1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36 /* Instruction-Accurate PDIR (PDIR++) */
37 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38 {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44 {}
45 };
46
47 /* NOTE:
48 * - Each perf counter is defined as "struct kvm_pmc";
49 * - There are two types of perf counters: general purpose (gp) and fixed.
50 * gp counters are stored in gp_counters[] and fixed counters are stored
51 * in fixed_counters[] respectively. Both of them are part of "struct
52 * kvm_pmu";
53 * - pmu.c understands the difference between gp counters and fixed counters.
54 * However AMD doesn't support fixed-counters;
55 * - There are three types of index to access perf counters (PMC):
56 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57 * has MSR_K7_PERFCTRn and, for families 15H and later,
58 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59 * aliased to MSR_K7_PERFCTRn.
60 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
61 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63 * that it also supports fixed counters. idx can be used to as index to
64 * gp and fixed counters.
65 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
66 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
67 * all perf counters (both gp and fixed). The mapping relationship
68 * between pmc and perf counters is as the following:
69 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73 */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func) \
78 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \
79 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
kvm_pmu_ops_update(const struct kvm_pmu_ops * pmu_ops)83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
__kvm_perf_overflow(struct kvm_pmc * pmc,bool in_pmi)96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97 {
98 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99 bool skip_pmi = false;
100
101 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102 if (!in_pmi) {
103 /*
104 * TODO: KVM is currently _choosing_ to not generate records
105 * for emulated instructions, avoiding BUFFER_OVF PMI when
106 * there are no records. Strictly speaking, it should be done
107 * as well in the right context to improve sampling accuracy.
108 */
109 skip_pmi = true;
110 } else {
111 /* Indicate PEBS overflow PMI to guest. */
112 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113 (unsigned long *)&pmu->global_status);
114 }
115 } else {
116 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117 }
118
119 if (pmc->intr && !skip_pmi)
120 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121 }
122
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)123 static void kvm_perf_overflow(struct perf_event *perf_event,
124 struct perf_sample_data *data,
125 struct pt_regs *regs)
126 {
127 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128
129 /*
130 * Ignore asynchronous overflow events for counters that are scheduled
131 * to be reprogrammed, e.g. if a PMI for the previous event races with
132 * KVM's handling of a related guest WRMSR.
133 */
134 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135 return;
136
137 __kvm_perf_overflow(pmc, true);
138
139 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140 }
141
pmc_get_pebs_precise_level(struct kvm_pmc * pmc)142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143 {
144 /*
145 * For some model specific pebs counters with special capabilities
146 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147 * level to the maximum value (currently 3, backwards compatible)
148 * so that the perf subsystem would assign specific hardware counter
149 * with that capability for vPMC.
150 */
151 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153 return 3;
154
155 /*
156 * The non-zero precision level of guest event makes the ordinary
157 * guest event becomes a guest PEBS event and triggers the host
158 * PEBS PMI handler to determine whether the PEBS overflow PMI
159 * comes from the host counters or the guest.
160 */
161 return 1;
162 }
163
get_sample_period(struct kvm_pmc * pmc,u64 counter_value)164 static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value)
165 {
166 u64 sample_period = (-counter_value) & pmc_bitmask(pmc);
167
168 if (!sample_period)
169 sample_period = pmc_bitmask(pmc) + 1;
170 return sample_period;
171 }
172
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,u64 config,bool exclude_user,bool exclude_kernel,bool intr)173 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
174 bool exclude_user, bool exclude_kernel,
175 bool intr)
176 {
177 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
178 struct perf_event *event;
179 struct perf_event_attr attr = {
180 .type = type,
181 .size = sizeof(attr),
182 .pinned = true,
183 .exclude_idle = true,
184 .exclude_host = 1,
185 .exclude_user = exclude_user,
186 .exclude_kernel = exclude_kernel,
187 .config = config,
188 };
189 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
190
191 attr.sample_period = get_sample_period(pmc, pmc->counter);
192
193 if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
194 guest_cpuid_is_intel(pmc->vcpu)) {
195 /*
196 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
197 * period. Just clear the sample period so at least
198 * allocating the counter doesn't fail.
199 */
200 attr.sample_period = 0;
201 }
202 if (pebs) {
203 /*
204 * For most PEBS hardware events, the difference in the software
205 * precision levels of guest and host PEBS events will not affect
206 * the accuracy of the PEBS profiling result, because the "event IP"
207 * in the PEBS record is calibrated on the guest side.
