1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "cpuid.h"
45 #include "hyperv.h"
46 #include "smm.h"
47
48 #ifndef CONFIG_X86_64
49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
50 #else
51 #define mod_64(x, y) ((x) % (y))
52 #endif
53
54 /* 14 is the version for Xeon and Pentium 8.4.8*/
55 #define APIC_VERSION 0x14UL
56 #define LAPIC_MMIO_LENGTH (1 << 12)
57 /* followed define is not in apicdef.h */
58 #define MAX_APIC_VECTOR 256
59 #define APIC_VECTORS_PER_REG 32
60
61 static bool lapic_timer_advance_dynamic __read_mostly;
62 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
63 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
64 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
65 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
66 /* step-by-step approximation to mitigate fluctuation */
67 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
68 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
69 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
70
__kvm_lapic_set_reg(char * regs,int reg_off,u32 val)71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
72 {
73 *((u32 *) (regs + reg_off)) = val;
74 }
75
kvm_lapic_set_reg(struct kvm_lapic * apic,int reg_off,u32 val)76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
77 {
78 __kvm_lapic_set_reg(apic->regs, reg_off, val);
79 }
80
__kvm_lapic_get_reg64(char * regs,int reg)81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
82 {
83 BUILD_BUG_ON(reg != APIC_ICR);
84 return *((u64 *) (regs + reg));
85 }
86
kvm_lapic_get_reg64(struct kvm_lapic * apic,int reg)87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
88 {
89 return __kvm_lapic_get_reg64(apic->regs, reg);
90 }
91
__kvm_lapic_set_reg64(char * regs,int reg,u64 val)92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
93 {
94 BUILD_BUG_ON(reg != APIC_ICR);
95 *((u64 *) (regs + reg)) = val;
96 }
97
kvm_lapic_set_reg64(struct kvm_lapic * apic,int reg,u64 val)98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
99 int reg, u64 val)
100 {
101 __kvm_lapic_set_reg64(apic->regs, reg, val);
102 }
103
apic_test_vector(int vec,void * bitmap)104 static inline int apic_test_vector(int vec, void *bitmap)
105 {
106 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
107 }
108
kvm_apic_pending_eoi(struct kvm_vcpu * vcpu,int vector)109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
110 {
111 struct kvm_lapic *apic = vcpu->arch.apic;
112
113 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
114 apic_test_vector(vector, apic->regs + APIC_IRR);
115 }
116
__apic_test_and_set_vector(int vec,void * bitmap)117 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
118 {
119 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
120 }
121
__apic_test_and_clear_vector(int vec,void * bitmap)122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
123 {
124 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
125 }
126
127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
129
apic_enabled(struct kvm_lapic * apic)130 static inline int apic_enabled(struct kvm_lapic *apic)
131 {
132 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
133 }
134
135 #define LVT_MASK \
136 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
137
138 #define LINT_MASK \
139 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
140 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
141
kvm_x2apic_id(struct kvm_lapic * apic)142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
143 {
144 return apic->vcpu->vcpu_id;
145 }
146
kvm_can_post_timer_interrupt(struct kvm_vcpu * vcpu)147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
148 {
149 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
150 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
151 }
152
kvm_can_use_hv_timer(struct kvm_vcpu * vcpu)153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
154 {
155 return kvm_x86_ops.set_hv_timer
156 && !(kvm_mwait_in_guest(vcpu->kvm) ||
157 kvm_can_post_timer_interrupt(vcpu));
158 }
159
kvm_use_posted_timer_interrupt(struct kvm_vcpu * vcpu)160 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
161 {
162 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
163 }
164
kvm_apic_calc_x2apic_ldr(u32 id)165 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
166 {
167 return ((id >> 4) << 16) | (1 << (id & 0xf));
168 }
169
kvm_apic_map_get_logical_dest(struct kvm_apic_map * map,u32 dest_id,struct kvm_lapic *** cluster,u16 * mask)170 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
171 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
172 switch (map->logical_mode) {
173 case KVM_APIC_MODE_SW_DISABLED:
174 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
175 *cluster = map->xapic_flat_map;
176 *mask = 0;
177 return true;
178 case KVM_APIC_MODE_X2APIC: {
179 u32 offset = (dest_id >> 16) * 16;
180 u32 max_apic_id = map->max_apic_id;
181
182 if (offset <= max_apic_id) {
183 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
184
185 offset = array_index_nospec(offset, map->max_apic_id + 1);
186 *cluster = &map->phys_map[offset];
187 *mask = dest_id & (0xffff >> (16 - cluster_size));
188 } else {
189 *mask = 0;
190 }
191
192 return true;
193 }
194 case KVM_APIC_MODE_XAPIC_FLAT:
195 *cluster = map->xapic_flat_map;
196 *mask = dest_id & 0xff;
197 return true;
198 case KVM_APIC_MODE_XAPIC_CLUSTER:
199 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
200 *mask = dest_id & 0xf;
201 return true;
202 case KVM_APIC_MODE_MAP_DISABLED:
203 return false;
204 default:
205 WARN_ON_ONCE(1);
206 return false;
207 }
208 }
209
kvm_apic_map_free(struct rcu_head * rcu)210 static void kvm_apic_map_free(struct rcu_head *rcu)
211 {
212 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
213
214 kvfree(map);
215 }
216
kvm_recalculate_phys_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu,bool * xapic_id_mismatch)217 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
218 struct kvm_vcpu *vcpu,
219 bool *xapic_id_mismatch)
220 {
221 struct kvm_lapic *apic = vcpu->arch.apic;
222 u32 x2apic_id = kvm_x2apic_id(apic);
223 u32 xapic_id = kvm_xapic_id(apic);
224 u32 physical_id;
225
226 /*
227 * For simplicity, KVM always allocates enough space for all possible
228 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
229 * without the optimized map.
230 */
231 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
232 return -EINVAL;
233
234 /*
235 * Bail if a vCPU was added and/or enabled its APIC between allocating
236 * the map and doing the actual calculations for the map. Note, KVM
237 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
238 * the compiler decides to reload x2apic_id after this check.
239 */
240 if (x2apic_id > new->max_apic_id)
241 return -E2BIG;
242
243 /*
244 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
245 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
246 * 32-bit value. Any unwanted aliasing due to truncation results will
247 * be detected below.
248 */
249 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
250 *xapic_id_mismatch = true;
251
252 /*
253 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
254 * Allow sending events to vCPUs by their x2APIC ID even if the target
255 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
256 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
257 * and collide).
258 *
259 * Honor the architectural (and KVM's non-optimized) behavior if
260 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
261 * to process messages independently. If multiple vCPUs have the same
262 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
263 * manually modified its xAPIC IDs, events targeting that ID are
264 * supposed to be recognized by all vCPUs with said ID.
265 */
266 if (vcpu->kvm->arch.x2apic_format) {
267 /* See also kvm_apic_match_physical_addr(). */
268 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
269 new->phys_map[x2apic_id] = apic;
270
271 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
272 new->phys_map[xapic_id] = apic;
273 } else {
274 /*
275 * Disable the optimized map if the physical APIC ID is already
276 * mapped, i.e. is aliased to multiple vCPUs. The optimized
277 * map requires a strict 1:1 mapping between IDs and vCPUs.
278 */
279 if (apic_x2apic_mode(apic))
280 physical_id = x2apic_id;
281 else
282 physical_id = xapic_id;
283
284 if (new->phys_map[physical_id])
285 return -EINVAL;
286
287 new->phys_map[physical_id] = apic;
288 }
289
290 return 0;
291 }
292
kvm_recalculate_logical_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu)293 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
294 struct kvm_vcpu *vcpu)
295 {
296 struct kvm_lapic *apic = vcpu->arch.apic;
297 enum kvm_apic_logical_mode logical_mode;
298 struct kvm_lapic **cluster;
299 u16 mask;
300 u32 ldr;
301
302 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
303 return;
304
305 if (!kvm_apic_sw_enabled(apic))
306 return;
307
308 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
309 if (!ldr)
310 return;
311
312 if (apic_x2apic_mode(apic)) {
313 logical_mode = KVM_APIC_MODE_X2APIC;
314 } else {
315 ldr = GET_APIC_LOGICAL_ID(ldr);
316 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
317 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
318 else
319 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
320 }
321
322 /*
323 * To optimize logical mode delivery, all software-enabled APICs must
324 * be configured for the same mode.
325 */
326 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
327 new->logical_mode = logical_mode;
328 } else if (new->logical_mode != logical_mode) {
329 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
330 return;
331 }
332
333 /*
334 * In x2APIC mode, the LDR is read-only and derived directly from the
335 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
336 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
337 * reversing the LDR calculation to get cluster of APICs, i.e. no
338 * additional work is required.
339 */
340 if (apic_x2apic_mode(apic)) {
341 WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
342 return;
343 }
344
345 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
346 &cluster, &mask))) {
347 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
348 return;
349 }
350
351 if (!mask)
352 return;
353
354 ldr = ffs(mask) - 1;
355 if (!is_power_of_2(mask) || cluster[ldr])
356 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
357 else
358 cluster[ldr] = apic;
359 }
360
361 /*
362 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
363 *
364 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
365 * apic_map_lock_held.
366 */
367 enum {
368 CLEAN,
369 UPDATE_IN_PROGRESS,
370 DIRTY
371 };
372
kvm_recalculate_apic_map(struct kvm * kvm)373 void kvm_recalculate_apic_map(struct kvm *kvm)
374 {
375 struct kvm_apic_map *new, *old = NULL;
376 struct kvm_vcpu *vcpu;
377 unsigned long i;
378 u32 max_id = 255; /* enough space for any xAPIC ID */
379 bool xapic_id_mismatch;
380 int r;
381
382 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
383 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
384 return;
385
386 WARN_ONCE(!irqchip_in_kernel(kvm),
387 "Dirty APIC map without an in-kernel local APIC");
388
389 mutex_lock(&kvm->arch.apic_map_lock);
390
391 retry:
392 /*
393 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
394 * or the APIC registers (if dirty). Note, on retry the map may have
395 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
396 * ID, i.e. the map may still show up as in-progress. In that case
397 * this task still needs to retry and complete its calculation.
398 */
399 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
400 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
401 /* Someone else has updated the map. */
402 mutex_unlock(&kvm->arch.apic_map_lock);
403 return;
404 }
405
406 /*
407 * Reset the mismatch flag between attempts so that KVM does the right
408 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
409 * keep max_id strictly increasing. Disallowing max_id from shrinking
410 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
411 * with the highest x2APIC ID is toggling its APIC on and off.
412 */
413 xapic_id_mismatch = false;
414
415 kvm_for_each_vcpu(i, vcpu, kvm)
416 if (kvm_apic_present(vcpu))
417 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
418
419 new = kvzalloc(sizeof(struct kvm_apic_map) +
420 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
421 GFP_KERNEL_ACCOUNT);
422
423 if (!new)
424 goto out;
425
426 new->max_apic_id = max_id;
427 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
428
429 kvm_for_each_vcpu(i, vcpu, kvm) {
430 if (!kvm_apic_present(vcpu))
431 continue;
432
433 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
434 if (r) {
435 kvfree(new);
436 new = NULL;
437 if (r == -E2BIG) {
438 cond_resched();
439 goto retry;
440 }
441
442 goto out;
443 }
444
445 kvm_recalculate_logical_map(new, vcpu);
446 }
447 out:
448 /*
449 * The optimized map is effectively KVM's internal version of APICv,
450 * and all unwanted aliasing that results in disabling the optimized
451 * map also applies to APICv.
452 */
453 if (!new)
454 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
455 else
456 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
457
458 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
459 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
460 else
461 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
462
463 if (xapic_id_mismatch)
464 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
465 else
466 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
467
468 old = rcu_dereference_protected(kvm->arch.apic_map,
469 lockdep_is_held(&kvm->arch.apic_map_lock));
470 rcu_assign_pointer(kvm->arch.apic_map, new);
471 /*
472 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
473 * If another update has come in, leave it DIRTY.
