1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30
31 enum {
32 PG_DIRECT_MAP_4K = 0,
33 PG_DIRECT_MAP_1M,
34 PG_DIRECT_MAP_2G,
35 PG_DIRECT_MAP_MAX
36 };
37
38 extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39
update_page_count(int level,long count)40 static inline void update_page_count(int level, long count)
41 {
42 if (IS_ENABLED(CONFIG_PROC_FS))
43 atomic_long_add(count, &direct_pages_count[level]);
44 }
45
46 /*
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
49 */
50 #define update_mmu_cache(vma, address, ptep) do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54 /*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61
62 #define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68
69 #define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93
94 extern unsigned long __bootdata_preserved(MODULES_VADDR);
95 extern unsigned long __bootdata_preserved(MODULES_END);
96 #define MODULES_VADDR MODULES_VADDR
97 #define MODULES_END MODULES_END
98 #define MODULES_LEN (1UL << 31)
99
is_module_addr(void * addr)100 static inline int is_module_addr(void *addr)
101 {
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108 }
109
110 /*
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
159 */
160
161 /* Hardware bits in the page table entry */
162 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
164 #define _PAGE_INVALID 0x400 /* HW invalid bit */
165 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166
167 /* Software bits in the page table entry */
168 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
169 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
170 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171 #define _PAGE_READ 0x010 /* SW pte read bit */
172 #define _PAGE_WRITE 0x020 /* SW pte write bit */
173 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
181
182 #define _PAGE_SW_BITS 0xffUL /* All SW bits */
183
184 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
185
186 /* Set of bits not changed in pte_modify */
187 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189
190 /*
191 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
192 * HW bit and all SW bits.
193 */
194 #define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
195
196 /*
197 * handle_pte_fault uses pte_present and pte_none to find out the pte type
198 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
199 * distinguish present from not-present ptes. It is changed only with the page
200 * table lock held.
201 *
202 * The following table gives the different possible bit combinations for
203 * the pte hardware and software bits in the last 12 bits of a pte
204 * (. unassigned bit, x don't care, t swap type):
205 *
206 * 842100000000
207 * 000084210000
208 * 000000008421
209 * .IR.uswrdy.p
210 * empty .10.00000000
211 * swap .11..ttttt.0
212 * prot-none, clean, old .11.xx0000.1
213 * prot-none, clean, young .11.xx0001.1
214 * prot-none, dirty, old .11.xx0010.1
215 * prot-none, dirty, young .11.xx0011.1
216 * read-only, clean, old .11.xx0100.1
217 * read-only, clean, young .01.xx0101.1
218 * read-only, dirty, old .11.xx0110.1
219 * read-only, dirty, young .01.xx0111.1
220 * read-write, clean, old .11.xx1100.1
221 * read-write, clean, young .01.xx1101.1
222 * read-write, dirty, old .10.xx1110.1
223 * read-write, dirty, young .00.xx1111.1
224 * HW-bits: R read-only, I invalid
225 * SW-bits: p present, y young, d dirty, r read, w write, s special,
226 * u unused, l large
227 *
228 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
229 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
230 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
231 */
232
233 /* Bits in the segment/region table address-space-control-element */
234 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
235 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
236 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
237 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
238 #define _ASCE_REAL_SPACE 0x20 /* real space control */
239 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
240 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
241 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
242 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
243 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
244 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
245
246 /* Bits in the region table entry */
247 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
248 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
249 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
250 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
251 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
252 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
253 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
254 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
255 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
256 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
257
258 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
259 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
260 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
261 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
262 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
263 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
264
265 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
266 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
267 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
268 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
269 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
270 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
271
272 #ifdef CONFIG_MEM_SOFT_DIRTY
273 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
274 #else
275 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
276 #endif
277
278 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
279
280 /* Bits in the segment table entry */
281 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
282 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
283 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
284 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
285 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
286 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
287 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
288 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
289 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
290
291 #define _SEGMENT_ENTRY (0)
292 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
293
294 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
295 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
296 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
297 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
298 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
299
300 #ifdef CONFIG_MEM_SOFT_DIRTY
301 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
302 #else
303 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
304 #endif
305
306 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
307 #define _PAGE_ENTRIES 256 /* number of page table entries */
308
309 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
310 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
311
312 #define _REGION1_SHIFT 53
313 #define _REGION2_SHIFT 42
314 #define _REGION3_SHIFT 31
315 #define _SEGMENT_SHIFT 20
316
317 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
318 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
319 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
320 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
321 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
322
323 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
324 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
325 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
326 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
327
328 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
329 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
330 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
331 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
332
333 #define PMD_SHIFT _SEGMENT_SHIFT
334 #define PUD_SHIFT _REGION3_SHIFT
335 #define P4D_SHIFT _REGION2_SHIFT
336 #define PGDIR_SHIFT _REGION1_SHIFT
337
338 #define PMD_SIZE _SEGMENT_SIZE
339 #define PUD_SIZE _REGION3_SIZE
340 #define P4D_SIZE _REGION2_SIZE
341 #define PGDIR_SIZE _REGION1_SIZE
342
343 #define PMD_MASK _SEGMENT_MASK
344 #define PUD_MASK _REGION3_MASK
345 #define P4D_MASK _REGION2_MASK
346 #define PGDIR_MASK _REGION1_MASK
347
348 #define PTRS_PER_PTE _PAGE_ENTRIES
349 #define PTRS_PER_PMD _CRST_ENTRIES
350 #define PTRS_PER_PUD _CRST_ENTRIES
351 #define PTRS_PER_P4D _CRST_ENTRIES
352 #define PTRS_PER_PGD _CRST_ENTRIES
353
354 /*
355 * Segment table and region3 table entry encoding
356 * (R = read-only, I = invalid, y = young bit):
357 * dy..R...I...wr
358 * prot-none, clean, old 00..1...1...00
359 * prot-none, clean, young 01..1...1...00
360 * prot-none, dirty, old 10..1...1...00
361 * prot-none, dirty, young 11..1...1...00
362 * read-only, clean, old 00..1...1...01
363 * read-only, clean, young 01..1...0...01
364 * read-only, dirty, old 10..1...1...01
365 * read-only, dirty, young 11..1...0...01
366 * read-write, clean, old 00..1...1...11
367 * read-write, clean, young 01..1...0...11
368 * read-write, dirty, old 10..0...1...11
369 * read-write, dirty, young 11..0...0...11
370 * The segment table origin is used to distinguish empty (origin==0) from
371 * read-write, old segment table entries (origin!=0)
372 * HW-bits: R read-only, I invalid
373 * SW-bits: y young, d dirty, r read, w write
374 */
375
376 /* Page status table bits for virtualization */
377 #define PGSTE_ACC_BITS 0xf000000000000000UL
378 #define PGSTE_FP_BIT 0x0800000000000000UL
379 #define PGSTE_PCL_BIT 0x0080000000000000UL
380 #define PGSTE_HR_BIT 0x0040000000000000UL
381 #define PGSTE_HC_BIT 0x0020000000000000UL
382 #define PGSTE_GR_BIT 0x0004000000000000UL
383 #define PGSTE_GC_BIT 0x0002000000000000UL
384 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
385 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
386 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
387
388 /* Guest Page State used for virtualization */
389 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
390 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
391 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
392 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
393 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
394 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
395 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
396
397 /*
398 * A user page table pointer has the space-switch-event bit, the
399 * private-space-control bit and the storage-alteration-event-control
400 * bit set. A kernel page table pointer doesn't need them.