208 */
209 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
210 }
211
212 event = perf_event_create_kernel_counter(&attr, -1, current,
213 kvm_perf_overflow, pmc);
214 if (IS_ERR(event)) {
215 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
216 PTR_ERR(event), pmc->idx);
217 return PTR_ERR(event);
218 }
219
220 pmc->perf_event = event;
221 pmc_to_pmu(pmc)->event_count++;
222 pmc->is_paused = false;
223 pmc->intr = intr || pebs;
224 return 0;
225 }
226
pmc_pause_counter(struct kvm_pmc * pmc)227 static bool pmc_pause_counter(struct kvm_pmc *pmc)
228 {
229 u64 counter = pmc->counter;
230 u64 prev_counter;
231
232 /* update counter, reset event value to avoid redundant accumulation */
233 if (pmc->perf_event && !pmc->is_paused)
234 counter += perf_event_pause(pmc->perf_event, true);
235
236 /*
237 * Snapshot the previous counter *after* accumulating state from perf.
238 * If overflow already happened, hardware (via perf) is responsible for
239 * generating a PMI. KVM just needs to detect overflow on emulated
240 * counter events that haven't yet been processed.
241 */
242 prev_counter = counter & pmc_bitmask(pmc);
243
244 counter += pmc->emulated_counter;
245 pmc->counter = counter & pmc_bitmask(pmc);
246
247 pmc->emulated_counter = 0;
248 pmc->is_paused = true;
249
250 return pmc->counter < prev_counter;
251 }
252
pmc_resume_counter(struct kvm_pmc * pmc)253 static bool pmc_resume_counter(struct kvm_pmc *pmc)
254 {
255 if (!pmc->perf_event)
256 return false;
257
258 /* recalibrate sample period and check if it's accepted by perf core */
259 if (is_sampling_event(pmc->perf_event) &&
260 perf_event_period(pmc->perf_event,
261 get_sample_period(pmc, pmc->counter)))
262 return false;
263
264 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
265 (!!pmc->perf_event->attr.precise_ip))
266 return false;
267
268 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
269 perf_event_enable(pmc->perf_event);
270 pmc->is_paused = false;
271
272 return true;
273 }
274
pmc_release_perf_event(struct kvm_pmc * pmc)275 static void pmc_release_perf_event(struct kvm_pmc *pmc)
276 {
277 if (pmc->perf_event) {
278 perf_event_release_kernel(pmc->perf_event);
279 pmc->perf_event = NULL;
280 pmc->current_config = 0;
281 pmc_to_pmu(pmc)->event_count--;
282 }
283 }
284
pmc_stop_counter(struct kvm_pmc * pmc)285 static void pmc_stop_counter(struct kvm_pmc *pmc)
286 {
287 if (pmc->perf_event) {
288 pmc->counter = pmc_read_counter(pmc);
289 pmc_release_perf_event(pmc);
290 }
291 }
292
pmc_update_sample_period(struct kvm_pmc * pmc)293 static void pmc_update_sample_period(struct kvm_pmc *pmc)
294 {
295 if (!pmc->perf_event || pmc->is_paused ||
296 !is_sampling_event(pmc->perf_event))
297 return;
298
299 perf_event_period(pmc->perf_event,
300 get_sample_period(pmc, pmc->counter));
301 }
302
pmc_write_counter(struct kvm_pmc * pmc,u64 val)303 void pmc_write_counter(struct kvm_pmc *pmc, u64 val)
304 {
305 /*
306 * Drop any unconsumed accumulated counts, the WRMSR is a write, not a
307 * read-modify-write. Adjust the counter value so that its value is
308 * relative to the current count, as reading the current count from
309 * perf is faster than pausing and repgrogramming the event in order to
310 * reset it to '0'. Note, this very sneakily offsets the accumulated
311 * emulated count too, by using pmc_read_counter()!
