1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25
26 #include "../perf_event.h"
27
28 /*
29 * Intel PerfMon, used on Core and later.
30 */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
34 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
35 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
36 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
37 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
38 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
39 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
40 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
41 };
42
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51 EVENT_CONSTRAINT_END
52 };
53
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69 EVENT_CONSTRAINT_END
70 };
71
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85 EVENT_CONSTRAINT_END
86 };
87
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93 EVENT_EXTRA_END
94 };
95
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105 EVENT_CONSTRAINT_END
106 };
107
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122
123 /*
124 * When HT is off these events can only run on the bottom 4 counters
125 * When HT is on, they are impacted by the HT bug and require EXCL access
126 */
127 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131
132 EVENT_CONSTRAINT_END
133 };
134
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150
151 /*
152 * When HT is off these events can only run on the bottom 4 counters
153 * When HT is on, they are impacted by the HT bug and require EXCL access
154 */
155 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159
160 EVENT_CONSTRAINT_END
161 };
162
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169 EVENT_EXTRA_END
170 };
171
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174 EVENT_CONSTRAINT_END
175 };
176
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182 EVENT_CONSTRAINT_END
183 };
184
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191 FIXED_EVENT_CONSTRAINT(0x0500, 4),
192 FIXED_EVENT_CONSTRAINT(0x0600, 5),
193 FIXED_EVENT_CONSTRAINT(0x0700, 6),
194 FIXED_EVENT_CONSTRAINT(0x0800, 7),
195 FIXED_EVENT_CONSTRAINT(0x0900, 8),
196 FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197 FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198 FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199 FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200 FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201 FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202 FIXED_EVENT_CONSTRAINT(0x1000, 15),
203 EVENT_CONSTRAINT_END
204 };
205
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211 EVENT_CONSTRAINT_END
212 };
213
214 static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
215 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
216 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
217 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
218 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
219 EVENT_CONSTRAINT_END
220 };
221
222 static struct event_constraint intel_skl_event_constraints[] = {
223 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
224 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
225 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
226 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
227
228 /*
229 * when HT is off, these can only run on the bottom 4 counters
230 */
231 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
232 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
233 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
234 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
235 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
236
237 EVENT_CONSTRAINT_END
238 };
239
240 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
241 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
242 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
243 EVENT_EXTRA_END
244 };
245
246 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
247 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
249 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
250 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251 EVENT_EXTRA_END
252 };
253
254 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
255 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
256 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
257 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
258 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
259 EVENT_EXTRA_END
260 };
261
262 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
263 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
264 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
265 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
266 /*
267 * Note the low 8 bits eventsel code is not a continuous field, containing
268 * some #GPing bits. These are masked out.
269 */
270 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
271 EVENT_EXTRA_END
272 };
273
274 static struct event_constraint intel_icl_event_constraints[] = {
275 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
276 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
277 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
278 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
279 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
280 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
281 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
282 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
283 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
284 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
285 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
286 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
287 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
288 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
289 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
290 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
291 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
292 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
293 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
294 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
295 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
296 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
297 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
298 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
299 EVENT_CONSTRAINT_END
300 };
301
302 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
303 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
304 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
305 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
307 EVENT_EXTRA_END
308 };
309
310 static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
311 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
312 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
313 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
314 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
315 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
316 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
317 EVENT_EXTRA_END
318 };
319
320 static struct event_constraint intel_glc_event_constraints[] = {
321 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
322 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
323 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
324 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
325 FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
326 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
327 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
328 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
329 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
330 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
331 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
332 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
333 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
334 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
335
336 INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
337 INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
338 /*
339 * Generally event codes < 0x90 are restricted to counters 0-3.
340 * The 0x2E and 0x3C are exception, which has no restriction.
341 */
342 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
343
344 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
345 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
346 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
347 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
348 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
349 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
350 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
351 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
352 /*
353 * Generally event codes >= 0x90 are likely to have no restrictions.
354 * The exception are defined as above.
355 */
356 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
357
358 EVENT_CONSTRAINT_END
359 };
360
361 static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
362 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
363 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
364 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
365 INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
366 INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
367 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
368 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
369 EVENT_EXTRA_END
370 };
371
372 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
373 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
374 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
375
376 static struct attribute *nhm_mem_events_attrs[] = {
377 EVENT_PTR(mem_ld_nhm),
378 NULL,
379 };
380
381 /*
382 * topdown events for Intel Core CPUs.
383 *
384 * The events are all in slots, which is a free slot in a 4 wide
385 * pipeline. Some events are already reported in slots, for cycle
386 * events we multiply by the pipeline width (4).
387 *
388 * With Hyper Threading on, topdown metrics are either summed or averaged
389 * between the threads of a core: (count_t0 + count_t1).
390 *
391 * For the average case the metric is always scaled to pipeline width,
392 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
393 */
394
395 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
396 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
397 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
398 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
399 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
400 "event=0xe,umask=0x1"); /* uops_issued.any */
401 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
402 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
404 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
405 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
406 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
407 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
408 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
409 "4", "2");
410
411 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
412 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
413 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
414 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
415 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
416 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
417 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
418 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
419 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
420
421 static struct attribute *snb_events_attrs[] = {
422 EVENT_PTR(td_slots_issued),
423 EVENT_PTR(td_slots_retired),
424 EVENT_PTR(td_fetch_bubbles),
425 EVENT_PTR(td_total_slots),
426 EVENT_PTR(td_total_slots_scale),
427 EVENT_PTR(td_recovery_bubbles),
428 EVENT_PTR(td_recovery_bubbles_scale),
429 NULL,
430 };
431
432 static struct attribute *snb_mem_events_attrs[] = {
433 EVENT_PTR(mem_ld_snb),
434 EVENT_PTR(mem_st_snb),
435 NULL,
436 };
437
438 static struct event_constraint intel_hsw_event_constraints[] = {
439 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
440 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
441 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
442 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
443 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
444 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
445 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
446 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
447 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
448 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
449 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
450 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
451
452 /*
453 * When HT is off these events can only run on the bottom 4 counters
454 * When HT is on, they are impacted by the HT bug and require EXCL access
455 */
456 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
457 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
458 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
459 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
460
461 EVENT_CONSTRAINT_END
462 };
463
464 static struct event_constraint intel_bdw_event_constraints[] = {
465 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
466 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
467 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
468 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
469 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
470 /*
471 * when HT is off, these can only run on the bottom 4 counters
472 */
473 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
474 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
475 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
476 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
477 EVENT_CONSTRAINT_END
478 };
479
intel_pmu_event_map(int hw_event)480 static u64 intel_pmu_event_map(int hw_event)
481 {
482 return intel_perfmon_event_map[hw_event];
483 }
484
485 static __initconst const u64 glc_hw_cache_event_ids
486 [PERF_COUNT_HW_CACHE_MAX]
487 [PERF_COUNT_HW_CACHE_OP_MAX]
488 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
489 {
490 [ C(L1D ) ] = {
491 [ C(OP_READ) ] = {
492 [ C(RESULT_ACCESS) ] = 0x81d0,
493 [ C(RESULT_MISS) ] = 0xe124,
494 },
495 [ C(OP_WRITE) ] = {
496 [ C(RESULT_ACCESS) ] = 0x82d0,
497 },
498 },
499 [ C(L1I ) ] = {
500 [ C(OP_READ) ] = {
501 [ C(RESULT_MISS) ] = 0xe424,
502 },
503 [ C(OP_WRITE) ] = {
504 [ C(RESULT_ACCESS) ] = -1,
505 [ C(RESULT_MISS) ] = -1,
506 },
507 },
508 [ C(LL ) ] = {
509 [ C(OP_READ) ] = {
510 [ C(RESULT_ACCESS) ] = 0x12a,
511 [ C(RESULT_MISS) ] = 0x12a,
512 },
513 [ C(OP_WRITE) ] = {
514 [ C(RESULT_ACCESS) ] = 0x12a,
515 [ C(RESULT_MISS) ] = 0x12a,
516 },
517 },
518 [ C(DTLB) ] = {
519 [ C(OP_READ) ] = {
520 [ C(RESULT_ACCESS) ] = 0x81d0,
521 [ C(RESULT_MISS) ] = 0xe12,
522 },
523 [ C(OP_WRITE) ] = {
524 [ C(RESULT_ACCESS) ] = 0x82d0,
525 [ C(RESULT_MISS) ] = 0xe13,
526 },
527 },
528 [ C(ITLB) ] = {
529 [ C(OP_READ) ] = {
530 [ C(RESULT_ACCESS) ] = -1,
531 [ C(RESULT_MISS) ] = 0xe11,
532 },
533 [ C(OP_WRITE) ] = {
534 [ C(RESULT_ACCESS) ] = -1,
535 [ C(RESULT_MISS) ] = -1,
536 },
537 [ C(OP_PREFETCH) ] = {
538 [ C(RESULT_ACCESS) ] = -1,
539 [ C(RESULT_MISS) ] = -1,
540 },
541 },
542 [ C(BPU ) ] = {
543 [ C(OP_READ) ] = {
544 [ C(RESULT_ACCESS) ] = 0x4c4,
545 [ C(RESULT_MISS) ] = 0x4c5,
546 },
547 [ C(OP_WRITE) ] = {
548 [ C(RESULT_ACCESS) ] = -1,
549 [ C(RESULT_MISS) ] = -1,
550 },
551 [ C(OP_PREFETCH) ] = {
552 [ C(RESULT_ACCESS) ] = -1,
553 [ C(RESULT_MISS) ] = -1,
554 },
555 },
556 [ C(NODE) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0x12a,
559 [ C(RESULT_MISS) ] = 0x12a,
560 },
561 },
562 };
563
564 static __initconst const u64 glc_hw_cache_extra_regs
565 [PERF_COUNT_HW_CACHE_MAX]
566 [PERF_COUNT_HW_CACHE_OP_MAX]
567 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
568 {
569 [ C(LL ) ] = {
570 [ C(OP_READ) ] = {
571 [ C(RESULT_ACCESS) ] = 0x10001,
572 [ C(RESULT_MISS) ] = 0x3fbfc00001,
573 },
574 [ C(OP_WRITE) ] = {
575 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
576 [ C(RESULT_MISS) ] = 0x3f3fc00002,
577 },
578 },
579 [ C(NODE) ] = {
580 [ C(OP_READ) ] = {
581 [ C(RESULT_ACCESS) ] = 0x10c000001,
582 [ C(RESULT_MISS) ] = 0x3fb3000001,
583 },
584 },
585 };
586
587 /*
588 * Notes on the events:
589 * - data reads do not include code reads (comparable to earlier tables)
590 * - data counts include speculative execution (except L1 write, dtlb, bpu)
591 * - remote node access includes remote memory, remote cache, remote mmio.
592 * - prefetches are not included in the counts.
593 * - icache miss does not include decoded icache
594 */
595
596 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
597 #define SKL_DEMAND_RFO BIT_ULL(1)
598 #define SKL_ANY_RESPONSE BIT_ULL(16)
599 #define SKL_SUPPLIER_NONE BIT_ULL(17)
600 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
601 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
602 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
603 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
604 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
605 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
606 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
607 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
608 #define SKL_SPL_HIT BIT_ULL(30)
609 #define SKL_SNOOP_NONE BIT_ULL(31)
610 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
611 #define SKL_SNOOP_MISS BIT_ULL(33)
612 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
613 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
614 #define SKL_SNOOP_HITM BIT_ULL(36)
615 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
616 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
617 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
618 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
619 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
620 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
621 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
622 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
623 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
624 SKL_SNOOP_HITM|SKL_SPL_HIT)
625 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
626 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
627 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
628 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
629 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
630
631 static __initconst const u64 skl_hw_cache_event_ids
632 [PERF_COUNT_HW_CACHE_MAX]
633 [PERF_COUNT_HW_CACHE_OP_MAX]
634 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
635 {
636 [ C(L1D ) ] = {
637 [ C(OP_READ) ] = {
638 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
639 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
640 },
641 [ C(OP_WRITE) ] = {
642 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
643 [ C(RESULT_MISS) ] = 0x0,
644 },
645 [ C(OP_PREFETCH) ] = {
646 [ C(RESULT_ACCESS) ] = 0x0,
647 [ C(RESULT_MISS) ] = 0x0,
648 },
649 },
650 [ C(L1I ) ] = {
651 [ C(OP_READ) ] = {
652 [ C(RESULT_ACCESS) ] = 0x0,
653 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
654 },
655 [ C(OP_WRITE) ] = {
656 [ C(RESULT_ACCESS) ] = -1,
657 [ C(RESULT_MISS) ] = -1,
658 },
659 [ C(OP_PREFETCH) ] = {
660 [ C(RESULT_ACCESS) ] = 0x0,
661 [ C(RESULT_MISS) ] = 0x0,
662 },
663 },
664 [ C(LL ) ] = {
665 [ C(OP_READ) ] = {
666 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
667 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
668 },
669 [ C(OP_WRITE) ] = {
670 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
671 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
672 },
673 [ C(OP_PREFETCH) ] = {
674 [ C(RESULT_ACCESS) ] = 0x0,
675 [ C(RESULT_MISS) ] = 0x0,
676 },
677 },
678 [ C(DTLB) ] = {
679 [ C(OP_READ) ] = {
680 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
681 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
682 },
683 [ C(OP_WRITE) ] = {
684 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
685 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
686 },
687 [ C(OP_PREFETCH) ] = {
688 [ C(RESULT_ACCESS) ] = 0x0,
689 [ C(RESULT_MISS) ] = 0x0,
690 },
691 },
692 [ C(ITLB) ] = {
693 [ C(OP_READ) ] = {
694 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
695 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
696 },
697 [ C(OP_WRITE) ] = {
698 [ C(RESULT_ACCESS) ] = -1,
699 [ C(RESULT_MISS) ] = -1,
700 },
701 [ C(OP_PREFETCH) ] = {
702 [ C(RESULT_ACCESS) ] = -1,
703 [ C(RESULT_MISS) ] = -1,
704 },
705 },
706 [ C(BPU ) ] = {
707 [ C(OP_READ) ] = {
708 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
709 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
710 },
711 [ C(OP_WRITE) ] = {
712 [ C(RESULT_ACCESS) ] = -1,
713 [ C(RESULT_MISS) ] = -1,
714 },
715 [ C(OP_PREFETCH) ] = {
716 [ C(RESULT_ACCESS) ] = -1,
717 [ C(RESULT_MISS) ] = -1,
718 },
719 },
720 [ C(NODE) ] = {
721 [ C(OP_READ) ] = {
722 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
723 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
724 },
725 [ C(OP_WRITE) ] = {
726 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
727 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
728 },
729 [ C(OP_PREFETCH) ] = {
730 [ C(RESULT_ACCESS) ] = 0x0,
731 [ C(RESULT_MISS) ] = 0x0,
732 },
733 },
734 };
735
736 static __initconst const u64 skl_hw_cache_extra_regs
737 [PERF_COUNT_HW_CACHE_MAX]
738 [PERF_COUNT_HW_CACHE_OP_MAX]
739 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
740 {
741 [ C(LL ) ] = {
742 [ C(OP_READ) ] = {
743 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
744 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
745 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
746 SKL_L3_MISS|SKL_ANY_SNOOP|
747 SKL_SUPPLIER_NONE,
748 },
749 [ C(OP_WRITE) ] = {
750 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
752 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
753 SKL_L3_MISS|SKL_ANY_SNOOP|
754 SKL_SUPPLIER_NONE,
755 },
756 [ C(OP_PREFETCH) ] = {
757 [ C(RESULT_ACCESS) ] = 0x0,
758 [ C(RESULT_MISS) ] = 0x0,
759 },
760 },
761 [ C(NODE) ] = {
762 [ C(OP_READ) ] = {
763 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
764 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
765 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
766 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
767 },
768 [ C(OP_WRITE) ] = {
769 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
770 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
771 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
772 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
773 },
774 [ C(OP_PREFETCH) ] = {
775 [ C(RESULT_ACCESS) ] = 0x0,
776 [ C(RESULT_MISS) ] = 0x0,
777 },
778 },
779 };
780
781 #define SNB_DMND_DATA_RD (1ULL << 0)
782 #define SNB_DMND_RFO (1ULL << 1)
783 #define SNB_DMND_IFETCH (1ULL << 2)
784 #define SNB_DMND_WB (1ULL << 3)
785 #define SNB_PF_DATA_RD (1ULL << 4)
786 #define SNB_PF_RFO (1ULL << 5)
787 #define SNB_PF_IFETCH (1ULL << 6)
788 #define SNB_LLC_DATA_RD (1ULL << 7)
789 #define SNB_LLC_RFO (1ULL << 8)
790 #define SNB_LLC_IFETCH (1ULL << 9)
791 #define SNB_BUS_LOCKS (1ULL << 10)
792 #define SNB_STRM_ST (1ULL << 11)
793 #define SNB_OTHER (1ULL << 15)
794 #define SNB_RESP_ANY (1ULL << 16)
795 #define SNB_NO_SUPP (1ULL << 17)
796 #define SNB_LLC_HITM (1ULL << 18)
797 #define SNB_LLC_HITE (1ULL << 19)
798 #define SNB_LLC_HITS (1ULL << 20)
799 #define SNB_LLC_HITF (1ULL << 21)
800 #define SNB_LOCAL (1ULL << 22)
801 #define SNB_REMOTE (0xffULL << 23)
802 #define SNB_SNP_NONE (1ULL << 31)
803 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
804 #define SNB_SNP_MISS (1ULL << 33)
805 #define SNB_NO_FWD (1ULL << 34)
806 #define SNB_SNP_FWD (1ULL << 35)
807 #define SNB_HITM (1ULL << 36)
808 #define SNB_NON_DRAM (1ULL << 37)
809
810 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
811 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
812 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
813
814 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
815 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
816 SNB_HITM)
817
818 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
819 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
820
821 #define SNB_L3_ACCESS SNB_RESP_ANY
822 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
823
824 static __initconst const u64 snb_hw_cache_extra_regs
825 [PERF_COUNT_HW_CACHE_MAX]
826 [PERF_COUNT_HW_CACHE_OP_MAX]
827 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
828 {
829 [ C(LL ) ] = {
830 [ C(OP_READ) ] = {
831 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
832 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
833 },
834 [ C(OP_WRITE) ] = {
835 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
836 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
837 },
838 [ C(OP_PREFETCH) ] = {
839 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
840 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
841 },
842 },
843 [ C(NODE) ] = {
844 [ C(OP_READ) ] = {
845 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
846 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
847 },
848 [ C(OP_WRITE) ] = {
849 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
850 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
851 },
852 [ C(OP_PREFETCH) ] = {
853 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
854 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
855 },
856 },
857 };
858
859 static __initconst const u64 snb_hw_cache_event_ids
860 [PERF_COUNT_HW_CACHE_MAX]
861 [PERF_COUNT_HW_CACHE_OP_MAX]
862 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
863 {
864 [ C(L1D) ] = {
865 [ C(OP_READ) ] = {
866 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
867 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
868 },
869 [ C(OP_WRITE) ] = {
870 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
871 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
872 },
873 [ C(OP_PREFETCH) ] = {
874 [ C(RESULT_ACCESS) ] = 0x0,
875 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
876 },
877 },
878 [ C(L1I ) ] = {
879 [ C(OP_READ) ] = {
880 [ C(RESULT_ACCESS) ] = 0x0,
881 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
882 },
883 [ C(OP_WRITE) ] = {
884 [ C(RESULT_ACCESS) ] = -1,
885 [ C(RESULT_MISS) ] = -1,
886 },
887 [ C(OP_PREFETCH) ] = {
888 [ C(RESULT_ACCESS) ] = 0x0,
889 [ C(RESULT_MISS) ] = 0x0,
890 },
891 },
892 [ C(LL ) ] = {
893 [ C(OP_READ) ] = {
894 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
895 [ C(RESULT_ACCESS) ] = 0x01b7,
896 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
897 [ C(RESULT_MISS) ] = 0x01b7,
898 },
899 [ C(OP_WRITE) ] = {
900 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
901 [ C(RESULT_ACCESS) ] = 0x01b7,
902 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903 [ C(RESULT_MISS) ] = 0x01b7,
904 },
905 [ C(OP_PREFETCH) ] = {
906 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907 [ C(RESULT_ACCESS) ] = 0x01b7,
908 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
909 [ C(RESULT_MISS) ] = 0x01b7,
910 },
911 },
912 [ C(DTLB) ] = {
913 [ C(OP_READ) ] = {
914 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
915 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
916 },
917 [ C(OP_WRITE) ] = {
918 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
919 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
920 },
921 [ C(OP_PREFETCH) ] = {
922 [ C(RESULT_ACCESS) ] = 0x0,
923 [ C(RESULT_MISS) ] = 0x0,
924 },
925 },
926 [ C(ITLB) ] = {
927 [ C(OP_READ) ] = {
928 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
929 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
930 },
931 [ C(OP_WRITE) ] = {
932 [ C(RESULT_ACCESS) ] = -1,
933 [ C(RESULT_MISS) ] = -1,
934 },
935 [ C(OP_PREFETCH) ] = {
936 [ C(RESULT_ACCESS) ] = -1,
937 [ C(RESULT_MISS) ] = -1,
938 },
939 },
940 [ C(BPU ) ] = {
941 [ C(OP_READ) ] = {
942 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
943 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
944 },
945 [ C(OP_WRITE) ] = {
946 [ C(RESULT_ACCESS) ] = -1,
947 [ C(RESULT_MISS) ] = -1,
948 },
949 [ C(OP_PREFETCH) ] = {
950 [ C(RESULT_ACCESS) ] = -1,
951 [ C(RESULT_MISS) ] = -1,
952 },
953 },
954 [ C(NODE) ] = {
955 [ C(OP_READ) ] = {
956 [ C(RESULT_ACCESS) ] = 0x01b7,
957 [ C(RESULT_MISS) ] = 0x01b7,
958 },
959 [ C(OP_WRITE) ] = {
960 [ C(RESULT_ACCESS) ] = 0x01b7,
961 [ C(RESULT_MISS) ] = 0x01b7,
962 },
963 [ C(OP_PREFETCH) ] = {
964 [ C(RESULT_ACCESS) ] = 0x01b7,
965 [ C(RESULT_MISS) ] = 0x01b7,
966 },
967 },
968
969 };
970
971 /*
972 * Notes on the events:
973 * - data reads do not include code reads (comparable to earlier tables)
974 * - data counts include speculative execution (except L1 write, dtlb, bpu)
975 * - remote node access includes remote memory, remote cache, remote mmio.
976 * - prefetches are not included in the counts because they are not
977 * reliably counted.
