
837
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)838 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
839 {
840 u16 *p = &vmx->segment_cache.seg[seg].selector;
841
842 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
843 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
844 return *p;
845 }
846
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)847 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
848 {
849 ulong *p = &vmx->segment_cache.seg[seg].base;
850
851 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
852 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
853 return *p;
854 }
855
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)856 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
857 {
858 u32 *p = &vmx->segment_cache.seg[seg].limit;
859
860 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
861 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
862 return *p;
863 }
864
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)865 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
866 {
867 u32 *p = &vmx->segment_cache.seg[seg].ar;
868
869 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
870 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
871 return *p;
872 }
873
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)874 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
875 {
876 u32 eb;
877
878 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
879 (1u << DB_VECTOR) | (1u << AC_VECTOR);
880 /*
881 * Guest access to VMware backdoor ports could legitimately
882 * trigger #GP because of TSS I/O permission bitmap.
883 * We intercept those #GP and allow access to them anyway
884 * as VMware does.
885 */
886 if (enable_vmware_backdoor)
887 eb |= (1u << GP_VECTOR);
888 if ((vcpu->guest_debug &
889 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
890 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
891 eb |= 1u << BP_VECTOR;
892 if (to_vmx(vcpu)->rmode.vm86_active)
893 eb = ~0;
894 if (!vmx_need_pf_intercept(vcpu))
895 eb &= ~(1u << PF_VECTOR);
896
897 /* When we are running a nested L2 guest and L1 specified for it a
898 * certain exception bitmap, we must trap the same exceptions and pass
899 * them to L1. When running L2, we will only handle the exceptions
900 * specified above if L1 did not want them.
901 */
902 if (is_guest_mode(vcpu))
903 eb |= get_vmcs12(vcpu)->exception_bitmap;
904 else {
905 int mask = 0, match = 0;
906
907 if (enable_ept && (eb & (1u << PF_VECTOR))) {
908 /*
909 * If EPT is enabled, #PF is currently only intercepted
910 * if MAXPHYADDR is smaller on the guest than on the
911 * host. In that case we only care about present,
912 * non-reserved faults. For vmcs02, however, PFEC_MASK
913 * and PFEC_MATCH are set in prepare_vmcs02_rare.
914 */
915 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
916 match = PFERR_PRESENT_MASK;
917 }
918 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
919 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
920 }
921
922 /*
923 * Disabling xfd interception indicates that dynamic xfeatures
924 * might be used in the guest. Always trap #NM in this case
925 * to save guest xfd_err timely.
926 */
927 if (vcpu->arch.xfd_no_write_intercept)
928 eb |= (1u << NM_VECTOR);
929
930 vmcs_write32(EXCEPTION_BITMAP, eb);
931 }
932
933 /*
934 * Check if MSR is intercepted for currently loaded MSR bitmap.
935 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)936 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
937 {
938 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
939 return true;
940
941 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
942 }
943
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)944 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
945 {
946 unsigned int flags = 0;
947
948 if (vmx->loaded_vmcs->launched)
949 flags |= VMX_RUN_VMRESUME;
950
951 /*
952 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
953 * to change it directly without causing a vmexit. In that case read
954 * it after vmexit and store it in vmx->spec_ctrl.
955 */
956 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
957 flags |= VMX_RUN_SAVE_SPEC_CTRL;
958
959 return flags;
960 }
961
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)962 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
963 unsigned long entry, unsigned long exit)
964 {
965 vm_entry_controls_clearbit(vmx, entry);
966 vm_exit_controls_clearbit(vmx, exit);
967 }
968
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)969 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
970 {
971 unsigned int i;
972
973 for (i = 0; i < m->nr; ++i) {
974 if (m->val[i].index == msr)
975 return i;
976 }
977 return -ENOENT;
978 }
979
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)980 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
981 {
982 int i;
983 struct msr_autoload *m = &vmx->msr_autoload;
984
985 switch (msr) {
986 case MSR_EFER:
987 if (cpu_has_load_ia32_efer()) {
988 clear_atomic_switch_msr_special(vmx,
989 VM_ENTRY_LOAD_IA32_EFER,
990 VM_EXIT_LOAD_IA32_EFER);
991 return;
992 }
993 break;
994 case MSR_CORE_PERF_GLOBAL_CTRL:
995 if (cpu_has_load_perf_global_ctrl()) {
996 clear_atomic_switch_msr_special(vmx,
997 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
998 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
999 return;
1000 }
1001 break;
1002 }
1003 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1004 if (i < 0)
1005 goto skip_guest;
1006 --m->guest.nr;
1007 m->guest.val[i] = m->guest.val[m->guest.nr];
1008 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1009
1010 skip_guest:
1011 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1012 if (i < 0)
1013 return;
1014
1015 --m->host.nr;
1016 m->host.val[i] = m->host.val[m->host.nr];
1017 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018 }
1019
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1020 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1021 unsigned long entry, unsigned long exit,
1022 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1023 u64 guest_val, u64 host_val)
1024 {
1025 vmcs_write64(guest_val_vmcs, guest_val);
1026 if (host_val_vmcs != HOST_IA32_EFER)
1027 vmcs_write64(host_val_vmcs, host_val);
1028 vm_entry_controls_setbit(vmx, entry);
1029 vm_exit_controls_setbit(vmx, exit);
1030 }
1031
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1032 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1033 u64 guest_val, u64 host_val, bool entry_only)
1034 {
1035 int i, j = 0;
1036 struct msr_autoload *m = &vmx->msr_autoload;
1037
1038 switch (msr) {
1039 case MSR_EFER:
1040 if (cpu_has_load_ia32_efer()) {
1041 add_atomic_switch_msr_special(vmx,
1042 VM_ENTRY_LOAD_IA32_EFER,
1043 VM_EXIT_LOAD_IA32_EFER,
1044 GUEST_IA32_EFER,
1045 HOST_IA32_EFER,
1046 guest_val, host_val);
1047 return;
1048 }
1049 break;
1050 case MSR_CORE_PERF_GLOBAL_CTRL:
1051 if (cpu_has_load_perf_global_ctrl()) {
1052 add_atomic_switch_msr_special(vmx,
1053 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1054 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1055 GUEST_IA32_PERF_GLOBAL_CTRL,
1056 HOST_IA32_PERF_GLOBAL_CTRL,
1057 guest_val, host_val);
1058 return;
1059 }
1060 break;
1061 case MSR_IA32_PEBS_ENABLE:
1062 /* PEBS needs a quiescent period after being disabled (to write
1063 * a record). Disabling PEBS through VMX MSR swapping doesn't
1064 * provide that period, so a CPU could write host's record into
1065 * guest's memory.
1066 */
1067 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1068 }
1069
1070 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1071 if (!entry_only)
1072 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1073
1074 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1075 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1076 printk_once(KERN_WARNING "Not enough msr switch entries. "
1077 "Can't add msr %x\n", msr);
1078 return;
1079 }
1080 if (i < 0) {
1081 i = m->guest.nr++;
1082 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1083 }
1084 m->guest.val[i].index = msr;
1085 m->guest.val[i].value = guest_val;
1086
1087 if (entry_only)
1088 return;
1089
1090 if (j < 0) {
1091 j = m->host.nr++;
1092 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1093 }
1094 m->host.val[j].index = msr;
1095 m->host.val[j].value = host_val;
1096 }
1097
update_transition_efer(struct vcpu_vmx * vmx)1098 static bool update_transition_efer(struct vcpu_vmx *vmx)
1099 {
1100 u64 guest_efer = vmx->vcpu.arch.efer;
1101 u64 ignore_bits = 0;
1102 int i;
1103
1104 /* Shadow paging assumes NX to be available. */
1105 if (!enable_ept)
1106 guest_efer |= EFER_NX;
1107
1108 /*
1109 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1110 */
1111 ignore_bits |= EFER_SCE;
1112 #ifdef CONFIG_X86_64
1113 ignore_bits |= EFER_LMA | EFER_LME;
1114 /* SCE is meaningful only in long mode on Intel */
1115 if (guest_efer & EFER_LMA)
1116 ignore_bits &= ~(u64)EFER_SCE;
1117 #endif
1118
1119 /*
1120 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1121 * On CPUs that support "load IA32_EFER", always switch EFER
1122 * atomically, since it's faster than switching it manually.
1123 */
1124 if (cpu_has_load_ia32_efer() ||
1125 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1126 if (!(guest_efer & EFER_LMA))
1127 guest_efer &= ~EFER_LME;
1128 if (guest_efer != host_efer)
1129 add_atomic_switch_msr(vmx, MSR_EFER,
1130 guest_efer, host_efer, false);
1131 else
1132 clear_atomic_switch_msr(vmx, MSR_EFER);
1133 return false;
1134 }
1135
1136 i = kvm_find_user_return_msr(MSR_EFER);
1137 if (i < 0)
1138 return false;
1139
1140 clear_atomic_switch_msr(vmx, MSR_EFER);
1141
1142 guest_efer &= ~ignore_bits;
1143 guest_efer |= host_efer & ignore_bits;
1144
1145 vmx->guest_uret_msrs[i].data = guest_efer;
1146 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1147
1148 return true;
1149 }
1150
1151 #ifdef CONFIG_X86_32
1152 /*
1153 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1154 * VMCS rather than the segment table. KVM uses this helper to figure
1155 * out the current bases to poke them into the VMCS before entry.
1156 */
segment_base(u16 selector)1157 static unsigned long segment_base(u16 selector)
1158 {
1159 struct desc_struct *table;
1160 unsigned long v;
1161
1162 if (!(selector & ~SEGMENT_RPL_MASK))
1163 return 0;
1164
1165 table = get_current_gdt_ro();
1166
1167 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1168 u16 ldt_selector = kvm_read_ldt();
1169
1170 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1171 return 0;
1172
1173 table = (struct desc_struct *)segment_base(ldt_selector);
1174 }
1175 v = get_desc_base(&table[selector >> 3]);
1176 return v;
1177 }
1178 #endif
1179
pt_can_write_msr(struct vcpu_vmx * vmx)1180 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1181 {
1182 return vmx_pt_mode_is_host_guest() &&
1183 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1184 }
1185
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1186 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1187 {
1188 /* The base must be 128-byte aligned and a legal physical address. */
1189 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1190 }
1191
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1192 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1193 {
1194 u32 i;
1195
1196 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1197 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1198 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1199 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1200 for (i = 0; i < addr_range; i++) {
1201 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1202 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1203 }
1204 }
1205
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1206 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1207 {
1208 u32 i;
1209
1210 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1211 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1212 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1213 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1214 for (i = 0; i < addr_range; i++) {
1215 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1216 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1217 }
1218 }
1219
pt_guest_enter(struct vcpu_vmx * vmx)1220 static void pt_guest_enter(struct vcpu_vmx *vmx)
1221 {
1222 if (vmx_pt_mode_is_system())
1223 return;
1224
1225 /*
1226 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1227 * Save host state before VM entry.
1228 */
1229 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1230 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1231 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1232 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1233 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1234 }
1235 }
1236
pt_guest_exit(struct vcpu_vmx * vmx)1237 static void pt_guest_exit(struct vcpu_vmx *vmx)
1238 {
1239 if (vmx_pt_mode_is_system())
1240 return;
1241
1242 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1243 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1244 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1245 }
1246
1247 /*
1248 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1249 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1250 */
1251 if (vmx->pt_desc.host.ctl)
1252 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1253 }
1254
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1255 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1256 unsigned long fs_base, unsigned long gs_base)
1257 {
1258 if (unlikely(fs_sel != host->fs_sel)) {
1259 if (!(fs_sel & 7))
1260 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1261 else
1262 vmcs_write16(HOST_FS_SELECTOR, 0);
1263 host->fs_sel = fs_sel;
1264 }
1265 if (unlikely(gs_sel != host->gs_sel)) {
1266 if (!(gs_sel & 7))
1267 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1268 else
1269 vmcs_write16(HOST_GS_SELECTOR, 0);
1270 host->gs_sel = gs_sel;
1271 }
1272 if (unlikely(fs_base != host->fs_base)) {
1273 vmcs_writel(HOST_FS_BASE, fs_base);
1274 host->fs_base = fs_base;
1275 }
1276 if (unlikely(gs_base != host->gs_base)) {
1277 vmcs_writel(HOST_GS_BASE, gs_base);
1278 host->gs_base = gs_base;
1279 }
1280 }
1281
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1282 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1283 {
1284 struct vcpu_vmx *vmx = to_vmx(vcpu);
1285 struct vmcs_host_state *host_state;
1286 #ifdef CONFIG_X86_64
1287 int cpu = raw_smp_processor_id();
1288 #endif
1289 unsigned long fs_base, gs_base;
1290 u16 fs_sel, gs_sel;
1291 int i;
1292
1293 vmx->req_immediate_exit = false;
1294
1295 /*
1296 * Note that guest MSRs to be saved/restored can also be changed
1297 * when guest state is loaded. This happens when guest transitions
1298 * to/from long-mode by setting MSR_EFER.LMA.
1299 */
1300 if (!vmx->guest_uret_msrs_loaded) {
1301 vmx->guest_uret_msrs_loaded = true;
1302 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1303 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1304 continue;
1305
1306 kvm_set_user_return_msr(i,
1307 vmx->guest_uret_msrs[i].data,
1308 vmx->guest_uret_msrs[i].mask);
1309 }
1310 }
1311
1312 if (vmx->nested.need_vmcs12_to_shadow_sync)
1313 nested_sync_vmcs12_to_shadow(vcpu);
1314
1315 if (vmx->guest_state_loaded)
1316 return;
1317
1318 host_state = &vmx->loaded_vmcs->host_state;
1319
1320 /*
1321 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1322 * allow segment selectors with cpl > 0 or ti == 1.
1323 */
1324 host_state->ldt_sel = kvm_read_ldt();
1325
1326 #ifdef CONFIG_X86_64
1327 savesegment(ds, host_state->ds_sel);
1328 savesegment(es, host_state->es_sel);
1329
1330 gs_base = cpu_kernelmode_gs_base(cpu);
1331 if (likely(is_64bit_mm(current->mm))) {
1332 current_save_fsgs();
1333 fs_sel = current->thread.fsindex;
1334 gs_sel = current->thread.gsindex;
1335 fs_base = current->thread.fsbase;
1336 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1337 } else {
1338 savesegment(fs, fs_sel);
1339 savesegment(gs, gs_sel);
1340 fs_base = read_msr(MSR_FS_BASE);
1341 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1342 }
1343
1344 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1345 #else
1346 savesegment(fs, fs_sel);
1347 savesegment(gs, gs_sel);
1348 fs_base = segment_base(fs_sel);
1349 gs_base = segment_base(gs_sel);
1350 #endif
1351
1352 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1353 vmx->guest_state_loaded = true;
1354 }
1355
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1356 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1357 {
1358 struct vmcs_host_state *host_state;
1359
1360 if (!vmx->guest_state_loaded)
1361 return;
1362
1363 host_state = &vmx->loaded_vmcs->host_state;
1364
1365 ++vmx->vcpu.stat.host_state_reload;
1366
1367 #ifdef CONFIG_X86_64
1368 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1369 #endif
1370 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1371 kvm_load_ldt(host_state->ldt_sel);
1372 #ifdef CONFIG_X86_64
1373 load_gs_index(host_state->gs_sel);
1374 #else
1375 loadsegment(gs, host_state->gs_sel);
1376 #endif
1377 }
1378 if (host_state->fs_sel & 7)
1379 loadsegment(fs, host_state->fs_sel);
1380 #ifdef CONFIG_X86_64
1381 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1382 loadsegment(ds, host_state->ds_sel);
1383 loadsegment(es, host_state->es_sel);
1384 }
1385 #endif
1386 invalidate_tss_limit();
1387 #ifdef CONFIG_X86_64
1388 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1389 #endif
1390 load_fixmap_gdt(raw_smp_processor_id());
1391 vmx->guest_state_loaded = false;
1392 vmx->guest_uret_msrs_loaded = false;
1393 }
1394
1395 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1396 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1397 {
1398 preempt_disable();
1399 if (vmx->guest_state_loaded)
1400 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1401 preempt_enable();
1402 return vmx->msr_guest_kernel_gs_base;
1403 }
1404
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1405 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1406 {
1407 preempt_disable();
1408 if (vmx->guest_state_loaded)
1409 wrmsrl(MSR_KERNEL_GS_BASE, data);
1410 preempt_enable();
1411 vmx->msr_guest_kernel_gs_base = data;
1412 }
1413 #endif
1414
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1415 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1416 struct loaded_vmcs *buddy)
1417 {
1418 struct vcpu_vmx *vmx = to_vmx(vcpu);
1419 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1420 struct vmcs *prev;
1421
1422 if (!already_loaded) {
1423 loaded_vmcs_clear(vmx->loaded_vmcs);
1424 local_irq_disable();
1425
1426 /*
1427 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1428 * this cpu's percpu list, otherwise it may not yet be deleted
1429 * from its previous cpu's percpu list. Pairs with the
1430 * smb_wmb() in __loaded_vmcs_clear().
1431 */
1432 smp_rmb();
1433
1434 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1435 &per_cpu(loaded_vmcss_on_cpu, cpu));
1436 local_irq_enable();
1437 }
1438
1439 prev = per_cpu(current_vmcs, cpu);
1440 if (prev != vmx->loaded_vmcs->vmcs) {
1441 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1442 vmcs_load(vmx->loaded_vmcs->vmcs);
1443
1444 /*
1445 * No indirect branch prediction barrier needed when switching
1446 * the active VMCS within a vCPU, unless IBRS is advertised to
1447 * the vCPU. To minimize the number of IBPBs executed, KVM
1448 * performs IBPB on nested VM-Exit (a single nested transition
1449 * may switch the active VMCS multiple times).
1450 */
1451 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1452 indirect_branch_prediction_barrier();
1453 }
1454
1455 if (!already_loaded) {
1456 void *gdt = get_current_gdt_ro();
1457
1458 /*
1459 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1460 * TLB entries from its previous association with the vCPU.
1461 */
1462 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1463
1464 /*
1465 * Linux uses per-cpu TSS and GDT, so set these when switching
1466 * processors. See 22.2.4.
1467 */
1468 vmcs_writel(HOST_TR_BASE,
1469 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1470 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1471
1472 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1473 /* 22.2.3 */
1474 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1475 (unsigned long)(cpu_entry_stack(cpu) + 1));
1476 }
1477
1478 vmx->loaded_vmcs->cpu = cpu;
1479 }
1480 }
1481
1482 /*
1483 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1484 * vcpu mutex is already taken.
1485 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1486 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1487 {
1488 struct vcpu_vmx *vmx = to_vmx(vcpu);
1489
1490 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1491
1492 vmx_vcpu_pi_load(vcpu, cpu);
1493
1494 vmx->host_debugctlmsr = get_debugctlmsr();
1495 }
1496
vmx_vcpu_put(struct kvm_vcpu * vcpu)1497 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1498 {
1499 vmx_vcpu_pi_put(vcpu);
1500
1501 vmx_prepare_switch_to_host(to_vmx(vcpu));
1502 }
1503
vmx_emulation_required(struct kvm_vcpu * vcpu)1504 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1505 {
1506 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1507 }
1508
vmx_get_rflags(struct kvm_vcpu * vcpu)1509 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1510 {
1511 struct vcpu_vmx *vmx = to_vmx(vcpu);
1512 unsigned long rflags, save_rflags;
1513
1514 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1515 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1516 rflags = vmcs_readl(GUEST_RFLAGS);
1517 if (vmx->rmode.vm86_active) {
1518 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1519 save_rflags = vmx->rmode.save_rflags;
1520 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1521 }
1522 vmx->rflags = rflags;
1523 }
1524 return vmx->rflags;
1525 }
1526
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1527 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1528 {
1529 struct vcpu_vmx *vmx = to_vmx(vcpu);
1530 unsigned long old_rflags;
1531
1532 /*
1533 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1534 * is an unrestricted guest in order to mark L2 as needing emulation
1535 * if L1 runs L2 as a restricted guest.
1536 */
1537 if (is_unrestricted_guest(vcpu)) {
1538 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1539 vmx->rflags = rflags;
1540 vmcs_writel(GUEST_RFLAGS, rflags);
1541 return;
1542 }
1543
1544 old_rflags = vmx_get_rflags(vcpu);
1545 vmx->rflags = rflags;
1546 if (vmx->rmode.vm86_active) {
1547 vmx->rmode.save_rflags = rflags;
1548 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1549 }
1550 vmcs_writel(GUEST_RFLAGS, rflags);
1551
1552 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1553 vmx->emulation_required = vmx_emulation_required(vcpu);
1554 }
1555
vmx_get_if_flag(struct kvm_vcpu * vcpu)1556 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1557 {
1558 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1559 }
1560
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1561 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1562 {
1563 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1564 int ret = 0;
1565
1566 if (interruptibility & GUEST_INTR_STATE_STI)
1567 ret |= KVM_X86_SHADOW_INT_STI;
1568 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1569 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1570
1571 return ret;
1572 }
1573
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1574 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1575 {
1576 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1577 u32 interruptibility = interruptibility_old;
1578
1579 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1580
1581 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1582 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1583 else if (mask & KVM_X86_SHADOW_INT_STI)
1584 interruptibility |= GUEST_INTR_STATE_STI;
1585
1586 if ((interruptibility != interruptibility_old))
1587 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1588 }
1589
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1590 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1591 {
1592 struct vcpu_vmx *vmx = to_vmx(vcpu);
1593 unsigned long value;
1594
1595 /*
1596 * Any MSR write that attempts to change bits marked reserved will
1597 * case a #GP fault.
1598 */
1599 if (data & vmx->pt_desc.ctl_bitmask)
1600 return 1;
1601
1602 /*
1603 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1604 * result in a #GP unless the same write also clears TraceEn.
1605 */
1606 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1607 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1608 return 1;
1609
1610 /*
1611 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1612 * and FabricEn would cause #GP, if
1613 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1614 */
1615 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1616 !(data & RTIT_CTL_FABRIC_EN) &&
1617 !intel_pt_validate_cap(vmx->pt_desc.caps,
1618 PT_CAP_single_range_output))
1619 return 1;
1620
1621 /*
1622 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1623 * utilize encodings marked reserved will cause a #GP fault.
1624 */
1625 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1626 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1627 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1628 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1629 return 1;
1630 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1631 PT_CAP_cycle_thresholds);
1632 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1633 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1634 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1635 return 1;
1636 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1637 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1638 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1639 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1640 return 1;
1641
1642 /*
1643 * If ADDRx_CFG is reserved or the encodings is >2 will
1644 * cause a #GP fault.
1645 */
1646 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1647 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1648 return 1;
1649 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1650 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1651 return 1;
1652 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1653 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1654 return 1;
1655 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1656 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1657 return 1;
1658
1659 return 0;
1660 }
1661
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1662 static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1663 void *insn, int insn_len)
1664 {
1665 /*
1666 * Emulation of instructions in SGX enclaves is impossible as RIP does
1667 * not point at the failing instruction, and even if it did, the code
1668 * stream is inaccessible. Inject #UD instead of exiting to userspace
1669 * so that guest userspace can't DoS the guest simply by triggering
1670 * emulation (enclaves are CPL3 only).
1671 */
1672 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1673 kvm_queue_exception(vcpu, UD_VECTOR);
1674 return X86EMUL_PROPAGATE_FAULT;
1675 }
1676 return X86EMUL_CONTINUE;
1677 }
1678
skip_emulated_instruction(struct kvm_vcpu * vcpu)1679 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1680 {
1681 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1682 unsigned long rip, orig_rip;
1683 u32 instr_len;
1684
1685 /*
1686 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1687 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1688 * set when EPT misconfig occurs. In practice, real hardware updates
1689 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1690 * (namely Hyper-V) don't set it due to it being undefined behavior,
1691 * i.e. we end up advancing IP with some random value.
1692 */
1693 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1694 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1695 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1696
1697 /*
1698 * Emulating an enclave's instructions isn't supported as KVM
1699 * cannot access the enclave's memory or its true RIP, e.g. the
1700 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1701 * the RIP that actually triggered the VM-Exit. But, because
1702 * most instructions that cause VM-Exit will #UD in an enclave,
1703 * most instruction-based VM-Exits simply do not occur.
1704 *
1705 * There are a few exceptions, notably the debug instructions
1706 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1707 * and generate #DB/#BP as expected, which KVM might intercept.
1708 * But again, the CPU does the dirty work and saves an instr
1709 * length of zero so VMMs don't shoot themselves in the foot.
1710 * WARN if KVM tries to skip a non-zero length instruction on
1711 * a VM-Exit from an enclave.
1712 */
1713 if (!instr_len)
1714 goto rip_updated;
1715
1716 WARN_ONCE(exit_reason.enclave_mode,
1717 "skipping instruction after SGX enclave VM-Exit");
1718
1719 orig_rip = kvm_rip_read(vcpu);
1720 rip = orig_rip + instr_len;
1721 #ifdef CONFIG_X86_64
1722 /*
1723 * We need to mask out the high 32 bits of RIP if not in 64-bit
1724 * mode, but just finding out that we are in 64-bit mode is
1725 * quite expensive. Only do it if there was a carry.
1726 */
1727 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1728 rip = (u32)rip;
1729 #endif
1730 kvm_rip_write(vcpu, rip);
1731 } else {
1732 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1733 return 0;
1734 }
1735
1736 rip_updated:
1737 /* skipping an emulated instruction also counts */
1738 vmx_set_interrupt_shadow(vcpu, 0);
1739
1740 return 1;
1741 }
1742
1743 /*
1744 * Recognizes a pending MTF VM-exit and records the nested state for later
1745 * delivery.
1746 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1747 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1748 {
1749 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1750 struct vcpu_vmx *vmx = to_vmx(vcpu);
1751
1752 if (!is_guest_mode(vcpu))
1753 return;
1754
1755 /*
1756 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1757 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1758 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1759 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1760 * as ICEBP is higher priority than both. As instruction emulation is
1761 * completed at this point (i.e. KVM is at the instruction boundary),
1762 * any #DB exception pending delivery must be a debug-trap of lower
1763 * priority than MTF. Record the pending MTF state to be delivered in
1764 * vmx_check_nested_events().
1765 */
1766 if (nested_cpu_has_mtf(vmcs12) &&
1767 (!vcpu->arch.exception.pending ||
1768 vcpu->arch.exception.vector == DB_VECTOR) &&
1769 (!vcpu->arch.exception_vmexit.pending ||
1770 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1771 vmx->nested.mtf_pending = true;
1772 kvm_make_request(KVM_REQ_EVENT, vcpu);
1773 } else {
1774 vmx->nested.mtf_pending = false;
1775 }
1776 }
1777
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1778 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1779 {
1780 vmx_update_emulated_instruction(vcpu);
1781 return skip_emulated_instruction(vcpu);
1782 }
1783
vmx_clear_hlt(struct kvm_vcpu * vcpu)1784 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1785 {
1786 /*
1787 * Ensure that we clear the HLT state in the VMCS. We don't need to
1788 * explicitly skip the instruction because if the HLT state is set,
1789 * then the instruction is already executing and RIP has already been
1790 * advanced.
