1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
47
48 #include <asm/ftrace.h>
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/pmc.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
67 #include <asm/page.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
70 #include <asm/smp.h>
71 #include <asm/dbell.h>
72 #include <asm/hmi.h>
73 #include <asm/pnv-pci.h>
74 #include <asm/mmu.h>
75 #include <asm/opal.h>
76 #include <asm/xics.h>
77 #include <asm/xive.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
81 #include <asm/dtl.h>
82 #include <asm/plpar_wrappers.h>
83
84 #include <trace/events/ipi.h>
85
86 #include "book3s.h"
87 #include "book3s_hv.h"
88
89 #define CREATE_TRACE_POINTS
90 #include "trace_hv.h"
91
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
95
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
100
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL (~(u64)0)
103
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119 .set = param_set_int,
120 .get = param_get_int,
121 };
122
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128 #endif
129
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137 /*
138 * RWMR values for POWER8. These control the rate at which PURR
139 * and SPURR count and should be set according to the number of
140 * online threads in the vcore being run.
141 */
142 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
150
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152 RWMR_RPA_P8_1THREAD,
153 RWMR_RPA_P8_1THREAD,
154 RWMR_RPA_P8_2THREAD,
155 RWMR_RPA_P8_3THREAD,
156 RWMR_RPA_P8_4THREAD,
157 RWMR_RPA_P8_5THREAD,
158 RWMR_RPA_P8_6THREAD,
159 RWMR_RPA_P8_7THREAD,
160 RWMR_RPA_P8_8THREAD,
161 };
162
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164 int *ip)
165 {
166 int i = *ip;
167 struct kvm_vcpu *vcpu;
168
169 while (++i < MAX_SMT_THREADS) {
170 vcpu = READ_ONCE(vc->runnable_threads[i]);
171 if (vcpu) {
172 *ip = i;
173 return vcpu;
174 }
175 }
176 return NULL;
177 }
178
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
kvmppc_ipi_thread(int cpu)183 static bool kvmppc_ipi_thread(int cpu)
184 {
185 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188 if (kvmhv_on_pseries())
189 return false;
190
191 /* On POWER9 we can use msgsnd to IPI any cpu */
192 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193 msg |= get_hard_smp_processor_id(cpu);
194 smp_mb();
195 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196 return true;
197 }
198
199 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201 preempt_disable();
202 if (cpu_first_thread_sibling(cpu) ==
203 cpu_first_thread_sibling(smp_processor_id())) {
204 msg |= cpu_thread_in_core(cpu);
205 smp_mb();
206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207 preempt_enable();
208 return true;
209 }
210 preempt_enable();
211 }
212
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214 if (cpu >= 0 && cpu < nr_cpu_ids) {
215 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216 xics_wake_cpu(cpu);
217 return true;
218 }
219 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220 return true;
221 }
222 #endif
223
224 return false;
225 }
226
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229 int cpu;
230 struct rcuwait *waitp;
231
232 /*
233 * rcuwait_wake_up contains smp_mb() which orders prior stores that
234 * create pending work vs below loads of cpu fields. The other side
235 * is the barrier in vcpu run that orders setting the cpu fields vs
236 * testing for pending work.
237 */
238
239 waitp = kvm_arch_vcpu_get_wait(vcpu);
240 if (rcuwait_wake_up(waitp))
241 ++vcpu->stat.generic.halt_wakeup;
242
243 cpu = READ_ONCE(vcpu->arch.thread_cpu);
244 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245 return;
246
247 /* CPU points to the first thread of the core */
248 cpu = vcpu->cpu;
249 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250 smp_send_reschedule(cpu);
251 }
252
253 /*
254 * We use the vcpu_load/put functions to measure stolen time.
255 *
256 * Stolen time is counted as time when either the vcpu is able to
257 * run as part of a virtual core, but the task running the vcore
258 * is preempted or sleeping, or when the vcpu needs something done
259 * in the kernel by the task running the vcpu, but that task is
260 * preempted or sleeping. Those two things have to be counted
261 * separately, since one of the vcpu tasks will take on the job
262 * of running the core, and the other vcpu tasks in the vcore will
263 * sleep waiting for it to do that, but that sleep shouldn't count
264 * as stolen time.
265 *
266 * Hence we accumulate stolen time when the vcpu can run as part of
267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268 * needs its task to do other things in the kernel (for example,
269 * service a page fault) in busy_stolen. We don't accumulate
270 * stolen time for a vcore when it is inactive, or for a vcpu
271 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
272 * a misnomer; it means that the vcpu task is not executing in
273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274 * the kernel. We don't have any way of dividing up that time
275 * between time that the vcpu is genuinely stopped, time that
276 * the task is actively working on behalf of the vcpu, and time
277 * that the task is preempted, so we don't count any of it as
278 * stolen.
279 *
280 * Updates to busy_stolen are protected by arch.tbacct_lock;
281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282 * lock. The stolen times are measured in units of timebase ticks.
283 * (Note that the != TB_NIL checks below are purely defensive;
284 * they should never fail.)
285 *
286 * The POWER9 path is simpler, one vcpu per virtual core so the
287 * former case does not exist. If a vcpu is preempted when it is
288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290 * state in the P9 path.
291 */
292
kvmppc_core_start_stolen(struct kvmppc_vcore * vc,u64 tb)293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294 {
295 unsigned long flags;
296
297 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298
299 spin_lock_irqsave(&vc->stoltb_lock, flags);
300 vc->preempt_tb = tb;
301 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
kvmppc_core_end_stolen(struct kvmppc_vcore * vc,u64 tb)304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305 {
306 unsigned long flags;
307
308 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309
310 spin_lock_irqsave(&vc->stoltb_lock, flags);
311 if (vc->preempt_tb != TB_NIL) {
312 vc->stolen_tb += tb - vc->preempt_tb;
313 vc->preempt_tb = TB_NIL;
314 }
315 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316 }
317
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319 {
320 struct kvmppc_vcore *vc = vcpu->arch.vcore;
321 unsigned long flags;
322 u64 now;
323
324 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325 if (vcpu->arch.busy_preempt != TB_NIL) {
326 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328 vcpu->arch.busy_preempt = TB_NIL;
329 }
330 return;
331 }
332
333 now = mftb();
334
335 /*
336 * We can test vc->runner without taking the vcore lock,
337 * because only this task ever sets vc->runner to this
338 * vcpu, and once it is set to this vcpu, only this task
339 * ever sets it to NULL.
340 */
341 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342 kvmppc_core_end_stolen(vc, now);
343
344 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346 vcpu->arch.busy_preempt != TB_NIL) {
347 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348 vcpu->arch.busy_preempt = TB_NIL;
349 }
350 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351 }
352
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354 {
355 struct kvmppc_vcore *vc = vcpu->arch.vcore;
356 unsigned long flags;
357 u64 now;
358
359 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360 /*
361 * In the P9 path, RUNNABLE is not preemptible
362 * (nor takes host interrupts)
363 */
364 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365 /*
366 * Account stolen time when preempted while the vcpu task is
367 * running in the kernel (but not in qemu, which is INACTIVE).
368 */
369 if (task_is_running(current) &&
370 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371 vcpu->arch.busy_preempt = mftb();
372 return;
373 }
374
375 now = mftb();
376
377 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378 kvmppc_core_start_stolen(vc, now);
379
380 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382 vcpu->arch.busy_preempt = now;
383 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384 }
385
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387 {
388 vcpu->arch.pvr = pvr;
389 }
390
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
393
map_pcr_to_cap(unsigned long pcr)394 static inline unsigned long map_pcr_to_cap(unsigned long pcr)
395 {
396 unsigned long cap = 0;
397
398 switch (pcr) {
399 case PCR_ARCH_300:
400 cap = H_GUEST_CAP_POWER9;
401 break;
402 case PCR_ARCH_31:
403 cap = H_GUEST_CAP_POWER10;
404 break;
405 default:
406 break;
407 }
408
409 return cap;
410 }
411
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)412 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
413 {
414 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
415 struct kvmppc_vcore *vc = vcpu->arch.vcore;
416
417 /* We can (emulate) our own architecture version and anything older */
418 if (cpu_has_feature(CPU_FTR_ARCH_31))
419 host_pcr_bit = PCR_ARCH_31;
420 else if (cpu_has_feature(CPU_FTR_ARCH_300))
421 host_pcr_bit = PCR_ARCH_300;
422 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
423 host_pcr_bit = PCR_ARCH_207;
424 else if (cpu_has_feature(CPU_FTR_ARCH_206))
425 host_pcr_bit = PCR_ARCH_206;
426 else
427 host_pcr_bit = PCR_ARCH_205;
428
429 /* Determine lowest PCR bit needed to run guest in given PVR level */
430 guest_pcr_bit = host_pcr_bit;
431 if (arch_compat) {
432 switch (arch_compat) {
433 case PVR_ARCH_205:
434 guest_pcr_bit = PCR_ARCH_205;
435 break;
436 case PVR_ARCH_206:
437 case PVR_ARCH_206p:
438 guest_pcr_bit = PCR_ARCH_206;
439 break;
440 case PVR_ARCH_207:
441 guest_pcr_bit = PCR_ARCH_207;
442 break;
443 case PVR_ARCH_300:
444 guest_pcr_bit = PCR_ARCH_300;
445 break;
446 case PVR_ARCH_31:
447 guest_pcr_bit = PCR_ARCH_31;
448 break;
449 default:
450 return -EINVAL;
451 }
452 }
453
454 /* Check requested PCR bits don't exceed our capabilities */
455 if (guest_pcr_bit > host_pcr_bit)
456 return -EINVAL;
457
458 if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
459 /*
460 * 'arch_compat == 0' would mean the guest should default to
461 * L1's compatibility. In this case, the guest would pick
462 * host's PCR and evaluate the corresponding capabilities.
463 */
464 cap = map_pcr_to_cap(guest_pcr_bit);
465 if (!(cap & nested_capabilities))
466 return -EINVAL;
467 }
468
469 spin_lock(&vc->lock);
470 vc->arch_compat = arch_compat;
471 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
472 /*
473 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
474 * Also set all reserved PCR bits
475 */
476 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
477 spin_unlock(&vc->lock);
478
479 return 0;
480 }
481
kvmppc_dump_regs(struct kvm_vcpu * vcpu)482 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
483 {
484 int r;
485
486 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
487 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
488 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
489 for (r = 0; r < 16; ++r)
490 pr_err("r%2d = %.16lx r%d = %.16lx\n",
491 r, kvmppc_get_gpr(vcpu, r),
492 r+16, kvmppc_get_gpr(vcpu, r+16));
493 pr_err("ctr = %.16lx lr = %.16lx\n",
494 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
495 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
496 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
497 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
498 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
499 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
500 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
501 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
502 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
503 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
504 pr_err("fault dar = %.16lx dsisr = %.8x\n",
505 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
506 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
507 for (r = 0; r < vcpu->arch.slb_max; ++r)
508 pr_err(" ESID = %.16llx VSID = %.16llx\n",
509 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
510 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
511 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
512 vcpu->arch.last_inst);
513 }
514
kvmppc_find_vcpu(struct kvm * kvm,int id)515 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
516 {
517 return kvm_get_vcpu_by_id(kvm, id);
518 }
519
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)520 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
521 {
522 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
523 vpa->yield_count = cpu_to_be32(1);
524 }
525
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)526 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
527 unsigned long addr, unsigned long len)
528 {
529 /* check address is cacheline aligned */
530 if (addr & (L1_CACHE_BYTES - 1))
531 return -EINVAL;
532 spin_lock(&vcpu->arch.vpa_update_lock);
533 if (v->next_gpa != addr || v->len != len) {
534 v->next_gpa = addr;
535 v->len = addr ? len : 0;
536 v->update_pending = 1;
537 }
538 spin_unlock(&vcpu->arch.vpa_update_lock);
539 return 0;
540 }
541
542 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
543 struct reg_vpa {
544 u32 dummy;
545 union {
546 __be16 hword;
547 __be32 word;
548 } length;
549 };
550
vpa_is_registered(struct kvmppc_vpa * vpap)551 static int vpa_is_registered(struct kvmppc_vpa *vpap)
552 {
553 if (vpap->update_pending)
554 return vpap->next_gpa != 0;
555 return vpap->pinned_addr != NULL;
556 }
557
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)558 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
559 unsigned long flags,
560 unsigned long vcpuid, unsigned long vpa)
561 {
562 struct kvm *kvm = vcpu->kvm;
563 unsigned long len, nb;
564 void *va;
565 struct kvm_vcpu *tvcpu;
566 int err;
567 int subfunc;
568 struct kvmppc_vpa *vpap;
569
570 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
571 if (!tvcpu)
572 return H_PARAMETER;
573
574 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
575 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
576 subfunc == H_VPA_REG_SLB) {
577 /* Registering new area - address must be cache-line aligned */
578 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
579 return H_PARAMETER;
580
581 /* convert logical addr to kernel addr and read length */
582 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
583 if (va == NULL)
584 return H_PARAMETER;
585 if (subfunc == H_VPA_REG_VPA)
586 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
587 else
588 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
589 kvmppc_unpin_guest_page(kvm, va, vpa, false);
590
591 /* Check length */
592 if (len > nb || len < sizeof(struct reg_vpa))
593 return H_PARAMETER;
594 } else {
595 vpa = 0;
596 len = 0;
597 }
598
599 err = H_PARAMETER;
600 vpap = NULL;
601 spin_lock(&tvcpu->arch.vpa_update_lock);
602
603 switch (subfunc) {
604 case H_VPA_REG_VPA: /* register VPA */
605 /*
606 * The size of our lppaca is 1kB because of the way we align
607 * it for the guest to avoid crossing a 4kB boundary. We only
608 * use 640 bytes of the structure though, so we should accept
609 * clients that set a size of 640.
610 */
611 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
612 if (len < sizeof(struct lppaca))
613 break;
614 vpap = &tvcpu->arch.vpa;
615 err = 0;
616 break;
617
618 case H_VPA_REG_DTL: /* register DTL */
619 if (len < sizeof(struct dtl_entry))
620 break;
621 len -= len % sizeof(struct dtl_entry);
622
623 /* Check that they have previously registered a VPA */
624 err = H_RESOURCE;
625 if (!vpa_is_registered(&tvcpu->arch.vpa))
626 break;
627
628 vpap = &tvcpu->arch.dtl;
629 err = 0;
630 break;
631
632 case H_VPA_REG_SLB: /* register SLB shadow buffer */
633 /* Check that they have previously registered a VPA */
634 err = H_RESOURCE;
635 if (!vpa_is_registered(&tvcpu->arch.vpa))
636 break;
637
638 vpap = &tvcpu->arch.slb_shadow;
639 err = 0;
640 break;
641
642 case H_VPA_DEREG_VPA: /* deregister VPA */
643 /* Check they don't still have a DTL or SLB buf registered */
644 err = H_RESOURCE;
645 if (vpa_is_registered(&tvcpu->arch.dtl) ||
646 vpa_is_registered(&tvcpu->arch.slb_shadow))
647 break;
648
649 vpap = &tvcpu->arch.vpa;
650 err = 0;
651 break;
652
653 case H_VPA_DEREG_DTL: /* deregister DTL */
654 vpap = &tvcpu->arch.dtl;
655 err = 0;
656 break;
657
658 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
659 vpap = &tvcpu->arch.slb_shadow;
660 err = 0;
661 break;
662 }
663
664 if (vpap) {
665 vpap->next_gpa = vpa;
666 vpap->len = len;
667 vpap->update_pending = 1;
668 }
669
670 spin_unlock(&tvcpu->arch.vpa_update_lock);
671
672 return err;
673 }
674
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap,struct kvmppc_vpa * old_vpap)675 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap,
676 struct kvmppc_vpa *old_vpap)
677 {
678 struct kvm *kvm = vcpu->kvm;
679 void *va;
680 unsigned long nb;
681 unsigned long gpa;
682
683 /*
684 * We need to pin the page pointed to by vpap->next_gpa,
685 * but we can't call kvmppc_pin_guest_page under the lock
686 * as it does get_user_pages() and down_read(). So we
687 * have to drop the lock, pin the page, then get the lock
688 * again and check that a new area didn't get registered
689 * in the meantime.