401 */
402 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
403 _ASCE_ALT_EVENT)
404
405 /*
406 * Page protection definitions.
407 */
408 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
410 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
411 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
412 _PAGE_INVALID | _PAGE_PROTECT)
413 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
415 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
416 _PAGE_INVALID | _PAGE_PROTECT)
417
418 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
420 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
421 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
422 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
423 _PAGE_PROTECT | _PAGE_NOEXEC)
424 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
425 _PAGE_YOUNG | _PAGE_DIRTY)
426
427 /*
428 * On s390 the page table entry has an invalid bit and a read-only bit.
429 * Read permission implies execute permission and write permission
430 * implies read permission.
431 */
432 /*xwr*/
433
434 /*
435 * Segment entry (large page) protection definitions.
436 */
437 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
438 _SEGMENT_ENTRY_PROTECT)
439 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
440 _SEGMENT_ENTRY_READ | \
441 _SEGMENT_ENTRY_NOEXEC)
442 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
443 _SEGMENT_ENTRY_READ)
444 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
445 _SEGMENT_ENTRY_WRITE | \
446 _SEGMENT_ENTRY_NOEXEC)
447 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
448 _SEGMENT_ENTRY_WRITE)
449 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
450 _SEGMENT_ENTRY_LARGE | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_WRITE | \
453 _SEGMENT_ENTRY_YOUNG | \
454 _SEGMENT_ENTRY_DIRTY | \
455 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
457 _SEGMENT_ENTRY_LARGE | \
458 _SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_YOUNG | \
460 _SEGMENT_ENTRY_PROTECT | \
461 _SEGMENT_ENTRY_NOEXEC)
462 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
463 _SEGMENT_ENTRY_LARGE | \
464 _SEGMENT_ENTRY_READ | \
465 _SEGMENT_ENTRY_WRITE | \
466 _SEGMENT_ENTRY_YOUNG | \
467 _SEGMENT_ENTRY_DIRTY)
468
469 /*
470 * Region3 entry (large page) protection definitions.
471 */
472
473 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
474 _REGION3_ENTRY_LARGE | \
475 _REGION3_ENTRY_READ | \
476 _REGION3_ENTRY_WRITE | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION3_ENTRY_DIRTY | \
479 _REGION_ENTRY_NOEXEC)
480 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
481 _REGION3_ENTRY_LARGE | \
482 _REGION3_ENTRY_READ | \
483 _REGION3_ENTRY_YOUNG | \
484 _REGION_ENTRY_PROTECT | \
485 _REGION_ENTRY_NOEXEC)
486 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
487 _REGION3_ENTRY_LARGE | \
488 _REGION3_ENTRY_READ | \
489 _REGION3_ENTRY_WRITE | \
490 _REGION3_ENTRY_YOUNG | \
491 _REGION3_ENTRY_DIRTY)
492
mm_p4d_folded(struct mm_struct * mm)493 static inline bool mm_p4d_folded(struct mm_struct *mm)
494 {
495 return mm->context.asce_limit <= _REGION1_SIZE;
496 }
497 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
498
mm_pud_folded(struct mm_struct * mm)499 static inline bool mm_pud_folded(struct mm_struct *mm)
500 {
501 return mm->context.asce_limit <= _REGION2_SIZE;
502 }
503 #define mm_pud_folded(mm) mm_pud_folded(mm)
504
mm_pmd_folded(struct mm_struct * mm)505 static inline bool mm_pmd_folded(struct mm_struct *mm)
506 {
507 return mm->context.asce_limit <= _REGION3_SIZE;
508 }
509 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
510
mm_has_pgste(struct mm_struct * mm)511 static inline int mm_has_pgste(struct mm_struct *mm)
512 {
513 #ifdef CONFIG_PGSTE
514 if (unlikely(mm->context.has_pgste))
515 return 1;
516 #endif
517 return 0;
518 }
519
mm_is_protected(struct mm_struct * mm)520 static inline int mm_is_protected(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_PGSTE
523 if (unlikely(atomic_read(&mm->context.protected_count)))
524 return 1;
525 #endif
526 return 0;
527 }
528
mm_alloc_pgste(struct mm_struct * mm)529 static inline int mm_alloc_pgste(struct mm_struct *mm)
530 {
531 #ifdef CONFIG_PGSTE
532 if (unlikely(mm->context.alloc_pgste))
533 return 1;
534 #endif
535 return 0;
536 }
537
clear_pte_bit(pte_t pte,pgprot_t prot)538 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
539 {
540 return __pte(pte_val(pte) & ~pgprot_val(prot));
541 }
542
set_pte_bit(pte_t pte,pgprot_t prot)543 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
544 {
545 return __pte(pte_val(pte) | pgprot_val(prot));
546 }
547
clear_pmd_bit(pmd_t pmd,pgprot_t prot)548 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
549 {
550 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
551 }
552
set_pmd_bit(pmd_t pmd,pgprot_t prot)553 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
554 {
555 return __pmd(pmd_val(pmd) | pgprot_val(prot));
556 }
557
clear_pud_bit(pud_t pud,pgprot_t prot)558 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
559 {
560 return __pud(pud_val(pud) & ~pgprot_val(prot));
561 }
562
set_pud_bit(pud_t pud,pgprot_t prot)563 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
564 {
565 return __pud(pud_val(pud) | pgprot_val(prot));
566 }
567
568 /*
569 * In the case that a guest uses storage keys
570 * faults should no longer be backed by zero pages
571 */
572 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)573 static inline int mm_uses_skeys(struct mm_struct *mm)
574 {
575 #ifdef CONFIG_PGSTE
576 if (mm->context.uses_skeys)
577 return 1;
578 #endif
579 return 0;
580 }
581
csp(unsigned int * ptr,unsigned int old,unsigned int new)582 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
583 {
584 union register_pair r1 = { .even = old, .odd = new, };