474 */
475 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
476 UPDATE_IN_PROGRESS, CLEAN);
477 mutex_unlock(&kvm->arch.apic_map_lock);
478
479 if (old)
480 call_rcu(&old->rcu, kvm_apic_map_free);
481
482 kvm_make_scan_ioapic_request(kvm);
483 }
484
apic_set_spiv(struct kvm_lapic * apic,u32 val)485 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
486 {
487 bool enabled = val & APIC_SPIV_APIC_ENABLED;
488
489 kvm_lapic_set_reg(apic, APIC_SPIV, val);
490
491 if (enabled != apic->sw_enabled) {
492 apic->sw_enabled = enabled;
493 if (enabled)
494 static_branch_slow_dec_deferred(&apic_sw_disabled);
495 else
496 static_branch_inc(&apic_sw_disabled.key);
497
498 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
499 }
500
501 /* Check if there are APF page ready requests pending */
502 if (enabled)
503 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
504 }
505
kvm_apic_set_xapic_id(struct kvm_lapic * apic,u8 id)506 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
507 {
508 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
509 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
510 }
511
kvm_apic_set_ldr(struct kvm_lapic * apic,u32 id)512 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
513 {
514 kvm_lapic_set_reg(apic, APIC_LDR, id);
515 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
516 }
517
kvm_apic_set_dfr(struct kvm_lapic * apic,u32 val)518 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
519 {
520 kvm_lapic_set_reg(apic, APIC_DFR, val);
521 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
522 }
523
kvm_apic_set_x2apic_id(struct kvm_lapic * apic,u32 id)524 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
525 {
526 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
527
528 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
529
530 kvm_lapic_set_reg(apic, APIC_ID, id);
531 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
532 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
533 }
534
apic_lvt_enabled(struct kvm_lapic * apic,int lvt_type)535 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
536 {
537 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
538 }
539
apic_lvtt_oneshot(struct kvm_lapic * apic)540 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
541 {
542 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
543 }
544
apic_lvtt_period(struct kvm_lapic * apic)545 static inline int apic_lvtt_period(struct kvm_lapic *apic)
546 {
547 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
548 }
549
apic_lvtt_tscdeadline(struct kvm_lapic * apic)550 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
551 {
552 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
553 }
554
apic_lvt_nmi_mode(u32 lvt_val)555 static inline int apic_lvt_nmi_mode(u32 lvt_val)
556 {
557 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
558 }
559
kvm_lapic_lvt_supported(struct kvm_lapic * apic,int lvt_index)560 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
561 {
562 return apic->nr_lvt_entries > lvt_index;
563 }
564
kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu * vcpu)565 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
566 {
567 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
568 }
569
kvm_apic_set_version(struct kvm_vcpu * vcpu)570 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
571 {
572 struct kvm_lapic *apic = vcpu->arch.apic;
573 u32 v = 0;
574
575 if (!lapic_in_kernel(vcpu))
576 return;
577
578 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
579
580 /*
581 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
582 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
583 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
584 * version first and level-triggered interrupts never get EOIed in
585 * IOAPIC.
586 */
587 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
588 !ioapic_in_kernel(vcpu->kvm))
589 v |= APIC_LVR_DIRECTED_EOI;
590 kvm_lapic_set_reg(apic, APIC_LVR, v);
591 }
592
kvm_apic_after_set_mcg_cap(struct kvm_vcpu * vcpu)593 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
594 {
595 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
596 struct kvm_lapic *apic = vcpu->arch.apic;
597 int i;
598
599 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
600 return;
601
602 /* Initialize/mask any "new" LVT entries. */
603 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
604 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
605
606 apic->nr_lvt_entries = nr_lvt_entries;
607
608 /* The number of LVT entries is reflected in the version register. */
609 kvm_apic_set_version(vcpu);
610 }
611
612 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
613 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
614 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
615 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
616 [LVT_LINT0] = LINT_MASK,
617 [LVT_LINT1] = LINT_MASK,
618 [LVT_ERROR] = LVT_MASK,
619 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
620 };
621
find_highest_vector(void * bitmap)622 static int find_highest_vector(void *bitmap)
623 {
624 int vec;
625 u32 *reg;
626
627 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
628 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
629 reg = bitmap + REG_POS(vec);
630 if (*reg)
631 return __fls(*reg) + vec;
632 }
633
634 return -1;
635 }
636
count_vectors(void * bitmap)637 static u8 count_vectors(void *bitmap)
638 {
639 int vec;
640 u32 *reg;
641 u8 count = 0;
642
643 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
644 reg = bitmap + REG_POS(vec);
645 count += hweight32(*reg);
646 }
647
648 return count;
649 }
650
__kvm_apic_update_irr(u32 * pir,void * regs,int * max_irr)651 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
652 {
653 u32 i, vec;
654 u32 pir_val, irr_val, prev_irr_val;
655 int max_updated_irr;
656
657 max_updated_irr = -1;
658 *max_irr = -1;
659
660 for (i = vec = 0; i <= 7; i++, vec += 32) {
661 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
662
663 irr_val = *p_irr;
664 pir_val = READ_ONCE(pir[i]);
665
666 if (pir_val) {
667 pir_val = xchg(&pir[i], 0);
668
669 prev_irr_val = irr_val;
670 do {
671 irr_val = prev_irr_val | pir_val;
672 } while (prev_irr_val != irr_val &&
673 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
674
675 if (prev_irr_val != irr_val)
676 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
677 }
678 if (irr_val)
679 *max_irr = __fls(irr_val) + vec;
680 }
681
682 return ((max_updated_irr != -1) &&
683 (max_updated_irr == *max_irr));
684 }
685 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
686
kvm_apic_update_irr(struct kvm_vcpu * vcpu,u32 * pir,int * max_irr)687 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
688 {
689 struct kvm_lapic *apic = vcpu->arch.apic;
690 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
691
692 if (unlikely(!apic->apicv_active && irr_updated))
693 apic->irr_pending = true;
694 return irr_updated;
695 }
696 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
697
apic_search_irr(struct kvm_lapic * apic)698 static inline int apic_search_irr(struct kvm_lapic *apic)
699 {
700 return find_highest_vector(apic->regs + APIC_IRR);
701 }
702
apic_find_highest_irr(struct kvm_lapic * apic)703 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
704 {
705 int result;
706
707 /*
708 * Note that irr_pending is just a hint. It will be always
709 * true with virtual interrupt delivery enabled.
710 */
711 if (!apic->irr_pending)
712 return -1;
713
714 result = apic_search_irr(apic);
715 ASSERT(result == -1 || result >= 16);
716
717 return result;
718 }
719
apic_clear_irr(int vec,struct kvm_lapic * apic)720 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
721 {
722 if (unlikely(apic->apicv_active)) {
723 /* need to update RVI */
724 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
725 static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
726 apic_find_highest_irr(apic));
727 } else {
728 apic->irr_pending = false;
729 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
730 if (apic_search_irr(apic) != -1)
731 apic->irr_pending = true;
732 }
733 }
734
kvm_apic_clear_irr(struct kvm_vcpu * vcpu,int vec)735 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
736 {
737 apic_clear_irr(vec, vcpu->arch.apic);
738 }
739 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
740
apic_set_isr(int vec,struct kvm_lapic * apic)741 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
742 {
743 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
744 return;
745
746 /*
747 * With APIC virtualization enabled, all caching is disabled
748 * because the processor can modify ISR under the hood. Instead
749 * just set SVI.
750 */
751 if (unlikely(apic->apicv_active))
752 static_call_cond(kvm_x86_hwapic_isr_update)(vec);
753 else {
754 ++apic->isr_count;
755 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
756 /*
757 * ISR (in service register) bit is set when injecting an interrupt.
758 * The highest vector is injected. Thus the latest bit set matches
759 * the highest bit in ISR.
760 */
761 apic->highest_isr_cache = vec;
762 }
763 }
764
apic_find_highest_isr(struct kvm_lapic * apic)765 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
766 {
767 int result;
768
769 /*
770 * Note that isr_count is always 1, and highest_isr_cache
771 * is always -1, with APIC virtualization enabled.
772 */
773 if (!apic->isr_count)
774 return -1;
775 if (likely(apic->highest_isr_cache != -1))
776 return apic->highest_isr_cache;
777
778 result = find_highest_vector(apic->regs + APIC_ISR);
779 ASSERT(result == -1 || result >= 16);
780
781 return result;
782 }
783
apic_clear_isr(int vec,struct kvm_lapic * apic)784 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
785 {
786 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
787 return;
788
789 /*
790 * We do get here for APIC virtualization enabled if the guest
791 * uses the Hyper-V APIC enlightenment. In this case we may need
792 * to trigger a new interrupt delivery by writing the SVI field;
793 * on the other hand isr_count and highest_isr_cache are unused
794 * and must be left alone.
795 */
796 if (unlikely(apic->apicv_active))
797 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
798 else {
799 --apic->isr_count;
800 BUG_ON(apic->isr_count < 0);
801 apic->highest_isr_cache = -1;
802 }
803 }
804
kvm_lapic_find_highest_irr(struct kvm_vcpu * vcpu)805 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
806 {
807 /* This may race with setting of irr in __apic_accept_irq() and
808 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
809 * will cause vmexit immediately and the value will be recalculated
810 * on the next vmentry.
811 */
812 return apic_find_highest_irr(vcpu->arch.apic);
813 }
814 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
815
816 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
817 int vector, int level, int trig_mode,
818 struct dest_map *dest_map);
819
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq,struct dest_map * dest_map)820 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
821 struct dest_map *dest_map)
822 {
823 struct kvm_lapic *apic = vcpu->arch.apic;
824
825 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
826 irq->level, irq->trig_mode, dest_map);
827 }
828
__pv_send_ipi(unsigned long * ipi_bitmap,struct kvm_apic_map * map,struct kvm_lapic_irq * irq,u32 min)829 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
830 struct kvm_lapic_irq *irq, u32 min)
831 {
832 int i, count = 0;
833 struct kvm_vcpu *vcpu;
834
835 if (min > map->max_apic_id)
836 return 0;
837
838 for_each_set_bit(i, ipi_bitmap,
839 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
840 if (map->phys_map[min + i]) {
841 vcpu = map->phys_map[min + i]->vcpu;
842 count += kvm_apic_set_irq(vcpu, irq, NULL);
843 }
844 }
845
846 return count;
847 }
848
kvm_pv_send_ipi(struct kvm * kvm,unsigned long ipi_bitmap_low,unsigned long ipi_bitmap_high,u32 min,unsigned long icr,int op_64_bit)849 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
850 unsigned long ipi_bitmap_high, u32 min,
851 unsigned long icr, int op_64_bit)
852 {
853 struct kvm_apic_map *map;
854 struct kvm_lapic_irq irq = {0};
855 int cluster_size = op_64_bit ? 64 : 32;
856 int count;
857
858 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
859 return -KVM_EINVAL;
860
861 irq.vector = icr & APIC_VECTOR_MASK;
862 irq.delivery_mode = icr & APIC_MODE_MASK;
863 irq.level = (icr & APIC_INT_ASSERT) != 0;
864 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
865
866 rcu_read_lock();
867 map = rcu_dereference(kvm->arch.apic_map);
868
869 count = -EOPNOTSUPP;
870 if (likely(map)) {
871 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
872 min += cluster_size;
873 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
874 }
875
876 rcu_read_unlock();
877 return count;
878 }
879
pv_eoi_put_user(struct kvm_vcpu * vcpu,u8 val)880 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
881 {
882
883 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
884 sizeof(val));
885 }
886
pv_eoi_get_user(struct kvm_vcpu * vcpu,u8 * val)887 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
888 {
889
890 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
891 sizeof(*val));
892 }
893
pv_eoi_enabled(struct kvm_vcpu * vcpu)894 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
895 {
896 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
897 }
898
pv_eoi_set_pending(struct kvm_vcpu * vcpu)899 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
900 {
901 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
902 return;
903
904 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
905 }
906
pv_eoi_test_and_clr_pending(struct kvm_vcpu * vcpu)907 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
908 {
909 u8 val;
910
911 if (pv_eoi_get_user(vcpu, &val) < 0)
912 return false;
913
914 val &= KVM_PV_EOI_ENABLED;
915
916 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
917 return false;
918
919 /*
920 * Clear pending bit in any case: it will be set again on vmentry.