690 */
691 for (;;) {
692 gpa = vpap->next_gpa;
693 spin_unlock(&vcpu->arch.vpa_update_lock);
694 va = NULL;
695 nb = 0;
696 if (gpa)
697 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
698 spin_lock(&vcpu->arch.vpa_update_lock);
699 if (gpa == vpap->next_gpa)
700 break;
701 /* sigh... unpin that one and try again */
702 if (va)
703 kvmppc_unpin_guest_page(kvm, va, gpa, false);
704 }
705
706 vpap->update_pending = 0;
707 if (va && nb < vpap->len) {
708 /*
709 * If it's now too short, it must be that userspace
710 * has changed the mappings underlying guest memory,
711 * so unregister the region.
712 */
713 kvmppc_unpin_guest_page(kvm, va, gpa, false);
714 va = NULL;
715 }
716 *old_vpap = *vpap;
717
718 vpap->gpa = gpa;
719 vpap->pinned_addr = va;
720 vpap->dirty = false;
721 if (va)
722 vpap->pinned_end = va + vpap->len;
723 }
724
kvmppc_update_vpas(struct kvm_vcpu * vcpu)725 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
726 {
727 struct kvm *kvm = vcpu->kvm;
728 struct kvmppc_vpa old_vpa = { 0 };
729
730 if (!(vcpu->arch.vpa.update_pending ||
731 vcpu->arch.slb_shadow.update_pending ||
732 vcpu->arch.dtl.update_pending))
733 return;
734
735 spin_lock(&vcpu->arch.vpa_update_lock);
736 if (vcpu->arch.vpa.update_pending) {
737 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa);
738 if (old_vpa.pinned_addr) {
739 if (kvmhv_is_nestedv2())
740 kvmhv_nestedv2_set_vpa(vcpu, ~0ull);
741 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
742 old_vpa.dirty);
743 }
744 if (vcpu->arch.vpa.pinned_addr) {
745 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
746 if (kvmhv_is_nestedv2())
747 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr));
748 }
749 }
750 if (vcpu->arch.dtl.update_pending) {
751 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa);
752 if (old_vpa.pinned_addr)
753 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
754 old_vpa.dirty);
755 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
756 vcpu->arch.dtl_index = 0;
757 }
758 if (vcpu->arch.slb_shadow.update_pending) {
759 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa);
760 if (old_vpa.pinned_addr)
761 kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
762 old_vpa.dirty);
763 }
764
765 spin_unlock(&vcpu->arch.vpa_update_lock);
766 }
767
768 /*
769 * Return the accumulated stolen time for the vcore up until `now'.
770 * The caller should hold the vcore lock.
771 */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)772 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
773 {
774 u64 p;
775 unsigned long flags;
776
777 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
778
779 spin_lock_irqsave(&vc->stoltb_lock, flags);
780 p = vc->stolen_tb;
781 if (vc->vcore_state != VCORE_INACTIVE &&
782 vc->preempt_tb != TB_NIL)
783 p += now - vc->preempt_tb;
784 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
785 return p;
786 }
787
__kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct lppaca * vpa,unsigned int pcpu,u64 now,unsigned long stolen)788 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
789 struct lppaca *vpa,
790 unsigned int pcpu, u64 now,
791 unsigned long stolen)
792 {
793 struct dtl_entry *dt;
794
795 dt = vcpu->arch.dtl_ptr;
796
797 if (!dt)
798 return;
799
800 dt->dispatch_reason = 7;
801 dt->preempt_reason = 0;
802 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
803 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
804 dt->ready_to_enqueue_time = 0;
805 dt->waiting_to_ready_time = 0;
806 dt->timebase = cpu_to_be64(now);
807 dt->fault_addr = 0;
808 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
809 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
810
811 ++dt;
812 if (dt == vcpu->arch.dtl.pinned_end)
813 dt = vcpu->arch.dtl.pinned_addr;
814 vcpu->arch.dtl_ptr = dt;
815 /* order writing *dt vs. writing vpa->dtl_idx */
816 smp_wmb();
817 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
818
819 /* vcpu->arch.dtl.dirty is set by the caller */
820 }
821
kvmppc_update_vpa_dispatch(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)822 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
823 struct kvmppc_vcore *vc)
824 {
825 struct lppaca *vpa;
826 unsigned long stolen;
827 unsigned long core_stolen;
828 u64 now;
829 unsigned long flags;
830
831 vpa = vcpu->arch.vpa.pinned_addr;
832 if (!vpa)
833 return;
834
835 now = mftb();
836
837 core_stolen = vcore_stolen_time(vc, now);
838 stolen = core_stolen - vcpu->arch.stolen_logged;
839 vcpu->arch.stolen_logged = core_stolen;
840 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
841 stolen += vcpu->arch.busy_stolen;
842 vcpu->arch.busy_stolen = 0;
843 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
844
845 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
846
847 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen);
848
849 vcpu->arch.vpa.dirty = true;
850 }
851
kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc,u64 now)852 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
853 struct kvmppc_vcore *vc,
854 u64 now)
855 {
856 struct lppaca *vpa;
857 unsigned long stolen;
858 unsigned long stolen_delta;
859
860 vpa = vcpu->arch.vpa.pinned_addr;
861 if (!vpa)
862 return;
863
864 stolen = vc->stolen_tb;
865 stolen_delta = stolen - vcpu->arch.stolen_logged;
866 vcpu->arch.stolen_logged = stolen;
867
868 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
869
870 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
871
872 vcpu->arch.vpa.dirty = true;
873 }
874
875 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)876 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
877 {
878 int thr;
879 struct kvmppc_vcore *vc;
880
881 if (vcpu->arch.doorbell_request)
882 return true;
883 if (cpu_has_feature(CPU_FTR_ARCH_300))
884 return false;
885 /*
886 * Ensure that the read of vcore->dpdes comes after the read
887 * of vcpu->doorbell_request. This barrier matches the
888 * smp_wmb() in kvmppc_guest_entry_inject().
889 */
890 smp_rmb();
891 vc = vcpu->arch.vcore;
892 thr = vcpu->vcpu_id - vc->first_vcpuid;
893 return !!(vc->dpdes & (1 << thr));
894 }
895
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)896 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
897 {
898 if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
899 return true;
900 if ((!kvmppc_get_arch_compat(vcpu)) &&
901 cpu_has_feature(CPU_FTR_ARCH_207S))
902 return true;
903 return false;
904 }
905
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)906 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
907 unsigned long resource, unsigned long value1,
908 unsigned long value2)
909 {
910 switch (resource) {
911 case H_SET_MODE_RESOURCE_SET_CIABR:
912 if (!kvmppc_power8_compatible(vcpu))
913 return H_P2;
914 if (value2)
915 return H_P4;
916 if (mflags)
917 return H_UNSUPPORTED_FLAG_START;
918 /* Guests can't breakpoint the hypervisor */
919 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
920 return H_P3;
921 kvmppc_set_ciabr_hv(vcpu, value1);
922 return H_SUCCESS;
923 case H_SET_MODE_RESOURCE_SET_DAWR0:
924 if (!kvmppc_power8_compatible(vcpu))
925 return H_P2;
926 if (!ppc_breakpoint_available())
927 return H_P2;
928 if (mflags)
929 return H_UNSUPPORTED_FLAG_START;
930 if (value2 & DABRX_HYP)
931 return H_P4;
932 kvmppc_set_dawr0_hv(vcpu, value1);
933 kvmppc_set_dawrx0_hv(vcpu, value2);
934 return H_SUCCESS;
935 case H_SET_MODE_RESOURCE_SET_DAWR1:
936 if (!kvmppc_power8_compatible(vcpu))
937 return H_P2;
938 if (!ppc_breakpoint_available())
939 return H_P2;
940 if (!cpu_has_feature(CPU_FTR_DAWR1))
941 return H_P2;
942 if (!vcpu->kvm->arch.dawr1_enabled)
943 return H_FUNCTION;
944 if (mflags)
945 return H_UNSUPPORTED_FLAG_START;
946 if (value2 & DABRX_HYP)
947 return H_P4;
948 kvmppc_set_dawr1_hv(vcpu, value1);
949 kvmppc_set_dawrx1_hv(vcpu, value2);
950 return H_SUCCESS;
951 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
952 /*
953 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
954 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
955 */
956 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
957 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
958 return H_UNSUPPORTED_FLAG_START;
959 return H_TOO_HARD;
960 default:
961 return H_TOO_HARD;
962 }
963 }
964
965 /* Copy guest memory in place - must reside within a single memslot */
kvmppc_copy_guest(struct kvm * kvm,gpa_t to,gpa_t from,unsigned long len)966 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
967 unsigned long len)
968 {
969 struct kvm_memory_slot *to_memslot = NULL;
970 struct kvm_memory_slot *from_memslot = NULL;
971 unsigned long to_addr, from_addr;
972 int r;
973
974 /* Get HPA for from address */
975 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
976 if (!from_memslot)
977 return -EFAULT;
978 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
979 << PAGE_SHIFT))
980 return -EINVAL;
981 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
982 if (kvm_is_error_hva(from_addr))
983 return -EFAULT;
984 from_addr |= (from & (PAGE_SIZE - 1));
985
986 /* Get HPA for to address */
987 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
988 if (!to_memslot)
989 return -EFAULT;
990 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
991 << PAGE_SHIFT))
992 return -EINVAL;
993 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
994 if (kvm_is_error_hva(to_addr))
995 return -EFAULT;
996 to_addr |= (to & (PAGE_SIZE - 1));
997
998 /* Perform copy */
999 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
1000 len);
1001 if (r)
1002 return -EFAULT;
1003 mark_page_dirty(kvm, to >> PAGE_SHIFT);
1004 return 0;
1005 }
1006
kvmppc_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)1007 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1008 unsigned long dest, unsigned long src)
1009 {
1010 u64 pg_sz = SZ_4K; /* 4K page size */
1011 u64 pg_mask = SZ_4K - 1;
1012 int ret;
1013
1014 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1015 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1016 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1017 return H_PARAMETER;
1018
1019 /* dest (and src if copy_page flag set) must be page aligned */
1020 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1021 return H_PARAMETER;
1022
1023 /* zero and/or copy the page as determined by the flags */
1024 if (flags & H_COPY_PAGE) {
1025 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
1026 if (ret < 0)
1027 return H_PARAMETER;
1028 } else if (flags & H_ZERO_PAGE) {
1029 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
1030 if (ret < 0)
1031 return H_PARAMETER;
1032 }
1033
1034 /* We can ignore the remaining flags */
1035
1036 return H_SUCCESS;
1037 }
1038
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)1039 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
1040 {
1041 struct kvmppc_vcore *vcore = target->arch.vcore;
1042
1043 /*
1044 * We expect to have been called by the real mode handler
1045 * (kvmppc_rm_h_confer()) which would have directly returned
1046 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
1047 * have useful work to do and should not confer) so we don't
1048 * recheck that here.
1049 *
1050 * In the case of the P9 single vcpu per vcore case, the real
1051 * mode handler is not called but no other threads are in the
1052 * source vcore.
1053 */
1054 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1055 spin_lock(&vcore->lock);
1056 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1057 vcore->vcore_state != VCORE_INACTIVE &&
1058 vcore->runner)
1059 target = vcore->runner;
1060 spin_unlock(&vcore->lock);
1061 }
1062
1063 return kvm_vcpu_yield_to(target);
1064 }
1065
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)1066 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1067 {
1068 int yield_count = 0;
1069 struct lppaca *lppaca;
1070
1071 spin_lock(&vcpu->arch.vpa_update_lock);
1072 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1073 if (lppaca)
1074 yield_count = be32_to_cpu(lppaca->yield_count);
1075 spin_unlock(&vcpu->arch.vpa_update_lock);
1076 return yield_count;
1077 }
1078
1079 /*
1080 * H_RPT_INVALIDATE hcall handler for nested guests.
1081 *
1082 * Handles only nested process-scoped invalidation requests in L0.
1083 */
kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu * vcpu)1084 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1085 {
1086 unsigned long type = kvmppc_get_gpr(vcpu, 6);
1087 unsigned long pid, pg_sizes, start, end;
1088
1089 /*
1090 * The partition-scoped invalidations aren't handled here in L0.
1091 */
1092 if (type & H_RPTI_TYPE_NESTED)
1093 return RESUME_HOST;
1094
1095 pid = kvmppc_get_gpr(vcpu, 4);
1096 pg_sizes = kvmppc_get_gpr(vcpu, 7);
1097 start = kvmppc_get_gpr(vcpu, 8);
1098 end = kvmppc_get_gpr(vcpu, 9);
1099
1100 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1101 type, pg_sizes, start, end);
1102
1103 kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1104 return RESUME_GUEST;
1105 }
1106
kvmppc_h_rpt_invalidate(struct kvm_vcpu * vcpu,unsigned long id,unsigned long target,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1107 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1108 unsigned long id, unsigned long target,
1109 unsigned long type, unsigned long pg_sizes,
1110 unsigned long start, unsigned long end)
1111 {
1112 if (!kvm_is_radix(vcpu->kvm))
1113 return H_UNSUPPORTED;
1114
1115 if (end < start)
1116 return H_P5;
1117
1118 /*
1119 * Partition-scoped invalidation for nested guests.
1120 */
1121 if (type & H_RPTI_TYPE_NESTED) {
1122 if (!nesting_enabled(vcpu->kvm))
1123 return H_FUNCTION;
1124
1125 /* Support only cores as target */
1126 if (target != H_RPTI_TARGET_CMMU)
1127 return H_P2;
1128
1129 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1130 start, end);
1131 }
1132
1133 /*
1134 * Process-scoped invalidation for L1 guests.