1791 */
1792 if (kvm_hlt_in_guest(vcpu->kvm) &&
1793 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1794 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1795 }
1796
vmx_inject_exception(struct kvm_vcpu * vcpu)1797 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1798 {
1799 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1800 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1801 struct vcpu_vmx *vmx = to_vmx(vcpu);
1802
1803 kvm_deliver_exception_payload(vcpu, ex);
1804
1805 if (ex->has_error_code) {
1806 /*
1807 * Despite the error code being architecturally defined as 32
1808 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1809 * VMX don't actually supporting setting bits 31:16. Hardware
1810 * will (should) never provide a bogus error code, but AMD CPUs
1811 * do generate error codes with bits 31:16 set, and so KVM's
1812 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1813 * the upper bits to avoid VM-Fail, losing information that
1814 * doesn't really exist is preferable to killing the VM.
1815 */
1816 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1817 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1818 }
1819
1820 if (vmx->rmode.vm86_active) {
1821 int inc_eip = 0;
1822 if (kvm_exception_is_soft(ex->vector))
1823 inc_eip = vcpu->arch.event_exit_inst_len;
1824 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1825 return;
1826 }
1827
1828 WARN_ON_ONCE(vmx->emulation_required);
1829
1830 if (kvm_exception_is_soft(ex->vector)) {
1831 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1832 vmx->vcpu.arch.event_exit_inst_len);
1833 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1834 } else
1835 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1836
1837 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1838
1839 vmx_clear_hlt(vcpu);
1840 }
1841
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1842 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1843 bool load_into_hardware)
1844 {
1845 struct vmx_uret_msr *uret_msr;
1846
1847 uret_msr = vmx_find_uret_msr(vmx, msr);
1848 if (!uret_msr)
1849 return;
1850
1851 uret_msr->load_into_hardware = load_into_hardware;
1852 }
1853
1854 /*
1855 * Configuring user return MSRs to automatically save, load, and restore MSRs
1856 * that need to be shoved into hardware when running the guest. Note, omitting
1857 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1858 * loaded into hardware when running the guest.
1859 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1860 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1861 {
1862 #ifdef CONFIG_X86_64
1863 bool load_syscall_msrs;
1864
1865 /*
1866 * The SYSCALL MSRs are only needed on long mode guests, and only
1867 * when EFER.SCE is set.
1868 */
1869 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1870 (vmx->vcpu.arch.efer & EFER_SCE);
1871
1872 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1873 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1874 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1875 #endif
1876 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1877
1878 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1879 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1880 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1881
1882 /*
1883 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1884 * kernel and old userspace. If those guests run on a tsx=off host, do
1885 * allow guests to use TSX_CTRL, but don't change the value in hardware
1886 * so that TSX remains always disabled.
1887 */
1888 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1889
1890 /*
1891 * The set of MSRs to load may have changed, reload MSRs before the
1892 * next VM-Enter.
1893 */
1894 vmx->guest_uret_msrs_loaded = false;
1895 }
1896
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1897 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1898 {
1899 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1900
1901 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1902 return vmcs12->tsc_offset;
1903
1904 return 0;
1905 }
1906
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1907 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1908 {
1909 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1910
1911 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1912 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1913 return vmcs12->tsc_multiplier;
1914
1915 return kvm_caps.default_tsc_scaling_ratio;
1916 }
1917
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1918 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1919 {
1920 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1921 }
1922
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1923 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1924 {
1925 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1926 }
1927
1928 /*
1929 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1930 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1931 * backwards compatibility even though KVM doesn't support emulating SMX. And
1932 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1933 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1934 */
1935 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1936 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1937 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1938 FEAT_CTL_SGX_LC_ENABLED | \
1939 FEAT_CTL_SGX_ENABLED | \
1940 FEAT_CTL_LMCE_ENABLED)
1941
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1942 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1943 struct msr_data *msr)
1944 {
1945 uint64_t valid_bits;
1946
1947 /*
1948 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1949 * exposed to the guest.
1950 */
1951 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1952 ~KVM_SUPPORTED_FEATURE_CONTROL);
1953
1954 if (!msr->host_initiated &&
1955 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1956 return false;
1957
1958 if (msr->host_initiated)
1959 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1960 else
1961 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1962
1963 return !(msr->data & ~valid_bits);
1964 }
1965
vmx_get_msr_feature(struct kvm_msr_entry * msr)1966 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1967 {
1968 switch (msr->index) {
1969 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1970 if (!nested)
1971 return 1;
1972 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1973 default:
1974 return KVM_MSR_RET_INVALID;
1975 }
1976 }
1977
1978 /*
1979 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1980 * Returns 0 on success, non-0 otherwise.
1981 * Assumes vcpu_load() was already called.
1982 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1983 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1984 {
1985 struct vcpu_vmx *vmx = to_vmx(vcpu);
1986 struct vmx_uret_msr *msr;
1987 u32 index;
1988
1989 switch (msr_info->index) {
1990 #ifdef CONFIG_X86_64
1991 case MSR_FS_BASE:
1992 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1993 break;
1994 case MSR_GS_BASE:
1995 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1996 break;
1997 case MSR_KERNEL_GS_BASE:
1998 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1999 break;
2000 #endif
2001 case MSR_EFER:
2002 return kvm_get_msr_common(vcpu, msr_info);
2003 case MSR_IA32_TSX_CTRL:
2004 if (!msr_info->host_initiated &&
2005 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2006 return 1;
2007 goto find_uret_msr;
2008 case MSR_IA32_UMWAIT_CONTROL:
2009 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2010 return 1;
2011
2012 msr_info->data = vmx->msr_ia32_umwait_control;
2013 break;
2014 case MSR_IA32_SPEC_CTRL:
2015 if (!msr_info->host_initiated &&
2016 !guest_has_spec_ctrl_msr(vcpu))
2017 return 1;
2018
2019 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2020 break;
2021 case MSR_IA32_SYSENTER_CS:
2022 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2023 break;
2024 case MSR_IA32_SYSENTER_EIP:
2025 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2026 break;
2027 case MSR_IA32_SYSENTER_ESP:
2028 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2029 break;
2030 case MSR_IA32_BNDCFGS:
2031 if (!kvm_mpx_supported() ||
2032 (!msr_info->host_initiated &&
2033 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2034 return 1;
2035 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2036 break;
2037 case MSR_IA32_MCG_EXT_CTL:
2038 if (!msr_info->host_initiated &&
2039 !(vmx->msr_ia32_feature_control &
2040 FEAT_CTL_LMCE_ENABLED))
2041 return 1;
2042 msr_info->data = vcpu->arch.mcg_ext_ctl;
2043 break;
2044 case MSR_IA32_FEAT_CTL:
2045 msr_info->data = vmx->msr_ia32_feature_control;
2046 break;
2047 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2048 if (!msr_info->host_initiated &&
2049 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2050 return 1;
2051 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2052 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2053 break;
2054 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2055 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2056 return 1;
2057 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2058 &msr_info->data))
2059 return 1;
2060 #ifdef CONFIG_KVM_HYPERV
2061 /*
2062 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2063 * instead of just ignoring the features, different Hyper-V
2064 * versions are either trying to use them and fail or do some
2065 * sanity checking and refuse to boot. Filter all unsupported
2066 * features out.
2067 */
2068 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2069 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2070 &msr_info->data);
2071 #endif
2072 break;
2073 case MSR_IA32_RTIT_CTL:
2074 if (!vmx_pt_mode_is_host_guest())
2075 return 1;
2076 msr_info->data = vmx->pt_desc.guest.ctl;
2077 break;
2078 case MSR_IA32_RTIT_STATUS:
2079 if (!vmx_pt_mode_is_host_guest())
2080 return 1;
2081 msr_info->data = vmx->pt_desc.guest.status;
2082 break;
2083 case MSR_IA32_RTIT_CR3_MATCH:
2084 if (!vmx_pt_mode_is_host_guest() ||
2085 !intel_pt_validate_cap(vmx->pt_desc.caps,
2086 PT_CAP_cr3_filtering))
2087 return 1;
2088 msr_info->data = vmx->pt_desc.guest.cr3_match;
2089 break;
2090 case MSR_IA32_RTIT_OUTPUT_BASE:
2091 if (!vmx_pt_mode_is_host_guest() ||
2092 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2093 PT_CAP_topa_output) &&
2094 !intel_pt_validate_cap(vmx->pt_desc.caps,
2095 PT_CAP_single_range_output)))
2096 return 1;
2097 msr_info->data = vmx->pt_desc.guest.output_base;
2098 break;
2099 case MSR_IA32_RTIT_OUTPUT_MASK:
2100 if (!vmx_pt_mode_is_host_guest() ||
2101 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2102 PT_CAP_topa_output) &&
2103 !intel_pt_validate_cap(vmx->pt_desc.caps,
2104 PT_CAP_single_range_output)))
2105 return 1;
2106 msr_info->data = vmx->pt_desc.guest.output_mask;
2107 break;
2108 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2109 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2110 if (!vmx_pt_mode_is_host_guest() ||
2111 (index >= 2 * vmx->pt_desc.num_address_ranges))
2112 return 1;
2113 if (index % 2)
2114 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2115 else
2116 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2117 break;
2118 case MSR_IA32_DEBUGCTLMSR:
2119 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2120 break;
2121 default:
2122 find_uret_msr:
2123 msr = vmx_find_uret_msr(vmx, msr_info->index);
2124 if (msr) {
2125 msr_info->data = msr->data;
2126 break;
2127 }
2128 return kvm_get_msr_common(vcpu, msr_info);
2129 }
2130
2131 return 0;
2132 }
2133
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2134 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2135 u64 data)
2136 {
2137 #ifdef CONFIG_X86_64
2138 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2139 return (u32)data;
2140 #endif
2141 return (unsigned long)data;
2142 }
2143
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2144 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2145 {
2146 u64 debugctl = 0;
2147
2148 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2149 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2150 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2151
2152 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2153 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2154 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2155
2156 return debugctl;
2157 }
2158
2159 /*
2160 * Writes msr value into the appropriate "register".
2161 * Returns 0 on success, non-0 otherwise.
2162 * Assumes vcpu_load() was already called.
2163 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2164 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2165 {
2166 struct vcpu_vmx *vmx = to_vmx(vcpu);
2167 struct vmx_uret_msr *msr;
2168 int ret = 0;
2169 u32 msr_index = msr_info->index;
2170 u64 data = msr_info->data;
2171 u32 index;
2172
2173 switch (msr_index) {
2174 case MSR_EFER:
2175 ret = kvm_set_msr_common(vcpu, msr_info);
2176 break;
2177 #ifdef CONFIG_X86_64
2178 case MSR_FS_BASE:
2179 vmx_segment_cache_clear(vmx);
2180 vmcs_writel(GUEST_FS_BASE, data);
2181 break;
2182 case MSR_GS_BASE:
2183 vmx_segment_cache_clear(vmx);
2184 vmcs_writel(GUEST_GS_BASE, data);
2185 break;
2186 case MSR_KERNEL_GS_BASE:
2187 vmx_write_guest_kernel_gs_base(vmx, data);
2188 break;
2189 case MSR_IA32_XFD:
2190 ret = kvm_set_msr_common(vcpu, msr_info);
2191 /*
2192 * Always intercepting WRMSR could incur non-negligible
2193 * overhead given xfd might be changed frequently in
2194 * guest context switch. Disable write interception
2195 * upon the first write with a non-zero value (indicating
2196 * potential usage on dynamic xfeatures). Also update
2197 * exception bitmap to trap #NM for proper virtualization
2198 * of guest xfd_err.
2199 */
2200 if (!ret && data) {
2201 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2202 MSR_TYPE_RW);
2203 vcpu->arch.xfd_no_write_intercept = true;
2204 vmx_update_exception_bitmap(vcpu);
2205 }
2206 break;
2207 #endif
2208 case MSR_IA32_SYSENTER_CS:
2209 if (is_guest_mode(vcpu))
2210 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2211 vmcs_write32(GUEST_SYSENTER_CS, data);
2212 break;
2213 case MSR_IA32_SYSENTER_EIP:
2214 if (is_guest_mode(vcpu)) {
2215 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2216 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2217 }
2218 vmcs_writel(GUEST_SYSENTER_EIP, data);
2219 break;
2220 case MSR_IA32_SYSENTER_ESP:
2221 if (is_guest_mode(vcpu)) {
2222 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2223 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2224 }
2225 vmcs_writel(GUEST_SYSENTER_ESP, data);
2226 break;
2227 case MSR_IA32_DEBUGCTLMSR: {
2228 u64 invalid;
2229
2230 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2231 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2232 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2233 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2234 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2235 }
2236
2237 if (invalid)
2238 return 1;
2239
2240 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2241 VM_EXIT_SAVE_DEBUG_CONTROLS)
2242 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2243
2244 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2245 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2246 (data & DEBUGCTLMSR_LBR))
2247 intel_pmu_create_guest_lbr_event(vcpu);
2248 return 0;
2249 }
2250 case MSR_IA32_BNDCFGS:
2251 if (!kvm_mpx_supported() ||
2252 (!msr_info->host_initiated &&
2253 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2254 return 1;
2255 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2256 (data & MSR_IA32_BNDCFGS_RSVD))
2257 return 1;
2258
2259 if (is_guest_mode(vcpu) &&
2260 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2261 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2262 get_vmcs12(vcpu)->guest_bndcfgs = data;
2263
2264 vmcs_write64(GUEST_BNDCFGS, data);
2265 break;
2266 case MSR_IA32_UMWAIT_CONTROL:
2267 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2268 return 1;
2269
2270 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2271 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2272 return 1;
2273
2274 vmx->msr_ia32_umwait_control = data;
2275 break;
2276 case MSR_IA32_SPEC_CTRL:
2277 if (!msr_info->host_initiated &&
2278 !guest_has_spec_ctrl_msr(vcpu))
2279 return 1;
2280
2281 if (kvm_spec_ctrl_test_value(data))
2282 return 1;
2283
2284 vmx->spec_ctrl = data;
2285 if (!data)
2286 break;
2287
2288 /*
2289 * For non-nested:
2290 * When it's written (to non-zero) for the first time, pass
2291 * it through.
2292 *
2293 * For nested:
2294 * The handling of the MSR bitmap for L2 guests is done in
2295 * nested_vmx_prepare_msr_bitmap. We should not touch the
2296 * vmcs02.msr_bitmap here since it gets completely overwritten
2297 * in the merging. We update the vmcs01 here for L1 as well
2298 * since it will end up touching the MSR anyway now.
2299 */
2300 vmx_disable_intercept_for_msr(vcpu,
2301 MSR_IA32_SPEC_CTRL,
2302 MSR_TYPE_RW);
2303 break;
2304 case MSR_IA32_TSX_CTRL:
2305 if (!msr_info->host_initiated &&
2306 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2307 return 1;
2308 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2309 return 1;
2310 goto find_uret_msr;
2311 case MSR_IA32_CR_PAT:
2312 ret = kvm_set_msr_common(vcpu, msr_info);
2313 if (ret)
2314 break;
2315
2316 if (is_guest_mode(vcpu) &&
2317 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2318 get_vmcs12(vcpu)->guest_ia32_pat = data;
2319
2320 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2321 vmcs_write64(GUEST_IA32_PAT, data);
2322 break;
2323 case MSR_IA32_MCG_EXT_CTL:
2324 if ((!msr_info->host_initiated &&
2325 !(to_vmx(vcpu)->msr_ia32_feature_control &
2326 FEAT_CTL_LMCE_ENABLED)) ||
2327 (data & ~MCG_EXT_CTL_LMCE_EN))
2328 return 1;
2329 vcpu->arch.mcg_ext_ctl = data;
2330 break;
2331 case MSR_IA32_FEAT_CTL:
2332 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2333 return 1;
2334
2335 vmx->msr_ia32_feature_control = data;
2336 if (msr_info->host_initiated && data == 0)
2337 vmx_leave_nested(vcpu);
2338
2339 /* SGX may be enabled/disabled by guest's firmware */
2340 vmx_write_encls_bitmap(vcpu, NULL);
2341 break;
2342 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2343 /*
2344 * On real hardware, the LE hash MSRs are writable before
2345 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2346 * at which point SGX related bits in IA32_FEATURE_CONTROL
2347 * become writable.
2348 *
2349 * KVM does not emulate SGX activation for simplicity, so
2350 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2351 * is unlocked. This is technically not architectural
2352 * behavior, but it's close enough.
2353 */
2354 if (!msr_info->host_initiated &&
2355 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2356 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2357 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2358 return 1;
2359 vmx->msr_ia32_sgxlepubkeyhash
2360 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2361 break;
2362 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2363 if (!msr_info->host_initiated)
2364 return 1; /* they are read-only */
2365 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2366 return 1;
2367 return vmx_set_vmx_msr(vcpu, msr_index, data);
2368 case MSR_IA32_RTIT_CTL:
2369 if (!vmx_pt_mode_is_host_guest() ||
2370 vmx_rtit_ctl_check(vcpu, data) ||
2371 vmx->nested.vmxon)
2372 return 1;
2373 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2374 vmx->pt_desc.guest.ctl = data;
2375 pt_update_intercept_for_msr(vcpu);
2376 break;
2377 case MSR_IA32_RTIT_STATUS:
2378 if (!pt_can_write_msr(vmx))
2379 return 1;
2380 if (data & MSR_IA32_RTIT_STATUS_MASK)
2381 return 1;
2382 vmx->pt_desc.guest.status = data;
2383 break;
2384 case MSR_IA32_RTIT_CR3_MATCH:
2385 if (!pt_can_write_msr(vmx))
2386 return 1;
2387 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2388 PT_CAP_cr3_filtering))
2389 return 1;
2390 vmx->pt_desc.guest.cr3_match = data;
2391 break;
2392 case MSR_IA32_RTIT_OUTPUT_BASE:
2393 if (!pt_can_write_msr(vmx))
2394 return 1;
2395 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2396 PT_CAP_topa_output) &&
2397 !intel_pt_validate_cap(vmx->pt_desc.caps,
2398 PT_CAP_single_range_output))
2399 return 1;
2400 if (!pt_output_base_valid(vcpu, data))
2401 return 1;
2402 vmx->pt_desc.guest.output_base = data;
2403 break;
2404 case MSR_IA32_RTIT_OUTPUT_MASK:
2405 if (!pt_can_write_msr(vmx))
2406 return 1;
2407 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2408 PT_CAP_topa_output) &&
2409 !intel_pt_validate_cap(vmx->pt_desc.caps,
2410 PT_CAP_single_range_output))
2411 return 1;
2412 vmx->pt_desc.guest.output_mask = data;
2413 break;
2414 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2415 if (!pt_can_write_msr(vmx))
2416 return 1;
2417 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2418 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2419 return 1;
2420 if (is_noncanonical_address(data, vcpu))
2421 return 1;
2422 if (index % 2)
2423 vmx->pt_desc.guest.addr_b[index / 2] = data;
2424 else
2425 vmx->pt_desc.guest.addr_a[index / 2] = data;
2426 break;
2427 case MSR_IA32_PERF_CAPABILITIES:
2428 if (data && !vcpu_to_pmu(vcpu)->version)
2429 return 1;
2430 if (data & PMU_CAP_LBR_FMT) {
2431 if ((data & PMU_CAP_LBR_FMT) !=
2432 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2433 return 1;
2434 if (!cpuid_model_is_consistent(vcpu))
2435 return 1;
2436 }
2437 if (data & PERF_CAP_PEBS_FORMAT) {
2438 if ((data & PERF_CAP_PEBS_MASK) !=
2439 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2440 return 1;
2441 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2442 return 1;
2443 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2444 return 1;
2445 if (!cpuid_model_is_consistent(vcpu))
2446 return 1;
2447 }
2448 ret = kvm_set_msr_common(vcpu, msr_info);
2449 break;
2450
2451 default:
2452 find_uret_msr:
2453 msr = vmx_find_uret_msr(vmx, msr_index);
2454 if (msr)
2455 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2456 else
2457 ret = kvm_set_msr_common(vcpu, msr_info);
2458 }
2459
2460 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2461 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2462 vmx_update_fb_clear_dis(vcpu, vmx);
2463
2464 return ret;
2465 }
2466
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2467 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2468 {
2469 unsigned long guest_owned_bits;
2470
2471 kvm_register_mark_available(vcpu, reg);
2472
2473 switch (reg) {
2474 case VCPU_REGS_RSP:
2475 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2476 break;
2477 case VCPU_REGS_RIP:
2478 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2479 break;
2480 case VCPU_EXREG_PDPTR:
2481 if (enable_ept)
2482 ept_save_pdptrs(vcpu);
2483 break;
2484 case VCPU_EXREG_CR0:
2485 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2486
2487 vcpu->arch.cr0 &= ~guest_owned_bits;
2488 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2489 break;
2490 case VCPU_EXREG_CR3:
2491 /*
2492 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2493 * CR3 is loaded into hardware, not the guest's CR3.
2494 */
2495 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2496 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2497 break;
2498 case VCPU_EXREG_CR4:
2499 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2500
2501 vcpu->arch.cr4 &= ~guest_owned_bits;
2502 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2503 break;
2504 default:
2505 KVM_BUG_ON(1, vcpu->kvm);
2506 break;
2507 }
2508 }
2509
2510 /*
2511 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2512 * directly instead of going through cpu_has(), to ensure KVM is trapping
2513 * ENCLS whenever it's supported in hardware. It does not matter whether
2514 * the host OS supports or has enabled SGX.
2515 */
cpu_has_sgx(void)2516 static bool cpu_has_sgx(void)
2517 {
2518 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2519 }
2520
2521 /*
2522 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2523 * can't be used due to errata where VM Exit may incorrectly clear
2524 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2525 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2526 */
cpu_has_perf_global_ctrl_bug(void)2527 static bool cpu_has_perf_global_ctrl_bug(void)
2528 {
2529 if (boot_cpu_data.x86 == 0x6) {
2530 switch (boot_cpu_data.x86_model) {
2531 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2532 case INTEL_FAM6_NEHALEM: /* AAP115 */
2533 case INTEL_FAM6_WESTMERE: /* AAT100 */
2534 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2535 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2536 return true;
2537 default:
2538 break;
2539 }
2540 }
2541
2542 return false;
2543 }
2544
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2545 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2546 {
2547 u32 vmx_msr_low, vmx_msr_high;
2548 u32 ctl = ctl_min | ctl_opt;
2549
2550 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2551
2552 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2553 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2554
2555 /* Ensure minimum (required) set of control bits are supported. */
2556 if (ctl_min & ~ctl)
2557 return -EIO;
2558
2559 *result = ctl;
2560 return 0;
2561 }
2562
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2563 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2564 {
2565 u64 allowed;
2566
2567 rdmsrl(msr, allowed);
2568
2569 return ctl_opt & allowed;
2570 }
2571
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2572 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2573 struct vmx_capability *vmx_cap)
2574 {
2575 u32 vmx_msr_low, vmx_msr_high;
2576 u32 _pin_based_exec_control = 0;
2577 u32 _cpu_based_exec_control = 0;
2578 u32 _cpu_based_2nd_exec_control = 0;
2579 u64 _cpu_based_3rd_exec_control = 0;
2580 u32 _vmexit_control = 0;
2581 u32 _vmentry_control = 0;
2582 u64 misc_msr;
2583 int i;
2584
2585 /*
2586 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2587 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2588 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2589 */
2590 struct {
2591 u32 entry_control;
2592 u32 exit_control;
2593 } const vmcs_entry_exit_pairs[] = {
2594 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2595 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2596 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2597 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2598 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2599 };
2600
2601 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2602
2603 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2604 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2605 MSR_IA32_VMX_PROCBASED_CTLS,
2606 &_cpu_based_exec_control))
2607 return -EIO;
2608 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2609 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2610 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2611 MSR_IA32_VMX_PROCBASED_CTLS2,
2612 &_cpu_based_2nd_exec_control))
2613 return -EIO;
2614 }
2615 #ifndef CONFIG_X86_64
2616 if (!(_cpu_based_2nd_exec_control &
2617 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2618 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2619 #endif
2620
2621 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2622 _cpu_based_2nd_exec_control &= ~(
2623 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2624 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2625 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2626
2627 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2628 &vmx_cap->ept, &vmx_cap->vpid);
2629
2630 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2631 vmx_cap->ept) {
2632 pr_warn_once("EPT CAP should not exist if not support "
2633 "1-setting enable EPT VM-execution control\n");
2634
2635 if (error_on_inconsistent_vmcs_config)
2636 return -EIO;
2637
2638 vmx_cap->ept = 0;
2639 }
2640 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2641 vmx_cap->vpid) {
2642 pr_warn_once("VPID CAP should not exist if not support "
2643 "1-setting enable VPID VM-execution control\n");
2644
2645 if (error_on_inconsistent_vmcs_config)
2646 return -EIO;
2647
2648 vmx_cap->vpid = 0;
2649 }
2650
2651 if (!cpu_has_sgx())
2652 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2653
2654 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2655 _cpu_based_3rd_exec_control =
2656 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2657 MSR_IA32_VMX_PROCBASED_CTLS3);
2658
2659 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2660 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2661 MSR_IA32_VMX_EXIT_CTLS,
2662 &_vmexit_control))
2663 return -EIO;
2664
2665 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2666 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2667 MSR_IA32_VMX_PINBASED_CTLS,
2668 &_pin_based_exec_control))
2669 return -EIO;
2670
2671 if (cpu_has_broken_vmx_preemption_timer())
2672 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2673 if (!(_cpu_based_2nd_exec_control &
2674 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2675 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2676
2677 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2678 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2679 MSR_IA32_VMX_ENTRY_CTLS,
2680 &_vmentry_control))
2681 return -EIO;
2682
2683 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2684 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2685 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2686
2687 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2688 continue;
2689
2690 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2691 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2692
2693 if (error_on_inconsistent_vmcs_config)
2694 return -EIO;
2695
2696 _vmentry_control &= ~n_ctrl;
2697 _vmexit_control &= ~x_ctrl;
2698 }
2699
2700 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2701
2702 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2703 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2704 return -EIO;
2705
2706 #ifdef CONFIG_X86_64
2707 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2708 if (vmx_msr_high & (1u<<16))
2709 return -EIO;
2710 #endif
2711
2712 /* Require Write-Back (WB) memory type for VMCS accesses. */
2713 if (((vmx_msr_high >> 18) & 15) != 6)
2714 return -EIO;
2715
2716 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2717
2718 vmcs_conf->size = vmx_msr_high & 0x1fff;
2719 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2720
2721 vmcs_conf->revision_id = vmx_msr_low;
2722
2723 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2724 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2725 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2726 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2727 vmcs_conf->vmexit_ctrl = _vmexit_control;
2728 vmcs_conf->vmentry_ctrl = _vmentry_control;
2729 vmcs_conf->misc = misc_msr;
2730
2731 #if IS_ENABLED(CONFIG_HYPERV)
2732 if (enlightened_vmcs)
2733 evmcs_sanitize_exec_ctrls(vmcs_conf);
2734 #endif
2735
2736 return 0;
2737 }
2738
__kvm_is_vmx_supported(void)2739 static bool __kvm_is_vmx_supported(void)
2740 {
2741 int cpu = smp_processor_id();
2742
2743 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2744 pr_err("VMX not supported by CPU %d\n", cpu);
2745 return false;
2746 }
2747
2748 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2749 !this_cpu_has(X86_FEATURE_VMX)) {
2750 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2751 return false;
2752 }
2753
2754 return true;
2755 }
2756
kvm_is_vmx_supported(void)2757 static bool kvm_is_vmx_supported(void)
2758 {
2759 bool supported;
2760
2761 migrate_disable();
2762 supported = __kvm_is_vmx_supported();
2763 migrate_enable();
2764
2765 return supported;
2766 }
2767
vmx_check_processor_compat(void)2768 static int vmx_check_processor_compat(void)
2769 {
2770 int cpu = raw_smp_processor_id();
2771 struct vmcs_config vmcs_conf;
2772 struct vmx_capability vmx_cap;
2773
2774 if (!__kvm_is_vmx_supported())
2775 return -EIO;
2776
2777 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2778 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2779 return -EIO;
2780 }
2781 if (nested)
2782 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2783 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2784 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2785 return -EIO;
2786 }
2787 return 0;
2788 }
2789
kvm_cpu_vmxon(u64 vmxon_pointer)2790 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2791 {
2792 u64 msr;
2793
2794 cr4_set_bits(X86_CR4_VMXE);
2795
2796 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2797 _ASM_EXTABLE(1b, %l[fault])
2798 : : [vmxon_pointer] "m"(vmxon_pointer)
2799 : : fault);
2800 return 0;
2801
2802 fault:
2803 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2804 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2805 cr4_clear_bits(X86_CR4_VMXE);
2806
2807 return -EFAULT;
2808 }
2809
vmx_hardware_enable(void)2810 static int vmx_hardware_enable(void)
2811 {
2812 int cpu = raw_smp_processor_id();
2813 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2814 int r;
2815
2816 if (cr4_read_shadow() & X86_CR4_VMXE)
2817 return -EBUSY;
2818
2819 /*
2820 * This can happen if we hot-added a CPU but failed to allocate
2821 * VP assist page for it.