978 */
979
980 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
981 #define HSW_DEMAND_RFO BIT_ULL(1)
982 #define HSW_ANY_RESPONSE BIT_ULL(16)
983 #define HSW_SUPPLIER_NONE BIT_ULL(17)
984 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
985 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
986 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
987 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
988 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
989 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
990 HSW_L3_MISS_REMOTE_HOP2P)
991 #define HSW_SNOOP_NONE BIT_ULL(31)
992 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
993 #define HSW_SNOOP_MISS BIT_ULL(33)
994 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
995 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
996 #define HSW_SNOOP_HITM BIT_ULL(36)
997 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
998 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
999 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1000 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1001 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1002 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1003 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
1004 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
1005 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
1006 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1007 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
1008
1009 #define BDW_L3_MISS_LOCAL BIT(26)
1010 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1011 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1012 HSW_L3_MISS_REMOTE_HOP2P)
1013
1014
1015 static __initconst const u64 hsw_hw_cache_event_ids
1016 [PERF_COUNT_HW_CACHE_MAX]
1017 [PERF_COUNT_HW_CACHE_OP_MAX]
1018 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1019 {
1020 [ C(L1D ) ] = {
1021 [ C(OP_READ) ] = {
1022 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1023 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1024 },
1025 [ C(OP_WRITE) ] = {
1026 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1027 [ C(RESULT_MISS) ] = 0x0,
1028 },
1029 [ C(OP_PREFETCH) ] = {
1030 [ C(RESULT_ACCESS) ] = 0x0,
1031 [ C(RESULT_MISS) ] = 0x0,
1032 },
1033 },
1034 [ C(L1I ) ] = {
1035 [ C(OP_READ) ] = {
1036 [ C(RESULT_ACCESS) ] = 0x0,
1037 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1038 },
1039 [ C(OP_WRITE) ] = {
1040 [ C(RESULT_ACCESS) ] = -1,
1041 [ C(RESULT_MISS) ] = -1,
1042 },
1043 [ C(OP_PREFETCH) ] = {
1044 [ C(RESULT_ACCESS) ] = 0x0,
1045 [ C(RESULT_MISS) ] = 0x0,
1046 },
1047 },
1048 [ C(LL ) ] = {
1049 [ C(OP_READ) ] = {
1050 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1051 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1052 },
1053 [ C(OP_WRITE) ] = {
1054 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1055 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1056 },
1057 [ C(OP_PREFETCH) ] = {
1058 [ C(RESULT_ACCESS) ] = 0x0,
1059 [ C(RESULT_MISS) ] = 0x0,
1060 },
1061 },
1062 [ C(DTLB) ] = {
1063 [ C(OP_READ) ] = {
1064 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1065 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1066 },
1067 [ C(OP_WRITE) ] = {
1068 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1069 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1070 },
1071 [ C(OP_PREFETCH) ] = {
1072 [ C(RESULT_ACCESS) ] = 0x0,
1073 [ C(RESULT_MISS) ] = 0x0,
1074 },
1075 },
1076 [ C(ITLB) ] = {
1077 [ C(OP_READ) ] = {
1078 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1079 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1080 },
1081 [ C(OP_WRITE) ] = {
1082 [ C(RESULT_ACCESS) ] = -1,
1083 [ C(RESULT_MISS) ] = -1,
1084 },
1085 [ C(OP_PREFETCH) ] = {
1086 [ C(RESULT_ACCESS) ] = -1,
1087 [ C(RESULT_MISS) ] = -1,
1088 },
1089 },
1090 [ C(BPU ) ] = {
1091 [ C(OP_READ) ] = {
1092 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1093 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1094 },
1095 [ C(OP_WRITE) ] = {
1096 [ C(RESULT_ACCESS) ] = -1,
1097 [ C(RESULT_MISS) ] = -1,
1098 },
1099 [ C(OP_PREFETCH) ] = {
1100 [ C(RESULT_ACCESS) ] = -1,
1101 [ C(RESULT_MISS) ] = -1,
1102 },
1103 },
1104 [ C(NODE) ] = {
1105 [ C(OP_READ) ] = {
1106 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1107 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1108 },
1109 [ C(OP_WRITE) ] = {
1110 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1111 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1112 },
1113 [ C(OP_PREFETCH) ] = {
1114 [ C(RESULT_ACCESS) ] = 0x0,
1115 [ C(RESULT_MISS) ] = 0x0,
1116 },
1117 },
1118 };
1119
1120 static __initconst const u64 hsw_hw_cache_extra_regs
1121 [PERF_COUNT_HW_CACHE_MAX]
1122 [PERF_COUNT_HW_CACHE_OP_MAX]
1123 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1124 {
1125 [ C(LL ) ] = {
1126 [ C(OP_READ) ] = {
1127 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1128 HSW_LLC_ACCESS,
1129 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1130 HSW_L3_MISS|HSW_ANY_SNOOP,
1131 },
1132 [ C(OP_WRITE) ] = {
1133 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1134 HSW_LLC_ACCESS,
1135 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1136 HSW_L3_MISS|HSW_ANY_SNOOP,
1137 },
1138 [ C(OP_PREFETCH) ] = {
1139 [ C(RESULT_ACCESS) ] = 0x0,
1140 [ C(RESULT_MISS) ] = 0x0,
1141 },
1142 },
1143 [ C(NODE) ] = {
1144 [ C(OP_READ) ] = {
1145 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1146 HSW_L3_MISS_LOCAL_DRAM|
1147 HSW_SNOOP_DRAM,
1148 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1149 HSW_L3_MISS_REMOTE|
1150 HSW_SNOOP_DRAM,
1151 },
1152 [ C(OP_WRITE) ] = {
1153 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1154 HSW_L3_MISS_LOCAL_DRAM|
1155 HSW_SNOOP_DRAM,
1156 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1157 HSW_L3_MISS_REMOTE|
1158 HSW_SNOOP_DRAM,
1159 },
1160 [ C(OP_PREFETCH) ] = {
1161 [ C(RESULT_ACCESS) ] = 0x0,
1162 [ C(RESULT_MISS) ] = 0x0,
1163 },
1164 },
1165 };
1166
1167 static __initconst const u64 westmere_hw_cache_event_ids
1168 [PERF_COUNT_HW_CACHE_MAX]
1169 [PERF_COUNT_HW_CACHE_OP_MAX]
1170 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1171 {
1172 [ C(L1D) ] = {
1173 [ C(OP_READ) ] = {
1174 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1175 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1176 },
1177 [ C(OP_WRITE) ] = {
1178 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1179 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1180 },
1181 [ C(OP_PREFETCH) ] = {
1182 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1183 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1184 },
1185 },
1186 [ C(L1I ) ] = {
1187 [ C(OP_READ) ] = {
1188 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1189 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1190 },
1191 [ C(OP_WRITE) ] = {
1192 [ C(RESULT_ACCESS) ] = -1,
1193 [ C(RESULT_MISS) ] = -1,
1194 },
1195 [ C(OP_PREFETCH) ] = {
1196 [ C(RESULT_ACCESS) ] = 0x0,
1197 [ C(RESULT_MISS) ] = 0x0,
1198 },
1199 },
1200 [ C(LL ) ] = {
1201 [ C(OP_READ) ] = {
1202 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1203 [ C(RESULT_ACCESS) ] = 0x01b7,
1204 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1205 [ C(RESULT_MISS) ] = 0x01b7,
1206 },
1207 /*
1208 * Use RFO, not WRITEBACK, because a write miss would typically occur
1209 * on RFO.
1210 */
1211 [ C(OP_WRITE) ] = {
1212 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1213 [ C(RESULT_ACCESS) ] = 0x01b7,
1214 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1215 [ C(RESULT_MISS) ] = 0x01b7,
1216 },
1217 [ C(OP_PREFETCH) ] = {
1218 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1219 [ C(RESULT_ACCESS) ] = 0x01b7,
1220 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1221 [ C(RESULT_MISS) ] = 0x01b7,
1222 },
1223 },
1224 [ C(DTLB) ] = {
1225 [ C(OP_READ) ] = {
1226 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1227 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1228 },
1229 [ C(OP_WRITE) ] = {
1230 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1231 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1232 },
1233 [ C(OP_PREFETCH) ] = {
1234 [ C(RESULT_ACCESS) ] = 0x0,
1235 [ C(RESULT_MISS) ] = 0x0,
1236 },
1237 },
1238 [ C(ITLB) ] = {
1239 [ C(OP_READ) ] = {
1240 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1241 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1242 },
1243 [ C(OP_WRITE) ] = {
1244 [ C(RESULT_ACCESS) ] = -1,
1245 [ C(RESULT_MISS) ] = -1,
1246 },
1247 [ C(OP_PREFETCH) ] = {
1248 [ C(RESULT_ACCESS) ] = -1,
1249 [ C(RESULT_MISS) ] = -1,
1250 },
1251 },
1252 [ C(BPU ) ] = {
1253 [ C(OP_READ) ] = {
1254 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1255 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1256 },
1257 [ C(OP_WRITE) ] = {
1258 [ C(RESULT_ACCESS) ] = -1,
1259 [ C(RESULT_MISS) ] = -1,
1260 },
1261 [ C(OP_PREFETCH) ] = {
1262 [ C(RESULT_ACCESS) ] = -1,
1263 [ C(RESULT_MISS) ] = -1,
1264 },
1265 },
1266 [ C(NODE) ] = {
1267 [ C(OP_READ) ] = {
1268 [ C(RESULT_ACCESS) ] = 0x01b7,
1269 [ C(RESULT_MISS) ] = 0x01b7,
1270 },
1271 [ C(OP_WRITE) ] = {
1272 [ C(RESULT_ACCESS) ] = 0x01b7,
1273 [ C(RESULT_MISS) ] = 0x01b7,
1274 },
1275 [ C(OP_PREFETCH) ] = {
1276 [ C(RESULT_ACCESS) ] = 0x01b7,
1277 [ C(RESULT_MISS) ] = 0x01b7,
1278 },
1279 },
1280 };
1281
1282 /*
1283 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1284 * See IA32 SDM Vol 3B 30.6.1.3
1285 */
1286
1287 #define NHM_DMND_DATA_RD (1 << 0)
1288 #define NHM_DMND_RFO (1 << 1)
1289 #define NHM_DMND_IFETCH (1 << 2)
1290 #define NHM_DMND_WB (1 << 3)
1291 #define NHM_PF_DATA_RD (1 << 4)
1292 #define NHM_PF_DATA_RFO (1 << 5)
1293 #define NHM_PF_IFETCH (1 << 6)
1294 #define NHM_OFFCORE_OTHER (1 << 7)
1295 #define NHM_UNCORE_HIT (1 << 8)
1296 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1297 #define NHM_OTHER_CORE_HITM (1 << 10)
1298 /* reserved */
1299 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1300 #define NHM_REMOTE_DRAM (1 << 13)
1301 #define NHM_LOCAL_DRAM (1 << 14)
1302 #define NHM_NON_DRAM (1 << 15)
1303
1304 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1305 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1306
1307 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1308 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1309 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1310
1311 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1312 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1313 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1314
1315 static __initconst const u64 nehalem_hw_cache_extra_regs
1316 [PERF_COUNT_HW_CACHE_MAX]
1317 [PERF_COUNT_HW_CACHE_OP_MAX]
1318 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1319 {
1320 [ C(LL ) ] = {
1321 [ C(OP_READ) ] = {
1322 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1323 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1324 },
1325 [ C(OP_WRITE) ] = {
1326 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1327 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1328 },
1329 [ C(OP_PREFETCH) ] = {
1330 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1331 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1332 },
1333 },
1334 [ C(NODE) ] = {
1335 [ C(OP_READ) ] = {
1336 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1337 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1338 },
1339 [ C(OP_WRITE) ] = {
1340 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1341 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1342 },
1343 [ C(OP_PREFETCH) ] = {
1344 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1345 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1346 },
1347 },
1348 };
1349
1350 static __initconst const u64 nehalem_hw_cache_event_ids
1351 [PERF_COUNT_HW_CACHE_MAX]
1352 [PERF_COUNT_HW_CACHE_OP_MAX]
1353 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1354 {
1355 [ C(L1D) ] = {
1356 [ C(OP_READ) ] = {
1357 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1358 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1359 },
1360 [ C(OP_WRITE) ] = {
1361 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1362 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1363 },
1364 [ C(OP_PREFETCH) ] = {
1365 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1366 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1367 },
1368 },
1369 [ C(L1I ) ] = {
1370 [ C(OP_READ) ] = {
1371 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1372 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1373 },
1374 [ C(OP_WRITE) ] = {
1375 [ C(RESULT_ACCESS) ] = -1,
1376 [ C(RESULT_MISS) ] = -1,
1377 },
1378 [ C(OP_PREFETCH) ] = {
1379 [ C(RESULT_ACCESS) ] = 0x0,
1380 [ C(RESULT_MISS) ] = 0x0,
1381 },
1382 },
1383 [ C(LL ) ] = {
1384 [ C(OP_READ) ] = {
1385 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1386 [ C(RESULT_ACCESS) ] = 0x01b7,
1387 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1388 [ C(RESULT_MISS) ] = 0x01b7,
1389 },
1390 /*
1391 * Use RFO, not WRITEBACK, because a write miss would typically occur
1392 * on RFO.
1393 */
1394 [ C(OP_WRITE) ] = {
1395 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1396 [ C(RESULT_ACCESS) ] = 0x01b7,
1397 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1398 [ C(RESULT_MISS) ] = 0x01b7,
1399 },
1400 [ C(OP_PREFETCH) ] = {
1401 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1402 [ C(RESULT_ACCESS) ] = 0x01b7,
1403 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1404 [ C(RESULT_MISS) ] = 0x01b7,
1405 },
1406 },
1407 [ C(DTLB) ] = {
1408 [ C(OP_READ) ] = {
1409 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1410 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1411 },
1412 [ C(OP_WRITE) ] = {
1413 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1414 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1415 },
1416 [ C(OP_PREFETCH) ] = {
1417 [ C(RESULT_ACCESS) ] = 0x0,
1418 [ C(RESULT_MISS) ] = 0x0,
1419 },
1420 },
1421 [ C(ITLB) ] = {
1422 [ C(OP_READ) ] = {
1423 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1424 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1425 },
1426 [ C(OP_WRITE) ] = {
1427 [ C(RESULT_ACCESS) ] = -1,
1428 [ C(RESULT_MISS) ] = -1,
1429 },
1430 [ C(OP_PREFETCH) ] = {
1431 [ C(RESULT_ACCESS) ] = -1,
1432 [ C(RESULT_MISS) ] = -1,
1433 },
1434 },
1435 [ C(BPU ) ] = {
1436 [ C(OP_READ) ] = {
1437 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1438 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1439 },
1440 [ C(OP_WRITE) ] = {
1441 [ C(RESULT_ACCESS) ] = -1,
1442 [ C(RESULT_MISS) ] = -1,
1443 },
1444 [ C(OP_PREFETCH) ] = {
1445 [ C(RESULT_ACCESS) ] = -1,
1446 [ C(RESULT_MISS) ] = -1,
1447 },
1448 },
1449 [ C(NODE) ] = {
1450 [ C(OP_READ) ] = {
1451 [ C(RESULT_ACCESS) ] = 0x01b7,
1452 [ C(RESULT_MISS) ] = 0x01b7,
1453 },
1454 [ C(OP_WRITE) ] = {
1455 [ C(RESULT_ACCESS) ] = 0x01b7,
1456 [ C(RESULT_MISS) ] = 0x01b7,
1457 },
1458 [ C(OP_PREFETCH) ] = {
1459 [ C(RESULT_ACCESS) ] = 0x01b7,
1460 [ C(RESULT_MISS) ] = 0x01b7,
1461 },
1462 },
1463 };
1464
1465 static __initconst const u64 core2_hw_cache_event_ids
1466 [PERF_COUNT_HW_CACHE_MAX]
1467 [PERF_COUNT_HW_CACHE_OP_MAX]
1468 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1469 {
1470 [ C(L1D) ] = {
1471 [ C(OP_READ) ] = {
1472 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1473 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1474 },
1475 [ C(OP_WRITE) ] = {
1476 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1477 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1478 },
1479 [ C(OP_PREFETCH) ] = {
1480 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1481 [ C(RESULT_MISS) ] = 0,
1482 },
1483 },
1484 [ C(L1I ) ] = {
1485 [ C(OP_READ) ] = {
1486 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1487 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1488 },
1489 [ C(OP_WRITE) ] = {
1490 [ C(RESULT_ACCESS) ] = -1,
1491 [ C(RESULT_MISS) ] = -1,
1492 },
1493 [ C(OP_PREFETCH) ] = {
1494 [ C(RESULT_ACCESS) ] = 0,
1495 [ C(RESULT_MISS) ] = 0,
1496 },
1497 },
1498 [ C(LL ) ] = {
1499 [ C(OP_READ) ] = {
1500 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1501 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1502 },
1503 [ C(OP_WRITE) ] = {
1504 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1505 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1506 },
1507 [ C(OP_PREFETCH) ] = {
1508 [ C(RESULT_ACCESS) ] = 0,
1509 [ C(RESULT_MISS) ] = 0,
1510 },
1511 },
1512 [ C(DTLB) ] = {
1513 [ C(OP_READ) ] = {
1514 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1515 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1516 },
1517 [ C(OP_WRITE) ] = {
1518 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1519 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1520 },
1521 [ C(OP_PREFETCH) ] = {
1522 [ C(RESULT_ACCESS) ] = 0,
1523 [ C(RESULT_MISS) ] = 0,
1524 },
1525 },
1526 [ C(ITLB) ] = {
1527 [ C(OP_READ) ] = {
1528 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1530 },
1531 [ C(OP_WRITE) ] = {
1532 [ C(RESULT_ACCESS) ] = -1,
1533 [ C(RESULT_MISS) ] = -1,
1534 },
1535 [ C(OP_PREFETCH) ] = {
1536 [ C(RESULT_ACCESS) ] = -1,
1537 [ C(RESULT_MISS) ] = -1,
1538 },
1539 },
1540 [ C(BPU ) ] = {
1541 [ C(OP_READ) ] = {
1542 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 },
1545 [ C(OP_WRITE) ] = {
1546 [ C(RESULT_ACCESS) ] = -1,
1547 [ C(RESULT_MISS) ] = -1,
1548 },
1549 [ C(OP_PREFETCH) ] = {
1550 [ C(RESULT_ACCESS) ] = -1,
1551 [ C(RESULT_MISS) ] = -1,
1552 },
1553 },
1554 };
1555
1556 static __initconst const u64 atom_hw_cache_event_ids
1557 [PERF_COUNT_HW_CACHE_MAX]
1558 [PERF_COUNT_HW_CACHE_OP_MAX]
1559 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1560 {
1561 [ C(L1D) ] = {
1562 [ C(OP_READ) ] = {
1563 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1564 [ C(RESULT_MISS) ] = 0,
1565 },
1566 [ C(OP_WRITE) ] = {
1567 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1568 [ C(RESULT_MISS) ] = 0,
1569 },
1570 [ C(OP_PREFETCH) ] = {
1571 [ C(RESULT_ACCESS) ] = 0x0,
1572 [ C(RESULT_MISS) ] = 0,
1573 },
1574 },
1575 [ C(L1I ) ] = {
1576 [ C(OP_READ) ] = {
1577 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1578 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1579 },
1580 [ C(OP_WRITE) ] = {
1581 [ C(RESULT_ACCESS) ] = -1,
1582 [ C(RESULT_MISS) ] = -1,
1583 },
1584 [ C(OP_PREFETCH) ] = {
1585 [ C(RESULT_ACCESS) ] = 0,
1586 [ C(RESULT_MISS) ] = 0,
1587 },
1588 },
1589 [ C(LL ) ] = {
1590 [ C(OP_READ) ] = {
1591 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1592 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1593 },
1594 [ C(OP_WRITE) ] = {
1595 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1596 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1597 },
1598 [ C(OP_PREFETCH) ] = {
1599 [ C(RESULT_ACCESS) ] = 0,
1600 [ C(RESULT_MISS) ] = 0,
1601 },
1602 },
1603 [ C(DTLB) ] = {
1604 [ C(OP_READ) ] = {
1605 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1606 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1607 },
1608 [ C(OP_WRITE) ] = {
1609 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1610 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1611 },
1612 [ C(OP_PREFETCH) ] = {
1613 [ C(RESULT_ACCESS) ] = 0,
1614 [ C(RESULT_MISS) ] = 0,
1615 },
1616 },
1617 [ C(ITLB) ] = {
1618 [ C(OP_READ) ] = {
1619 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1620 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1621 },
1622 [ C(OP_WRITE) ] = {
1623 [ C(RESULT_ACCESS) ] = -1,
1624 [ C(RESULT_MISS) ] = -1,
1625 },
1626 [ C(OP_PREFETCH) ] = {
1627 [ C(RESULT_ACCESS) ] = -1,
1628 [ C(RESULT_MISS) ] = -1,
1629 },
1630 },
1631 [ C(BPU ) ] = {
1632 [ C(OP_READ) ] = {
1633 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1634 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1635 },
1636 [ C(OP_WRITE) ] = {
1637 [ C(RESULT_ACCESS) ] = -1,
1638 [ C(RESULT_MISS) ] = -1,
1639 },
1640 [ C(OP_PREFETCH) ] = {
1641 [ C(RESULT_ACCESS) ] = -1,
1642 [ C(RESULT_MISS) ] = -1,
1643 },
1644 },
1645 };
1646
1647 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1648 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1649 /* no_alloc_cycles.not_delivered */
1650 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1651 "event=0xca,umask=0x50");
1652 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1653 /* uops_retired.all */
1654 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1655 "event=0xc2,umask=0x10");
1656 /* uops_retired.all */
1657 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1658 "event=0xc2,umask=0x10");
1659
1660 static struct attribute *slm_events_attrs[] = {
1661 EVENT_PTR(td_total_slots_slm),
1662 EVENT_PTR(td_total_slots_scale_slm),
1663 EVENT_PTR(td_fetch_bubbles_slm),
1664 EVENT_PTR(td_fetch_bubbles_scale_slm),
1665 EVENT_PTR(td_slots_issued_slm),
1666 EVENT_PTR(td_slots_retired_slm),
1667 NULL
1668 };
1669
1670 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1671 {
1672 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1673 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1674 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1675 EVENT_EXTRA_END
1676 };
1677
1678 #define SLM_DMND_READ SNB_DMND_DATA_RD
1679 #define SLM_DMND_WRITE SNB_DMND_RFO
1680 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1681
1682 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1683 #define SLM_LLC_ACCESS SNB_RESP_ANY
1684 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1685
1686 static __initconst const u64 slm_hw_cache_extra_regs
1687 [PERF_COUNT_HW_CACHE_MAX]
1688 [PERF_COUNT_HW_CACHE_OP_MAX]
1689 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1690 {
1691 [ C(LL ) ] = {
1692 [ C(OP_READ) ] = {
1693 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1694 [ C(RESULT_MISS) ] = 0,
1695 },
1696 [ C(OP_WRITE) ] = {
1697 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1698 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1699 },
1700 [ C(OP_PREFETCH) ] = {
1701 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1702 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1703 },
1704 },
1705 };
1706
1707 static __initconst const u64 slm_hw_cache_event_ids
1708 [PERF_COUNT_HW_CACHE_MAX]
1709 [PERF_COUNT_HW_CACHE_OP_MAX]
1710 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1711 {
1712 [ C(L1D) ] = {
1713 [ C(OP_READ) ] = {
1714 [ C(RESULT_ACCESS) ] = 0,
1715 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1716 },
1717 [ C(OP_WRITE) ] = {
1718 [ C(RESULT_ACCESS) ] = 0,
1719 [ C(RESULT_MISS) ] = 0,
1720 },
1721 [ C(OP_PREFETCH) ] = {
1722 [ C(RESULT_ACCESS) ] = 0,
1723 [ C(RESULT_MISS) ] = 0,
1724 },
1725 },
1726 [ C(L1I ) ] = {
1727 [ C(OP_READ) ] = {
1728 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1729 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1730 },
1731 [ C(OP_WRITE) ] = {
1732 [ C(RESULT_ACCESS) ] = -1,
1733 [ C(RESULT_MISS) ] = -1,
1734 },
1735 [ C(OP_PREFETCH) ] = {
1736 [ C(RESULT_ACCESS) ] = 0,
1737 [ C(RESULT_MISS) ] = 0,
1738 },
1739 },
1740 [ C(LL ) ] = {
1741 [ C(OP_READ) ] = {
1742 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1743 [ C(RESULT_ACCESS) ] = 0x01b7,
1744 [ C(RESULT_MISS) ] = 0,
1745 },
1746 [ C(OP_WRITE) ] = {
1747 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1748 [ C(RESULT_ACCESS) ] = 0x01b7,
1749 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1750 [ C(RESULT_MISS) ] = 0x01b7,
1751 },
1752 [ C(OP_PREFETCH) ] = {
1753 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1754 [ C(RESULT_ACCESS) ] = 0x01b7,
1755 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1756 [ C(RESULT_MISS) ] = 0x01b7,
1757 },
1758 },
1759 [ C(DTLB) ] = {
1760 [ C(OP_READ) ] = {
1761 [ C(RESULT_ACCESS) ] = 0,
1762 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1763 },
1764 [ C(OP_WRITE) ] = {
1765 [ C(RESULT_ACCESS) ] = 0,
1766 [ C(RESULT_MISS) ] = 0,
1767 },
1768 [ C(OP_PREFETCH) ] = {
1769 [ C(RESULT_ACCESS) ] = 0,
1770 [ C(RESULT_MISS) ] = 0,
1771 },
1772 },
1773 [ C(ITLB) ] = {
1774 [ C(OP_READ) ] = {
1775 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1776 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1777 },
1778 [ C(OP_WRITE) ] = {
1779 [ C(RESULT_ACCESS) ] = -1,
1780 [ C(RESULT_MISS) ] = -1,
1781 },
1782 [ C(OP_PREFETCH) ] = {
1783 [ C(RESULT_ACCESS) ] = -1,
1784 [ C(RESULT_MISS) ] = -1,
1785 },
1786 },
1787 [ C(BPU ) ] = {
1788 [ C(OP_READ) ] = {
1789 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1790 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1791 },
1792 [ C(OP_WRITE) ] = {
1793 [ C(RESULT_ACCESS) ] = -1,
1794 [ C(RESULT_MISS) ] = -1,
1795 },
1796 [ C(OP_PREFETCH) ] = {
1797 [ C(RESULT_ACCESS) ] = -1,
1798 [ C(RESULT_MISS) ] = -1,
1799 },
1800 },
1801 };
1802
1803 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1804 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1805 /* UOPS_NOT_DELIVERED.ANY */
1806 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1807 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1808 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1809 /* UOPS_RETIRED.ANY */
1810 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1811 /* UOPS_ISSUED.ANY */
1812 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1813
1814 static struct attribute *glm_events_attrs[] = {
1815 EVENT_PTR(td_total_slots_glm),
1816 EVENT_PTR(td_total_slots_scale_glm),
1817 EVENT_PTR(td_fetch_bubbles_glm),
1818 EVENT_PTR(td_recovery_bubbles_glm),
1819 EVENT_PTR(td_slots_issued_glm),
1820 EVENT_PTR(td_slots_retired_glm),
1821 NULL
1822 };
1823
1824 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1825 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1826 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1827 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1828 EVENT_EXTRA_END
1829 };
1830
1831 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1832 #define GLM_DEMAND_RFO BIT_ULL(1)
1833 #define GLM_ANY_RESPONSE BIT_ULL(16)
1834 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1835 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1836 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1837 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1838 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1839 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1840 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1841
1842 static __initconst const u64 glm_hw_cache_event_ids
1843 [PERF_COUNT_HW_CACHE_MAX]
1844 [PERF_COUNT_HW_CACHE_OP_MAX]
1845 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1846 [C(L1D)] = {
1847 [C(OP_READ)] = {
1848 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1849 [C(RESULT_MISS)] = 0x0,
1850 },
1851 [C(OP_WRITE)] = {
1852 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1853 [C(RESULT_MISS)] = 0x0,
1854 },
1855 [C(OP_PREFETCH)] = {
1856 [C(RESULT_ACCESS)] = 0x0,
1857 [C(RESULT_MISS)] = 0x0,
1858 },
1859 },
1860 [C(L1I)] = {
1861 [C(OP_READ)] = {
1862 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1863 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1864 },
1865 [C(OP_WRITE)] = {
1866 [C(RESULT_ACCESS)] = -1,
1867 [C(RESULT_MISS)] = -1,
1868 },
1869 [C(OP_PREFETCH)] = {
1870 [C(RESULT_ACCESS)] = 0x0,
1871 [C(RESULT_MISS)] = 0x0,
1872 },
1873 },
1874 [C(LL)] = {
1875 [C(OP_READ)] = {
1876 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1877 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1878 },
1879 [C(OP_WRITE)] = {
1880 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1881 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1882 },
1883 [C(OP_PREFETCH)] = {
1884 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1885 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1886 },
1887 },
1888 [C(DTLB)] = {
1889 [C(OP_READ)] = {