1135 */
1136 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1137 type, pg_sizes, start, end);
1138 return H_SUCCESS;
1139 }
1140
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)1141 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1142 {
1143 struct kvm *kvm = vcpu->kvm;
1144 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1145 unsigned long target, ret = H_SUCCESS;
1146 int yield_count;
1147 struct kvm_vcpu *tvcpu;
1148 int idx, rc;
1149
1150 if (req <= MAX_HCALL_OPCODE &&
1151 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1152 return RESUME_HOST;
1153
1154 switch (req) {
1155 case H_REMOVE:
1156 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1157 kvmppc_get_gpr(vcpu, 5),
1158 kvmppc_get_gpr(vcpu, 6));
1159 if (ret == H_TOO_HARD)
1160 return RESUME_HOST;
1161 break;
1162 case H_ENTER:
1163 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1164 kvmppc_get_gpr(vcpu, 5),
1165 kvmppc_get_gpr(vcpu, 6),
1166 kvmppc_get_gpr(vcpu, 7));
1167 if (ret == H_TOO_HARD)
1168 return RESUME_HOST;
1169 break;
1170 case H_READ:
1171 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1172 kvmppc_get_gpr(vcpu, 5));
1173 if (ret == H_TOO_HARD)
1174 return RESUME_HOST;
1175 break;
1176 case H_CLEAR_MOD:
1177 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1178 kvmppc_get_gpr(vcpu, 5));
1179 if (ret == H_TOO_HARD)
1180 return RESUME_HOST;
1181 break;
1182 case H_CLEAR_REF:
1183 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1184 kvmppc_get_gpr(vcpu, 5));
1185 if (ret == H_TOO_HARD)
1186 return RESUME_HOST;
1187 break;
1188 case H_PROTECT:
1189 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1190 kvmppc_get_gpr(vcpu, 5),
1191 kvmppc_get_gpr(vcpu, 6));
1192 if (ret == H_TOO_HARD)
1193 return RESUME_HOST;
1194 break;
1195 case H_BULK_REMOVE:
1196 ret = kvmppc_h_bulk_remove(vcpu);
1197 if (ret == H_TOO_HARD)
1198 return RESUME_HOST;
1199 break;
1200
1201 case H_CEDE:
1202 break;
1203 case H_PROD:
1204 target = kvmppc_get_gpr(vcpu, 4);
1205 tvcpu = kvmppc_find_vcpu(kvm, target);
1206 if (!tvcpu) {
1207 ret = H_PARAMETER;
1208 break;
1209 }
1210 tvcpu->arch.prodded = 1;
1211 smp_mb(); /* This orders prodded store vs ceded load */
1212 if (tvcpu->arch.ceded)
1213 kvmppc_fast_vcpu_kick_hv(tvcpu);
1214 break;
1215 case H_CONFER:
1216 target = kvmppc_get_gpr(vcpu, 4);
1217 if (target == -1)
1218 break;
1219 tvcpu = kvmppc_find_vcpu(kvm, target);
1220 if (!tvcpu) {
1221 ret = H_PARAMETER;
1222 break;
1223 }
1224 yield_count = kvmppc_get_gpr(vcpu, 5);
1225 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1226 break;
1227 kvm_arch_vcpu_yield_to(tvcpu);
1228 break;
1229 case H_REGISTER_VPA:
1230 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1231 kvmppc_get_gpr(vcpu, 5),
1232 kvmppc_get_gpr(vcpu, 6));
1233 break;
1234 case H_RTAS:
1235 if (list_empty(&kvm->arch.rtas_tokens))
1236 return RESUME_HOST;
1237
1238 idx = srcu_read_lock(&kvm->srcu);
1239 rc = kvmppc_rtas_hcall(vcpu);
1240 srcu_read_unlock(&kvm->srcu, idx);
1241
1242 if (rc == -ENOENT)
1243 return RESUME_HOST;
1244 else if (rc == 0)
1245 break;
1246
1247 /* Send the error out to userspace via KVM_RUN */
1248 return rc;
1249 case H_LOGICAL_CI_LOAD:
1250 ret = kvmppc_h_logical_ci_load(vcpu);
1251 if (ret == H_TOO_HARD)
1252 return RESUME_HOST;
1253 break;
1254 case H_LOGICAL_CI_STORE:
1255 ret = kvmppc_h_logical_ci_store(vcpu);
1256 if (ret == H_TOO_HARD)
1257 return RESUME_HOST;
1258 break;
1259 case H_SET_MODE:
1260 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1261 kvmppc_get_gpr(vcpu, 5),
1262 kvmppc_get_gpr(vcpu, 6),
1263 kvmppc_get_gpr(vcpu, 7));
1264 if (ret == H_TOO_HARD)
1265 return RESUME_HOST;
1266 break;
1267 case H_XIRR:
1268 case H_CPPR:
1269 case H_EOI:
1270 case H_IPI:
1271 case H_IPOLL:
1272 case H_XIRR_X:
1273 if (kvmppc_xics_enabled(vcpu)) {
1274 if (xics_on_xive()) {
1275 ret = H_NOT_AVAILABLE;
1276 return RESUME_GUEST;
1277 }
1278 ret = kvmppc_xics_hcall(vcpu, req);
1279 break;
1280 }
1281 return RESUME_HOST;
1282 case H_SET_DABR:
1283 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1284 break;
1285 case H_SET_XDABR:
1286 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1287 kvmppc_get_gpr(vcpu, 5));
1288 break;
1289 #ifdef CONFIG_SPAPR_TCE_IOMMU
1290 case H_GET_TCE:
1291 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1292 kvmppc_get_gpr(vcpu, 5));
1293 if (ret == H_TOO_HARD)
1294 return RESUME_HOST;
1295 break;
1296 case H_PUT_TCE:
1297 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1298 kvmppc_get_gpr(vcpu, 5),
1299 kvmppc_get_gpr(vcpu, 6));
1300 if (ret == H_TOO_HARD)
1301 return RESUME_HOST;
1302 break;
1303 case H_PUT_TCE_INDIRECT:
1304 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1305 kvmppc_get_gpr(vcpu, 5),
1306 kvmppc_get_gpr(vcpu, 6),
1307 kvmppc_get_gpr(vcpu, 7));
1308 if (ret == H_TOO_HARD)
1309 return RESUME_HOST;
1310 break;
1311 case H_STUFF_TCE:
1312 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1313 kvmppc_get_gpr(vcpu, 5),
1314 kvmppc_get_gpr(vcpu, 6),
1315 kvmppc_get_gpr(vcpu, 7));
1316 if (ret == H_TOO_HARD)
1317 return RESUME_HOST;
1318 break;
1319 #endif
1320 case H_RANDOM: {
1321 unsigned long rand;
1322
1323 if (!arch_get_random_seed_longs(&rand, 1))
1324 ret = H_HARDWARE;
1325 kvmppc_set_gpr(vcpu, 4, rand);
1326 break;
1327 }
1328 case H_RPT_INVALIDATE:
1329 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1330 kvmppc_get_gpr(vcpu, 5),
1331 kvmppc_get_gpr(vcpu, 6),
1332 kvmppc_get_gpr(vcpu, 7),
1333 kvmppc_get_gpr(vcpu, 8),
1334 kvmppc_get_gpr(vcpu, 9));
1335 break;
1336
1337 case H_SET_PARTITION_TABLE:
1338 ret = H_FUNCTION;
1339 if (nesting_enabled(kvm))
1340 ret = kvmhv_set_partition_table(vcpu);
1341 break;
1342 case H_ENTER_NESTED:
1343 ret = H_FUNCTION;
1344 if (!nesting_enabled(kvm))
1345 break;
1346 ret = kvmhv_enter_nested_guest(vcpu);
1347 if (ret == H_INTERRUPT) {
1348 kvmppc_set_gpr(vcpu, 3, 0);
1349 vcpu->arch.hcall_needed = 0;
1350 return -EINTR;
1351 } else if (ret == H_TOO_HARD) {
1352 kvmppc_set_gpr(vcpu, 3, 0);
1353 vcpu->arch.hcall_needed = 0;
1354 return RESUME_HOST;
1355 }
1356 break;
1357 case H_TLB_INVALIDATE:
1358 ret = H_FUNCTION;
1359 if (nesting_enabled(kvm))
1360 ret = kvmhv_do_nested_tlbie(vcpu);
1361 break;
1362 case H_COPY_TOFROM_GUEST:
1363 ret = H_FUNCTION;
1364 if (nesting_enabled(kvm))
1365 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1366 break;
1367 case H_PAGE_INIT:
1368 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1369 kvmppc_get_gpr(vcpu, 5),
1370 kvmppc_get_gpr(vcpu, 6));
1371 break;
1372 case H_SVM_PAGE_IN:
1373 ret = H_UNSUPPORTED;
1374 if (kvmppc_get_srr1(vcpu) & MSR_S)
1375 ret = kvmppc_h_svm_page_in(kvm,
1376 kvmppc_get_gpr(vcpu, 4),
1377 kvmppc_get_gpr(vcpu, 5),
1378 kvmppc_get_gpr(vcpu, 6));
1379 break;
1380 case H_SVM_PAGE_OUT:
1381 ret = H_UNSUPPORTED;
1382 if (kvmppc_get_srr1(vcpu) & MSR_S)
1383 ret = kvmppc_h_svm_page_out(kvm,
1384 kvmppc_get_gpr(vcpu, 4),
1385 kvmppc_get_gpr(vcpu, 5),
1386 kvmppc_get_gpr(vcpu, 6));
1387 break;
1388 case H_SVM_INIT_START:
1389 ret = H_UNSUPPORTED;
1390 if (kvmppc_get_srr1(vcpu) & MSR_S)
1391 ret = kvmppc_h_svm_init_start(kvm);
1392 break;
1393 case H_SVM_INIT_DONE:
1394 ret = H_UNSUPPORTED;
1395 if (kvmppc_get_srr1(vcpu) & MSR_S)
1396 ret = kvmppc_h_svm_init_done(kvm);
1397 break;
1398 case H_SVM_INIT_ABORT:
1399 /*
1400 * Even if that call is made by the Ultravisor, the SSR1 value
1401 * is the guest context one, with the secure bit clear as it has
1402 * not yet been secured. So we can't check it here.
1403 * Instead the kvm->arch.secure_guest flag is checked inside
1404 * kvmppc_h_svm_init_abort().
1405 */
1406 ret = kvmppc_h_svm_init_abort(kvm);
1407 break;
1408
1409 default:
1410 return RESUME_HOST;
1411 }
1412 WARN_ON_ONCE(ret == H_TOO_HARD);
1413 kvmppc_set_gpr(vcpu, 3, ret);
1414 vcpu->arch.hcall_needed = 0;
1415 return RESUME_GUEST;
1416 }
1417
1418 /*
1419 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1420 * handlers in book3s_hv_rmhandlers.S.
1421 *
1422 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1423 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1424 */
kvmppc_cede(struct kvm_vcpu * vcpu)1425 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1426 {
1427 __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1428 vcpu->arch.ceded = 1;
1429 smp_mb();
1430 if (vcpu->arch.prodded) {
1431 vcpu->arch.prodded = 0;
1432 smp_mb();
1433 vcpu->arch.ceded = 0;
1434 }
1435 }
1436
kvmppc_hcall_impl_hv(unsigned long cmd)1437 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1438 {
1439 switch (cmd) {
1440 case H_CEDE:
1441 case H_PROD:
1442 case H_CONFER:
1443 case H_REGISTER_VPA:
1444 case H_SET_MODE:
1445 #ifdef CONFIG_SPAPR_TCE_IOMMU
1446 case H_GET_TCE:
1447 case H_PUT_TCE:
1448 case H_PUT_TCE_INDIRECT:
1449 case H_STUFF_TCE:
1450 #endif
1451 case H_LOGICAL_CI_LOAD:
1452 case H_LOGICAL_CI_STORE:
1453 #ifdef CONFIG_KVM_XICS
1454 case H_XIRR:
1455 case H_CPPR:
1456 case H_EOI:
1457 case H_IPI:
1458 case H_IPOLL:
1459 case H_XIRR_X:
1460 #endif
1461 case H_PAGE_INIT:
1462 case H_RPT_INVALIDATE:
1463 return 1;
1464 }
1465
1466 /* See if it's in the real-mode table */
1467 return kvmppc_hcall_impl_hv_realmode(cmd);
1468 }
1469
kvmppc_emulate_debug_inst(struct kvm_vcpu * vcpu)1470 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1471 {
1472 ppc_inst_t last_inst;
1473
1474 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1475 EMULATE_DONE) {
1476 /*
1477 * Fetch failed, so return to guest and
1478 * try executing it again.
1479 */
1480 return RESUME_GUEST;
1481 }
1482
1483 if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1484 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1485 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1486 return RESUME_HOST;
1487 } else {
1488 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1489 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1490 return RESUME_GUEST;
1491 }
1492 }
1493
do_nothing(void * x)1494 static void do_nothing(void *x)
1495 {
1496 }
1497
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)1498 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1499 {
1500 int thr, cpu, pcpu, nthreads;
1501 struct kvm_vcpu *v;
1502 unsigned long dpdes;
1503
1504 nthreads = vcpu->kvm->arch.emul_smt_mode;
1505 dpdes = 0;
1506 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1507 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1508 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1509 if (!v)
1510 continue;
1511 /*
1512 * If the vcpu is currently running on a physical cpu thread,
1513 * interrupt it in order to pull it out of the guest briefly,
1514 * which will update its vcore->dpdes value.
1515 */
1516 pcpu = READ_ONCE(v->cpu);
1517 if (pcpu >= 0)
1518 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1519 if (kvmppc_doorbell_pending(v))
1520 dpdes |= 1 << thr;
1521 }
1522 return dpdes;
1523 }
1524
1525 /*
1526 * On POWER9, emulate doorbell-related instructions in order to
1527 * give the guest the illusion of running on a multi-threaded core.
1528 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1529 * and mfspr DPDES.
1530 */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)1531 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1532 {
1533 u32 inst, rb, thr;
1534 unsigned long arg;
1535 struct kvm *kvm = vcpu->kvm;
1536 struct kvm_vcpu *tvcpu;
1537 ppc_inst_t pinst;
1538
1539 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1540 return RESUME_GUEST;
1541 inst = ppc_inst_val(pinst);
1542 if (get_op(inst) != 31)
1543 return EMULATE_FAIL;
1544 rb = get_rb(inst);
1545 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1546 switch (get_xop(inst)) {
1547 case OP_31_XOP_MSGSNDP:
1548 arg = kvmppc_get_gpr(vcpu, rb);
1549 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1550 break;
1551 arg &= 0x7f;
1552 if (arg >= kvm->arch.emul_smt_mode)
1553 break;
1554 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1555 if (!tvcpu)
1556 break;
1557 if (!tvcpu->arch.doorbell_request) {
1558 tvcpu->arch.doorbell_request = 1;
1559 kvmppc_fast_vcpu_kick_hv(tvcpu);
1560 }
1561 break;
1562 case OP_31_XOP_MSGCLRP:
1563 arg = kvmppc_get_gpr(vcpu, rb);
1564 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1565 break;
1566 vcpu->arch.vcore->dpdes = 0;
1567 vcpu->arch.doorbell_request = 0;
1568 break;
1569 case OP_31_XOP_MFSPR:
1570 switch (get_sprn(inst)) {
1571 case SPRN_TIR:
1572 arg = thr;
1573 break;
1574 case SPRN_DPDES:
1575 arg = kvmppc_read_dpdes(vcpu);
1576 break;
1577 default:
1578 return EMULATE_FAIL;
1579 }
1580 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1581 break;
1582 default:
1583 return EMULATE_FAIL;
1584 }
1585 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1586 return RESUME_GUEST;
1587 }
1588
1589 /*
1590 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1591 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1592 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1593 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1594 * allow the guest access to continue.
1595 */
kvmppc_pmu_unavailable(struct kvm_vcpu * vcpu)1596 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1597 {
1598 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1599 return EMULATE_FAIL;
1600
1601 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1602
1603 return RESUME_GUEST;
1604 }
1605
kvmppc_ebb_unavailable(struct kvm_vcpu * vcpu)1606 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1607 {
1608 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1609 return EMULATE_FAIL;
1610
1611 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1612
1613 return RESUME_GUEST;
1614 }
1615
kvmppc_tm_unavailable(struct kvm_vcpu * vcpu)1616 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1617 {
1618 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1619 return EMULATE_FAIL;
1620
1621 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1622
1623 return RESUME_GUEST;
1624 }
1625
kvmppc_handle_exit_hv(struct kvm_vcpu * vcpu,struct task_struct * tsk)1626 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1627 struct task_struct *tsk)
1628 {
1629 struct kvm_run *run = vcpu->run;
1630 int r = RESUME_HOST;
1631
1632 vcpu->stat.sum_exits++;
1633
1634 /*
1635 * This can happen if an interrupt occurs in the last stages
1636 * of guest entry or the first stages of guest exit (i.e. after
1637 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1638 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1639 * That can happen due to a bug, or due to a machine check
1640 * occurring at just the wrong time.
1641 */
1642 if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) {
1643 printk(KERN_EMERG "KVM trap in HV mode!\n");
1644 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1645 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1646 vcpu->arch.shregs.msr);
1647 kvmppc_dump_regs(vcpu);
1648 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1649 run->hw.hardware_exit_reason = vcpu->arch.trap;
1650 return RESUME_HOST;
1651 }
1652 run->exit_reason = KVM_EXIT_UNKNOWN;
1653 run->ready_for_interrupt_injection = 1;
1654 switch (vcpu->arch.trap) {
1655 /* We're good on these - the host merely wanted to get our attention */
1656 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1657 WARN_ON_ONCE(1); /* Should never happen */
1658 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1659 fallthrough;
1660 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1661 vcpu->stat.dec_exits++;
1662 r = RESUME_GUEST;
1663 break;
1664 case BOOK3S_INTERRUPT_EXTERNAL:
1665 case BOOK3S_INTERRUPT_H_DOORBELL:
1666 case BOOK3S_INTERRUPT_H_VIRT:
1667 vcpu->stat.ext_intr_exits++;
1668 r = RESUME_GUEST;
1669 break;
1670 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1671 case BOOK3S_INTERRUPT_HMI:
1672 case BOOK3S_INTERRUPT_PERFMON:
1673 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1674 r = RESUME_GUEST;
1675 break;
1676 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1677 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1678 DEFAULT_RATELIMIT_BURST);
1679 /*
1680 * Print the MCE event to host console. Ratelimit so the guest
1681 * can't flood the host log.
1682 */
1683 if (__ratelimit(&rs))
1684 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1685
1686 /*
1687 * If the guest can do FWNMI, exit to userspace so it can
1688 * deliver a FWNMI to the guest.
1689 * Otherwise we synthesize a machine check for the guest
1690 * so that it knows that the machine check occurred.
1691 */
1692 if (!vcpu->kvm->arch.fwnmi_enabled) {
1693 ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1694 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1695 kvmppc_core_queue_machine_check(vcpu, flags);
1696 r = RESUME_GUEST;
1697 break;
1698 }
1699
1700 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1701 run->exit_reason = KVM_EXIT_NMI;
1702 run->hw.hardware_exit_reason = vcpu->arch.trap;
1703 /* Clear out the old NMI status from run->flags */
1704 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1705 /* Now set the NMI status */
1706 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1707 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1708 else
1709 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1710
1711 r = RESUME_HOST;
1712 break;
1713 }
1714 case BOOK3S_INTERRUPT_PROGRAM:
1715 {
1716 ulong flags;
1717 /*
1718 * Normally program interrupts are delivered directly
1719 * to the guest by the hardware, but we can get here
1720 * as a result of a hypervisor emulation interrupt
1721 * (e40) getting turned into a 700 by BML RTAS.