2822 */
2823 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2824 return -EFAULT;
2825
2826 intel_pt_handle_vmx(1);
2827
2828 r = kvm_cpu_vmxon(phys_addr);
2829 if (r) {
2830 intel_pt_handle_vmx(0);
2831 return r;
2832 }
2833
2834 if (enable_ept)
2835 ept_sync_global();
2836
2837 return 0;
2838 }
2839
vmclear_local_loaded_vmcss(void)2840 static void vmclear_local_loaded_vmcss(void)
2841 {
2842 int cpu = raw_smp_processor_id();
2843 struct loaded_vmcs *v, *n;
2844
2845 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2846 loaded_vmcss_on_cpu_link)
2847 __loaded_vmcs_clear(v);
2848 }
2849
vmx_hardware_disable(void)2850 static void vmx_hardware_disable(void)
2851 {
2852 vmclear_local_loaded_vmcss();
2853
2854 if (kvm_cpu_vmxoff())
2855 kvm_spurious_fault();
2856
2857 hv_reset_evmcs();
2858
2859 intel_pt_handle_vmx(0);
2860 }
2861
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2862 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2863 {
2864 int node = cpu_to_node(cpu);
2865 struct page *pages;
2866 struct vmcs *vmcs;
2867
2868 pages = __alloc_pages_node(node, flags, 0);
2869 if (!pages)
2870 return NULL;
2871 vmcs = page_address(pages);
2872 memset(vmcs, 0, vmcs_config.size);
2873
2874 /* KVM supports Enlightened VMCS v1 only */
2875 if (kvm_is_using_evmcs())
2876 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2877 else
2878 vmcs->hdr.revision_id = vmcs_config.revision_id;
2879
2880 if (shadow)
2881 vmcs->hdr.shadow_vmcs = 1;
2882 return vmcs;
2883 }
2884
free_vmcs(struct vmcs * vmcs)2885 void free_vmcs(struct vmcs *vmcs)
2886 {
2887 free_page((unsigned long)vmcs);
2888 }
2889
2890 /*
2891 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2892 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2893 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2894 {
2895 if (!loaded_vmcs->vmcs)
2896 return;
2897 loaded_vmcs_clear(loaded_vmcs);
2898 free_vmcs(loaded_vmcs->vmcs);
2899 loaded_vmcs->vmcs = NULL;
2900 if (loaded_vmcs->msr_bitmap)
2901 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2902 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2903 }
2904
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2905 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2906 {
2907 loaded_vmcs->vmcs = alloc_vmcs(false);
2908 if (!loaded_vmcs->vmcs)
2909 return -ENOMEM;
2910
2911 vmcs_clear(loaded_vmcs->vmcs);
2912
2913 loaded_vmcs->shadow_vmcs = NULL;
2914 loaded_vmcs->hv_timer_soft_disabled = false;
2915 loaded_vmcs->cpu = -1;
2916 loaded_vmcs->launched = 0;
2917
2918 if (cpu_has_vmx_msr_bitmap()) {
2919 loaded_vmcs->msr_bitmap = (unsigned long *)
2920 __get_free_page(GFP_KERNEL_ACCOUNT);
2921 if (!loaded_vmcs->msr_bitmap)
2922 goto out_vmcs;
2923 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2924 }
2925
2926 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2927 memset(&loaded_vmcs->controls_shadow, 0,
2928 sizeof(struct vmcs_controls_shadow));
2929
2930 return 0;
2931
2932 out_vmcs:
2933 free_loaded_vmcs(loaded_vmcs);
2934 return -ENOMEM;
2935 }
2936
free_kvm_area(void)2937 static void free_kvm_area(void)
2938 {
2939 int cpu;
2940
2941 for_each_possible_cpu(cpu) {
2942 free_vmcs(per_cpu(vmxarea, cpu));
2943 per_cpu(vmxarea, cpu) = NULL;
2944 }
2945 }
2946
alloc_kvm_area(void)2947 static __init int alloc_kvm_area(void)
2948 {
2949 int cpu;
2950
2951 for_each_possible_cpu(cpu) {
2952 struct vmcs *vmcs;
2953
2954 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2955 if (!vmcs) {
2956 free_kvm_area();
2957 return -ENOMEM;
2958 }
2959
2960 /*
2961 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2962 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2963 * revision_id reported by MSR_IA32_VMX_BASIC.
2964 *
2965 * However, even though not explicitly documented by
2966 * TLFS, VMXArea passed as VMXON argument should
2967 * still be marked with revision_id reported by
2968 * physical CPU.
2969 */
2970 if (kvm_is_using_evmcs())
2971 vmcs->hdr.revision_id = vmcs_config.revision_id;
2972
2973 per_cpu(vmxarea, cpu) = vmcs;
2974 }
2975 return 0;
2976 }
2977
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2978 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2979 struct kvm_segment *save)
2980 {
2981 if (!emulate_invalid_guest_state) {
2982 /*
2983 * CS and SS RPL should be equal during guest entry according
2984 * to VMX spec, but in reality it is not always so. Since vcpu
2985 * is in the middle of the transition from real mode to
2986 * protected mode it is safe to assume that RPL 0 is a good
2987 * default value.
2988 */
2989 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2990 save->selector &= ~SEGMENT_RPL_MASK;
2991 save->dpl = save->selector & SEGMENT_RPL_MASK;
2992 save->s = 1;
2993 }
2994 __vmx_set_segment(vcpu, save, seg);
2995 }
2996
enter_pmode(struct kvm_vcpu * vcpu)2997 static void enter_pmode(struct kvm_vcpu *vcpu)
2998 {
2999 unsigned long flags;
3000 struct vcpu_vmx *vmx = to_vmx(vcpu);
3001
3002 /*
3003 * Update real mode segment cache. It may be not up-to-date if segment
3004 * register was written while vcpu was in a guest mode.
3005 */
3006 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3008 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3009 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3010 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3011 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3012
3013 vmx->rmode.vm86_active = 0;
3014
3015 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3016
3017 flags = vmcs_readl(GUEST_RFLAGS);
3018 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3019 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3020 vmcs_writel(GUEST_RFLAGS, flags);
3021
3022 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3023 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3024
3025 vmx_update_exception_bitmap(vcpu);
3026
3027 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3028 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3029 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3030 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3031 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3032 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3033 }
3034
fix_rmode_seg(int seg,struct kvm_segment * save)3035 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3036 {
3037 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3038 struct kvm_segment var = *save;
3039
3040 var.dpl = 0x3;
3041 if (seg == VCPU_SREG_CS)
3042 var.type = 0x3;
3043
3044 if (!emulate_invalid_guest_state) {
3045 var.selector = var.base >> 4;
3046 var.base = var.base & 0xffff0;
3047 var.limit = 0xffff;
3048 var.g = 0;
3049 var.db = 0;
3050 var.present = 1;
3051 var.s = 1;
3052 var.l = 0;
3053 var.unusable = 0;
3054 var.type = 0x3;
3055 var.avl = 0;
3056 if (save->base & 0xf)
3057 pr_warn_once("segment base is not paragraph aligned "
3058 "when entering protected mode (seg=%d)", seg);
3059 }
3060
3061 vmcs_write16(sf->selector, var.selector);
3062 vmcs_writel(sf->base, var.base);
3063 vmcs_write32(sf->limit, var.limit);
3064 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3065 }
3066
enter_rmode(struct kvm_vcpu * vcpu)3067 static void enter_rmode(struct kvm_vcpu *vcpu)
3068 {
3069 unsigned long flags;
3070 struct vcpu_vmx *vmx = to_vmx(vcpu);
3071 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3072
3073 /*
3074 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3075 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3076 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3077 * should VM-Fail and KVM should reject userspace attempts to stuff
3078 * CR0.PG=0 when L2 is active.
3079 */
3080 WARN_ON_ONCE(is_guest_mode(vcpu));
3081
3082 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3083 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3084 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3085 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3086 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3087 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3088 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3089
3090 vmx->rmode.vm86_active = 1;
3091
3092 vmx_segment_cache_clear(vmx);
3093
3094 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3095 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3096 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3097
3098 flags = vmcs_readl(GUEST_RFLAGS);
3099 vmx->rmode.save_rflags = flags;
3100
3101 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3102
3103 vmcs_writel(GUEST_RFLAGS, flags);
3104 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3105 vmx_update_exception_bitmap(vcpu);
3106
3107 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3108 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3109 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3110 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3111 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3112 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3113 }
3114
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3115 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3116 {
3117 struct vcpu_vmx *vmx = to_vmx(vcpu);
3118
3119 /* Nothing to do if hardware doesn't support EFER. */
3120 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3121 return 0;
3122
3123 vcpu->arch.efer = efer;
3124 #ifdef CONFIG_X86_64
3125 if (efer & EFER_LMA)
3126 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3127 else
3128 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3129 #else
3130 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3131 return 1;
3132 #endif
3133
3134 vmx_setup_uret_msrs(vmx);
3135 return 0;
3136 }
3137
3138 #ifdef CONFIG_X86_64
3139
enter_lmode(struct kvm_vcpu * vcpu)3140 static void enter_lmode(struct kvm_vcpu *vcpu)
3141 {
3142 u32 guest_tr_ar;
3143
3144 vmx_segment_cache_clear(to_vmx(vcpu));
3145
3146 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3147 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3148 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3149 __func__);
3150 vmcs_write32(GUEST_TR_AR_BYTES,
3151 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3152 | VMX_AR_TYPE_BUSY_64_TSS);
3153 }
3154 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3155 }
3156
exit_lmode(struct kvm_vcpu * vcpu)3157 static void exit_lmode(struct kvm_vcpu *vcpu)
3158 {
3159 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3160 }
3161
3162 #endif
3163
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3164 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3165 {
3166 struct vcpu_vmx *vmx = to_vmx(vcpu);
3167
3168 /*
3169 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3170 * the CPU is not required to invalidate guest-physical mappings on
3171 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3172 * associated with the root EPT structure and not any particular VPID
3173 * (INVVPID also isn't required to invalidate guest-physical mappings).
3174 */
3175 if (enable_ept) {
3176 ept_sync_global();
3177 } else if (enable_vpid) {
3178 if (cpu_has_vmx_invvpid_global()) {
3179 vpid_sync_vcpu_global();
3180 } else {
3181 vpid_sync_vcpu_single(vmx->vpid);
3182 vpid_sync_vcpu_single(vmx->nested.vpid02);
3183 }
3184 }
3185 }
3186
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3187 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3188 {
3189 if (is_guest_mode(vcpu))
3190 return nested_get_vpid02(vcpu);
3191 return to_vmx(vcpu)->vpid;
3192 }
3193
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3194 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3195 {
3196 struct kvm_mmu *mmu = vcpu->arch.mmu;
3197 u64 root_hpa = mmu->root.hpa;
3198
3199 /* No flush required if the current context is invalid. */
3200 if (!VALID_PAGE(root_hpa))
3201 return;
3202
3203 if (enable_ept)
3204 ept_sync_context(construct_eptp(vcpu, root_hpa,
3205 mmu->root_role.level));
3206 else
3207 vpid_sync_context(vmx_get_current_vpid(vcpu));
3208 }
3209
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3210 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3211 {
3212 /*
3213 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3214 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3215 */
3216 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3217 }
3218
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3219 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3220 {
3221 /*
3222 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3223 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3224 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3225 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3226 * i.e. no explicit INVVPID is necessary.
3227 */
3228 vpid_sync_context(vmx_get_current_vpid(vcpu));
3229 }
3230
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3231 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3232 {
3233 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3234
3235 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3236 return;
3237
3238 if (is_pae_paging(vcpu)) {
3239 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3240 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3241 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3242 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3243 }
3244 }
3245
ept_save_pdptrs(struct kvm_vcpu * vcpu)3246 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3247 {
3248 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3249
3250 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3251 return;
3252
3253 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3254 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3255 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3256 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3257
3258 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3259 }
3260
3261 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3262 CPU_BASED_CR3_STORE_EXITING)
3263
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3264 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3265 {
3266 if (is_guest_mode(vcpu))
3267 return nested_guest_cr0_valid(vcpu, cr0);
3268
3269 if (to_vmx(vcpu)->nested.vmxon)
3270 return nested_host_cr0_valid(vcpu, cr0);
3271
3272 return true;
3273 }
3274
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3275 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3276 {
3277 struct vcpu_vmx *vmx = to_vmx(vcpu);
3278 unsigned long hw_cr0, old_cr0_pg;
3279 u32 tmp;
3280
3281 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3282
3283 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3284 if (enable_unrestricted_guest)
3285 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3286 else {
3287 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3288 if (!enable_ept)
3289 hw_cr0 |= X86_CR0_WP;
3290
3291 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3292 enter_pmode(vcpu);
3293
3294 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3295 enter_rmode(vcpu);
3296 }
3297
3298 vmcs_writel(CR0_READ_SHADOW, cr0);
3299 vmcs_writel(GUEST_CR0, hw_cr0);
3300 vcpu->arch.cr0 = cr0;
3301 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3302
3303 #ifdef CONFIG_X86_64
3304 if (vcpu->arch.efer & EFER_LME) {
3305 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3306 enter_lmode(vcpu);
3307 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3308 exit_lmode(vcpu);
3309 }
3310 #endif
3311
3312 if (enable_ept && !enable_unrestricted_guest) {
3313 /*
3314 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3315 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3316 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3317 * KVM's CR3 is installed.
3318 */
3319 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3320 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3321
3322 /*
3323 * When running with EPT but not unrestricted guest, KVM must
3324 * intercept CR3 accesses when paging is _disabled_. This is
3325 * necessary because restricted guests can't actually run with
3326 * paging disabled, and so KVM stuffs its own CR3 in order to
3327 * run the guest when identity mapped page tables.
3328 *
3329 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3330 * update, it may be stale with respect to CR3 interception,
3331 * e.g. after nested VM-Enter.
3332 *
3333 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3334 * stores to forward them to L1, even if KVM does not need to
3335 * intercept them to preserve its identity mapped page tables.
3336 */
3337 if (!(cr0 & X86_CR0_PG)) {
3338 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3339 } else if (!is_guest_mode(vcpu)) {
3340 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3341 } else {
3342 tmp = exec_controls_get(vmx);
3343 tmp &= ~CR3_EXITING_BITS;
3344 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3345 exec_controls_set(vmx, tmp);
3346 }
3347
3348 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3349 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3350 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3351
3352 /*
3353 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3354 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3355 */
3356 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3357 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3358 }
3359
3360 /* depends on vcpu->arch.cr0 to be set to a new value */
3361 vmx->emulation_required = vmx_emulation_required(vcpu);
3362 }
3363
vmx_get_max_ept_level(void)3364 static int vmx_get_max_ept_level(void)
3365 {
3366 if (cpu_has_vmx_ept_5levels())
3367 return 5;
3368 return 4;
3369 }
3370
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3371 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3372 {
3373 u64 eptp = VMX_EPTP_MT_WB;
3374
3375 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3376
3377 if (enable_ept_ad_bits &&
3378 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3379 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3380 eptp |= root_hpa;
3381
3382 return eptp;
3383 }
3384
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3385 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3386 int root_level)
3387 {
3388 struct kvm *kvm = vcpu->kvm;
3389 bool update_guest_cr3 = true;
3390 unsigned long guest_cr3;
3391 u64 eptp;
3392
3393 if (enable_ept) {
3394 eptp = construct_eptp(vcpu, root_hpa, root_level);
3395 vmcs_write64(EPT_POINTER, eptp);
3396
3397 hv_track_root_tdp(vcpu, root_hpa);
3398
3399 if (!enable_unrestricted_guest && !is_paging(vcpu))
3400 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3401 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3402 guest_cr3 = vcpu->arch.cr3;
3403 else /* vmcs.GUEST_CR3 is already up-to-date. */
3404 update_guest_cr3 = false;
3405 vmx_ept_load_pdptrs(vcpu);
3406 } else {
3407 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3408 kvm_get_active_cr3_lam_bits(vcpu);
3409 }
3410
3411 if (update_guest_cr3)
3412 vmcs_writel(GUEST_CR3, guest_cr3);
3413 }
3414
3415
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3416 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3417 {
3418 /*
3419 * We operate under the default treatment of SMM, so VMX cannot be
3420 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3421 * i.e. is a reserved bit, is handled by common x86 code.
3422 */
3423 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3424 return false;
3425
3426 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3427 return false;
3428
3429 return true;
3430 }
3431
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3432 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3433 {
3434 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3435 struct vcpu_vmx *vmx = to_vmx(vcpu);
3436 unsigned long hw_cr4;
3437
3438 /*
3439 * Pass through host's Machine Check Enable value to hw_cr4, which
3440 * is in force while we are in guest mode. Do not let guests control
3441 * this bit, even if host CR4.MCE == 0.
3442 */
3443 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3444 if (enable_unrestricted_guest)
3445 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3446 else if (vmx->rmode.vm86_active)
3447 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3448 else
3449 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3450
3451 if (vmx_umip_emulated()) {
3452 if (cr4 & X86_CR4_UMIP) {
3453 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3454 hw_cr4 &= ~X86_CR4_UMIP;
3455 } else if (!is_guest_mode(vcpu) ||
3456 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3457 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3458 }
3459 }
3460
3461 vcpu->arch.cr4 = cr4;
3462 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3463
3464 if (!enable_unrestricted_guest) {
3465 if (enable_ept) {
3466 if (!is_paging(vcpu)) {
3467 hw_cr4 &= ~X86_CR4_PAE;
3468 hw_cr4 |= X86_CR4_PSE;
3469 } else if (!(cr4 & X86_CR4_PAE)) {
3470 hw_cr4 &= ~X86_CR4_PAE;
3471 }
3472 }
3473
3474 /*
3475 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3476 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3477 * to be manually disabled when guest switches to non-paging
3478 * mode.
3479 *
3480 * If !enable_unrestricted_guest, the CPU is always running
3481 * with CR0.PG=1 and CR4 needs to be modified.
3482 * If enable_unrestricted_guest, the CPU automatically
3483 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3484 */
3485 if (!is_paging(vcpu))
3486 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3487 }
3488
3489 vmcs_writel(CR4_READ_SHADOW, cr4);
3490 vmcs_writel(GUEST_CR4, hw_cr4);
3491
3492 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3493 kvm_update_cpuid_runtime(vcpu);
3494 }
3495
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3496 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3497 {
3498 struct vcpu_vmx *vmx = to_vmx(vcpu);
3499 u32 ar;
3500
3501 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3502 *var = vmx->rmode.segs[seg];
3503 if (seg == VCPU_SREG_TR
3504 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3505 return;
3506 var->base = vmx_read_guest_seg_base(vmx, seg);
3507 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3508 return;
3509 }
3510 var->base = vmx_read_guest_seg_base(vmx, seg);
3511 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3512 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3513 ar = vmx_read_guest_seg_ar(vmx, seg);
3514 var->unusable = (ar >> 16) & 1;
3515 var->type = ar & 15;
3516 var->s = (ar >> 4) & 1;
3517 var->dpl = (ar >> 5) & 3;
3518 /*
3519 * Some userspaces do not preserve unusable property. Since usable
3520 * segment has to be present according to VMX spec we can use present
3521 * property to amend userspace bug by making unusable segment always
3522 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3523 * segment as unusable.
3524 */
3525 var->present = !var->unusable;
3526 var->avl = (ar >> 12) & 1;
3527 var->l = (ar >> 13) & 1;
3528 var->db = (ar >> 14) & 1;
3529 var->g = (ar >> 15) & 1;
3530 }
3531
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3532 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3533 {
3534 struct kvm_segment s;
3535
3536 if (to_vmx(vcpu)->rmode.vm86_active) {
3537 vmx_get_segment(vcpu, &s, seg);
3538 return s.base;
3539 }
3540 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3541 }
3542
vmx_get_cpl(struct kvm_vcpu * vcpu)3543 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3544 {
3545 struct vcpu_vmx *vmx = to_vmx(vcpu);
3546
3547 if (unlikely(vmx->rmode.vm86_active))
3548 return 0;
3549 else {
3550 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3551 return VMX_AR_DPL(ar);
3552 }
3553 }
3554
vmx_segment_access_rights(struct kvm_segment * var)3555 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3556 {
3557 u32 ar;
3558
3559 ar = var->type & 15;
3560 ar |= (var->s & 1) << 4;
3561 ar |= (var->dpl & 3) << 5;
3562 ar |= (var->present & 1) << 7;
3563 ar |= (var->avl & 1) << 12;
3564 ar |= (var->l & 1) << 13;
3565 ar |= (var->db & 1) << 14;
3566 ar |= (var->g & 1) << 15;
3567 ar |= (var->unusable || !var->present) << 16;
3568
3569 return ar;
3570 }
3571
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3572 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3573 {
3574 struct vcpu_vmx *vmx = to_vmx(vcpu);
3575 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3576
3577 vmx_segment_cache_clear(vmx);
3578
3579 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3580 vmx->rmode.segs[seg] = *var;
3581 if (seg == VCPU_SREG_TR)
3582 vmcs_write16(sf->selector, var->selector);
3583 else if (var->s)
3584 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3585 return;
3586 }
3587
3588 vmcs_writel(sf->base, var->base);
3589 vmcs_write32(sf->limit, var->limit);
3590 vmcs_write16(sf->selector, var->selector);
3591
3592 /*
3593 * Fix the "Accessed" bit in AR field of segment registers for older
3594 * qemu binaries.
3595 * IA32 arch specifies that at the time of processor reset the
3596 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3597 * is setting it to 0 in the userland code. This causes invalid guest
3598 * state vmexit when "unrestricted guest" mode is turned on.
3599 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3600 * tree. Newer qemu binaries with that qemu fix would not need this
3601 * kvm hack.
3602 */
3603 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3604 var->type |= 0x1; /* Accessed */
3605
3606 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3607 }
3608
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3609 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3610 {
3611 __vmx_set_segment(vcpu, var, seg);
3612
3613 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3614 }
3615
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3616 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3617 {
3618 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3619
3620 *db = (ar >> 14) & 1;
3621 *l = (ar >> 13) & 1;
3622 }
3623
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3624 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3625 {
3626 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3627 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3628 }
3629
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3630 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3631 {
3632 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3633 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3634 }
3635
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3636 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3637 {
3638 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3639 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3640 }
3641
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3642 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3643 {
3644 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3645 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3646 }
3647
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3648 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3649 {
3650 struct kvm_segment var;
3651 u32 ar;
3652
3653 vmx_get_segment(vcpu, &var, seg);
3654 var.dpl = 0x3;
3655 if (seg == VCPU_SREG_CS)
3656 var.type = 0x3;
3657 ar = vmx_segment_access_rights(&var);
3658
3659 if (var.base != (var.selector << 4))
3660 return false;
3661 if (var.limit != 0xffff)
3662 return false;
3663 if (ar != 0xf3)
3664 return false;
3665
3666 return true;
3667 }
3668
code_segment_valid(struct kvm_vcpu * vcpu)3669 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3670 {
3671 struct kvm_segment cs;
3672 unsigned int cs_rpl;
3673
3674 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3675 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3676
3677 if (cs.unusable)
3678 return false;
3679 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3680 return false;
3681 if (!cs.s)
3682 return false;
3683 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3684 if (cs.dpl > cs_rpl)
3685 return false;
3686 } else {
3687 if (cs.dpl != cs_rpl)
3688 return false;
3689 }
3690 if (!cs.present)
3691 return false;
3692
3693 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3694 return true;
3695 }
3696
stack_segment_valid(struct kvm_vcpu * vcpu)3697 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3698 {
3699 struct kvm_segment ss;
3700 unsigned int ss_rpl;
3701
3702 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3703 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3704
3705 if (ss.unusable)
3706 return true;
3707 if (ss.type != 3 && ss.type != 7)
3708 return false;
3709 if (!ss.s)
3710 return false;
3711 if (ss.dpl != ss_rpl) /* DPL != RPL */
3712 return false;
3713 if (!ss.present)
3714 return false;
3715
3716 return true;
3717 }
3718
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3719 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3720 {
3721 struct kvm_segment var;
3722 unsigned int rpl;
3723
3724 vmx_get_segment(vcpu, &var, seg);
3725 rpl = var.selector & SEGMENT_RPL_MASK;
3726
3727 if (var.unusable)
3728 return true;
3729 if (!var.s)
3730 return false;
3731 if (!var.present)
3732 return false;
3733 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3734 if (var.dpl < rpl) /* DPL < RPL */
3735 return false;
3736 }
3737
3738 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3739 * rights flags
3740 */
3741 return true;
3742 }
3743
tr_valid(struct kvm_vcpu * vcpu)3744 static bool tr_valid(struct kvm_vcpu *vcpu)
3745 {
3746 struct kvm_segment tr;
3747
3748 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3749
3750 if (tr.unusable)
3751 return false;
3752 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3753 return false;
3754 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3755 return false;
3756 if (!tr.present)
3757 return false;
3758
3759 return true;
3760 }
3761
ldtr_valid(struct kvm_vcpu * vcpu)3762 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3763 {
3764 struct kvm_segment ldtr;
3765
3766 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3767
3768 if (ldtr.unusable)
3769 return true;
3770 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3771 return false;
3772 if (ldtr.type != 2)
3773 return false;
3774 if (!ldtr.present)
3775 return false;
3776
3777 return true;
3778 }
3779
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3780 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3781 {
3782 struct kvm_segment cs, ss;
3783
3784 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3785 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3786
3787 return ((cs.selector & SEGMENT_RPL_MASK) ==
3788 (ss.selector & SEGMENT_RPL_MASK));
3789 }
3790
3791 /*
3792 * Check if guest state is valid. Returns true if valid, false if
3793 * not.