585 unsigned long address = (unsigned long)ptr | 1;
586
587 asm volatile(
588 " csp %[r1],%[address]"
589 : [r1] "+&d" (r1.pair), "+m" (*ptr)
590 : [address] "d" (address)
591 : "cc");
592 }
593
cspg(unsigned long * ptr,unsigned long old,unsigned long new)594 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
595 {
596 union register_pair r1 = { .even = old, .odd = new, };
597 unsigned long address = (unsigned long)ptr | 1;
598
599 asm volatile(
600 " cspg %[r1],%[address]"
601 : [r1] "+&d" (r1.pair), "+m" (*ptr)
602 : [address] "d" (address)
603 : "cc");
604 }
605
606 #define CRDTE_DTT_PAGE 0x00UL
607 #define CRDTE_DTT_SEGMENT 0x10UL
608 #define CRDTE_DTT_REGION3 0x14UL
609 #define CRDTE_DTT_REGION2 0x18UL
610 #define CRDTE_DTT_REGION1 0x1cUL
611
crdte(unsigned long old,unsigned long new,unsigned long * table,unsigned long dtt,unsigned long address,unsigned long asce)612 static inline void crdte(unsigned long old, unsigned long new,
613 unsigned long *table, unsigned long dtt,
614 unsigned long address, unsigned long asce)
615 {
616 union register_pair r1 = { .even = old, .odd = new, };
617 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
618
619 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
620 : [r1] "+&d" (r1.pair)
621 : [r2] "d" (r2.pair), [asce] "a" (asce)
622 : "memory", "cc");
623 }
624
625 /*
626 * pgd/p4d/pud/pmd/pte query functions
627 */
pgd_folded(pgd_t pgd)628 static inline int pgd_folded(pgd_t pgd)
629 {
630 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
631 }
632
pgd_present(pgd_t pgd)633 static inline int pgd_present(pgd_t pgd)
634 {
635 if (pgd_folded(pgd))
636 return 1;
637 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
638 }
639
pgd_none(pgd_t pgd)640 static inline int pgd_none(pgd_t pgd)
641 {
642 if (pgd_folded(pgd))
643 return 0;
644 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
645 }
646
pgd_bad(pgd_t pgd)647 static inline int pgd_bad(pgd_t pgd)
648 {
649 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
650 return 0;
651 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
652 }
653
pgd_pfn(pgd_t pgd)654 static inline unsigned long pgd_pfn(pgd_t pgd)
655 {
656 unsigned long origin_mask;
657
658 origin_mask = _REGION_ENTRY_ORIGIN;
659 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
660 }
661
p4d_folded(p4d_t p4d)662 static inline int p4d_folded(p4d_t p4d)
663 {
664 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
665 }
666
p4d_present(p4d_t p4d)667 static inline int p4d_present(p4d_t p4d)
668 {
669 if (p4d_folded(p4d))
670 return 1;
671 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
672 }
673
p4d_none(p4d_t p4d)674 static inline int p4d_none(p4d_t p4d)
675 {
676 if (p4d_folded(p4d))
677 return 0;
678 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
679 }
680
p4d_pfn(p4d_t p4d)681 static inline unsigned long p4d_pfn(p4d_t p4d)
682 {
683 unsigned long origin_mask;
684
685 origin_mask = _REGION_ENTRY_ORIGIN;
686 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
687 }
688
pud_folded(pud_t pud)689 static inline int pud_folded(pud_t pud)
690 {
691 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
692 }
693
pud_present(pud_t pud)694 static inline int pud_present(pud_t pud)
695 {
696 if (pud_folded(pud))
697 return 1;
698 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
699 }
700
pud_none(pud_t pud)701 static inline int pud_none(pud_t pud)
702 {
703 if (pud_folded(pud))
704 return 0;
705 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
706 }
707
708 #define pud_leaf pud_large
pud_large(pud_t pud)709 static inline int pud_large(pud_t pud)
710 {
711 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
712 return 0;
713 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
714 }
715
716 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)717 static inline int pmd_large(pmd_t pmd)
718 {
719 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
720 }
721
pmd_bad(pmd_t pmd)722 static inline int pmd_bad(pmd_t pmd)
723 {
724 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
725 return 1;
726 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
727 }
728
pud_bad(pud_t pud)729 static inline int pud_bad(pud_t pud)
730 {
731 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
732
733 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
734 return 1;
735 if (type < _REGION_ENTRY_TYPE_R3)
736 return 0;
737 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
738 }
739
p4d_bad(p4d_t p4d)740 static inline int p4d_bad(p4d_t p4d)
741 {
742 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
743
744 if (type > _REGION_ENTRY_TYPE_R2)
745 return 1;
746 if (type < _REGION_ENTRY_TYPE_R2)
747 return 0;
748 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
749 }
750
pmd_present(pmd_t pmd)751 static inline int pmd_present(pmd_t pmd)
752 {
753 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
754 }
755
pmd_none(pmd_t pmd)756 static inline int pmd_none(pmd_t pmd)
757 {
758 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
759 }
760
761 #define pmd_write pmd_write
pmd_write(pmd_t pmd)762 static inline int pmd_write(pmd_t pmd)
763 {
764 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
765 }
766
767 #define pud_write pud_write
pud_write(pud_t pud)768 static inline int pud_write(pud_t pud)
769 {
770 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
771 }
772
773 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)774 static inline int pmd_dirty(pmd_t pmd)
775 {
776 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
777 }
778
779 #define pmd_young pmd_young
pmd_young(pmd_t pmd)780 static inline int pmd_young(pmd_t pmd)
781 {
782 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
783 }
784
pte_present(pte_t pte)785 static inline int pte_present(pte_t pte)