921 * While this might not be ideal from performance point of view,
922 * this makes sure pv eoi is only enabled when we know it's safe.
923 */
924 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
925
926 return val;
927 }
928
apic_has_interrupt_for_ppr(struct kvm_lapic * apic,u32 ppr)929 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
930 {
931 int highest_irr;
932 if (kvm_x86_ops.sync_pir_to_irr)
933 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
934 else
935 highest_irr = apic_find_highest_irr(apic);
936 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
937 return -1;
938 return highest_irr;
939 }
940
__apic_update_ppr(struct kvm_lapic * apic,u32 * new_ppr)941 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
942 {
943 u32 tpr, isrv, ppr, old_ppr;
944 int isr;
945
946 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
947 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
948 isr = apic_find_highest_isr(apic);
949 isrv = (isr != -1) ? isr : 0;
950
951 if ((tpr & 0xf0) >= (isrv & 0xf0))
952 ppr = tpr & 0xff;
953 else
954 ppr = isrv & 0xf0;
955
956 *new_ppr = ppr;
957 if (old_ppr != ppr)
958 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
959
960 return ppr < old_ppr;
961 }
962
apic_update_ppr(struct kvm_lapic * apic)963 static void apic_update_ppr(struct kvm_lapic *apic)
964 {
965 u32 ppr;
966
967 if (__apic_update_ppr(apic, &ppr) &&
968 apic_has_interrupt_for_ppr(apic, ppr) != -1)
969 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
970 }
971
kvm_apic_update_ppr(struct kvm_vcpu * vcpu)972 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
973 {
974 apic_update_ppr(vcpu->arch.apic);
975 }
976 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
977
apic_set_tpr(struct kvm_lapic * apic,u32 tpr)978 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
979 {
980 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
981 apic_update_ppr(apic);
982 }
983
kvm_apic_broadcast(struct kvm_lapic * apic,u32 mda)984 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
985 {
986 return mda == (apic_x2apic_mode(apic) ?
987 X2APIC_BROADCAST : APIC_BROADCAST);
988 }
989
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u32 mda)990 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
991 {
992 if (kvm_apic_broadcast(apic, mda))
993 return true;
994
995 /*
996 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
997 * were in x2APIC mode if the target APIC ID can't be encoded as an
998 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
999 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1000 * mode. Match the x2APIC ID if and only if the target APIC ID can't
1001 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1002 * changed its (addressable) xAPIC ID (which is writable).
1003 */
1004 if (apic_x2apic_mode(apic) || mda > 0xff)
1005 return mda == kvm_x2apic_id(apic);
1006
1007 return mda == kvm_xapic_id(apic);
1008 }
1009
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u32 mda)1010 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1011 {
1012 u32 logical_id;
1013
1014 if (kvm_apic_broadcast(apic, mda))
1015 return true;
1016
1017 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1018
1019 if (apic_x2apic_mode(apic))
1020 return ((logical_id >> 16) == (mda >> 16))
1021 && (logical_id & mda & 0xffff) != 0;
1022
1023 logical_id = GET_APIC_LOGICAL_ID(logical_id);
1024
1025 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1026 case APIC_DFR_FLAT:
1027 return (logical_id & mda) != 0;
1028 case APIC_DFR_CLUSTER:
1029 return ((logical_id >> 4) == (mda >> 4))
1030 && (logical_id & mda & 0xf) != 0;
1031 default:
1032 return false;
1033 }
1034 }
1035
1036 /* The KVM local APIC implementation has two quirks:
1037 *
1038 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1039 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1040 * KVM doesn't do that aliasing.
1041 *
1042 * - in-kernel IOAPIC messages have to be delivered directly to
1043 * x2APIC, because the kernel does not support interrupt remapping.
1044 * In order to support broadcast without interrupt remapping, x2APIC
1045 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1046 * to X2APIC_BROADCAST.
1047 *
1048 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1049 * important when userspace wants to use x2APIC-format MSIs, because
1050 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1051 */
kvm_apic_mda(struct kvm_vcpu * vcpu,unsigned int dest_id,struct kvm_lapic * source,struct kvm_lapic * target)1052 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1053 struct kvm_lapic *source, struct kvm_lapic *target)
1054 {
1055 bool ipi = source != NULL;
1056
1057 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1058 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1059 return X2APIC_BROADCAST;
1060
1061 return dest_id;
1062 }
1063
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int shorthand,unsigned int dest,int dest_mode)1064 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1065 int shorthand, unsigned int dest, int dest_mode)
1066 {
1067 struct kvm_lapic *target = vcpu->arch.apic;
1068 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1069
1070 ASSERT(target);
1071 switch (shorthand) {
1072 case APIC_DEST_NOSHORT:
1073 if (dest_mode == APIC_DEST_PHYSICAL)
1074 return kvm_apic_match_physical_addr(target, mda);
1075 else
1076 return kvm_apic_match_logical_addr(target, mda);
1077 case APIC_DEST_SELF:
1078 return target == source;
1079 case APIC_DEST_ALLINC:
1080 return true;
1081 case APIC_DEST_ALLBUT:
1082 return target != source;
1083 default:
1084 return false;
1085 }
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1088
kvm_vector_to_index(u32 vector,u32 dest_vcpus,const unsigned long * bitmap,u32 bitmap_size)1089 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1090 const unsigned long *bitmap, u32 bitmap_size)
1091 {
1092 u32 mod;
1093 int i, idx = -1;
1094
1095 mod = vector % dest_vcpus;
1096
1097 for (i = 0; i <= mod; i++) {
1098 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1099 BUG_ON(idx == bitmap_size);
1100 }
1101
1102 return idx;
1103 }
1104
kvm_apic_disabled_lapic_found(struct kvm * kvm)1105 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1106 {
1107 if (!kvm->arch.disabled_lapic_found) {
1108 kvm->arch.disabled_lapic_found = true;
1109 pr_info("Disabled LAPIC found during irq injection\n");
1110 }
1111 }
1112
kvm_apic_is_broadcast_dest(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map)1113 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1114 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1115 {
1116 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1117 if ((irq->dest_id == APIC_BROADCAST &&
1118 map->logical_mode != KVM_APIC_MODE_X2APIC))
1119 return true;
1120 if (irq->dest_id == X2APIC_BROADCAST)
1121 return true;
1122 } else {
1123 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1124 if (irq->dest_id == (x2apic_ipi ?
1125 X2APIC_BROADCAST : APIC_BROADCAST))
1126 return true;
1127 }
1128
1129 return false;
1130 }
1131
1132 /* Return true if the interrupt can be handled by using *bitmap as index mask
1133 * for valid destinations in *dst array.
1134 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1135 * Note: we may have zero kvm_lapic destinations when we return true, which
1136 * means that the interrupt should be dropped. In this case, *bitmap would be
1137 * zero and *dst undefined.
1138 */
kvm_apic_map_get_dest_lapic(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map,struct kvm_lapic *** dst,unsigned long * bitmap)1139 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1140 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1141 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1142 unsigned long *bitmap)
1143 {
1144 int i, lowest;
1145
1146 if (irq->shorthand == APIC_DEST_SELF && src) {
1147 *dst = src;
1148 *bitmap = 1;
1149 return true;
1150 } else if (irq->shorthand)
1151 return false;
1152
1153 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1154 return false;
1155
1156 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1157 if (irq->dest_id > map->max_apic_id) {
1158 *bitmap = 0;
1159 } else {
1160 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1161 *dst = &map->phys_map[dest_id];
1162 *bitmap = 1;
1163 }
1164 return true;
1165 }
1166
1167 *bitmap = 0;
1168 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1169 (u16 *)bitmap))
1170 return false;
1171
1172 if (!kvm_lowest_prio_delivery(irq))
1173 return true;
1174
1175 if (!kvm_vector_hashing_enabled()) {
1176 lowest = -1;
1177 for_each_set_bit(i, bitmap, 16) {
1178 if (!(*dst)[i])
1179 continue;
1180 if (lowest < 0)
1181 lowest = i;
1182 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1183 (*dst)[lowest]->vcpu) < 0)
1184 lowest = i;
1185 }
1186 } else {
1187 if (!*bitmap)
1188 return true;
1189
1190 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1191 bitmap, 16);
1192
1193 if (!(*dst)[lowest]) {
1194 kvm_apic_disabled_lapic_found(kvm);
1195 *bitmap = 0;
1196 return true;
1197 }
1198 }
1199
1200 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1201
1202 return true;
1203 }
1204
kvm_irq_delivery_to_apic_fast(struct kvm * kvm,struct kvm_lapic * src,struct kvm_lapic_irq * irq,int * r,struct dest_map * dest_map)1205 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1206 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1207 {
1208 struct kvm_apic_map *map;
1209 unsigned long bitmap;
1210 struct kvm_lapic **dst = NULL;
1211 int i;
1212 bool ret;
1213
1214 *r = -1;
1215
1216 if (irq->shorthand == APIC_DEST_SELF) {
1217 if (KVM_BUG_ON(!src, kvm)) {
1218 *r = 0;
1219 return true;
1220 }
1221 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1222 return true;
1223 }
1224
1225 rcu_read_lock();
1226 map = rcu_dereference(kvm->arch.apic_map);
1227
1228 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1229 if (ret) {
1230 *r = 0;
1231 for_each_set_bit(i, &bitmap, 16) {
1232 if (!dst[i])
1233 continue;
1234 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1235 }
1236 }
1237
1238 rcu_read_unlock();
1239 return ret;
1240 }
1241
1242 /*
1243 * This routine tries to handle interrupts in posted mode, here is how
1244 * it deals with different cases:
1245 * - For single-destination interrupts, handle it in posted mode
1246 * - Else if vector hashing is enabled and it is a lowest-priority
1247 * interrupt, handle it in posted mode and use the following mechanism
1248 * to find the destination vCPU.
1249 * 1. For lowest-priority interrupts, store all the possible
1250 * destination vCPUs in an array.
1251 * 2. Use "guest vector % max number of destination vCPUs" to find
1252 * the right destination vCPU in the array for the lowest-priority
1253 * interrupt.
1254 * - Otherwise, use remapped mode to inject the interrupt.
1255 */
kvm_intr_is_single_vcpu_fast(struct kvm * kvm,struct kvm_lapic_irq * irq,struct kvm_vcpu ** dest_vcpu)1256 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1257 struct kvm_vcpu **dest_vcpu)
1258 {
1259 struct kvm_apic_map *map;
1260 unsigned long bitmap;
1261 struct kvm_lapic **dst = NULL;
1262 bool ret = false;
1263
1264 if (irq->shorthand)
1265 return false;
1266
1267 rcu_read_lock();
1268 map = rcu_dereference(kvm->arch.apic_map);
1269
1270 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1271 hweight16(bitmap) == 1) {
1272 unsigned long i = find_first_bit(&bitmap, 16);
1273
1274 if (dst[i]) {
1275 *dest_vcpu = dst[i]->vcpu;
1276 ret = true;
1277 }
1278 }
1279
1280 rcu_read_unlock();
1281 return ret;
1282 }
1283
1284 /*
1285 * Add a pending IRQ into lapic.
1286 * Return 1 if successfully added and 0 if discarded.