1890 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1891 [C(RESULT_MISS)] = 0x0,
1892 },
1893 [C(OP_WRITE)] = {
1894 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1895 [C(RESULT_MISS)] = 0x0,
1896 },
1897 [C(OP_PREFETCH)] = {
1898 [C(RESULT_ACCESS)] = 0x0,
1899 [C(RESULT_MISS)] = 0x0,
1900 },
1901 },
1902 [C(ITLB)] = {
1903 [C(OP_READ)] = {
1904 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1905 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1906 },
1907 [C(OP_WRITE)] = {
1908 [C(RESULT_ACCESS)] = -1,
1909 [C(RESULT_MISS)] = -1,
1910 },
1911 [C(OP_PREFETCH)] = {
1912 [C(RESULT_ACCESS)] = -1,
1913 [C(RESULT_MISS)] = -1,
1914 },
1915 },
1916 [C(BPU)] = {
1917 [C(OP_READ)] = {
1918 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1919 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1920 },
1921 [C(OP_WRITE)] = {
1922 [C(RESULT_ACCESS)] = -1,
1923 [C(RESULT_MISS)] = -1,
1924 },
1925 [C(OP_PREFETCH)] = {
1926 [C(RESULT_ACCESS)] = -1,
1927 [C(RESULT_MISS)] = -1,
1928 },
1929 },
1930 };
1931
1932 static __initconst const u64 glm_hw_cache_extra_regs
1933 [PERF_COUNT_HW_CACHE_MAX]
1934 [PERF_COUNT_HW_CACHE_OP_MAX]
1935 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1936 [C(LL)] = {
1937 [C(OP_READ)] = {
1938 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1939 GLM_LLC_ACCESS,
1940 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1941 GLM_LLC_MISS,
1942 },
1943 [C(OP_WRITE)] = {
1944 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1945 GLM_LLC_ACCESS,
1946 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1947 GLM_LLC_MISS,
1948 },
1949 [C(OP_PREFETCH)] = {
1950 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1951 GLM_LLC_ACCESS,
1952 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1953 GLM_LLC_MISS,
1954 },
1955 },
1956 };
1957
1958 static __initconst const u64 glp_hw_cache_event_ids
1959 [PERF_COUNT_HW_CACHE_MAX]
1960 [PERF_COUNT_HW_CACHE_OP_MAX]
1961 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1962 [C(L1D)] = {
1963 [C(OP_READ)] = {
1964 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1965 [C(RESULT_MISS)] = 0x0,
1966 },
1967 [C(OP_WRITE)] = {
1968 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1969 [C(RESULT_MISS)] = 0x0,
1970 },
1971 [C(OP_PREFETCH)] = {
1972 [C(RESULT_ACCESS)] = 0x0,
1973 [C(RESULT_MISS)] = 0x0,
1974 },
1975 },
1976 [C(L1I)] = {
1977 [C(OP_READ)] = {
1978 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1979 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1980 },
1981 [C(OP_WRITE)] = {
1982 [C(RESULT_ACCESS)] = -1,
1983 [C(RESULT_MISS)] = -1,
1984 },
1985 [C(OP_PREFETCH)] = {
1986 [C(RESULT_ACCESS)] = 0x0,
1987 [C(RESULT_MISS)] = 0x0,
1988 },
1989 },
1990 [C(LL)] = {
1991 [C(OP_READ)] = {
1992 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1993 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1994 },
1995 [C(OP_WRITE)] = {
1996 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1997 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1998 },
1999 [C(OP_PREFETCH)] = {
2000 [C(RESULT_ACCESS)] = 0x0,
2001 [C(RESULT_MISS)] = 0x0,
2002 },
2003 },
2004 [C(DTLB)] = {
2005 [C(OP_READ)] = {
2006 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2007 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2008 },
2009 [C(OP_WRITE)] = {
2010 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2011 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2012 },
2013 [C(OP_PREFETCH)] = {
2014 [C(RESULT_ACCESS)] = 0x0,
2015 [C(RESULT_MISS)] = 0x0,
2016 },
2017 },
2018 [C(ITLB)] = {
2019 [C(OP_READ)] = {
2020 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2021 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2022 },
2023 [C(OP_WRITE)] = {
2024 [C(RESULT_ACCESS)] = -1,
2025 [C(RESULT_MISS)] = -1,
2026 },
2027 [C(OP_PREFETCH)] = {
2028 [C(RESULT_ACCESS)] = -1,
2029 [C(RESULT_MISS)] = -1,
2030 },
2031 },
2032 [C(BPU)] = {
2033 [C(OP_READ)] = {
2034 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2035 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2036 },
2037 [C(OP_WRITE)] = {
2038 [C(RESULT_ACCESS)] = -1,
2039 [C(RESULT_MISS)] = -1,
2040 },
2041 [C(OP_PREFETCH)] = {
2042 [C(RESULT_ACCESS)] = -1,
2043 [C(RESULT_MISS)] = -1,
2044 },
2045 },
2046 };
2047
2048 static __initconst const u64 glp_hw_cache_extra_regs
2049 [PERF_COUNT_HW_CACHE_MAX]
2050 [PERF_COUNT_HW_CACHE_OP_MAX]
2051 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2052 [C(LL)] = {
2053 [C(OP_READ)] = {
2054 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2055 GLM_LLC_ACCESS,
2056 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2057 GLM_LLC_MISS,
2058 },
2059 [C(OP_WRITE)] = {
2060 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2061 GLM_LLC_ACCESS,
2062 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2063 GLM_LLC_MISS,
2064 },
2065 [C(OP_PREFETCH)] = {
2066 [C(RESULT_ACCESS)] = 0x0,
2067 [C(RESULT_MISS)] = 0x0,
2068 },
2069 },
2070 };
2071
2072 #define TNT_LOCAL_DRAM BIT_ULL(26)
2073 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2074 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2075 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2076 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2077 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2078 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2079
2080 static __initconst const u64 tnt_hw_cache_extra_regs
2081 [PERF_COUNT_HW_CACHE_MAX]
2082 [PERF_COUNT_HW_CACHE_OP_MAX]
2083 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2084 [C(LL)] = {
2085 [C(OP_READ)] = {
2086 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2087 TNT_LLC_ACCESS,
2088 [C(RESULT_MISS)] = TNT_DEMAND_READ|
2089 TNT_LLC_MISS,
2090 },
2091 [C(OP_WRITE)] = {
2092 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2093 TNT_LLC_ACCESS,
2094 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2095 TNT_LLC_MISS,
2096 },
2097 [C(OP_PREFETCH)] = {
2098 [C(RESULT_ACCESS)] = 0x0,
2099 [C(RESULT_MISS)] = 0x0,
2100 },
2101 },
2102 };
2103
2104 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2105 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2106 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2107 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2108
2109 static struct attribute *tnt_events_attrs[] = {
2110 EVENT_PTR(td_fe_bound_tnt),
2111 EVENT_PTR(td_retiring_tnt),
2112 EVENT_PTR(td_bad_spec_tnt),
2113 EVENT_PTR(td_be_bound_tnt),
2114 NULL,
2115 };
2116
2117 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2118 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2119 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2120 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2121 EVENT_EXTRA_END
2122 };
2123
2124 EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2125 EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2126
2127 static struct attribute *grt_mem_attrs[] = {
2128 EVENT_PTR(mem_ld_grt),
2129 EVENT_PTR(mem_st_grt),
2130 NULL
2131 };
2132
2133 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2134 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2135 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2136 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2137 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2138 EVENT_EXTRA_END
2139 };
2140
2141 EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2142 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2143
2144 static struct attribute *cmt_events_attrs[] = {
2145 EVENT_PTR(td_fe_bound_tnt),
2146 EVENT_PTR(td_retiring_cmt),
2147 EVENT_PTR(td_bad_spec_cmt),
2148 EVENT_PTR(td_be_bound_tnt),
2149 NULL
2150 };
2151
2152 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2153 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2154 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2155 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2156 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2157 INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2158 INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2159 EVENT_EXTRA_END
2160 };
2161
2162 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2163 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2164 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
2165 #define KNL_MCDRAM_FAR BIT_ULL(22)
2166 #define KNL_DDR_LOCAL BIT_ULL(23)
2167 #define KNL_DDR_FAR BIT_ULL(24)
2168 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2169 KNL_DDR_LOCAL | KNL_DDR_FAR)
2170 #define KNL_L2_READ SLM_DMND_READ
2171 #define KNL_L2_WRITE SLM_DMND_WRITE
2172 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2173 #define KNL_L2_ACCESS SLM_LLC_ACCESS
2174 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2175 KNL_DRAM_ANY | SNB_SNP_ANY | \
2176 SNB_NON_DRAM)
2177
2178 static __initconst const u64 knl_hw_cache_extra_regs
2179 [PERF_COUNT_HW_CACHE_MAX]
2180 [PERF_COUNT_HW_CACHE_OP_MAX]
2181 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2182 [C(LL)] = {
2183 [C(OP_READ)] = {
2184 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2185 [C(RESULT_MISS)] = 0,
2186 },
2187 [C(OP_WRITE)] = {
2188 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2189 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2190 },
2191 [C(OP_PREFETCH)] = {
2192 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2193 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2194 },
2195 },
2196 };
2197
2198 /*
2199 * Used from PMIs where the LBRs are already disabled.
2200 *
2201 * This function could be called consecutively. It is required to remain in
2202 * disabled state if called consecutively.
2203 *
2204 * During consecutive calls, the same disable value will be written to related
2205 * registers, so the PMU state remains unchanged.
2206 *
2207 * intel_bts events don't coexist with intel PMU's BTS events because of
2208 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2209 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2210 *
2211 * Avoid PEBS_ENABLE MSR access in PMIs.
2212 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2213 * It doesn't matter if the PEBS is enabled or not.
2214 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2215 * access PEBS_ENABLE MSR in disable_all()/enable_all().
2216 * However, there are some cases which may change PEBS status, e.g. PMI
2217 * throttle. The PEBS_ENABLE should be updated where the status changes.
2218 */
__intel_pmu_disable_all(bool bts)2219 static __always_inline void __intel_pmu_disable_all(bool bts)
2220 {
2221 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2222
2223 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2224
2225 if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2226 intel_pmu_disable_bts();
2227 }
2228
intel_pmu_disable_all(void)2229 static __always_inline void intel_pmu_disable_all(void)
2230 {
2231 __intel_pmu_disable_all(true);
2232 intel_pmu_pebs_disable_all();
2233 intel_pmu_lbr_disable_all();
2234 }
2235
__intel_pmu_enable_all(int added,bool pmi)2236 static void __intel_pmu_enable_all(int added, bool pmi)
2237 {
2238 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2239 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2240
2241 intel_pmu_lbr_enable_all(pmi);
2242
2243 if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2244 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2245 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2246 }
2247
2248 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2249 intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2250
2251 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2252 struct perf_event *event =
2253 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2254
2255 if (WARN_ON_ONCE(!event))
2256 return;
2257
2258 intel_pmu_enable_bts(event->hw.config);
2259 }
2260 }
2261
intel_pmu_enable_all(int added)2262 static void intel_pmu_enable_all(int added)
2263 {
2264 intel_pmu_pebs_enable_all();
2265 __intel_pmu_enable_all(added, false);
2266 }
2267
2268 static noinline int
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt,unsigned long flags)2269 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2270 unsigned int cnt, unsigned long flags)
2271 {
2272 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2273
2274 intel_pmu_lbr_read();
2275 cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2276
2277 memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2278 intel_pmu_enable_all(0);
2279 local_irq_restore(flags);
2280 return cnt;
2281 }
2282
2283 static int
intel_pmu_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2284 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2285 {
2286 unsigned long flags;
2287
2288 /* must not have branches... */
2289 local_irq_save(flags);
2290 __intel_pmu_disable_all(false); /* we don't care about BTS */
2291 __intel_pmu_lbr_disable();
2292 /* ... until here */
2293 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2294 }
2295
2296 static int
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)2297 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2298 {
2299 unsigned long flags;
2300
2301 /* must not have branches... */
2302 local_irq_save(flags);
2303 __intel_pmu_disable_all(false); /* we don't care about BTS */
2304 __intel_pmu_arch_lbr_disable();
2305 /* ... until here */
2306 return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2307 }
2308
2309 /*
2310 * Workaround for:
2311 * Intel Errata AAK100 (model 26)
2312 * Intel Errata AAP53 (model 30)
2313 * Intel Errata BD53 (model 44)
2314 *
2315 * The official story:
2316 * These chips need to be 'reset' when adding counters by programming the
2317 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2318 * in sequence on the same PMC or on different PMCs.
2319 *
2320 * In practice it appears some of these events do in fact count, and
2321 * we need to program all 4 events.
2322 */
intel_pmu_nhm_workaround(void)2323 static void intel_pmu_nhm_workaround(void)
2324 {
2325 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2326 static const unsigned long nhm_magic[4] = {
2327 0x4300B5,
2328 0x4300D2,
2329 0x4300B1,
2330 0x4300B1
2331 };
2332 struct perf_event *event;
2333 int i;
2334
2335 /*
2336 * The Errata requires below steps:
2337 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2338 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2339 * the corresponding PMCx;
2340 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2341 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2342 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2343 */
2344
2345 /*
2346 * The real steps we choose are a little different from above.
2347 * A) To reduce MSR operations, we don't run step 1) as they
2348 * are already cleared before this function is called;
2349 * B) Call x86_perf_event_update to save PMCx before configuring
2350 * PERFEVTSELx with magic number;
2351 * C) With step 5), we do clear only when the PERFEVTSELx is
2352 * not used currently.
2353 * D) Call x86_perf_event_set_period to restore PMCx;
2354 */
2355
2356 /* We always operate 4 pairs of PERF Counters */
2357 for (i = 0; i < 4; i++) {
2358 event = cpuc->events[i];
2359 if (event)
2360 static_call(x86_pmu_update)(event);
2361 }
2362
2363 for (i = 0; i < 4; i++) {
2364 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2365 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2366 }
2367
2368 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2369 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2370
2371 for (i = 0; i < 4; i++) {
2372 event = cpuc->events[i];
2373
2374 if (event) {
2375 static_call(x86_pmu_set_period)(event);
2376 __x86_pmu_enable_event(&event->hw,
2377 ARCH_PERFMON_EVENTSEL_ENABLE);
2378 } else
2379 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2380 }
2381 }
2382
intel_pmu_nhm_enable_all(int added)2383 static void intel_pmu_nhm_enable_all(int added)
2384 {
2385 if (added)
2386 intel_pmu_nhm_workaround();
2387 intel_pmu_enable_all(added);
2388 }
2389
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2390 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2391 {
2392 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2393
2394 if (cpuc->tfa_shadow != val) {
2395 cpuc->tfa_shadow = val;
2396 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2397 }
2398 }
2399
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2400 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2401 {
2402 /*
2403 * We're going to use PMC3, make sure TFA is set before we touch it.
2404 */
2405 if (cntr == 3)
2406 intel_set_tfa(cpuc, true);
2407 }
2408
intel_tfa_pmu_enable_all(int added)2409 static void intel_tfa_pmu_enable_all(int added)
2410 {
2411 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2412
2413 /*
2414 * If we find PMC3 is no longer used when we enable the PMU, we can
2415 * clear TFA.
2416 */
2417 if (!test_bit(3, cpuc->active_mask))
2418 intel_set_tfa(cpuc, false);
2419
2420 intel_pmu_enable_all(added);
2421 }
2422
intel_pmu_get_status(void)2423 static inline u64 intel_pmu_get_status(void)
2424 {
2425 u64 status;
2426
2427 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2428
2429 return status;
2430 }
2431
intel_pmu_ack_status(u64 ack)2432 static inline void intel_pmu_ack_status(u64 ack)
2433 {
2434 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2435 }
2436
event_is_checkpointed(struct perf_event * event)2437 static inline bool event_is_checkpointed(struct perf_event *event)
2438 {
2439 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2440 }
2441
intel_set_masks(struct perf_event * event,int idx)2442 static inline void intel_set_masks(struct perf_event *event, int idx)
2443 {
2444 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2445
2446 if (event->attr.exclude_host)
2447 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2448 if (event->attr.exclude_guest)
2449 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2450 if (event_is_checkpointed(event))
2451 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2452 }
2453
intel_clear_masks(struct perf_event * event,int idx)2454 static inline void intel_clear_masks(struct perf_event *event, int idx)
2455 {
2456 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2457
2458 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2459 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2460 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2461 }
2462
intel_pmu_disable_fixed(struct perf_event * event)2463 static void intel_pmu_disable_fixed(struct perf_event *event)
2464 {
2465 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2466 struct hw_perf_event *hwc = &event->hw;
2467 int idx = hwc->idx;
2468 u64 mask;
2469
2470 if (is_topdown_idx(idx)) {
2471 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2472
2473 /*
2474 * When there are other active TopDown events,
2475 * don't disable the fixed counter 3.
2476 */
2477 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2478 return;
2479 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2480 }
2481
2482 intel_clear_masks(event, idx);
2483
2484 mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2485 cpuc->fixed_ctrl_val &= ~mask;
2486 }
2487
intel_pmu_disable_event(struct perf_event * event)2488 static void intel_pmu_disable_event(struct perf_event *event)
2489 {
2490 struct hw_perf_event *hwc = &event->hw;
2491 int idx = hwc->idx;
2492
2493 switch (idx) {
2494 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2495 intel_clear_masks(event, idx);
2496 x86_pmu_disable_event(event);
2497 break;
2498 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2499 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2500 intel_pmu_disable_fixed(event);
2501 break;
2502 case INTEL_PMC_IDX_FIXED_BTS:
2503 intel_pmu_disable_bts();
2504 intel_pmu_drain_bts_buffer();
2505 return;
2506 case INTEL_PMC_IDX_FIXED_VLBR:
2507 intel_clear_masks(event, idx);
2508 break;
2509 default:
2510 intel_clear_masks(event, idx);
2511 pr_warn("Failed to disable the event with invalid index %d\n",
2512 idx);
2513 return;
2514 }
2515
2516 /*
2517 * Needs to be called after x86_pmu_disable_event,
2518 * so we don't trigger the event without PEBS bit set.
2519 */
2520 if (unlikely(event->attr.precise_ip))
2521 intel_pmu_pebs_disable(event);
2522 }
2523
intel_pmu_assign_event(struct perf_event * event,int idx)2524 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2525 {
2526 if (is_pebs_pt(event))
2527 perf_report_aux_output_id(event, idx);
2528 }
2529
intel_pmu_needs_branch_stack(struct perf_event * event)2530 static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2531 {
2532 return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2533 }
2534
intel_pmu_del_event(struct perf_event * event)2535 static void intel_pmu_del_event(struct perf_event *event)
2536 {
2537 if (intel_pmu_needs_branch_stack(event))
2538 intel_pmu_lbr_del(event);
2539 if (event->attr.precise_ip)
2540 intel_pmu_pebs_del(event);
2541 }
2542
icl_set_topdown_event_period(struct perf_event * event)2543 static int icl_set_topdown_event_period(struct perf_event *event)
2544 {
2545 struct hw_perf_event *hwc = &event->hw;
2546 s64 left = local64_read(&hwc->period_left);
2547
2548 /*
2549 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2550 * Software should start both registers, PERF_METRICS and fixed
2551 * counter 3, from zero.
2552 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2553 * After that, both MSRs will be cleared for each read.
2554 * Don't need to clear them again.
2555 */
2556 if (left == x86_pmu.max_period) {
2557 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2558 wrmsrl(MSR_PERF_METRICS, 0);
2559 hwc->saved_slots = 0;
2560 hwc->saved_metric = 0;
2561 }
2562
2563 if ((hwc->saved_slots) && is_slots_event(event)) {
2564 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2565 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2566 }
2567
2568 perf_event_update_userpage(event);
2569
2570 return 0;
2571 }
2572
2573 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2574
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2575 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2576 {
2577 u32 val;
2578
2579 /*
2580 * The metric is reported as an 8bit integer fraction
2581 * summing up to 0xff.
2582 * slots-in-metric = (Metric / 0xff) * slots
2583 */
2584 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2585 return mul_u64_u32_div(slots, val, 0xff);
2586 }
2587
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2588 static u64 icl_get_topdown_value(struct perf_event *event,
2589 u64 slots, u64 metrics)
2590 {
2591 int idx = event->hw.idx;
2592 u64 delta;
2593
2594 if (is_metric_idx(idx))
2595 delta = icl_get_metrics_event_value(metrics, slots, idx);
2596 else
2597 delta = slots;
2598
2599 return delta;
2600 }
2601
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2602 static void __icl_update_topdown_event(struct perf_event *event,
2603 u64 slots, u64 metrics,
2604 u64 last_slots, u64 last_metrics)
2605 {
2606 u64 delta, last = 0;
2607
2608 delta = icl_get_topdown_value(event, slots, metrics);
2609 if (last_slots)
2610 last = icl_get_topdown_value(event, last_slots, last_metrics);
2611
2612 /*
2613 * The 8bit integer fraction of metric may be not accurate,
2614 * especially when the changes is very small.
2615 * For example, if only a few bad_spec happens, the fraction
2616 * may be reduced from 1 to 0. If so, the bad_spec event value
2617 * will be 0 which is definitely less than the last value.
2618 * Avoid update event->count for this case.
2619 */
2620 if (delta > last) {
2621 delta -= last;
2622 local64_add(delta, &event->count);
2623 }
2624 }
2625
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2626 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2627 u64 metrics, int metric_end)
2628 {
2629 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2630 struct perf_event *other;
2631 int idx;
2632
2633 event->hw.saved_slots = slots;
2634 event->hw.saved_metric = metrics;
2635
2636 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2637 if (!is_topdown_idx(idx))
2638 continue;
2639 other = cpuc->events[idx];
2640 other->hw.saved_slots = slots;
2641 other->hw.saved_metric = metrics;
2642 }
2643 }
2644
2645 /*
2646 * Update all active Topdown events.
2647 *
2648 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2649 * modify by a NMI. PMU has to be disabled before calling this function.
2650 */
2651
intel_update_topdown_event(struct perf_event * event,int metric_end)2652 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2653 {
2654 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2655 struct perf_event *other;
2656 u64 slots, metrics;
2657 bool reset = true;
2658 int idx;
2659
2660 /* read Fixed counter 3 */
2661 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2662 if (!slots)
2663 return 0;
2664
2665 /* read PERF_METRICS */
2666 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2667
2668 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2669 if (!is_topdown_idx(idx))
2670 continue;
2671 other = cpuc->events[idx];
2672 __icl_update_topdown_event(other, slots, metrics,
2673 event ? event->hw.saved_slots : 0,
2674 event ? event->hw.saved_metric : 0);
2675 }
2676
2677 /*
2678 * Check and update this event, which may have been cleared
2679 * in active_mask e.g. x86_pmu_stop()
2680 */
2681 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2682 __icl_update_topdown_event(event, slots, metrics,
2683 event->hw.saved_slots,
2684 event->hw.saved_metric);
2685
2686 /*
2687 * In x86_pmu_stop(), the event is cleared in active_mask first,
2688 * then drain the delta, which indicates context switch for
2689 * counting.
2690 * Save metric and slots for context switch.
2691 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2692 * Because the values will be restored in next schedule in.
2693 */
2694 update_saved_topdown_regs(event, slots, metrics, metric_end);
2695 reset = false;
2696 }
2697
2698 if (reset) {
2699 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2700 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2701 wrmsrl(MSR_PERF_METRICS, 0);
2702 if (event)
2703 update_saved_topdown_regs(event, 0, 0, metric_end);
2704 }
2705
2706 return slots;
2707 }
2708
icl_update_topdown_event(struct perf_event * event)2709 static u64 icl_update_topdown_event(struct perf_event *event)
2710 {
2711 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2712 x86_pmu.num_topdown_events - 1);
2713 }
2714
2715 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2716
intel_pmu_read_topdown_event(struct perf_event * event)2717 static void intel_pmu_read_topdown_event(struct perf_event *event)
2718 {
2719 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2720
2721 /* Only need to call update_topdown_event() once for group read. */
2722 if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2723 !is_slots_event(event))
2724 return;
2725
2726 perf_pmu_disable(event->pmu);
2727 static_call(intel_pmu_update_topdown_event)(event);
2728 perf_pmu_enable(event->pmu);
2729 }
2730
intel_pmu_read_event(struct perf_event * event)2731 static void intel_pmu_read_event(struct perf_event *event)
2732 {
2733 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2734 intel_pmu_auto_reload_read(event);
2735 else if (is_topdown_count(event))
2736 intel_pmu_read_topdown_event(event);
2737 else
2738 x86_perf_event_update(event);
2739 }
2740
intel_pmu_enable_fixed(struct perf_event * event)2741 static void intel_pmu_enable_fixed(struct perf_event *event)
2742 {
2743 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2744 struct hw_perf_event *hwc = &event->hw;
2745 u64 mask, bits = 0;
2746 int idx = hwc->idx;
2747
2748 if (is_topdown_idx(idx)) {
2749 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2750 /*
2751 * When there are other active TopDown events,
2752 * don't enable the fixed counter 3 again.