312 */
313 pmc->emulated_counter = 0;
314 pmc->counter += val - pmc_read_counter(pmc);
315 pmc->counter &= pmc_bitmask(pmc);
316 pmc_update_sample_period(pmc);
317 }
318 EXPORT_SYMBOL_GPL(pmc_write_counter);
319
filter_cmp(const void * pa,const void * pb,u64 mask)320 static int filter_cmp(const void *pa, const void *pb, u64 mask)
321 {
322 u64 a = *(u64 *)pa & mask;
323 u64 b = *(u64 *)pb & mask;
324
325 return (a > b) - (a < b);
326 }
327
328
filter_sort_cmp(const void * pa,const void * pb)329 static int filter_sort_cmp(const void *pa, const void *pb)
330 {
331 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
332 KVM_PMU_MASKED_ENTRY_EXCLUDE));
333 }
334
335 /*
336 * For the event filter, searching is done on the 'includes' list and
337 * 'excludes' list separately rather than on the 'events' list (which
338 * has both). As a result the exclude bit can be ignored.
339 */
filter_event_cmp(const void * pa,const void * pb)340 static int filter_event_cmp(const void *pa, const void *pb)
341 {
342 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
343 }
344
find_filter_index(u64 * events,u64 nevents,u64 key)345 static int find_filter_index(u64 *events, u64 nevents, u64 key)
346 {
347 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
348 filter_event_cmp);
349
350 if (!fe)
351 return -1;
352
353 return fe - events;
354 }
355
is_filter_entry_match(u64 filter_event,u64 umask)356 static bool is_filter_entry_match(u64 filter_event, u64 umask)
357 {
358 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
359 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
360
361 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
362 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
363 ARCH_PERFMON_EVENTSEL_UMASK);
364
365 return (umask & mask) == match;
366 }
367
filter_contains_match(u64 * events,u64 nevents,u64 eventsel)368 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
369 {
370 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
371 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
372 int i, index;
373
374 index = find_filter_index(events, nevents, event_select);
375 if (index < 0)
376 return false;
377
378 /*
379 * Entries are sorted by the event select. Walk the list in both
380 * directions to process all entries with the targeted event select.
381 */
382 for (i = index; i < nevents; i++) {
383 if (filter_event_cmp(&events[i], &event_select))
384 break;
385
386 if (is_filter_entry_match(events[i], umask))
387 return true;
388 }
389
390 for (i = index - 1; i >= 0; i--) {
391 if (filter_event_cmp(&events[i], &event_select))
392 break;
393
394 if (is_filter_entry_match(events[i], umask))
395 return true;
396 }
397
398 return false;
399 }
400
is_gp_event_allowed(struct kvm_x86_pmu_event_filter * f,u64 eventsel)401 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
402 u64 eventsel)
403 {
404 if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
405 !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
406 return f->action == KVM_PMU_EVENT_ALLOW;
407
408 return f->action == KVM_PMU_EVENT_DENY;
409 }
410
is_fixed_event_allowed(struct kvm_x86_pmu_event_filter * filter,int idx)411 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
412 int idx)
413 {
414 int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
415
416 if (filter->action == KVM_PMU_EVENT_DENY &&
417 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
418 return false;
419 if (filter->action == KVM_PMU_EVENT_ALLOW &&
420 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
421 return false;
422
423 return true;
424 }
425
check_pmu_event_filter(struct kvm_pmc * pmc)426 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
427 {
428 struct kvm_x86_pmu_event_filter *filter;
429 struct kvm *kvm = pmc->vcpu->kvm;
430
431 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
432 if (!filter)
433 return true;
434
435 if (pmc_is_gp(pmc))
436 return is_gp_event_allowed(filter, pmc->eventsel);
437
438 return is_fixed_event_allowed(filter, pmc->idx);
439 }
440
pmc_event_is_allowed(struct kvm_pmc * pmc)441 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
442 {
443 return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
444 static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
445 check_pmu_event_filter(pmc);
446 }
447
reprogram_counter(struct kvm_pmc * pmc)448 static void reprogram_counter(struct kvm_pmc *pmc)
449 {
450 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
451 u64 eventsel = pmc->eventsel;
452 u64 new_config = eventsel;
453 bool emulate_overflow;
454 u8 fixed_ctr_ctrl;
455
456 emulate_overflow = pmc_pause_counter(pmc);
457
458 if (!pmc_event_is_allowed(pmc))
459 goto reprogram_complete;
460
461 if (emulate_overflow)
462 __kvm_perf_overflow(pmc, false);
463
464 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
465 printk_once("kvm pmu: pin control bit is ignored\n");
466
467 if (pmc_is_fixed(pmc)) {
468 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
469 pmc->idx - INTEL_PMC_IDX_FIXED);
470 if (fixed_ctr_ctrl & 0x1)
471 eventsel |= ARCH_PERFMON_EVENTSEL_OS;
472 if (fixed_ctr_ctrl & 0x2)
473 eventsel |= ARCH_PERFMON_EVENTSEL_USR;
474 if (fixed_ctr_ctrl & 0x8)
475 eventsel |= ARCH_PERFMON_EVENTSEL_INT;
476 new_config = (u64)fixed_ctr_ctrl;
477 }
478
479 if (pmc->current_config == new_config && pmc_resume_counter(pmc))
480 goto reprogram_complete;
481
482 pmc_release_perf_event(pmc);
483
484 pmc->current_config = new_config;
485
486 /*
487 * If reprogramming fails, e.g. due to contention, leave the counter's
488 * regprogram bit set, i.e. opportunistically try again on the next PMU
489 * refresh. Don't make a new request as doing so can stall the guest
490 * if reprogramming repeatedly fails.