3794 * We assume that registers are always usable
3795 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3796 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3797 {
3798 /* real mode guest state checks */
3799 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3800 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3801 return false;
3802 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3803 return false;
3804 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3805 return false;
3806 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3807 return false;
3808 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3809 return false;
3810 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3811 return false;
3812 } else {
3813 /* protected mode guest state checks */
3814 if (!cs_ss_rpl_check(vcpu))
3815 return false;
3816 if (!code_segment_valid(vcpu))
3817 return false;
3818 if (!stack_segment_valid(vcpu))
3819 return false;
3820 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3821 return false;
3822 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3823 return false;
3824 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3825 return false;
3826 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3827 return false;
3828 if (!tr_valid(vcpu))
3829 return false;
3830 if (!ldtr_valid(vcpu))
3831 return false;
3832 }
3833 /* TODO:
3834 * - Add checks on RIP
3835 * - Add checks on RFLAGS
3836 */
3837
3838 return true;
3839 }
3840
init_rmode_tss(struct kvm * kvm,void __user * ua)3841 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3842 {
3843 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3844 u16 data;
3845 int i;
3846
3847 for (i = 0; i < 3; i++) {
3848 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3849 return -EFAULT;
3850 }
3851
3852 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3853 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3854 return -EFAULT;
3855
3856 data = ~0;
3857 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3858 return -EFAULT;
3859
3860 return 0;
3861 }
3862
init_rmode_identity_map(struct kvm * kvm)3863 static int init_rmode_identity_map(struct kvm *kvm)
3864 {
3865 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3866 int i, r = 0;
3867 void __user *uaddr;
3868 u32 tmp;
3869
3870 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3871 mutex_lock(&kvm->slots_lock);
3872
3873 if (likely(kvm_vmx->ept_identity_pagetable_done))
3874 goto out;
3875
3876 if (!kvm_vmx->ept_identity_map_addr)
3877 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3878
3879 uaddr = __x86_set_memory_region(kvm,
3880 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3881 kvm_vmx->ept_identity_map_addr,
3882 PAGE_SIZE);
3883 if (IS_ERR(uaddr)) {
3884 r = PTR_ERR(uaddr);
3885 goto out;
3886 }
3887
3888 /* Set up identity-mapping pagetable for EPT in real mode */
3889 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3890 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3891 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3892 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3893 r = -EFAULT;
3894 goto out;
3895 }
3896 }
3897 kvm_vmx->ept_identity_pagetable_done = true;
3898
3899 out:
3900 mutex_unlock(&kvm->slots_lock);
3901 return r;
3902 }
3903
seg_setup(int seg)3904 static void seg_setup(int seg)
3905 {
3906 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3907 unsigned int ar;
3908
3909 vmcs_write16(sf->selector, 0);
3910 vmcs_writel(sf->base, 0);
3911 vmcs_write32(sf->limit, 0xffff);
3912 ar = 0x93;
3913 if (seg == VCPU_SREG_CS)
3914 ar |= 0x08; /* code segment */
3915
3916 vmcs_write32(sf->ar_bytes, ar);
3917 }
3918
allocate_vpid(void)3919 int allocate_vpid(void)
3920 {
3921 int vpid;
3922
3923 if (!enable_vpid)
3924 return 0;
3925 spin_lock(&vmx_vpid_lock);
3926 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3927 if (vpid < VMX_NR_VPIDS)
3928 __set_bit(vpid, vmx_vpid_bitmap);
3929 else
3930 vpid = 0;
3931 spin_unlock(&vmx_vpid_lock);
3932 return vpid;
3933 }
3934
free_vpid(int vpid)3935 void free_vpid(int vpid)
3936 {
3937 if (!enable_vpid || vpid == 0)
3938 return;
3939 spin_lock(&vmx_vpid_lock);
3940 __clear_bit(vpid, vmx_vpid_bitmap);
3941 spin_unlock(&vmx_vpid_lock);
3942 }
3943
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3944 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3945 {
3946 /*
3947 * When KVM is a nested hypervisor on top of Hyper-V and uses
3948 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3949 * bitmap has changed.
3950 */
3951 if (kvm_is_using_evmcs()) {
3952 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3953
3954 if (evmcs->hv_enlightenments_control.msr_bitmap)
3955 evmcs->hv_clean_fields &=
3956 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3957 }
3958
3959 vmx->nested.force_msr_bitmap_recalc = true;
3960 }
3961
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3962 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3963 {
3964 struct vcpu_vmx *vmx = to_vmx(vcpu);
3965 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3966
3967 if (!cpu_has_vmx_msr_bitmap())
3968 return;
3969
3970 vmx_msr_bitmap_l01_changed(vmx);
3971
3972 /*
3973 * Mark the desired intercept state in shadow bitmap, this is needed
3974 * for resync when the MSR filters change.
3975 */
3976 if (is_valid_passthrough_msr(msr)) {
3977 int idx = possible_passthrough_msr_slot(msr);
3978
3979 if (idx != -ENOENT) {
3980 if (type & MSR_TYPE_R)
3981 clear_bit(idx, vmx->shadow_msr_intercept.read);
3982 if (type & MSR_TYPE_W)
3983 clear_bit(idx, vmx->shadow_msr_intercept.write);
3984 }
3985 }
3986
3987 if ((type & MSR_TYPE_R) &&
3988 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3989 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3990 type &= ~MSR_TYPE_R;
3991 }
3992
3993 if ((type & MSR_TYPE_W) &&
3994 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3995 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3996 type &= ~MSR_TYPE_W;
3997 }
3998
3999 if (type & MSR_TYPE_R)
4000 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4001
4002 if (type & MSR_TYPE_W)
4003 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4004 }
4005
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4006 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4007 {
4008 struct vcpu_vmx *vmx = to_vmx(vcpu);
4009 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4010
4011 if (!cpu_has_vmx_msr_bitmap())
4012 return;
4013
4014 vmx_msr_bitmap_l01_changed(vmx);
4015
4016 /*
4017 * Mark the desired intercept state in shadow bitmap, this is needed
4018 * for resync when the MSR filter changes.
4019 */
4020 if (is_valid_passthrough_msr(msr)) {
4021 int idx = possible_passthrough_msr_slot(msr);
4022
4023 if (idx != -ENOENT) {
4024 if (type & MSR_TYPE_R)
4025 set_bit(idx, vmx->shadow_msr_intercept.read);
4026 if (type & MSR_TYPE_W)
4027 set_bit(idx, vmx->shadow_msr_intercept.write);
4028 }
4029 }
4030
4031 if (type & MSR_TYPE_R)
4032 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4033
4034 if (type & MSR_TYPE_W)
4035 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4036 }
4037
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4038 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4039 {
4040 /*
4041 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4042 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4043 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4044 */
4045 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4046 const int write_idx = read_idx + (0x800 / sizeof(u64));
4047 struct vcpu_vmx *vmx = to_vmx(vcpu);
4048 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4049 u8 mode;
4050
4051 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4052 return;
4053
4054 if (cpu_has_secondary_exec_ctrls() &&
4055 (secondary_exec_controls_get(vmx) &
4056 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4057 mode = MSR_BITMAP_MODE_X2APIC;
4058 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4059 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4060 } else {
4061 mode = 0;
4062 }
4063
4064 if (mode == vmx->x2apic_msr_bitmap_mode)
4065 return;
4066
4067 vmx->x2apic_msr_bitmap_mode = mode;
4068
4069 /*
4070 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4071 * registers (0x840 and above) intercepted, KVM doesn't support them.
4072 * Intercept all writes by default and poke holes as needed. Pass
4073 * through reads for all valid registers by default in x2APIC+APICv
4074 * mode, only the current timer count needs on-demand emulation by KVM.
4075 */
4076 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4077 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4078 else
4079 msr_bitmap[read_idx] = ~0ull;
4080 msr_bitmap[write_idx] = ~0ull;
4081
4082 /*
4083 * TPR reads and writes can be virtualized even if virtual interrupt
4084 * delivery is not in use.
4085 */
4086 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4087 !(mode & MSR_BITMAP_MODE_X2APIC));
4088
4089 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4090 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4091 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4092 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4093 if (enable_ipiv)
4094 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4095 }
4096 }
4097
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4098 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4099 {
4100 struct vcpu_vmx *vmx = to_vmx(vcpu);
4101 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4102 u32 i;
4103
4104 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4105 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4106 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4107 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4108 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4109 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4110 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4111 }
4112 }
4113
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)4114 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4115 {
4116 struct vcpu_vmx *vmx = to_vmx(vcpu);
4117 void *vapic_page;
4118 u32 vppr;
4119 int rvi;
4120
4121 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4122 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4123 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4124 return false;
4125
4126 rvi = vmx_get_rvi();
4127
4128 vapic_page = vmx->nested.virtual_apic_map.hva;
4129 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4130
4131 return ((rvi & 0xf0) > (vppr & 0xf0));
4132 }
4133
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4134 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4135 {
4136 struct vcpu_vmx *vmx = to_vmx(vcpu);
4137 u32 i;
4138
4139 /*
4140 * Redo intercept permissions for MSRs that KVM is passing through to
4141 * the guest. Disabling interception will check the new MSR filter and
4142 * ensure that KVM enables interception if usersepace wants to filter
4143 * the MSR. MSRs that KVM is already intercepting don't need to be
4144 * refreshed since KVM is going to intercept them regardless of what
4145 * userspace wants.
4146 */
4147 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4148 u32 msr = vmx_possible_passthrough_msrs[i];
4149
4150 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4151 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4152
4153 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4154 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4155 }
4156
4157 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4158 if (vmx_pt_mode_is_host_guest())
4159 pt_update_intercept_for_msr(vcpu);
4160 }
4161
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4162 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4163 int pi_vec)
4164 {
4165 #ifdef CONFIG_SMP
4166 if (vcpu->mode == IN_GUEST_MODE) {
4167 /*
4168 * The vector of the virtual has already been set in the PIR.
4169 * Send a notification event to deliver the virtual interrupt
4170 * unless the vCPU is the currently running vCPU, i.e. the
4171 * event is being sent from a fastpath VM-Exit handler, in
4172 * which case the PIR will be synced to the vIRR before
4173 * re-entering the guest.
4174 *
4175 * When the target is not the running vCPU, the following
4176 * possibilities emerge:
4177 *
4178 * Case 1: vCPU stays in non-root mode. Sending a notification
4179 * event posts the interrupt to the vCPU.
4180 *
4181 * Case 2: vCPU exits to root mode and is still runnable. The
4182 * PIR will be synced to the vIRR before re-entering the guest.
4183 * Sending a notification event is ok as the host IRQ handler
4184 * will ignore the spurious event.
4185 *
4186 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4187 * has already synced PIR to vIRR and never blocks the vCPU if
4188 * the vIRR is not empty. Therefore, a blocked vCPU here does
4189 * not wait for any requested interrupts in PIR, and sending a
4190 * notification event also results in a benign, spurious event.
4191 */
4192
4193 if (vcpu != kvm_get_running_vcpu())
4194 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4195 return;
4196 }
4197 #endif
4198 /*
4199 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4200 * otherwise do nothing as KVM will grab the highest priority pending
4201 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4202 */
4203 kvm_vcpu_wake_up(vcpu);
4204 }
4205
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4206 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4207 int vector)
4208 {
4209 struct vcpu_vmx *vmx = to_vmx(vcpu);
4210
4211 if (is_guest_mode(vcpu) &&
4212 vector == vmx->nested.posted_intr_nv) {
4213 /*
4214 * If a posted intr is not recognized by hardware,
4215 * we will accomplish it in the next vmentry.
4216 */
4217 vmx->nested.pi_pending = true;
4218 kvm_make_request(KVM_REQ_EVENT, vcpu);
4219
4220 /*
4221 * This pairs with the smp_mb_*() after setting vcpu->mode in
4222 * vcpu_enter_guest() to guarantee the vCPU sees the event
4223 * request if triggering a posted interrupt "fails" because
4224 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4225 * the smb_wmb() in kvm_make_request() only ensures everything
4226 * done before making the request is visible when the request
4227 * is visible, it doesn't ensure ordering between the store to
4228 * vcpu->requests and the load from vcpu->mode.
4229 */
4230 smp_mb__after_atomic();
4231
4232 /* the PIR and ON have been set by L1. */
4233 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4234 return 0;
4235 }
4236 return -1;
4237 }
4238 /*
4239 * Send interrupt to vcpu via posted interrupt way.
4240 * 1. If target vcpu is running(non-root mode), send posted interrupt
4241 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4242 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4243 * interrupt from PIR in next vmentry.
4244 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4245 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4246 {
4247 struct vcpu_vmx *vmx = to_vmx(vcpu);
4248 int r;
4249
4250 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4251 if (!r)
4252 return 0;
4253
4254 /* Note, this is called iff the local APIC is in-kernel. */
4255 if (!vcpu->arch.apic->apicv_active)
4256 return -1;
4257
4258 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4259 return 0;
4260
4261 /* If a previous notification has sent the IPI, nothing to do. */
4262 if (pi_test_and_set_on(&vmx->pi_desc))
4263 return 0;
4264
4265 /*
4266 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4267 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4268 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4269 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4270 */
4271 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4272 return 0;
4273 }
4274
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4275 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4276 int trig_mode, int vector)
4277 {
4278 struct kvm_vcpu *vcpu = apic->vcpu;
4279
4280 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4281 kvm_lapic_set_irr(vector, apic);
4282 kvm_make_request(KVM_REQ_EVENT, vcpu);
4283 kvm_vcpu_kick(vcpu);
4284 } else {
4285 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4286 trig_mode, vector);
4287 }
4288 }
4289
4290 /*
4291 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4292 * will not change in the lifetime of the guest.
4293 * Note that host-state that does change is set elsewhere. E.g., host-state
4294 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4295 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4296 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4297 {
4298 u32 low32, high32;
4299 unsigned long tmpl;
4300 unsigned long cr0, cr3, cr4;
4301
4302 cr0 = read_cr0();
4303 WARN_ON(cr0 & X86_CR0_TS);
4304 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4305
4306 /*
4307 * Save the most likely value for this task's CR3 in the VMCS.
4308 * We can't use __get_current_cr3_fast() because we're not atomic.
4309 */
4310 cr3 = __read_cr3();
4311 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4312 vmx->loaded_vmcs->host_state.cr3 = cr3;
4313
4314 /* Save the most likely value for this task's CR4 in the VMCS. */
4315 cr4 = cr4_read_shadow();
4316 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4317 vmx->loaded_vmcs->host_state.cr4 = cr4;
4318
4319 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4320 #ifdef CONFIG_X86_64
4321 /*
4322 * Load null selectors, so we can avoid reloading them in
4323 * vmx_prepare_switch_to_host(), in case userspace uses
4324 * the null selectors too (the expected case).
4325 */
4326 vmcs_write16(HOST_DS_SELECTOR, 0);
4327 vmcs_write16(HOST_ES_SELECTOR, 0);
4328 #else
4329 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4330 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4331 #endif
4332 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4333 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4334
4335 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4336
4337 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4338
4339 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4340 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4341
4342 /*
4343 * SYSENTER is used for 32-bit system calls on either 32-bit or
4344 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4345 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4346 * have already done so!).
4347 */
4348 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4349 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4350
4351 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4352 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4353
4354 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4355 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4356 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4357 }
4358
4359 if (cpu_has_load_ia32_efer())
4360 vmcs_write64(HOST_IA32_EFER, host_efer);
4361 }
4362
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4363 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4364 {
4365 struct kvm_vcpu *vcpu = &vmx->vcpu;
4366
4367 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4368 ~vcpu->arch.cr4_guest_rsvd_bits;
4369 if (!enable_ept) {
4370 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4371 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4372 }
4373 if (is_guest_mode(&vmx->vcpu))
4374 vcpu->arch.cr4_guest_owned_bits &=
4375 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4376 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4377 }
4378
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4379 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4380 {
4381 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4382
4383 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4384 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4385
4386 if (!enable_vnmi)
4387 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4388
4389 if (!enable_preemption_timer)
4390 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4391
4392 return pin_based_exec_ctrl;
4393 }
4394
vmx_vmentry_ctrl(void)4395 static u32 vmx_vmentry_ctrl(void)
4396 {
4397 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4398
4399 if (vmx_pt_mode_is_system())
4400 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4401 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4402 /*
4403 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4404 */
4405 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4406 VM_ENTRY_LOAD_IA32_EFER |
4407 VM_ENTRY_IA32E_MODE);
4408
4409 if (cpu_has_perf_global_ctrl_bug())
4410 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4411
4412 return vmentry_ctrl;
4413 }
4414
vmx_vmexit_ctrl(void)4415 static u32 vmx_vmexit_ctrl(void)
4416 {
4417 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4418
4419 /*
4420 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4421 * nested virtualization and thus allowed to be set in vmcs12.
4422 */
4423 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4424 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4425
4426 if (vmx_pt_mode_is_system())
4427 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4428 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4429
4430 if (cpu_has_perf_global_ctrl_bug())
4431 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4432
4433 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4434 return vmexit_ctrl &
4435 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4436 }
4437
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4438 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4439 {
4440 struct vcpu_vmx *vmx = to_vmx(vcpu);
4441
4442 if (is_guest_mode(vcpu)) {
4443 vmx->nested.update_vmcs01_apicv_status = true;
4444 return;
4445 }
4446
4447 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4448
4449 if (kvm_vcpu_apicv_active(vcpu)) {
4450 secondary_exec_controls_setbit(vmx,
4451 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4452 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4453 if (enable_ipiv)
4454 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4455 } else {
4456 secondary_exec_controls_clearbit(vmx,
4457 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4458 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4459 if (enable_ipiv)
4460 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4461 }
4462
4463 vmx_update_msr_bitmap_x2apic(vcpu);
4464 }
4465
vmx_exec_control(struct vcpu_vmx * vmx)4466 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4467 {
4468 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4469
4470 /*
4471 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4472 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4473 */
4474 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4475 CPU_BASED_USE_IO_BITMAPS |
4476 CPU_BASED_MONITOR_TRAP_FLAG |
4477 CPU_BASED_PAUSE_EXITING);
4478
4479 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4480 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4481 CPU_BASED_NMI_WINDOW_EXITING);
4482
4483 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4484 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4485
4486 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4487 exec_control &= ~CPU_BASED_TPR_SHADOW;
4488
4489 #ifdef CONFIG_X86_64
4490 if (exec_control & CPU_BASED_TPR_SHADOW)
4491 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4492 CPU_BASED_CR8_STORE_EXITING);
4493 else
4494 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4495 CPU_BASED_CR8_LOAD_EXITING;
4496 #endif
4497 /* No need to intercept CR3 access or INVPLG when using EPT. */
4498 if (enable_ept)
4499 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4500 CPU_BASED_CR3_STORE_EXITING |
4501 CPU_BASED_INVLPG_EXITING);
4502 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4503 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4504 CPU_BASED_MONITOR_EXITING);
4505 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4506 exec_control &= ~CPU_BASED_HLT_EXITING;
4507 return exec_control;
4508 }
4509
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4510 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4511 {
4512 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4513
4514 /*
4515 * IPI virtualization relies on APICv. Disable IPI virtualization if
4516 * APICv is inhibited.
4517 */
4518 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4519 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4520
4521 return exec_control;
4522 }
4523
4524 /*
4525 * Adjust a single secondary execution control bit to intercept/allow an
4526 * instruction in the guest. This is usually done based on whether or not a
4527 * feature has been exposed to the guest in order to correctly emulate faults.
4528 */
4529 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4530 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4531 u32 control, bool enabled, bool exiting)
4532 {
4533 /*
4534 * If the control is for an opt-in feature, clear the control if the
4535 * feature is not exposed to the guest, i.e. not enabled. If the
4536 * control is opt-out, i.e. an exiting control, clear the control if
4537 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4538 * disabled for the associated instruction. Note, the caller is
4539 * responsible presetting exec_control to set all supported bits.
4540 */
4541 if (enabled == exiting)
4542 *exec_control &= ~control;
4543
4544 /*
4545 * Update the nested MSR settings so that a nested VMM can/can't set
4546 * controls for features that are/aren't exposed to the guest.
4547 */
4548 if (nested) {
4549 /*
4550 * All features that can be added or removed to VMX MSRs must
4551 * be supported in the first place for nested virtualization.
4552 */
4553 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4554 enabled = false;
4555
4556 if (enabled)
4557 vmx->nested.msrs.secondary_ctls_high |= control;
4558 else
4559 vmx->nested.msrs.secondary_ctls_high &= ~control;
4560 }
4561 }
4562
4563 /*
4564 * Wrapper macro for the common case of adjusting a secondary execution control
4565 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4566 * verifies that the control is actually supported by KVM and hardware.
4567 */
4568 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4569 ({ \
4570 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4571 bool __enabled; \
4572 \
4573 if (cpu_has_vmx_##name()) { \
4574 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4575 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4576 else \
4577 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4578 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4579 __enabled, exiting); \
4580 } \
4581 })
4582
4583 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4584 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4585 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4586
4587 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4588 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4589
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4590 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4591 {
4592 struct kvm_vcpu *vcpu = &vmx->vcpu;
4593
4594 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4595
4596 if (vmx_pt_mode_is_system())
4597 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4598 if (!cpu_need_virtualize_apic_accesses(vcpu))
4599 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4600 if (vmx->vpid == 0)
4601 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4602 if (!enable_ept) {
4603 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4604 enable_unrestricted_guest = 0;
4605 }
4606 if (!enable_unrestricted_guest)
4607 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4608 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4609 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4610 if (!kvm_vcpu_apicv_active(vcpu))
4611 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4612 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4613 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4614
4615 /*
4616 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4617 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4618 */
4619 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4620
4621 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4622 * in vmx_set_cr4. */
4623 exec_control &= ~SECONDARY_EXEC_DESC;
4624
4625 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4626 (handle_vmptrld).
4627 We can NOT enable shadow_vmcs here because we don't have yet
4628 a current VMCS12
4629 */
4630 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4631
4632 /*
4633 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4634 * it needs to be set here when dirty logging is already active, e.g.
4635 * if this vCPU was created after dirty logging was enabled.
4636 */
4637 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4638 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4639
4640 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4641
4642 /*
4643 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4644 * feature is exposed to the guest. This creates a virtualization hole
4645 * if both are supported in hardware but only one is exposed to the
4646 * guest, but letting the guest execute RDTSCP or RDPID when either one
4647 * is advertised is preferable to emulating the advertised instruction
4648 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4649 */
4650 if (cpu_has_vmx_rdtscp()) {
4651 bool rdpid_or_rdtscp_enabled =
4652 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4653 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4654
4655 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4656 SECONDARY_EXEC_ENABLE_RDTSCP,
4657 rdpid_or_rdtscp_enabled, false);
4658 }
4659
4660 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4661
4662 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4663 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4664
4665 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4666 ENABLE_USR_WAIT_PAUSE, false);
4667
4668 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4669 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4670
4671 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4672 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4673
4674 return exec_control;
4675 }
4676
vmx_get_pid_table_order(struct kvm * kvm)4677 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4678 {
4679 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4680 }
4681
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4682 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4683 {
4684 struct page *pages;
4685 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4686
4687 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4688 return 0;
4689
4690 if (kvm_vmx->pid_table)
4691 return 0;
4692
4693 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4694 vmx_get_pid_table_order(kvm));
4695 if (!pages)
4696 return -ENOMEM;
4697
4698 kvm_vmx->pid_table = (void *)page_address(pages);
4699 return 0;
4700 }
4701
vmx_vcpu_precreate(struct kvm * kvm)4702 static int vmx_vcpu_precreate(struct kvm *kvm)
4703 {
4704 return vmx_alloc_ipiv_pid_table(kvm);
4705 }
4706
4707 #define VMX_XSS_EXIT_BITMAP 0
4708
init_vmcs(struct vcpu_vmx * vmx)4709 static void init_vmcs(struct vcpu_vmx *vmx)
4710 {
4711 struct kvm *kvm = vmx->vcpu.kvm;
4712 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4713
4714 if (nested)
4715 nested_vmx_set_vmcs_shadowing_bitmap();
4716
4717 if (cpu_has_vmx_msr_bitmap())
4718 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4719
4720 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4721
4722 /* Control */
4723 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4724
4725 exec_controls_set(vmx, vmx_exec_control(vmx));
4726
4727 if (cpu_has_secondary_exec_ctrls())
4728 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4729
4730 if (cpu_has_tertiary_exec_ctrls())
4731 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4732
4733 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4734 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4735 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4736 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4737 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4738
4739 vmcs_write16(GUEST_INTR_STATUS, 0);
4740
4741 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4742 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4743 }
4744
4745 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4746 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4747 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4748 }
4749
4750 if (!kvm_pause_in_guest(kvm)) {
4751 vmcs_write32(PLE_GAP, ple_gap);
4752 vmx->ple_window = ple_window;
4753 vmx->ple_window_dirty = true;
4754 }
4755
4756 if (kvm_notify_vmexit_enabled(kvm))
4757 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4758
4759 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4760 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4761 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4762
4763 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4764 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4765 vmx_set_constant_host_state(vmx);
4766 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4767 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4768
4769 if (cpu_has_vmx_vmfunc())
4770 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4771
4772 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4773 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4774 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4775 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4776 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4777
4778 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4779 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4780
4781 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4782
4783 /* 22.2.1, 20.8.1 */
4784 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4785
4786 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4787 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4788
4789 set_cr4_guest_host_mask(vmx);
4790
4791 if (vmx->vpid != 0)
4792 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4793
4794 if (cpu_has_vmx_xsaves())
4795 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4796
4797 if (enable_pml) {
4798 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4799 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4800 }
4801
4802 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4803
4804 if (vmx_pt_mode_is_host_guest()) {
4805 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4806 /* Bit[6~0] are forced to 1, writes are ignored. */
4807 vmx->pt_desc.guest.output_mask = 0x7F;
4808 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4809 }
4810
4811 vmcs_write32(GUEST_SYSENTER_CS, 0);
4812 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4813 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4814 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4815
4816 if (cpu_has_vmx_tpr_shadow()) {
4817 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4818 if (cpu_need_tpr_shadow(&vmx->vcpu))
4819 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4820 __pa(vmx->vcpu.arch.apic->regs));
4821 vmcs_write32(TPR_THRESHOLD, 0);
4822 }
4823
4824 vmx_setup_uret_msrs(vmx);
4825 }
4826
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4827 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4828 {
4829 struct vcpu_vmx *vmx = to_vmx(vcpu);
4830
4831 init_vmcs(vmx);
4832
4833 if (nested)
4834 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4835
4836 vcpu_setup_sgx_lepubkeyhash(vcpu);
4837
4838 vmx->nested.posted_intr_nv = -1;
4839 vmx->nested.vmxon_ptr = INVALID_GPA;
4840 vmx->nested.current_vmptr = INVALID_GPA;
4841
4842 #ifdef CONFIG_KVM_HYPERV
4843 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4844 #endif
4845
4846 vcpu->arch.microcode_version = 0x100000000ULL;
4847 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4848
4849 /*
4850 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4851 * or POSTED_INTR_WAKEUP_VECTOR.