2753 */
2754 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2755 return;
2756
2757 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2758 }
2759
2760 intel_set_masks(event, idx);
2761
2762 /*
2763 * Enable IRQ generation (0x8), if not PEBS,
2764 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2765 * if requested:
2766 */
2767 if (!event->attr.precise_ip)
2768 bits |= INTEL_FIXED_0_ENABLE_PMI;
2769 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2770 bits |= INTEL_FIXED_0_USER;
2771 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2772 bits |= INTEL_FIXED_0_KERNEL;
2773
2774 /*
2775 * ANY bit is supported in v3 and up
2776 */
2777 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2778 bits |= INTEL_FIXED_0_ANYTHREAD;
2779
2780 idx -= INTEL_PMC_IDX_FIXED;
2781 bits = intel_fixed_bits_by_idx(idx, bits);
2782 mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2783
2784 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2785 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2786 mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2787 }
2788
2789 cpuc->fixed_ctrl_val &= ~mask;
2790 cpuc->fixed_ctrl_val |= bits;
2791 }
2792
intel_pmu_enable_event(struct perf_event * event)2793 static void intel_pmu_enable_event(struct perf_event *event)
2794 {
2795 u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2796 struct hw_perf_event *hwc = &event->hw;
2797 int idx = hwc->idx;
2798
2799 if (unlikely(event->attr.precise_ip))
2800 intel_pmu_pebs_enable(event);
2801
2802 switch (idx) {
2803 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2804 if (branch_sample_counters(event))
2805 enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2806 intel_set_masks(event, idx);
2807 __x86_pmu_enable_event(hwc, enable_mask);
2808 break;
2809 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2810 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2811 intel_pmu_enable_fixed(event);
2812 break;
2813 case INTEL_PMC_IDX_FIXED_BTS:
2814 if (!__this_cpu_read(cpu_hw_events.enabled))
2815 return;
2816 intel_pmu_enable_bts(hwc->config);
2817 break;
2818 case INTEL_PMC_IDX_FIXED_VLBR:
2819 intel_set_masks(event, idx);
2820 break;
2821 default:
2822 pr_warn("Failed to enable the event with invalid index %d\n",
2823 idx);
2824 }
2825 }
2826
intel_pmu_add_event(struct perf_event * event)2827 static void intel_pmu_add_event(struct perf_event *event)
2828 {
2829 if (event->attr.precise_ip)
2830 intel_pmu_pebs_add(event);
2831 if (intel_pmu_needs_branch_stack(event))
2832 intel_pmu_lbr_add(event);
2833 }
2834
2835 /*
2836 * Save and restart an expired event. Called by NMI contexts,
2837 * so it has to be careful about preempting normal event ops:
2838 */
intel_pmu_save_and_restart(struct perf_event * event)2839 int intel_pmu_save_and_restart(struct perf_event *event)
2840 {
2841 static_call(x86_pmu_update)(event);
2842 /*
2843 * For a checkpointed counter always reset back to 0. This
2844 * avoids a situation where the counter overflows, aborts the
2845 * transaction and is then set back to shortly before the
2846 * overflow, and overflows and aborts again.
2847 */
2848 if (unlikely(event_is_checkpointed(event))) {
2849 /* No race with NMIs because the counter should not be armed */
2850 wrmsrl(event->hw.event_base, 0);
2851 local64_set(&event->hw.prev_count, 0);
2852 }
2853 return static_call(x86_pmu_set_period)(event);
2854 }
2855
intel_pmu_set_period(struct perf_event * event)2856 static int intel_pmu_set_period(struct perf_event *event)
2857 {
2858 if (unlikely(is_topdown_count(event)))
2859 return static_call(intel_pmu_set_topdown_event_period)(event);
2860
2861 return x86_perf_event_set_period(event);
2862 }
2863
intel_pmu_update(struct perf_event * event)2864 static u64 intel_pmu_update(struct perf_event *event)
2865 {
2866 if (unlikely(is_topdown_count(event)))
2867 return static_call(intel_pmu_update_topdown_event)(event);
2868
2869 return x86_perf_event_update(event);
2870 }
2871
intel_pmu_reset(void)2872 static void intel_pmu_reset(void)
2873 {
2874 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2875 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2876 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2877 int num_counters = hybrid(cpuc->pmu, num_counters);
2878 unsigned long flags;
2879 int idx;
2880
2881 if (!num_counters)
2882 return;
2883
2884 local_irq_save(flags);
2885
2886 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2887
2888 for (idx = 0; idx < num_counters; idx++) {
2889 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2890 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2891 }
2892 for (idx = 0; idx < num_counters_fixed; idx++) {
2893 if (fixed_counter_disabled(idx, cpuc->pmu))
2894 continue;
2895 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2896 }
2897
2898 if (ds)
2899 ds->bts_index = ds->bts_buffer_base;
2900
2901 /* Ack all overflows and disable fixed counters */
2902 if (x86_pmu.version >= 2) {
2903 intel_pmu_ack_status(intel_pmu_get_status());
2904 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2905 }
2906
2907 /* Reset LBRs and LBR freezing */
2908 if (x86_pmu.lbr_nr) {
2909 update_debugctlmsr(get_debugctlmsr() &
2910 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2911 }
2912
2913 local_irq_restore(flags);
2914 }
2915
2916 /*
2917 * We may be running with guest PEBS events created by KVM, and the
2918 * PEBS records are logged into the guest's DS and invisible to host.
2919 *
2920 * In the case of guest PEBS overflow, we only trigger a fake event
2921 * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2922 * The guest will then vm-entry and check the guest DS area to read
2923 * the guest PEBS records.
2924 *
2925 * The contents and other behavior of the guest event do not matter.
2926 */
x86_pmu_handle_guest_pebs(struct pt_regs * regs,struct perf_sample_data * data)2927 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2928 struct perf_sample_data *data)
2929 {
2930 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2931 u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2932 struct perf_event *event = NULL;
2933 int bit;
2934
2935 if (!unlikely(perf_guest_state()))
2936 return;
2937
2938 if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2939 !guest_pebs_idxs)
2940 return;
2941
2942 for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2943 INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2944 event = cpuc->events[bit];
2945 if (!event->attr.precise_ip)
2946 continue;
2947
2948 perf_sample_data_init(data, 0, event->hw.last_period);
2949 if (perf_event_overflow(event, data, regs))
2950 x86_pmu_stop(event, 0);
2951
2952 /* Inject one fake event is enough. */
2953 break;
2954 }
2955 }
2956
handle_pmi_common(struct pt_regs * regs,u64 status)2957 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2958 {
2959 struct perf_sample_data data;
2960 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2961 int bit;
2962 int handled = 0;
2963 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2964
2965 inc_irq_stat(apic_perf_irqs);
2966
2967 /*
2968 * Ignore a range of extra bits in status that do not indicate
2969 * overflow by themselves.
2970 */
2971 status &= ~(GLOBAL_STATUS_COND_CHG |
2972 GLOBAL_STATUS_ASIF |
2973 GLOBAL_STATUS_LBRS_FROZEN);
2974 if (!status)
2975 return 0;
2976 /*
2977 * In case multiple PEBS events are sampled at the same time,
2978 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2979 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2980 * having their bits set in the status register. This is a sign
2981 * that there was at least one PEBS record pending at the time
2982 * of the PMU interrupt. PEBS counters must only be processed
2983 * via the drain_pebs() calls and not via the regular sample
2984 * processing loop coming after that the function, otherwise
2985 * phony regular samples may be generated in the sampling buffer
2986 * not marked with the EXACT tag. Another possibility is to have
2987 * one PEBS event and at least one non-PEBS event which overflows
2988 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2989 * not be set, yet the overflow status bit for the PEBS counter will
2990 * be on Skylake.
2991 *
2992 * To avoid this problem, we systematically ignore the PEBS-enabled
2993 * counters from the GLOBAL_STATUS mask and we always process PEBS
2994 * events via drain_pebs().
2995 */
2996 status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2997
2998 /*
2999 * PEBS overflow sets bit 62 in the global status register
3000 */
3001 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3002 u64 pebs_enabled = cpuc->pebs_enabled;
3003
3004 handled++;
3005 x86_pmu_handle_guest_pebs(regs, &data);
3006 x86_pmu.drain_pebs(regs, &data);
3007 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3008
3009 /*
3010 * PMI throttle may be triggered, which stops the PEBS event.
3011 * Although cpuc->pebs_enabled is updated accordingly, the
3012 * MSR_IA32_PEBS_ENABLE is not updated. Because the
3013 * cpuc->enabled has been forced to 0 in PMI.
3014 * Update the MSR if pebs_enabled is changed.
3015 */
3016 if (pebs_enabled != cpuc->pebs_enabled)
3017 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3018 }
3019
3020 /*
3021 * Intel PT
3022 */
3023 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3024 handled++;
3025 if (!perf_guest_handle_intel_pt_intr())
3026 intel_pt_interrupt();
3027 }
3028
3029 /*
3030 * Intel Perf metrics
3031 */
3032 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3033 handled++;
3034 static_call(intel_pmu_update_topdown_event)(NULL);
3035 }
3036
3037 /*
3038 * Checkpointed counters can lead to 'spurious' PMIs because the
3039 * rollback caused by the PMI will have cleared the overflow status
3040 * bit. Therefore always force probe these counters.
3041 */
3042 status |= cpuc->intel_cp_status;
3043
3044 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3045 struct perf_event *event = cpuc->events[bit];
3046
3047 handled++;
3048
3049 if (!test_bit(bit, cpuc->active_mask))
3050 continue;
3051
3052 if (!intel_pmu_save_and_restart(event))
3053 continue;
3054
3055 perf_sample_data_init(&data, 0, event->hw.last_period);
3056
3057 if (has_branch_stack(event))
3058 intel_pmu_lbr_save_brstack(&data, cpuc, event);
3059
3060 if (perf_event_overflow(event, &data, regs))
3061 x86_pmu_stop(event, 0);
3062 }
3063
3064 return handled;
3065 }
3066
3067 /*
3068 * This handler is triggered by the local APIC, so the APIC IRQ handling
3069 * rules apply:
3070 */
intel_pmu_handle_irq(struct pt_regs * regs)3071 static int intel_pmu_handle_irq(struct pt_regs *regs)
3072 {
3073 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3074 bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3075 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3076 int loops;
3077 u64 status;
3078 int handled;
3079 int pmu_enabled;
3080
3081 /*
3082 * Save the PMU state.
3083 * It needs to be restored when leaving the handler.
3084 */
3085 pmu_enabled = cpuc->enabled;
3086 /*
3087 * In general, the early ACK is only applied for old platforms.
3088 * For the big core starts from Haswell, the late ACK should be
3089 * applied.
3090 * For the small core after Tremont, we have to do the ACK right
3091 * before re-enabling counters, which is in the middle of the
3092 * NMI handler.
3093 */
3094 if (!late_ack && !mid_ack)
3095 apic_write(APIC_LVTPC, APIC_DM_NMI);
3096 intel_bts_disable_local();
3097 cpuc->enabled = 0;
3098 __intel_pmu_disable_all(true);
3099 handled = intel_pmu_drain_bts_buffer();
3100 handled += intel_bts_interrupt();
3101 status = intel_pmu_get_status();
3102 if (!status)
3103 goto done;
3104
3105 loops = 0;
3106 again:
3107 intel_pmu_lbr_read();
3108 intel_pmu_ack_status(status);
3109 if (++loops > 100) {
3110 static bool warned;
3111
3112 if (!warned) {
3113 WARN(1, "perfevents: irq loop stuck!\n");
3114 perf_event_print_debug();
3115 warned = true;
3116 }
3117 intel_pmu_reset();
3118 goto done;
3119 }
3120
3121 handled += handle_pmi_common(regs, status);
3122
3123 /*
3124 * Repeat if there is more work to be done:
3125 */
3126 status = intel_pmu_get_status();
3127 if (status)
3128 goto again;
3129
3130 done:
3131 if (mid_ack)
3132 apic_write(APIC_LVTPC, APIC_DM_NMI);
3133 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3134 cpuc->enabled = pmu_enabled;
3135 if (pmu_enabled)
3136 __intel_pmu_enable_all(0, true);
3137 intel_bts_enable_local();
3138
3139 /*
3140 * Only unmask the NMI after the overflow counters
3141 * have been reset. This avoids spurious NMIs on
3142 * Haswell CPUs.
3143 */
3144 if (late_ack)
3145 apic_write(APIC_LVTPC, APIC_DM_NMI);
3146 return handled;
3147 }
3148
3149 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)3150 intel_bts_constraints(struct perf_event *event)
3151 {
3152 if (unlikely(intel_pmu_has_bts(event)))
3153 return &bts_constraint;
3154
3155 return NULL;
3156 }
3157
3158 /*
3159 * Note: matches a fake event, like Fixed2.
3160 */
3161 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)3162 intel_vlbr_constraints(struct perf_event *event)
3163 {
3164 struct event_constraint *c = &vlbr_constraint;
3165
3166 if (unlikely(constraint_match(c, event->hw.config))) {
3167 event->hw.flags |= c->flags;
3168 return c;
3169 }
3170
3171 return NULL;
3172 }
3173
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3174 static int intel_alt_er(struct cpu_hw_events *cpuc,
3175 int idx, u64 config)
3176 {
3177 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3178 int alt_idx = idx;
3179
3180 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3181 return idx;
3182
3183 if (idx == EXTRA_REG_RSP_0)
3184 alt_idx = EXTRA_REG_RSP_1;
3185
3186 if (idx == EXTRA_REG_RSP_1)
3187 alt_idx = EXTRA_REG_RSP_0;
3188
3189 if (config & ~extra_regs[alt_idx].valid_mask)
3190 return idx;
3191
3192 return alt_idx;
3193 }
3194
intel_fixup_er(struct perf_event * event,int idx)3195 static void intel_fixup_er(struct perf_event *event, int idx)
3196 {
3197 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3198 event->hw.extra_reg.idx = idx;
3199
3200 if (idx == EXTRA_REG_RSP_0) {
3201 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3202 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3203 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3204 } else if (idx == EXTRA_REG_RSP_1) {
3205 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3206 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3207 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3208 }
3209 }
3210
3211 /*
3212 * manage allocation of shared extra msr for certain events
3213 *
3214 * sharing can be:
3215 * per-cpu: to be shared between the various events on a single PMU
3216 * per-core: per-cpu + shared by HT threads
3217 */
3218 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3219 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3220 struct perf_event *event,
3221 struct hw_perf_event_extra *reg)
3222 {
3223 struct event_constraint *c = &emptyconstraint;
3224 struct er_account *era;
3225 unsigned long flags;
3226 int idx = reg->idx;
3227
3228 /*
3229 * reg->alloc can be set due to existing state, so for fake cpuc we
3230 * need to ignore this, otherwise we might fail to allocate proper fake
3231 * state for this extra reg constraint. Also see the comment below.
3232 */
3233 if (reg->alloc && !cpuc->is_fake)
3234 return NULL; /* call x86_get_event_constraint() */
3235
3236 again:
3237 era = &cpuc->shared_regs->regs[idx];
3238 /*
3239 * we use spin_lock_irqsave() to avoid lockdep issues when
3240 * passing a fake cpuc
3241 */
3242 raw_spin_lock_irqsave(&era->lock, flags);
3243
3244 if (!atomic_read(&era->ref) || era->config == reg->config) {
3245
3246 /*
3247 * If its a fake cpuc -- as per validate_{group,event}() we
3248 * shouldn't touch event state and we can avoid doing so
3249 * since both will only call get_event_constraints() once
3250 * on each event, this avoids the need for reg->alloc.
3251 *
3252 * Not doing the ER fixup will only result in era->reg being
3253 * wrong, but since we won't actually try and program hardware
3254 * this isn't a problem either.
3255 */
3256 if (!cpuc->is_fake) {
3257 if (idx != reg->idx)
3258 intel_fixup_er(event, idx);
3259
3260 /*
3261 * x86_schedule_events() can call get_event_constraints()
3262 * multiple times on events in the case of incremental
3263 * scheduling(). reg->alloc ensures we only do the ER
3264 * allocation once.
3265 */
3266 reg->alloc = 1;
3267 }
3268
3269 /* lock in msr value */
3270 era->config = reg->config;
3271 era->reg = reg->reg;
3272
3273 /* one more user */
3274 atomic_inc(&era->ref);
3275
3276 /*
3277 * need to call x86_get_event_constraint()
3278 * to check if associated event has constraints
3279 */
3280 c = NULL;
3281 } else {
3282 idx = intel_alt_er(cpuc, idx, reg->config);
3283 if (idx != reg->idx) {
3284 raw_spin_unlock_irqrestore(&era->lock, flags);
3285 goto again;
3286 }
3287 }
3288 raw_spin_unlock_irqrestore(&era->lock, flags);
3289
3290 return c;
3291 }
3292
3293 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3294 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3295 struct hw_perf_event_extra *reg)
3296 {
3297 struct er_account *era;
3298
3299 /*
3300 * Only put constraint if extra reg was actually allocated. Also takes
3301 * care of event which do not use an extra shared reg.
3302 *
3303 * Also, if this is a fake cpuc we shouldn't touch any event state
3304 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3305 * either since it'll be thrown out.
3306 */
3307 if (!reg->alloc || cpuc->is_fake)
3308 return;
3309
3310 era = &cpuc->shared_regs->regs[reg->idx];
3311
3312 /* one fewer user */
3313 atomic_dec(&era->ref);
3314
3315 /* allocate again next time */
3316 reg->alloc = 0;
3317 }
3318
3319 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3320 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3321 struct perf_event *event)
3322 {
3323 struct event_constraint *c = NULL, *d;
3324 struct hw_perf_event_extra *xreg, *breg;
3325
3326 xreg = &event->hw.extra_reg;
3327 if (xreg->idx != EXTRA_REG_NONE) {
3328 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3329 if (c == &emptyconstraint)
3330 return c;
3331 }
3332 breg = &event->hw.branch_reg;
3333 if (breg->idx != EXTRA_REG_NONE) {
3334 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3335 if (d == &emptyconstraint) {
3336 __intel_shared_reg_put_constraints(cpuc, xreg);
3337 c = d;
3338 }
3339 }
3340 return c;
3341 }
3342
3343 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3344 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3345 struct perf_event *event)
3346 {
3347 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3348 struct event_constraint *c;
3349
3350 if (event_constraints) {
3351 for_each_event_constraint(c, event_constraints) {
3352 if (constraint_match(c, event->hw.config)) {
3353 event->hw.flags |= c->flags;
3354 return c;
3355 }
3356 }
3357 }
3358
3359 return &hybrid_var(cpuc->pmu, unconstrained);
3360 }
3361
3362 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3363 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3364 struct perf_event *event)
3365 {
3366 struct event_constraint *c;
3367
3368 c = intel_vlbr_constraints(event);
3369 if (c)
3370 return c;
3371
3372 c = intel_bts_constraints(event);
3373 if (c)
3374 return c;
3375
3376 c = intel_shared_regs_constraints(cpuc, event);
3377 if (c)
3378 return c;
3379
3380 c = intel_pebs_constraints(event);
3381 if (c)
3382 return c;
3383
3384 return x86_get_event_constraints(cpuc, idx, event);
3385 }
3386
3387 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3388 intel_start_scheduling(struct cpu_hw_events *cpuc)
3389 {
3390 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3391 struct intel_excl_states *xl;
3392 int tid = cpuc->excl_thread_id;
3393
3394 /*
3395 * nothing needed if in group validation mode
3396 */
3397 if (cpuc->is_fake || !is_ht_workaround_enabled())
3398 return;
3399
3400 /*
3401 * no exclusion needed
3402 */
3403 if (WARN_ON_ONCE(!excl_cntrs))
3404 return;
3405
3406 xl = &excl_cntrs->states[tid];
3407
3408 xl->sched_started = true;
3409 /*
3410 * lock shared state until we are done scheduling
3411 * in stop_event_scheduling()
3412 * makes scheduling appear as a transaction
3413 */
3414 raw_spin_lock(&excl_cntrs->lock);
3415 }
3416
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3417 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3418 {
3419 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3420 struct event_constraint *c = cpuc->event_constraint[idx];
3421 struct intel_excl_states *xl;
3422 int tid = cpuc->excl_thread_id;
3423
3424 if (cpuc->is_fake || !is_ht_workaround_enabled())
3425 return;
3426
3427 if (WARN_ON_ONCE(!excl_cntrs))
3428 return;
3429
3430 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3431 return;
3432
3433 xl = &excl_cntrs->states[tid];
3434
3435 lockdep_assert_held(&excl_cntrs->lock);
3436
3437 if (c->flags & PERF_X86_EVENT_EXCL)
3438 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3439 else
3440 xl->state[cntr] = INTEL_EXCL_SHARED;
3441 }
3442
3443 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3444 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3445 {
3446 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3447 struct intel_excl_states *xl;
3448 int tid = cpuc->excl_thread_id;
3449
3450 /*
3451 * nothing needed if in group validation mode
3452 */
3453 if (cpuc->is_fake || !is_ht_workaround_enabled())
3454 return;
3455 /*
3456 * no exclusion needed
3457 */
3458 if (WARN_ON_ONCE(!excl_cntrs))
3459 return;
3460
3461 xl = &excl_cntrs->states[tid];
3462
3463 xl->sched_started = false;
3464 /*
3465 * release shared state lock (acquired in intel_start_scheduling())
3466 */
3467 raw_spin_unlock(&excl_cntrs->lock);
3468 }
3469
3470 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3471 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3472 {
3473 WARN_ON_ONCE(!cpuc->constraint_list);
3474
3475 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3476 struct event_constraint *cx;
3477
3478 /*
3479 * grab pre-allocated constraint entry
3480 */
3481 cx = &cpuc->constraint_list[idx];
3482
3483 /*
3484 * initialize dynamic constraint
3485 * with static constraint
3486 */
3487 *cx = *c;
3488
3489 /*
3490 * mark constraint as dynamic
3491 */
3492 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3493 c = cx;
3494 }
3495
3496 return c;
3497 }
3498
3499 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3500 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3501 int idx, struct event_constraint *c)
3502 {
3503 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3504 struct intel_excl_states *xlo;
3505 int tid = cpuc->excl_thread_id;
3506 int is_excl, i, w;
3507
3508 /*
3509 * validating a group does not require
3510 * enforcing cross-thread exclusion
3511 */
3512 if (cpuc->is_fake || !is_ht_workaround_enabled())
3513 return c;
3514
3515 /*
3516 * no exclusion needed
3517 */
3518 if (WARN_ON_ONCE(!excl_cntrs))
3519 return c;
3520
3521 /*
3522 * because we modify the constraint, we need
3523 * to make a copy. Static constraints come
3524 * from static const tables.
3525 *
3526 * only needed when constraint has not yet
3527 * been cloned (marked dynamic)
3528 */
3529 c = dyn_constraint(cpuc, c, idx);
3530
3531 /*
3532 * From here on, the constraint is dynamic.
3533 * Either it was just allocated above, or it
3534 * was allocated during a earlier invocation
3535 * of this function
3536 */
3537
3538 /*
3539 * state of sibling HT
3540 */
3541 xlo = &excl_cntrs->states[tid ^ 1];
3542
3543 /*
3544 * event requires exclusive counter access
3545 * across HT threads
3546 */
3547 is_excl = c->flags & PERF_X86_EVENT_EXCL;
3548 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3549 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3550 if (!cpuc->n_excl++)
3551 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3552 }
3553
3554 /*
3555 * Modify static constraint with current dynamic
3556 * state of thread
3557 *
3558 * EXCLUSIVE: sibling counter measuring exclusive event
3559 * SHARED : sibling counter measuring non-exclusive event
3560 * UNUSED : sibling counter unused
3561 */
3562 w = c->weight;
3563 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3564 /*
3565 * exclusive event in sibling counter
3566 * our corresponding counter cannot be used
3567 * regardless of our event
3568 */
3569 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3570 __clear_bit(i, c->idxmsk);
3571 w--;
3572 continue;
3573 }
3574 /*
3575 * if measuring an exclusive event, sibling
3576 * measuring non-exclusive, then counter cannot
3577 * be used
3578 */
3579 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3580 __clear_bit(i, c->idxmsk);
3581 w--;
3582 continue;
3583 }
3584 }
3585
3586 /*
3587 * if we return an empty mask, then switch
3588 * back to static empty constraint to avoid
3589 * the cost of freeing later on
3590 */
3591 if (!w)
3592 c = &emptyconstraint;
3593
3594 c->weight = w;
3595
3596 return c;
3597 }
3598
3599 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3600 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3601 struct perf_event *event)
3602 {
3603 struct event_constraint *c1, *c2;
3604
3605 c1 = cpuc->event_constraint[idx];
3606
3607 /*
3608 * first time only
3609 * - static constraint: no change across incremental scheduling calls
3610 * - dynamic constraint: handled by intel_get_excl_constraints()
3611 */
3612 c2 = __intel_get_event_constraints(cpuc, idx, event);
3613 if (c1) {
3614 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3615 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3616 c1->weight = c2->weight;
3617 c2 = c1;
3618 }
3619
3620 if (cpuc->excl_cntrs)
3621 return intel_get_excl_constraints(cpuc, event, idx, c2);
3622
3623 /* Not all counters support the branch counter feature. */
3624 if (branch_sample_counters(event)) {
3625 c2 = dyn_constraint(cpuc, c2, idx);
3626 c2->idxmsk64 &= x86_pmu.lbr_counters;
3627 c2->weight = hweight64(c2->idxmsk64);
3628 }
3629
3630 return c2;
3631 }
3632
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3633 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3634 struct perf_event *event)
3635 {
3636 struct hw_perf_event *hwc = &event->hw;
3637 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3638 int tid = cpuc->excl_thread_id;
3639 struct intel_excl_states *xl;
3640
3641 /*
3642 * nothing needed if in group validation mode
3643 */
3644 if (cpuc->is_fake)
3645 return;
3646
3647 if (WARN_ON_ONCE(!excl_cntrs))
3648 return;
3649
3650 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3651 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3652 if (!--cpuc->n_excl)
3653 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3654 }
3655
3656 /*
3657 * If event was actually assigned, then mark the counter state as
3658 * unused now.
3659 */
3660 if (hwc->idx >= 0) {
3661 xl = &excl_cntrs->states[tid];
3662
3663 /*
3664 * put_constraint may be called from x86_schedule_events()
3665 * which already has the lock held so here make locking
3666 * conditional.
3667 */
3668 if (!xl->sched_started)
3669 raw_spin_lock(&excl_cntrs->lock);
3670
3671 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3672
3673 if (!xl->sched_started)
3674 raw_spin_unlock(&excl_cntrs->lock);
3675 }
3676 }
3677
3678 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3679 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3680 struct perf_event *event)
3681 {
3682 struct hw_perf_event_extra *reg;
3683
3684 reg = &event->hw.extra_reg;
3685 if (reg->idx != EXTRA_REG_NONE)
3686 __intel_shared_reg_put_constraints(cpuc, reg);
3687
3688 reg = &event->hw.branch_reg;
3689 if (reg->idx != EXTRA_REG_NONE)
3690 __intel_shared_reg_put_constraints(cpuc, reg);
3691 }
3692
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3693 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3694 struct perf_event *event)
3695 {
3696 intel_put_shared_regs_event_constraints(cpuc, event);
3697
3698 /*
3699 * is PMU has exclusive counter restrictions, then
3700 * all events are subject to and must call the
3701 * put_excl_constraints() routine
3702 */
3703 if (cpuc->excl_cntrs)
3704 intel_put_excl_constraints(cpuc, event);
3705 }
3706
intel_pebs_aliases_core2(struct perf_event * event)3707 static void intel_pebs_aliases_core2(struct perf_event *event)
3708 {
3709 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3710 /*
3711 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3712 * (0x003c) so that we can use it with PEBS.