1287 */
__apic_accept_irq(struct kvm_lapic * apic,int delivery_mode,int vector,int level,int trig_mode,struct dest_map * dest_map)1288 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1289 int vector, int level, int trig_mode,
1290 struct dest_map *dest_map)
1291 {
1292 int result = 0;
1293 struct kvm_vcpu *vcpu = apic->vcpu;
1294
1295 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1296 trig_mode, vector);
1297 switch (delivery_mode) {
1298 case APIC_DM_LOWEST:
1299 vcpu->arch.apic_arb_prio++;
1300 fallthrough;
1301 case APIC_DM_FIXED:
1302 if (unlikely(trig_mode && !level))
1303 break;
1304
1305 /* FIXME add logic for vcpu on reset */
1306 if (unlikely(!apic_enabled(apic)))
1307 break;
1308
1309 result = 1;
1310
1311 if (dest_map) {
1312 __set_bit(vcpu->vcpu_id, dest_map->map);
1313 dest_map->vectors[vcpu->vcpu_id] = vector;
1314 }
1315
1316 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1317 if (trig_mode)
1318 kvm_lapic_set_vector(vector,
1319 apic->regs + APIC_TMR);
1320 else
1321 kvm_lapic_clear_vector(vector,
1322 apic->regs + APIC_TMR);
1323 }
1324
1325 static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1326 trig_mode, vector);
1327 break;
1328
1329 case APIC_DM_REMRD:
1330 result = 1;
1331 vcpu->arch.pv.pv_unhalted = 1;
1332 kvm_make_request(KVM_REQ_EVENT, vcpu);
1333 kvm_vcpu_kick(vcpu);
1334 break;
1335
1336 case APIC_DM_SMI:
1337 if (!kvm_inject_smi(vcpu)) {
1338 kvm_vcpu_kick(vcpu);
1339 result = 1;
1340 }
1341 break;
1342
1343 case APIC_DM_NMI:
1344 result = 1;
1345 kvm_inject_nmi(vcpu);
1346 kvm_vcpu_kick(vcpu);
1347 break;
1348
1349 case APIC_DM_INIT:
1350 if (!trig_mode || level) {
1351 result = 1;
1352 /* assumes that there are only KVM_APIC_INIT/SIPI */
1353 apic->pending_events = (1UL << KVM_APIC_INIT);
1354 kvm_make_request(KVM_REQ_EVENT, vcpu);
1355 kvm_vcpu_kick(vcpu);
1356 }
1357 break;
1358
1359 case APIC_DM_STARTUP:
1360 result = 1;
1361 apic->sipi_vector = vector;
1362 /* make sure sipi_vector is visible for the receiver */
1363 smp_wmb();
1364 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1365 kvm_make_request(KVM_REQ_EVENT, vcpu);
1366 kvm_vcpu_kick(vcpu);
1367 break;
1368
1369 case APIC_DM_EXTINT:
1370 /*
1371 * Should only be called by kvm_apic_local_deliver() with LVT0,
1372 * before NMI watchdog was enabled. Already handled by
1373 * kvm_apic_accept_pic_intr().
1374 */
1375 break;
1376
1377 default:
1378 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1379 delivery_mode);
1380 break;
1381 }
1382 return result;
1383 }
1384
1385 /*
1386 * This routine identifies the destination vcpus mask meant to receive the
1387 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1388 * out the destination vcpus array and set the bitmap or it traverses to
1389 * each available vcpu to identify the same.
1390 */
kvm_bitmap_or_dest_vcpus(struct kvm * kvm,struct kvm_lapic_irq * irq,unsigned long * vcpu_bitmap)1391 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1392 unsigned long *vcpu_bitmap)
1393 {
1394 struct kvm_lapic **dest_vcpu = NULL;
1395 struct kvm_lapic *src = NULL;
1396 struct kvm_apic_map *map;
1397 struct kvm_vcpu *vcpu;
1398 unsigned long bitmap, i;
1399 int vcpu_idx;
1400 bool ret;
1401
1402 rcu_read_lock();
1403 map = rcu_dereference(kvm->arch.apic_map);
1404
1405 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1406 &bitmap);
1407 if (ret) {
1408 for_each_set_bit(i, &bitmap, 16) {
1409 if (!dest_vcpu[i])
1410 continue;
1411 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1412 __set_bit(vcpu_idx, vcpu_bitmap);
1413 }
1414 } else {
1415 kvm_for_each_vcpu(i, vcpu, kvm) {
1416 if (!kvm_apic_present(vcpu))
1417 continue;
1418 if (!kvm_apic_match_dest(vcpu, NULL,
1419 irq->shorthand,
1420 irq->dest_id,
1421 irq->dest_mode))
1422 continue;
1423 __set_bit(i, vcpu_bitmap);
1424 }
1425 }
1426 rcu_read_unlock();
1427 }
1428
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1429 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1430 {
1431 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1432 }
1433
kvm_ioapic_handles_vector(struct kvm_lapic * apic,int vector)1434 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1435 {
1436 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1437 }
1438
kvm_ioapic_send_eoi(struct kvm_lapic * apic,int vector)1439 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1440 {
1441 int trigger_mode;
1442
1443 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1444 if (!kvm_ioapic_handles_vector(apic, vector))
1445 return;
1446
1447 /* Request a KVM exit to inform the userspace IOAPIC. */
1448 if (irqchip_split(apic->vcpu->kvm)) {
1449 apic->vcpu->arch.pending_ioapic_eoi = vector;
1450 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1451 return;
1452 }
1453
1454 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1455 trigger_mode = IOAPIC_LEVEL_TRIG;
1456 else
1457 trigger_mode = IOAPIC_EDGE_TRIG;
1458
1459 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1460 }
1461
apic_set_eoi(struct kvm_lapic * apic)1462 static int apic_set_eoi(struct kvm_lapic *apic)
1463 {
1464 int vector = apic_find_highest_isr(apic);
1465
1466 trace_kvm_eoi(apic, vector);
1467
1468 /*
1469 * Not every write EOI will has corresponding ISR,
1470 * one example is when Kernel check timer on setup_IO_APIC
1471 */
1472 if (vector == -1)
1473 return vector;
1474
1475 apic_clear_isr(vector, apic);
1476 apic_update_ppr(apic);
1477
1478 if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1479 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1480
1481 kvm_ioapic_send_eoi(apic, vector);
1482 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1483 return vector;
1484 }
1485
1486 /*
1487 * this interface assumes a trap-like exit, which has already finished
1488 * desired side effect including vISR and vPPR update.
1489 */
kvm_apic_set_eoi_accelerated(struct kvm_vcpu * vcpu,int vector)1490 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1491 {
1492 struct kvm_lapic *apic = vcpu->arch.apic;
1493
1494 trace_kvm_eoi(apic, vector);
1495
1496 kvm_ioapic_send_eoi(apic, vector);
1497 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1500
kvm_apic_send_ipi(struct kvm_lapic * apic,u32 icr_low,u32 icr_high)1501 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1502 {
1503 struct kvm_lapic_irq irq;
1504
1505 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1506 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1507
1508 irq.vector = icr_low & APIC_VECTOR_MASK;
1509 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1510 irq.dest_mode = icr_low & APIC_DEST_MASK;
1511 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1512 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1513 irq.shorthand = icr_low & APIC_SHORT_MASK;
1514 irq.msi_redir_hint = false;
1515 if (apic_x2apic_mode(apic))
1516 irq.dest_id = icr_high;
1517 else
1518 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1519
1520 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1521
1522 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1525
apic_get_tmcct(struct kvm_lapic * apic)1526 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1527 {
1528 ktime_t remaining, now;
1529 s64 ns;
1530
1531 ASSERT(apic != NULL);
1532
1533 /* if initial count is 0, current count should also be 0 */
1534 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1535 apic->lapic_timer.period == 0)
1536 return 0;
1537
1538 now = ktime_get();
1539 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1540 if (ktime_to_ns(remaining) < 0)
1541 remaining = 0;
1542
1543 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1544 return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1545 }
1546
__report_tpr_access(struct kvm_lapic * apic,bool write)1547 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1548 {
1549 struct kvm_vcpu *vcpu = apic->vcpu;
1550 struct kvm_run *run = vcpu->run;
1551
1552 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1553 run->tpr_access.rip = kvm_rip_read(vcpu);
1554 run->tpr_access.is_write = write;
1555 }
1556
report_tpr_access(struct kvm_lapic * apic,bool write)1557 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1558 {
1559 if (apic->vcpu->arch.tpr_access_reporting)
1560 __report_tpr_access(apic, write);
1561 }
1562
__apic_read(struct kvm_lapic * apic,unsigned int offset)1563 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1564 {
1565 u32 val = 0;
1566
1567 if (offset >= LAPIC_MMIO_LENGTH)
1568 return 0;
1569
1570 switch (offset) {
1571 case APIC_ARBPRI:
1572 break;
1573
1574 case APIC_TMCCT: /* Timer CCR */
1575 if (apic_lvtt_tscdeadline(apic))
1576 return 0;
1577
1578 val = apic_get_tmcct(apic);
1579 break;
1580 case APIC_PROCPRI:
1581 apic_update_ppr(apic);
1582 val = kvm_lapic_get_reg(apic, offset);
1583 break;
1584 case APIC_TASKPRI:
1585 report_tpr_access(apic, false);
1586 fallthrough;
1587 default:
1588 val = kvm_lapic_get_reg(apic, offset);
1589 break;
1590 }
1591
1592 return val;
1593 }
1594
to_lapic(struct kvm_io_device * dev)1595 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1596 {
1597 return container_of(dev, struct kvm_lapic, dev);
1598 }
1599
1600 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1601 #define APIC_REGS_MASK(first, count) \
1602 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1603
kvm_lapic_readable_reg_mask(struct kvm_lapic * apic)1604 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1605 {
1606 /* Leave bits '0' for reserved and write-only registers. */
1607 u64 valid_reg_mask =
1608 APIC_REG_MASK(APIC_ID) |
1609 APIC_REG_MASK(APIC_LVR) |
1610 APIC_REG_MASK(APIC_TASKPRI) |
1611 APIC_REG_MASK(APIC_PROCPRI) |
1612 APIC_REG_MASK(APIC_LDR) |
1613 APIC_REG_MASK(APIC_SPIV) |
1614 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1615 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1616 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1617 APIC_REG_MASK(APIC_ESR) |
1618 APIC_REG_MASK(APIC_ICR) |
1619 APIC_REG_MASK(APIC_LVTT) |
1620 APIC_REG_MASK(APIC_LVTTHMR) |
1621 APIC_REG_MASK(APIC_LVTPC) |
1622 APIC_REG_MASK(APIC_LVT0) |
1623 APIC_REG_MASK(APIC_LVT1) |
1624 APIC_REG_MASK(APIC_LVTERR) |
1625 APIC_REG_MASK(APIC_TMICT) |
1626 APIC_REG_MASK(APIC_TMCCT) |
1627 APIC_REG_MASK(APIC_TDCR);
1628
1629 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1630 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1631
1632 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1633 if (!apic_x2apic_mode(apic))
1634 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1635 APIC_REG_MASK(APIC_DFR) |
1636 APIC_REG_MASK(APIC_ICR2);
1637
1638 return valid_reg_mask;
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1641
kvm_lapic_reg_read(struct kvm_lapic * apic,u32 offset,int len,void * data)1642 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1643 void *data)
1644 {
1645 unsigned char alignment = offset & 0xf;
1646 u32 result;
1647
1648 /*
1649 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1650 * x2APIC and needs to be manually handled by the caller.
1651 */
1652 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1653
1654 if (alignment + len > 4)
1655 return 1;
1656
1657 if (offset > 0x3f0 ||
1658 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1659 return 1;
1660
1661 result = __apic_read(apic, offset & ~0xf);
1662
1663 trace_kvm_apic_read(offset, result);
1664
1665 switch (len) {
1666 case 1:
1667 case 2:
1668 case 4:
1669 memcpy(data, (char *)&result + alignment, len);
1670 break;
1671 default:
1672 printk(KERN_ERR "Local APIC read with len = %x, "
1673 "should be 1,2, or 4 instead\n", len);
1674 break;
1675 }
1676 return 0;
1677 }
1678
apic_mmio_in_range(struct kvm_lapic * apic,gpa_t addr)1679 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1680 {
1681 return addr >= apic->base_address &&
1682 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1683 }
1684
apic_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,void * data)1685 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1686 gpa_t address, int len, void *data)
1687 {
1688 struct kvm_lapic *apic = to_lapic(this);
1689 u32 offset = address - apic->base_address;
1690
1691 if (!apic_mmio_in_range(apic, address))
1692 return -EOPNOTSUPP;
1693
1694 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1695 if (!kvm_check_has_quirk(vcpu->kvm,
1696 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1697 return -EOPNOTSUPP;
1698
1699 memset(data, 0xff, len);
1700 return 0;
1701 }
1702
1703 kvm_lapic_reg_read(apic, offset, len, data);
1704
1705 return 0;
1706 }
1707
update_divide_count(struct kvm_lapic * apic)1708 static void update_divide_count(struct kvm_lapic *apic)
1709 {
1710 u32 tmp1, tmp2, tdcr;
1711
1712 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1713 tmp1 = tdcr & 0xf;
1714 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1715 apic->divide_count = 0x1 << (tmp2 & 0x7);
1716 }
1717
limit_periodic_timer_frequency(struct kvm_lapic * apic)1718 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1719 {
1720 /*
1721 * Do not allow the guest to program periodic timers with small
1722 * interval, since the hrtimers are not throttled by the host
1723 * scheduler.