1722 */
1723 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1724 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1725 kvmppc_core_queue_program(vcpu, flags);
1726 r = RESUME_GUEST;
1727 break;
1728 }
1729 case BOOK3S_INTERRUPT_SYSCALL:
1730 {
1731 int i;
1732
1733 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1734 /*
1735 * Guest userspace executed sc 1. This can only be
1736 * reached by the P9 path because the old path
1737 * handles this case in realmode hcall handlers.
1738 */
1739 if (!kvmhv_vcpu_is_radix(vcpu)) {
1740 /*
1741 * A guest could be running PR KVM, so this
1742 * may be a PR KVM hcall. It must be reflected
1743 * to the guest kernel as a sc interrupt.
1744 */
1745 kvmppc_core_queue_syscall(vcpu);
1746 } else {
1747 /*
1748 * Radix guests can not run PR KVM or nested HV
1749 * hash guests which might run PR KVM, so this
1750 * is always a privilege fault. Send a program
1751 * check to guest kernel.
1752 */
1753 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1754 }
1755 r = RESUME_GUEST;
1756 break;
1757 }
1758
1759 /*
1760 * hcall - gather args and set exit_reason. This will next be
1761 * handled by kvmppc_pseries_do_hcall which may be able to deal
1762 * with it and resume guest, or may punt to userspace.
1763 */
1764 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1765 for (i = 0; i < 9; ++i)
1766 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1767 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1768 vcpu->arch.hcall_needed = 1;
1769 r = RESUME_HOST;
1770 break;
1771 }
1772 /*
1773 * We get these next two if the guest accesses a page which it thinks
1774 * it has mapped but which is not actually present, either because
1775 * it is for an emulated I/O device or because the corresonding
1776 * host page has been paged out.
1777 *
1778 * Any other HDSI/HISI interrupts have been handled already for P7/8
1779 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1780 * fault handling is done here.
1781 */
1782 case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1783 unsigned long vsid;
1784 long err;
1785
1786 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1787 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1788 r = RESUME_GUEST; /* Just retry if it's the canary */
1789 break;
1790 }
1791
1792 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1793 /*
1794 * Radix doesn't require anything, and pre-ISAv3.0 hash
1795 * already attempted to handle this in rmhandlers. The
1796 * hash fault handling below is v3 only (it uses ASDR
1797 * via fault_gpa).
1798 */
1799 r = RESUME_PAGE_FAULT;
1800 break;
1801 }
1802
1803 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1804 kvmppc_core_queue_data_storage(vcpu,
1805 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1806 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1807 r = RESUME_GUEST;
1808 break;
1809 }
1810
1811 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1812 vsid = vcpu->kvm->arch.vrma_slb_v;
1813 else
1814 vsid = vcpu->arch.fault_gpa;
1815
1816 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1817 vsid, vcpu->arch.fault_dsisr, true);
1818 if (err == 0) {
1819 r = RESUME_GUEST;
1820 } else if (err == -1 || err == -2) {
1821 r = RESUME_PAGE_FAULT;
1822 } else {
1823 kvmppc_core_queue_data_storage(vcpu,
1824 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1825 vcpu->arch.fault_dar, err);
1826 r = RESUME_GUEST;
1827 }
1828 break;
1829 }
1830 case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1831 unsigned long vsid;
1832 long err;
1833
1834 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1835 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1836 DSISR_SRR1_MATCH_64S;
1837 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1838 /*
1839 * Radix doesn't require anything, and pre-ISAv3.0 hash
1840 * already attempted to handle this in rmhandlers. The
1841 * hash fault handling below is v3 only (it uses ASDR
1842 * via fault_gpa).
1843 */
1844 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1845 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1846 r = RESUME_PAGE_FAULT;
1847 break;
1848 }
1849
1850 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1851 kvmppc_core_queue_inst_storage(vcpu,
1852 vcpu->arch.fault_dsisr |
1853 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1854 r = RESUME_GUEST;
1855 break;
1856 }
1857
1858 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1859 vsid = vcpu->kvm->arch.vrma_slb_v;
1860 else
1861 vsid = vcpu->arch.fault_gpa;
1862
1863 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1864 vsid, vcpu->arch.fault_dsisr, false);
1865 if (err == 0) {
1866 r = RESUME_GUEST;
1867 } else if (err == -1) {
1868 r = RESUME_PAGE_FAULT;
1869 } else {
1870 kvmppc_core_queue_inst_storage(vcpu,
1871 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1872 r = RESUME_GUEST;
1873 }
1874 break;
1875 }
1876
1877 /*
1878 * This occurs if the guest executes an illegal instruction.
1879 * If the guest debug is disabled, generate a program interrupt
1880 * to the guest. If guest debug is enabled, we need to check
1881 * whether the instruction is a software breakpoint instruction.
1882 * Accordingly return to Guest or Host.
1883 */
1884 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1885 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1886 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1887 swab32(vcpu->arch.emul_inst) :
1888 vcpu->arch.emul_inst;
1889 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1890 r = kvmppc_emulate_debug_inst(vcpu);
1891 } else {
1892 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1893 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1894 r = RESUME_GUEST;
1895 }
1896 break;
1897
1898 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1899 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1900 /*
1901 * This occurs for various TM-related instructions that
1902 * we need to emulate on POWER9 DD2.2. We have already
1903 * handled the cases where the guest was in real-suspend
1904 * mode and was transitioning to transactional state.
1905 */
1906 r = kvmhv_p9_tm_emulation(vcpu);
1907 if (r != -1)
1908 break;
1909 fallthrough; /* go to facility unavailable handler */
1910 #endif
1911
1912 /*
1913 * This occurs if the guest (kernel or userspace), does something that
1914 * is prohibited by HFSCR.
1915 * On POWER9, this could be a doorbell instruction that we need
1916 * to emulate.
1917 * Otherwise, we just generate a program interrupt to the guest.
1918 */
1919 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1920 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1921
1922 r = EMULATE_FAIL;
1923 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1924 if (cause == FSCR_MSGP_LG)
1925 r = kvmppc_emulate_doorbell_instr(vcpu);
1926 if (cause == FSCR_PM_LG)
1927 r = kvmppc_pmu_unavailable(vcpu);
1928 if (cause == FSCR_EBB_LG)
1929 r = kvmppc_ebb_unavailable(vcpu);
1930 if (cause == FSCR_TM_LG)
1931 r = kvmppc_tm_unavailable(vcpu);
1932 }
1933 if (r == EMULATE_FAIL) {
1934 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1935 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1936 r = RESUME_GUEST;
1937 }
1938 break;
1939 }
1940
1941 case BOOK3S_INTERRUPT_HV_RM_HARD:
1942 r = RESUME_PASSTHROUGH;
1943 break;
1944 default:
1945 kvmppc_dump_regs(vcpu);
1946 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1947 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1948 __kvmppc_get_msr_hv(vcpu));
1949 run->hw.hardware_exit_reason = vcpu->arch.trap;
1950 r = RESUME_HOST;
1951 break;
1952 }
1953
1954 return r;
1955 }
1956
kvmppc_handle_nested_exit(struct kvm_vcpu * vcpu)1957 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1958 {
1959 int r;
1960 int srcu_idx;
1961
1962 vcpu->stat.sum_exits++;
1963
1964 /*
1965 * This can happen if an interrupt occurs in the last stages
1966 * of guest entry or the first stages of guest exit (i.e. after
1967 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1968 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1969 * That can happen due to a bug, or due to a machine check
1970 * occurring at just the wrong time.
1971 */
1972 if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1973 pr_emerg("KVM trap in HV mode while nested!\n");
1974 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1975 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1976 __kvmppc_get_msr_hv(vcpu));
1977 kvmppc_dump_regs(vcpu);
1978 return RESUME_HOST;
1979 }
1980 switch (vcpu->arch.trap) {
1981 /* We're good on these - the host merely wanted to get our attention */
1982 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1983 vcpu->stat.dec_exits++;
1984 r = RESUME_GUEST;
1985 break;
1986 case BOOK3S_INTERRUPT_EXTERNAL:
1987 vcpu->stat.ext_intr_exits++;
1988 r = RESUME_HOST;
1989 break;
1990 case BOOK3S_INTERRUPT_H_DOORBELL:
1991 case BOOK3S_INTERRUPT_H_VIRT:
1992 vcpu->stat.ext_intr_exits++;
1993 r = RESUME_GUEST;
1994 break;
1995 /* These need to go to the nested HV */
1996 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1997 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1998 vcpu->stat.dec_exits++;
1999 r = RESUME_HOST;
2000 break;
2001 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
2002 case BOOK3S_INTERRUPT_HMI:
2003 case BOOK3S_INTERRUPT_PERFMON:
2004 case BOOK3S_INTERRUPT_SYSTEM_RESET:
2005 r = RESUME_GUEST;
2006 break;
2007 case BOOK3S_INTERRUPT_MACHINE_CHECK:
2008 {
2009 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
2010 DEFAULT_RATELIMIT_BURST);
2011 /* Pass the machine check to the L1 guest */
2012 r = RESUME_HOST;
2013 /* Print the MCE event to host console. */
2014 if (__ratelimit(&rs))
2015 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
2016 break;
2017 }
2018 /*
2019 * We get these next two if the guest accesses a page which it thinks
2020 * it has mapped but which is not actually present, either because
2021 * it is for an emulated I/O device or because the corresonding
2022 * host page has been paged out.
2023 */
2024 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
2025 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2026 r = kvmhv_nested_page_fault(vcpu);
2027 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2028 break;
2029 case BOOK3S_INTERRUPT_H_INST_STORAGE:
2030 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
2031 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
2032 DSISR_SRR1_MATCH_64S;
2033 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
2034 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
2035 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2036 r = kvmhv_nested_page_fault(vcpu);
2037 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2038 break;
2039
2040 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2041 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
2042 /*
2043 * This occurs for various TM-related instructions that
2044 * we need to emulate on POWER9 DD2.2. We have already
2045 * handled the cases where the guest was in real-suspend
2046 * mode and was transitioning to transactional state.
2047 */
2048 r = kvmhv_p9_tm_emulation(vcpu);
2049 if (r != -1)
2050 break;
2051 fallthrough; /* go to facility unavailable handler */
2052 #endif
2053
2054 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2055 u64 cause = vcpu->arch.hfscr >> 56;
2056
2057 /*
2058 * Only pass HFU interrupts to the L1 if the facility is
2059 * permitted but disabled by the L1's HFSCR, otherwise
2060 * the interrupt does not make sense to the L1 so turn
2061 * it into a HEAI.
2062 */
2063 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2064 (vcpu->arch.nested_hfscr & (1UL << cause))) {
2065 ppc_inst_t pinst;
2066 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2067
2068 /*
2069 * If the fetch failed, return to guest and
2070 * try executing it again.
2071 */
2072 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2073 vcpu->arch.emul_inst = ppc_inst_val(pinst);
2074 if (r != EMULATE_DONE)
2075 r = RESUME_GUEST;
2076 else
2077 r = RESUME_HOST;
2078 } else {
2079 r = RESUME_HOST;
2080 }
2081
2082 break;
2083 }
2084
2085 case BOOK3S_INTERRUPT_HV_RM_HARD:
2086 vcpu->arch.trap = 0;
2087 r = RESUME_GUEST;
2088 if (!xics_on_xive())
2089 kvmppc_xics_rm_complete(vcpu, 0);
2090 break;
2091 case BOOK3S_INTERRUPT_SYSCALL:
2092 {
2093 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2094
2095 /*
2096 * The H_RPT_INVALIDATE hcalls issued by nested
2097 * guests for process-scoped invalidations when
2098 * GTSE=0, are handled here in L0.
2099 */
2100 if (req == H_RPT_INVALIDATE) {
2101 r = kvmppc_nested_h_rpt_invalidate(vcpu);
2102 break;
2103 }
2104
2105 r = RESUME_HOST;
2106 break;
2107 }
2108 default:
2109 r = RESUME_HOST;
2110 break;
2111 }
2112
2113 return r;
2114 }
2115
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)2116 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2117 struct kvm_sregs *sregs)
2118 {
2119 int i;
2120
2121 memset(sregs, 0, sizeof(struct kvm_sregs));
2122 sregs->pvr = vcpu->arch.pvr;
2123 for (i = 0; i < vcpu->arch.slb_max; i++) {
2124 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2125 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2126 }
2127
2128 return 0;
2129 }
2130
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)2131 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2132 struct kvm_sregs *sregs)
2133 {
2134 int i, j;
2135
2136 /* Only accept the same PVR as the host's, since we can't spoof it */
2137 if (sregs->pvr != vcpu->arch.pvr)
2138 return -EINVAL;
2139
2140 j = 0;
2141 for (i = 0; i < vcpu->arch.slb_nr; i++) {
2142 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2143 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2144 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2145 ++j;
2146 }
2147 }
2148 vcpu->arch.slb_max = j;
2149
2150 return 0;
2151 }
2152
2153 /*
2154 * Enforce limits on guest LPCR values based on hardware availability,
2155 * guest configuration, and possibly hypervisor support and security
2156 * concerns.
2157 */
kvmppc_filter_lpcr_hv(struct kvm * kvm,unsigned long lpcr)2158 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2159 {
2160 /* LPCR_TC only applies to HPT guests */
2161 if (kvm_is_radix(kvm))
2162 lpcr &= ~LPCR_TC;
2163
2164 /* On POWER8 and above, userspace can modify AIL */
2165 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2166 lpcr &= ~LPCR_AIL;
2167 if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2168 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2169 /*
2170 * On some POWER9s we force AIL off for radix guests to prevent
2171 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2172 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2173 * be cached, which the host TLB management does not expect.
2174 */
2175 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2176 lpcr &= ~LPCR_AIL;
2177
2178 /*
2179 * On POWER9, allow userspace to enable large decrementer for the
2180 * guest, whether or not the host has it enabled.
2181 */
2182 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2183 lpcr &= ~LPCR_LD;
2184
2185 return lpcr;
2186 }
2187
verify_lpcr(struct kvm * kvm,unsigned long lpcr)2188 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2189 {
2190 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2191 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2192 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2193 }
2194 }
2195
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)2196 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2197 bool preserve_top32)
2198 {
2199 struct kvm *kvm = vcpu->kvm;
2200 struct kvmppc_vcore *vc = vcpu->arch.vcore;
2201 u64 mask;
2202
2203 spin_lock(&vc->lock);
2204
2205 /*
2206 * Userspace can only modify
2207 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2208 * TC (translation control), AIL (alternate interrupt location),
2209 * LD (large decrementer).