786 {
787 /* Bit pattern: (pte & 0x001) == 0x001 */
788 return (pte_val(pte) & _PAGE_PRESENT) != 0;
789 }
790
pte_none(pte_t pte)791 static inline int pte_none(pte_t pte)
792 {
793 /* Bit pattern: pte == 0x400 */
794 return pte_val(pte) == _PAGE_INVALID;
795 }
796
pte_swap(pte_t pte)797 static inline int pte_swap(pte_t pte)
798 {
799 /* Bit pattern: (pte & 0x201) == 0x200 */
800 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
801 == _PAGE_PROTECT;
802 }
803
pte_special(pte_t pte)804 static inline int pte_special(pte_t pte)
805 {
806 return (pte_val(pte) & _PAGE_SPECIAL);
807 }
808
809 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)810 static inline int pte_same(pte_t a, pte_t b)
811 {
812 return pte_val(a) == pte_val(b);
813 }
814
815 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)816 static inline int pte_protnone(pte_t pte)
817 {
818 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
819 }
820
pmd_protnone(pmd_t pmd)821 static inline int pmd_protnone(pmd_t pmd)
822 {
823 /* pmd_large(pmd) implies pmd_present(pmd) */
824 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
825 }
826 #endif
827
pte_swp_exclusive(pte_t pte)828 static inline int pte_swp_exclusive(pte_t pte)
829 {
830 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
831 }
832
pte_swp_mkexclusive(pte_t pte)833 static inline pte_t pte_swp_mkexclusive(pte_t pte)
834 {
835 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
836 }
837
pte_swp_clear_exclusive(pte_t pte)838 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
839 {
840 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
841 }
842
pte_soft_dirty(pte_t pte)843 static inline int pte_soft_dirty(pte_t pte)
844 {
845 return pte_val(pte) & _PAGE_SOFT_DIRTY;
846 }
847 #define pte_swp_soft_dirty pte_soft_dirty
848
pte_mksoft_dirty(pte_t pte)849 static inline pte_t pte_mksoft_dirty(pte_t pte)
850 {
851 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
852 }
853 #define pte_swp_mksoft_dirty pte_mksoft_dirty
854
pte_clear_soft_dirty(pte_t pte)855 static inline pte_t pte_clear_soft_dirty(pte_t pte)
856 {
857 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
858 }
859 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
860
pmd_soft_dirty(pmd_t pmd)861 static inline int pmd_soft_dirty(pmd_t pmd)
862 {
863 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
864 }
865
pmd_mksoft_dirty(pmd_t pmd)866 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
867 {
868 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
869 }
870
pmd_clear_soft_dirty(pmd_t pmd)871 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
872 {
873 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
874 }
875
876 /*
877 * query functions pte_write/pte_dirty/pte_young only work if
878 * pte_present() is true. Undefined behaviour if not..
879 */
pte_write(pte_t pte)880 static inline int pte_write(pte_t pte)
881 {
882 return (pte_val(pte) & _PAGE_WRITE) != 0;
883 }
884
pte_dirty(pte_t pte)885 static inline int pte_dirty(pte_t pte)
886 {
887 return (pte_val(pte) & _PAGE_DIRTY) != 0;
888 }
889
pte_young(pte_t pte)890 static inline int pte_young(pte_t pte)
891 {
892 return (pte_val(pte) & _PAGE_YOUNG) != 0;
893 }
894
895 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)896 static inline int pte_unused(pte_t pte)
897 {
898 return pte_val(pte) & _PAGE_UNUSED;
899 }
900
901 /*
902 * Extract the pgprot value from the given pte while at the same time making it
903 * usable for kernel address space mappings where fault driven dirty and
904 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
905 * must not be set.
906 */
pte_pgprot(pte_t pte)907 static inline pgprot_t pte_pgprot(pte_t pte)
908 {
909 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
910
911 if (pte_write(pte))
912 pte_flags |= pgprot_val(PAGE_KERNEL);
913 else
914 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
915 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
916
917 return __pgprot(pte_flags);
918 }
919
920 /*
921 * pgd/pmd/pte modification functions
922 */
923
set_pgd(pgd_t * pgdp,pgd_t pgd)924 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
925 {
926 WRITE_ONCE(*pgdp, pgd);
927 }
928
set_p4d(p4d_t * p4dp,p4d_t p4d)929 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
930 {
931 WRITE_ONCE(*p4dp, p4d);
932 }
933
set_pud(pud_t * pudp,pud_t pud)934 static inline void set_pud(pud_t *pudp, pud_t pud)
935 {
936 WRITE_ONCE(*pudp, pud);
937 }
938
set_pmd(pmd_t * pmdp,pmd_t pmd)939 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
940 {
941 WRITE_ONCE(*pmdp, pmd);
942 }
943
set_pte(pte_t * ptep,pte_t pte)944 static inline void set_pte(pte_t *ptep, pte_t pte)
945 {
946 WRITE_ONCE(*ptep, pte);
947 }
948
pgd_clear(pgd_t * pgd)949 static inline void pgd_clear(pgd_t *pgd)
950 {
951 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
952 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
953 }
954
p4d_clear(p4d_t * p4d)955 static inline void p4d_clear(p4d_t *p4d)
956 {
957 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
958 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
959 }
960
pud_clear(pud_t * pud)961 static inline void pud_clear(pud_t *pud)
962 {
963 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
964 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
965 }
966
pmd_clear(pmd_t * pmdp)967 static inline void pmd_clear(pmd_t *pmdp)
968 {
969 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
970 }
971
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)972 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
973 {
974 set_pte(ptep, __pte(_PAGE_INVALID));
975 }
976
977 /*
978 * The following pte modification functions only work if
979 * pte_present() is true. Undefined behaviour if not..