1724 */
1725 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1726 s64 min_period = min_timer_period_us * 1000LL;
1727
1728 if (apic->lapic_timer.period < min_period) {
1729 pr_info_ratelimited(
1730 "vcpu %i: requested %lld ns "
1731 "lapic timer period limited to %lld ns\n",
1732 apic->vcpu->vcpu_id,
1733 apic->lapic_timer.period, min_period);
1734 apic->lapic_timer.period = min_period;
1735 }
1736 }
1737 }
1738
1739 static void cancel_hv_timer(struct kvm_lapic *apic);
1740
cancel_apic_timer(struct kvm_lapic * apic)1741 static void cancel_apic_timer(struct kvm_lapic *apic)
1742 {
1743 hrtimer_cancel(&apic->lapic_timer.timer);
1744 preempt_disable();
1745 if (apic->lapic_timer.hv_timer_in_use)
1746 cancel_hv_timer(apic);
1747 preempt_enable();
1748 atomic_set(&apic->lapic_timer.pending, 0);
1749 }
1750
apic_update_lvtt(struct kvm_lapic * apic)1751 static void apic_update_lvtt(struct kvm_lapic *apic)
1752 {
1753 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1754 apic->lapic_timer.timer_mode_mask;
1755
1756 if (apic->lapic_timer.timer_mode != timer_mode) {
1757 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1758 APIC_LVT_TIMER_TSCDEADLINE)) {
1759 cancel_apic_timer(apic);
1760 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1761 apic->lapic_timer.period = 0;
1762 apic->lapic_timer.tscdeadline = 0;
1763 }
1764 apic->lapic_timer.timer_mode = timer_mode;
1765 limit_periodic_timer_frequency(apic);
1766 }
1767 }
1768
1769 /*
1770 * On APICv, this test will cause a busy wait
1771 * during a higher-priority task.
1772 */
1773
lapic_timer_int_injected(struct kvm_vcpu * vcpu)1774 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1775 {
1776 struct kvm_lapic *apic = vcpu->arch.apic;
1777 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1778
1779 if (kvm_apic_hw_enabled(apic)) {
1780 int vec = reg & APIC_VECTOR_MASK;
1781 void *bitmap = apic->regs + APIC_ISR;
1782
1783 if (apic->apicv_active)
1784 bitmap = apic->regs + APIC_IRR;
1785
1786 if (apic_test_vector(vec, bitmap))
1787 return true;
1788 }
1789 return false;
1790 }
1791
__wait_lapic_expire(struct kvm_vcpu * vcpu,u64 guest_cycles)1792 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1793 {
1794 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1795
1796 /*
1797 * If the guest TSC is running at a different ratio than the host, then
1798 * convert the delay to nanoseconds to achieve an accurate delay. Note
1799 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1800 * always for VMX enabled hardware.
1801 */
1802 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1803 __delay(min(guest_cycles,
1804 nsec_to_cycles(vcpu, timer_advance_ns)));
1805 } else {
1806 u64 delay_ns = guest_cycles * 1000000ULL;
1807 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1808 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1809 }
1810 }
1811
adjust_lapic_timer_advance(struct kvm_vcpu * vcpu,s64 advance_expire_delta)1812 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1813 s64 advance_expire_delta)
1814 {
1815 struct kvm_lapic *apic = vcpu->arch.apic;
1816 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1817 u64 ns;
1818
1819 /* Do not adjust for tiny fluctuations or large random spikes. */
1820 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1821 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1822 return;
1823
1824 /* too early */
1825 if (advance_expire_delta < 0) {
1826 ns = -advance_expire_delta * 1000000ULL;
1827 do_div(ns, vcpu->arch.virtual_tsc_khz);
1828 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1829 } else {
1830 /* too late */
1831 ns = advance_expire_delta * 1000000ULL;
1832 do_div(ns, vcpu->arch.virtual_tsc_khz);
1833 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1834 }
1835
1836 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1837 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1838 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1839 }
1840
__kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1841 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1842 {
1843 struct kvm_lapic *apic = vcpu->arch.apic;
1844 u64 guest_tsc, tsc_deadline;
1845
1846 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1847 apic->lapic_timer.expired_tscdeadline = 0;
1848 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1849 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1850
1851 if (lapic_timer_advance_dynamic) {
1852 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1853 /*
1854 * If the timer fired early, reread the TSC to account for the
1855 * overhead of the above adjustment to avoid waiting longer
1856 * than is necessary.
1857 */
1858 if (guest_tsc < tsc_deadline)
1859 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1860 }
1861
1862 if (guest_tsc < tsc_deadline)
1863 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1864 }
1865
kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1866 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1867 {
1868 if (lapic_in_kernel(vcpu) &&
1869 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1870 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1871 lapic_timer_int_injected(vcpu))
1872 __kvm_wait_lapic_expire(vcpu);
1873 }
1874 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1875
kvm_apic_inject_pending_timer_irqs(struct kvm_lapic * apic)1876 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1877 {
1878 struct kvm_timer *ktimer = &apic->lapic_timer;
1879
1880 kvm_apic_local_deliver(apic, APIC_LVTT);
1881 if (apic_lvtt_tscdeadline(apic)) {
1882 ktimer->tscdeadline = 0;
1883 } else if (apic_lvtt_oneshot(apic)) {
1884 ktimer->tscdeadline = 0;
1885 ktimer->target_expiration = 0;
1886 }
1887 }
1888
apic_timer_expired(struct kvm_lapic * apic,bool from_timer_fn)1889 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1890 {
1891 struct kvm_vcpu *vcpu = apic->vcpu;
1892 struct kvm_timer *ktimer = &apic->lapic_timer;
1893
1894 if (atomic_read(&apic->lapic_timer.pending))
1895 return;
1896
1897 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1898 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1899
1900 if (!from_timer_fn && apic->apicv_active) {
1901 WARN_ON(kvm_get_running_vcpu() != vcpu);
1902 kvm_apic_inject_pending_timer_irqs(apic);
1903 return;
1904 }
1905
1906 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1907 /*
1908 * Ensure the guest's timer has truly expired before posting an
1909 * interrupt. Open code the relevant checks to avoid querying
1910 * lapic_timer_int_injected(), which will be false since the
1911 * interrupt isn't yet injected. Waiting until after injecting
1912 * is not an option since that won't help a posted interrupt.
1913 */
1914 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1915 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1916 __kvm_wait_lapic_expire(vcpu);
1917 kvm_apic_inject_pending_timer_irqs(apic);
1918 return;
1919 }
1920
1921 atomic_inc(&apic->lapic_timer.pending);
1922 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1923 if (from_timer_fn)
1924 kvm_vcpu_kick(vcpu);
1925 }
1926
start_sw_tscdeadline(struct kvm_lapic * apic)1927 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1928 {
1929 struct kvm_timer *ktimer = &apic->lapic_timer;
1930 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1931 u64 ns = 0;
1932 ktime_t expire;
1933 struct kvm_vcpu *vcpu = apic->vcpu;
1934 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1935 unsigned long flags;
1936 ktime_t now;
1937
1938 if (unlikely(!tscdeadline || !this_tsc_khz))
1939 return;
1940
1941 local_irq_save(flags);
1942
1943 now = ktime_get();
1944 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1945
1946 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1947 do_div(ns, this_tsc_khz);
1948
1949 if (likely(tscdeadline > guest_tsc) &&
1950 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1951 expire = ktime_add_ns(now, ns);
1952 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1953 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1954 } else
1955 apic_timer_expired(apic, false);
1956
1957 local_irq_restore(flags);
1958 }
1959
tmict_to_ns(struct kvm_lapic * apic,u32 tmict)1960 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1961 {
1962 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1963 }
1964
update_target_expiration(struct kvm_lapic * apic,uint32_t old_divisor)1965 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1966 {
1967 ktime_t now, remaining;
1968 u64 ns_remaining_old, ns_remaining_new;
1969
1970 apic->lapic_timer.period =
1971 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1972 limit_periodic_timer_frequency(apic);
1973
1974 now = ktime_get();
1975 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1976 if (ktime_to_ns(remaining) < 0)
1977 remaining = 0;
1978
1979 ns_remaining_old = ktime_to_ns(remaining);
1980 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1981 apic->divide_count, old_divisor);
1982
1983 apic->lapic_timer.tscdeadline +=
1984 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1985 nsec_to_cycles(apic->vcpu, ns_remaining_old);
1986 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1987 }
1988
set_target_expiration(struct kvm_lapic * apic,u32 count_reg)1989 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1990 {
1991 ktime_t now;
1992 u64 tscl = rdtsc();
1993 s64 deadline;
1994
1995 now = ktime_get();
1996 apic->lapic_timer.period =
1997 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1998
1999 if (!apic->lapic_timer.period) {
2000 apic->lapic_timer.tscdeadline = 0;
2001 return false;
2002 }
2003
2004 limit_periodic_timer_frequency(apic);
2005 deadline = apic->lapic_timer.period;
2006
2007 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2008 if (unlikely(count_reg != APIC_TMICT)) {
2009 deadline = tmict_to_ns(apic,
2010 kvm_lapic_get_reg(apic, count_reg));
2011 if (unlikely(deadline <= 0)) {
2012 if (apic_lvtt_period(apic))
2013 deadline = apic->lapic_timer.period;
2014 else
2015 deadline = 0;
2016 }
2017 else if (unlikely(deadline > apic->lapic_timer.period)) {
2018 pr_info_ratelimited(
2019 "vcpu %i: requested lapic timer restore with "
2020 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2021 "Using initial count to start timer.\n",
2022 apic->vcpu->vcpu_id,
2023 count_reg,
2024 kvm_lapic_get_reg(apic, count_reg),
2025 deadline, apic->lapic_timer.period);
2026 kvm_lapic_set_reg(apic, count_reg, 0);
2027 deadline = apic->lapic_timer.period;
2028 }
2029 }
2030 }
2031
2032 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2033 nsec_to_cycles(apic->vcpu, deadline);
2034 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2035
2036 return true;
2037 }
2038
advance_periodic_target_expiration(struct kvm_lapic * apic)2039 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2040 {
2041 ktime_t now = ktime_get();
2042 u64 tscl = rdtsc();
2043 ktime_t delta;
2044
2045 /*
2046 * Synchronize both deadlines to the same time source or
2047 * differences in the periods (caused by differences in the
2048 * underlying clocks or numerical approximation errors) will
2049 * cause the two to drift apart over time as the errors
2050 * accumulate.