2210 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2211 */
2212 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2213
2214 /* Broken 32-bit version of LPCR must not clear top bits */
2215 if (preserve_top32)
2216 mask &= 0xFFFFFFFF;
2217
2218 new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2219 (vc->lpcr & ~mask) | (new_lpcr & mask));
2220
2221 /*
2222 * If ILE (interrupt little-endian) has changed, update the
2223 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2224 */
2225 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2226 struct kvm_vcpu *vcpu;
2227 unsigned long i;
2228
2229 kvm_for_each_vcpu(i, vcpu, kvm) {
2230 if (vcpu->arch.vcore != vc)
2231 continue;
2232 if (new_lpcr & LPCR_ILE)
2233 vcpu->arch.intr_msr |= MSR_LE;
2234 else
2235 vcpu->arch.intr_msr &= ~MSR_LE;
2236 }
2237 }
2238
2239 vc->lpcr = new_lpcr;
2240 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
2241
2242 spin_unlock(&vc->lock);
2243 }
2244
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2245 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2246 union kvmppc_one_reg *val)
2247 {
2248 int r = 0;
2249 long int i;
2250
2251 switch (id) {
2252 case KVM_REG_PPC_DEBUG_INST:
2253 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2254 break;
2255 case KVM_REG_PPC_HIOR:
2256 *val = get_reg_val(id, 0);
2257 break;
2258 case KVM_REG_PPC_DABR:
2259 *val = get_reg_val(id, vcpu->arch.dabr);
2260 break;
2261 case KVM_REG_PPC_DABRX:
2262 *val = get_reg_val(id, vcpu->arch.dabrx);
2263 break;
2264 case KVM_REG_PPC_DSCR:
2265 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2266 break;
2267 case KVM_REG_PPC_PURR:
2268 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2269 break;
2270 case KVM_REG_PPC_SPURR:
2271 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2272 break;
2273 case KVM_REG_PPC_AMR:
2274 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2275 break;
2276 case KVM_REG_PPC_UAMOR:
2277 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2278 break;
2279 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2280 i = id - KVM_REG_PPC_MMCR0;
2281 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2282 break;
2283 case KVM_REG_PPC_MMCR2:
2284 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2285 break;
2286 case KVM_REG_PPC_MMCRA:
2287 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2288 break;
2289 case KVM_REG_PPC_MMCRS:
2290 *val = get_reg_val(id, vcpu->arch.mmcrs);
2291 break;
2292 case KVM_REG_PPC_MMCR3:
2293 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2294 break;
2295 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2296 i = id - KVM_REG_PPC_PMC1;
2297 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2298 break;
2299 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2300 i = id - KVM_REG_PPC_SPMC1;
2301 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2302 break;
2303 case KVM_REG_PPC_SIAR:
2304 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2305 break;
2306 case KVM_REG_PPC_SDAR:
2307 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2308 break;
2309 case KVM_REG_PPC_SIER:
2310 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2311 break;
2312 case KVM_REG_PPC_SIER2:
2313 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2314 break;
2315 case KVM_REG_PPC_SIER3:
2316 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2317 break;
2318 case KVM_REG_PPC_IAMR:
2319 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2320 break;
2321 case KVM_REG_PPC_PSPB:
2322 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2323 break;
2324 case KVM_REG_PPC_DPDES:
2325 /*
2326 * On POWER9, where we are emulating msgsndp etc.,
2327 * we return 1 bit for each vcpu, which can come from
2328 * either vcore->dpdes or doorbell_request.
2329 * On POWER8, doorbell_request is 0.
2330 */
2331 if (cpu_has_feature(CPU_FTR_ARCH_300))
2332 *val = get_reg_val(id, vcpu->arch.doorbell_request);
2333 else
2334 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2335 break;
2336 case KVM_REG_PPC_VTB:
2337 *val = get_reg_val(id, kvmppc_get_vtb(vcpu));
2338 break;
2339 case KVM_REG_PPC_DAWR:
2340 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2341 break;
2342 case KVM_REG_PPC_DAWRX:
2343 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2344 break;
2345 case KVM_REG_PPC_DAWR1:
2346 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2347 break;
2348 case KVM_REG_PPC_DAWRX1:
2349 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2350 break;
2351 case KVM_REG_PPC_CIABR:
2352 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2353 break;
2354 case KVM_REG_PPC_CSIGR:
2355 *val = get_reg_val(id, vcpu->arch.csigr);
2356 break;
2357 case KVM_REG_PPC_TACR:
2358 *val = get_reg_val(id, vcpu->arch.tacr);
2359 break;
2360 case KVM_REG_PPC_TCSCR:
2361 *val = get_reg_val(id, vcpu->arch.tcscr);
2362 break;
2363 case KVM_REG_PPC_PID:
2364 *val = get_reg_val(id, kvmppc_get_pid(vcpu));
2365 break;
2366 case KVM_REG_PPC_ACOP:
2367 *val = get_reg_val(id, vcpu->arch.acop);
2368 break;
2369 case KVM_REG_PPC_WORT:
2370 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2371 break;
2372 case KVM_REG_PPC_TIDR:
2373 *val = get_reg_val(id, vcpu->arch.tid);
2374 break;
2375 case KVM_REG_PPC_PSSCR:
2376 *val = get_reg_val(id, vcpu->arch.psscr);
2377 break;
2378 case KVM_REG_PPC_VPA_ADDR:
2379 spin_lock(&vcpu->arch.vpa_update_lock);
2380 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2381 spin_unlock(&vcpu->arch.vpa_update_lock);
2382 break;
2383 case KVM_REG_PPC_VPA_SLB:
2384 spin_lock(&vcpu->arch.vpa_update_lock);
2385 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2386 val->vpaval.length = vcpu->arch.slb_shadow.len;
2387 spin_unlock(&vcpu->arch.vpa_update_lock);
2388 break;
2389 case KVM_REG_PPC_VPA_DTL:
2390 spin_lock(&vcpu->arch.vpa_update_lock);
2391 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2392 val->vpaval.length = vcpu->arch.dtl.len;
2393 spin_unlock(&vcpu->arch.vpa_update_lock);
2394 break;
2395 case KVM_REG_PPC_TB_OFFSET:
2396 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
2397 break;
2398 case KVM_REG_PPC_LPCR:
2399 case KVM_REG_PPC_LPCR_64:
2400 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
2401 break;
2402 case KVM_REG_PPC_PPR:
2403 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2404 break;
2405 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2406 case KVM_REG_PPC_TFHAR:
2407 *val = get_reg_val(id, vcpu->arch.tfhar);
2408 break;
2409 case KVM_REG_PPC_TFIAR:
2410 *val = get_reg_val(id, vcpu->arch.tfiar);
2411 break;
2412 case KVM_REG_PPC_TEXASR:
2413 *val = get_reg_val(id, vcpu->arch.texasr);
2414 break;
2415 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2416 i = id - KVM_REG_PPC_TM_GPR0;
2417 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2418 break;
2419 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2420 {
2421 int j;
2422 i = id - KVM_REG_PPC_TM_VSR0;
2423 if (i < 32)
2424 for (j = 0; j < TS_FPRWIDTH; j++)
2425 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2426 else {
2427 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2428 val->vval = vcpu->arch.vr_tm.vr[i-32];
2429 else
2430 r = -ENXIO;
2431 }
2432 break;
2433 }
2434 case KVM_REG_PPC_TM_CR:
2435 *val = get_reg_val(id, vcpu->arch.cr_tm);
2436 break;
2437 case KVM_REG_PPC_TM_XER:
2438 *val = get_reg_val(id, vcpu->arch.xer_tm);
2439 break;
2440 case KVM_REG_PPC_TM_LR:
2441 *val = get_reg_val(id, vcpu->arch.lr_tm);
2442 break;
2443 case KVM_REG_PPC_TM_CTR:
2444 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2445 break;
2446 case KVM_REG_PPC_TM_FPSCR:
2447 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2448 break;
2449 case KVM_REG_PPC_TM_AMR:
2450 *val = get_reg_val(id, vcpu->arch.amr_tm);
2451 break;
2452 case KVM_REG_PPC_TM_PPR:
2453 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2454 break;
2455 case KVM_REG_PPC_TM_VRSAVE:
2456 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2457 break;
2458 case KVM_REG_PPC_TM_VSCR:
2459 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2460 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2461 else
2462 r = -ENXIO;
2463 break;
2464 case KVM_REG_PPC_TM_DSCR:
2465 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2466 break;
2467 case KVM_REG_PPC_TM_TAR:
2468 *val = get_reg_val(id, vcpu->arch.tar_tm);
2469 break;
2470 #endif
2471 case KVM_REG_PPC_ARCH_COMPAT:
2472 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
2473 break;
2474 case KVM_REG_PPC_DEC_EXPIRY:
2475 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
2476 break;
2477 case KVM_REG_PPC_ONLINE:
2478 *val = get_reg_val(id, vcpu->arch.online);
2479 break;
2480 case KVM_REG_PPC_PTCR:
2481 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2482 break;
2483 case KVM_REG_PPC_FSCR:
2484 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2485 break;
2486 default:
2487 r = -EINVAL;
2488 break;
2489 }
2490
2491 return r;
2492 }
2493
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)2494 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2495 union kvmppc_one_reg *val)
2496 {
2497 int r = 0;
2498 long int i;
2499 unsigned long addr, len;
2500
2501 switch (id) {
2502 case KVM_REG_PPC_HIOR:
2503 /* Only allow this to be set to zero */
2504 if (set_reg_val(id, *val))
2505 r = -EINVAL;
2506 break;
2507 case KVM_REG_PPC_DABR:
2508 vcpu->arch.dabr = set_reg_val(id, *val);
2509 break;
2510 case KVM_REG_PPC_DABRX:
2511 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2512 break;
2513 case KVM_REG_PPC_DSCR:
2514 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2515 break;
2516 case KVM_REG_PPC_PURR:
2517 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2518 break;
2519 case KVM_REG_PPC_SPURR:
2520 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2521 break;
2522 case KVM_REG_PPC_AMR:
2523 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2524 break;
2525 case KVM_REG_PPC_UAMOR:
2526 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2527 break;
2528 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2529 i = id - KVM_REG_PPC_MMCR0;
2530 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2531 break;
2532 case KVM_REG_PPC_MMCR2:
2533 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2534 break;
2535 case KVM_REG_PPC_MMCRA:
2536 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2537 break;
2538 case KVM_REG_PPC_MMCRS:
2539 vcpu->arch.mmcrs = set_reg_val(id, *val);
2540 break;
2541 case KVM_REG_PPC_MMCR3:
2542 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2543 break;
2544 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2545 i = id - KVM_REG_PPC_PMC1;
2546 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2547 break;
2548 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2549 i = id - KVM_REG_PPC_SPMC1;
2550 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2551 break;
2552 case KVM_REG_PPC_SIAR:
2553 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2554 break;
2555 case KVM_REG_PPC_SDAR:
2556 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2557 break;
2558 case KVM_REG_PPC_SIER:
2559 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2560 break;
2561 case KVM_REG_PPC_SIER2:
2562 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2563 break;
2564 case KVM_REG_PPC_SIER3:
2565 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2566 break;
2567 case KVM_REG_PPC_IAMR:
2568 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2569 break;
2570 case KVM_REG_PPC_PSPB:
2571 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2572 break;
2573 case KVM_REG_PPC_DPDES:
2574 if (cpu_has_feature(CPU_FTR_ARCH_300))
2575 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2576 else
2577 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2578 break;
2579 case KVM_REG_PPC_VTB:
2580 kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
2581 break;
2582 case KVM_REG_PPC_DAWR:
2583 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2584 break;
2585 case KVM_REG_PPC_DAWRX:
2586 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2587 break;
2588 case KVM_REG_PPC_DAWR1:
2589 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2590 break;
2591 case KVM_REG_PPC_DAWRX1:
2592 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2593 break;
2594 case KVM_REG_PPC_CIABR:
2595 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2596 /* Don't allow setting breakpoints in hypervisor code */
2597 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2598 kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2599 break;
2600 case KVM_REG_PPC_CSIGR:
2601 vcpu->arch.csigr = set_reg_val(id, *val);
2602 break;
2603 case KVM_REG_PPC_TACR:
2604 vcpu->arch.tacr = set_reg_val(id, *val);
2605 break;
2606 case KVM_REG_PPC_TCSCR:
2607 vcpu->arch.tcscr = set_reg_val(id, *val);
2608 break;
2609 case KVM_REG_PPC_PID:
2610 kvmppc_set_pid(vcpu, set_reg_val(id, *val));
2611 break;
2612 case KVM_REG_PPC_ACOP:
2613 vcpu->arch.acop = set_reg_val(id, *val);
2614 break;
2615 case KVM_REG_PPC_WORT:
2616 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2617 break;
2618 case KVM_REG_PPC_TIDR:
2619 vcpu->arch.tid = set_reg_val(id, *val);
2620 break;
2621 case KVM_REG_PPC_PSSCR:
2622 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2623 break;
2624 case KVM_REG_PPC_VPA_ADDR:
2625 addr = set_reg_val(id, *val);
2626 r = -EINVAL;
2627 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2628 vcpu->arch.dtl.next_gpa))
2629 break;
2630 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2631 break;
2632 case KVM_REG_PPC_VPA_SLB:
2633 addr = val->vpaval.addr;
2634 len = val->vpaval.length;
2635 r = -EINVAL;
2636 if (addr && !vcpu->arch.vpa.next_gpa)
2637 break;
2638 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2639 break;
2640 case KVM_REG_PPC_VPA_DTL:
2641 addr = val->vpaval.addr;
2642 len = val->vpaval.length;
2643 r = -EINVAL;
2644 if (addr && (len < sizeof(struct dtl_entry) ||
2645 !vcpu->arch.vpa.next_gpa))
2646 break;
2647 len -= len % sizeof(struct dtl_entry);
2648 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2649 break;
2650 case KVM_REG_PPC_TB_OFFSET:
2651 {
2652 /* round up to multiple of 2^24 */
2653 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2654
2655 /*
2656 * Now that we know the timebase offset, update the
2657 * decrementer expiry with a guest timebase value. If
2658 * the userspace does not set DEC_EXPIRY, this ensures
2659 * a migrated vcpu at least starts with an expired
2660 * decrementer, which is better than a large one that
2661 * causes a hang.
2662 */
2663 kvmppc_set_tb_offset(vcpu, tb_offset);
2664 if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
2665 kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
2666
2667 kvmppc_set_tb_offset(vcpu, tb_offset);
2668 break;
2669 }
2670 case KVM_REG_PPC_LPCR:
2671 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2672 break;
2673 case KVM_REG_PPC_LPCR_64:
2674 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2675 break;
2676 case KVM_REG_PPC_PPR:
2677 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2678 break;
2679 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2680 case KVM_REG_PPC_TFHAR:
2681 vcpu->arch.tfhar = set_reg_val(id, *val);
2682 break;
2683 case KVM_REG_PPC_TFIAR:
2684 vcpu->arch.tfiar = set_reg_val(id, *val);
2685 break;
2686 case KVM_REG_PPC_TEXASR:
2687 vcpu->arch.texasr = set_reg_val(id, *val);
2688 break;
2689 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2690 i = id - KVM_REG_PPC_TM_GPR0;
2691 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2692 break;
2693 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2694 {
2695 int j;
2696 i = id - KVM_REG_PPC_TM_VSR0;
2697 if (i < 32)
2698 for (j = 0; j < TS_FPRWIDTH; j++)
2699 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2700 else
2701 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2702 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2703 else
2704 r = -ENXIO;
2705 break;
2706 }
2707 case KVM_REG_PPC_TM_CR:
2708 vcpu->arch.cr_tm = set_reg_val(id, *val);
2709 break;
2710 case KVM_REG_PPC_TM_XER:
2711 vcpu->arch.xer_tm = set_reg_val(id, *val);
2712 break;
2713 case KVM_REG_PPC_TM_LR:
2714 vcpu->arch.lr_tm = set_reg_val(id, *val);
2715 break;
2716 case KVM_REG_PPC_TM_CTR:
2717 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2718 break;
2719 case KVM_REG_PPC_TM_FPSCR:
2720 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2721 break;
2722 case KVM_REG_PPC_TM_AMR:
2723 vcpu->arch.amr_tm = set_reg_val(id, *val);
2724 break;
2725 case KVM_REG_PPC_TM_PPR:
2726 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2727 break;
2728 case KVM_REG_PPC_TM_VRSAVE:
2729 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2730 break;
2731 case KVM_REG_PPC_TM_VSCR:
2732 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2733 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2734 else
2735 r = - ENXIO;
2736 break;
2737 case KVM_REG_PPC_TM_DSCR:
2738 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2739 break;
2740 case KVM_REG_PPC_TM_TAR:
2741 vcpu->arch.tar_tm = set_reg_val(id, *val);
2742 break;
2743 #endif
2744 case KVM_REG_PPC_ARCH_COMPAT:
2745 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2746 break;
2747 case KVM_REG_PPC_DEC_EXPIRY:
2748 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
2749 break;
2750 case KVM_REG_PPC_ONLINE:
2751 i = set_reg_val(id, *val);
2752 if (i && !vcpu->arch.online)
2753 atomic_inc(&vcpu->arch.vcore->online_count);
2754 else if (!i && vcpu->arch.online)
2755 atomic_dec(&vcpu->arch.vcore->online_count);
2756 vcpu->arch.online = i;
2757 break;
2758 case KVM_REG_PPC_PTCR:
2759 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2760 break;
2761 case KVM_REG_PPC_FSCR:
2762 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2763 break;
2764 default:
2765 r = -EINVAL;
2766 break;
2767 }
2768
2769 return r;
2770 }
2771
2772 /*
2773 * On POWER9, threads are independent and can be in different partitions.
2774 * Therefore we consider each thread to be a subcore.
2775 * There is a restriction that all threads have to be in the same
2776 * MMU mode (radix or HPT), unfortunately, but since we only support
2777 * HPT guests on a HPT host so far, that isn't an impediment yet.