3713 *
3714 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3715 * PEBS capable. However we can use INST_RETIRED.ANY_P
3716 * (0x00c0), which is a PEBS capable event, to get the same
3717 * count.
3718 *
3719 * INST_RETIRED.ANY_P counts the number of cycles that retires
3720 * CNTMASK instructions. By setting CNTMASK to a value (16)
3721 * larger than the maximum number of instructions that can be
3722 * retired per cycle (4) and then inverting the condition, we
3723 * count all cycles that retire 16 or less instructions, which
3724 * is every cycle.
3725 *
3726 * Thereby we gain a PEBS capable cycle counter.
3727 */
3728 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3729
3730 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3731 event->hw.config = alt_config;
3732 }
3733 }
3734
intel_pebs_aliases_snb(struct perf_event * event)3735 static void intel_pebs_aliases_snb(struct perf_event *event)
3736 {
3737 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3738 /*
3739 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3740 * (0x003c) so that we can use it with PEBS.
3741 *
3742 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3743 * PEBS capable. However we can use UOPS_RETIRED.ALL
3744 * (0x01c2), which is a PEBS capable event, to get the same
3745 * count.
3746 *
3747 * UOPS_RETIRED.ALL counts the number of cycles that retires
3748 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3749 * larger than the maximum number of micro-ops that can be
3750 * retired per cycle (4) and then inverting the condition, we
3751 * count all cycles that retire 16 or less micro-ops, which
3752 * is every cycle.
3753 *
3754 * Thereby we gain a PEBS capable cycle counter.
3755 */
3756 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3757
3758 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3759 event->hw.config = alt_config;
3760 }
3761 }
3762
intel_pebs_aliases_precdist(struct perf_event * event)3763 static void intel_pebs_aliases_precdist(struct perf_event *event)
3764 {
3765 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3766 /*
3767 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3768 * (0x003c) so that we can use it with PEBS.
3769 *
3770 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3771 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3772 * (0x01c0), which is a PEBS capable event, to get the same
3773 * count.
3774 *
3775 * The PREC_DIST event has special support to minimize sample
3776 * shadowing effects. One drawback is that it can be
3777 * only programmed on counter 1, but that seems like an
3778 * acceptable trade off.
3779 */
3780 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3781
3782 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3783 event->hw.config = alt_config;
3784 }
3785 }
3786
intel_pebs_aliases_ivb(struct perf_event * event)3787 static void intel_pebs_aliases_ivb(struct perf_event *event)
3788 {
3789 if (event->attr.precise_ip < 3)
3790 return intel_pebs_aliases_snb(event);
3791 return intel_pebs_aliases_precdist(event);
3792 }
3793
intel_pebs_aliases_skl(struct perf_event * event)3794 static void intel_pebs_aliases_skl(struct perf_event *event)
3795 {
3796 if (event->attr.precise_ip < 3)
3797 return intel_pebs_aliases_core2(event);
3798 return intel_pebs_aliases_precdist(event);
3799 }
3800
intel_pmu_large_pebs_flags(struct perf_event * event)3801 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3802 {
3803 unsigned long flags = x86_pmu.large_pebs_flags;
3804
3805 if (event->attr.use_clockid)
3806 flags &= ~PERF_SAMPLE_TIME;
3807 if (!event->attr.exclude_kernel)
3808 flags &= ~PERF_SAMPLE_REGS_USER;
3809 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3810 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3811 return flags;
3812 }
3813
intel_pmu_bts_config(struct perf_event * event)3814 static int intel_pmu_bts_config(struct perf_event *event)
3815 {
3816 struct perf_event_attr *attr = &event->attr;
3817
3818 if (unlikely(intel_pmu_has_bts(event))) {
3819 /* BTS is not supported by this architecture. */
3820 if (!x86_pmu.bts_active)
3821 return -EOPNOTSUPP;
3822
3823 /* BTS is currently only allowed for user-mode. */
3824 if (!attr->exclude_kernel)
3825 return -EOPNOTSUPP;
3826
3827 /* BTS is not allowed for precise events. */
3828 if (attr->precise_ip)
3829 return -EOPNOTSUPP;
3830
3831 /* disallow bts if conflicting events are present */
3832 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3833 return -EBUSY;
3834
3835 event->destroy = hw_perf_lbr_event_destroy;
3836 }
3837
3838 return 0;
3839 }
3840
core_pmu_hw_config(struct perf_event * event)3841 static int core_pmu_hw_config(struct perf_event *event)
3842 {
3843 int ret = x86_pmu_hw_config(event);
3844
3845 if (ret)
3846 return ret;
3847
3848 return intel_pmu_bts_config(event);
3849 }
3850
3851 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
3852 ((x86_pmu.num_topdown_events - 1) << 8))
3853
is_available_metric_event(struct perf_event * event)3854 static bool is_available_metric_event(struct perf_event *event)
3855 {
3856 return is_metric_event(event) &&
3857 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3858 }
3859
is_mem_loads_event(struct perf_event * event)3860 static inline bool is_mem_loads_event(struct perf_event *event)
3861 {
3862 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3863 }
3864
is_mem_loads_aux_event(struct perf_event * event)3865 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3866 {
3867 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3868 }
3869
require_mem_loads_aux_event(struct perf_event * event)3870 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3871 {
3872 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3873 return false;
3874
3875 if (is_hybrid())
3876 return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
3877
3878 return true;
3879 }
3880
intel_pmu_has_cap(struct perf_event * event,int idx)3881 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3882 {
3883 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3884
3885 return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3886 }
3887
intel_pmu_hw_config(struct perf_event * event)3888 static int intel_pmu_hw_config(struct perf_event *event)
3889 {
3890 int ret = x86_pmu_hw_config(event);
3891
3892 if (ret)
3893 return ret;
3894
3895 ret = intel_pmu_bts_config(event);
3896 if (ret)
3897 return ret;
3898
3899 if (event->attr.precise_ip) {
3900 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3901 return -EINVAL;
3902
3903 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3904 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3905 if (!(event->attr.sample_type &
3906 ~intel_pmu_large_pebs_flags(event))) {
3907 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3908 event->attach_state |= PERF_ATTACH_SCHED_CB;
3909 }
3910 }
3911 if (x86_pmu.pebs_aliases)
3912 x86_pmu.pebs_aliases(event);
3913 }
3914
3915 if (needs_branch_stack(event) && is_sampling_event(event))
3916 event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3917
3918 if (branch_sample_counters(event)) {
3919 struct perf_event *leader, *sibling;
3920 int num = 0;
3921
3922 if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
3923 (event->attr.config & ~INTEL_ARCH_EVENT_MASK))
3924 return -EINVAL;
3925
3926 /*
3927 * The branch counter logging is not supported in the call stack
3928 * mode yet, since we cannot simply flush the LBR during e.g.,
3929 * multiplexing. Also, there is no obvious usage with the call
3930 * stack mode. Simply forbids it for now.
3931 *
3932 * If any events in the group enable the branch counter logging
3933 * feature, the group is treated as a branch counter logging
3934 * group, which requires the extra space to store the counters.
3935 */
3936 leader = event->group_leader;
3937 if (branch_sample_call_stack(leader))
3938 return -EINVAL;
3939 if (branch_sample_counters(leader))
3940 num++;
3941 leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
3942
3943 for_each_sibling_event(sibling, leader) {
3944 if (branch_sample_call_stack(sibling))
3945 return -EINVAL;
3946 if (branch_sample_counters(sibling))
3947 num++;
3948 }
3949
3950 if (num > fls(x86_pmu.lbr_counters))
3951 return -EINVAL;
3952 /*
3953 * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
3954 * require any branch stack setup.
3955 * Clear the bit to avoid unnecessary branch stack setup.
3956 */
3957 if (0 == (event->attr.branch_sample_type &
3958 ~(PERF_SAMPLE_BRANCH_PLM_ALL |
3959 PERF_SAMPLE_BRANCH_COUNTERS)))
3960 event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
3961
3962 /*
3963 * Force the leader to be a LBR event. So LBRs can be reset
3964 * with the leader event. See intel_pmu_lbr_del() for details.
3965 */
3966 if (!intel_pmu_needs_branch_stack(leader))
3967 return -EINVAL;
3968 }
3969
3970 if (intel_pmu_needs_branch_stack(event)) {
3971 ret = intel_pmu_setup_lbr_filter(event);
3972 if (ret)
3973 return ret;
3974 event->attach_state |= PERF_ATTACH_SCHED_CB;
3975
3976 /*
3977 * BTS is set up earlier in this path, so don't account twice
3978 */
3979 if (!unlikely(intel_pmu_has_bts(event))) {
3980 /* disallow lbr if conflicting events are present */
3981 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3982 return -EBUSY;
3983
3984 event->destroy = hw_perf_lbr_event_destroy;
3985 }
3986 }
3987
3988 if (event->attr.aux_output) {
3989 if (!event->attr.precise_ip)
3990 return -EINVAL;
3991
3992 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3993 }
3994
3995 if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3996 (event->attr.type == PERF_TYPE_HW_CACHE))
3997 return 0;
3998
3999 /*
4000 * Config Topdown slots and metric events
4001 *
4002 * The slots event on Fixed Counter 3 can support sampling,
4003 * which will be handled normally in x86_perf_event_update().
4004 *
4005 * Metric events don't support sampling and require being paired
4006 * with a slots event as group leader. When the slots event
4007 * is used in a metrics group, it too cannot support sampling.
4008 */
4009 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4010 if (event->attr.config1 || event->attr.config2)
4011 return -EINVAL;
4012
4013 /*
4014 * The TopDown metrics events and slots event don't
4015 * support any filters.
4016 */
4017 if (event->attr.config & X86_ALL_EVENT_FLAGS)
4018 return -EINVAL;
4019
4020 if (is_available_metric_event(event)) {
4021 struct perf_event *leader = event->group_leader;
4022
4023 /* The metric events don't support sampling. */
4024 if (is_sampling_event(event))
4025 return -EINVAL;
4026
4027 /* The metric events require a slots group leader. */
4028 if (!is_slots_event(leader))
4029 return -EINVAL;
4030
4031 /*
4032 * The leader/SLOTS must not be a sampling event for
4033 * metric use; hardware requires it starts at 0 when used
4034 * in conjunction with MSR_PERF_METRICS.
4035 */
4036 if (is_sampling_event(leader))
4037 return -EINVAL;
4038
4039 event->event_caps |= PERF_EV_CAP_SIBLING;
4040 /*
4041 * Only once we have a METRICs sibling do we
4042 * need TopDown magic.
4043 */
4044 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4045 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4046 }
4047 }
4048
4049 /*
4050 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4051 * doesn't function quite right. As a work-around it needs to always be
4052 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4053 * The actual count of this second event is irrelevant it just needs
4054 * to be active to make the first event function correctly.
4055 *
4056 * In a group, the auxiliary event must be in front of the load latency
4057 * event. The rule is to simplify the implementation of the check.
4058 * That's because perf cannot have a complete group at the moment.
4059 */
4060 if (require_mem_loads_aux_event(event) &&
4061 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4062 is_mem_loads_event(event)) {
4063 struct perf_event *leader = event->group_leader;
4064 struct perf_event *sibling = NULL;
4065
4066 /*
4067 * When this memload event is also the first event (no group
4068 * exists yet), then there is no aux event before it.
4069 */
4070 if (leader == event)
4071 return -ENODATA;
4072
4073 if (!is_mem_loads_aux_event(leader)) {
4074 for_each_sibling_event(sibling, leader) {
4075 if (is_mem_loads_aux_event(sibling))
4076 break;
4077 }
4078 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4079 return -ENODATA;
4080 }
4081 }
4082
4083 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4084 return 0;
4085
4086 if (x86_pmu.version < 3)
4087 return -EINVAL;
4088
4089 ret = perf_allow_cpu(&event->attr);
4090 if (ret)
4091 return ret;
4092
4093 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4094
4095 return 0;
4096 }
4097
4098 /*
4099 * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4100 * The host perf context helps to prepare the values of the real hardware for
4101 * a set of msrs that need to be switched atomically in a vmx transaction.
4102 *
4103 * For example, the pseudocode needed to add a new msr should look like:
4104 *
4105 * arr[(*nr)++] = (struct perf_guest_switch_msr){
4106 * .msr = the hardware msr address,
4107 * .host = the value the hardware has when it doesn't run a guest,
4108 * .guest = the value the hardware has when it runs a guest,
4109 * };
4110 *
4111 * These values have nothing to do with the emulated values the guest sees
4112 * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4113 * specifically in the intel_pmu_{get,set}_msr().
4114 */
intel_guest_get_msrs(int * nr,void * data)4115 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4116 {
4117 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4118 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4119 struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4120 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4121 u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4122 int global_ctrl, pebs_enable;
4123
4124 /*
4125 * In addition to obeying exclude_guest/exclude_host, remove bits being
4126 * used for PEBS when running a guest, because PEBS writes to virtual
4127 * addresses (not physical addresses).
4128 */
4129 *nr = 0;
4130 global_ctrl = (*nr)++;
4131 arr[global_ctrl] = (struct perf_guest_switch_msr){
4132 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4133 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4134 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4135 };
4136
4137 if (!x86_pmu.pebs)
4138 return arr;
4139
4140 /*
4141 * If PMU counter has PEBS enabled it is not enough to
4142 * disable counter on a guest entry since PEBS memory
4143 * write can overshoot guest entry and corrupt guest
4144 * memory. Disabling PEBS solves the problem.
4145 *
4146 * Don't do this if the CPU already enforces it.
4147 */
4148 if (x86_pmu.pebs_no_isolation) {
4149 arr[(*nr)++] = (struct perf_guest_switch_msr){
4150 .msr = MSR_IA32_PEBS_ENABLE,
4151 .host = cpuc->pebs_enabled,
4152 .guest = 0,
4153 };
4154 return arr;
4155 }
4156
4157 if (!kvm_pmu || !x86_pmu.pebs_ept)
4158 return arr;
4159
4160 arr[(*nr)++] = (struct perf_guest_switch_msr){
4161 .msr = MSR_IA32_DS_AREA,
4162 .host = (unsigned long)cpuc->ds,
4163 .guest = kvm_pmu->ds_area,
4164 };
4165
4166 if (x86_pmu.intel_cap.pebs_baseline) {
4167 arr[(*nr)++] = (struct perf_guest_switch_msr){
4168 .msr = MSR_PEBS_DATA_CFG,
4169 .host = cpuc->active_pebs_data_cfg,
4170 .guest = kvm_pmu->pebs_data_cfg,
4171 };
4172 }
4173
4174 pebs_enable = (*nr)++;
4175 arr[pebs_enable] = (struct perf_guest_switch_msr){
4176 .msr = MSR_IA32_PEBS_ENABLE,
4177 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4178 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4179 };
4180
4181 if (arr[pebs_enable].host) {
4182 /* Disable guest PEBS if host PEBS is enabled. */
4183 arr[pebs_enable].guest = 0;
4184 } else {
4185 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4186 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4187 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4188 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4189 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4190 }
4191
4192 return arr;
4193 }
4194
core_guest_get_msrs(int * nr,void * data)4195 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4196 {
4197 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4198 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4199 int idx;
4200
4201 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4202 struct perf_event *event = cpuc->events[idx];
4203
4204 arr[idx].msr = x86_pmu_config_addr(idx);
4205 arr[idx].host = arr[idx].guest = 0;
4206
4207 if (!test_bit(idx, cpuc->active_mask))
4208 continue;
4209
4210 arr[idx].host = arr[idx].guest =
4211 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4212
4213 if (event->attr.exclude_host)
4214 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4215 else if (event->attr.exclude_guest)
4216 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4217 }
4218
4219 *nr = x86_pmu.num_counters;
4220 return arr;
4221 }
4222
core_pmu_enable_event(struct perf_event * event)4223 static void core_pmu_enable_event(struct perf_event *event)
4224 {
4225 if (!event->attr.exclude_host)
4226 x86_pmu_enable_event(event);
4227 }
4228
core_pmu_enable_all(int added)4229 static void core_pmu_enable_all(int added)
4230 {
4231 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4232 int idx;
4233
4234 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4235 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4236
4237 if (!test_bit(idx, cpuc->active_mask) ||
4238 cpuc->events[idx]->attr.exclude_host)
4239 continue;
4240
4241 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4242 }
4243 }
4244
hsw_hw_config(struct perf_event * event)4245 static int hsw_hw_config(struct perf_event *event)
4246 {
4247 int ret = intel_pmu_hw_config(event);
4248
4249 if (ret)
4250 return ret;
4251 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4252 return 0;
4253 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4254
4255 /*
4256 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4257 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4258 * this combination.
4259 */
4260 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4261 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4262 event->attr.precise_ip > 0))
4263 return -EOPNOTSUPP;
4264
4265 if (event_is_checkpointed(event)) {
4266 /*
4267 * Sampling of checkpointed events can cause situations where
4268 * the CPU constantly aborts because of a overflow, which is
4269 * then checkpointed back and ignored. Forbid checkpointing
4270 * for sampling.
4271 *
4272 * But still allow a long sampling period, so that perf stat
4273 * from KVM works.
4274 */
4275 if (event->attr.sample_period > 0 &&
4276 event->attr.sample_period < 0x7fffffff)
4277 return -EOPNOTSUPP;
4278 }
4279 return 0;
4280 }
4281
4282 static struct event_constraint counter0_constraint =
4283 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4284
4285 static struct event_constraint counter1_constraint =
4286 INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4287
4288 static struct event_constraint counter0_1_constraint =
4289 INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4290
4291 static struct event_constraint counter2_constraint =
4292 EVENT_CONSTRAINT(0, 0x4, 0);
4293
4294 static struct event_constraint fixed0_constraint =
4295 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4296
4297 static struct event_constraint fixed0_counter0_constraint =
4298 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4299
4300 static struct event_constraint fixed0_counter0_1_constraint =
4301 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4302
4303 static struct event_constraint counters_1_7_constraint =
4304 INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4305
4306 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4307 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4308 struct perf_event *event)
4309 {
4310 struct event_constraint *c;
4311
4312 c = intel_get_event_constraints(cpuc, idx, event);
4313
4314 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4315 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4316 if (c->idxmsk64 & (1U << 2))
4317 return &counter2_constraint;
4318 return &emptyconstraint;
4319 }
4320
4321 return c;
4322 }
4323
4324 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4325 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4326 struct perf_event *event)
4327 {
4328 /*
4329 * Fixed counter 0 has less skid.
4330 * Force instruction:ppp in Fixed counter 0
4331 */
4332 if ((event->attr.precise_ip == 3) &&
4333 constraint_match(&fixed0_constraint, event->hw.config))
4334 return &fixed0_constraint;
4335
4336 return hsw_get_event_constraints(cpuc, idx, event);
4337 }
4338
4339 static struct event_constraint *
glc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4340 glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4341 struct perf_event *event)
4342 {
4343 struct event_constraint *c;
4344
4345 c = icl_get_event_constraints(cpuc, idx, event);
4346
4347 /*
4348 * The :ppp indicates the Precise Distribution (PDist) facility, which
4349 * is only supported on the GP counter 0. If a :ppp event which is not
4350 * available on the GP counter 0, error out.
4351 * Exception: Instruction PDIR is only available on the fixed counter 0.
4352 */
4353 if ((event->attr.precise_ip == 3) &&
4354 !constraint_match(&fixed0_constraint, event->hw.config)) {
4355 if (c->idxmsk64 & BIT_ULL(0))
4356 return &counter0_constraint;
4357
4358 return &emptyconstraint;
4359 }
4360
4361 return c;
4362 }
4363
4364 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4365 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4366 struct perf_event *event)
4367 {
4368 struct event_constraint *c;
4369
4370 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4371 if (event->attr.precise_ip == 3)
4372 return &counter0_constraint;
4373
4374 c = intel_get_event_constraints(cpuc, idx, event);
4375
4376 return c;
4377 }
4378
4379 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4380 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4381 struct perf_event *event)
4382 {
4383 struct event_constraint *c;
4384
4385 c = intel_get_event_constraints(cpuc, idx, event);
4386
4387 /*
4388 * :ppp means to do reduced skid PEBS,
4389 * which is available on PMC0 and fixed counter 0.
4390 */
4391 if (event->attr.precise_ip == 3) {
4392 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4393 if (constraint_match(&fixed0_constraint, event->hw.config))
4394 return &fixed0_counter0_constraint;
4395
4396 return &counter0_constraint;
4397 }
4398
4399 return c;
4400 }
4401
4402 static bool allow_tsx_force_abort = true;
4403
4404 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4405 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4406 struct perf_event *event)
4407 {
4408 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4409
4410 /*
4411 * Without TFA we must not use PMC3.
4412 */
4413 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4414 c = dyn_constraint(cpuc, c, idx);
4415 c->idxmsk64 &= ~(1ULL << 3);
4416 c->weight--;
4417 }
4418
4419 return c;
4420 }
4421
4422 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4423 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4424 struct perf_event *event)
4425 {
4426 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4427
4428 if (pmu->pmu_type == hybrid_big)
4429 return glc_get_event_constraints(cpuc, idx, event);
4430 else if (pmu->pmu_type == hybrid_small)
4431 return tnt_get_event_constraints(cpuc, idx, event);
4432
4433 WARN_ON(1);
4434 return &emptyconstraint;
4435 }
4436
4437 static struct event_constraint *
cmt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4438 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4439 struct perf_event *event)
4440 {
4441 struct event_constraint *c;
4442
4443 c = intel_get_event_constraints(cpuc, idx, event);
4444
4445 /*
4446 * The :ppp indicates the Precise Distribution (PDist) facility, which
4447 * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4448 * If a :ppp event which is not available on the above eligible counters,
4449 * error out.
4450 */
4451 if (event->attr.precise_ip == 3) {
4452 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4453 if (constraint_match(&fixed0_constraint, event->hw.config)) {
4454 /* The fixed counter 0 doesn't support LBR event logging. */
4455 if (branch_sample_counters(event))
4456 return &counter0_1_constraint;
4457 else
4458 return &fixed0_counter0_1_constraint;
4459 }
4460
4461 switch (c->idxmsk64 & 0x3ull) {
4462 case 0x1:
4463 return &counter0_constraint;
4464 case 0x2:
4465 return &counter1_constraint;
4466 case 0x3:
4467 return &counter0_1_constraint;
4468 }
4469 return &emptyconstraint;
4470 }
4471
4472 return c;
4473 }
4474
4475 static struct event_constraint *
rwc_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4476 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4477 struct perf_event *event)
4478 {
4479 struct event_constraint *c;
4480
4481 c = glc_get_event_constraints(cpuc, idx, event);
4482
4483 /* The Retire Latency is not supported by the fixed counter 0. */
4484 if (event->attr.precise_ip &&
4485 (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4486 constraint_match(&fixed0_constraint, event->hw.config)) {
4487 /*
4488 * The Instruction PDIR is only available
4489 * on the fixed counter 0. Error out for this case.
4490 */
4491 if (event->attr.precise_ip == 3)
4492 return &emptyconstraint;
4493 return &counters_1_7_constraint;
4494 }
4495
4496 return c;
4497 }
4498
4499 static struct event_constraint *
mtl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4500 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4501 struct perf_event *event)
4502 {
4503 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4504
4505 if (pmu->pmu_type == hybrid_big)
4506 return rwc_get_event_constraints(cpuc, idx, event);
4507 if (pmu->pmu_type == hybrid_small)
4508 return cmt_get_event_constraints(cpuc, idx, event);
4509
4510 WARN_ON(1);
4511 return &emptyconstraint;
4512 }
4513
adl_hw_config(struct perf_event * event)4514 static int adl_hw_config(struct perf_event *event)
4515 {
4516 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4517
4518 if (pmu->pmu_type == hybrid_big)
4519 return hsw_hw_config(event);
4520 else if (pmu->pmu_type == hybrid_small)
4521 return intel_pmu_hw_config(event);
4522
4523 WARN_ON(1);
4524 return -EOPNOTSUPP;
4525 }
4526
adl_get_hybrid_cpu_type(void)4527 static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void)
4528 {
4529 return HYBRID_INTEL_CORE;
4530 }
4531
4532 /*
4533 * Broadwell:
4534 *
4535 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4536 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4537 * the two to enforce a minimum period of 128 (the smallest value that has bits
4538 * 0-5 cleared and >= 100).
4539 *
4540 * Because of how the code in x86_perf_event_set_period() works, the truncation
4541 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4542 * to make up for the 'lost' events due to carrying the 'error' in period_left.
4543 *
4544 * Therefore the effective (average) period matches the requested period,
4545 * despite coarser hardware granularity.