2051 */
2052 apic->lapic_timer.target_expiration =
2053 ktime_add_ns(apic->lapic_timer.target_expiration,
2054 apic->lapic_timer.period);
2055 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2056 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2057 nsec_to_cycles(apic->vcpu, delta);
2058 }
2059
start_sw_period(struct kvm_lapic * apic)2060 static void start_sw_period(struct kvm_lapic *apic)
2061 {
2062 if (!apic->lapic_timer.period)
2063 return;
2064
2065 if (ktime_after(ktime_get(),
2066 apic->lapic_timer.target_expiration)) {
2067 apic_timer_expired(apic, false);
2068
2069 if (apic_lvtt_oneshot(apic))
2070 return;
2071
2072 advance_periodic_target_expiration(apic);
2073 }
2074
2075 hrtimer_start(&apic->lapic_timer.timer,
2076 apic->lapic_timer.target_expiration,
2077 HRTIMER_MODE_ABS_HARD);
2078 }
2079
kvm_lapic_hv_timer_in_use(struct kvm_vcpu * vcpu)2080 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2081 {
2082 if (!lapic_in_kernel(vcpu))
2083 return false;
2084
2085 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2086 }
2087
cancel_hv_timer(struct kvm_lapic * apic)2088 static void cancel_hv_timer(struct kvm_lapic *apic)
2089 {
2090 WARN_ON(preemptible());
2091 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2092 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2093 apic->lapic_timer.hv_timer_in_use = false;
2094 }
2095
start_hv_timer(struct kvm_lapic * apic)2096 static bool start_hv_timer(struct kvm_lapic *apic)
2097 {
2098 struct kvm_timer *ktimer = &apic->lapic_timer;
2099 struct kvm_vcpu *vcpu = apic->vcpu;
2100 bool expired;
2101
2102 WARN_ON(preemptible());
2103 if (!kvm_can_use_hv_timer(vcpu))
2104 return false;
2105
2106 if (!ktimer->tscdeadline)
2107 return false;
2108
2109 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2110 return false;
2111
2112 ktimer->hv_timer_in_use = true;
2113 hrtimer_cancel(&ktimer->timer);
2114
2115 /*
2116 * To simplify handling the periodic timer, leave the hv timer running
2117 * even if the deadline timer has expired, i.e. rely on the resulting
2118 * VM-Exit to recompute the periodic timer's target expiration.
2119 */
2120 if (!apic_lvtt_period(apic)) {
2121 /*
2122 * Cancel the hv timer if the sw timer fired while the hv timer
2123 * was being programmed, or if the hv timer itself expired.
2124 */
2125 if (atomic_read(&ktimer->pending)) {
2126 cancel_hv_timer(apic);
2127 } else if (expired) {
2128 apic_timer_expired(apic, false);
2129 cancel_hv_timer(apic);
2130 }
2131 }
2132
2133 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2134
2135 return true;
2136 }
2137
start_sw_timer(struct kvm_lapic * apic)2138 static void start_sw_timer(struct kvm_lapic *apic)
2139 {
2140 struct kvm_timer *ktimer = &apic->lapic_timer;
2141
2142 WARN_ON(preemptible());
2143 if (apic->lapic_timer.hv_timer_in_use)
2144 cancel_hv_timer(apic);
2145 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2146 return;
2147
2148 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2149 start_sw_period(apic);
2150 else if (apic_lvtt_tscdeadline(apic))
2151 start_sw_tscdeadline(apic);
2152 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2153 }
2154
restart_apic_timer(struct kvm_lapic * apic)2155 static void restart_apic_timer(struct kvm_lapic *apic)
2156 {
2157 preempt_disable();
2158
2159 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2160 goto out;
2161
2162 if (!start_hv_timer(apic))
2163 start_sw_timer(apic);
2164 out:
2165 preempt_enable();
2166 }
2167
kvm_lapic_expired_hv_timer(struct kvm_vcpu * vcpu)2168 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2169 {
2170 struct kvm_lapic *apic = vcpu->arch.apic;
2171
2172 preempt_disable();
2173 /* If the preempt notifier has already run, it also called apic_timer_expired */
2174 if (!apic->lapic_timer.hv_timer_in_use)
2175 goto out;
2176 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2177 apic_timer_expired(apic, false);
2178 cancel_hv_timer(apic);
2179
2180 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2181 advance_periodic_target_expiration(apic);
2182 restart_apic_timer(apic);
2183 }
2184 out:
2185 preempt_enable();
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2188
kvm_lapic_switch_to_hv_timer(struct kvm_vcpu * vcpu)2189 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2190 {
2191 restart_apic_timer(vcpu->arch.apic);
2192 }
2193
kvm_lapic_switch_to_sw_timer(struct kvm_vcpu * vcpu)2194 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2195 {
2196 struct kvm_lapic *apic = vcpu->arch.apic;
2197
2198 preempt_disable();
2199 /* Possibly the TSC deadline timer is not enabled yet */
2200 if (apic->lapic_timer.hv_timer_in_use)
2201 start_sw_timer(apic);
2202 preempt_enable();
2203 }
2204
kvm_lapic_restart_hv_timer(struct kvm_vcpu * vcpu)2205 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2206 {
2207 struct kvm_lapic *apic = vcpu->arch.apic;
2208
2209 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2210 restart_apic_timer(apic);
2211 }
2212
__start_apic_timer(struct kvm_lapic * apic,u32 count_reg)2213 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2214 {
2215 atomic_set(&apic->lapic_timer.pending, 0);
2216
2217 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2218 && !set_target_expiration(apic, count_reg))
2219 return;
2220
2221 restart_apic_timer(apic);
2222 }
2223
start_apic_timer(struct kvm_lapic * apic)2224 static void start_apic_timer(struct kvm_lapic *apic)
2225 {
2226 __start_apic_timer(apic, APIC_TMICT);
2227 }
2228
apic_manage_nmi_watchdog(struct kvm_lapic * apic,u32 lvt0_val)2229 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2230 {
2231 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2232
2233 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2234 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2235 if (lvt0_in_nmi_mode) {
2236 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2237 } else
2238 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2239 }
2240 }
2241
get_lvt_index(u32 reg)2242 static int get_lvt_index(u32 reg)
2243 {
2244 if (reg == APIC_LVTCMCI)
2245 return LVT_CMCI;
2246 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2247 return -1;
2248 return array_index_nospec(
2249 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2250 }
2251
kvm_lapic_reg_write(struct kvm_lapic * apic,u32 reg,u32 val)2252 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2253 {
2254 int ret = 0;
2255
2256 trace_kvm_apic_write(reg, val);
2257
2258 switch (reg) {
2259 case APIC_ID: /* Local APIC ID */
2260 if (!apic_x2apic_mode(apic)) {
2261 kvm_apic_set_xapic_id(apic, val >> 24);
2262 } else {
2263 ret = 1;
2264 }
2265 break;
2266
2267 case APIC_TASKPRI:
2268 report_tpr_access(apic, true);
2269 apic_set_tpr(apic, val & 0xff);
2270 break;
2271
2272 case APIC_EOI:
2273 apic_set_eoi(apic);
2274 break;
2275
2276 case APIC_LDR:
2277 if (!apic_x2apic_mode(apic))
2278 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2279 else
2280 ret = 1;
2281 break;
2282
2283 case APIC_DFR:
2284 if (!apic_x2apic_mode(apic))
2285 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2286 else
2287 ret = 1;
2288 break;
2289
2290 case APIC_SPIV: {
2291 u32 mask = 0x3ff;
2292 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2293 mask |= APIC_SPIV_DIRECTED_EOI;
2294 apic_set_spiv(apic, val & mask);
2295 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2296 int i;
2297
2298 for (i = 0; i < apic->nr_lvt_entries; i++) {
2299 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2300 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2301 }
2302 apic_update_lvtt(apic);
2303 atomic_set(&apic->lapic_timer.pending, 0);
2304
2305 }
2306 break;
2307 }
2308 case APIC_ICR:
2309 WARN_ON_ONCE(apic_x2apic_mode(apic));
2310
2311 /* No delay here, so we always clear the pending bit */
2312 val &= ~APIC_ICR_BUSY;
2313 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2314 kvm_lapic_set_reg(apic, APIC_ICR, val);
2315 break;
2316 case APIC_ICR2:
2317 if (apic_x2apic_mode(apic))
2318 ret = 1;
2319 else
2320 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2321 break;
2322
2323 case APIC_LVT0:
2324 apic_manage_nmi_watchdog(apic, val);
2325 fallthrough;
2326 case APIC_LVTTHMR:
2327 case APIC_LVTPC:
2328 case APIC_LVT1:
2329 case APIC_LVTERR:
2330 case APIC_LVTCMCI: {
2331 u32 index = get_lvt_index(reg);
2332 if (!kvm_lapic_lvt_supported(apic, index)) {
2333 ret = 1;
2334 break;
2335 }
2336 if (!kvm_apic_sw_enabled(apic))
2337 val |= APIC_LVT_MASKED;
2338 val &= apic_lvt_mask[index];
2339 kvm_lapic_set_reg(apic, reg, val);
2340 break;
2341 }
2342
2343 case APIC_LVTT:
2344 if (!kvm_apic_sw_enabled(apic))
2345 val |= APIC_LVT_MASKED;
2346 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2347 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2348 apic_update_lvtt(apic);
2349 break;
2350
2351 case APIC_TMICT:
2352 if (apic_lvtt_tscdeadline(apic))
2353 break;
2354
2355 cancel_apic_timer(apic);
2356 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2357 start_apic_timer(apic);
2358 break;
2359
2360 case APIC_TDCR: {
2361 uint32_t old_divisor = apic->divide_count;
2362
2363 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2364 update_divide_count(apic);
2365 if (apic->divide_count != old_divisor &&
2366 apic->lapic_timer.period) {
2367 hrtimer_cancel(&apic->lapic_timer.timer);
2368 update_target_expiration(apic, old_divisor);
2369 restart_apic_timer(apic);
2370 }
2371 break;
2372 }
2373 case APIC_ESR:
2374 if (apic_x2apic_mode(apic) && val != 0)
2375 ret = 1;
2376 break;
2377
2378 case APIC_SELF_IPI:
2379 /*
2380 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2381 * the vector, everything else is reserved.
2382 */
2383 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2384 ret = 1;
2385 else
2386 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2387 break;
2388 default:
2389 ret = 1;
2390 break;
2391 }
2392
2393 /*
2394 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2395 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2396 * on relevant changes, i.e. this is a nop for most writes.
2397 */
2398 kvm_recalculate_apic_map(apic->vcpu->kvm);
2399
2400 return ret;
2401 }
2402
apic_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,const void * data)2403 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2404 gpa_t address, int len, const void *data)
2405 {
2406 struct kvm_lapic *apic = to_lapic(this);
2407 unsigned int offset = address - apic->base_address;
2408 u32 val;
2409
2410 if (!apic_mmio_in_range(apic, address))
2411 return -EOPNOTSUPP;
2412
2413 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2414 if (!kvm_check_has_quirk(vcpu->kvm,
2415 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2416 return -EOPNOTSUPP;
2417
2418 return 0;
2419 }
2420
2421 /*
2422 * APIC register must be aligned on 128-bits boundary.
2423 * 32/64/128 bits registers must be accessed thru 32 bits.
2424 * Refer SDM 8.4.1
2425 */
2426 if (len != 4 || (offset & 0xf))
2427 return 0;
2428
2429 val = *(u32*)data;
2430
2431 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2432
2433 return 0;
2434 }
2435
kvm_lapic_set_eoi(struct kvm_vcpu * vcpu)2436 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2437 {
2438 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2441
2442 /* emulate APIC access in a trap manner */
kvm_apic_write_nodecode(struct kvm_vcpu * vcpu,u32 offset)2443 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2444 {
2445 struct kvm_lapic *apic = vcpu->arch.apic;
2446
2447 /*
2448 * ICR is a single 64-bit register when x2APIC is enabled, all others
2449 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2450 * go down the common path to get the upper half from ICR2.
2451 *
2452 * Note, using the write helpers may incur an unnecessary write to the
2453 * virtual APIC state, but KVM needs to conditionally modify the value
2454 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2455 * conditional branches is likely a wash relative to the cost of the
2456 * maybe-unecessary write, and both are in the noise anyways.