2778 */
threads_per_vcore(struct kvm * kvm)2779 static int threads_per_vcore(struct kvm *kvm)
2780 {
2781 if (cpu_has_feature(CPU_FTR_ARCH_300))
2782 return 1;
2783 return threads_per_subcore;
2784 }
2785
kvmppc_vcore_create(struct kvm * kvm,int id)2786 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2787 {
2788 struct kvmppc_vcore *vcore;
2789
2790 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2791
2792 if (vcore == NULL)
2793 return NULL;
2794
2795 spin_lock_init(&vcore->lock);
2796 spin_lock_init(&vcore->stoltb_lock);
2797 rcuwait_init(&vcore->wait);
2798 vcore->preempt_tb = TB_NIL;
2799 vcore->lpcr = kvm->arch.lpcr;
2800 vcore->first_vcpuid = id;
2801 vcore->kvm = kvm;
2802 INIT_LIST_HEAD(&vcore->preempt_list);
2803
2804 return vcore;
2805 }
2806
2807 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2808 static struct debugfs_timings_element {
2809 const char *name;
2810 size_t offset;
2811 } timings[] = {
2812 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2813 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2814 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2815 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
2816 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
2817 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2818 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
2819 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
2820 #else
2821 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2822 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2823 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2824 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2825 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2826 #endif
2827 };
2828
2829 #define N_TIMINGS (ARRAY_SIZE(timings))
2830
2831 struct debugfs_timings_state {
2832 struct kvm_vcpu *vcpu;
2833 unsigned int buflen;
2834 char buf[N_TIMINGS * 100];
2835 };
2836
debugfs_timings_open(struct inode * inode,struct file * file)2837 static int debugfs_timings_open(struct inode *inode, struct file *file)
2838 {
2839 struct kvm_vcpu *vcpu = inode->i_private;
2840 struct debugfs_timings_state *p;
2841
2842 p = kzalloc(sizeof(*p), GFP_KERNEL);
2843 if (!p)
2844 return -ENOMEM;
2845
2846 kvm_get_kvm(vcpu->kvm);
2847 p->vcpu = vcpu;
2848 file->private_data = p;
2849
2850 return nonseekable_open(inode, file);
2851 }
2852
debugfs_timings_release(struct inode * inode,struct file * file)2853 static int debugfs_timings_release(struct inode *inode, struct file *file)
2854 {
2855 struct debugfs_timings_state *p = file->private_data;
2856
2857 kvm_put_kvm(p->vcpu->kvm);
2858 kfree(p);
2859 return 0;
2860 }
2861
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2862 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2863 size_t len, loff_t *ppos)
2864 {
2865 struct debugfs_timings_state *p = file->private_data;
2866 struct kvm_vcpu *vcpu = p->vcpu;
2867 char *s, *buf_end;
2868 struct kvmhv_tb_accumulator tb;
2869 u64 count;
2870 loff_t pos;
2871 ssize_t n;
2872 int i, loops;
2873 bool ok;
2874
2875 if (!p->buflen) {
2876 s = p->buf;
2877 buf_end = s + sizeof(p->buf);
2878 for (i = 0; i < N_TIMINGS; ++i) {
2879 struct kvmhv_tb_accumulator *acc;
2880
2881 acc = (struct kvmhv_tb_accumulator *)
2882 ((unsigned long)vcpu + timings[i].offset);
2883 ok = false;
2884 for (loops = 0; loops < 1000; ++loops) {
2885 count = acc->seqcount;
2886 if (!(count & 1)) {
2887 smp_rmb();
2888 tb = *acc;
2889 smp_rmb();
2890 if (count == acc->seqcount) {
2891 ok = true;
2892 break;
2893 }
2894 }
2895 udelay(1);
2896 }
2897 if (!ok)
2898 snprintf(s, buf_end - s, "%s: stuck\n",
2899 timings[i].name);
2900 else
2901 snprintf(s, buf_end - s,
2902 "%s: %llu %llu %llu %llu\n",
2903 timings[i].name, count / 2,
2904 tb_to_ns(tb.tb_total),
2905 tb_to_ns(tb.tb_min),
2906 tb_to_ns(tb.tb_max));
2907 s += strlen(s);
2908 }
2909 p->buflen = s - p->buf;
2910 }
2911
2912 pos = *ppos;
2913 if (pos >= p->buflen)
2914 return 0;
2915 if (len > p->buflen - pos)
2916 len = p->buflen - pos;
2917 n = copy_to_user(buf, p->buf + pos, len);
2918 if (n) {
2919 if (n == len)
2920 return -EFAULT;
2921 len -= n;
2922 }
2923 *ppos = pos + len;
2924 return len;
2925 }
2926
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2927 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2928 size_t len, loff_t *ppos)
2929 {
2930 return -EACCES;
2931 }
2932
2933 static const struct file_operations debugfs_timings_ops = {
2934 .owner = THIS_MODULE,
2935 .open = debugfs_timings_open,
2936 .release = debugfs_timings_release,
2937 .read = debugfs_timings_read,
2938 .write = debugfs_timings_write,
2939 .llseek = generic_file_llseek,
2940 };
2941
2942 /* Create a debugfs directory for the vcpu */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2943 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2944 {
2945 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2946 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2947 &debugfs_timings_ops);
2948 return 0;
2949 }
2950
2951 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu * vcpu,struct dentry * debugfs_dentry)2952 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2953 {
2954 return 0;
2955 }
2956 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2957
kvmppc_core_vcpu_create_hv(struct kvm_vcpu * vcpu)2958 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2959 {
2960 int err;
2961 int core;
2962 struct kvmppc_vcore *vcore;
2963 struct kvm *kvm;
2964 unsigned int id;
2965
2966 kvm = vcpu->kvm;
2967 id = vcpu->vcpu_id;
2968
2969 vcpu->arch.shared = &vcpu->arch.shregs;
2970 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2971 /*
2972 * The shared struct is never shared on HV,
2973 * so we can always use host endianness
2974 */
2975 #ifdef __BIG_ENDIAN__
2976 vcpu->arch.shared_big_endian = true;
2977 #else
2978 vcpu->arch.shared_big_endian = false;
2979 #endif
2980 #endif
2981
2982 if (kvmhv_is_nestedv2()) {
2983 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
2984 if (err < 0)
2985 return err;
2986 }
2987
2988 kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2989 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2990 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2991 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2992 }
2993
2994 kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2995 /* default to host PVR, since we can't spoof it */
2996 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2997 spin_lock_init(&vcpu->arch.vpa_update_lock);
2998 spin_lock_init(&vcpu->arch.tbacct_lock);
2999 vcpu->arch.busy_preempt = TB_NIL;
3000 __kvmppc_set_msr_hv(vcpu, MSR_ME);
3001 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
3002
3003 /*
3004 * Set the default HFSCR for the guest from the host value.
3005 * This value is only used on POWER9 and later.
3006 * On >= POWER9, we want to virtualize the doorbell facility, so we
3007 * don't set the HFSCR_MSGP bit, and that causes those instructions
3008 * to trap and then we emulate them.
3009 */
3010 kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
3011 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
3012
3013 /* On POWER10 and later, allow prefixed instructions */
3014 if (cpu_has_feature(CPU_FTR_ARCH_31))
3015 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
3016
3017 if (cpu_has_feature(CPU_FTR_HVMODE)) {
3018 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
3019
3020 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3021 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3022 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
3023 #endif
3024 }
3025 if (cpu_has_feature(CPU_FTR_TM_COMP))
3026 vcpu->arch.hfscr |= HFSCR_TM;
3027
3028 vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
3029
3030 /*
3031 * PM, EBB, TM are demand-faulted so start with it clear.
3032 */
3033 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
3034
3035 kvmppc_mmu_book3s_hv_init(vcpu);
3036
3037 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3038
3039 init_waitqueue_head(&vcpu->arch.cpu_run);
3040
3041 mutex_lock(&kvm->lock);
3042 vcore = NULL;
3043 err = -EINVAL;
3044 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3045 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
3046 pr_devel("KVM: VCPU ID too high\n");
3047 core = KVM_MAX_VCORES;
3048 } else {
3049 BUG_ON(kvm->arch.smt_mode != 1);
3050 core = kvmppc_pack_vcpu_id(kvm, id);
3051 }
3052 } else {
3053 core = id / kvm->arch.smt_mode;
3054 }
3055 if (core < KVM_MAX_VCORES) {
3056 vcore = kvm->arch.vcores[core];
3057 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
3058 pr_devel("KVM: collision on id %u", id);
3059 vcore = NULL;
3060 } else if (!vcore) {
3061 /*
3062 * Take mmu_setup_lock for mutual exclusion
3063 * with kvmppc_update_lpcr().
3064 */
3065 err = -ENOMEM;
3066 vcore = kvmppc_vcore_create(kvm,
3067 id & ~(kvm->arch.smt_mode - 1));
3068 mutex_lock(&kvm->arch.mmu_setup_lock);
3069 kvm->arch.vcores[core] = vcore;
3070 kvm->arch.online_vcores++;
3071 mutex_unlock(&kvm->arch.mmu_setup_lock);
3072 }
3073 }
3074 mutex_unlock(&kvm->lock);
3075
3076 if (!vcore)
3077 return err;
3078
3079 spin_lock(&vcore->lock);
3080 ++vcore->num_threads;
3081 spin_unlock(&vcore->lock);
3082 vcpu->arch.vcore = vcore;
3083 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3084 vcpu->arch.thread_cpu = -1;
3085 vcpu->arch.prev_cpu = -1;
3086
3087 vcpu->arch.cpu_type = KVM_CPU_3S_64;
3088 kvmppc_sanity_check(vcpu);
3089
3090 return 0;
3091 }
3092
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)3093 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3094 unsigned long flags)
3095 {
3096 int err;
3097 int esmt = 0;
3098
3099 if (flags)
3100 return -EINVAL;
3101 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3102 return -EINVAL;
3103 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3104 /*
3105 * On POWER8 (or POWER7), the threading mode is "strict",
3106 * so we pack smt_mode vcpus per vcore.
3107 */
3108 if (smt_mode > threads_per_subcore)
3109 return -EINVAL;
3110 } else {
3111 /*
3112 * On POWER9, the threading mode is "loose",
3113 * so each vcpu gets its own vcore.
3114 */
3115 esmt = smt_mode;
3116 smt_mode = 1;
3117 }
3118 mutex_lock(&kvm->lock);
3119 err = -EBUSY;
3120 if (!kvm->arch.online_vcores) {
3121 kvm->arch.smt_mode = smt_mode;
3122 kvm->arch.emul_smt_mode = esmt;
3123 err = 0;
3124 }
3125 mutex_unlock(&kvm->lock);
3126
3127 return err;
3128 }
3129
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)3130 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3131 {
3132 if (vpa->pinned_addr)
3133 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3134 vpa->dirty);
3135 }
3136
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)3137 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3138 {
3139 spin_lock(&vcpu->arch.vpa_update_lock);
3140 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3141 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3142 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3143 spin_unlock(&vcpu->arch.vpa_update_lock);
3144 if (kvmhv_is_nestedv2())
3145 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
3146 }
3147
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)3148 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3149 {
3150 /* Indicate we want to get back into the guest */
3151 return 1;
3152 }
3153
kvmppc_set_timer(struct kvm_vcpu * vcpu)3154 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3155 {
3156 unsigned long dec_nsec, now;
3157
3158 now = get_tb();
3159 if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3160 /* decrementer has already gone negative */
3161 kvmppc_core_queue_dec(vcpu);
3162 kvmppc_core_prepare_to_enter(vcpu);
3163 return;
3164 }
3165 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3166 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3167 vcpu->arch.timer_running = 1;
3168 }
3169
3170 extern int __kvmppc_vcore_entry(void);
3171
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,u64 tb)3172 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3173 struct kvm_vcpu *vcpu, u64 tb)
3174 {
3175 u64 now;
3176
3177 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3178 return;
3179 spin_lock_irq(&vcpu->arch.tbacct_lock);
3180 now = tb;
3181 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3182 vcpu->arch.stolen_logged;
3183 vcpu->arch.busy_preempt = now;
3184 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3185 spin_unlock_irq(&vcpu->arch.tbacct_lock);
3186 --vc->n_runnable;
3187 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3188 }
3189
kvmppc_grab_hwthread(int cpu)3190 static int kvmppc_grab_hwthread(int cpu)
3191 {
3192 struct paca_struct *tpaca;
3193 long timeout = 10000;
3194
3195 tpaca = paca_ptrs[cpu];
3196
3197 /* Ensure the thread won't go into the kernel if it wakes */
3198 tpaca->kvm_hstate.kvm_vcpu = NULL;
3199 tpaca->kvm_hstate.kvm_vcore = NULL;
3200 tpaca->kvm_hstate.napping = 0;
3201 smp_wmb();
3202 tpaca->kvm_hstate.hwthread_req = 1;
3203
3204 /*
3205 * If the thread is already executing in the kernel (e.g. handling
3206 * a stray interrupt), wait for it to get back to nap mode.
3207 * The smp_mb() is to ensure that our setting of hwthread_req
3208 * is visible before we look at hwthread_state, so if this
3209 * races with the code at system_reset_pSeries and the thread
3210 * misses our setting of hwthread_req, we are sure to see its
3211 * setting of hwthread_state, and vice versa.
3212 */
3213 smp_mb();
3214 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3215 if (--timeout <= 0) {
3216 pr_err("KVM: couldn't grab cpu %d\n", cpu);
3217 return -EBUSY;
3218 }
3219 udelay(1);
3220 }
3221 return 0;
3222 }
3223
kvmppc_release_hwthread(int cpu)3224 static void kvmppc_release_hwthread(int cpu)
3225 {
3226 struct paca_struct *tpaca;
3227
3228 tpaca = paca_ptrs[cpu];
3229 tpaca->kvm_hstate.hwthread_req = 0;
3230 tpaca->kvm_hstate.kvm_vcpu = NULL;
3231 tpaca->kvm_hstate.kvm_vcore = NULL;
3232 tpaca->kvm_hstate.kvm_split_mode = NULL;
3233 }
3234
3235 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3236
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)3237 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3238 {
3239 struct kvm_nested_guest *nested = vcpu->arch.nested;
3240 cpumask_t *need_tlb_flush;
3241 int i;
3242
3243 if (nested)
3244 need_tlb_flush = &nested->need_tlb_flush;
3245 else
3246 need_tlb_flush = &kvm->arch.need_tlb_flush;
3247
3248 cpu = cpu_first_tlb_thread_sibling(cpu);
3249 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3250 i += cpu_tlb_thread_sibling_step())
3251 cpumask_set_cpu(i, need_tlb_flush);
3252
3253 /*
3254 * Make sure setting of bit in need_tlb_flush precedes testing of
3255 * cpu_in_guest. The matching barrier on the other side is hwsync
3256 * when switching to guest MMU mode, which happens between
3257 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3258 * being tested.
3259 */
3260 smp_mb();
3261
3262 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3263 i += cpu_tlb_thread_sibling_step()) {
3264 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3265
3266 if (running == kvm)
3267 smp_call_function_single(i, do_nothing, NULL, 1);
3268 }
3269 }
3270
do_migrate_away_vcpu(void * arg)3271 static void do_migrate_away_vcpu(void *arg)
3272 {
3273 struct kvm_vcpu *vcpu = arg;
3274 struct kvm *kvm = vcpu->kvm;
3275
3276 /*
3277 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3278 * ptesync sequence on the old CPU before migrating to a new one, in
3279 * case we interrupted the guest between a tlbie ; eieio ;
3280 * tlbsync; ptesync sequence.
3281 *
3282 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3283 */
3284 if (kvm->arch.lpcr & LPCR_GTSE)
3285 asm volatile("eieio; tlbsync; ptesync");
3286 else
3287 asm volatile("ptesync");
3288 }
3289
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)3290 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3291 {
3292 struct kvm_nested_guest *nested = vcpu->arch.nested;
3293 struct kvm *kvm = vcpu->kvm;
3294 int prev_cpu;
3295
3296 if (!cpu_has_feature(CPU_FTR_HVMODE))
3297 return;
3298
3299 if (nested)
3300 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3301 else
3302 prev_cpu = vcpu->arch.prev_cpu;
3303
3304 /*
3305 * With radix, the guest can do TLB invalidations itself,
3306 * and it could choose to use the local form (tlbiel) if
3307 * it is invalidating a translation that has only ever been
3308 * used on one vcpu. However, that doesn't mean it has
3309 * only ever been used on one physical cpu, since vcpus
3310 * can move around between pcpus. To cope with this, when
3311 * a vcpu moves from one pcpu to another, we need to tell
3312 * any vcpus running on the same core as this vcpu previously
3313 * ran to flush the TLB.