4852 */
4853 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4854 vmx->pi_desc.sn = 1;
4855 }
4856
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4857 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4858 {
4859 struct vcpu_vmx *vmx = to_vmx(vcpu);
4860
4861 if (!init_event)
4862 __vmx_vcpu_reset(vcpu);
4863
4864 vmx->rmode.vm86_active = 0;
4865 vmx->spec_ctrl = 0;
4866
4867 vmx->msr_ia32_umwait_control = 0;
4868
4869 vmx->hv_deadline_tsc = -1;
4870 kvm_set_cr8(vcpu, 0);
4871
4872 vmx_segment_cache_clear(vmx);
4873 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4874
4875 seg_setup(VCPU_SREG_CS);
4876 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4877 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4878
4879 seg_setup(VCPU_SREG_DS);
4880 seg_setup(VCPU_SREG_ES);
4881 seg_setup(VCPU_SREG_FS);
4882 seg_setup(VCPU_SREG_GS);
4883 seg_setup(VCPU_SREG_SS);
4884
4885 vmcs_write16(GUEST_TR_SELECTOR, 0);
4886 vmcs_writel(GUEST_TR_BASE, 0);
4887 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4888 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4889
4890 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4891 vmcs_writel(GUEST_LDTR_BASE, 0);
4892 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4893 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4894
4895 vmcs_writel(GUEST_GDTR_BASE, 0);
4896 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4897
4898 vmcs_writel(GUEST_IDTR_BASE, 0);
4899 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4900
4901 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4902 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4903 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4904 if (kvm_mpx_supported())
4905 vmcs_write64(GUEST_BNDCFGS, 0);
4906
4907 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4908
4909 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4910
4911 vpid_sync_context(vmx->vpid);
4912
4913 vmx_update_fb_clear_dis(vcpu, vmx);
4914 }
4915
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4916 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4917 {
4918 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4919 }
4920
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4921 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4922 {
4923 if (!enable_vnmi ||
4924 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4925 vmx_enable_irq_window(vcpu);
4926 return;
4927 }
4928
4929 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4930 }
4931
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4932 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4933 {
4934 struct vcpu_vmx *vmx = to_vmx(vcpu);
4935 uint32_t intr;
4936 int irq = vcpu->arch.interrupt.nr;
4937
4938 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4939
4940 ++vcpu->stat.irq_injections;
4941 if (vmx->rmode.vm86_active) {
4942 int inc_eip = 0;
4943 if (vcpu->arch.interrupt.soft)
4944 inc_eip = vcpu->arch.event_exit_inst_len;
4945 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4946 return;
4947 }
4948 intr = irq | INTR_INFO_VALID_MASK;
4949 if (vcpu->arch.interrupt.soft) {
4950 intr |= INTR_TYPE_SOFT_INTR;
4951 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4952 vmx->vcpu.arch.event_exit_inst_len);
4953 } else
4954 intr |= INTR_TYPE_EXT_INTR;
4955 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4956
4957 vmx_clear_hlt(vcpu);
4958 }
4959
vmx_inject_nmi(struct kvm_vcpu * vcpu)4960 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4961 {
4962 struct vcpu_vmx *vmx = to_vmx(vcpu);
4963
4964 if (!enable_vnmi) {
4965 /*
4966 * Tracking the NMI-blocked state in software is built upon
4967 * finding the next open IRQ window. This, in turn, depends on
4968 * well-behaving guests: They have to keep IRQs disabled at
4969 * least as long as the NMI handler runs. Otherwise we may
4970 * cause NMI nesting, maybe breaking the guest. But as this is
4971 * highly unlikely, we can live with the residual risk.
4972 */
4973 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4974 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4975 }
4976
4977 ++vcpu->stat.nmi_injections;
4978 vmx->loaded_vmcs->nmi_known_unmasked = false;
4979
4980 if (vmx->rmode.vm86_active) {
4981 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4982 return;
4983 }
4984
4985 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4986 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4987
4988 vmx_clear_hlt(vcpu);
4989 }
4990
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4991 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4992 {
4993 struct vcpu_vmx *vmx = to_vmx(vcpu);
4994 bool masked;
4995
4996 if (!enable_vnmi)
4997 return vmx->loaded_vmcs->soft_vnmi_blocked;
4998 if (vmx->loaded_vmcs->nmi_known_unmasked)
4999 return false;
5000 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5001 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5002 return masked;
5003 }
5004
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5005 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5006 {
5007 struct vcpu_vmx *vmx = to_vmx(vcpu);
5008
5009 if (!enable_vnmi) {
5010 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5011 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5012 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5013 }
5014 } else {
5015 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5016 if (masked)
5017 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5018 GUEST_INTR_STATE_NMI);
5019 else
5020 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5021 GUEST_INTR_STATE_NMI);
5022 }
5023 }
5024
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5025 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5026 {
5027 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5028 return false;
5029
5030 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5031 return true;
5032
5033 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5034 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5035 GUEST_INTR_STATE_NMI));
5036 }
5037
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5038 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5039 {
5040 if (to_vmx(vcpu)->nested.nested_run_pending)
5041 return -EBUSY;
5042
5043 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5044 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5045 return -EBUSY;
5046
5047 return !vmx_nmi_blocked(vcpu);
5048 }
5049
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5050 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5051 {
5052 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5053 return false;
5054
5055 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5056 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5057 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5058 }
5059
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5060 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5061 {
5062 if (to_vmx(vcpu)->nested.nested_run_pending)
5063 return -EBUSY;
5064
5065 /*
5066 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5067 * e.g. if the IRQ arrived asynchronously after checking nested events.
5068 */
5069 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5070 return -EBUSY;
5071
5072 return !vmx_interrupt_blocked(vcpu);
5073 }
5074
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5075 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5076 {
5077 void __user *ret;
5078
5079 if (enable_unrestricted_guest)
5080 return 0;
5081
5082 mutex_lock(&kvm->slots_lock);
5083 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5084 PAGE_SIZE * 3);
5085 mutex_unlock(&kvm->slots_lock);
5086
5087 if (IS_ERR(ret))
5088 return PTR_ERR(ret);
5089
5090 to_kvm_vmx(kvm)->tss_addr = addr;
5091
5092 return init_rmode_tss(kvm, ret);
5093 }
5094
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5095 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5096 {
5097 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5098 return 0;
5099 }
5100
rmode_exception(struct kvm_vcpu * vcpu,int vec)5101 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5102 {
5103 switch (vec) {
5104 case BP_VECTOR:
5105 /*
5106 * Update instruction length as we may reinject the exception
5107 * from user space while in guest debugging mode.
5108 */
5109 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5110 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5111 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5112 return false;
5113 fallthrough;
5114 case DB_VECTOR:
5115 return !(vcpu->guest_debug &
5116 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5117 case DE_VECTOR:
5118 case OF_VECTOR:
5119 case BR_VECTOR:
5120 case UD_VECTOR:
5121 case DF_VECTOR:
5122 case SS_VECTOR:
5123 case GP_VECTOR:
5124 case MF_VECTOR:
5125 return true;
5126 }
5127 return false;
5128 }
5129
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5130 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5131 int vec, u32 err_code)
5132 {
5133 /*
5134 * Instruction with address size override prefix opcode 0x67
5135 * Cause the #SS fault with 0 error code in VM86 mode.
5136 */
5137 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5138 if (kvm_emulate_instruction(vcpu, 0)) {
5139 if (vcpu->arch.halt_request) {
5140 vcpu->arch.halt_request = 0;
5141 return kvm_emulate_halt_noskip(vcpu);
5142 }
5143 return 1;
5144 }
5145 return 0;
5146 }
5147
5148 /*
5149 * Forward all other exceptions that are valid in real mode.
5150 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5151 * the required debugging infrastructure rework.
5152 */
5153 kvm_queue_exception(vcpu, vec);
5154 return 1;
5155 }
5156
handle_machine_check(struct kvm_vcpu * vcpu)5157 static int handle_machine_check(struct kvm_vcpu *vcpu)
5158 {
5159 /* handled by vmx_vcpu_run() */
5160 return 1;
5161 }
5162
5163 /*
5164 * If the host has split lock detection disabled, then #AC is
5165 * unconditionally injected into the guest, which is the pre split lock
5166 * detection behaviour.
5167 *
5168 * If the host has split lock detection enabled then #AC is
5169 * only injected into the guest when:
5170 * - Guest CPL == 3 (user mode)
5171 * - Guest has #AC detection enabled in CR0
5172 * - Guest EFLAGS has AC bit set
5173 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5174 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5175 {
5176 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5177 return true;
5178
5179 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5180 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5181 }
5182
handle_exception_nmi(struct kvm_vcpu * vcpu)5183 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5184 {
5185 struct vcpu_vmx *vmx = to_vmx(vcpu);
5186 struct kvm_run *kvm_run = vcpu->run;
5187 u32 intr_info, ex_no, error_code;
5188 unsigned long cr2, dr6;
5189 u32 vect_info;
5190
5191 vect_info = vmx->idt_vectoring_info;
5192 intr_info = vmx_get_intr_info(vcpu);
5193
5194 /*
5195 * Machine checks are handled by handle_exception_irqoff(), or by
5196 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5197 * vmx_vcpu_enter_exit().
5198 */
5199 if (is_machine_check(intr_info) || is_nmi(intr_info))
5200 return 1;
5201
5202 /*
5203 * Queue the exception here instead of in handle_nm_fault_irqoff().
5204 * This ensures the nested_vmx check is not skipped so vmexit can
5205 * be reflected to L1 (when it intercepts #NM) before reaching this
5206 * point.
5207 */
5208 if (is_nm_fault(intr_info)) {
5209 kvm_queue_exception(vcpu, NM_VECTOR);
5210 return 1;
5211 }
5212
5213 if (is_invalid_opcode(intr_info))
5214 return handle_ud(vcpu);
5215
5216 error_code = 0;
5217 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5218 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5219
5220 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5221 WARN_ON_ONCE(!enable_vmware_backdoor);
5222
5223 /*
5224 * VMware backdoor emulation on #GP interception only handles
5225 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5226 * error code on #GP.
5227 */
5228 if (error_code) {
5229 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5230 return 1;
5231 }
5232 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5233 }
5234
5235 /*
5236 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5237 * MMIO, it is better to report an internal error.
5238 * See the comments in vmx_handle_exit.
5239 */
5240 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5241 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5242 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5243 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5244 vcpu->run->internal.ndata = 4;
5245 vcpu->run->internal.data[0] = vect_info;
5246 vcpu->run->internal.data[1] = intr_info;
5247 vcpu->run->internal.data[2] = error_code;
5248 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5249 return 0;
5250 }
5251
5252 if (is_page_fault(intr_info)) {
5253 cr2 = vmx_get_exit_qual(vcpu);
5254 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5255 /*
5256 * EPT will cause page fault only if we need to
5257 * detect illegal GPAs.
5258 */
5259 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5260 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5261 return 1;
5262 } else
5263 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5264 }
5265
5266 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5267
5268 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5269 return handle_rmode_exception(vcpu, ex_no, error_code);
5270
5271 switch (ex_no) {
5272 case DB_VECTOR:
5273 dr6 = vmx_get_exit_qual(vcpu);
5274 if (!(vcpu->guest_debug &
5275 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5276 /*
5277 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5278 * instruction. ICEBP generates a trap-like #DB, but
5279 * despite its interception control being tied to #DB,
5280 * is an instruction intercept, i.e. the VM-Exit occurs
5281 * on the ICEBP itself. Use the inner "skip" helper to
5282 * avoid single-step #DB and MTF updates, as ICEBP is
5283 * higher priority. Note, skipping ICEBP still clears
5284 * STI and MOVSS blocking.
5285 *
5286 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5287 * if single-step is enabled in RFLAGS and STI or MOVSS
5288 * blocking is active, as the CPU doesn't set the bit
5289 * on VM-Exit due to #DB interception. VM-Entry has a
5290 * consistency check that a single-step #DB is pending
5291 * in this scenario as the previous instruction cannot
5292 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5293 * don't modify RFLAGS), therefore the one instruction
5294 * delay when activating single-step breakpoints must
5295 * have already expired. Note, the CPU sets/clears BS
5296 * as appropriate for all other VM-Exits types.
5297 */
5298 if (is_icebp(intr_info))
5299 WARN_ON(!skip_emulated_instruction(vcpu));
5300 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5301 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5302 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5303 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5304 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5305
5306 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5307 return 1;
5308 }
5309 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5310 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5311 fallthrough;
5312 case BP_VECTOR:
5313 /*
5314 * Update instruction length as we may reinject #BP from
5315 * user space while in guest debugging mode. Reading it for
5316 * #DB as well causes no harm, it is not used in that case.
5317 */
5318 vmx->vcpu.arch.event_exit_inst_len =
5319 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5320 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5321 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5322 kvm_run->debug.arch.exception = ex_no;
5323 break;
5324 case AC_VECTOR:
5325 if (vmx_guest_inject_ac(vcpu)) {
5326 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5327 return 1;
5328 }
5329
5330 /*
5331 * Handle split lock. Depending on detection mode this will
5332 * either warn and disable split lock detection for this
5333 * task or force SIGBUS on it.
5334 */
5335 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5336 return 1;
5337 fallthrough;
5338 default:
5339 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5340 kvm_run->ex.exception = ex_no;
5341 kvm_run->ex.error_code = error_code;
5342 break;
5343 }
5344 return 0;
5345 }
5346
handle_external_interrupt(struct kvm_vcpu * vcpu)5347 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5348 {
5349 ++vcpu->stat.irq_exits;
5350 return 1;
5351 }
5352
handle_triple_fault(struct kvm_vcpu * vcpu)5353 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5354 {
5355 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5356 vcpu->mmio_needed = 0;
5357 return 0;
5358 }
5359
handle_io(struct kvm_vcpu * vcpu)5360 static int handle_io(struct kvm_vcpu *vcpu)
5361 {
5362 unsigned long exit_qualification;
5363 int size, in, string;
5364 unsigned port;
5365
5366 exit_qualification = vmx_get_exit_qual(vcpu);
5367 string = (exit_qualification & 16) != 0;
5368
5369 ++vcpu->stat.io_exits;
5370
5371 if (string)
5372 return kvm_emulate_instruction(vcpu, 0);
5373
5374 port = exit_qualification >> 16;
5375 size = (exit_qualification & 7) + 1;
5376 in = (exit_qualification & 8) != 0;
5377
5378 return kvm_fast_pio(vcpu, size, port, in);
5379 }
5380
5381 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5382 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5383 {
5384 /*
5385 * Patch in the VMCALL instruction:
5386 */
5387 hypercall[0] = 0x0f;
5388 hypercall[1] = 0x01;
5389 hypercall[2] = 0xc1;
5390 }
5391
5392 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5393 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5394 {
5395 if (is_guest_mode(vcpu)) {
5396 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5397 unsigned long orig_val = val;
5398
5399 /*
5400 * We get here when L2 changed cr0 in a way that did not change
5401 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5402 * but did change L0 shadowed bits. So we first calculate the
5403 * effective cr0 value that L1 would like to write into the
5404 * hardware. It consists of the L2-owned bits from the new
5405 * value combined with the L1-owned bits from L1's guest_cr0.
5406 */
5407 val = (val & ~vmcs12->cr0_guest_host_mask) |
5408 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5409
5410 if (kvm_set_cr0(vcpu, val))
5411 return 1;
5412 vmcs_writel(CR0_READ_SHADOW, orig_val);
5413 return 0;
5414 } else {
5415 return kvm_set_cr0(vcpu, val);
5416 }
5417 }
5418
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5419 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5420 {
5421 if (is_guest_mode(vcpu)) {
5422 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5423 unsigned long orig_val = val;
5424
5425 /* analogously to handle_set_cr0 */
5426 val = (val & ~vmcs12->cr4_guest_host_mask) |
5427 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5428 if (kvm_set_cr4(vcpu, val))
5429 return 1;
5430 vmcs_writel(CR4_READ_SHADOW, orig_val);
5431 return 0;
5432 } else
5433 return kvm_set_cr4(vcpu, val);
5434 }
5435
handle_desc(struct kvm_vcpu * vcpu)5436 static int handle_desc(struct kvm_vcpu *vcpu)
5437 {
5438 /*
5439 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5440 * and other code needs to be updated if UMIP can be guest owned.
5441 */
5442 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5443
5444 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5445 return kvm_emulate_instruction(vcpu, 0);
5446 }
5447
handle_cr(struct kvm_vcpu * vcpu)5448 static int handle_cr(struct kvm_vcpu *vcpu)
5449 {
5450 unsigned long exit_qualification, val;
5451 int cr;
5452 int reg;
5453 int err;
5454 int ret;
5455
5456 exit_qualification = vmx_get_exit_qual(vcpu);
5457 cr = exit_qualification & 15;
5458 reg = (exit_qualification >> 8) & 15;
5459 switch ((exit_qualification >> 4) & 3) {
5460 case 0: /* mov to cr */
5461 val = kvm_register_read(vcpu, reg);
5462 trace_kvm_cr_write(cr, val);
5463 switch (cr) {
5464 case 0:
5465 err = handle_set_cr0(vcpu, val);
5466 return kvm_complete_insn_gp(vcpu, err);
5467 case 3:
5468 WARN_ON_ONCE(enable_unrestricted_guest);
5469
5470 err = kvm_set_cr3(vcpu, val);
5471 return kvm_complete_insn_gp(vcpu, err);
5472 case 4:
5473 err = handle_set_cr4(vcpu, val);
5474 return kvm_complete_insn_gp(vcpu, err);
5475 case 8: {
5476 u8 cr8_prev = kvm_get_cr8(vcpu);
5477 u8 cr8 = (u8)val;
5478 err = kvm_set_cr8(vcpu, cr8);
5479 ret = kvm_complete_insn_gp(vcpu, err);
5480 if (lapic_in_kernel(vcpu))
5481 return ret;
5482 if (cr8_prev <= cr8)
5483 return ret;
5484 /*
5485 * TODO: we might be squashing a
5486 * KVM_GUESTDBG_SINGLESTEP-triggered
5487 * KVM_EXIT_DEBUG here.
5488 */
5489 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5490 return 0;
5491 }
5492 }
5493 break;
5494 case 2: /* clts */
5495 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5496 return -EIO;
5497 case 1: /*mov from cr*/
5498 switch (cr) {
5499 case 3:
5500 WARN_ON_ONCE(enable_unrestricted_guest);
5501
5502 val = kvm_read_cr3(vcpu);
5503 kvm_register_write(vcpu, reg, val);
5504 trace_kvm_cr_read(cr, val);
5505 return kvm_skip_emulated_instruction(vcpu);
5506 case 8:
5507 val = kvm_get_cr8(vcpu);
5508 kvm_register_write(vcpu, reg, val);
5509 trace_kvm_cr_read(cr, val);
5510 return kvm_skip_emulated_instruction(vcpu);
5511 }
5512 break;
5513 case 3: /* lmsw */
5514 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5515 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5516 kvm_lmsw(vcpu, val);
5517
5518 return kvm_skip_emulated_instruction(vcpu);
5519 default:
5520 break;
5521 }
5522 vcpu->run->exit_reason = 0;
5523 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5524 (int)(exit_qualification >> 4) & 3, cr);
5525 return 0;
5526 }
5527
handle_dr(struct kvm_vcpu * vcpu)5528 static int handle_dr(struct kvm_vcpu *vcpu)
5529 {
5530 unsigned long exit_qualification;
5531 int dr, dr7, reg;
5532 int err = 1;
5533
5534 exit_qualification = vmx_get_exit_qual(vcpu);
5535 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5536
5537 /* First, if DR does not exist, trigger UD */
5538 if (!kvm_require_dr(vcpu, dr))
5539 return 1;
5540
5541 if (vmx_get_cpl(vcpu) > 0)
5542 goto out;
5543
5544 dr7 = vmcs_readl(GUEST_DR7);
5545 if (dr7 & DR7_GD) {
5546 /*
5547 * As the vm-exit takes precedence over the debug trap, we
5548 * need to emulate the latter, either for the host or the
5549 * guest debugging itself.
5550 */
5551 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5552 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5553 vcpu->run->debug.arch.dr7 = dr7;
5554 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5555 vcpu->run->debug.arch.exception = DB_VECTOR;
5556 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5557 return 0;
5558 } else {
5559 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5560 return 1;
5561 }
5562 }
5563
5564 if (vcpu->guest_debug == 0) {
5565 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5566
5567 /*
5568 * No more DR vmexits; force a reload of the debug registers
5569 * and reenter on this instruction. The next vmexit will
5570 * retrieve the full state of the debug registers.
5571 */
5572 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5573 return 1;
5574 }
5575
5576 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5577 if (exit_qualification & TYPE_MOV_FROM_DR) {
5578 unsigned long val;
5579
5580 kvm_get_dr(vcpu, dr, &val);
5581 kvm_register_write(vcpu, reg, val);
5582 err = 0;
5583 } else {
5584 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5585 }
5586
5587 out:
5588 return kvm_complete_insn_gp(vcpu, err);
5589 }
5590
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5591 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5592 {
5593 get_debugreg(vcpu->arch.db[0], 0);
5594 get_debugreg(vcpu->arch.db[1], 1);
5595 get_debugreg(vcpu->arch.db[2], 2);
5596 get_debugreg(vcpu->arch.db[3], 3);
5597 get_debugreg(vcpu->arch.dr6, 6);
5598 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5599
5600 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5601 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5602
5603 /*
5604 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5605 * a stale dr6 from the guest.
5606 */
5607 set_debugreg(DR6_RESERVED, 6);
5608 }
5609
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5610 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5611 {
5612 vmcs_writel(GUEST_DR7, val);
5613 }
5614
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5615 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5616 {
5617 kvm_apic_update_ppr(vcpu);
5618 return 1;
5619 }
5620
handle_interrupt_window(struct kvm_vcpu * vcpu)5621 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5622 {
5623 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5624
5625 kvm_make_request(KVM_REQ_EVENT, vcpu);
5626
5627 ++vcpu->stat.irq_window_exits;
5628 return 1;
5629 }
5630
handle_invlpg(struct kvm_vcpu * vcpu)5631 static int handle_invlpg(struct kvm_vcpu *vcpu)
5632 {
5633 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5634
5635 kvm_mmu_invlpg(vcpu, exit_qualification);
5636 return kvm_skip_emulated_instruction(vcpu);
5637 }
5638
handle_apic_access(struct kvm_vcpu * vcpu)5639 static int handle_apic_access(struct kvm_vcpu *vcpu)
5640 {
5641 if (likely(fasteoi)) {
5642 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5643 int access_type, offset;
5644
5645 access_type = exit_qualification & APIC_ACCESS_TYPE;
5646 offset = exit_qualification & APIC_ACCESS_OFFSET;
5647 /*
5648 * Sane guest uses MOV to write EOI, with written value
5649 * not cared. So make a short-circuit here by avoiding
5650 * heavy instruction emulation.
5651 */
5652 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5653 (offset == APIC_EOI)) {
5654 kvm_lapic_set_eoi(vcpu);
5655 return kvm_skip_emulated_instruction(vcpu);
5656 }
5657 }
5658 return kvm_emulate_instruction(vcpu, 0);
5659 }
5660
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5661 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5662 {
5663 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5664 int vector = exit_qualification & 0xff;
5665
5666 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5667 kvm_apic_set_eoi_accelerated(vcpu, vector);
5668 return 1;
5669 }
5670
handle_apic_write(struct kvm_vcpu * vcpu)5671 static int handle_apic_write(struct kvm_vcpu *vcpu)
5672 {
5673 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5674
5675 /*
5676 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5677 * hardware has done any necessary aliasing, offset adjustments, etc...
5678 * for the access. I.e. the correct value has already been written to
5679 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5680 * retrieve the register value and emulate the access.
5681 */
5682 u32 offset = exit_qualification & 0xff0;
5683
5684 kvm_apic_write_nodecode(vcpu, offset);
5685 return 1;
5686 }
5687
handle_task_switch(struct kvm_vcpu * vcpu)5688 static int handle_task_switch(struct kvm_vcpu *vcpu)
5689 {
5690 struct vcpu_vmx *vmx = to_vmx(vcpu);
5691 unsigned long exit_qualification;
5692 bool has_error_code = false;
5693 u32 error_code = 0;
5694 u16 tss_selector;
5695 int reason, type, idt_v, idt_index;
5696
5697 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5698 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5699 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5700
5701 exit_qualification = vmx_get_exit_qual(vcpu);
5702
5703 reason = (u32)exit_qualification >> 30;
5704 if (reason == TASK_SWITCH_GATE && idt_v) {
5705 switch (type) {
5706 case INTR_TYPE_NMI_INTR:
5707 vcpu->arch.nmi_injected = false;
5708 vmx_set_nmi_mask(vcpu, true);
5709 break;
5710 case INTR_TYPE_EXT_INTR:
5711 case INTR_TYPE_SOFT_INTR:
5712 kvm_clear_interrupt_queue(vcpu);
5713 break;
5714 case INTR_TYPE_HARD_EXCEPTION:
5715 if (vmx->idt_vectoring_info &
5716 VECTORING_INFO_DELIVER_CODE_MASK) {
5717 has_error_code = true;
5718 error_code =
5719 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5720 }
5721 fallthrough;
5722 case INTR_TYPE_SOFT_EXCEPTION:
5723 kvm_clear_exception_queue(vcpu);
5724 break;
5725 default:
5726 break;
5727 }
5728 }
5729 tss_selector = exit_qualification;
5730
5731 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5732 type != INTR_TYPE_EXT_INTR &&
5733 type != INTR_TYPE_NMI_INTR))
5734 WARN_ON(!skip_emulated_instruction(vcpu));
5735
5736 /*
5737 * TODO: What about debug traps on tss switch?
5738 * Are we supposed to inject them and update dr6?
5739 */
5740 return kvm_task_switch(vcpu, tss_selector,
5741 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5742 reason, has_error_code, error_code);
5743 }
5744
handle_ept_violation(struct kvm_vcpu * vcpu)5745 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5746 {
5747 unsigned long exit_qualification;
5748 gpa_t gpa;
5749 u64 error_code;
5750
5751 exit_qualification = vmx_get_exit_qual(vcpu);
5752
5753 /*
5754 * EPT violation happened while executing iret from NMI,
5755 * "blocked by NMI" bit has to be set before next VM entry.
5756 * There are errata that may cause this bit to not be set:
5757 * AAK134, BY25.
5758 */
5759 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5760 enable_vnmi &&
5761 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5762 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5763
5764 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5765 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5766
5767 /* Is it a read fault? */
5768 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5769 ? PFERR_USER_MASK : 0;
5770 /* Is it a write fault? */
5771 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5772 ? PFERR_WRITE_MASK : 0;
5773 /* Is it a fetch fault? */
5774 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5775 ? PFERR_FETCH_MASK : 0;
5776 /* ept page table entry is present? */
5777 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5778 ? PFERR_PRESENT_MASK : 0;
5779
5780 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5781 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5782
5783 vcpu->arch.exit_qualification = exit_qualification;
5784
5785 /*
5786 * Check that the GPA doesn't exceed physical memory limits, as that is
5787 * a guest page fault. We have to emulate the instruction here, because
5788 * if the illegal address is that of a paging structure, then
5789 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5790 * would also use advanced VM-exit information for EPT violations to
5791 * reconstruct the page fault error code.