980 */
pte_modify(pte_t pte,pgprot_t newprot)981 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
982 {
983 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
984 pte = set_pte_bit(pte, newprot);
985 /*
986 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
987 * has the invalid bit set, clear it again for readable, young pages
988 */
989 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
990 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
991 /*
992 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
993 * protection bit set, clear it again for writable, dirty pages
994 */
995 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
996 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
997 return pte;
998 }
999
pte_wrprotect(pte_t pte)1000 static inline pte_t pte_wrprotect(pte_t pte)
1001 {
1002 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1003 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1004 }
1005
pte_mkwrite_novma(pte_t pte)1006 static inline pte_t pte_mkwrite_novma(pte_t pte)
1007 {
1008 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1009 if (pte_val(pte) & _PAGE_DIRTY)
1010 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1011 return pte;
1012 }
1013
pte_mkclean(pte_t pte)1014 static inline pte_t pte_mkclean(pte_t pte)
1015 {
1016 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1017 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1018 }
1019
pte_mkdirty(pte_t pte)1020 static inline pte_t pte_mkdirty(pte_t pte)
1021 {
1022 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1023 if (pte_val(pte) & _PAGE_WRITE)
1024 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1025 return pte;
1026 }
1027
pte_mkold(pte_t pte)1028 static inline pte_t pte_mkold(pte_t pte)
1029 {
1030 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1031 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1032 }
1033
pte_mkyoung(pte_t pte)1034 static inline pte_t pte_mkyoung(pte_t pte)
1035 {
1036 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1037 if (pte_val(pte) & _PAGE_READ)
1038 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1039 return pte;
1040 }
1041
pte_mkspecial(pte_t pte)1042 static inline pte_t pte_mkspecial(pte_t pte)
1043 {
1044 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1045 }
1046
1047 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)1048 static inline pte_t pte_mkhuge(pte_t pte)
1049 {
1050 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1051 }
1052 #endif
1053
1054 #define IPTE_GLOBAL 0
1055 #define IPTE_LOCAL 1
1056
1057 #define IPTE_NODAT 0x400
1058 #define IPTE_GUEST_ASCE 0x800
1059
__ptep_rdp(unsigned long addr,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1060 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1061 unsigned long opt, unsigned long asce,
1062 int local)
1063 {
1064 unsigned long pto;
1065
1066 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1067 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1068 : "+m" (*ptep)
1069 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1070 [asce] "a" (asce), [m4] "i" (local));
1071 }
1072
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1073 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1074 unsigned long opt, unsigned long asce,
1075 int local)
1076 {
1077 unsigned long pto = __pa(ptep);
1078
1079 if (__builtin_constant_p(opt) && opt == 0) {
1080 /* Invalidation + TLB flush for the pte */
1081 asm volatile(
1082 " ipte %[r1],%[r2],0,%[m4]"
1083 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1084 [m4] "i" (local));
1085 return;
1086 }
1087
1088 /* Invalidate ptes with options + TLB flush of the ptes */
1089 opt = opt | (asce & _ASCE_ORIGIN);
1090 asm volatile(
1091 " ipte %[r1],%[r2],%[r3],%[m4]"
1092 : [r2] "+a" (address), [r3] "+a" (opt)
1093 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1094 }
1095
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1096 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1097 pte_t *ptep, int local)
1098 {
1099 unsigned long pto = __pa(ptep);
1100
1101 /* Invalidate a range of ptes + TLB flush of the ptes */
1102 do {
1103 asm volatile(
1104 " ipte %[r1],%[r2],%[r3],%[m4]"
1105 : [r2] "+a" (address), [r3] "+a" (nr)
1106 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1107 } while (nr != 255);
1108 }
1109
1110 /*
1111 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1112 * both clear the TLB for the unmapped pte. The reason is that
1113 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1114 * to modify an active pte. The sequence is
1115 * 1) ptep_get_and_clear
1116 * 2) set_pte_at
1117 * 3) flush_tlb_range
1118 * On s390 the tlb needs to get flushed with the modification of the pte
1119 * if the pte is active. The only way how this can be implemented is to
1120 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1121 * is a nop.
1122 */
1123 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1124 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1125
1126 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1127 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1128 unsigned long addr, pte_t *ptep)
1129 {
1130 pte_t pte = *ptep;
1131
1132 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1133 return pte_young(pte);
1134 }
1135
1136 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1137 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1138 unsigned long address, pte_t *ptep)
1139 {
1140 return ptep_test_and_clear_young(vma, address, ptep);
1141 }
1142
1143 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1144 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1145 unsigned long addr, pte_t *ptep)
1146 {
1147 pte_t res;
1148
1149 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1150 /* At this point the reference through the mapping is still present */
1151 if (mm_is_protected(mm) && pte_present(res))
1152 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1153 return res;
1154 }
1155
1156 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1157 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1158 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1159 pte_t *, pte_t, pte_t);
1160
1161 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1162 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1163 unsigned long addr, pte_t *ptep)
1164 {
1165 pte_t res;
1166
1167 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1168 /* At this point the reference through the mapping is still present */
1169 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1170 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1171 return res;
1172 }
1173
1174 /*
1175 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1176 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1177 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1178 * cannot be accessed while the batched unmap is running. In this case
1179 * full==1 and a simple pte_clear is enough. See tlb.h.