491 */
492 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
493 (eventsel & pmu->raw_event_mask),
494 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
495 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
496 eventsel & ARCH_PERFMON_EVENTSEL_INT))
497 return;
498
499 reprogram_complete:
500 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
501 }
502
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)503 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
504 {
505 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
506 int bit;
507
508 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
509 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
510
511 if (unlikely(!pmc)) {
512 clear_bit(bit, pmu->reprogram_pmi);
513 continue;
514 }
515
516 reprogram_counter(pmc);
517 }
518
519 /*
520 * Unused perf_events are only released if the corresponding MSRs
521 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
522 * triggers KVM_REQ_PMU if cleanup is needed.
523 */
524 if (unlikely(pmu->need_cleanup))
525 kvm_pmu_cleanup(vcpu);
526 }
527
528 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu * vcpu,unsigned int idx)529 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
530 {
531 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
532 }
533
is_vmware_backdoor_pmc(u32 pmc_idx)534 bool is_vmware_backdoor_pmc(u32 pmc_idx)
535 {
536 switch (pmc_idx) {
537 case VMWARE_BACKDOOR_PMC_HOST_TSC:
538 case VMWARE_BACKDOOR_PMC_REAL_TIME:
539 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
540 return true;
541 }
542 return false;
543 }
544
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)545 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
546 {
547 u64 ctr_val;
548
549 switch (idx) {
550 case VMWARE_BACKDOOR_PMC_HOST_TSC:
551 ctr_val = rdtsc();
552 break;
553 case VMWARE_BACKDOOR_PMC_REAL_TIME:
554 ctr_val = ktime_get_boottime_ns();
555 break;
556 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
557 ctr_val = ktime_get_boottime_ns() +
558 vcpu->kvm->arch.kvmclock_offset;
559 break;
560 default:
561 return 1;
562 }
563
564 *data = ctr_val;
565 return 0;
566 }
567
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)568 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
569 {
570 bool fast_mode = idx & (1u << 31);
571 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
572 struct kvm_pmc *pmc;
573 u64 mask = fast_mode ? ~0u : ~0ull;
574
575 if (!pmu->version)
576 return 1;
577
578 if (is_vmware_backdoor_pmc(idx))
579 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
580
581 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
582 if (!pmc)
583 return 1;
584
585 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
586 (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
587 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
588 return 1;
589
590 *data = pmc_read_counter(pmc) & mask;
591 return 0;
592 }
593
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)594 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
595 {
596 if (lapic_in_kernel(vcpu)) {
597 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
598 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
599 }
600 }
601
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)602 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
603 {
604 switch (msr) {
605 case MSR_CORE_PERF_GLOBAL_STATUS:
606 case MSR_CORE_PERF_GLOBAL_CTRL:
607 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
608 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
609 default:
610 break;
611 }
612 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
613 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
614 }
615
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)616 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
617 {
618 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
619 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
620
621 if (pmc)
622 __set_bit(pmc->idx, pmu->pmc_in_use);
623 }
624
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)625 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
626 {
627 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
628 u32 msr = msr_info->index;
629
630 switch (msr) {
631 case MSR_CORE_PERF_GLOBAL_STATUS:
632 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
633 msr_info->data = pmu->global_status;
634 break;
635 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
636 case MSR_CORE_PERF_GLOBAL_CTRL:
637 msr_info->data = pmu->global_ctrl;
638 break;
639 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
640 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
641 msr_info->data = 0;
642 break;
643 default:
644 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
645 }
646
647 return 0;
648 }
649
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)650 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
651 {
652 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
653 u32 msr = msr_info->index;
654 u64 data = msr_info->data;
655 u64 diff;
656
657 /*
658 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
659 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
660 */
661 switch (msr) {
662 case MSR_CORE_PERF_GLOBAL_STATUS:
663 if (!msr_info->host_initiated)
664 return 1; /* RO MSR */
665 fallthrough;
666 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
667 /* Per PPR, Read-only MSR. Writes are ignored. */
668 if (!msr_info->host_initiated)
669 break;
670
671 if (data & pmu->global_status_mask)
672 return 1;
673
674 pmu->global_status = data;
675 break;
676 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
677 data &= ~pmu->global_ctrl_mask;
678 fallthrough;
679 case MSR_CORE_PERF_GLOBAL_CTRL:
680 if (!kvm_valid_perf_global_ctrl(pmu, data))
681 return 1;
682
683 if (pmu->global_ctrl != data) {
684 diff = pmu->global_ctrl ^ data;
685 pmu->global_ctrl = data;
686 reprogram_counters(pmu, diff);
687 }
688 break;
689 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
690 /*
691 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
692 * GLOBAL_STATUS, and so the set of reserved bits is the same.