5792 */
5793 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5794 return kvm_emulate_instruction(vcpu, 0);
5795
5796 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5797 }
5798
handle_ept_misconfig(struct kvm_vcpu * vcpu)5799 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5800 {
5801 gpa_t gpa;
5802
5803 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5804 return 1;
5805
5806 /*
5807 * A nested guest cannot optimize MMIO vmexits, because we have an
5808 * nGPA here instead of the required GPA.
5809 */
5810 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5811 if (!is_guest_mode(vcpu) &&
5812 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5813 trace_kvm_fast_mmio(gpa);
5814 return kvm_skip_emulated_instruction(vcpu);
5815 }
5816
5817 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5818 }
5819
handle_nmi_window(struct kvm_vcpu * vcpu)5820 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5821 {
5822 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5823 return -EIO;
5824
5825 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5826 ++vcpu->stat.nmi_window_exits;
5827 kvm_make_request(KVM_REQ_EVENT, vcpu);
5828
5829 return 1;
5830 }
5831
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5832 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5833 {
5834 struct vcpu_vmx *vmx = to_vmx(vcpu);
5835
5836 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5837 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5838 }
5839
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5840 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5841 {
5842 struct vcpu_vmx *vmx = to_vmx(vcpu);
5843 bool intr_window_requested;
5844 unsigned count = 130;
5845
5846 intr_window_requested = exec_controls_get(vmx) &
5847 CPU_BASED_INTR_WINDOW_EXITING;
5848
5849 while (vmx->emulation_required && count-- != 0) {
5850 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5851 return handle_interrupt_window(&vmx->vcpu);
5852
5853 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5854 return 1;
5855
5856 if (!kvm_emulate_instruction(vcpu, 0))
5857 return 0;
5858
5859 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5860 kvm_prepare_emulation_failure_exit(vcpu);
5861 return 0;
5862 }
5863
5864 if (vcpu->arch.halt_request) {
5865 vcpu->arch.halt_request = 0;
5866 return kvm_emulate_halt_noskip(vcpu);
5867 }
5868
5869 /*
5870 * Note, return 1 and not 0, vcpu_run() will invoke
5871 * xfer_to_guest_mode() which will create a proper return
5872 * code.
5873 */
5874 if (__xfer_to_guest_mode_work_pending())
5875 return 1;
5876 }
5877
5878 return 1;
5879 }
5880
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5881 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5882 {
5883 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5884 kvm_prepare_emulation_failure_exit(vcpu);
5885 return 0;
5886 }
5887
5888 return 1;
5889 }
5890
grow_ple_window(struct kvm_vcpu * vcpu)5891 static void grow_ple_window(struct kvm_vcpu *vcpu)
5892 {
5893 struct vcpu_vmx *vmx = to_vmx(vcpu);
5894 unsigned int old = vmx->ple_window;
5895
5896 vmx->ple_window = __grow_ple_window(old, ple_window,
5897 ple_window_grow,
5898 ple_window_max);
5899
5900 if (vmx->ple_window != old) {
5901 vmx->ple_window_dirty = true;
5902 trace_kvm_ple_window_update(vcpu->vcpu_id,
5903 vmx->ple_window, old);
5904 }
5905 }
5906
shrink_ple_window(struct kvm_vcpu * vcpu)5907 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5908 {
5909 struct vcpu_vmx *vmx = to_vmx(vcpu);
5910 unsigned int old = vmx->ple_window;
5911
5912 vmx->ple_window = __shrink_ple_window(old, ple_window,
5913 ple_window_shrink,
5914 ple_window);
5915
5916 if (vmx->ple_window != old) {
5917 vmx->ple_window_dirty = true;
5918 trace_kvm_ple_window_update(vcpu->vcpu_id,
5919 vmx->ple_window, old);
5920 }
5921 }
5922
5923 /*
5924 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5925 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5926 */
handle_pause(struct kvm_vcpu * vcpu)5927 static int handle_pause(struct kvm_vcpu *vcpu)
5928 {
5929 if (!kvm_pause_in_guest(vcpu->kvm))
5930 grow_ple_window(vcpu);
5931
5932 /*
5933 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5934 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5935 * never set PAUSE_EXITING and just set PLE if supported,
5936 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5937 */
5938 kvm_vcpu_on_spin(vcpu, true);
5939 return kvm_skip_emulated_instruction(vcpu);
5940 }
5941
handle_monitor_trap(struct kvm_vcpu * vcpu)5942 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5943 {
5944 return 1;
5945 }
5946
handle_invpcid(struct kvm_vcpu * vcpu)5947 static int handle_invpcid(struct kvm_vcpu *vcpu)
5948 {
5949 u32 vmx_instruction_info;
5950 unsigned long type;
5951 gva_t gva;
5952 struct {
5953 u64 pcid;
5954 u64 gla;
5955 } operand;
5956 int gpr_index;
5957
5958 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5959 kvm_queue_exception(vcpu, UD_VECTOR);
5960 return 1;
5961 }
5962
5963 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5964 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5965 type = kvm_register_read(vcpu, gpr_index);
5966
5967 /* According to the Intel instruction reference, the memory operand
5968 * is read even if it isn't needed (e.g., for type==all)
5969 */
5970 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5971 vmx_instruction_info, false,
5972 sizeof(operand), &gva))
5973 return 1;
5974
5975 return kvm_handle_invpcid(vcpu, type, gva);
5976 }
5977
handle_pml_full(struct kvm_vcpu * vcpu)5978 static int handle_pml_full(struct kvm_vcpu *vcpu)
5979 {
5980 unsigned long exit_qualification;
5981
5982 trace_kvm_pml_full(vcpu->vcpu_id);
5983
5984 exit_qualification = vmx_get_exit_qual(vcpu);
5985
5986 /*
5987 * PML buffer FULL happened while executing iret from NMI,
5988 * "blocked by NMI" bit has to be set before next VM entry.
5989 */
5990 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5991 enable_vnmi &&
5992 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5993 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5994 GUEST_INTR_STATE_NMI);
5995
5996 /*
5997 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5998 * here.., and there's no userspace involvement needed for PML.
5999 */
6000 return 1;
6001 }
6002
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)6003 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
6004 {
6005 struct vcpu_vmx *vmx = to_vmx(vcpu);
6006
6007 if (!vmx->req_immediate_exit &&
6008 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6009 kvm_lapic_expired_hv_timer(vcpu);
6010 return EXIT_FASTPATH_REENTER_GUEST;
6011 }
6012
6013 return EXIT_FASTPATH_NONE;
6014 }
6015
handle_preemption_timer(struct kvm_vcpu * vcpu)6016 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6017 {
6018 handle_fastpath_preemption_timer(vcpu);
6019 return 1;
6020 }
6021
6022 /*
6023 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6024 * are overwritten by nested_vmx_setup() when nested=1.
6025 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6026 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6027 {
6028 kvm_queue_exception(vcpu, UD_VECTOR);
6029 return 1;
6030 }
6031
6032 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6033 static int handle_encls(struct kvm_vcpu *vcpu)
6034 {
6035 /*
6036 * SGX virtualization is disabled. There is no software enable bit for
6037 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6038 * the guest from executing ENCLS (when SGX is supported by hardware).
6039 */
6040 kvm_queue_exception(vcpu, UD_VECTOR);
6041 return 1;
6042 }
6043 #endif /* CONFIG_X86_SGX_KVM */
6044
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6045 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6046 {
6047 /*
6048 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6049 * VM-Exits. Unconditionally set the flag here and leave the handling to
6050 * vmx_handle_exit().
6051 */
6052 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6053 return 1;
6054 }
6055
handle_notify(struct kvm_vcpu * vcpu)6056 static int handle_notify(struct kvm_vcpu *vcpu)
6057 {
6058 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6059 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6060
6061 ++vcpu->stat.notify_window_exits;
6062
6063 /*
6064 * Notify VM exit happened while executing iret from NMI,
6065 * "blocked by NMI" bit has to be set before next VM entry.
6066 */
6067 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6068 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6069 GUEST_INTR_STATE_NMI);
6070
6071 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6072 context_invalid) {
6073 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6074 vcpu->run->notify.flags = context_invalid ?
6075 KVM_NOTIFY_CONTEXT_INVALID : 0;
6076 return 0;
6077 }
6078
6079 return 1;
6080 }
6081
6082 /*
6083 * The exit handlers return 1 if the exit was handled fully and guest execution
6084 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6085 * to be done to userspace and return 0.
6086 */
6087 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6088 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6089 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6090 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6091 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6092 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6093 [EXIT_REASON_CR_ACCESS] = handle_cr,
6094 [EXIT_REASON_DR_ACCESS] = handle_dr,
6095 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6096 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6097 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6098 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6099 [EXIT_REASON_HLT] = kvm_emulate_halt,
6100 [EXIT_REASON_INVD] = kvm_emulate_invd,
6101 [EXIT_REASON_INVLPG] = handle_invlpg,
6102 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6103 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6104 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6105 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6106 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6107 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6108 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6109 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6110 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6111 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6112 [EXIT_REASON_VMON] = handle_vmx_instruction,
6113 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6114 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6115 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6116 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6117 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6118 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6119 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6120 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6121 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6122 [EXIT_REASON_LDTR_TR] = handle_desc,
6123 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6124 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6125 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6126 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6127 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6128 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6129 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6130 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6131 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6132 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6133 [EXIT_REASON_PML_FULL] = handle_pml_full,
6134 [EXIT_REASON_INVPCID] = handle_invpcid,
6135 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6136 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6137 [EXIT_REASON_ENCLS] = handle_encls,
6138 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6139 [EXIT_REASON_NOTIFY] = handle_notify,
6140 };
6141
6142 static const int kvm_vmx_max_exit_handlers =
6143 ARRAY_SIZE(kvm_vmx_exit_handlers);
6144
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6145 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6146 u64 *info1, u64 *info2,
6147 u32 *intr_info, u32 *error_code)
6148 {
6149 struct vcpu_vmx *vmx = to_vmx(vcpu);
6150
6151 *reason = vmx->exit_reason.full;
6152 *info1 = vmx_get_exit_qual(vcpu);
6153 if (!(vmx->exit_reason.failed_vmentry)) {
6154 *info2 = vmx->idt_vectoring_info;
6155 *intr_info = vmx_get_intr_info(vcpu);
6156 if (is_exception_with_error_code(*intr_info))
6157 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6158 else
6159 *error_code = 0;
6160 } else {
6161 *info2 = 0;
6162 *intr_info = 0;
6163 *error_code = 0;
6164 }
6165 }
6166
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6167 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6168 {
6169 if (vmx->pml_pg) {
6170 __free_page(vmx->pml_pg);
6171 vmx->pml_pg = NULL;
6172 }
6173 }
6174
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6175 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6176 {
6177 struct vcpu_vmx *vmx = to_vmx(vcpu);
6178 u64 *pml_buf;
6179 u16 pml_idx;
6180
6181 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6182
6183 /* Do nothing if PML buffer is empty */
6184 if (pml_idx == (PML_ENTITY_NUM - 1))
6185 return;
6186
6187 /* PML index always points to next available PML buffer entity */
6188 if (pml_idx >= PML_ENTITY_NUM)
6189 pml_idx = 0;
6190 else
6191 pml_idx++;
6192
6193 pml_buf = page_address(vmx->pml_pg);
6194 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6195 u64 gpa;
6196
6197 gpa = pml_buf[pml_idx];
6198 WARN_ON(gpa & (PAGE_SIZE - 1));
6199 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6200 }
6201
6202 /* reset PML index */
6203 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6204 }
6205
vmx_dump_sel(char * name,uint32_t sel)6206 static void vmx_dump_sel(char *name, uint32_t sel)
6207 {
6208 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6209 name, vmcs_read16(sel),
6210 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6211 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6212 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6213 }
6214
vmx_dump_dtsel(char * name,uint32_t limit)6215 static void vmx_dump_dtsel(char *name, uint32_t limit)
6216 {
6217 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6218 name, vmcs_read32(limit),
6219 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6220 }
6221
vmx_dump_msrs(char * name,struct vmx_msrs * m)6222 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6223 {
6224 unsigned int i;
6225 struct vmx_msr_entry *e;
6226
6227 pr_err("MSR %s:\n", name);
6228 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6229 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6230 }
6231
dump_vmcs(struct kvm_vcpu * vcpu)6232 void dump_vmcs(struct kvm_vcpu *vcpu)
6233 {
6234 struct vcpu_vmx *vmx = to_vmx(vcpu);
6235 u32 vmentry_ctl, vmexit_ctl;
6236 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6237 u64 tertiary_exec_control;
6238 unsigned long cr4;
6239 int efer_slot;
6240
6241 if (!dump_invalid_vmcs) {
6242 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6243 return;
6244 }
6245
6246 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6247 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6248 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6249 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6250 cr4 = vmcs_readl(GUEST_CR4);
6251
6252 if (cpu_has_secondary_exec_ctrls())
6253 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6254 else
6255 secondary_exec_control = 0;
6256
6257 if (cpu_has_tertiary_exec_ctrls())
6258 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6259 else
6260 tertiary_exec_control = 0;
6261
6262 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6263 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6264 pr_err("*** Guest State ***\n");
6265 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6266 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6267 vmcs_readl(CR0_GUEST_HOST_MASK));
6268 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6269 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6270 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6271 if (cpu_has_vmx_ept()) {
6272 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6273 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6274 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6275 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6276 }
6277 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6278 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6279 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6280 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6281 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6282 vmcs_readl(GUEST_SYSENTER_ESP),
6283 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6284 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6285 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6286 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6287 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6288 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6289 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6290 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6291 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6292 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6293 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6294 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6295 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6296 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6297 else if (efer_slot >= 0)
6298 pr_err("EFER= 0x%016llx (autoload)\n",
6299 vmx->msr_autoload.guest.val[efer_slot].value);
6300 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6301 pr_err("EFER= 0x%016llx (effective)\n",
6302 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6303 else
6304 pr_err("EFER= 0x%016llx (effective)\n",
6305 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6306 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6307 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6308 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6309 vmcs_read64(GUEST_IA32_DEBUGCTL),
6310 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6311 if (cpu_has_load_perf_global_ctrl() &&
6312 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6313 pr_err("PerfGlobCtl = 0x%016llx\n",
6314 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6315 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6316 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6317 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6318 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6319 vmcs_read32(GUEST_ACTIVITY_STATE));
6320 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6321 pr_err("InterruptStatus = %04x\n",
6322 vmcs_read16(GUEST_INTR_STATUS));
6323 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6324 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6325 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6326 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6327
6328 pr_err("*** Host State ***\n");
6329 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6330 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6331 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6332 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6333 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6334 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6335 vmcs_read16(HOST_TR_SELECTOR));
6336 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6337 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6338 vmcs_readl(HOST_TR_BASE));
6339 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6340 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6341 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6342 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6343 vmcs_readl(HOST_CR4));
6344 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6345 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6346 vmcs_read32(HOST_IA32_SYSENTER_CS),
6347 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6348 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6349 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6350 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6351 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6352 if (cpu_has_load_perf_global_ctrl() &&
6353 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6354 pr_err("PerfGlobCtl = 0x%016llx\n",
6355 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6356 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6357 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6358
6359 pr_err("*** Control State ***\n");
6360 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6361 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6362 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6363 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6364 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6365 vmcs_read32(EXCEPTION_BITMAP),
6366 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6367 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6368 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6369 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6370 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6371 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6372 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6373 vmcs_read32(VM_EXIT_INTR_INFO),
6374 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6375 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6376 pr_err(" reason=%08x qualification=%016lx\n",
6377 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6378 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6379 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6380 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6381 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6382 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6383 pr_err("TSC Multiplier = 0x%016llx\n",
6384 vmcs_read64(TSC_MULTIPLIER));
6385 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6386 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6387 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6388 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6389 }
6390 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6391 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6392 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6393 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6394 }
6395 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6396 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6397 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6398 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6399 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6400 pr_err("PLE Gap=%08x Window=%08x\n",
6401 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6402 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6403 pr_err("Virtual processor ID = 0x%04x\n",
6404 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6405 }
6406
6407 /*
6408 * The guest has exited. See if we can fix it or if we need userspace
6409 * assistance.
6410 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6411 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6412 {
6413 struct vcpu_vmx *vmx = to_vmx(vcpu);
6414 union vmx_exit_reason exit_reason = vmx->exit_reason;
6415 u32 vectoring_info = vmx->idt_vectoring_info;
6416 u16 exit_handler_index;
6417
6418 /*
6419 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6420 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6421 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6422 * mode as if vcpus is in root mode, the PML buffer must has been
6423 * flushed already. Note, PML is never enabled in hardware while
6424 * running L2.
6425 */
6426 if (enable_pml && !is_guest_mode(vcpu))
6427 vmx_flush_pml_buffer(vcpu);
6428
6429 /*
6430 * KVM should never reach this point with a pending nested VM-Enter.
6431 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6432 * invalid guest state should never happen as that means KVM knowingly
6433 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6434 */
6435 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6436 return -EIO;
6437
6438 if (is_guest_mode(vcpu)) {
6439 /*
6440 * PML is never enabled when running L2, bail immediately if a
6441 * PML full exit occurs as something is horribly wrong.
6442 */
6443 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6444 goto unexpected_vmexit;
6445
6446 /*
6447 * The host physical addresses of some pages of guest memory
6448 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6449 * Page). The CPU may write to these pages via their host
6450 * physical address while L2 is running, bypassing any
6451 * address-translation-based dirty tracking (e.g. EPT write
6452 * protection).
6453 *
6454 * Mark them dirty on every exit from L2 to prevent them from
6455 * getting out of sync with dirty tracking.
6456 */
6457 nested_mark_vmcs12_pages_dirty(vcpu);
6458
6459 /*
6460 * Synthesize a triple fault if L2 state is invalid. In normal
6461 * operation, nested VM-Enter rejects any attempt to enter L2
6462 * with invalid state. However, those checks are skipped if
6463 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6464 * L2 state is invalid, it means either L1 modified SMRAM state
6465 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6466 * doing so is architecturally allowed in the RSM case, and is
6467 * the least awful solution for the userspace case without
6468 * risking false positives.
6469 */
6470 if (vmx->emulation_required) {
6471 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6472 return 1;
6473 }
6474
6475 if (nested_vmx_reflect_vmexit(vcpu))
6476 return 1;
6477 }
6478
6479 /* If guest state is invalid, start emulating. L2 is handled above. */
6480 if (vmx->emulation_required)
6481 return handle_invalid_guest_state(vcpu);
6482
6483 if (exit_reason.failed_vmentry) {
6484 dump_vmcs(vcpu);
6485 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6486 vcpu->run->fail_entry.hardware_entry_failure_reason
6487 = exit_reason.full;
6488 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6489 return 0;
6490 }
6491
6492 if (unlikely(vmx->fail)) {
6493 dump_vmcs(vcpu);
6494 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6495 vcpu->run->fail_entry.hardware_entry_failure_reason
6496 = vmcs_read32(VM_INSTRUCTION_ERROR);
6497 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6498 return 0;
6499 }
6500
6501 /*
6502 * Note:
6503 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6504 * delivery event since it indicates guest is accessing MMIO.
6505 * The vm-exit can be triggered again after return to guest that
6506 * will cause infinite loop.
6507 */
6508 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6509 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6510 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6511 exit_reason.basic != EXIT_REASON_PML_FULL &&
6512 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6513 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6514 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6515 int ndata = 3;
6516
6517 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6518 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6519 vcpu->run->internal.data[0] = vectoring_info;
6520 vcpu->run->internal.data[1] = exit_reason.full;
6521 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6522 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6523 vcpu->run->internal.data[ndata++] =
6524 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6525 }
6526 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6527 vcpu->run->internal.ndata = ndata;
6528 return 0;
6529 }
6530
6531 if (unlikely(!enable_vnmi &&
6532 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6533 if (!vmx_interrupt_blocked(vcpu)) {
6534 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6535 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6536 vcpu->arch.nmi_pending) {
6537 /*
6538 * This CPU don't support us in finding the end of an
6539 * NMI-blocked window if the guest runs with IRQs
6540 * disabled. So we pull the trigger after 1 s of
6541 * futile waiting, but inform the user about this.
6542 */
6543 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6544 "state on VCPU %d after 1 s timeout\n",
6545 __func__, vcpu->vcpu_id);
6546 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6547 }
6548 }
6549
6550 if (exit_fastpath != EXIT_FASTPATH_NONE)
6551 return 1;
6552
6553 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6554 goto unexpected_vmexit;
6555 #ifdef CONFIG_RETPOLINE
6556 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6557 return kvm_emulate_wrmsr(vcpu);
6558 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6559 return handle_preemption_timer(vcpu);
6560 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6561 return handle_interrupt_window(vcpu);
6562 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6563 return handle_external_interrupt(vcpu);
6564 else if (exit_reason.basic == EXIT_REASON_HLT)
6565 return kvm_emulate_halt(vcpu);
6566 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6567 return handle_ept_misconfig(vcpu);
6568 #endif
6569
6570 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6571 kvm_vmx_max_exit_handlers);
6572 if (!kvm_vmx_exit_handlers[exit_handler_index])
6573 goto unexpected_vmexit;
6574
6575 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6576
6577 unexpected_vmexit:
6578 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6579 exit_reason.full);
6580 dump_vmcs(vcpu);
6581 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6582 vcpu->run->internal.suberror =
6583 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6584 vcpu->run->internal.ndata = 2;
6585 vcpu->run->internal.data[0] = exit_reason.full;
6586 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6587 return 0;
6588 }
6589
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6590 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6591 {
6592 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6593
6594 /*
6595 * Exit to user space when bus lock detected to inform that there is
6596 * a bus lock in guest.
6597 */
6598 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6599 if (ret > 0)
6600 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6601
6602 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6603 return 0;
6604 }
6605 return ret;
6606 }
6607
6608 /*
6609 * Software based L1D cache flush which is used when microcode providing
6610 * the cache control MSR is not loaded.
6611 *
6612 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6613 * flush it is required to read in 64 KiB because the replacement algorithm
6614 * is not exactly LRU. This could be sized at runtime via topology
6615 * information but as all relevant affected CPUs have 32KiB L1D cache size
6616 * there is no point in doing so.
6617 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6618 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6619 {
6620 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6621
6622 /*
6623 * This code is only executed when the flush mode is 'cond' or
6624 * 'always'
6625 */
6626 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6627 bool flush_l1d;
6628
6629 /*
6630 * Clear the per-vcpu flush bit, it gets set again
6631 * either from vcpu_run() or from one of the unsafe
6632 * VMEXIT handlers.
6633 */
6634 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6635 vcpu->arch.l1tf_flush_l1d = false;
6636
6637 /*
6638 * Clear the per-cpu flush bit, it gets set again from
6639 * the interrupt handlers.
6640 */
6641 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6642 kvm_clear_cpu_l1tf_flush_l1d();
6643
6644 if (!flush_l1d)
6645 return;
6646 }
6647
6648 vcpu->stat.l1d_flush++;
6649
6650 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6651 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6652 return;
6653 }
6654
6655 asm volatile(
6656 /* First ensure the pages are in the TLB */
6657 "xorl %%eax, %%eax\n"
6658 ".Lpopulate_tlb:\n\t"
6659 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6660 "addl $4096, %%eax\n\t"
6661 "cmpl %%eax, %[size]\n\t"
6662 "jne .Lpopulate_tlb\n\t"
6663 "xorl %%eax, %%eax\n\t"
6664 "cpuid\n\t"
6665 /* Now fill the cache */
6666 "xorl %%eax, %%eax\n"
6667 ".Lfill_cache:\n"
6668 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6669 "addl $64, %%eax\n\t"
6670 "cmpl %%eax, %[size]\n\t"
6671 "jne .Lfill_cache\n\t"
6672 "lfence\n"
6673 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6674 [size] "r" (size)
6675 : "eax", "ebx", "ecx", "edx");
6676 }
6677
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6678 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6679 {
6680 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6681 int tpr_threshold;
6682
6683 if (is_guest_mode(vcpu) &&
6684 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6685 return;
6686
6687 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6688 if (is_guest_mode(vcpu))
6689 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6690 else
6691 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6692 }
6693
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6694 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6695 {
6696 struct vcpu_vmx *vmx = to_vmx(vcpu);
6697 u32 sec_exec_control;
6698
6699 if (!lapic_in_kernel(vcpu))
6700 return;
6701
6702 if (!flexpriority_enabled &&
6703 !cpu_has_vmx_virtualize_x2apic_mode())
6704 return;
6705
6706 /* Postpone execution until vmcs01 is the current VMCS. */
6707 if (is_guest_mode(vcpu)) {
6708 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6709 return;
6710 }
6711
6712 sec_exec_control = secondary_exec_controls_get(vmx);
6713 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6714 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6715
6716 switch (kvm_get_apic_mode(vcpu)) {
6717 case LAPIC_MODE_INVALID:
6718 WARN_ONCE(true, "Invalid local APIC state");
6719 break;
6720 case LAPIC_MODE_DISABLED:
6721 break;
6722 case LAPIC_MODE_XAPIC:
6723 if (flexpriority_enabled) {
6724 sec_exec_control |=
6725 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6726 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6727
6728 /*
6729 * Flush the TLB, reloading the APIC access page will
6730 * only do so if its physical address has changed, but
6731 * the guest may have inserted a non-APIC mapping into
6732 * the TLB while the APIC access page was disabled.
6733 */
6734 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6735 }
6736 break;
6737 case LAPIC_MODE_X2APIC:
6738 if (cpu_has_vmx_virtualize_x2apic_mode())
6739 sec_exec_control |=
6740 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6741 break;
6742 }
6743 secondary_exec_controls_set(vmx, sec_exec_control);
6744
6745 vmx_update_msr_bitmap_x2apic(vcpu);
6746 }
6747
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6748 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6749 {
6750 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6751 struct kvm *kvm = vcpu->kvm;
6752 struct kvm_memslots *slots = kvm_memslots(kvm);
6753 struct kvm_memory_slot *slot;
6754 unsigned long mmu_seq;
6755 kvm_pfn_t pfn;
6756
6757 /* Defer reload until vmcs01 is the current VMCS. */
6758 if (is_guest_mode(vcpu)) {
6759 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6760 return;
6761 }
6762
6763 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6764 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6765 return;
6766
6767 /*
6768 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6769 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6770 * be impossible for userspace to create a memslot for the APIC when
6771 * APICv is enabled, but paranoia won't hurt in this case.
6772 */
6773 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6774 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6775 return;
6776
6777 /*
6778 * Ensure that the mmu_notifier sequence count is read before KVM
6779 * retrieves the pfn from the primary MMU. Note, the memslot is
6780 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6781 * in kvm_mmu_invalidate_end().
6782 */
6783 mmu_seq = kvm->mmu_invalidate_seq;
6784 smp_rmb();
6785
6786 /*
6787 * No need to retry if the memslot does not exist or is invalid. KVM
6788 * controls the APIC-access page memslot, and only deletes the memslot
6789 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6790 */
6791 pfn = gfn_to_pfn_memslot(slot, gfn);
6792 if (is_error_noslot_pfn(pfn))
6793 return;
6794
6795 read_lock(&vcpu->kvm->mmu_lock);
6796 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6797 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6798 read_unlock(&vcpu->kvm->mmu_lock);
6799 goto out;
6800 }
6801
6802 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6803 read_unlock(&vcpu->kvm->mmu_lock);
6804
6805 /*
6806 * No need for a manual TLB flush at this point, KVM has already done a
6807 * flush if there were SPTEs pointing at the previous page.