4546 */
bdw_limit_period(struct perf_event * event,s64 * left)4547 static void bdw_limit_period(struct perf_event *event, s64 *left)
4548 {
4549 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4550 X86_CONFIG(.event=0xc0, .umask=0x01)) {
4551 if (*left < 128)
4552 *left = 128;
4553 *left &= ~0x3fULL;
4554 }
4555 }
4556
nhm_limit_period(struct perf_event * event,s64 * left)4557 static void nhm_limit_period(struct perf_event *event, s64 *left)
4558 {
4559 *left = max(*left, 32LL);
4560 }
4561
glc_limit_period(struct perf_event * event,s64 * left)4562 static void glc_limit_period(struct perf_event *event, s64 *left)
4563 {
4564 if (event->attr.precise_ip == 3)
4565 *left = max(*left, 128LL);
4566 }
4567
4568 PMU_FORMAT_ATTR(event, "config:0-7" );
4569 PMU_FORMAT_ATTR(umask, "config:8-15" );
4570 PMU_FORMAT_ATTR(edge, "config:18" );
4571 PMU_FORMAT_ATTR(pc, "config:19" );
4572 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
4573 PMU_FORMAT_ATTR(inv, "config:23" );
4574 PMU_FORMAT_ATTR(cmask, "config:24-31" );
4575 PMU_FORMAT_ATTR(in_tx, "config:32");
4576 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4577
4578 static struct attribute *intel_arch_formats_attr[] = {
4579 &format_attr_event.attr,
4580 &format_attr_umask.attr,
4581 &format_attr_edge.attr,
4582 &format_attr_pc.attr,
4583 &format_attr_inv.attr,
4584 &format_attr_cmask.attr,
4585 NULL,
4586 };
4587
intel_event_sysfs_show(char * page,u64 config)4588 ssize_t intel_event_sysfs_show(char *page, u64 config)
4589 {
4590 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4591
4592 return x86_event_sysfs_show(page, config, event);
4593 }
4594
allocate_shared_regs(int cpu)4595 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4596 {
4597 struct intel_shared_regs *regs;
4598 int i;
4599
4600 regs = kzalloc_node(sizeof(struct intel_shared_regs),
4601 GFP_KERNEL, cpu_to_node(cpu));
4602 if (regs) {
4603 /*
4604 * initialize the locks to keep lockdep happy
4605 */
4606 for (i = 0; i < EXTRA_REG_MAX; i++)
4607 raw_spin_lock_init(®s->regs[i].lock);
4608
4609 regs->core_id = -1;
4610 }
4611 return regs;
4612 }
4613
allocate_excl_cntrs(int cpu)4614 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4615 {
4616 struct intel_excl_cntrs *c;
4617
4618 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4619 GFP_KERNEL, cpu_to_node(cpu));
4620 if (c) {
4621 raw_spin_lock_init(&c->lock);
4622 c->core_id = -1;
4623 }
4624 return c;
4625 }
4626
4627
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)4628 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4629 {
4630 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4631
4632 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4633 cpuc->shared_regs = allocate_shared_regs(cpu);
4634 if (!cpuc->shared_regs)
4635 goto err;
4636 }
4637
4638 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_BR_CNTR)) {
4639 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4640
4641 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4642 if (!cpuc->constraint_list)
4643 goto err_shared_regs;
4644 }
4645
4646 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4647 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4648 if (!cpuc->excl_cntrs)
4649 goto err_constraint_list;
4650
4651 cpuc->excl_thread_id = 0;
4652 }
4653
4654 return 0;
4655
4656 err_constraint_list:
4657 kfree(cpuc->constraint_list);
4658 cpuc->constraint_list = NULL;
4659
4660 err_shared_regs:
4661 kfree(cpuc->shared_regs);
4662 cpuc->shared_regs = NULL;
4663
4664 err:
4665 return -ENOMEM;
4666 }
4667
intel_pmu_cpu_prepare(int cpu)4668 static int intel_pmu_cpu_prepare(int cpu)
4669 {
4670 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4671 }
4672
flip_smm_bit(void * data)4673 static void flip_smm_bit(void *data)
4674 {
4675 unsigned long set = *(unsigned long *)data;
4676
4677 if (set > 0) {
4678 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4679 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4680 } else {
4681 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4682 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4683 }
4684 }
4685
4686 static void intel_pmu_check_num_counters(int *num_counters,
4687 int *num_counters_fixed,
4688 u64 *intel_ctrl, u64 fixed_mask);
4689
4690 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
4691 int num_counters,
4692 int num_counters_fixed,
4693 u64 intel_ctrl);
4694
4695 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
4696
intel_pmu_broken_perf_cap(void)4697 static inline bool intel_pmu_broken_perf_cap(void)
4698 {
4699 /* The Perf Metric (Bit 15) is always cleared */
4700 if ((boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE) ||
4701 (boot_cpu_data.x86_model == INTEL_FAM6_METEORLAKE_L))
4702 return true;
4703
4704 return false;
4705 }
4706
update_pmu_cap(struct x86_hybrid_pmu * pmu)4707 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4708 {
4709 unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
4710 unsigned int eax, ebx, ecx, edx;
4711
4712 if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4713 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4714 &eax, &ebx, &ecx, &edx);
4715 pmu->num_counters = fls(eax);
4716 pmu->num_counters_fixed = fls(ebx);
4717 }
4718
4719
4720 if (!intel_pmu_broken_perf_cap()) {
4721 /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
4722 rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities);
4723 }
4724 }
4725
intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu * pmu)4726 static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
4727 {
4728 intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4729 &pmu->intel_ctrl, (1ULL << pmu->num_counters_fixed) - 1);
4730 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
4731 pmu->unconstrained = (struct event_constraint)
4732 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
4733 0, pmu->num_counters, 0, 0);
4734
4735 if (pmu->intel_cap.perf_metrics)
4736 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
4737 else
4738 pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4739
4740 if (pmu->intel_cap.pebs_output_pt_available)
4741 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
4742 else
4743 pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT;
4744
4745 intel_pmu_check_event_constraints(pmu->event_constraints,
4746 pmu->num_counters,
4747 pmu->num_counters_fixed,
4748 pmu->intel_ctrl);
4749
4750 intel_pmu_check_extra_regs(pmu->extra_regs);
4751 }
4752
find_hybrid_pmu_for_cpu(void)4753 static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
4754 {
4755 u8 cpu_type = get_this_hybrid_cpu_type();
4756 int i;
4757
4758 /*
4759 * This is running on a CPU model that is known to have hybrid
4760 * configurations. But the CPU told us it is not hybrid, shame
4761 * on it. There should be a fixup function provided for these
4762 * troublesome CPUs (->get_hybrid_cpu_type).
4763 */
4764 if (cpu_type == HYBRID_INTEL_NONE) {
4765 if (x86_pmu.get_hybrid_cpu_type)
4766 cpu_type = x86_pmu.get_hybrid_cpu_type();
4767 else
4768 return NULL;
4769 }
4770
4771 /*
4772 * This essentially just maps between the 'hybrid_cpu_type'
4773 * and 'hybrid_pmu_type' enums:
4774 */
4775 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4776 enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
4777
4778 if (cpu_type == HYBRID_INTEL_CORE &&
4779 pmu_type == hybrid_big)
4780 return &x86_pmu.hybrid_pmu[i];
4781 if (cpu_type == HYBRID_INTEL_ATOM &&
4782 pmu_type == hybrid_small)
4783 return &x86_pmu.hybrid_pmu[i];
4784 }
4785
4786 return NULL;
4787 }
4788
init_hybrid_pmu(int cpu)4789 static bool init_hybrid_pmu(int cpu)
4790 {
4791 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4792 struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
4793
4794 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4795 cpuc->pmu = NULL;
4796 return false;
4797 }
4798
4799 /* Only check and dump the PMU information for the first CPU */
4800 if (!cpumask_empty(&pmu->supported_cpus))
4801 goto end;
4802
4803 if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4804 update_pmu_cap(pmu);
4805
4806 intel_pmu_check_hybrid_pmus(pmu);
4807
4808 if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4809 return false;
4810
4811 pr_info("%s PMU driver: ", pmu->name);
4812
4813 if (pmu->intel_cap.pebs_output_pt_available)
4814 pr_cont("PEBS-via-PT ");
4815
4816 pr_cont("\n");
4817
4818 x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4819 pmu->intel_ctrl);
4820
4821 end:
4822 cpumask_set_cpu(cpu, &pmu->supported_cpus);
4823 cpuc->pmu = &pmu->pmu;
4824
4825 return true;
4826 }
4827
intel_pmu_cpu_starting(int cpu)4828 static void intel_pmu_cpu_starting(int cpu)
4829 {
4830 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4831 int core_id = topology_core_id(cpu);
4832 int i;
4833
4834 if (is_hybrid() && !init_hybrid_pmu(cpu))
4835 return;
4836
4837 init_debug_store_on_cpu(cpu);
4838 /*
4839 * Deal with CPUs that don't clear their LBRs on power-up.
4840 */
4841 intel_pmu_lbr_reset();
4842
4843 cpuc->lbr_sel = NULL;
4844
4845 if (x86_pmu.flags & PMU_FL_TFA) {
4846 WARN_ON_ONCE(cpuc->tfa_shadow);
4847 cpuc->tfa_shadow = ~0ULL;
4848 intel_set_tfa(cpuc, false);
4849 }
4850
4851 if (x86_pmu.version > 1)
4852 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4853
4854 /*
4855 * Disable perf metrics if any added CPU doesn't support it.
4856 *
4857 * Turn off the check for a hybrid architecture, because the
4858 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4859 * the architecture features. The perf metrics is a model-specific
4860 * feature for now. The corresponding bit should always be 0 on
4861 * a hybrid platform, e.g., Alder Lake.
4862 */
4863 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4864 union perf_capabilities perf_cap;
4865
4866 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4867 if (!perf_cap.perf_metrics) {
4868 x86_pmu.intel_cap.perf_metrics = 0;
4869 x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4870 }
4871 }
4872
4873 if (!cpuc->shared_regs)
4874 return;
4875
4876 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4877 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4878 struct intel_shared_regs *pc;
4879
4880 pc = per_cpu(cpu_hw_events, i).shared_regs;
4881 if (pc && pc->core_id == core_id) {
4882 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4883 cpuc->shared_regs = pc;
4884 break;
4885 }
4886 }
4887 cpuc->shared_regs->core_id = core_id;
4888 cpuc->shared_regs->refcnt++;
4889 }
4890
4891 if (x86_pmu.lbr_sel_map)
4892 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4893
4894 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4895 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4896 struct cpu_hw_events *sibling;
4897 struct intel_excl_cntrs *c;
4898
4899 sibling = &per_cpu(cpu_hw_events, i);
4900 c = sibling->excl_cntrs;
4901 if (c && c->core_id == core_id) {
4902 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4903 cpuc->excl_cntrs = c;
4904 if (!sibling->excl_thread_id)
4905 cpuc->excl_thread_id = 1;
4906 break;
4907 }
4908 }
4909 cpuc->excl_cntrs->core_id = core_id;
4910 cpuc->excl_cntrs->refcnt++;
4911 }
4912 }
4913
free_excl_cntrs(struct cpu_hw_events * cpuc)4914 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4915 {
4916 struct intel_excl_cntrs *c;
4917
4918 c = cpuc->excl_cntrs;
4919 if (c) {
4920 if (c->core_id == -1 || --c->refcnt == 0)
4921 kfree(c);
4922 cpuc->excl_cntrs = NULL;
4923 }
4924
4925 kfree(cpuc->constraint_list);
4926 cpuc->constraint_list = NULL;
4927 }
4928
intel_pmu_cpu_dying(int cpu)4929 static void intel_pmu_cpu_dying(int cpu)
4930 {
4931 fini_debug_store_on_cpu(cpu);
4932 }
4933
intel_cpuc_finish(struct cpu_hw_events * cpuc)4934 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4935 {
4936 struct intel_shared_regs *pc;
4937
4938 pc = cpuc->shared_regs;
4939 if (pc) {
4940 if (pc->core_id == -1 || --pc->refcnt == 0)
4941 kfree(pc);
4942 cpuc->shared_regs = NULL;
4943 }
4944
4945 free_excl_cntrs(cpuc);
4946 }
4947
intel_pmu_cpu_dead(int cpu)4948 static void intel_pmu_cpu_dead(int cpu)
4949 {
4950 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4951
4952 intel_cpuc_finish(cpuc);
4953
4954 if (is_hybrid() && cpuc->pmu)
4955 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4956 }
4957
intel_pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)4958 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4959 bool sched_in)
4960 {
4961 intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4962 intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4963 }
4964
intel_pmu_swap_task_ctx(struct perf_event_pmu_context * prev_epc,struct perf_event_pmu_context * next_epc)4965 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4966 struct perf_event_pmu_context *next_epc)
4967 {
4968 intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4969 }
4970
intel_pmu_check_period(struct perf_event * event,u64 value)4971 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4972 {
4973 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4974 }
4975
intel_aux_output_init(void)4976 static void intel_aux_output_init(void)
4977 {
4978 /* Refer also intel_pmu_aux_output_match() */
4979 if (x86_pmu.intel_cap.pebs_output_pt_available)
4980 x86_pmu.assign = intel_pmu_assign_event;
4981 }
4982
intel_pmu_aux_output_match(struct perf_event * event)4983 static int intel_pmu_aux_output_match(struct perf_event *event)
4984 {
4985 /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4986 if (!x86_pmu.intel_cap.pebs_output_pt_available)
4987 return 0;
4988
4989 return is_intel_pt_event(event);
4990 }
4991
intel_pmu_filter(struct pmu * pmu,int cpu,bool * ret)4992 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4993 {
4994 struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4995
4996 *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4997 }
4998
4999 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5000
5001 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5002
5003 PMU_FORMAT_ATTR(frontend, "config1:0-23");
5004
5005 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5006
5007 static struct attribute *intel_arch3_formats_attr[] = {
5008 &format_attr_event.attr,
5009 &format_attr_umask.attr,
5010 &format_attr_edge.attr,
5011 &format_attr_pc.attr,
5012 &format_attr_any.attr,
5013 &format_attr_inv.attr,
5014 &format_attr_cmask.attr,
5015 NULL,
5016 };
5017
5018 static struct attribute *hsw_format_attr[] = {
5019 &format_attr_in_tx.attr,
5020 &format_attr_in_tx_cp.attr,
5021 &format_attr_offcore_rsp.attr,
5022 &format_attr_ldlat.attr,
5023 NULL
5024 };
5025
5026 static struct attribute *nhm_format_attr[] = {
5027 &format_attr_offcore_rsp.attr,
5028 &format_attr_ldlat.attr,
5029 NULL
5030 };
5031
5032 static struct attribute *slm_format_attr[] = {
5033 &format_attr_offcore_rsp.attr,
5034 NULL
5035 };
5036
5037 static struct attribute *cmt_format_attr[] = {
5038 &format_attr_offcore_rsp.attr,
5039 &format_attr_ldlat.attr,
5040 &format_attr_snoop_rsp.attr,
5041 NULL
5042 };
5043
5044 static struct attribute *skl_format_attr[] = {
5045 &format_attr_frontend.attr,
5046 NULL,
5047 };
5048
5049 static __initconst const struct x86_pmu core_pmu = {
5050 .name = "core",
5051 .handle_irq = x86_pmu_handle_irq,
5052 .disable_all = x86_pmu_disable_all,
5053 .enable_all = core_pmu_enable_all,
5054 .enable = core_pmu_enable_event,
5055 .disable = x86_pmu_disable_event,
5056 .hw_config = core_pmu_hw_config,
5057 .schedule_events = x86_schedule_events,
5058 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5059 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5060 .event_map = intel_pmu_event_map,
5061 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
5062 .apic = 1,
5063 .large_pebs_flags = LARGE_PEBS_FLAGS,
5064
5065 /*
5066 * Intel PMCs cannot be accessed sanely above 32-bit width,
5067 * so we install an artificial 1<<31 period regardless of
5068 * the generic event period:
5069 */
5070 .max_period = (1ULL<<31) - 1,
5071 .get_event_constraints = intel_get_event_constraints,
5072 .put_event_constraints = intel_put_event_constraints,
5073 .event_constraints = intel_core_event_constraints,
5074 .guest_get_msrs = core_guest_get_msrs,
5075 .format_attrs = intel_arch_formats_attr,
5076 .events_sysfs_show = intel_event_sysfs_show,
5077
5078 /*
5079 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5080 * together with PMU version 1 and thus be using core_pmu with
5081 * shared_regs. We need following callbacks here to allocate
5082 * it properly.
5083 */
5084 .cpu_prepare = intel_pmu_cpu_prepare,
5085 .cpu_starting = intel_pmu_cpu_starting,
5086 .cpu_dying = intel_pmu_cpu_dying,
5087 .cpu_dead = intel_pmu_cpu_dead,
5088
5089 .check_period = intel_pmu_check_period,
5090
5091 .lbr_reset = intel_pmu_lbr_reset_64,
5092 .lbr_read = intel_pmu_lbr_read_64,
5093 .lbr_save = intel_pmu_lbr_save,
5094 .lbr_restore = intel_pmu_lbr_restore,
5095 };
5096
5097 static __initconst const struct x86_pmu intel_pmu = {
5098 .name = "Intel",
5099 .handle_irq = intel_pmu_handle_irq,
5100 .disable_all = intel_pmu_disable_all,
5101 .enable_all = intel_pmu_enable_all,
5102 .enable = intel_pmu_enable_event,
5103 .disable = intel_pmu_disable_event,
5104 .add = intel_pmu_add_event,
5105 .del = intel_pmu_del_event,
5106 .read = intel_pmu_read_event,
5107 .set_period = intel_pmu_set_period,
5108 .update = intel_pmu_update,
5109 .hw_config = intel_pmu_hw_config,
5110 .schedule_events = x86_schedule_events,
5111 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5112 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5113 .event_map = intel_pmu_event_map,
5114 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
5115 .apic = 1,
5116 .large_pebs_flags = LARGE_PEBS_FLAGS,
5117 /*
5118 * Intel PMCs cannot be accessed sanely above 32 bit width,
5119 * so we install an artificial 1<<31 period regardless of
5120 * the generic event period:
5121 */
5122 .max_period = (1ULL << 31) - 1,
5123 .get_event_constraints = intel_get_event_constraints,
5124 .put_event_constraints = intel_put_event_constraints,
5125 .pebs_aliases = intel_pebs_aliases_core2,
5126
5127 .format_attrs = intel_arch3_formats_attr,
5128 .events_sysfs_show = intel_event_sysfs_show,
5129
5130 .cpu_prepare = intel_pmu_cpu_prepare,
5131 .cpu_starting = intel_pmu_cpu_starting,
5132 .cpu_dying = intel_pmu_cpu_dying,
5133 .cpu_dead = intel_pmu_cpu_dead,
5134
5135 .guest_get_msrs = intel_guest_get_msrs,
5136 .sched_task = intel_pmu_sched_task,
5137 .swap_task_ctx = intel_pmu_swap_task_ctx,
5138
5139 .check_period = intel_pmu_check_period,
5140
5141 .aux_output_match = intel_pmu_aux_output_match,
5142
5143 .lbr_reset = intel_pmu_lbr_reset_64,
5144 .lbr_read = intel_pmu_lbr_read_64,
5145 .lbr_save = intel_pmu_lbr_save,
5146 .lbr_restore = intel_pmu_lbr_restore,
5147
5148 /*
5149 * SMM has access to all 4 rings and while traditionally SMM code only
5150 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5151 *
5152 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5153 * between SMM or not, this results in what should be pure userspace
5154 * counters including SMM data.
5155 *
5156 * This is a clear privilege issue, therefore globally disable
5157 * counting SMM by default.
5158 */
5159 .attr_freeze_on_smi = 1,
5160 };
5161
intel_clovertown_quirk(void)5162 static __init void intel_clovertown_quirk(void)
5163 {
5164 /*
5165 * PEBS is unreliable due to:
5166 *
5167 * AJ67 - PEBS may experience CPL leaks
5168 * AJ68 - PEBS PMI may be delayed by one event
5169 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5170 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5171 *
5172 * AJ67 could be worked around by restricting the OS/USR flags.
5173 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5174 *
5175 * AJ106 could possibly be worked around by not allowing LBR
5176 * usage from PEBS, including the fixup.
5177 * AJ68 could possibly be worked around by always programming
5178 * a pebs_event_reset[0] value and coping with the lost events.
5179 *
5180 * But taken together it might just make sense to not enable PEBS on
5181 * these chips.
5182 */
5183 pr_warn("PEBS disabled due to CPU errata\n");
5184 x86_pmu.pebs = 0;
5185 x86_pmu.pebs_constraints = NULL;
5186 }
5187
5188 static const struct x86_cpu_desc isolation_ucodes[] = {
5189 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
5190 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
5191 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
5192 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
5193 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
5194 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
5195 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
5196 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
5197 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
5198 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
5199 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
5200 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014),
5201 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
5202 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
5203 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000),
5204 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000),
5205 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000),
5206 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 11, 0x00000000),
5207 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
5208 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
5209 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
5210 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
5211 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
5212 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
5213 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
5214 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
5215 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
5216 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
5217 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
5218 {}
5219 };
5220
intel_check_pebs_isolation(void)5221 static void intel_check_pebs_isolation(void)
5222 {
5223 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5224 }
5225
intel_pebs_isolation_quirk(void)5226 static __init void intel_pebs_isolation_quirk(void)
5227 {
5228 WARN_ON_ONCE(x86_pmu.check_microcode);
5229 x86_pmu.check_microcode = intel_check_pebs_isolation;
5230 intel_check_pebs_isolation();
5231 }
5232
5233 static const struct x86_cpu_desc pebs_ucodes[] = {
5234 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
5235 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
5236 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
5237 {}
5238 };
5239
intel_snb_pebs_broken(void)5240 static bool intel_snb_pebs_broken(void)
5241 {
5242 return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5243 }
5244
intel_snb_check_microcode(void)5245 static void intel_snb_check_microcode(void)
5246 {
5247 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5248 return;
5249
5250 /*
5251 * Serialized by the microcode lock..
5252 */
5253 if (x86_pmu.pebs_broken) {
5254 pr_info("PEBS enabled due to microcode update\n");
5255 x86_pmu.pebs_broken = 0;
5256 } else {
5257 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5258 x86_pmu.pebs_broken = 1;
5259 }
5260 }
5261
is_lbr_from(unsigned long msr)5262 static bool is_lbr_from(unsigned long msr)
5263 {
5264 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5265
5266 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5267 }
5268
5269 /*
5270 * Under certain circumstances, access certain MSR may cause #GP.
5271 * The function tests if the input MSR can be safely accessed.
5272 */
check_msr(unsigned long msr,u64 mask)5273 static bool check_msr(unsigned long msr, u64 mask)
5274 {
5275 u64 val_old, val_new, val_tmp;
5276
5277 /*
5278 * Disable the check for real HW, so we don't
5279 * mess with potentially enabled registers:
5280 */
5281 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5282 return true;
5283
5284 /*
5285 * Read the current value, change it and read it back to see if it
5286 * matches, this is needed to detect certain hardware emulators
5287 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5288 */
5289 if (rdmsrl_safe(msr, &val_old))
5290 return false;
5291
5292 /*
5293 * Only change the bits which can be updated by wrmsrl.
5294 */
5295 val_tmp = val_old ^ mask;
5296
5297 if (is_lbr_from(msr))
5298 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5299
5300 if (wrmsrl_safe(msr, val_tmp) ||
5301 rdmsrl_safe(msr, &val_new))
5302 return false;
5303
5304 /*
5305 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5306 * should equal rdmsrl()'s even with the quirk.
5307 */
5308 if (val_new != val_tmp)
5309 return false;
5310
5311 if (is_lbr_from(msr))
5312 val_old = lbr_from_signext_quirk_wr(val_old);
5313
5314 /* Here it's sure that the MSR can be safely accessed.
5315 * Restore the old value and return.