1180 */
1181 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1182 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1183 unsigned long addr,
1184 pte_t *ptep, int full)
1185 {
1186 pte_t res;
1187
1188 if (full) {
1189 res = *ptep;
1190 set_pte(ptep, __pte(_PAGE_INVALID));
1191 } else {
1192 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1193 }
1194 /* Nothing to do */
1195 if (!mm_is_protected(mm) || !pte_present(res))
1196 return res;
1197 /*
1198 * At this point the reference through the mapping is still present.
1199 * The notifier should have destroyed all protected vCPUs at this
1200 * point, so the destroy should be successful.
1201 */
1202 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1203 return res;
1204 /*
1205 * If something went wrong and the page could not be destroyed, or
1206 * if this is not a mm teardown, the slower export is used as
1207 * fallback instead.
1208 */
1209 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1210 return res;
1211 }
1212
1213 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1214 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1215 unsigned long addr, pte_t *ptep)
1216 {
1217 pte_t pte = *ptep;
1218
1219 if (pte_write(pte))
1220 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1221 }
1222
1223 /*
1224 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1225 * bits in the comparison. Those might change e.g. because of dirty and young
1226 * tracking.
1227 */
pte_allow_rdp(pte_t old,pte_t new)1228 static inline int pte_allow_rdp(pte_t old, pte_t new)
1229 {
1230 /*
1231 * Only allow changes from RO to RW
1232 */
1233 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1234 return 0;
1235
1236 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1237 }
1238
flush_tlb_fix_spurious_fault(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1239 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1240 unsigned long address,
1241 pte_t *ptep)
1242 {
1243 /*
1244 * RDP might not have propagated the PTE protection reset to all CPUs,
1245 * so there could be spurious TLB protection faults.
1246 * NOTE: This will also be called when a racing pagetable update on
1247 * another thread already installed the correct PTE. Both cases cannot
1248 * really be distinguished.
1249 * Therefore, only do the local TLB flush when RDP can be used, and the
1250 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1251 * A local RDP can be used to do the flush.
1252 */
1253 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1254 __ptep_rdp(address, ptep, 0, 0, 1);
1255 }
1256 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1257
1258 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1259 pte_t new);
1260
1261 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1262 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1263 unsigned long addr, pte_t *ptep,
1264 pte_t entry, int dirty)
1265 {
1266 if (pte_same(*ptep, entry))
1267 return 0;
1268 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1269 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1270 else
1271 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1272 return 1;
1273 }
1274
1275 /*
1276 * Additional functions to handle KVM guest page tables
1277 */
1278 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1279 pte_t *ptep, pte_t entry);
1280 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1281 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1282 pte_t *ptep, unsigned long bits);
1283 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1284 pte_t *ptep, int prot, unsigned long bit);
1285 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1286 pte_t *ptep , int reset);
1287 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1288 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1289 pte_t *sptep, pte_t *tptep, pte_t pte);
1290 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1291
1292 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1293 pte_t *ptep);
1294 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1295 unsigned char key, bool nq);
1296 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1297 unsigned char key, unsigned char *oldkey,
1298 bool nq, bool mr, bool mc);
1299 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1300 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1301 unsigned char *key);
1302
1303 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1304 unsigned long bits, unsigned long value);
1305 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1306 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1307 unsigned long *oldpte, unsigned long *oldpgste);
1308 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1309 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1310 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1311 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1312
1313 #define pgprot_writecombine pgprot_writecombine
1314 pgprot_t pgprot_writecombine(pgprot_t prot);
1315
1316 #define pgprot_writethrough pgprot_writethrough
1317 pgprot_t pgprot_writethrough(pgprot_t prot);
1318
1319 /*
1320 * Set multiple PTEs to consecutive pages with a single call. All PTEs
1321 * are within the same folio, PMD and VMA.
1322 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry,unsigned int nr)1323 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1324 pte_t *ptep, pte_t entry, unsigned int nr)
1325 {
1326 if (pte_present(entry))
1327 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1328 if (mm_has_pgste(mm)) {
1329 for (;;) {
1330 ptep_set_pte_at(mm, addr, ptep, entry);
1331 if (--nr == 0)
1332 break;
1333 ptep++;
1334 entry = __pte(pte_val(entry) + PAGE_SIZE);
1335 addr += PAGE_SIZE;
1336 }
1337 } else {
1338 for (;;) {
1339 set_pte(ptep, entry);
1340 if (--nr == 0)
1341 break;
1342 ptep++;
1343 entry = __pte(pte_val(entry) + PAGE_SIZE);
1344 }
1345 }
1346 }
1347 #define set_ptes set_ptes
1348
1349 /*
1350 * Conversion functions: convert a page and protection to a page entry,
1351 * and a page entry and page directory to the page they refer to.
1352 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1353 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1354 {
1355 pte_t __pte;
1356
1357 __pte = __pte(physpage | pgprot_val(pgprot));
1358 if (!MACHINE_HAS_NX)
1359 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1360 return pte_mkyoung(__pte);
1361 }
1362
mk_pte(struct page * page,pgprot_t pgprot)1363 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1364 {
1365 unsigned long physpage = page_to_phys(page);
1366 pte_t __pte = mk_pte_phys(physpage, pgprot);
1367
1368 if (pte_write(__pte) && PageDirty(page))
1369 __pte = pte_mkdirty(__pte);
1370 return __pte;
1371 }
1372
1373 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1374 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1375 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1376 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1377
1378 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1379 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1380
pmd_deref(pmd_t pmd)1381 static inline unsigned long pmd_deref(pmd_t pmd)
1382 {
1383 unsigned long origin_mask;
1384
1385 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1386 if (pmd_large(pmd))
1387 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1388 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1389 }
1390
pmd_pfn(pmd_t pmd)1391 static inline unsigned long pmd_pfn(pmd_t pmd)
1392 {
1393 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1394 }
1395
pud_deref(pud_t pud)1396 static inline unsigned long pud_deref(pud_t pud)
1397 {
1398 unsigned long origin_mask;
1399
1400 origin_mask = _REGION_ENTRY_ORIGIN;
1401 if (pud_large(pud))
1402 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1403 return (unsigned long)__va(pud_val(pud) & origin_mask);
1404 }
1405
pud_pfn(pud_t pud)1406 static inline unsigned long pud_pfn(pud_t pud)
1407 {
1408 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1409 }
1410
1411 /*
1412 * The pgd_offset function *always* adds the index for the top-level
1413 * region/segment table. This is done to get a sequence like the
1414 * following to work:
1415 * pgdp = pgd_offset(current->mm, addr);
1416 * pgd = READ_ONCE(*pgdp);
1417 * p4dp = p4d_offset(&pgd, addr);
1418 * ...