693 */
694 if (data & pmu->global_status_mask)
695 return 1;
696 fallthrough;
697 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
698 if (!msr_info->host_initiated)
699 pmu->global_status &= ~data;
700 break;
701 default:
702 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
703 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
704 }
705
706 return 0;
707 }
708
kvm_pmu_reset(struct kvm_vcpu * vcpu)709 static void kvm_pmu_reset(struct kvm_vcpu *vcpu)
710 {
711 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
712 struct kvm_pmc *pmc;
713 int i;
714
715 pmu->need_cleanup = false;
716
717 bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
718
719 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
720 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
721 if (!pmc)
722 continue;
723
724 pmc_stop_counter(pmc);
725 pmc->counter = 0;
726 pmc->emulated_counter = 0;
727
728 if (pmc_is_gp(pmc))
729 pmc->eventsel = 0;
730 }
731
732 pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
733
734 static_call_cond(kvm_x86_pmu_reset)(vcpu);
735 }
736
737
738 /*
739 * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
740 * and/or PERF_CAPABILITIES.
741 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)742 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
743 {
744 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
745 return;
746
747 /*
748 * Stop/release all existing counters/events before realizing the new
749 * vPMU model.
750 */
751 kvm_pmu_reset(vcpu);
752
753 bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
754 static_call(kvm_x86_pmu_refresh)(vcpu);
755 }
756
kvm_pmu_init(struct kvm_vcpu * vcpu)757 void kvm_pmu_init(struct kvm_vcpu *vcpu)
758 {
759 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
760
761 memset(pmu, 0, sizeof(*pmu));
762 static_call(kvm_x86_pmu_init)(vcpu);
763 kvm_pmu_refresh(vcpu);
764 }
765
766 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)767 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
768 {
769 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
770 struct kvm_pmc *pmc = NULL;
771 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
772 int i;
773
774 pmu->need_cleanup = false;
775
776 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
777 pmu->pmc_in_use, X86_PMC_IDX_MAX);
778
779 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
780 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
781
782 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
783 pmc_stop_counter(pmc);
784 }
785
786 static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
787
788 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
789 }
790
kvm_pmu_destroy(struct kvm_vcpu * vcpu)791 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
792 {
793 kvm_pmu_reset(vcpu);
794 }
795
kvm_pmu_incr_counter(struct kvm_pmc * pmc)796 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
797 {
798 pmc->emulated_counter++;
799 kvm_pmu_request_counter_reprogram(pmc);
800 }
801
eventsel_match_perf_hw_id(struct kvm_pmc * pmc,unsigned int perf_hw_id)802 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
803 unsigned int perf_hw_id)
804 {
805 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
806 AMD64_RAW_EVENT_MASK_NB);
807 }
808
cpl_is_matched(struct kvm_pmc * pmc)809 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
810 {
811 bool select_os, select_user;
812 u64 config;
813
814 if (pmc_is_gp(pmc)) {
815 config = pmc->eventsel;
816 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
817 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
818 } else {
819 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
820 pmc->idx - INTEL_PMC_IDX_FIXED);
821 select_os = config & 0x1;
822 select_user = config & 0x2;
823 }
824
825 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
826 }
827
kvm_pmu_trigger_event(struct kvm_vcpu * vcpu,u64 perf_hw_id)828 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
829 {
830 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
831 struct kvm_pmc *pmc;
832 int i;
833
834 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
835 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
836
837 if (!pmc || !pmc_event_is_allowed(pmc))
838 continue;
839
840 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
841 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
842 kvm_pmu_incr_counter(pmc);
843 }
844 }
845 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
846
is_masked_filter_valid(const struct kvm_x86_pmu_event_filter * filter)847 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