5316 */
5317 wrmsrl(msr, val_old);
5318
5319 return true;
5320 }
5321
intel_sandybridge_quirk(void)5322 static __init void intel_sandybridge_quirk(void)
5323 {
5324 x86_pmu.check_microcode = intel_snb_check_microcode;
5325 cpus_read_lock();
5326 intel_snb_check_microcode();
5327 cpus_read_unlock();
5328 }
5329
5330 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5331 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5332 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5333 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5334 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5335 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5336 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5337 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5338 };
5339
intel_arch_events_quirk(void)5340 static __init void intel_arch_events_quirk(void)
5341 {
5342 int bit;
5343
5344 /* disable event that reported as not present by cpuid */
5345 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5346 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5347 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5348 intel_arch_events_map[bit].name);
5349 }
5350 }
5351
intel_nehalem_quirk(void)5352 static __init void intel_nehalem_quirk(void)
5353 {
5354 union cpuid10_ebx ebx;
5355
5356 ebx.full = x86_pmu.events_maskl;
5357 if (ebx.split.no_branch_misses_retired) {
5358 /*
5359 * Erratum AAJ80 detected, we work it around by using
5360 * the BR_MISP_EXEC.ANY event. This will over-count
5361 * branch-misses, but it's still much better than the
5362 * architectural event which is often completely bogus:
5363 */
5364 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5365 ebx.split.no_branch_misses_retired = 0;
5366 x86_pmu.events_maskl = ebx.full;
5367 pr_info("CPU erratum AAJ80 worked around\n");
5368 }
5369 }
5370
5371 /*
5372 * enable software workaround for errata:
5373 * SNB: BJ122
5374 * IVB: BV98
5375 * HSW: HSD29
5376 *
5377 * Only needed when HT is enabled. However detecting
5378 * if HT is enabled is difficult (model specific). So instead,
5379 * we enable the workaround in the early boot, and verify if
5380 * it is needed in a later initcall phase once we have valid
5381 * topology information to check if HT is actually enabled
5382 */
intel_ht_bug(void)5383 static __init void intel_ht_bug(void)
5384 {
5385 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5386
5387 x86_pmu.start_scheduling = intel_start_scheduling;
5388 x86_pmu.commit_scheduling = intel_commit_scheduling;
5389 x86_pmu.stop_scheduling = intel_stop_scheduling;
5390 }
5391
5392 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
5393 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
5394
5395 /* Haswell special events */
5396 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
5397 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
5398 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
5399 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
5400 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
5401 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
5402 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
5403 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
5404 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
5405 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
5406 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
5407 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
5408
5409 static struct attribute *hsw_events_attrs[] = {
5410 EVENT_PTR(td_slots_issued),
5411 EVENT_PTR(td_slots_retired),
5412 EVENT_PTR(td_fetch_bubbles),
5413 EVENT_PTR(td_total_slots),
5414 EVENT_PTR(td_total_slots_scale),
5415 EVENT_PTR(td_recovery_bubbles),
5416 EVENT_PTR(td_recovery_bubbles_scale),
5417 NULL
5418 };
5419
5420 static struct attribute *hsw_mem_events_attrs[] = {
5421 EVENT_PTR(mem_ld_hsw),
5422 EVENT_PTR(mem_st_hsw),
5423 NULL,
5424 };
5425
5426 static struct attribute *hsw_tsx_events_attrs[] = {
5427 EVENT_PTR(tx_start),
5428 EVENT_PTR(tx_commit),
5429 EVENT_PTR(tx_abort),
5430 EVENT_PTR(tx_capacity),
5431 EVENT_PTR(tx_conflict),
5432 EVENT_PTR(el_start),
5433 EVENT_PTR(el_commit),
5434 EVENT_PTR(el_abort),
5435 EVENT_PTR(el_capacity),
5436 EVENT_PTR(el_conflict),
5437 EVENT_PTR(cycles_t),
5438 EVENT_PTR(cycles_ct),
5439 NULL
5440 };
5441
5442 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
5443 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5444 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
5445 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5446
5447 static struct attribute *icl_events_attrs[] = {
5448 EVENT_PTR(mem_ld_hsw),
5449 EVENT_PTR(mem_st_hsw),
5450 NULL,
5451 };
5452
5453 static struct attribute *icl_td_events_attrs[] = {
5454 EVENT_PTR(slots),
5455 EVENT_PTR(td_retiring),
5456 EVENT_PTR(td_bad_spec),
5457 EVENT_PTR(td_fe_bound),
5458 EVENT_PTR(td_be_bound),
5459 NULL,
5460 };
5461
5462 static struct attribute *icl_tsx_events_attrs[] = {
5463 EVENT_PTR(tx_start),
5464 EVENT_PTR(tx_abort),
5465 EVENT_PTR(tx_commit),
5466 EVENT_PTR(tx_capacity_read),
5467 EVENT_PTR(tx_capacity_write),
5468 EVENT_PTR(tx_conflict),
5469 EVENT_PTR(el_start),
5470 EVENT_PTR(el_abort),
5471 EVENT_PTR(el_commit),
5472 EVENT_PTR(el_capacity_read),
5473 EVENT_PTR(el_capacity_write),
5474 EVENT_PTR(el_conflict),
5475 EVENT_PTR(cycles_t),
5476 EVENT_PTR(cycles_ct),
5477 NULL,
5478 };
5479
5480
5481 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
5482 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
5483
5484 static struct attribute *glc_events_attrs[] = {
5485 EVENT_PTR(mem_ld_hsw),
5486 EVENT_PTR(mem_st_spr),
5487 EVENT_PTR(mem_ld_aux),
5488 NULL,
5489 };
5490
5491 static struct attribute *glc_td_events_attrs[] = {
5492 EVENT_PTR(slots),
5493 EVENT_PTR(td_retiring),
5494 EVENT_PTR(td_bad_spec),
5495 EVENT_PTR(td_fe_bound),
5496 EVENT_PTR(td_be_bound),
5497 EVENT_PTR(td_heavy_ops),
5498 EVENT_PTR(td_br_mispredict),
5499 EVENT_PTR(td_fetch_lat),
5500 EVENT_PTR(td_mem_bound),
5501 NULL,
5502 };
5503
5504 static struct attribute *glc_tsx_events_attrs[] = {
5505 EVENT_PTR(tx_start),
5506 EVENT_PTR(tx_abort),
5507 EVENT_PTR(tx_commit),
5508 EVENT_PTR(tx_capacity_read),
5509 EVENT_PTR(tx_capacity_write),
5510 EVENT_PTR(tx_conflict),
5511 EVENT_PTR(cycles_t),
5512 EVENT_PTR(cycles_ct),
5513 NULL,
5514 };
5515
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)5516 static ssize_t freeze_on_smi_show(struct device *cdev,
5517 struct device_attribute *attr,
5518 char *buf)
5519 {
5520 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5521 }
5522
5523 static DEFINE_MUTEX(freeze_on_smi_mutex);
5524
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5525 static ssize_t freeze_on_smi_store(struct device *cdev,
5526 struct device_attribute *attr,
5527 const char *buf, size_t count)
5528 {
5529 unsigned long val;
5530 ssize_t ret;
5531
5532 ret = kstrtoul(buf, 0, &val);
5533 if (ret)
5534 return ret;
5535
5536 if (val > 1)
5537 return -EINVAL;
5538
5539 mutex_lock(&freeze_on_smi_mutex);
5540
5541 if (x86_pmu.attr_freeze_on_smi == val)
5542 goto done;
5543
5544 x86_pmu.attr_freeze_on_smi = val;
5545
5546 cpus_read_lock();
5547 on_each_cpu(flip_smm_bit, &val, 1);
5548 cpus_read_unlock();
5549 done:
5550 mutex_unlock(&freeze_on_smi_mutex);
5551
5552 return count;
5553 }
5554
update_tfa_sched(void * ignored)5555 static void update_tfa_sched(void *ignored)
5556 {
5557 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5558
5559 /*
5560 * check if PMC3 is used
5561 * and if so force schedule out for all event types all contexts
5562 */
5563 if (test_bit(3, cpuc->active_mask))
5564 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5565 }
5566
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)5567 static ssize_t show_sysctl_tfa(struct device *cdev,
5568 struct device_attribute *attr,
5569 char *buf)
5570 {
5571 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5572 }
5573
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5574 static ssize_t set_sysctl_tfa(struct device *cdev,
5575 struct device_attribute *attr,
5576 const char *buf, size_t count)
5577 {
5578 bool val;
5579 ssize_t ret;
5580
5581 ret = kstrtobool(buf, &val);
5582 if (ret)
5583 return ret;
5584
5585 /* no change */
5586 if (val == allow_tsx_force_abort)
5587 return count;
5588
5589 allow_tsx_force_abort = val;
5590
5591 cpus_read_lock();
5592 on_each_cpu(update_tfa_sched, NULL, 1);
5593 cpus_read_unlock();
5594
5595 return count;
5596 }
5597
5598
5599 static DEVICE_ATTR_RW(freeze_on_smi);
5600
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)5601 static ssize_t branches_show(struct device *cdev,
5602 struct device_attribute *attr,
5603 char *buf)
5604 {
5605 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5606 }
5607
5608 static DEVICE_ATTR_RO(branches);
5609
branch_counter_nr_show(struct device * cdev,struct device_attribute * attr,char * buf)5610 static ssize_t branch_counter_nr_show(struct device *cdev,
5611 struct device_attribute *attr,
5612 char *buf)
5613 {
5614 return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
5615 }
5616
5617 static DEVICE_ATTR_RO(branch_counter_nr);
5618
branch_counter_width_show(struct device * cdev,struct device_attribute * attr,char * buf)5619 static ssize_t branch_counter_width_show(struct device *cdev,
5620 struct device_attribute *attr,
5621 char *buf)
5622 {
5623 return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
5624 }
5625
5626 static DEVICE_ATTR_RO(branch_counter_width);
5627
5628 static struct attribute *lbr_attrs[] = {
5629 &dev_attr_branches.attr,
5630 &dev_attr_branch_counter_nr.attr,
5631 &dev_attr_branch_counter_width.attr,
5632 NULL
5633 };
5634
5635 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)5636 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5637 {
5638 /* branches */
5639 if (i == 0)
5640 return x86_pmu.lbr_nr ? attr->mode : 0;
5641
5642 return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
5643 }
5644
5645 static char pmu_name_str[30];
5646
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)5647 static ssize_t pmu_name_show(struct device *cdev,
5648 struct device_attribute *attr,
5649 char *buf)
5650 {
5651 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5652 }
5653
5654 static DEVICE_ATTR_RO(pmu_name);
5655
5656 static struct attribute *intel_pmu_caps_attrs[] = {
5657 &dev_attr_pmu_name.attr,
5658 NULL
5659 };
5660
5661 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5662 show_sysctl_tfa,
5663 set_sysctl_tfa);
5664
5665 static struct attribute *intel_pmu_attrs[] = {
5666 &dev_attr_freeze_on_smi.attr,
5667 &dev_attr_allow_tsx_force_abort.attr,
5668 NULL,
5669 };
5670
5671 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)5672 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5673 {
5674 if (attr == &dev_attr_allow_tsx_force_abort.attr)
5675 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5676
5677 return attr->mode;
5678 }
5679
5680 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5681 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5682 {
5683 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5684 }
5685
5686 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)5687 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5688 {
5689 return x86_pmu.pebs ? attr->mode : 0;
5690 }
5691
5692 static umode_t
mem_is_visible(struct kobject * kobj,struct attribute * attr,int i)5693 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5694 {
5695 if (attr == &event_attr_mem_ld_aux.attr.attr)
5696 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5697
5698 return pebs_is_visible(kobj, attr, i);
5699 }
5700
5701 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)5702 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5703 {
5704 return x86_pmu.version >= 2 ? attr->mode : 0;
5705 }
5706
5707 static struct attribute_group group_events_td = {
5708 .name = "events",
5709 };
5710
5711 static struct attribute_group group_events_mem = {
5712 .name = "events",
5713 .is_visible = mem_is_visible,
5714 };
5715
5716 static struct attribute_group group_events_tsx = {
5717 .name = "events",
5718 .is_visible = tsx_is_visible,
5719 };
5720
5721 static struct attribute_group group_caps_gen = {
5722 .name = "caps",
5723 .attrs = intel_pmu_caps_attrs,
5724 };
5725
5726 static struct attribute_group group_caps_lbr = {
5727 .name = "caps",
5728 .attrs = lbr_attrs,
5729 .is_visible = lbr_is_visible,
5730 };
5731
5732 static struct attribute_group group_format_extra = {
5733 .name = "format",
5734 .is_visible = exra_is_visible,
5735 };
5736
5737 static struct attribute_group group_format_extra_skl = {
5738 .name = "format",
5739 .is_visible = exra_is_visible,
5740 };
5741
5742 static struct attribute_group group_default = {
5743 .attrs = intel_pmu_attrs,
5744 .is_visible = default_is_visible,
5745 };
5746
5747 static const struct attribute_group *attr_update[] = {
5748 &group_events_td,
5749 &group_events_mem,
5750 &group_events_tsx,
5751 &group_caps_gen,
5752 &group_caps_lbr,
5753 &group_format_extra,
5754 &group_format_extra_skl,
5755 &group_default,
5756 NULL,
5757 };
5758
5759 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
5760 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5761 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5762 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5763 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5764 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
5765 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
5766 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
5767 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
5768
5769 static struct attribute *adl_hybrid_events_attrs[] = {
5770 EVENT_PTR(slots_adl),
5771 EVENT_PTR(td_retiring_adl),
5772 EVENT_PTR(td_bad_spec_adl),
5773 EVENT_PTR(td_fe_bound_adl),
5774 EVENT_PTR(td_be_bound_adl),
5775 EVENT_PTR(td_heavy_ops_adl),
5776 EVENT_PTR(td_br_mis_adl),
5777 EVENT_PTR(td_fetch_lat_adl),
5778 EVENT_PTR(td_mem_bound_adl),
5779 NULL,
5780 };
5781
5782 /* Must be in IDX order */
5783 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5784 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
5785 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
5786
5787 static struct attribute *adl_hybrid_mem_attrs[] = {
5788 EVENT_PTR(mem_ld_adl),
5789 EVENT_PTR(mem_st_adl),
5790 EVENT_PTR(mem_ld_aux_adl),
5791 NULL,
5792 };
5793
5794 static struct attribute *mtl_hybrid_mem_attrs[] = {
5795 EVENT_PTR(mem_ld_adl),
5796 EVENT_PTR(mem_st_adl),
5797 NULL
5798 };
5799
5800 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
5801 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
5802 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
5803 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
5804 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
5805 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5806 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
5807 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
5808
5809 static struct attribute *adl_hybrid_tsx_attrs[] = {
5810 EVENT_PTR(tx_start_adl),
5811 EVENT_PTR(tx_abort_adl),
5812 EVENT_PTR(tx_commit_adl),
5813 EVENT_PTR(tx_capacity_read_adl),
5814 EVENT_PTR(tx_capacity_write_adl),
5815 EVENT_PTR(tx_conflict_adl),
5816 EVENT_PTR(cycles_t_adl),
5817 EVENT_PTR(cycles_ct_adl),
5818 NULL,
5819 };
5820
5821 FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
5822 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
5823 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5824 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small);
5825 FORMAT_ATTR_HYBRID(frontend, hybrid_big);
5826
5827 #define ADL_HYBRID_RTM_FORMAT_ATTR \
5828 FORMAT_HYBRID_PTR(in_tx), \
5829 FORMAT_HYBRID_PTR(in_tx_cp)
5830
5831 #define ADL_HYBRID_FORMAT_ATTR \
5832 FORMAT_HYBRID_PTR(offcore_rsp), \
5833 FORMAT_HYBRID_PTR(ldlat), \
5834 FORMAT_HYBRID_PTR(frontend)
5835
5836 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5837 ADL_HYBRID_RTM_FORMAT_ATTR,
5838 ADL_HYBRID_FORMAT_ATTR,
5839 NULL
5840 };
5841
5842 static struct attribute *adl_hybrid_extra_attr[] = {
5843 ADL_HYBRID_FORMAT_ATTR,
5844 NULL
5845 };
5846
5847 FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small);
5848
5849 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5850 ADL_HYBRID_RTM_FORMAT_ATTR,
5851 ADL_HYBRID_FORMAT_ATTR,
5852 FORMAT_HYBRID_PTR(snoop_rsp),
5853 NULL
5854 };
5855
5856 static struct attribute *mtl_hybrid_extra_attr[] = {
5857 ADL_HYBRID_FORMAT_ATTR,
5858 FORMAT_HYBRID_PTR(snoop_rsp),
5859 NULL
5860 };
5861
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)5862 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5863 {
5864 struct device *dev = kobj_to_dev(kobj);
5865 struct x86_hybrid_pmu *pmu =
5866 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5867 struct perf_pmu_events_hybrid_attr *pmu_attr =
5868 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5869
5870 return pmu->pmu_type & pmu_attr->pmu_type;
5871 }
5872
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)5873 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5874 struct attribute *attr, int i)
5875 {
5876 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5877 }
5878
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)5879 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5880 {
5881 int cpu = cpumask_first(&pmu->supported_cpus);
5882
5883 return (cpu >= nr_cpu_ids) ? -1 : cpu;
5884 }
5885
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5886 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5887 struct attribute *attr, int i)
5888 {
5889 struct device *dev = kobj_to_dev(kobj);
5890 struct x86_hybrid_pmu *pmu =
5891 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5892 int cpu = hybrid_find_supported_cpu(pmu);
5893
5894 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5895 }
5896
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)5897 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5898 struct attribute *attr, int i)
5899 {
5900 struct device *dev = kobj_to_dev(kobj);
5901 struct x86_hybrid_pmu *pmu =
5902 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5903 struct perf_pmu_format_hybrid_attr *pmu_attr =
5904 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5905 int cpu = hybrid_find_supported_cpu(pmu);
5906
5907 return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5908 }
5909
5910 static struct attribute_group hybrid_group_events_td = {
5911 .name = "events",
5912 .is_visible = hybrid_events_is_visible,
5913 };
5914
5915 static struct attribute_group hybrid_group_events_mem = {
5916 .name = "events",
5917 .is_visible = hybrid_events_is_visible,
5918 };
5919
5920 static struct attribute_group hybrid_group_events_tsx = {
5921 .name = "events",
5922 .is_visible = hybrid_tsx_is_visible,
5923 };
5924
5925 static struct attribute_group hybrid_group_format_extra = {
5926 .name = "format",
5927 .is_visible = hybrid_format_is_visible,
5928 };
5929
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)5930 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5931 struct device_attribute *attr,
5932 char *buf)
5933 {
5934 struct x86_hybrid_pmu *pmu =
5935 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5936
5937 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5938 }
5939
5940 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5941 static struct attribute *intel_hybrid_cpus_attrs[] = {
5942 &dev_attr_cpus.attr,
5943 NULL,
5944 };
5945
5946 static struct attribute_group hybrid_group_cpus = {
5947 .attrs = intel_hybrid_cpus_attrs,
5948 };
5949
5950 static const struct attribute_group *hybrid_attr_update[] = {
5951 &hybrid_group_events_td,
5952 &hybrid_group_events_mem,
5953 &hybrid_group_events_tsx,
5954 &group_caps_gen,
5955 &group_caps_lbr,
5956 &hybrid_group_format_extra,
5957 &group_default,
5958 &hybrid_group_cpus,
5959 NULL,
5960 };
5961
5962 static struct attribute *empty_attrs;
5963
intel_pmu_check_num_counters(int * num_counters,int * num_counters_fixed,u64 * intel_ctrl,u64 fixed_mask)5964 static void intel_pmu_check_num_counters(int *num_counters,
5965 int *num_counters_fixed,
5966 u64 *intel_ctrl, u64 fixed_mask)
5967 {
5968 if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5969 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5970 *num_counters, INTEL_PMC_MAX_GENERIC);
5971 *num_counters = INTEL_PMC_MAX_GENERIC;
5972 }
5973 *intel_ctrl = (1ULL << *num_counters) - 1;
5974
5975 if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5976 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5977 *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5978 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5979 }
5980
5981 *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5982 }
5983
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,int num_counters,int num_counters_fixed,u64 intel_ctrl)5984 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5985 int num_counters,
5986 int num_counters_fixed,
5987 u64 intel_ctrl)
5988 {
5989 struct event_constraint *c;
5990
5991 if (!event_constraints)
5992 return;
5993
5994 /*
5995 * event on fixed counter2 (REF_CYCLES) only works on this
5996 * counter, so do not extend mask to generic counters
5997 */
5998 for_each_event_constraint(c, event_constraints) {
5999 /*
6000 * Don't extend the topdown slots and metrics
6001 * events to the generic counters.
6002 */
6003 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
6004 /*
6005 * Disable topdown slots and metrics events,
6006 * if slots event is not in CPUID.
6007 */
6008 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6009 c->idxmsk64 = 0;
6010 c->weight = hweight64(c->idxmsk64);
6011 continue;
6012 }
6013
6014 if (c->cmask == FIXED_EVENT_FLAGS) {
6015 /* Disabled fixed counters which are not in CPUID */
6016 c->idxmsk64 &= intel_ctrl;
6017
6018 /*
6019 * Don't extend the pseudo-encoding to the
6020 * generic counters
6021 */
6022 if (!use_fixed_pseudo_encoding(c->code))
6023 c->idxmsk64 |= (1ULL << num_counters) - 1;
6024 }
6025 c->idxmsk64 &=
6026 ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
6027 c->weight = hweight64(c->idxmsk64);
6028 }
6029 }
6030
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)6031 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6032 {
6033 struct extra_reg *er;
6034
6035 /*
6036 * Access extra MSR may cause #GP under certain circumstances.
6037 * E.g. KVM doesn't support offcore event
6038 * Check all extra_regs here.
6039 */
6040 if (!extra_regs)
6041 return;
6042
6043 for (er = extra_regs; er->msr; er++) {
6044 er->extra_msr_access = check_msr(er->msr, 0x11UL);
6045 /* Disable LBR select mapping */
6046 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6047 x86_pmu.lbr_sel_map = NULL;
6048 }
6049 }
6050
6051 static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6052 { hybrid_small, "cpu_atom" },
6053 { hybrid_big, "cpu_core" },
6054 };
6055
intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)6056 static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6057 {
6058 unsigned long pmus_mask = pmus;
6059 struct x86_hybrid_pmu *pmu;
6060 int idx = 0, bit;
6061
6062 x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6063 x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6064 sizeof(struct x86_hybrid_pmu),
6065 GFP_KERNEL);
6066 if (!x86_pmu.hybrid_pmu)
6067 return -ENOMEM;
6068
6069 static_branch_enable(&perf_is_hybrid);
6070 x86_pmu.filter = intel_pmu_filter;
6071
6072 for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6073 pmu = &x86_pmu.hybrid_pmu[idx++];
6074 pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6075 pmu->name = intel_hybrid_pmu_type_map[bit].name;
6076
6077 pmu->num_counters = x86_pmu.num_counters;
6078 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6079 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6080 pmu->unconstrained = (struct event_constraint)
6081 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6082 0, pmu->num_counters, 0, 0);
6083
6084 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6085 if (pmu->pmu_type & hybrid_small) {
6086 pmu->intel_cap.perf_metrics = 0;
6087 pmu->intel_cap.pebs_output_pt_available = 1;
6088 pmu->mid_ack = true;
6089 } else if (pmu->pmu_type & hybrid_big) {
6090 pmu->intel_cap.perf_metrics = 1;
6091 pmu->intel_cap.pebs_output_pt_available = 0;
6092 pmu->late_ack = true;
6093 }
6094 }
6095
6096 return 0;
6097 }
6098
intel_pmu_ref_cycles_ext(void)6099 static __always_inline void intel_pmu_ref_cycles_ext(void)
6100 {
6101 if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6102 intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6103 }
6104
intel_pmu_init_glc(struct pmu * pmu)6105 static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6106 {
6107 x86_pmu.late_ack = true;
6108 x86_pmu.limit_period = glc_limit_period;
6109 x86_pmu.pebs_aliases = NULL;
6110 x86_pmu.pebs_prec_dist = true;
6111 x86_pmu.pebs_block = true;
6112 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6113 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6114 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6115 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6116 x86_pmu.lbr_pt_coexist = true;
6117 x86_pmu.num_topdown_events = 8;
6118 static_call_update(intel_pmu_update_topdown_event,
6119 &icl_update_topdown_event);
6120 static_call_update(intel_pmu_set_topdown_event_period,
6121 &icl_set_topdown_event_period);
6122
6123 memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6124 memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6125 hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6126 hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6127
6128 intel_pmu_ref_cycles_ext();
6129 }
6130
intel_pmu_init_grt(struct pmu * pmu)6131 static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6132 {
6133 x86_pmu.mid_ack = true;
6134 x86_pmu.limit_period = glc_limit_period;
6135 x86_pmu.pebs_aliases = NULL;
6136 x86_pmu.pebs_prec_dist = true;
6137 x86_pmu.pebs_block = true;
6138 x86_pmu.lbr_pt_coexist = true;
6139 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6140 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6141
6142 memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6143 memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6144 hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6145 hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6146 hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6147 hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6148
6149 intel_pmu_ref_cycles_ext();
6150 }
6151
intel_pmu_init(void)6152 __init int intel_pmu_init(void)
6153 {
6154 struct attribute **extra_skl_attr = &empty_attrs;
6155 struct attribute **extra_attr = &empty_attrs;
6156 struct attribute **td_attr = &empty_attrs;
6157 struct attribute **mem_attr = &empty_attrs;
6158 struct attribute **tsx_attr = &empty_attrs;
6159 union cpuid10_edx edx;
6160 union cpuid10_eax eax;
6161 union cpuid10_ebx ebx;
6162 unsigned int fixed_mask;
6163 bool pmem = false;
6164 int version, i;
6165 char *name;
6166 struct x86_hybrid_pmu *pmu;
6167
6168 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6169 switch (boot_cpu_data.x86) {
6170 case 0x6:
6171 return p6_pmu_init();
6172 case 0xb:
6173 return knc_pmu_init();
6174 case 0xf:
6175 return p4_pmu_init();
6176 }
6177 return -ENODEV;
6178 }
6179
6180 /*
6181 * Check whether the Architectural PerfMon supports
6182 * Branch Misses Retired hw_event or not.