2457 */
2458 if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2459 kvm_x2apic_icr_write(apic, kvm_lapic_get_reg64(apic, APIC_ICR));
2460 else
2461 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2462 }
2463 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2464
kvm_free_lapic(struct kvm_vcpu * vcpu)2465 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2466 {
2467 struct kvm_lapic *apic = vcpu->arch.apic;
2468
2469 if (!vcpu->arch.apic)
2470 return;
2471
2472 hrtimer_cancel(&apic->lapic_timer.timer);
2473
2474 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2475 static_branch_slow_dec_deferred(&apic_hw_disabled);
2476
2477 if (!apic->sw_enabled)
2478 static_branch_slow_dec_deferred(&apic_sw_disabled);
2479
2480 if (apic->regs)
2481 free_page((unsigned long)apic->regs);
2482
2483 kfree(apic);
2484 }
2485
2486 /*
2487 *----------------------------------------------------------------------
2488 * LAPIC interface
2489 *----------------------------------------------------------------------
2490 */
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu)2491 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2492 {
2493 struct kvm_lapic *apic = vcpu->arch.apic;
2494
2495 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2496 return 0;
2497
2498 return apic->lapic_timer.tscdeadline;
2499 }
2500
kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu,u64 data)2501 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2502 {
2503 struct kvm_lapic *apic = vcpu->arch.apic;
2504
2505 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2506 return;
2507
2508 hrtimer_cancel(&apic->lapic_timer.timer);
2509 apic->lapic_timer.tscdeadline = data;
2510 start_apic_timer(apic);
2511 }
2512
kvm_lapic_set_tpr(struct kvm_vcpu * vcpu,unsigned long cr8)2513 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2514 {
2515 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2516 }
2517
kvm_lapic_get_cr8(struct kvm_vcpu * vcpu)2518 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2519 {
2520 u64 tpr;
2521
2522 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2523
2524 return (tpr & 0xf0) >> 4;
2525 }
2526
kvm_lapic_set_base(struct kvm_vcpu * vcpu,u64 value)2527 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2528 {
2529 u64 old_value = vcpu->arch.apic_base;
2530 struct kvm_lapic *apic = vcpu->arch.apic;
2531
2532 vcpu->arch.apic_base = value;
2533
2534 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2535 kvm_update_cpuid_runtime(vcpu);
2536
2537 if (!apic)
2538 return;
2539
2540 /* update jump label if enable bit changes */
2541 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2542 if (value & MSR_IA32_APICBASE_ENABLE) {
2543 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2544 static_branch_slow_dec_deferred(&apic_hw_disabled);
2545 /* Check if there are APF page ready requests pending */
2546 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2547 } else {
2548 static_branch_inc(&apic_hw_disabled.key);
2549 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2550 }
2551 }
2552
2553 if ((old_value ^ value) & X2APIC_ENABLE) {
2554 if (value & X2APIC_ENABLE)
2555 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2556 else if (value & MSR_IA32_APICBASE_ENABLE)
2557 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2558 }
2559
2560 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2561 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2562 static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2563 }
2564
2565 apic->base_address = apic->vcpu->arch.apic_base &
2566 MSR_IA32_APICBASE_BASE;
2567
2568 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2569 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2570 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2571 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2572 }
2573 }
2574
kvm_apic_update_apicv(struct kvm_vcpu * vcpu)2575 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2576 {
2577 struct kvm_lapic *apic = vcpu->arch.apic;
2578
2579 if (apic->apicv_active) {
2580 /* irr_pending is always true when apicv is activated. */
2581 apic->irr_pending = true;
2582 apic->isr_count = 1;
2583 } else {
2584 /*
2585 * Don't clear irr_pending, searching the IRR can race with
2586 * updates from the CPU as APICv is still active from hardware's
2587 * perspective. The flag will be cleared as appropriate when
2588 * KVM injects the interrupt.
2589 */
2590 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2591 }
2592 apic->highest_isr_cache = -1;
2593 }
2594
kvm_alloc_apic_access_page(struct kvm * kvm)2595 int kvm_alloc_apic_access_page(struct kvm *kvm)
2596 {
2597 struct page *page;
2598 void __user *hva;
2599 int ret = 0;
2600
2601 mutex_lock(&kvm->slots_lock);
2602 if (kvm->arch.apic_access_memslot_enabled ||
2603 kvm->arch.apic_access_memslot_inhibited)
2604 goto out;
2605
2606 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2607 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2608 if (IS_ERR(hva)) {
2609 ret = PTR_ERR(hva);
2610 goto out;
2611 }
2612
2613 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2614 if (is_error_page(page)) {
2615 ret = -EFAULT;
2616 goto out;
2617 }
2618
2619 /*
2620 * Do not pin the page in memory, so that memory hot-unplug
2621 * is able to migrate it.
2622 */
2623 put_page(page);
2624 kvm->arch.apic_access_memslot_enabled = true;
2625 out:
2626 mutex_unlock(&kvm->slots_lock);
2627 return ret;
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2630
kvm_inhibit_apic_access_page(struct kvm_vcpu * vcpu)2631 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2632 {
2633 struct kvm *kvm = vcpu->kvm;
2634
2635 if (!kvm->arch.apic_access_memslot_enabled)
2636 return;
2637
2638 kvm_vcpu_srcu_read_unlock(vcpu);
2639
2640 mutex_lock(&kvm->slots_lock);
2641
2642 if (kvm->arch.apic_access_memslot_enabled) {
2643 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2644 /*
2645 * Clear "enabled" after the memslot is deleted so that a
2646 * different vCPU doesn't get a false negative when checking
2647 * the flag out of slots_lock. No additional memory barrier is
2648 * needed as modifying memslots requires waiting other vCPUs to
2649 * drop SRCU (see above), and false positives are ok as the
2650 * flag is rechecked after acquiring slots_lock.
2651 */
2652 kvm->arch.apic_access_memslot_enabled = false;
2653
2654 /*
2655 * Mark the memslot as inhibited to prevent reallocating the
2656 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2657 */
2658 kvm->arch.apic_access_memslot_inhibited = true;
2659 }
2660
2661 mutex_unlock(&kvm->slots_lock);
2662
2663 kvm_vcpu_srcu_read_lock(vcpu);
2664 }
2665
kvm_lapic_reset(struct kvm_vcpu * vcpu,bool init_event)2666 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2667 {
2668 struct kvm_lapic *apic = vcpu->arch.apic;
2669 u64 msr_val;
2670 int i;
2671
2672 static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
2673
2674 if (!init_event) {
2675 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2676 if (kvm_vcpu_is_reset_bsp(vcpu))
2677 msr_val |= MSR_IA32_APICBASE_BSP;
2678 kvm_lapic_set_base(vcpu, msr_val);
2679 }
2680
2681 if (!apic)
2682 return;
2683
2684 /* Stop the timer in case it's a reset to an active apic */
2685 hrtimer_cancel(&apic->lapic_timer.timer);
2686
2687 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2688 if (!init_event)
2689 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2690 kvm_apic_set_version(apic->vcpu);
2691
2692 for (i = 0; i < apic->nr_lvt_entries; i++)
2693 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2694 apic_update_lvtt(apic);
2695 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2696 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2697 kvm_lapic_set_reg(apic, APIC_LVT0,
2698 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2699 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2700
2701 kvm_apic_set_dfr(apic, 0xffffffffU);
2702 apic_set_spiv(apic, 0xff);
2703 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2704 if (!apic_x2apic_mode(apic))
2705 kvm_apic_set_ldr(apic, 0);
2706 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2707 if (!apic_x2apic_mode(apic)) {
2708 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2709 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2710 } else {
2711 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2712 }
2713 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2714 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2715 for (i = 0; i < 8; i++) {
2716 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2717 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2718 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2719 }
2720 kvm_apic_update_apicv(vcpu);
2721 update_divide_count(apic);
2722 atomic_set(&apic->lapic_timer.pending, 0);
2723
2724 vcpu->arch.pv_eoi.msr_val = 0;
2725 apic_update_ppr(apic);
2726 if (apic->apicv_active) {
2727 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2728 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2729 static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2730 }
2731
2732 vcpu->arch.apic_arb_prio = 0;
2733 vcpu->arch.apic_attention = 0;
2734
2735 kvm_recalculate_apic_map(vcpu->kvm);
2736 }
2737
2738 /*
2739 *----------------------------------------------------------------------
2740 * timer interface
2741 *----------------------------------------------------------------------
2742 */
2743
lapic_is_periodic(struct kvm_lapic * apic)2744 static bool lapic_is_periodic(struct kvm_lapic *apic)
2745 {
2746 return apic_lvtt_period(apic);
2747 }
2748
apic_has_pending_timer(struct kvm_vcpu * vcpu)2749 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2750 {
2751 struct kvm_lapic *apic = vcpu->arch.apic;
2752
2753 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2754 return atomic_read(&apic->lapic_timer.pending);
2755
2756 return 0;
2757 }
2758
kvm_apic_local_deliver(struct kvm_lapic * apic,int lvt_type)2759 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2760 {
2761 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2762 int vector, mode, trig_mode;
2763 int r;
2764
2765 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2766 vector = reg & APIC_VECTOR_MASK;
2767 mode = reg & APIC_MODE_MASK;
2768 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2769
2770 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2771 if (r && lvt_type == APIC_LVTPC)
2772 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2773 return r;
2774 }
2775 return 0;
2776 }
2777
kvm_apic_nmi_wd_deliver(struct kvm_vcpu * vcpu)2778 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2779 {
2780 struct kvm_lapic *apic = vcpu->arch.apic;
2781
2782 if (apic)
2783 kvm_apic_local_deliver(apic, APIC_LVT0);
2784 }
2785
2786 static const struct kvm_io_device_ops apic_mmio_ops = {
2787 .read = apic_mmio_read,
2788 .write = apic_mmio_write,
2789 };
2790
apic_timer_fn(struct hrtimer * data)2791 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2792 {
2793 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2794 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2795
2796 apic_timer_expired(apic, true);
2797
2798 if (lapic_is_periodic(apic)) {
2799 advance_periodic_target_expiration(apic);
2800 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2801 return HRTIMER_RESTART;
2802 } else
2803 return HRTIMER_NORESTART;
2804 }
2805
kvm_create_lapic(struct kvm_vcpu * vcpu,int timer_advance_ns)2806 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2807 {
2808 struct kvm_lapic *apic;
2809
2810 ASSERT(vcpu != NULL);
2811
2812 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2813 if (!apic)
2814 goto nomem;
2815
2816 vcpu->arch.apic = apic;
2817
2818 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2819 if (!apic->regs) {
2820 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2821 vcpu->vcpu_id);
2822 goto nomem_free_apic;
2823 }
2824 apic->vcpu = vcpu;
2825
2826 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2827
2828 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2829 HRTIMER_MODE_ABS_HARD);
2830 apic->lapic_timer.timer.function = apic_timer_fn;
2831 if (timer_advance_ns == -1) {
2832 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2833 lapic_timer_advance_dynamic = true;
2834 } else {
2835 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2836 lapic_timer_advance_dynamic = false;
2837 }
2838
2839 /*
2840 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2841 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2842 */
2843 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2844 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2845 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2846
2847 return 0;
2848 nomem_free_apic:
2849 kfree(apic);
2850 vcpu->arch.apic = NULL;
2851 nomem:
2852 return -ENOMEM;
2853 }
2854
kvm_apic_has_interrupt(struct kvm_vcpu * vcpu)2855 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2856 {
2857 struct kvm_lapic *apic = vcpu->arch.apic;
2858 u32 ppr;
2859
2860 if (!kvm_apic_present(vcpu))
2861 return -1;
2862
2863 __apic_update_ppr(apic, &ppr);
2864 return apic_has_interrupt_for_ppr(apic, ppr);
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2867
kvm_apic_accept_pic_intr(struct kvm_vcpu * vcpu)2868 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2869 {
2870 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2871
2872 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2873 return 1;
2874 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2875 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2876 return 1;
2877 return 0;
2878 }
2879
kvm_inject_apic_timer_irqs(struct kvm_vcpu * vcpu)2880 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2881 {
2882 struct kvm_lapic *apic = vcpu->arch.apic;
2883
2884 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2885 kvm_apic_inject_pending_timer_irqs(apic);
2886 atomic_set(&apic->lapic_timer.pending, 0);
2887 }
2888 }
2889
kvm_get_apic_interrupt(struct kvm_vcpu * vcpu)2890 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2891 {
2892 int vector = kvm_apic_has_interrupt(vcpu);
2893 struct kvm_lapic *apic = vcpu->arch.apic;
2894 u32 ppr;
2895
2896 if (vector == -1)
2897 return -1;
2898
2899 /*
2900 * We get here even with APIC virtualization enabled, if doing
2901 * nested virtualization and L1 runs with the "acknowledge interrupt
2902 * on exit" mode. Then we cannot inject the interrupt via RVI,
2903 * because the process would deliver it through the IDT.