3314 */
3315 if (prev_cpu != pcpu) {
3316 if (prev_cpu >= 0) {
3317 if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3318 cpu_first_tlb_thread_sibling(pcpu))
3319 radix_flush_cpu(kvm, prev_cpu, vcpu);
3320
3321 smp_call_function_single(prev_cpu,
3322 do_migrate_away_vcpu, vcpu, 1);
3323 }
3324 if (nested)
3325 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3326 else
3327 vcpu->arch.prev_cpu = pcpu;
3328 }
3329 }
3330
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)3331 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3332 {
3333 int cpu;
3334 struct paca_struct *tpaca;
3335
3336 cpu = vc->pcpu;
3337 if (vcpu) {
3338 if (vcpu->arch.timer_running) {
3339 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3340 vcpu->arch.timer_running = 0;
3341 }
3342 cpu += vcpu->arch.ptid;
3343 vcpu->cpu = vc->pcpu;
3344 vcpu->arch.thread_cpu = cpu;
3345 }
3346 tpaca = paca_ptrs[cpu];
3347 tpaca->kvm_hstate.kvm_vcpu = vcpu;
3348 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3349 tpaca->kvm_hstate.fake_suspend = 0;
3350 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3351 smp_wmb();
3352 tpaca->kvm_hstate.kvm_vcore = vc;
3353 if (cpu != smp_processor_id())
3354 kvmppc_ipi_thread(cpu);
3355 }
3356
kvmppc_wait_for_nap(int n_threads)3357 static void kvmppc_wait_for_nap(int n_threads)
3358 {
3359 int cpu = smp_processor_id();
3360 int i, loops;
3361
3362 if (n_threads <= 1)
3363 return;
3364 for (loops = 0; loops < 1000000; ++loops) {
3365 /*
3366 * Check if all threads are finished.
3367 * We set the vcore pointer when starting a thread
3368 * and the thread clears it when finished, so we look
3369 * for any threads that still have a non-NULL vcore ptr.
3370 */
3371 for (i = 1; i < n_threads; ++i)
3372 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3373 break;
3374 if (i == n_threads) {
3375 HMT_medium();
3376 return;
3377 }
3378 HMT_low();
3379 }
3380 HMT_medium();
3381 for (i = 1; i < n_threads; ++i)
3382 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3383 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3384 }
3385
3386 /*
3387 * Check that we are on thread 0 and that any other threads in
3388 * this core are off-line. Then grab the threads so they can't
3389 * enter the kernel.
3390 */
on_primary_thread(void)3391 static int on_primary_thread(void)
3392 {
3393 int cpu = smp_processor_id();
3394 int thr;
3395
3396 /* Are we on a primary subcore? */
3397 if (cpu_thread_in_subcore(cpu))
3398 return 0;
3399
3400 thr = 0;
3401 while (++thr < threads_per_subcore)
3402 if (cpu_online(cpu + thr))
3403 return 0;
3404
3405 /* Grab all hw threads so they can't go into the kernel */
3406 for (thr = 1; thr < threads_per_subcore; ++thr) {
3407 if (kvmppc_grab_hwthread(cpu + thr)) {
3408 /* Couldn't grab one; let the others go */
3409 do {
3410 kvmppc_release_hwthread(cpu + thr);
3411 } while (--thr > 0);
3412 return 0;
3413 }
3414 }
3415 return 1;
3416 }
3417
3418 /*
3419 * A list of virtual cores for each physical CPU.
3420 * These are vcores that could run but their runner VCPU tasks are
3421 * (or may be) preempted.
3422 */
3423 struct preempted_vcore_list {
3424 struct list_head list;
3425 spinlock_t lock;
3426 };
3427
3428 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3429
init_vcore_lists(void)3430 static void init_vcore_lists(void)
3431 {
3432 int cpu;
3433
3434 for_each_possible_cpu(cpu) {
3435 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3436 spin_lock_init(&lp->lock);
3437 INIT_LIST_HEAD(&lp->list);
3438 }
3439 }
3440
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)3441 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3442 {
3443 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3444
3445 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3446
3447 vc->vcore_state = VCORE_PREEMPT;
3448 vc->pcpu = smp_processor_id();
3449 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3450 spin_lock(&lp->lock);
3451 list_add_tail(&vc->preempt_list, &lp->list);
3452 spin_unlock(&lp->lock);
3453 }
3454
3455 /* Start accumulating stolen time */
3456 kvmppc_core_start_stolen(vc, mftb());
3457 }
3458
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)3459 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3460 {
3461 struct preempted_vcore_list *lp;
3462
3463 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3464
3465 kvmppc_core_end_stolen(vc, mftb());
3466 if (!list_empty(&vc->preempt_list)) {
3467 lp = &per_cpu(preempted_vcores, vc->pcpu);
3468 spin_lock(&lp->lock);
3469 list_del_init(&vc->preempt_list);
3470 spin_unlock(&lp->lock);
3471 }
3472 vc->vcore_state = VCORE_INACTIVE;
3473 }
3474
3475 /*
3476 * This stores information about the virtual cores currently
3477 * assigned to a physical core.
3478 */
3479 struct core_info {
3480 int n_subcores;
3481 int max_subcore_threads;
3482 int total_threads;
3483 int subcore_threads[MAX_SUBCORES];
3484 struct kvmppc_vcore *vc[MAX_SUBCORES];
3485 };
3486
3487 /*
3488 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3489 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3490 */
3491 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3492
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)3493 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3494 {
3495 memset(cip, 0, sizeof(*cip));
3496 cip->n_subcores = 1;
3497 cip->max_subcore_threads = vc->num_threads;
3498 cip->total_threads = vc->num_threads;
3499 cip->subcore_threads[0] = vc->num_threads;
3500 cip->vc[0] = vc;
3501 }
3502
subcore_config_ok(int n_subcores,int n_threads)3503 static bool subcore_config_ok(int n_subcores, int n_threads)
3504 {
3505 /*
3506 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3507 * split-core mode, with one thread per subcore.
3508 */
3509 if (cpu_has_feature(CPU_FTR_ARCH_300))
3510 return n_subcores <= 4 && n_threads == 1;
3511
3512 /* On POWER8, can only dynamically split if unsplit to begin with */
3513 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3514 return false;
3515 if (n_subcores > MAX_SUBCORES)
3516 return false;
3517 if (n_subcores > 1) {
3518 if (!(dynamic_mt_modes & 2))
3519 n_subcores = 4;
3520 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3521 return false;
3522 }
3523
3524 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3525 }
3526
init_vcore_to_run(struct kvmppc_vcore * vc)3527 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3528 {
3529 vc->entry_exit_map = 0;
3530 vc->in_guest = 0;
3531 vc->napping_threads = 0;
3532 vc->conferring_threads = 0;
3533 vc->tb_offset_applied = 0;
3534 }
3535
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)3536 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3537 {
3538 int n_threads = vc->num_threads;
3539 int sub;
3540
3541 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3542 return false;
3543
3544 /* In one_vm_per_core mode, require all vcores to be from the same vm */
3545 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3546 return false;
3547
3548 if (n_threads < cip->max_subcore_threads)
3549 n_threads = cip->max_subcore_threads;
3550 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3551 return false;
3552 cip->max_subcore_threads = n_threads;
3553
3554 sub = cip->n_subcores;
3555 ++cip->n_subcores;
3556 cip->total_threads += vc->num_threads;
3557 cip->subcore_threads[sub] = vc->num_threads;
3558 cip->vc[sub] = vc;
3559 init_vcore_to_run(vc);
3560 list_del_init(&vc->preempt_list);
3561
3562 return true;
3563 }
3564
3565 /*
3566 * Work out whether it is possible to piggyback the execution of
3567 * vcore *pvc onto the execution of the other vcores described in *cip.
3568 */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)3569 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3570 int target_threads)
3571 {
3572 if (cip->total_threads + pvc->num_threads > target_threads)
3573 return false;
3574
3575 return can_dynamic_split(pvc, cip);
3576 }
3577
prepare_threads(struct kvmppc_vcore * vc)3578 static void prepare_threads(struct kvmppc_vcore *vc)
3579 {
3580 int i;
3581 struct kvm_vcpu *vcpu;
3582
3583 for_each_runnable_thread(i, vcpu, vc) {
3584 if (signal_pending(vcpu->arch.run_task))
3585 vcpu->arch.ret = -EINTR;
3586 else if (vcpu->arch.vpa.update_pending ||
3587 vcpu->arch.slb_shadow.update_pending ||
3588 vcpu->arch.dtl.update_pending)
3589 vcpu->arch.ret = RESUME_GUEST;
3590 else
3591 continue;
3592 kvmppc_remove_runnable(vc, vcpu, mftb());
3593 wake_up(&vcpu->arch.cpu_run);
3594 }
3595 }
3596
collect_piggybacks(struct core_info * cip,int target_threads)3597 static void collect_piggybacks(struct core_info *cip, int target_threads)
3598 {
3599 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3600 struct kvmppc_vcore *pvc, *vcnext;
3601
3602 spin_lock(&lp->lock);
3603 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3604 if (!spin_trylock(&pvc->lock))
3605 continue;
3606 prepare_threads(pvc);
3607 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3608 list_del_init(&pvc->preempt_list);
3609 if (pvc->runner == NULL) {
3610 pvc->vcore_state = VCORE_INACTIVE;
3611 kvmppc_core_end_stolen(pvc, mftb());
3612 }
3613 spin_unlock(&pvc->lock);
3614 continue;
3615 }
3616 if (!can_piggyback(pvc, cip, target_threads)) {
3617 spin_unlock(&pvc->lock);
3618 continue;
3619 }
3620 kvmppc_core_end_stolen(pvc, mftb());
3621 pvc->vcore_state = VCORE_PIGGYBACK;
3622 if (cip->total_threads >= target_threads)
3623 break;
3624 }
3625 spin_unlock(&lp->lock);
3626 }
3627
recheck_signals_and_mmu(struct core_info * cip)3628 static bool recheck_signals_and_mmu(struct core_info *cip)
3629 {
3630 int sub, i;
3631 struct kvm_vcpu *vcpu;
3632 struct kvmppc_vcore *vc;
3633
3634 for (sub = 0; sub < cip->n_subcores; ++sub) {
3635 vc = cip->vc[sub];
3636 if (!vc->kvm->arch.mmu_ready)
3637 return true;
3638 for_each_runnable_thread(i, vcpu, vc)
3639 if (signal_pending(vcpu->arch.run_task))
3640 return true;
3641 }
3642 return false;
3643 }
3644
post_guest_process(struct kvmppc_vcore * vc,bool is_master)3645 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3646 {
3647 int still_running = 0, i;
3648 u64 now;
3649 long ret;
3650 struct kvm_vcpu *vcpu;
3651
3652 spin_lock(&vc->lock);
3653 now = get_tb();
3654 for_each_runnable_thread(i, vcpu, vc) {
3655 /*
3656 * It's safe to unlock the vcore in the loop here, because
3657 * for_each_runnable_thread() is safe against removal of
3658 * the vcpu, and the vcore state is VCORE_EXITING here,
3659 * so any vcpus becoming runnable will have their arch.trap
3660 * set to zero and can't actually run in the guest.
3661 */
3662 spin_unlock(&vc->lock);
3663 /* cancel pending dec exception if dec is positive */
3664 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3665 kvmppc_core_pending_dec(vcpu))
3666 kvmppc_core_dequeue_dec(vcpu);
3667
3668 trace_kvm_guest_exit(vcpu);
3669
3670 ret = RESUME_GUEST;
3671 if (vcpu->arch.trap)
3672 ret = kvmppc_handle_exit_hv(vcpu,
3673 vcpu->arch.run_task);
3674
3675 vcpu->arch.ret = ret;
3676 vcpu->arch.trap = 0;
3677
3678 spin_lock(&vc->lock);
3679 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3680 if (vcpu->arch.pending_exceptions)
3681 kvmppc_core_prepare_to_enter(vcpu);
3682 if (vcpu->arch.ceded)
3683 kvmppc_set_timer(vcpu);
3684 else
3685 ++still_running;
3686 } else {
3687 kvmppc_remove_runnable(vc, vcpu, mftb());
3688 wake_up(&vcpu->arch.cpu_run);
3689 }
3690 }
3691 if (!is_master) {
3692 if (still_running > 0) {
3693 kvmppc_vcore_preempt(vc);
3694 } else if (vc->runner) {
3695 vc->vcore_state = VCORE_PREEMPT;
3696 kvmppc_core_start_stolen(vc, mftb());
3697 } else {
3698 vc->vcore_state = VCORE_INACTIVE;
3699 }
3700 if (vc->n_runnable > 0 && vc->runner == NULL) {
3701 /* make sure there's a candidate runner awake */
3702 i = -1;
3703 vcpu = next_runnable_thread(vc, &i);
3704 wake_up(&vcpu->arch.cpu_run);
3705 }
3706 }
3707 spin_unlock(&vc->lock);
3708 }
3709
3710 /*
3711 * Clear core from the list of active host cores as we are about to
3712 * enter the guest. Only do this if it is the primary thread of the
3713 * core (not if a subcore) that is entering the guest.
3714 */
kvmppc_clear_host_core(unsigned int cpu)3715 static inline int kvmppc_clear_host_core(unsigned int cpu)
3716 {
3717 int core;
3718
3719 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3720 return 0;
3721 /*
3722 * Memory barrier can be omitted here as we will do a smp_wmb()
3723 * later in kvmppc_start_thread and we need ensure that state is
3724 * visible to other CPUs only after we enter guest.
3725 */
3726 core = cpu >> threads_shift;
3727 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3728 return 0;
3729 }
3730
3731 /*
3732 * Advertise this core as an active host core since we exited the guest
3733 * Only need to do this if it is the primary thread of the core that is
3734 * exiting.
3735 */
kvmppc_set_host_core(unsigned int cpu)3736 static inline int kvmppc_set_host_core(unsigned int cpu)
3737 {
3738 int core;
3739
3740 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3741 return 0;
3742
3743 /*
3744 * Memory barrier can be omitted here because we do a spin_unlock
3745 * immediately after this which provides the memory barrier.
3746 */
3747 core = cpu >> threads_shift;
3748 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3749 return 0;
3750 }
3751
set_irq_happened(int trap)3752 static void set_irq_happened(int trap)
3753 {
3754 switch (trap) {
3755 case BOOK3S_INTERRUPT_EXTERNAL:
3756 local_paca->irq_happened |= PACA_IRQ_EE;
3757 break;
3758 case BOOK3S_INTERRUPT_H_DOORBELL:
3759 local_paca->irq_happened |= PACA_IRQ_DBELL;
3760 break;
3761 case BOOK3S_INTERRUPT_HMI:
3762 local_paca->irq_happened |= PACA_IRQ_HMI;
3763 break;
3764 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3765 replay_system_reset();
3766 break;
3767 }
3768 }
3769
3770 /*
3771 * Run a set of guest threads on a physical core.
3772 * Called with vc->lock held.
3773 */
kvmppc_run_core(struct kvmppc_vcore * vc)3774 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3775 {
3776 struct kvm_vcpu *vcpu;
3777 int i;
3778 int srcu_idx;
3779 struct core_info core_info;
3780 struct kvmppc_vcore *pvc;
3781 struct kvm_split_mode split_info, *sip;
3782 int split, subcore_size, active;
3783 int sub;
3784 bool thr0_done;
3785 unsigned long cmd_bit, stat_bit;
3786 int pcpu, thr;
3787 int target_threads;
3788 int controlled_threads;
3789 int trap;
3790 bool is_power8;
3791
3792 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3793 return;
3794
3795 /*
3796 * Remove from the list any threads that have a signal pending
3797 * or need a VPA update done
3798 */
3799 prepare_threads(vc);
3800
3801 /* if the runner is no longer runnable, let the caller pick a new one */
3802 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3803 return;
3804
3805 /*
3806 * Initialize *vc.
3807 */
3808 init_vcore_to_run(vc);
3809 vc->preempt_tb = TB_NIL;
3810
3811 /*
3812 * Number of threads that we will be controlling: the same as
3813 * the number of threads per subcore, except on POWER9,
3814 * where it's 1 because the threads are (mostly) independent.