6183 */
6184 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6185 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6186 return -ENODEV;
6187
6188 version = eax.split.version_id;
6189 if (version < 2)
6190 x86_pmu = core_pmu;
6191 else
6192 x86_pmu = intel_pmu;
6193
6194 x86_pmu.version = version;
6195 x86_pmu.num_counters = eax.split.num_counters;
6196 x86_pmu.cntval_bits = eax.split.bit_width;
6197 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
6198
6199 x86_pmu.events_maskl = ebx.full;
6200 x86_pmu.events_mask_len = eax.split.mask_length;
6201
6202 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
6203 x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
6204
6205 /*
6206 * Quirk: v2 perfmon does not report fixed-purpose events, so
6207 * assume at least 3 events, when not running in a hypervisor:
6208 */
6209 if (version > 1 && version < 5) {
6210 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6211
6212 x86_pmu.num_counters_fixed =
6213 max((int)edx.split.num_counters_fixed, assume);
6214
6215 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
6216 } else if (version >= 5)
6217 x86_pmu.num_counters_fixed = fls(fixed_mask);
6218
6219 if (boot_cpu_has(X86_FEATURE_PDCM)) {
6220 u64 capabilities;
6221
6222 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
6223 x86_pmu.intel_cap.capabilities = capabilities;
6224 }
6225
6226 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6227 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6228 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6229 }
6230
6231 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6232 intel_pmu_arch_lbr_init();
6233
6234 intel_ds_init();
6235
6236 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6237
6238 if (version >= 5) {
6239 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6240 if (x86_pmu.intel_cap.anythread_deprecated)
6241 pr_cont(" AnyThread deprecated, ");
6242 }
6243
6244 /*
6245 * Install the hw-cache-events table:
6246 */
6247 switch (boot_cpu_data.x86_model) {
6248 case INTEL_FAM6_CORE_YONAH:
6249 pr_cont("Core events, ");
6250 name = "core";
6251 break;
6252
6253 case INTEL_FAM6_CORE2_MEROM:
6254 x86_add_quirk(intel_clovertown_quirk);
6255 fallthrough;
6256
6257 case INTEL_FAM6_CORE2_MEROM_L:
6258 case INTEL_FAM6_CORE2_PENRYN:
6259 case INTEL_FAM6_CORE2_DUNNINGTON:
6260 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6261 sizeof(hw_cache_event_ids));
6262
6263 intel_pmu_lbr_init_core();
6264
6265 x86_pmu.event_constraints = intel_core2_event_constraints;
6266 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6267 pr_cont("Core2 events, ");
6268 name = "core2";
6269 break;
6270
6271 case INTEL_FAM6_NEHALEM:
6272 case INTEL_FAM6_NEHALEM_EP:
6273 case INTEL_FAM6_NEHALEM_EX:
6274 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6275 sizeof(hw_cache_event_ids));
6276 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6277 sizeof(hw_cache_extra_regs));
6278
6279 intel_pmu_lbr_init_nhm();
6280
6281 x86_pmu.event_constraints = intel_nehalem_event_constraints;
6282 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6283 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6284 x86_pmu.extra_regs = intel_nehalem_extra_regs;
6285 x86_pmu.limit_period = nhm_limit_period;
6286
6287 mem_attr = nhm_mem_events_attrs;
6288
6289 /* UOPS_ISSUED.STALLED_CYCLES */
6290 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6291 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6292 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6293 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6294 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6295
6296 intel_pmu_pebs_data_source_nhm();
6297 x86_add_quirk(intel_nehalem_quirk);
6298 x86_pmu.pebs_no_tlb = 1;
6299 extra_attr = nhm_format_attr;
6300
6301 pr_cont("Nehalem events, ");
6302 name = "nehalem";
6303 break;
6304
6305 case INTEL_FAM6_ATOM_BONNELL:
6306 case INTEL_FAM6_ATOM_BONNELL_MID:
6307 case INTEL_FAM6_ATOM_SALTWELL:
6308 case INTEL_FAM6_ATOM_SALTWELL_MID:
6309 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6310 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6311 sizeof(hw_cache_event_ids));
6312
6313 intel_pmu_lbr_init_atom();
6314
6315 x86_pmu.event_constraints = intel_gen_event_constraints;
6316 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6317 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6318 pr_cont("Atom events, ");
6319 name = "bonnell";
6320 break;
6321
6322 case INTEL_FAM6_ATOM_SILVERMONT:
6323 case INTEL_FAM6_ATOM_SILVERMONT_D:
6324 case INTEL_FAM6_ATOM_SILVERMONT_MID:
6325 case INTEL_FAM6_ATOM_AIRMONT:
6326 case INTEL_FAM6_ATOM_AIRMONT_MID:
6327 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6328 sizeof(hw_cache_event_ids));
6329 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6330 sizeof(hw_cache_extra_regs));
6331
6332 intel_pmu_lbr_init_slm();
6333
6334 x86_pmu.event_constraints = intel_slm_event_constraints;
6335 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6336 x86_pmu.extra_regs = intel_slm_extra_regs;
6337 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6338 td_attr = slm_events_attrs;
6339 extra_attr = slm_format_attr;
6340 pr_cont("Silvermont events, ");
6341 name = "silvermont";
6342 break;
6343
6344 case INTEL_FAM6_ATOM_GOLDMONT:
6345 case INTEL_FAM6_ATOM_GOLDMONT_D:
6346 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6347 sizeof(hw_cache_event_ids));
6348 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6349 sizeof(hw_cache_extra_regs));
6350
6351 intel_pmu_lbr_init_skl();
6352
6353 x86_pmu.event_constraints = intel_slm_event_constraints;
6354 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6355 x86_pmu.extra_regs = intel_glm_extra_regs;
6356 /*
6357 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6358 * for precise cycles.
6359 * :pp is identical to :ppp
6360 */
6361 x86_pmu.pebs_aliases = NULL;
6362 x86_pmu.pebs_prec_dist = true;
6363 x86_pmu.lbr_pt_coexist = true;
6364 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6365 td_attr = glm_events_attrs;
6366 extra_attr = slm_format_attr;
6367 pr_cont("Goldmont events, ");
6368 name = "goldmont";
6369 break;
6370
6371 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6372 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6373 sizeof(hw_cache_event_ids));
6374 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6375 sizeof(hw_cache_extra_regs));
6376
6377 intel_pmu_lbr_init_skl();
6378
6379 x86_pmu.event_constraints = intel_slm_event_constraints;
6380 x86_pmu.extra_regs = intel_glm_extra_regs;
6381 /*
6382 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6383 * for precise cycles.
6384 */
6385 x86_pmu.pebs_aliases = NULL;
6386 x86_pmu.pebs_prec_dist = true;
6387 x86_pmu.lbr_pt_coexist = true;
6388 x86_pmu.pebs_capable = ~0ULL;
6389 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6390 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6391 x86_pmu.get_event_constraints = glp_get_event_constraints;
6392 td_attr = glm_events_attrs;
6393 /* Goldmont Plus has 4-wide pipeline */
6394 event_attr_td_total_slots_scale_glm.event_str = "4";
6395 extra_attr = slm_format_attr;
6396 pr_cont("Goldmont plus events, ");
6397 name = "goldmont_plus";
6398 break;
6399
6400 case INTEL_FAM6_ATOM_TREMONT_D:
6401 case INTEL_FAM6_ATOM_TREMONT:
6402 case INTEL_FAM6_ATOM_TREMONT_L:
6403 x86_pmu.late_ack = true;
6404 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6405 sizeof(hw_cache_event_ids));
6406 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6407 sizeof(hw_cache_extra_regs));
6408 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6409
6410 intel_pmu_lbr_init_skl();
6411
6412 x86_pmu.event_constraints = intel_slm_event_constraints;
6413 x86_pmu.extra_regs = intel_tnt_extra_regs;
6414 /*
6415 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6416 * for precise cycles.
6417 */
6418 x86_pmu.pebs_aliases = NULL;
6419 x86_pmu.pebs_prec_dist = true;
6420 x86_pmu.lbr_pt_coexist = true;
6421 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6422 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6423 td_attr = tnt_events_attrs;
6424 extra_attr = slm_format_attr;
6425 pr_cont("Tremont events, ");
6426 name = "Tremont";
6427 break;
6428
6429 case INTEL_FAM6_ATOM_GRACEMONT:
6430 intel_pmu_init_grt(NULL);
6431 intel_pmu_pebs_data_source_grt();
6432 x86_pmu.pebs_latency_data = adl_latency_data_small;
6433 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6434 td_attr = tnt_events_attrs;
6435 mem_attr = grt_mem_attrs;
6436 extra_attr = nhm_format_attr;
6437 pr_cont("Gracemont events, ");
6438 name = "gracemont";
6439 break;
6440
6441 case INTEL_FAM6_ATOM_CRESTMONT:
6442 case INTEL_FAM6_ATOM_CRESTMONT_X:
6443 intel_pmu_init_grt(NULL);
6444 x86_pmu.extra_regs = intel_cmt_extra_regs;
6445 intel_pmu_pebs_data_source_cmt();
6446 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6447 x86_pmu.get_event_constraints = cmt_get_event_constraints;
6448 td_attr = cmt_events_attrs;
6449 mem_attr = grt_mem_attrs;
6450 extra_attr = cmt_format_attr;
6451 pr_cont("Crestmont events, ");
6452 name = "crestmont";
6453 break;
6454
6455 case INTEL_FAM6_WESTMERE:
6456 case INTEL_FAM6_WESTMERE_EP:
6457 case INTEL_FAM6_WESTMERE_EX:
6458 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6459 sizeof(hw_cache_event_ids));
6460 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6461 sizeof(hw_cache_extra_regs));
6462
6463 intel_pmu_lbr_init_nhm();
6464
6465 x86_pmu.event_constraints = intel_westmere_event_constraints;
6466 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6467 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6468 x86_pmu.extra_regs = intel_westmere_extra_regs;
6469 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6470
6471 mem_attr = nhm_mem_events_attrs;
6472
6473 /* UOPS_ISSUED.STALLED_CYCLES */
6474 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6475 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6476 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6477 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6478 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6479
6480 intel_pmu_pebs_data_source_nhm();
6481 extra_attr = nhm_format_attr;
6482 pr_cont("Westmere events, ");
6483 name = "westmere";
6484 break;
6485
6486 case INTEL_FAM6_SANDYBRIDGE:
6487 case INTEL_FAM6_SANDYBRIDGE_X:
6488 x86_add_quirk(intel_sandybridge_quirk);
6489 x86_add_quirk(intel_ht_bug);
6490 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6491 sizeof(hw_cache_event_ids));
6492 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6493 sizeof(hw_cache_extra_regs));
6494
6495 intel_pmu_lbr_init_snb();
6496
6497 x86_pmu.event_constraints = intel_snb_event_constraints;
6498 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6499 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6500 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6501 x86_pmu.extra_regs = intel_snbep_extra_regs;
6502 else
6503 x86_pmu.extra_regs = intel_snb_extra_regs;
6504
6505
6506 /* all extra regs are per-cpu when HT is on */
6507 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6508 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6509
6510 td_attr = snb_events_attrs;
6511 mem_attr = snb_mem_events_attrs;
6512
6513 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6514 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6515 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6516 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6517 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6518 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6519
6520 extra_attr = nhm_format_attr;
6521
6522 pr_cont("SandyBridge events, ");
6523 name = "sandybridge";
6524 break;
6525
6526 case INTEL_FAM6_IVYBRIDGE:
6527 case INTEL_FAM6_IVYBRIDGE_X:
6528 x86_add_quirk(intel_ht_bug);
6529 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6530 sizeof(hw_cache_event_ids));
6531 /* dTLB-load-misses on IVB is different than SNB */
6532 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6533
6534 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6535 sizeof(hw_cache_extra_regs));
6536
6537 intel_pmu_lbr_init_snb();
6538
6539 x86_pmu.event_constraints = intel_ivb_event_constraints;
6540 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6541 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6542 x86_pmu.pebs_prec_dist = true;
6543 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6544 x86_pmu.extra_regs = intel_snbep_extra_regs;
6545 else
6546 x86_pmu.extra_regs = intel_snb_extra_regs;
6547 /* all extra regs are per-cpu when HT is on */
6548 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6549 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6550
6551 td_attr = snb_events_attrs;
6552 mem_attr = snb_mem_events_attrs;
6553
6554 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6555 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6556 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6557
6558 extra_attr = nhm_format_attr;
6559
6560 pr_cont("IvyBridge events, ");
6561 name = "ivybridge";
6562 break;
6563
6564
6565 case INTEL_FAM6_HASWELL:
6566 case INTEL_FAM6_HASWELL_X:
6567 case INTEL_FAM6_HASWELL_L:
6568 case INTEL_FAM6_HASWELL_G:
6569 x86_add_quirk(intel_ht_bug);
6570 x86_add_quirk(intel_pebs_isolation_quirk);
6571 x86_pmu.late_ack = true;
6572 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6573 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6574
6575 intel_pmu_lbr_init_hsw();
6576
6577 x86_pmu.event_constraints = intel_hsw_event_constraints;
6578 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6579 x86_pmu.extra_regs = intel_snbep_extra_regs;
6580 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6581 x86_pmu.pebs_prec_dist = true;
6582 /* all extra regs are per-cpu when HT is on */
6583 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6584 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6585
6586 x86_pmu.hw_config = hsw_hw_config;
6587 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6588 x86_pmu.lbr_double_abort = true;
6589 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6590 hsw_format_attr : nhm_format_attr;
6591 td_attr = hsw_events_attrs;
6592 mem_attr = hsw_mem_events_attrs;
6593 tsx_attr = hsw_tsx_events_attrs;
6594 pr_cont("Haswell events, ");
6595 name = "haswell";
6596 break;
6597
6598 case INTEL_FAM6_BROADWELL:
6599 case INTEL_FAM6_BROADWELL_D:
6600 case INTEL_FAM6_BROADWELL_G:
6601 case INTEL_FAM6_BROADWELL_X:
6602 x86_add_quirk(intel_pebs_isolation_quirk);
6603 x86_pmu.late_ack = true;
6604 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6605 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6606
6607 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6608 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6609 BDW_L3_MISS|HSW_SNOOP_DRAM;
6610 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6611 HSW_SNOOP_DRAM;
6612 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6613 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6614 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6615 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6616
6617 intel_pmu_lbr_init_hsw();
6618
6619 x86_pmu.event_constraints = intel_bdw_event_constraints;
6620 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6621 x86_pmu.extra_regs = intel_snbep_extra_regs;
6622 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6623 x86_pmu.pebs_prec_dist = true;
6624 /* all extra regs are per-cpu when HT is on */
6625 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6626 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6627
6628 x86_pmu.hw_config = hsw_hw_config;
6629 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6630 x86_pmu.limit_period = bdw_limit_period;
6631 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6632 hsw_format_attr : nhm_format_attr;
6633 td_attr = hsw_events_attrs;
6634 mem_attr = hsw_mem_events_attrs;
6635 tsx_attr = hsw_tsx_events_attrs;
6636 pr_cont("Broadwell events, ");
6637 name = "broadwell";
6638 break;
6639
6640 case INTEL_FAM6_XEON_PHI_KNL:
6641 case INTEL_FAM6_XEON_PHI_KNM:
6642 memcpy(hw_cache_event_ids,
6643 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6644 memcpy(hw_cache_extra_regs,
6645 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6646 intel_pmu_lbr_init_knl();
6647
6648 x86_pmu.event_constraints = intel_slm_event_constraints;
6649 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6650 x86_pmu.extra_regs = intel_knl_extra_regs;
6651
6652 /* all extra regs are per-cpu when HT is on */
6653 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6654 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6655 extra_attr = slm_format_attr;
6656 pr_cont("Knights Landing/Mill events, ");
6657 name = "knights-landing";
6658 break;
6659
6660 case INTEL_FAM6_SKYLAKE_X:
6661 pmem = true;
6662 fallthrough;
6663 case INTEL_FAM6_SKYLAKE_L:
6664 case INTEL_FAM6_SKYLAKE:
6665 case INTEL_FAM6_KABYLAKE_L:
6666 case INTEL_FAM6_KABYLAKE:
6667 case INTEL_FAM6_COMETLAKE_L:
6668 case INTEL_FAM6_COMETLAKE:
6669 x86_add_quirk(intel_pebs_isolation_quirk);
6670 x86_pmu.late_ack = true;
6671 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6672 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6673 intel_pmu_lbr_init_skl();
6674
6675 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6676 event_attr_td_recovery_bubbles.event_str_noht =
6677 "event=0xd,umask=0x1,cmask=1";
6678 event_attr_td_recovery_bubbles.event_str_ht =
6679 "event=0xd,umask=0x1,cmask=1,any=1";
6680
6681 x86_pmu.event_constraints = intel_skl_event_constraints;
6682 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6683 x86_pmu.extra_regs = intel_skl_extra_regs;
6684 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6685 x86_pmu.pebs_prec_dist = true;
6686 /* all extra regs are per-cpu when HT is on */
6687 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6688 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6689
6690 x86_pmu.hw_config = hsw_hw_config;
6691 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6692 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6693 hsw_format_attr : nhm_format_attr;
6694 extra_skl_attr = skl_format_attr;
6695 td_attr = hsw_events_attrs;
6696 mem_attr = hsw_mem_events_attrs;
6697 tsx_attr = hsw_tsx_events_attrs;
6698 intel_pmu_pebs_data_source_skl(pmem);
6699
6700 /*
6701 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6702 * TSX force abort hooks are not required on these systems. Only deploy
6703 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6704 */
6705 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6706 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6707 x86_pmu.flags |= PMU_FL_TFA;
6708 x86_pmu.get_event_constraints = tfa_get_event_constraints;
6709 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6710 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6711 }
6712
6713 pr_cont("Skylake events, ");
6714 name = "skylake";
6715 break;
6716
6717 case INTEL_FAM6_ICELAKE_X:
6718 case INTEL_FAM6_ICELAKE_D:
6719 x86_pmu.pebs_ept = 1;
6720 pmem = true;
6721 fallthrough;
6722 case INTEL_FAM6_ICELAKE_L:
6723 case INTEL_FAM6_ICELAKE:
6724 case INTEL_FAM6_TIGERLAKE_L:
6725 case INTEL_FAM6_TIGERLAKE:
6726 case INTEL_FAM6_ROCKETLAKE:
6727 x86_pmu.late_ack = true;
6728 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6729 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6730 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6731 intel_pmu_lbr_init_skl();
6732
6733 x86_pmu.event_constraints = intel_icl_event_constraints;
6734 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6735 x86_pmu.extra_regs = intel_icl_extra_regs;
6736 x86_pmu.pebs_aliases = NULL;
6737 x86_pmu.pebs_prec_dist = true;
6738 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6739 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6740
6741 x86_pmu.hw_config = hsw_hw_config;
6742 x86_pmu.get_event_constraints = icl_get_event_constraints;
6743 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6744 hsw_format_attr : nhm_format_attr;
6745 extra_skl_attr = skl_format_attr;
6746 mem_attr = icl_events_attrs;
6747 td_attr = icl_td_events_attrs;
6748 tsx_attr = icl_tsx_events_attrs;
6749 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6750 x86_pmu.lbr_pt_coexist = true;
6751 intel_pmu_pebs_data_source_skl(pmem);
6752 x86_pmu.num_topdown_events = 4;
6753 static_call_update(intel_pmu_update_topdown_event,
6754 &icl_update_topdown_event);
6755 static_call_update(intel_pmu_set_topdown_event_period,
6756 &icl_set_topdown_event_period);
6757 pr_cont("Icelake events, ");
6758 name = "icelake";
6759 break;
6760
6761 case INTEL_FAM6_SAPPHIRERAPIDS_X:
6762 case INTEL_FAM6_EMERALDRAPIDS_X:
6763 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6764 x86_pmu.extra_regs = intel_glc_extra_regs;
6765 fallthrough;
6766 case INTEL_FAM6_GRANITERAPIDS_X:
6767 case INTEL_FAM6_GRANITERAPIDS_D:
6768 intel_pmu_init_glc(NULL);
6769 if (!x86_pmu.extra_regs)
6770 x86_pmu.extra_regs = intel_rwc_extra_regs;
6771 x86_pmu.pebs_ept = 1;
6772 x86_pmu.hw_config = hsw_hw_config;
6773 x86_pmu.get_event_constraints = glc_get_event_constraints;
6774 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6775 hsw_format_attr : nhm_format_attr;
6776 extra_skl_attr = skl_format_attr;
6777 mem_attr = glc_events_attrs;
6778 td_attr = glc_td_events_attrs;
6779 tsx_attr = glc_tsx_events_attrs;
6780 intel_pmu_pebs_data_source_skl(true);
6781 pr_cont("Sapphire Rapids events, ");
6782 name = "sapphire_rapids";
6783 break;
6784
6785 case INTEL_FAM6_ALDERLAKE:
6786 case INTEL_FAM6_ALDERLAKE_L:
6787 case INTEL_FAM6_RAPTORLAKE:
6788 case INTEL_FAM6_RAPTORLAKE_P:
6789 case INTEL_FAM6_RAPTORLAKE_S:
6790 /*
6791 * Alder Lake has 2 types of CPU, core and atom.
6792 *
6793 * Initialize the common PerfMon capabilities here.
6794 */
6795 intel_pmu_init_hybrid(hybrid_big_small);
6796
6797 x86_pmu.pebs_latency_data = adl_latency_data_small;
6798 x86_pmu.get_event_constraints = adl_get_event_constraints;
6799 x86_pmu.hw_config = adl_hw_config;
6800 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6801
6802 td_attr = adl_hybrid_events_attrs;
6803 mem_attr = adl_hybrid_mem_attrs;
6804 tsx_attr = adl_hybrid_tsx_attrs;
6805 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6806 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6807
6808 /* Initialize big core specific PerfMon capabilities.*/
6809 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6810 intel_pmu_init_glc(&pmu->pmu);
6811 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6812 pmu->num_counters = x86_pmu.num_counters + 2;
6813 pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6814 } else {
6815 pmu->num_counters = x86_pmu.num_counters;
6816 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6817 }
6818
6819 /*
6820 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6821 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6822 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6823 * mistakenly add extra counters for P-cores. Correct the number of
6824 * counters here.
6825 */
6826 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6827 pmu->num_counters = x86_pmu.num_counters;
6828 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6829 }
6830
6831 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6832 pmu->unconstrained = (struct event_constraint)
6833 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6834 0, pmu->num_counters, 0, 0);
6835 pmu->extra_regs = intel_glc_extra_regs;
6836
6837 /* Initialize Atom core specific PerfMon capabilities.*/
6838 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6839 intel_pmu_init_grt(&pmu->pmu);
6840
6841 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6842 intel_pmu_pebs_data_source_adl();
6843 pr_cont("Alderlake Hybrid events, ");
6844 name = "alderlake_hybrid";
6845 break;
6846
6847 case INTEL_FAM6_METEORLAKE:
6848 case INTEL_FAM6_METEORLAKE_L:
6849 intel_pmu_init_hybrid(hybrid_big_small);
6850
6851 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6852 x86_pmu.get_event_constraints = mtl_get_event_constraints;
6853 x86_pmu.hw_config = adl_hw_config;
6854
6855 td_attr = adl_hybrid_events_attrs;
6856 mem_attr = mtl_hybrid_mem_attrs;
6857 tsx_attr = adl_hybrid_tsx_attrs;
6858 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6859 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6860
6861 /* Initialize big core specific PerfMon capabilities.*/
6862 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6863 intel_pmu_init_glc(&pmu->pmu);
6864 pmu->extra_regs = intel_rwc_extra_regs;
6865
6866 /* Initialize Atom core specific PerfMon capabilities.*/
6867 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6868 intel_pmu_init_grt(&pmu->pmu);
6869 pmu->extra_regs = intel_cmt_extra_regs;
6870
6871 intel_pmu_pebs_data_source_mtl();
6872 pr_cont("Meteorlake Hybrid events, ");
6873 name = "meteorlake_hybrid";
6874 break;
6875
6876 default:
6877 switch (x86_pmu.version) {
6878 case 1:
6879 x86_pmu.event_constraints = intel_v1_event_constraints;
6880 pr_cont("generic architected perfmon v1, ");
6881 name = "generic_arch_v1";
6882 break;
6883 case 2:
6884 case 3:
6885 case 4:
6886 /*
6887 * default constraints for v2 and up
6888 */
6889 x86_pmu.event_constraints = intel_gen_event_constraints;
6890 pr_cont("generic architected perfmon, ");
6891 name = "generic_arch_v2+";
6892 break;
6893 default:
6894 /*
6895 * The default constraints for v5 and up can support up to
6896 * 16 fixed counters. For the fixed counters 4 and later,
6897 * the pseudo-encoding is applied.
6898 * The constraints may be cut according to the CPUID enumeration
6899 * by inserting the EVENT_CONSTRAINT_END.
6900 */
6901 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6902 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6903 intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6904 x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6905 pr_cont("generic architected perfmon, ");
6906 name = "generic_arch_v5+";
6907 break;
6908 }
6909 }
6910
6911 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6912
6913 if (!is_hybrid()) {
6914 group_events_td.attrs = td_attr;
6915 group_events_mem.attrs = mem_attr;
6916 group_events_tsx.attrs = tsx_attr;
6917 group_format_extra.attrs = extra_attr;
6918 group_format_extra_skl.attrs = extra_skl_attr;
6919
6920 x86_pmu.attr_update = attr_update;
6921 } else {
6922 hybrid_group_events_td.attrs = td_attr;
6923 hybrid_group_events_mem.attrs = mem_attr;
6924 hybrid_group_events_tsx.attrs = tsx_attr;
6925 hybrid_group_format_extra.attrs = extra_attr;
6926
6927 x86_pmu.attr_update = hybrid_attr_update;
6928 }
6929
6930 intel_pmu_check_num_counters(&x86_pmu.num_counters,
6931 &x86_pmu.num_counters_fixed,
6932 &x86_pmu.intel_ctrl,
6933 (u64)fixed_mask);
6934
6935 /* AnyThread may be deprecated on arch perfmon v5 or later */
6936 if (x86_pmu.intel_cap.anythread_deprecated)
6937 x86_pmu.format_attrs = intel_arch_formats_attr;
6938
6939 intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6940 x86_pmu.num_counters,
6941 x86_pmu.num_counters_fixed,
6942 x86_pmu.intel_ctrl);
6943 /*
6944 * Access LBR MSR may cause #GP under certain circumstances.
6945 * Check all LBR MSR here.
6946 * Disable LBR access if any LBR MSRs can not be accessed.
6947 */
6948 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6949 x86_pmu.lbr_nr = 0;
6950 for (i = 0; i < x86_pmu.lbr_nr; i++) {
6951 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6952 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6953 x86_pmu.lbr_nr = 0;
6954 }
6955
6956 if (x86_pmu.lbr_nr) {
6957 intel_pmu_lbr_init();
6958
6959 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6960
6961 /* only support branch_stack snapshot for perfmon >= v2 */
6962 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6963 if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6964 static_call_update(perf_snapshot_branch_stack,
6965 intel_pmu_snapshot_arch_branch_stack);
6966 } else {
6967 static_call_update(perf_snapshot_branch_stack,
6968 intel_pmu_snapshot_branch_stack);
6969 }
6970 }
6971 }
6972
6973 intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6974
6975 /* Support full width counters using alternative MSR range */
6976 if (x86_pmu.intel_cap.full_width_write) {
6977 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6978 x86_pmu.perfctr = MSR_IA32_PMC0;
6979 pr_cont("full-width counters, ");
6980 }
6981
6982 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6983 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6984
6985 if (x86_pmu.intel_cap.pebs_timing_info)
6986 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
6987
6988 intel_aux_output_init();
6989
6990 return 0;
6991 }
6992
6993 /*
6994 * HT bug: phase 2 init
6995 * Called once we have valid topology information to check
6996 * whether or not HT is enabled
6997 * If HT is off, then we disable the workaround
6998 */
fixup_ht_bug(void)6999 static __init int fixup_ht_bug(void)
7000 {
7001 int c;
7002 /*
7003 * problem not present on this CPU model, nothing to do
7004 */
7005 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7006 return 0;
7007
7008 if (topology_max_smt_threads() > 1) {
7009 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7010 return 0;
7011 }
7012
7013 cpus_read_lock();
7014
7015 hardlockup_detector_perf_stop();
7016
7017 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7018
7019 x86_pmu.start_scheduling = NULL;
7020 x86_pmu.commit_scheduling = NULL;
7021 x86_pmu.stop_scheduling = NULL;
7022
7023 hardlockup_detector_perf_restart();
7024
7025 for_each_online_cpu(c)
7026 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7027
7028 cpus_read_unlock();
7029 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7030 return 0;
7031 }
7032 subsys_initcall(fixup_ht_bug)
7033