6808 */
6809 out:
6810 /*
6811 * Do not pin apic access page in memory, the MMU notifier
6812 * will call us again if it is migrated or swapped out.
6813 */
6814 kvm_release_pfn_clean(pfn);
6815 }
6816
vmx_hwapic_isr_update(int max_isr)6817 static void vmx_hwapic_isr_update(int max_isr)
6818 {
6819 u16 status;
6820 u8 old;
6821
6822 if (max_isr == -1)
6823 max_isr = 0;
6824
6825 status = vmcs_read16(GUEST_INTR_STATUS);
6826 old = status >> 8;
6827 if (max_isr != old) {
6828 status &= 0xff;
6829 status |= max_isr << 8;
6830 vmcs_write16(GUEST_INTR_STATUS, status);
6831 }
6832 }
6833
vmx_set_rvi(int vector)6834 static void vmx_set_rvi(int vector)
6835 {
6836 u16 status;
6837 u8 old;
6838
6839 if (vector == -1)
6840 vector = 0;
6841
6842 status = vmcs_read16(GUEST_INTR_STATUS);
6843 old = (u8)status & 0xff;
6844 if ((u8)vector != old) {
6845 status &= ~0xff;
6846 status |= (u8)vector;
6847 vmcs_write16(GUEST_INTR_STATUS, status);
6848 }
6849 }
6850
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6851 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6852 {
6853 /*
6854 * When running L2, updating RVI is only relevant when
6855 * vmcs12 virtual-interrupt-delivery enabled.
6856 * However, it can be enabled only when L1 also
6857 * intercepts external-interrupts and in that case
6858 * we should not update vmcs02 RVI but instead intercept
6859 * interrupt. Therefore, do nothing when running L2.
6860 */
6861 if (!is_guest_mode(vcpu))
6862 vmx_set_rvi(max_irr);
6863 }
6864
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6865 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6866 {
6867 struct vcpu_vmx *vmx = to_vmx(vcpu);
6868 int max_irr;
6869 bool got_posted_interrupt;
6870
6871 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6872 return -EIO;
6873
6874 if (pi_test_on(&vmx->pi_desc)) {
6875 pi_clear_on(&vmx->pi_desc);
6876 /*
6877 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6878 * But on x86 this is just a compiler barrier anyway.
6879 */
6880 smp_mb__after_atomic();
6881 got_posted_interrupt =
6882 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6883 } else {
6884 max_irr = kvm_lapic_find_highest_irr(vcpu);
6885 got_posted_interrupt = false;
6886 }
6887
6888 /*
6889 * Newly recognized interrupts are injected via either virtual interrupt
6890 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6891 * disabled in two cases:
6892 *
6893 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6894 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6895 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6896 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6897 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6898 *
6899 * 2) If APICv is disabled for this vCPU, assigned devices may still
6900 * attempt to post interrupts. The posted interrupt vector will cause
6901 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6902 */
6903 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6904 vmx_set_rvi(max_irr);
6905 else if (got_posted_interrupt)
6906 kvm_make_request(KVM_REQ_EVENT, vcpu);
6907
6908 return max_irr;
6909 }
6910
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6911 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6912 {
6913 if (!kvm_vcpu_apicv_active(vcpu))
6914 return;
6915
6916 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6917 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6918 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6919 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6920 }
6921
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)6922 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6923 {
6924 struct vcpu_vmx *vmx = to_vmx(vcpu);
6925
6926 pi_clear_on(&vmx->pi_desc);
6927 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6928 }
6929
6930 void vmx_do_interrupt_irqoff(unsigned long entry);
6931 void vmx_do_nmi_irqoff(void);
6932
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6933 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6934 {
6935 /*
6936 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6937 * MSR value is not clobbered by the host activity before the guest
6938 * has chance to consume it.
6939 *
6940 * Do not blindly read xfd_err here, since this exception might
6941 * be caused by L1 interception on a platform which doesn't
6942 * support xfd at all.
6943 *
6944 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6945 * only when xfd contains a non-zero value.
6946 *
6947 * Queuing exception is done in vmx_handle_exit. See comment there.
6948 */
6949 if (vcpu->arch.guest_fpu.fpstate->xfd)
6950 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6951 }
6952
handle_exception_irqoff(struct vcpu_vmx * vmx)6953 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6954 {
6955 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6956
6957 /* if exit due to PF check for async PF */
6958 if (is_page_fault(intr_info))
6959 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6960 /* if exit due to NM, handle before interrupts are enabled */
6961 else if (is_nm_fault(intr_info))
6962 handle_nm_fault_irqoff(&vmx->vcpu);
6963 /* Handle machine checks before interrupts are enabled */
6964 else if (is_machine_check(intr_info))
6965 kvm_machine_check();
6966 }
6967
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6968 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6969 {
6970 u32 intr_info = vmx_get_intr_info(vcpu);
6971 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6972 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6973
6974 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6975 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6976 return;
6977
6978 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6979 vmx_do_interrupt_irqoff(gate_offset(desc));
6980 kvm_after_interrupt(vcpu);
6981
6982 vcpu->arch.at_instruction_boundary = true;
6983 }
6984
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6985 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6986 {
6987 struct vcpu_vmx *vmx = to_vmx(vcpu);
6988
6989 if (vmx->emulation_required)
6990 return;
6991
6992 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6993 handle_external_interrupt_irqoff(vcpu);
6994 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6995 handle_exception_irqoff(vmx);
6996 }
6997
6998 /*
6999 * The kvm parameter can be NULL (module initialization, or invocation before
7000 * VM creation). Be sure to check the kvm parameter before using it.
7001 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7002 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7003 {
7004 switch (index) {
7005 case MSR_IA32_SMBASE:
7006 if (!IS_ENABLED(CONFIG_KVM_SMM))
7007 return false;
7008 /*
7009 * We cannot do SMM unless we can run the guest in big
7010 * real mode.
7011 */
7012 return enable_unrestricted_guest || emulate_invalid_guest_state;
7013 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7014 return nested;
7015 case MSR_AMD64_VIRT_SPEC_CTRL:
7016 case MSR_AMD64_TSC_RATIO:
7017 /* This is AMD only. */
7018 return false;
7019 default:
7020 return true;
7021 }
7022 }
7023
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7024 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7025 {
7026 u32 exit_intr_info;
7027 bool unblock_nmi;
7028 u8 vector;
7029 bool idtv_info_valid;
7030
7031 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7032
7033 if (enable_vnmi) {
7034 if (vmx->loaded_vmcs->nmi_known_unmasked)
7035 return;
7036
7037 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7038 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7039 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7040 /*
7041 * SDM 3: 27.7.1.2 (September 2008)
7042 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7043 * a guest IRET fault.
7044 * SDM 3: 23.2.2 (September 2008)
7045 * Bit 12 is undefined in any of the following cases:
7046 * If the VM exit sets the valid bit in the IDT-vectoring
7047 * information field.
7048 * If the VM exit is due to a double fault.
7049 */
7050 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7051 vector != DF_VECTOR && !idtv_info_valid)
7052 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7053 GUEST_INTR_STATE_NMI);
7054 else
7055 vmx->loaded_vmcs->nmi_known_unmasked =
7056 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7057 & GUEST_INTR_STATE_NMI);
7058 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7059 vmx->loaded_vmcs->vnmi_blocked_time +=
7060 ktime_to_ns(ktime_sub(ktime_get(),
7061 vmx->loaded_vmcs->entry_time));
7062 }
7063
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7064 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7065 u32 idt_vectoring_info,
7066 int instr_len_field,
7067 int error_code_field)
7068 {
7069 u8 vector;
7070 int type;
7071 bool idtv_info_valid;
7072
7073 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7074
7075 vcpu->arch.nmi_injected = false;
7076 kvm_clear_exception_queue(vcpu);
7077 kvm_clear_interrupt_queue(vcpu);
7078
7079 if (!idtv_info_valid)
7080 return;
7081
7082 kvm_make_request(KVM_REQ_EVENT, vcpu);
7083
7084 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7085 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7086
7087 switch (type) {
7088 case INTR_TYPE_NMI_INTR:
7089 vcpu->arch.nmi_injected = true;
7090 /*
7091 * SDM 3: 27.7.1.2 (September 2008)
7092 * Clear bit "block by NMI" before VM entry if a NMI
7093 * delivery faulted.
7094 */
7095 vmx_set_nmi_mask(vcpu, false);
7096 break;
7097 case INTR_TYPE_SOFT_EXCEPTION:
7098 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7099 fallthrough;
7100 case INTR_TYPE_HARD_EXCEPTION:
7101 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7102 u32 err = vmcs_read32(error_code_field);
7103 kvm_requeue_exception_e(vcpu, vector, err);
7104 } else
7105 kvm_requeue_exception(vcpu, vector);
7106 break;
7107 case INTR_TYPE_SOFT_INTR:
7108 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7109 fallthrough;
7110 case INTR_TYPE_EXT_INTR:
7111 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7112 break;
7113 default:
7114 break;
7115 }
7116 }
7117
vmx_complete_interrupts(struct vcpu_vmx * vmx)7118 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7119 {
7120 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7121 VM_EXIT_INSTRUCTION_LEN,
7122 IDT_VECTORING_ERROR_CODE);
7123 }
7124
vmx_cancel_injection(struct kvm_vcpu * vcpu)7125 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7126 {
7127 __vmx_complete_interrupts(vcpu,
7128 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7129 VM_ENTRY_INSTRUCTION_LEN,
7130 VM_ENTRY_EXCEPTION_ERROR_CODE);
7131
7132 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7133 }
7134
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7135 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7136 {
7137 int i, nr_msrs;
7138 struct perf_guest_switch_msr *msrs;
7139 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7140
7141 pmu->host_cross_mapped_mask = 0;
7142 if (pmu->pebs_enable & pmu->global_ctrl)
7143 intel_pmu_cross_mapped_check(pmu);
7144
7145 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7146 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7147 if (!msrs)
7148 return;
7149
7150 for (i = 0; i < nr_msrs; i++)
7151 if (msrs[i].host == msrs[i].guest)
7152 clear_atomic_switch_msr(vmx, msrs[i].msr);
7153 else
7154 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7155 msrs[i].host, false);
7156 }
7157
vmx_update_hv_timer(struct kvm_vcpu * vcpu)7158 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7159 {
7160 struct vcpu_vmx *vmx = to_vmx(vcpu);
7161 u64 tscl;
7162 u32 delta_tsc;
7163
7164 if (vmx->req_immediate_exit) {
7165 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7166 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7167 } else if (vmx->hv_deadline_tsc != -1) {
7168 tscl = rdtsc();
7169 if (vmx->hv_deadline_tsc > tscl)
7170 /* set_hv_timer ensures the delta fits in 32-bits */
7171 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7172 cpu_preemption_timer_multi);
7173 else
7174 delta_tsc = 0;
7175
7176 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7177 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7178 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7179 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7180 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7181 }
7182 }
7183
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7184 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7185 {
7186 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7187 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7188 vmcs_writel(HOST_RSP, host_rsp);
7189 }
7190 }
7191
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7192 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7193 unsigned int flags)
7194 {
7195 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7196
7197 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7198 return;
7199
7200 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7201 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7202
7203 /*
7204 * If the guest/host SPEC_CTRL values differ, restore the host value.
7205 *
7206 * For legacy IBRS, the IBRS bit always needs to be written after
7207 * transitioning from a less privileged predictor mode, regardless of
7208 * whether the guest/host values differ.
7209 */
7210 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7211 vmx->spec_ctrl != hostval)
7212 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7213
7214 barrier_nospec();
7215 }
7216
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7217 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7218 {
7219 switch (to_vmx(vcpu)->exit_reason.basic) {
7220 case EXIT_REASON_MSR_WRITE:
7221 return handle_fastpath_set_msr_irqoff(vcpu);
7222 case EXIT_REASON_PREEMPTION_TIMER:
7223 return handle_fastpath_preemption_timer(vcpu);
7224 default:
7225 return EXIT_FASTPATH_NONE;
7226 }
7227 }
7228
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7229 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7230 unsigned int flags)
7231 {
7232 struct vcpu_vmx *vmx = to_vmx(vcpu);
7233
7234 guest_state_enter_irqoff();
7235
7236 /*
7237 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7238 * mitigation for MDS is done late in VMentry and is still
7239 * executed in spite of L1D Flush. This is because an extra VERW
7240 * should not matter much after the big hammer L1D Flush.
7241 */
7242 if (static_branch_unlikely(&vmx_l1d_should_flush))
7243 vmx_l1d_flush(vcpu);
7244 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7245 kvm_arch_has_assigned_device(vcpu->kvm))
7246 mds_clear_cpu_buffers();
7247
7248 vmx_disable_fb_clear(vmx);
7249
7250 if (vcpu->arch.cr2 != native_read_cr2())
7251 native_write_cr2(vcpu->arch.cr2);
7252
7253 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7254 flags);
7255
7256 vcpu->arch.cr2 = native_read_cr2();
7257 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7258
7259 vmx->idt_vectoring_info = 0;
7260
7261 vmx_enable_fb_clear(vmx);
7262
7263 if (unlikely(vmx->fail)) {
7264 vmx->exit_reason.full = 0xdead;
7265 goto out;
7266 }
7267
7268 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7269 if (likely(!vmx->exit_reason.failed_vmentry))
7270 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7271
7272 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7273 is_nmi(vmx_get_intr_info(vcpu))) {
7274 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7275 vmx_do_nmi_irqoff();
7276 kvm_after_interrupt(vcpu);
7277 }
7278
7279 out:
7280 guest_state_exit_irqoff();
7281 }
7282
vmx_vcpu_run(struct kvm_vcpu * vcpu)7283 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7284 {
7285 struct vcpu_vmx *vmx = to_vmx(vcpu);
7286 unsigned long cr3, cr4;
7287
7288 /* Record the guest's net vcpu time for enforced NMI injections. */
7289 if (unlikely(!enable_vnmi &&
7290 vmx->loaded_vmcs->soft_vnmi_blocked))
7291 vmx->loaded_vmcs->entry_time = ktime_get();
7292
7293 /*
7294 * Don't enter VMX if guest state is invalid, let the exit handler
7295 * start emulation until we arrive back to a valid state. Synthesize a
7296 * consistency check VM-Exit due to invalid guest state and bail.
7297 */
7298 if (unlikely(vmx->emulation_required)) {
7299 vmx->fail = 0;
7300
7301 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7302 vmx->exit_reason.failed_vmentry = 1;
7303 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7304 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7305 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7306 vmx->exit_intr_info = 0;
7307 return EXIT_FASTPATH_NONE;
7308 }
7309
7310 trace_kvm_entry(vcpu);
7311
7312 if (vmx->ple_window_dirty) {
7313 vmx->ple_window_dirty = false;
7314 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7315 }
7316
7317 /*
7318 * We did this in prepare_switch_to_guest, because it needs to
7319 * be within srcu_read_lock.
7320 */
7321 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7322
7323 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7324 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7325 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7326 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7327 vcpu->arch.regs_dirty = 0;
7328
7329 /*
7330 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7331 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7332 * it switches back to the current->mm, which can occur in KVM context
7333 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7334 * toggles a static key while handling a VM-Exit.
7335 */
7336 cr3 = __get_current_cr3_fast();
7337 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7338 vmcs_writel(HOST_CR3, cr3);
7339 vmx->loaded_vmcs->host_state.cr3 = cr3;
7340 }
7341
7342 cr4 = cr4_read_shadow();
7343 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7344 vmcs_writel(HOST_CR4, cr4);
7345 vmx->loaded_vmcs->host_state.cr4 = cr4;
7346 }
7347
7348 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7349 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7350 set_debugreg(vcpu->arch.dr6, 6);
7351
7352 /* When single-stepping over STI and MOV SS, we must clear the
7353 * corresponding interruptibility bits in the guest state. Otherwise
7354 * vmentry fails as it then expects bit 14 (BS) in pending debug
7355 * exceptions being set, but that's not correct for the guest debugging
7356 * case. */
7357 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7358 vmx_set_interrupt_shadow(vcpu, 0);
7359
7360 kvm_load_guest_xsave_state(vcpu);
7361
7362 pt_guest_enter(vmx);
7363
7364 atomic_switch_perf_msrs(vmx);
7365 if (intel_pmu_lbr_is_enabled(vcpu))
7366 vmx_passthrough_lbr_msrs(vcpu);
7367
7368 if (enable_preemption_timer)
7369 vmx_update_hv_timer(vcpu);
7370
7371 kvm_wait_lapic_expire(vcpu);
7372
7373 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7374 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7375
7376 /* All fields are clean at this point */
7377 if (kvm_is_using_evmcs()) {
7378 current_evmcs->hv_clean_fields |=
7379 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7380
7381 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7382 }
7383
7384 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7385 if (vmx->host_debugctlmsr)
7386 update_debugctlmsr(vmx->host_debugctlmsr);
7387
7388 #ifndef CONFIG_X86_64
7389 /*
7390 * The sysexit path does not restore ds/es, so we must set them to
7391 * a reasonable value ourselves.
7392 *
7393 * We can't defer this to vmx_prepare_switch_to_host() since that
7394 * function may be executed in interrupt context, which saves and
7395 * restore segments around it, nullifying its effect.
7396 */
7397 loadsegment(ds, __USER_DS);
7398 loadsegment(es, __USER_DS);
7399 #endif
7400
7401 pt_guest_exit(vmx);
7402
7403 kvm_load_host_xsave_state(vcpu);
7404
7405 if (is_guest_mode(vcpu)) {
7406 /*
7407 * Track VMLAUNCH/VMRESUME that have made past guest state
7408 * checking.
7409 */
7410 if (vmx->nested.nested_run_pending &&
7411 !vmx->exit_reason.failed_vmentry)
7412 ++vcpu->stat.nested_run;
7413
7414 vmx->nested.nested_run_pending = 0;
7415 }
7416
7417 if (unlikely(vmx->fail))
7418 return EXIT_FASTPATH_NONE;
7419
7420 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7421 kvm_machine_check();
7422
7423 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7424
7425 if (unlikely(vmx->exit_reason.failed_vmentry))
7426 return EXIT_FASTPATH_NONE;
7427
7428 vmx->loaded_vmcs->launched = 1;
7429
7430 vmx_recover_nmi_blocking(vmx);
7431 vmx_complete_interrupts(vmx);
7432
7433 if (is_guest_mode(vcpu))
7434 return EXIT_FASTPATH_NONE;
7435
7436 return vmx_exit_handlers_fastpath(vcpu);
7437 }
7438
vmx_vcpu_free(struct kvm_vcpu * vcpu)7439 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7440 {
7441 struct vcpu_vmx *vmx = to_vmx(vcpu);
7442
7443 if (enable_pml)
7444 vmx_destroy_pml_buffer(vmx);
7445 free_vpid(vmx->vpid);
7446 nested_vmx_free_vcpu(vcpu);
7447 free_loaded_vmcs(vmx->loaded_vmcs);
7448 }
7449
vmx_vcpu_create(struct kvm_vcpu * vcpu)7450 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7451 {
7452 struct vmx_uret_msr *tsx_ctrl;
7453 struct vcpu_vmx *vmx;
7454 int i, err;
7455
7456 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7457 vmx = to_vmx(vcpu);
7458
7459 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7460
7461 err = -ENOMEM;
7462
7463 vmx->vpid = allocate_vpid();
7464
7465 /*
7466 * If PML is turned on, failure on enabling PML just results in failure
7467 * of creating the vcpu, therefore we can simplify PML logic (by
7468 * avoiding dealing with cases, such as enabling PML partially on vcpus
7469 * for the guest), etc.
7470 */
7471 if (enable_pml) {
7472 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7473 if (!vmx->pml_pg)
7474 goto free_vpid;
7475 }
7476
7477 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7478 vmx->guest_uret_msrs[i].mask = -1ull;
7479 if (boot_cpu_has(X86_FEATURE_RTM)) {
7480 /*
7481 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7482 * Keep the host value unchanged to avoid changing CPUID bits
7483 * under the host kernel's feet.
7484 */
7485 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7486 if (tsx_ctrl)
7487 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7488 }
7489
7490 err = alloc_loaded_vmcs(&vmx->vmcs01);
7491 if (err < 0)
7492 goto free_pml;
7493
7494 /*
7495 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7496 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7497 * feature only for vmcs01, KVM currently isn't equipped to realize any
7498 * performance benefits from enabling it for vmcs02.
7499 */
7500 if (kvm_is_using_evmcs() &&
7501 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7502 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7503
7504 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7505 }
7506
7507 /* The MSR bitmap starts with all ones */
7508 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7509 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7510
7511 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7512 #ifdef CONFIG_X86_64
7513 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7514 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7515 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7516 #endif
7517 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7518 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7519 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7520 if (kvm_cstate_in_guest(vcpu->kvm)) {
7521 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7522 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7523 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7524 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7525 }
7526
7527 vmx->loaded_vmcs = &vmx->vmcs01;
7528
7529 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7530 err = kvm_alloc_apic_access_page(vcpu->kvm);
7531 if (err)
7532 goto free_vmcs;
7533 }
7534
7535 if (enable_ept && !enable_unrestricted_guest) {
7536 err = init_rmode_identity_map(vcpu->kvm);
7537 if (err)
7538 goto free_vmcs;
7539 }
7540
7541 if (vmx_can_use_ipiv(vcpu))
7542 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7543 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7544
7545 return 0;
7546
7547 free_vmcs:
7548 free_loaded_vmcs(vmx->loaded_vmcs);
7549 free_pml:
7550 vmx_destroy_pml_buffer(vmx);
7551 free_vpid:
7552 free_vpid(vmx->vpid);
7553 return err;
7554 }
7555
7556 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7557 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7558
vmx_vm_init(struct kvm * kvm)7559 static int vmx_vm_init(struct kvm *kvm)
7560 {
7561 if (!ple_gap)
7562 kvm->arch.pause_in_guest = true;
7563
7564 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7565 switch (l1tf_mitigation) {
7566 case L1TF_MITIGATION_OFF:
7567 case L1TF_MITIGATION_FLUSH_NOWARN:
7568 /* 'I explicitly don't care' is set */
7569 break;
7570 case L1TF_MITIGATION_FLUSH:
7571 case L1TF_MITIGATION_FLUSH_NOSMT:
7572 case L1TF_MITIGATION_FULL:
7573 /*
7574 * Warn upon starting the first VM in a potentially
7575 * insecure environment.
7576 */
7577 if (sched_smt_active())
7578 pr_warn_once(L1TF_MSG_SMT);
7579 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7580 pr_warn_once(L1TF_MSG_L1D);
7581 break;
7582 case L1TF_MITIGATION_FULL_FORCE:
7583 /* Flush is enforced */
7584 break;
7585 }
7586 }
7587 return 0;
7588 }
7589
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7590 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7591 {
7592 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7593 * memory aliases with conflicting memory types and sometimes MCEs.
7594 * We have to be careful as to what are honored and when.
7595 *
7596 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7597 * UC. The effective memory type is UC or WC depending on guest PAT.
7598 * This was historically the source of MCEs and we want to be
7599 * conservative.
7600 *
7601 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7602 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7603 * EPT memory type is set to WB. The effective memory type is forced
7604 * WB.
7605 *
7606 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7607 * EPT memory type is used to emulate guest CD/MTRR.
7608 */
7609
7610 if (is_mmio)
7611 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7612
7613 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7614 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7615
7616 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7617 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7618 return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7619 else
7620 return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7621 VMX_EPT_IPAT_BIT;
7622 }
7623
7624 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7625 }
7626
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7627 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7628 {
7629 /*
7630 * These bits in the secondary execution controls field
7631 * are dynamic, the others are mostly based on the hypervisor
7632 * architecture and the guest's CPUID. Do not touch the
7633 * dynamic bits.
7634 */
7635 u32 mask =
7636 SECONDARY_EXEC_SHADOW_VMCS |
7637 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7638 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7639 SECONDARY_EXEC_DESC;
7640
7641 u32 cur_ctl = secondary_exec_controls_get(vmx);
7642
7643 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7644 }
7645
7646 /*
7647 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7648 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7649 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7650 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7651 {
7652 struct vcpu_vmx *vmx = to_vmx(vcpu);
7653 struct kvm_cpuid_entry2 *entry;
7654
7655 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7656 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7657
7658 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7659 if (entry && (entry->_reg & (_cpuid_mask))) \
7660 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7661 } while (0)
7662
7663 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7664 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7665 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7666 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7667 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7668 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7669 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7670 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7671 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7672 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7673 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7674 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7675 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7676 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7677 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7678
7679 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7680 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7681 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7682 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7683 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7684 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7685 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7686
7687 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7688 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7689
7690 #undef cr4_fixed1_update
7691 }
7692
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7693 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7694 {
7695 struct vcpu_vmx *vmx = to_vmx(vcpu);
7696 struct kvm_cpuid_entry2 *best = NULL;
7697 int i;
7698
7699 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7700 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7701 if (!best)
7702 return;
7703 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7704 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7705 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7706 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7707 }
7708
7709 /* Get the number of configurable Address Ranges for filtering */
7710 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7711 PT_CAP_num_address_ranges);
7712
7713 /* Initialize and clear the no dependency bits */
7714 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7715 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7716 RTIT_CTL_BRANCH_EN);
7717
7718 /*
7719 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7720 * will inject an #GP
7721 */
7722 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7723 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7724
7725 /*
7726 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7727 * PSBFreq can be set
7728 */
7729 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7730 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7731 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7732
7733 /*
7734 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7735 */
7736 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7737 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7738 RTIT_CTL_MTC_RANGE);
7739
7740 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7741 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7742 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7743 RTIT_CTL_PTW_EN);
7744
7745 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7746 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7747 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7748
7749 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7750 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7751 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7752
7753 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7754 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7755 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7756
7757 /* unmask address range configure area */
7758 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7759 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7760 }
7761
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7762 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7763 {
7764 struct vcpu_vmx *vmx = to_vmx(vcpu);
7765
7766 /*
7767 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7768 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7769 * set if and only if XSAVE is supported.