1419 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1420 * only add an index if they dereferenced the pointer.
1421 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1422 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1423 {
1424 unsigned long rste;
1425 unsigned int shift;
1426
1427 /* Get the first entry of the top level table */
1428 rste = pgd_val(*pgd);
1429 /* Pick up the shift from the table type of the first entry */
1430 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1431 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1432 }
1433
1434 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1435
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1436 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1437 {
1438 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1439 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1440 return (p4d_t *) pgdp;
1441 }
1442 #define p4d_offset_lockless p4d_offset_lockless
1443
p4d_offset(pgd_t * pgdp,unsigned long address)1444 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1445 {
1446 return p4d_offset_lockless(pgdp, *pgdp, address);
1447 }
1448
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1449 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1450 {
1451 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1452 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1453 return (pud_t *) p4dp;
1454 }
1455 #define pud_offset_lockless pud_offset_lockless
1456
pud_offset(p4d_t * p4dp,unsigned long address)1457 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1458 {
1459 return pud_offset_lockless(p4dp, *p4dp, address);
1460 }
1461 #define pud_offset pud_offset
1462
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1463 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1464 {
1465 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1466 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1467 return (pmd_t *) pudp;
1468 }
1469 #define pmd_offset_lockless pmd_offset_lockless
1470
pmd_offset(pud_t * pudp,unsigned long address)1471 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1472 {
1473 return pmd_offset_lockless(pudp, *pudp, address);
1474 }
1475 #define pmd_offset pmd_offset
1476
pmd_page_vaddr(pmd_t pmd)1477 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1478 {
1479 return (unsigned long) pmd_deref(pmd);
1480 }
1481
gup_fast_permitted(unsigned long start,unsigned long end)1482 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1483 {
1484 return end <= current->mm->context.asce_limit;
1485 }
1486 #define gup_fast_permitted gup_fast_permitted
1487
1488 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1489 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1490 #define pte_page(x) pfn_to_page(pte_pfn(x))
1491
1492 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1493 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1494 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1495 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1496
pmd_wrprotect(pmd_t pmd)1497 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1498 {
1499 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1500 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1501 }
1502
pmd_mkwrite_novma(pmd_t pmd)1503 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1504 {
1505 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1506 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1507 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1508 return pmd;
1509 }
1510
pmd_mkclean(pmd_t pmd)1511 static inline pmd_t pmd_mkclean(pmd_t pmd)
1512 {
1513 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1514 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1515 }
1516
pmd_mkdirty(pmd_t pmd)1517 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1518 {
1519 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1520 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1521 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1522 return pmd;
1523 }
1524
pud_wrprotect(pud_t pud)1525 static inline pud_t pud_wrprotect(pud_t pud)
1526 {
1527 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1528 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1529 }
1530
pud_mkwrite(pud_t pud)1531 static inline pud_t pud_mkwrite(pud_t pud)
1532 {
1533 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1534 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1535 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1536 return pud;
1537 }
1538
pud_mkclean(pud_t pud)1539 static inline pud_t pud_mkclean(pud_t pud)
1540 {
1541 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1542 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1543 }
1544
pud_mkdirty(pud_t pud)1545 static inline pud_t pud_mkdirty(pud_t pud)
1546 {
1547 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1548 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1549 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1550 return pud;
1551 }
1552
1553 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1554 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1555 {
1556 /*
1557 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1558 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1559 */
1560 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1561 return pgprot_val(SEGMENT_NONE);
1562 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1563 return pgprot_val(SEGMENT_RO);
1564 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1565 return pgprot_val(SEGMENT_RX);
1566 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1567 return pgprot_val(SEGMENT_RW);
1568 return pgprot_val(SEGMENT_RWX);
1569 }
1570
pmd_mkyoung(pmd_t pmd)1571 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1572 {
1573 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1574 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1575 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1576 return pmd;
1577 }
1578
pmd_mkold(pmd_t pmd)1579 static inline pmd_t pmd_mkold(pmd_t pmd)
1580 {
1581 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1582 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1583 }
1584
pmd_modify(pmd_t pmd,pgprot_t newprot)1585 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1586 {
1587 unsigned long mask;
1588
1589 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1590 mask |= _SEGMENT_ENTRY_DIRTY;
1591 mask |= _SEGMENT_ENTRY_YOUNG;
1592 mask |= _SEGMENT_ENTRY_LARGE;
1593 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1594 pmd = __pmd(pmd_val(pmd) & mask);
1595 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1596 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1597 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1598 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1599 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1600 return pmd;
1601 }
1602
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1603 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1604 {
1605 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1606 }
1607
1608 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1609
__pmdp_csp(pmd_t * pmdp)1610 static inline void __pmdp_csp(pmd_t *pmdp)
1611 {
1612 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1613 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1614 }
1615
1616 #define IDTE_GLOBAL 0
1617 #define IDTE_LOCAL 1
1618
1619 #define IDTE_PTOA 0x0800
1620 #define IDTE_NODAT 0x1000
1621 #define IDTE_GUEST_ASCE 0x2000
1622
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1623 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1624 unsigned long opt, unsigned long asce,
1625 int local)
1626 {
1627 unsigned long sto;
1628
1629 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1630 if (__builtin_constant_p(opt) && opt == 0) {
1631 /* flush without guest asce */
1632 asm volatile(
1633 " idte %[r1],0,%[r2],%[m4]"
1634 : "+m" (*pmdp)
1635 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1636 [m4] "i" (local)