2904 */
2905
2906 apic_clear_irr(vector, apic);
2907 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
2908 /*
2909 * For auto-EOI interrupts, there might be another pending
2910 * interrupt above PPR, so check whether to raise another
2911 * KVM_REQ_EVENT.
2912 */
2913 apic_update_ppr(apic);
2914 } else {
2915 /*
2916 * For normal interrupts, PPR has been raised and there cannot
2917 * be a higher-priority pending interrupt---except if there was
2918 * a concurrent interrupt injection, but that would have
2919 * triggered KVM_REQ_EVENT already.
2920 */
2921 apic_set_isr(vector, apic);
2922 __apic_update_ppr(apic, &ppr);
2923 }
2924
2925 return vector;
2926 }
2927
kvm_apic_state_fixup(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s,bool set)2928 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2929 struct kvm_lapic_state *s, bool set)
2930 {
2931 if (apic_x2apic_mode(vcpu->arch.apic)) {
2932 u32 *id = (u32 *)(s->regs + APIC_ID);
2933 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2934 u64 icr;
2935
2936 if (vcpu->kvm->arch.x2apic_format) {
2937 if (*id != vcpu->vcpu_id)
2938 return -EINVAL;
2939 } else {
2940 if (set)
2941 *id >>= 24;
2942 else
2943 *id <<= 24;
2944 }
2945
2946 /*
2947 * In x2APIC mode, the LDR is fixed and based on the id. And
2948 * ICR is internally a single 64-bit register, but needs to be
2949 * split to ICR+ICR2 in userspace for backwards compatibility.
2950 */
2951 if (set) {
2952 *ldr = kvm_apic_calc_x2apic_ldr(*id);
2953
2954 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2955 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2956 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2957 } else {
2958 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2959 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2960 }
2961 }
2962
2963 return 0;
2964 }
2965
kvm_apic_get_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2966 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2967 {
2968 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2969
2970 /*
2971 * Get calculated timer current count for remaining timer period (if
2972 * any) and store it in the returned register set.
2973 */
2974 __kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2975 __apic_read(vcpu->arch.apic, APIC_TMCCT));
2976
2977 return kvm_apic_state_fixup(vcpu, s, false);
2978 }
2979
kvm_apic_set_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2980 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2981 {
2982 struct kvm_lapic *apic = vcpu->arch.apic;
2983 int r;
2984
2985 static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
2986
2987 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2988 /* set SPIV separately to get count of SW disabled APICs right */
2989 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2990
2991 r = kvm_apic_state_fixup(vcpu, s, true);
2992 if (r) {
2993 kvm_recalculate_apic_map(vcpu->kvm);
2994 return r;
2995 }
2996 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2997
2998 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2999 kvm_recalculate_apic_map(vcpu->kvm);
3000 kvm_apic_set_version(vcpu);
3001
3002 apic_update_ppr(apic);
3003 cancel_apic_timer(apic);
3004 apic->lapic_timer.expired_tscdeadline = 0;
3005 apic_update_lvtt(apic);
3006 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3007 update_divide_count(apic);
3008 __start_apic_timer(apic, APIC_TMCCT);
3009 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3010 kvm_apic_update_apicv(vcpu);
3011 if (apic->apicv_active) {
3012 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
3013 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
3014 static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
3015 }
3016 kvm_make_request(KVM_REQ_EVENT, vcpu);
3017 if (ioapic_in_kernel(vcpu->kvm))
3018 kvm_rtc_eoi_tracking_restore_one(vcpu);
3019
3020 vcpu->arch.apic_arb_prio = 0;
3021
3022 return 0;
3023 }
3024
__kvm_migrate_apic_timer(struct kvm_vcpu * vcpu)3025 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3026 {
3027 struct hrtimer *timer;
3028
3029 if (!lapic_in_kernel(vcpu) ||
3030 kvm_can_post_timer_interrupt(vcpu))
3031 return;
3032
3033 timer = &vcpu->arch.apic->lapic_timer.timer;
3034 if (hrtimer_cancel(timer))
3035 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3036 }
3037
3038 /*
3039 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3040 *
3041 * Detect whether guest triggered PV EOI since the
3042 * last entry. If yes, set EOI on guests's behalf.
3043 * Clear PV EOI in guest memory in any case.
3044 */
apic_sync_pv_eoi_from_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3045 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3046 struct kvm_lapic *apic)
3047 {
3048 int vector;
3049 /*
3050 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3051 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3052 *
3053 * KVM_APIC_PV_EOI_PENDING is unset:
3054 * -> host disabled PV EOI.
3055 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3056 * -> host enabled PV EOI, guest did not execute EOI yet.
3057 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3058 * -> host enabled PV EOI, guest executed EOI.
3059 */
3060 BUG_ON(!pv_eoi_enabled(vcpu));
3061
3062 if (pv_eoi_test_and_clr_pending(vcpu))
3063 return;
3064 vector = apic_set_eoi(apic);
3065 trace_kvm_pv_eoi(apic, vector);
3066 }
3067
kvm_lapic_sync_from_vapic(struct kvm_vcpu * vcpu)3068 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3069 {
3070 u32 data;
3071
3072 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3073 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3074
3075 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3076 return;
3077
3078 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3079 sizeof(u32)))
3080 return;
3081
3082 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3083 }
3084
3085 /*
3086 * apic_sync_pv_eoi_to_guest - called before vmentry
3087 *
3088 * Detect whether it's safe to enable PV EOI and
3089 * if yes do so.
3090 */
apic_sync_pv_eoi_to_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3091 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3092 struct kvm_lapic *apic)
3093 {
3094 if (!pv_eoi_enabled(vcpu) ||
3095 /* IRR set or many bits in ISR: could be nested. */
3096 apic->irr_pending ||
3097 /* Cache not set: could be safe but we don't bother. */
3098 apic->highest_isr_cache == -1 ||
3099 /* Need EOI to update ioapic. */
3100 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3101 /*
3102 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3103 * so we need not do anything here.
3104 */
3105 return;
3106 }
3107
3108 pv_eoi_set_pending(apic->vcpu);
3109 }
3110
kvm_lapic_sync_to_vapic(struct kvm_vcpu * vcpu)3111 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3112 {
3113 u32 data, tpr;
3114 int max_irr, max_isr;
3115 struct kvm_lapic *apic = vcpu->arch.apic;
3116
3117 apic_sync_pv_eoi_to_guest(vcpu, apic);
3118
3119 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3120 return;
3121
3122 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3123 max_irr = apic_find_highest_irr(apic);
3124 if (max_irr < 0)
3125 max_irr = 0;
3126 max_isr = apic_find_highest_isr(apic);
3127 if (max_isr < 0)
3128 max_isr = 0;
3129 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3130
3131 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3132 sizeof(u32));
3133 }
3134
kvm_lapic_set_vapic_addr(struct kvm_vcpu * vcpu,gpa_t vapic_addr)3135 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3136 {
3137 if (vapic_addr) {
3138 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3139 &vcpu->arch.apic->vapic_cache,
3140 vapic_addr, sizeof(u32)))
3141 return -EINVAL;
3142 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3143 } else {
3144 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3145 }
3146
3147 vcpu->arch.apic->vapic_addr = vapic_addr;
3148 return 0;
3149 }
3150
kvm_x2apic_icr_write(struct kvm_lapic * apic,u64 data)3151 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3152 {
3153 data &= ~APIC_ICR_BUSY;
3154
3155 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3156 kvm_lapic_set_reg64(apic, APIC_ICR, data);
3157 trace_kvm_apic_write(APIC_ICR, data);
3158 return 0;
3159 }
3160
kvm_lapic_msr_read(struct kvm_lapic * apic,u32 reg,u64 * data)3161 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3162 {
3163 u32 low;
3164
3165 if (reg == APIC_ICR) {
3166 *data = kvm_lapic_get_reg64(apic, APIC_ICR);
3167 return 0;
3168 }
3169
3170 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3171 return 1;
3172
3173 *data = low;
3174
3175 return 0;
3176 }
3177
kvm_lapic_msr_write(struct kvm_lapic * apic,u32 reg,u64 data)3178 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3179 {
3180 /*
3181 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3182 * can be written as such, all other registers remain accessible only
3183 * through 32-bit reads/writes.
3184 */
3185 if (reg == APIC_ICR)
3186 return kvm_x2apic_icr_write(apic, data);
3187
3188 /* Bits 63:32 are reserved in all other registers. */
3189 if (data >> 32)
3190 return 1;
3191
3192 return kvm_lapic_reg_write(apic, reg, (u32)data);
3193 }
3194
kvm_x2apic_msr_write(struct kvm_vcpu * vcpu,u32 msr,u64 data)3195 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3196 {
3197 struct kvm_lapic *apic = vcpu->arch.apic;
3198 u32 reg = (msr - APIC_BASE_MSR) << 4;
3199
3200 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3201 return 1;
3202
3203 return kvm_lapic_msr_write(apic, reg, data);
3204 }
3205
kvm_x2apic_msr_read(struct kvm_vcpu * vcpu,u32 msr,u64 * data)3206 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3207 {
3208 struct kvm_lapic *apic = vcpu->arch.apic;
3209 u32 reg = (msr - APIC_BASE_MSR) << 4;
3210
3211 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3212 return 1;
3213
3214 return kvm_lapic_msr_read(apic, reg, data);
3215 }
3216
kvm_hv_vapic_msr_write(struct kvm_vcpu * vcpu,u32 reg,u64 data)3217 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3218 {
3219 if (!lapic_in_kernel(vcpu))
3220 return 1;
3221
3222 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3223 }
3224
kvm_hv_vapic_msr_read(struct kvm_vcpu * vcpu,u32 reg,u64 * data)3225 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3226 {
3227 if (!lapic_in_kernel(vcpu))
3228 return 1;
3229
3230 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3231 }
3232
kvm_lapic_set_pv_eoi(struct kvm_vcpu * vcpu,u64 data,unsigned long len)3233 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3234 {
3235 u64 addr = data & ~KVM_MSR_ENABLED;
3236 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3237 unsigned long new_len;
3238 int ret;
3239
3240 if (!IS_ALIGNED(addr, 4))
3241 return 1;
3242
3243 if (data & KVM_MSR_ENABLED) {
3244 if (addr == ghc->gpa && len <= ghc->len)
3245 new_len = ghc->len;
3246 else
3247 new_len = len;
3248
3249 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3250 if (ret)
3251 return ret;
3252 }
3253
3254 vcpu->arch.pv_eoi.msr_val = data;
3255
3256 return 0;
3257 }
3258
kvm_apic_accept_events(struct kvm_vcpu * vcpu)3259 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3260 {
3261 struct kvm_lapic *apic = vcpu->arch.apic;
3262 u8 sipi_vector;
3263 int r;
3264
3265 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3266 return 0;
3267
3268 if (is_guest_mode(vcpu)) {
3269 r = kvm_check_nested_events(vcpu);
3270 if (r < 0)
3271 return r == -EBUSY ? 0 : r;
3272 /*
3273 * Continue processing INIT/SIPI even if a nested VM-Exit
3274 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3275 * are blocked as a result of transitioning to VMX root mode.
3276 */
3277 }
3278
3279 /*
3280 * INITs are blocked while CPU is in specific states (SMM, VMX root
3281 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3282 * wait-for-SIPI (WFS).
3283 */
3284 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3285 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3286 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3287 return 0;
3288 }
3289
3290 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3291 kvm_vcpu_reset(vcpu, true);
3292 if (kvm_vcpu_is_bsp(apic->vcpu))
3293 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3294 else
3295 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3296 }
3297 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3298 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3299 /* evaluate pending_events before reading the vector */
3300 smp_rmb();
3301 sipi_vector = apic->sipi_vector;
3302 static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3303 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3304 }
3305 }
3306 return 0;
3307 }
3308
kvm_lapic_exit(void)3309 void kvm_lapic_exit(void)
3310 {
3311 static_key_deferred_flush(&apic_hw_disabled);
3312 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3313 static_key_deferred_flush(&apic_sw_disabled);
3314 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3315 }
3316