7770 */
7771 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7772 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7773 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7774
7775 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7776 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7777
7778 vmx_setup_uret_msrs(vmx);
7779
7780 if (cpu_has_secondary_exec_ctrls())
7781 vmcs_set_secondary_exec_control(vmx,
7782 vmx_secondary_exec_control(vmx));
7783
7784 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7785 vmx->msr_ia32_feature_control_valid_bits |=
7786 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7787 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7788 else
7789 vmx->msr_ia32_feature_control_valid_bits &=
7790 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7791 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7792
7793 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7794 nested_vmx_cr_fixed1_bits_update(vcpu);
7795
7796 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7797 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7798 update_intel_pt_cfg(vcpu);
7799
7800 if (boot_cpu_has(X86_FEATURE_RTM)) {
7801 struct vmx_uret_msr *msr;
7802 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7803 if (msr) {
7804 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7805 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7806 }
7807 }
7808
7809 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7810 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7811 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7812
7813 if (boot_cpu_has(X86_FEATURE_IBPB))
7814 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7815 !guest_has_pred_cmd_msr(vcpu));
7816
7817 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7818 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7819 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7820
7821 set_cr4_guest_host_mask(vmx);
7822
7823 vmx_write_encls_bitmap(vcpu, NULL);
7824 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7825 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7826 else
7827 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7828
7829 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7830 vmx->msr_ia32_feature_control_valid_bits |=
7831 FEAT_CTL_SGX_LC_ENABLED;
7832 else
7833 vmx->msr_ia32_feature_control_valid_bits &=
7834 ~FEAT_CTL_SGX_LC_ENABLED;
7835
7836 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7837 vmx_update_exception_bitmap(vcpu);
7838 }
7839
vmx_get_perf_capabilities(void)7840 static u64 vmx_get_perf_capabilities(void)
7841 {
7842 u64 perf_cap = PMU_CAP_FW_WRITES;
7843 struct x86_pmu_lbr lbr;
7844 u64 host_perf_cap = 0;
7845
7846 if (!enable_pmu)
7847 return 0;
7848
7849 if (boot_cpu_has(X86_FEATURE_PDCM))
7850 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7851
7852 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7853 x86_perf_get_lbr(&lbr);
7854 if (lbr.nr)
7855 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7856 }
7857
7858 if (vmx_pebs_supported()) {
7859 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7860 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7861 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7862 }
7863
7864 return perf_cap;
7865 }
7866
vmx_set_cpu_caps(void)7867 static __init void vmx_set_cpu_caps(void)
7868 {
7869 kvm_set_cpu_caps();
7870
7871 /* CPUID 0x1 */
7872 if (nested)
7873 kvm_cpu_cap_set(X86_FEATURE_VMX);
7874
7875 /* CPUID 0x7 */
7876 if (kvm_mpx_supported())
7877 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7878 if (!cpu_has_vmx_invpcid())
7879 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7880 if (vmx_pt_mode_is_host_guest())
7881 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7882 if (vmx_pebs_supported()) {
7883 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7884 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7885 }
7886
7887 if (!enable_pmu)
7888 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7889 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7890
7891 if (!enable_sgx) {
7892 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7893 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7894 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7895 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7896 }
7897
7898 if (vmx_umip_emulated())
7899 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7900
7901 /* CPUID 0xD.1 */
7902 kvm_caps.supported_xss = 0;
7903 if (!cpu_has_vmx_xsaves())
7904 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7905
7906 /* CPUID 0x80000001 and 0x7 (RDPID) */
7907 if (!cpu_has_vmx_rdtscp()) {
7908 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7909 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7910 }
7911
7912 if (cpu_has_vmx_waitpkg())
7913 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7914 }
7915
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7916 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7917 {
7918 to_vmx(vcpu)->req_immediate_exit = true;
7919 }
7920
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7921 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7922 struct x86_instruction_info *info)
7923 {
7924 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7925 unsigned short port;
7926 bool intercept;
7927 int size;
7928
7929 if (info->intercept == x86_intercept_in ||
7930 info->intercept == x86_intercept_ins) {
7931 port = info->src_val;
7932 size = info->dst_bytes;
7933 } else {
7934 port = info->dst_val;
7935 size = info->src_bytes;
7936 }
7937
7938 /*
7939 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7940 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7941 * control.
7942 *
7943 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7944 */
7945 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7946 intercept = nested_cpu_has(vmcs12,
7947 CPU_BASED_UNCOND_IO_EXITING);
7948 else
7949 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7950
7951 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7952 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7953 }
7954
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7955 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7956 struct x86_instruction_info *info,
7957 enum x86_intercept_stage stage,
7958 struct x86_exception *exception)
7959 {
7960 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7961
7962 switch (info->intercept) {
7963 /*
7964 * RDPID causes #UD if disabled through secondary execution controls.
7965 * Because it is marked as EmulateOnUD, we need to intercept it here.
7966 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7967 */
7968 case x86_intercept_rdpid:
7969 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7970 exception->vector = UD_VECTOR;
7971 exception->error_code_valid = false;
7972 return X86EMUL_PROPAGATE_FAULT;
7973 }
7974 break;
7975
7976 case x86_intercept_in:
7977 case x86_intercept_ins:
7978 case x86_intercept_out:
7979 case x86_intercept_outs:
7980 return vmx_check_intercept_io(vcpu, info);
7981
7982 case x86_intercept_lgdt:
7983 case x86_intercept_lidt:
7984 case x86_intercept_lldt:
7985 case x86_intercept_ltr:
7986 case x86_intercept_sgdt:
7987 case x86_intercept_sidt:
7988 case x86_intercept_sldt:
7989 case x86_intercept_str:
7990 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7991 return X86EMUL_CONTINUE;
7992
7993 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7994 break;
7995
7996 case x86_intercept_pause:
7997 /*
7998 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7999 * with vanilla NOPs in the emulator. Apply the interception
8000 * check only to actual PAUSE instructions. Don't check
8001 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8002 * exit, i.e. KVM is within its rights to allow L2 to execute
8003 * the PAUSE.
8004 */
8005 if ((info->rep_prefix != REPE_PREFIX) ||
8006 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8007 return X86EMUL_CONTINUE;
8008
8009 break;
8010
8011 /* TODO: check more intercepts... */
8012 default:
8013 break;
8014 }
8015
8016 return X86EMUL_UNHANDLEABLE;
8017 }
8018
8019 #ifdef CONFIG_X86_64
8020 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8021 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8022 u64 divisor, u64 *result)
8023 {
8024 u64 low = a << shift, high = a >> (64 - shift);
8025
8026 /* To avoid the overflow on divq */
8027 if (high >= divisor)
8028 return 1;
8029
8030 /* Low hold the result, high hold rem which is discarded */
8031 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8032 "rm" (divisor), "0" (low), "1" (high));
8033 *result = low;
8034
8035 return 0;
8036 }
8037
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8038 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8039 bool *expired)
8040 {
8041 struct vcpu_vmx *vmx;
8042 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8043 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8044
8045 vmx = to_vmx(vcpu);
8046 tscl = rdtsc();
8047 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8048 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8049 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8050 ktimer->timer_advance_ns);
8051
8052 if (delta_tsc > lapic_timer_advance_cycles)
8053 delta_tsc -= lapic_timer_advance_cycles;
8054 else
8055 delta_tsc = 0;
8056
8057 /* Convert to host delta tsc if tsc scaling is enabled */
8058 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8059 delta_tsc && u64_shl_div_u64(delta_tsc,
8060 kvm_caps.tsc_scaling_ratio_frac_bits,
8061 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8062 return -ERANGE;
8063
8064 /*
8065 * If the delta tsc can't fit in the 32 bit after the multi shift,
8066 * we can't use the preemption timer.
8067 * It's possible that it fits on later vmentries, but checking
8068 * on every vmentry is costly so we just use an hrtimer.
8069 */
8070 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8071 return -ERANGE;
8072
8073 vmx->hv_deadline_tsc = tscl + delta_tsc;
8074 *expired = !delta_tsc;
8075 return 0;
8076 }
8077
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8078 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8079 {
8080 to_vmx(vcpu)->hv_deadline_tsc = -1;
8081 }
8082 #endif
8083
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)8084 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8085 {
8086 if (!kvm_pause_in_guest(vcpu->kvm))
8087 shrink_ple_window(vcpu);
8088 }
8089
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8090 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8091 {
8092 struct vcpu_vmx *vmx = to_vmx(vcpu);
8093
8094 if (WARN_ON_ONCE(!enable_pml))
8095 return;
8096
8097 if (is_guest_mode(vcpu)) {
8098 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8099 return;
8100 }
8101
8102 /*
8103 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8104 * code, but in that case another update request will be made and so
8105 * the guest will never run with a stale PML value.
8106 */
8107 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8108 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8109 else
8110 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8111 }
8112
vmx_setup_mce(struct kvm_vcpu * vcpu)8113 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8114 {
8115 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8116 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8117 FEAT_CTL_LMCE_ENABLED;
8118 else
8119 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8120 ~FEAT_CTL_LMCE_ENABLED;
8121 }
8122
8123 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8124 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8125 {
8126 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8127 if (to_vmx(vcpu)->nested.nested_run_pending)
8128 return -EBUSY;
8129 return !is_smm(vcpu);
8130 }
8131
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8132 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8133 {
8134 struct vcpu_vmx *vmx = to_vmx(vcpu);
8135
8136 /*
8137 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8138 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8139 * SMI and RSM only modify state that is saved and restored via SMRAM.
8140 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8141 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8142 */
8143 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8144 if (vmx->nested.smm.guest_mode)
8145 nested_vmx_vmexit(vcpu, -1, 0, 0);
8146
8147 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8148 vmx->nested.vmxon = false;
8149 vmx_clear_hlt(vcpu);
8150 return 0;
8151 }
8152
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8153 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8154 {
8155 struct vcpu_vmx *vmx = to_vmx(vcpu);
8156 int ret;
8157
8158 if (vmx->nested.smm.vmxon) {
8159 vmx->nested.vmxon = true;
8160 vmx->nested.smm.vmxon = false;
8161 }
8162
8163 if (vmx->nested.smm.guest_mode) {
8164 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8165 if (ret)
8166 return ret;
8167
8168 vmx->nested.nested_run_pending = 1;
8169 vmx->nested.smm.guest_mode = false;
8170 }
8171 return 0;
8172 }
8173
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8174 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8175 {
8176 /* RSM will cause a vmexit anyway. */
8177 }
8178 #endif
8179
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8180 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8181 {
8182 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8183 }
8184
vmx_migrate_timers(struct kvm_vcpu * vcpu)8185 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8186 {
8187 if (is_guest_mode(vcpu)) {
8188 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8189
8190 if (hrtimer_try_to_cancel(timer) == 1)
8191 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8192 }
8193 }
8194
vmx_hardware_unsetup(void)8195 static void vmx_hardware_unsetup(void)
8196 {
8197 kvm_set_posted_intr_wakeup_handler(NULL);
8198
8199 if (nested)
8200 nested_vmx_hardware_unsetup();
8201
8202 free_kvm_area();
8203 }
8204
8205 #define VMX_REQUIRED_APICV_INHIBITS \
8206 ( \
8207 BIT(APICV_INHIBIT_REASON_DISABLE)| \
8208 BIT(APICV_INHIBIT_REASON_ABSENT) | \
8209 BIT(APICV_INHIBIT_REASON_HYPERV) | \
8210 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
8211 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8212 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
8213 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
8214 )
8215
vmx_vm_destroy(struct kvm * kvm)8216 static void vmx_vm_destroy(struct kvm *kvm)
8217 {
8218 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8219
8220 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8221 }
8222
8223 /*
8224 * Note, the SDM states that the linear address is masked *after* the modified
8225 * canonicality check, whereas KVM masks (untags) the address and then performs
8226 * a "normal" canonicality check. Functionally, the two methods are identical,
8227 * and when the masking occurs relative to the canonicality check isn't visible
8228 * to software, i.e. KVM's behavior doesn't violate the SDM.
8229 */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8230 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8231 {
8232 int lam_bit;
8233 unsigned long cr3_bits;
8234
8235 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8236 return gva;
8237
8238 if (!is_64_bit_mode(vcpu))
8239 return gva;
8240
8241 /*
8242 * Bit 63 determines if the address should be treated as user address
8243 * or a supervisor address.
8244 */
8245 if (!(gva & BIT_ULL(63))) {
8246 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8247 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8248 return gva;
8249
8250 /* LAM_U48 is ignored if LAM_U57 is set. */
8251 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8252 } else {
8253 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8254 return gva;
8255
8256 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8257 }
8258
8259 /*
8260 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8261 * Bit 63 is retained from the raw virtual address so that untagging
8262 * doesn't change a user access to a supervisor access, and vice versa.
8263 */
8264 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8265 }
8266
8267 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8268 .name = KBUILD_MODNAME,
8269
8270 .check_processor_compatibility = vmx_check_processor_compat,
8271
8272 .hardware_unsetup = vmx_hardware_unsetup,
8273
8274 .hardware_enable = vmx_hardware_enable,
8275 .hardware_disable = vmx_hardware_disable,
8276 .has_emulated_msr = vmx_has_emulated_msr,
8277
8278 .vm_size = sizeof(struct kvm_vmx),
8279 .vm_init = vmx_vm_init,
8280 .vm_destroy = vmx_vm_destroy,
8281
8282 .vcpu_precreate = vmx_vcpu_precreate,
8283 .vcpu_create = vmx_vcpu_create,
8284 .vcpu_free = vmx_vcpu_free,
8285 .vcpu_reset = vmx_vcpu_reset,
8286
8287 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8288 .vcpu_load = vmx_vcpu_load,
8289 .vcpu_put = vmx_vcpu_put,
8290
8291 .update_exception_bitmap = vmx_update_exception_bitmap,
8292 .get_msr_feature = vmx_get_msr_feature,
8293 .get_msr = vmx_get_msr,
8294 .set_msr = vmx_set_msr,
8295 .get_segment_base = vmx_get_segment_base,
8296 .get_segment = vmx_get_segment,
8297 .set_segment = vmx_set_segment,
8298 .get_cpl = vmx_get_cpl,
8299 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8300 .is_valid_cr0 = vmx_is_valid_cr0,
8301 .set_cr0 = vmx_set_cr0,
8302 .is_valid_cr4 = vmx_is_valid_cr4,
8303 .set_cr4 = vmx_set_cr4,
8304 .set_efer = vmx_set_efer,
8305 .get_idt = vmx_get_idt,
8306 .set_idt = vmx_set_idt,
8307 .get_gdt = vmx_get_gdt,
8308 .set_gdt = vmx_set_gdt,
8309 .set_dr7 = vmx_set_dr7,
8310 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8311 .cache_reg = vmx_cache_reg,
8312 .get_rflags = vmx_get_rflags,
8313 .set_rflags = vmx_set_rflags,
8314 .get_if_flag = vmx_get_if_flag,
8315
8316 .flush_tlb_all = vmx_flush_tlb_all,
8317 .flush_tlb_current = vmx_flush_tlb_current,
8318 .flush_tlb_gva = vmx_flush_tlb_gva,
8319 .flush_tlb_guest = vmx_flush_tlb_guest,
8320
8321 .vcpu_pre_run = vmx_vcpu_pre_run,
8322 .vcpu_run = vmx_vcpu_run,
8323 .handle_exit = vmx_handle_exit,
8324 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8325 .update_emulated_instruction = vmx_update_emulated_instruction,
8326 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8327 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8328 .patch_hypercall = vmx_patch_hypercall,
8329 .inject_irq = vmx_inject_irq,
8330 .inject_nmi = vmx_inject_nmi,
8331 .inject_exception = vmx_inject_exception,
8332 .cancel_injection = vmx_cancel_injection,
8333 .interrupt_allowed = vmx_interrupt_allowed,
8334 .nmi_allowed = vmx_nmi_allowed,
8335 .get_nmi_mask = vmx_get_nmi_mask,
8336 .set_nmi_mask = vmx_set_nmi_mask,
8337 .enable_nmi_window = vmx_enable_nmi_window,
8338 .enable_irq_window = vmx_enable_irq_window,
8339 .update_cr8_intercept = vmx_update_cr8_intercept,
8340 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8341 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8342 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8343 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8344 .apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8345 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8346 .hwapic_irr_update = vmx_hwapic_irr_update,
8347 .hwapic_isr_update = vmx_hwapic_isr_update,
8348 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8349 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8350 .deliver_interrupt = vmx_deliver_interrupt,
8351 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8352
8353 .set_tss_addr = vmx_set_tss_addr,
8354 .set_identity_map_addr = vmx_set_identity_map_addr,
8355 .get_mt_mask = vmx_get_mt_mask,
8356
8357 .get_exit_info = vmx_get_exit_info,
8358
8359 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8360
8361 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8362
8363 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8364 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8365 .write_tsc_offset = vmx_write_tsc_offset,
8366 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8367
8368 .load_mmu_pgd = vmx_load_mmu_pgd,
8369
8370 .check_intercept = vmx_check_intercept,
8371 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8372
8373 .request_immediate_exit = vmx_request_immediate_exit,
8374
8375 .sched_in = vmx_sched_in,
8376
8377 .cpu_dirty_log_size = PML_ENTITY_NUM,
8378 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8379
8380 .nested_ops = &vmx_nested_ops,
8381
8382 .pi_update_irte = vmx_pi_update_irte,
8383 .pi_start_assignment = vmx_pi_start_assignment,
8384
8385 #ifdef CONFIG_X86_64
8386 .set_hv_timer = vmx_set_hv_timer,
8387 .cancel_hv_timer = vmx_cancel_hv_timer,
8388 #endif
8389
8390 .setup_mce = vmx_setup_mce,
8391
8392 #ifdef CONFIG_KVM_SMM
8393 .smi_allowed = vmx_smi_allowed,
8394 .enter_smm = vmx_enter_smm,
8395 .leave_smm = vmx_leave_smm,
8396 .enable_smi_window = vmx_enable_smi_window,
8397 #endif
8398
8399 .check_emulate_instruction = vmx_check_emulate_instruction,
8400 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8401 .migrate_timers = vmx_migrate_timers,
8402
8403 .msr_filter_changed = vmx_msr_filter_changed,
8404 .complete_emulated_msr = kvm_complete_insn_gp,
8405
8406 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8407
8408 .get_untagged_addr = vmx_get_untagged_addr,
8409 };
8410
vmx_handle_intel_pt_intr(void)8411 static unsigned int vmx_handle_intel_pt_intr(void)
8412 {
8413 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8414
8415 /* '0' on failure so that the !PT case can use a RET0 static call. */
8416 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8417 return 0;
8418
8419 kvm_make_request(KVM_REQ_PMI, vcpu);
8420 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8421 (unsigned long *)&vcpu->arch.pmu.global_status);
8422 return 1;
8423 }
8424
vmx_setup_user_return_msrs(void)8425 static __init void vmx_setup_user_return_msrs(void)
8426 {
8427
8428 /*
8429 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8430 * will emulate SYSCALL in legacy mode if the vendor string in guest
8431 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8432 * support this emulation, MSR_STAR is included in the list for i386,
8433 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8434 * into hardware and is here purely for emulation purposes.
8435 */
8436 const u32 vmx_uret_msrs_list[] = {
8437 #ifdef CONFIG_X86_64
8438 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8439 #endif
8440 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8441 MSR_IA32_TSX_CTRL,
8442 };
8443 int i;
8444
8445 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8446
8447 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8448 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8449 }
8450
vmx_setup_me_spte_mask(void)8451 static void __init vmx_setup_me_spte_mask(void)
8452 {
8453 u64 me_mask = 0;
8454
8455 /*
8456 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8457 * the former to avoid exposing shadow_phys_bits.
8458 *
8459 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8460 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8461 * boot_cpu_data.x86_phys_bits holds the actual physical address
8462 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8463 * reported by CPUID. Those bits between are KeyID bits.
8464 */
8465 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8466 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8467 kvm_get_shadow_phys_bits() - 1);
8468 /*
8469 * Unlike SME, host kernel doesn't support setting up any
8470 * MKTME KeyID on Intel platforms. No memory encryption
8471 * bits should be included into the SPTE.
8472 */
8473 kvm_mmu_set_me_spte_mask(0, me_mask);
8474 }
8475
8476 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8477
hardware_setup(void)8478 static __init int hardware_setup(void)
8479 {
8480 unsigned long host_bndcfgs;
8481 struct desc_ptr dt;
8482 int r;
8483
8484 store_idt(&dt);
8485 host_idt_base = dt.address;
8486
8487 vmx_setup_user_return_msrs();
8488
8489 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8490 return -EIO;
8491
8492 if (cpu_has_perf_global_ctrl_bug())
8493 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8494 "does not work properly. Using workaround\n");
8495
8496 if (boot_cpu_has(X86_FEATURE_NX))
8497 kvm_enable_efer_bits(EFER_NX);
8498
8499 if (boot_cpu_has(X86_FEATURE_MPX)) {
8500 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8501 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8502 }
8503
8504 if (!cpu_has_vmx_mpx())
8505 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8506 XFEATURE_MASK_BNDCSR);
8507
8508 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8509 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8510 enable_vpid = 0;
8511
8512 if (!cpu_has_vmx_ept() ||
8513 !cpu_has_vmx_ept_4levels() ||
8514 !cpu_has_vmx_ept_mt_wb() ||
8515 !cpu_has_vmx_invept_global())
8516 enable_ept = 0;
8517
8518 /* NX support is required for shadow paging. */
8519 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8520 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8521 return -EOPNOTSUPP;
8522 }
8523
8524 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8525 enable_ept_ad_bits = 0;
8526
8527 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8528 enable_unrestricted_guest = 0;
8529
8530 if (!cpu_has_vmx_flexpriority())
8531 flexpriority_enabled = 0;
8532
8533 if (!cpu_has_virtual_nmis())
8534 enable_vnmi = 0;
8535
8536 #ifdef CONFIG_X86_SGX_KVM
8537 if (!cpu_has_vmx_encls_vmexit())
8538 enable_sgx = false;
8539 #endif
8540
8541 /*
8542 * set_apic_access_page_addr() is used to reload apic access
8543 * page upon invalidation. No need to do anything if not
8544 * using the APIC_ACCESS_ADDR VMCS field.
8545 */
8546 if (!flexpriority_enabled)
8547 vmx_x86_ops.set_apic_access_page_addr = NULL;
8548
8549 if (!cpu_has_vmx_tpr_shadow())
8550 vmx_x86_ops.update_cr8_intercept = NULL;
8551
8552 #if IS_ENABLED(CONFIG_HYPERV)
8553 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8554 && enable_ept) {
8555 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8556 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8557 }
8558 #endif
8559
8560 if (!cpu_has_vmx_ple()) {
8561 ple_gap = 0;
8562 ple_window = 0;
8563 ple_window_grow = 0;
8564 ple_window_max = 0;
8565 ple_window_shrink = 0;
8566 }
8567
8568 if (!cpu_has_vmx_apicv())
8569 enable_apicv = 0;
8570 if (!enable_apicv)
8571 vmx_x86_ops.sync_pir_to_irr = NULL;
8572
8573 if (!enable_apicv || !cpu_has_vmx_ipiv())
8574 enable_ipiv = false;
8575
8576 if (cpu_has_vmx_tsc_scaling())
8577 kvm_caps.has_tsc_control = true;
8578
8579 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8580 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8581 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8582 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8583
8584 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8585
8586 if (enable_ept)
8587 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8588 cpu_has_vmx_ept_execute_only());
8589
8590 /*
8591 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8592 * bits to shadow_zero_check.
8593 */
8594 vmx_setup_me_spte_mask();
8595
8596 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8597 ept_caps_to_lpage_level(vmx_capability.ept));
8598
8599 /*
8600 * Only enable PML when hardware supports PML feature, and both EPT
8601 * and EPT A/D bit features are enabled -- PML depends on them to work.
8602 */
8603 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8604 enable_pml = 0;
8605
8606 if (!enable_pml)
8607 vmx_x86_ops.cpu_dirty_log_size = 0;
8608
8609 if (!cpu_has_vmx_preemption_timer())
8610 enable_preemption_timer = false;
8611
8612 if (enable_preemption_timer) {
8613 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8614
8615 cpu_preemption_timer_multi =
8616 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8617
8618 if (tsc_khz)
8619 use_timer_freq = (u64)tsc_khz * 1000;
8620 use_timer_freq >>= cpu_preemption_timer_multi;
8621
8622 /*
8623 * KVM "disables" the preemption timer by setting it to its max
8624 * value. Don't use the timer if it might cause spurious exits
8625 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8626 */
8627 if (use_timer_freq > 0xffffffffu / 10)
8628 enable_preemption_timer = false;
8629 }
8630
8631 if (!enable_preemption_timer) {
8632 vmx_x86_ops.set_hv_timer = NULL;
8633 vmx_x86_ops.cancel_hv_timer = NULL;
8634 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8635 }
8636
8637 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8638 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8639
8640 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8641 return -EINVAL;
8642 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8643 pt_mode = PT_MODE_SYSTEM;
8644 if (pt_mode == PT_MODE_HOST_GUEST)
8645 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8646 else
8647 vmx_init_ops.handle_intel_pt_intr = NULL;
8648
8649 setup_default_sgx_lepubkeyhash();
8650
8651 if (nested) {
8652 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8653
8654 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8655 if (r)
8656 return r;
8657 }
8658
8659 vmx_set_cpu_caps();
8660
8661 r = alloc_kvm_area();
8662 if (r && nested)
8663 nested_vmx_hardware_unsetup();
8664
8665 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8666
8667 return r;
8668 }
8669
8670 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8671 .hardware_setup = hardware_setup,
8672 .handle_intel_pt_intr = NULL,
8673
8674 .runtime_ops = &vmx_x86_ops,
8675 .pmu_ops = &intel_pmu_ops,
8676 };
8677
vmx_cleanup_l1d_flush(void)8678 static void vmx_cleanup_l1d_flush(void)
8679 {
8680 if (vmx_l1d_flush_pages) {
8681 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8682 vmx_l1d_flush_pages = NULL;
8683 }
8684 /* Restore state so sysfs ignores VMX */
8685 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8686 }
8687
__vmx_exit(void)8688 static void __vmx_exit(void)
8689 {
8690 allow_smaller_maxphyaddr = false;
8691
8692 cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8693
8694 vmx_cleanup_l1d_flush();
8695 }
8696
vmx_exit(void)8697 static void vmx_exit(void)
8698 {
8699 kvm_exit();
8700 kvm_x86_vendor_exit();
8701
8702 __vmx_exit();
8703 }
8704 module_exit(vmx_exit);
8705
vmx_init(void)8706 static int __init vmx_init(void)
8707 {
8708 int r, cpu;
8709
8710 if (!kvm_is_vmx_supported())
8711 return -EOPNOTSUPP;
8712
8713 /*
8714 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8715 * to unwind if a later step fails.
8716 */
8717 hv_init_evmcs();
8718
8719 r = kvm_x86_vendor_init(&vmx_init_ops);
8720 if (r)
8721 return r;
8722
8723 /*
8724 * Must be called after common x86 init so enable_ept is properly set
8725 * up. Hand the parameter mitigation value in which was stored in
8726 * the pre module init parser. If no parameter was given, it will
8727 * contain 'auto' which will be turned into the default 'cond'
8728 * mitigation mode.
8729 */
8730 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8731 if (r)
8732 goto err_l1d_flush;
8733
8734 for_each_possible_cpu(cpu) {
8735 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8736
8737 pi_init_cpu(cpu);
8738 }
8739
8740 cpu_emergency_register_virt_callback(vmx_emergency_disable);
8741
8742 vmx_check_vmcs12_offsets();
8743
8744 /*
8745 * Shadow paging doesn't have a (further) performance penalty
8746 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8747 * by default
8748 */
8749 if (!enable_ept)
8750 allow_smaller_maxphyaddr = true;
8751
8752 /*
8753 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8754 * exposed to userspace!
8755 */
8756 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8757 THIS_MODULE);
8758 if (r)
8759 goto err_kvm_init;
8760
8761 return 0;
8762
8763 err_kvm_init:
8764 __vmx_exit();
8765 err_l1d_flush:
8766 kvm_x86_vendor_exit();
8767 return r;
8768 }
8769 module_init(vmx_init);
8770