1637 : "cc" );
1638 } else {
1639 /* flush with guest asce */
1640 asm volatile(
1641 " idte %[r1],%[r3],%[r2],%[m4]"
1642 : "+m" (*pmdp)
1643 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1644 [r3] "a" (asce), [m4] "i" (local)
1645 : "cc" );
1646 }
1647 }
1648
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1649 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1650 unsigned long opt, unsigned long asce,
1651 int local)
1652 {
1653 unsigned long r3o;
1654
1655 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1656 r3o |= _ASCE_TYPE_REGION3;
1657 if (__builtin_constant_p(opt) && opt == 0) {
1658 /* flush without guest asce */
1659 asm volatile(
1660 " idte %[r1],0,%[r2],%[m4]"
1661 : "+m" (*pudp)
1662 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1663 [m4] "i" (local)
1664 : "cc");
1665 } else {
1666 /* flush with guest asce */
1667 asm volatile(
1668 " idte %[r1],%[r3],%[r2],%[m4]"
1669 : "+m" (*pudp)
1670 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1671 [r3] "a" (asce), [m4] "i" (local)
1672 : "cc" );
1673 }
1674 }
1675
1676 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1677 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1678 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1679
1680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1681
1682 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1683 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1684 pgtable_t pgtable);
1685
1686 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1687 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1688
1689 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1690 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1691 unsigned long addr, pmd_t *pmdp,
1692 pmd_t entry, int dirty)
1693 {
1694 VM_BUG_ON(addr & ~HPAGE_MASK);
1695
1696 entry = pmd_mkyoung(entry);
1697 if (dirty)
1698 entry = pmd_mkdirty(entry);
1699 if (pmd_val(*pmdp) == pmd_val(entry))
1700 return 0;
1701 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1702 return 1;
1703 }
1704
1705 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1706 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1707 unsigned long addr, pmd_t *pmdp)
1708 {
1709 pmd_t pmd = *pmdp;
1710
1711 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1712 return pmd_young(pmd);
1713 }
1714
1715 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1716 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1717 unsigned long addr, pmd_t *pmdp)
1718 {
1719 VM_BUG_ON(addr & ~HPAGE_MASK);
1720 return pmdp_test_and_clear_young(vma, addr, pmdp);
1721 }
1722
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1723 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1724 pmd_t *pmdp, pmd_t entry)
1725 {
1726 if (!MACHINE_HAS_NX)
1727 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1728 set_pmd(pmdp, entry);
1729 }
1730
pmd_mkhuge(pmd_t pmd)1731 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1732 {
1733 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1734 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1735 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1736 }
1737
1738 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1739 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1740 unsigned long addr, pmd_t *pmdp)
1741 {
1742 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1743 }
1744
1745 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1746 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1747 unsigned long addr,
1748 pmd_t *pmdp, int full)
1749 {
1750 if (full) {
1751 pmd_t pmd = *pmdp;
1752 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1753 return pmd;
1754 }
1755 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1756 }
1757
1758 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1759 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1760 unsigned long addr, pmd_t *pmdp)
1761 {
1762 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1763 }
1764
1765 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1766 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1767 unsigned long addr, pmd_t *pmdp)
1768 {
1769 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1770
1771 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1772 }
1773
1774 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1775 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1776 unsigned long addr, pmd_t *pmdp)
1777 {
1778 pmd_t pmd = *pmdp;
1779
1780 if (pmd_write(pmd))
1781 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1782 }
1783
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1784 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1785 unsigned long address,
1786 pmd_t *pmdp)
1787 {
1788 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1789 }
1790 #define pmdp_collapse_flush pmdp_collapse_flush
1791
1792 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1793 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1794
pmd_trans_huge(pmd_t pmd)1795 static inline int pmd_trans_huge(pmd_t pmd)
1796 {
1797 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1798 }
1799
1800 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1801 static inline int has_transparent_hugepage(void)
1802 {
1803 return MACHINE_HAS_EDAT1 ? 1 : 0;
1804 }
1805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1806
1807 /*
1808 * 64 bit swap entry format:
1809 * A page-table entry has some bits we have to treat in a special way.
1810 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1811 * as invalid.
1812 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1813 * | offset |E11XX|type |S0|
1814 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1815 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1816 *
1817 * Bits 0-51 store the offset.
1818 * Bit 52 (E) is used to remember PG_anon_exclusive.
1819 * Bits 57-61 store the type.
1820 * Bit 62 (S) is used for softdirty tracking.
1821 * Bits 55 and 56 (X) are unused.
1822 */
1823
1824 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1825 #define __SWP_OFFSET_SHIFT 12
1826 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1827 #define __SWP_TYPE_SHIFT 2
1828
mk_swap_pte(unsigned long type,unsigned long offset)1829 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1830 {
1831 unsigned long pteval;
1832
1833 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1834 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1835 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1836 return __pte(pteval);
1837 }
1838
__swp_type(swp_entry_t entry)1839 static inline unsigned long __swp_type(swp_entry_t entry)
1840 {
1841 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1842 }
1843
__swp_offset(swp_entry_t entry)1844 static inline unsigned long __swp_offset(swp_entry_t entry)
1845 {
1846 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1847 }
1848
__swp_entry(unsigned long type,unsigned long offset)1849 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1850 {
1851 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1852 }
1853
1854 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1855 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1856
1857 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1858 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1859 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1860 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1861 extern void vmem_unmap_4k_page(unsigned long addr);
1862 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1863 extern int s390_enable_sie(void);
1864 extern int s390_enable_skey(void);
1865 extern void s390_reset_cmma(struct mm_struct *mm);
1866
1867 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1868 #define HAVE_ARCH_UNMAPPED_AREA
1869 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1870
1871 #define pmd_pgtable(pmd) \
1872 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1873
1874 #endif /* _S390_PAGE_H */
1875