848 {
849 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
850 KVM_PMU_MASKED_ENTRY_UMASK_MASK |
851 KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
852 KVM_PMU_MASKED_ENTRY_EXCLUDE;
853 int i;
854
855 for (i = 0; i < filter->nevents; i++) {
856 if (filter->events[i] & ~mask)
857 return false;
858 }
859
860 return true;
861 }
862
convert_to_masked_filter(struct kvm_x86_pmu_event_filter * filter)863 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
864 {
865 int i, j;
866
867 for (i = 0, j = 0; i < filter->nevents; i++) {
868 /*
869 * Skip events that are impossible to match against a guest
870 * event. When filtering, only the event select + unit mask
871 * of the guest event is used. To maintain backwards
872 * compatibility, impossible filters can't be rejected :-(
873 */
874 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
875 ARCH_PERFMON_EVENTSEL_UMASK))
876 continue;
877 /*
878 * Convert userspace events to a common in-kernel event so
879 * only one code path is needed to support both events. For
880 * the in-kernel events use masked events because they are
881 * flexible enough to handle both cases. To convert to masked
882 * events all that's needed is to add an "all ones" umask_mask,
883 * (unmasked filter events don't support EXCLUDE).
884 */
885 filter->events[j++] = filter->events[i] |
886 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
887 }
888
889 filter->nevents = j;
890 }
891
prepare_filter_lists(struct kvm_x86_pmu_event_filter * filter)892 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
893 {
894 int i;
895
896 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
897 convert_to_masked_filter(filter);
898 else if (!is_masked_filter_valid(filter))
899 return -EINVAL;
900
901 /*
902 * Sort entries by event select and includes vs. excludes so that all
903 * entries for a given event select can be processed efficiently during
904 * filtering. The EXCLUDE flag uses a more significant bit than the
905 * event select, and so the sorted list is also effectively split into
906 * includes and excludes sub-lists.
907 */
908 sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
909 filter_sort_cmp, NULL);
910
911 i = filter->nevents;
912 /* Find the first EXCLUDE event (only supported for masked events). */
913 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
914 for (i = 0; i < filter->nevents; i++) {
915 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
916 break;
917 }
918 }
919
920 filter->nr_includes = i;
921 filter->nr_excludes = filter->nevents - filter->nr_includes;
922 filter->includes = filter->events;
923 filter->excludes = filter->events + filter->nr_includes;
924
925 return 0;
926 }
927
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)928 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
929 {
930 struct kvm_pmu_event_filter __user *user_filter = argp;
931 struct kvm_x86_pmu_event_filter *filter;
932 struct kvm_pmu_event_filter tmp;
933 struct kvm_vcpu *vcpu;
934 unsigned long i;
935 size_t size;
936 int r;
937
938 if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
939 return -EFAULT;
940
941 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
942 tmp.action != KVM_PMU_EVENT_DENY)
943 return -EINVAL;
944
945 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
946 return -EINVAL;
947
948 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
949 return -E2BIG;
950
951 size = struct_size(filter, events, tmp.nevents);
952 filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
953 if (!filter)
954 return -ENOMEM;
955
956 filter->action = tmp.action;
957 filter->nevents = tmp.nevents;
958 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
959 filter->flags = tmp.flags;
960
961 r = -EFAULT;
962 if (copy_from_user(filter->events, user_filter->events,
963 sizeof(filter->events[0]) * filter->nevents))
964 goto cleanup;
965
966 r = prepare_filter_lists(filter);
967 if (r)
968 goto cleanup;
969
970 mutex_lock(&kvm->lock);
971 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
972 mutex_is_locked(&kvm->lock));
973 mutex_unlock(&kvm->lock);
974 synchronize_srcu_expedited(&kvm->srcu);
975
976 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
977 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
978
979 kvm_for_each_vcpu(i, vcpu, kvm)
980 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
981
982 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
983
984 r = 0;
985 cleanup:
986 kfree(filter);
987 return r;
988 }
989