3815 */
3816 controlled_threads = threads_per_vcore(vc->kvm);
3817
3818 /*
3819 * Make sure we are running on primary threads, and that secondary
3820 * threads are offline. Also check if the number of threads in this
3821 * guest are greater than the current system threads per guest.
3822 */
3823 if ((controlled_threads > 1) &&
3824 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3825 for_each_runnable_thread(i, vcpu, vc) {
3826 vcpu->arch.ret = -EBUSY;
3827 kvmppc_remove_runnable(vc, vcpu, mftb());
3828 wake_up(&vcpu->arch.cpu_run);
3829 }
3830 goto out;
3831 }
3832
3833 /*
3834 * See if we could run any other vcores on the physical core
3835 * along with this one.
3836 */
3837 init_core_info(&core_info, vc);
3838 pcpu = smp_processor_id();
3839 target_threads = controlled_threads;
3840 if (target_smt_mode && target_smt_mode < target_threads)
3841 target_threads = target_smt_mode;
3842 if (vc->num_threads < target_threads)
3843 collect_piggybacks(&core_info, target_threads);
3844
3845 /*
3846 * Hard-disable interrupts, and check resched flag and signals.
3847 * If we need to reschedule or deliver a signal, clean up
3848 * and return without going into the guest(s).
3849 * If the mmu_ready flag has been cleared, don't go into the
3850 * guest because that means a HPT resize operation is in progress.
3851 */
3852 local_irq_disable();
3853 hard_irq_disable();
3854 if (lazy_irq_pending() || need_resched() ||
3855 recheck_signals_and_mmu(&core_info)) {
3856 local_irq_enable();
3857 vc->vcore_state = VCORE_INACTIVE;
3858 /* Unlock all except the primary vcore */
3859 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3860 pvc = core_info.vc[sub];
3861 /* Put back on to the preempted vcores list */
3862 kvmppc_vcore_preempt(pvc);
3863 spin_unlock(&pvc->lock);
3864 }
3865 for (i = 0; i < controlled_threads; ++i)
3866 kvmppc_release_hwthread(pcpu + i);
3867 return;
3868 }
3869
3870 kvmppc_clear_host_core(pcpu);
3871
3872 /* Decide on micro-threading (split-core) mode */
3873 subcore_size = threads_per_subcore;
3874 cmd_bit = stat_bit = 0;
3875 split = core_info.n_subcores;
3876 sip = NULL;
3877 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3878
3879 if (split > 1) {
3880 sip = &split_info;
3881 memset(&split_info, 0, sizeof(split_info));
3882 for (sub = 0; sub < core_info.n_subcores; ++sub)
3883 split_info.vc[sub] = core_info.vc[sub];
3884
3885 if (is_power8) {
3886 if (split == 2 && (dynamic_mt_modes & 2)) {
3887 cmd_bit = HID0_POWER8_1TO2LPAR;
3888 stat_bit = HID0_POWER8_2LPARMODE;
3889 } else {
3890 split = 4;
3891 cmd_bit = HID0_POWER8_1TO4LPAR;
3892 stat_bit = HID0_POWER8_4LPARMODE;
3893 }
3894 subcore_size = MAX_SMT_THREADS / split;
3895 split_info.rpr = mfspr(SPRN_RPR);
3896 split_info.pmmar = mfspr(SPRN_PMMAR);
3897 split_info.ldbar = mfspr(SPRN_LDBAR);
3898 split_info.subcore_size = subcore_size;
3899 } else {
3900 split_info.subcore_size = 1;
3901 }
3902
3903 /* order writes to split_info before kvm_split_mode pointer */
3904 smp_wmb();
3905 }
3906
3907 for (thr = 0; thr < controlled_threads; ++thr) {
3908 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3909
3910 paca->kvm_hstate.napping = 0;
3911 paca->kvm_hstate.kvm_split_mode = sip;
3912 }
3913
3914 /* Initiate micro-threading (split-core) on POWER8 if required */
3915 if (cmd_bit) {
3916 unsigned long hid0 = mfspr(SPRN_HID0);
3917
3918 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3919 mb();
3920 mtspr(SPRN_HID0, hid0);
3921 isync();
3922 for (;;) {
3923 hid0 = mfspr(SPRN_HID0);
3924 if (hid0 & stat_bit)
3925 break;
3926 cpu_relax();
3927 }
3928 }
3929
3930 /*
3931 * On POWER8, set RWMR register.
3932 * Since it only affects PURR and SPURR, it doesn't affect
3933 * the host, so we don't save/restore the host value.
3934 */
3935 if (is_power8) {
3936 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3937 int n_online = atomic_read(&vc->online_count);
3938
3939 /*
3940 * Use the 8-thread value if we're doing split-core
3941 * or if the vcore's online count looks bogus.
3942 */
3943 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3944 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3945 rwmr_val = p8_rwmr_values[n_online];
3946 mtspr(SPRN_RWMR, rwmr_val);
3947 }
3948
3949 /* Start all the threads */
3950 active = 0;
3951 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3952 thr = is_power8 ? subcore_thread_map[sub] : sub;
3953 thr0_done = false;
3954 active |= 1 << thr;
3955 pvc = core_info.vc[sub];
3956 pvc->pcpu = pcpu + thr;
3957 for_each_runnable_thread(i, vcpu, pvc) {
3958 /*
3959 * XXX: is kvmppc_start_thread called too late here?
3960 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3961 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3962 * kick is called after new exceptions become available
3963 * and exceptions are checked earlier than here, by
3964 * kvmppc_core_prepare_to_enter.
3965 */
3966 kvmppc_start_thread(vcpu, pvc);
3967 kvmppc_update_vpa_dispatch(vcpu, pvc);
3968 trace_kvm_guest_enter(vcpu);
3969 if (!vcpu->arch.ptid)
3970 thr0_done = true;
3971 active |= 1 << (thr + vcpu->arch.ptid);
3972 }
3973 /*
3974 * We need to start the first thread of each subcore
3975 * even if it doesn't have a vcpu.
3976 */
3977 if (!thr0_done)
3978 kvmppc_start_thread(NULL, pvc);
3979 }
3980
3981 /*
3982 * Ensure that split_info.do_nap is set after setting
3983 * the vcore pointer in the PACA of the secondaries.
3984 */
3985 smp_mb();
3986
3987 /*
3988 * When doing micro-threading, poke the inactive threads as well.
3989 * This gets them to the nap instruction after kvm_do_nap,
3990 * which reduces the time taken to unsplit later.
3991 */
3992 if (cmd_bit) {
3993 split_info.do_nap = 1; /* ask secondaries to nap when done */
3994 for (thr = 1; thr < threads_per_subcore; ++thr)
3995 if (!(active & (1 << thr)))
3996 kvmppc_ipi_thread(pcpu + thr);
3997 }
3998
3999 vc->vcore_state = VCORE_RUNNING;
4000 preempt_disable();
4001
4002 trace_kvmppc_run_core(vc, 0);
4003
4004 for (sub = 0; sub < core_info.n_subcores; ++sub)
4005 spin_unlock(&core_info.vc[sub]->lock);
4006
4007 guest_timing_enter_irqoff();
4008
4009 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
4010
4011 guest_state_enter_irqoff();
4012 this_cpu_disable_ftrace();
4013
4014 trap = __kvmppc_vcore_entry();
4015
4016 this_cpu_enable_ftrace();
4017 guest_state_exit_irqoff();
4018
4019 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
4020
4021 set_irq_happened(trap);
4022
4023 spin_lock(&vc->lock);
4024 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
4025 vc->vcore_state = VCORE_EXITING;
4026
4027 /* wait for secondary threads to finish writing their state to memory */
4028 kvmppc_wait_for_nap(controlled_threads);
4029
4030 /* Return to whole-core mode if we split the core earlier */
4031 if (cmd_bit) {
4032 unsigned long hid0 = mfspr(SPRN_HID0);
4033 unsigned long loops = 0;
4034
4035 hid0 &= ~HID0_POWER8_DYNLPARDIS;
4036 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
4037 mb();
4038 mtspr(SPRN_HID0, hid0);
4039 isync();
4040 for (;;) {
4041 hid0 = mfspr(SPRN_HID0);
4042 if (!(hid0 & stat_bit))
4043 break;
4044 cpu_relax();
4045 ++loops;
4046 }
4047 split_info.do_nap = 0;
4048 }
4049
4050 kvmppc_set_host_core(pcpu);
4051
4052 if (!vtime_accounting_enabled_this_cpu()) {
4053 local_irq_enable();
4054 /*
4055 * Service IRQs here before guest_timing_exit_irqoff() so any
4056 * ticks that occurred while running the guest are accounted to
4057 * the guest. If vtime accounting is enabled, accounting uses
4058 * TB rather than ticks, so it can be done without enabling
4059 * interrupts here, which has the problem that it accounts
4060 * interrupt processing overhead to the host.
4061 */
4062 local_irq_disable();
4063 }
4064 guest_timing_exit_irqoff();
4065
4066 local_irq_enable();
4067
4068 /* Let secondaries go back to the offline loop */
4069 for (i = 0; i < controlled_threads; ++i) {
4070 kvmppc_release_hwthread(pcpu + i);
4071 if (sip && sip->napped[i])
4072 kvmppc_ipi_thread(pcpu + i);
4073 }
4074
4075 spin_unlock(&vc->lock);
4076
4077 /* make sure updates to secondary vcpu structs are visible now */
4078 smp_mb();
4079
4080 preempt_enable();
4081
4082 for (sub = 0; sub < core_info.n_subcores; ++sub) {
4083 pvc = core_info.vc[sub];
4084 post_guest_process(pvc, pvc == vc);
4085 }
4086
4087 spin_lock(&vc->lock);
4088
4089 out:
4090 vc->vcore_state = VCORE_INACTIVE;
4091 trace_kvmppc_run_core(vc, 1);
4092 }
4093
hcall_is_xics(unsigned long req)4094 static inline bool hcall_is_xics(unsigned long req)
4095 {
4096 return req == H_EOI || req == H_CPPR || req == H_IPI ||
4097 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4098 }
4099
vcpu_vpa_increment_dispatch(struct kvm_vcpu * vcpu)4100 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4101 {
4102 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4103 if (lp) {
4104 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4105 lp->yield_count = cpu_to_be32(yield_count);
4106 vcpu->arch.vpa.dirty = 1;
4107 }
4108 }
4109
kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4110 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
4111 unsigned long lpcr, u64 *tb)
4112 {
4113 struct kvmhv_nestedv2_io *io;
4114 unsigned long msr, i;
4115 int trap;
4116 long rc;
4117
4118 io = &vcpu->arch.nestedv2_io;
4119
4120 msr = mfmsr();
4121 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4122 if (lazy_irq_pending())
4123 return 0;
4124
4125 rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
4126 if (rc < 0)
4127 return -EINVAL;
4128
4129 kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr);
4130
4131 accumulate_time(vcpu, &vcpu->arch.in_guest);
4132 rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
4133 &trap, &i);
4134
4135 if (rc != H_SUCCESS) {
4136 pr_err("KVM Guest Run VCPU hcall failed\n");
4137 if (rc == H_INVALID_ELEMENT_ID)
4138 pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
4139 else if (rc == H_INVALID_ELEMENT_SIZE)
4140 pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
4141 else if (rc == H_INVALID_ELEMENT_VALUE)
4142 pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
4143 return -EINVAL;
4144 }
4145 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4146
4147 *tb = mftb();
4148 kvmppc_gsm_reset(io->vcpu_message);
4149 kvmppc_gsm_reset(io->vcore_message);
4150 kvmppc_gsbm_zero(&io->valids);
4151
4152 rc = kvmhv_nestedv2_parse_output(vcpu);
4153 if (rc < 0)
4154 return -EINVAL;
4155
4156 timer_rearm_host_dec(*tb);
4157
4158 return trap;
4159 }
4160
4161 /* call our hypervisor to load up HV regs and go */
kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4162 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4163 {
4164 unsigned long host_psscr;
4165 unsigned long msr;
4166 struct hv_guest_state hvregs;
4167 struct p9_host_os_sprs host_os_sprs;
4168 s64 dec;
4169 int trap;
4170
4171 msr = mfmsr();
4172
4173 save_p9_host_os_sprs(&host_os_sprs);
4174
4175 /*
4176 * We need to save and restore the guest visible part of the
4177 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4178 * doesn't do this for us. Note only required if pseries since
4179 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4180 */
4181 host_psscr = mfspr(SPRN_PSSCR_PR);
4182
4183 kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4184 if (lazy_irq_pending())
4185 return 0;
4186
4187 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4188 msr = mfmsr(); /* TM restore can update msr */
4189
4190 if (vcpu->arch.psscr != host_psscr)
4191 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4192
4193 kvmhv_save_hv_regs(vcpu, &hvregs);
4194 hvregs.lpcr = lpcr;
4195 hvregs.amor = ~0;
4196 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4197 hvregs.version = HV_GUEST_STATE_VERSION;
4198 if (vcpu->arch.nested) {
4199 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4200 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4201 } else {
4202 hvregs.lpid = vcpu->kvm->arch.lpid;
4203 hvregs.vcpu_token = vcpu->vcpu_id;
4204 }
4205 hvregs.hdec_expiry = time_limit;
4206
4207 /*
4208 * When setting DEC, we must always deal with irq_work_raise
4209 * via NMI vs setting DEC. The problem occurs right as we
4210 * switch into guest mode if a NMI hits and sets pending work
4211 * and sets DEC, then that will apply to the guest and not
4212 * bring us back to the host.
4213 *
4214 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4215 * for example) and set HDEC to 1? That wouldn't solve the
4216 * nested hv case which needs to abort the hcall or zero the
4217 * time limit.
4218 *
4219 * XXX: Another day's problem.
4220 */
4221 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4222
4223 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4224 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4225 switch_pmu_to_guest(vcpu, &host_os_sprs);
4226 accumulate_time(vcpu, &vcpu->arch.in_guest);
4227 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4228 __pa(&vcpu->arch.regs));
4229 accumulate_time(vcpu, &vcpu->arch.guest_exit);
4230 kvmhv_restore_hv_return_state(vcpu, &hvregs);
4231 switch_pmu_to_host(vcpu, &host_os_sprs);
4232 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4233 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4234 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4235 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4236
4237 store_vcpu_state(vcpu);
4238
4239 dec = mfspr(SPRN_DEC);
4240 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4241 dec = (s32) dec;
4242 *tb = mftb();
4243 vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
4244
4245 timer_rearm_host_dec(*tb);
4246
4247 restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4248 if (vcpu->arch.psscr != host_psscr)
4249 mtspr(SPRN_PSSCR_PR, host_psscr);
4250
4251 return trap;
4252 }
4253
4254 /*
4255 * Guest entry for POWER9 and later CPUs.
4256 */
kvmhv_p9_guest_entry(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr,u64 * tb)4257 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4258 unsigned long lpcr, u64 *tb)
4259 {
4260 struct kvm *kvm = vcpu->kvm;
4261 struct kvm_nested_guest *nested = vcpu->arch.nested;
4262 u64 next_timer;
4263 int trap;
4264
4265 next_timer = timer_get_next_tb();
4266 if (*tb >= next_timer)
4267 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4268 if (next_timer < time_limit)
4269 time_limit = next_timer;
4270 else if (*tb >= time_limit) /* nested time limit */
4271 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4272
4273 vcpu->arch.ceded = 0;
4274
4275 vcpu_vpa_increment_dispatch(vcpu);
4276
4277 if (kvmhv_on_pseries()) {
4278 if (kvmhv_is_nestedv1())
4279 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4280 else
4281 trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
4282
4283 /* H_CEDE has to be handled now, not later */
4284 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4285 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4286 kvmppc_cede(vcpu);
4287 kvmppc_set_gpr(vcpu, 3, 0);
4288 trap = 0;
4289 }
4290
4291 } else if (nested) {
4292 __this_cpu_write(cpu_in_guest, kvm);
4293 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4294 __this_cpu_write(cpu_in_guest, NULL);
4295
4296 } else {
4297 kvmppc_xive_push_vcpu(vcpu);
4298
4299 __this_cpu_write(cpu_in_guest, kvm);
4300 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4301 __this_cpu_write(cpu_in_guest, NULL);
4302
4303 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4304 !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4305 unsigned long req = kvmppc_get_gpr(vcpu, 3);
4306
4307 /*
4308 * XIVE rearm and XICS hcalls must be handled
4309 * before xive context is pulled (is this
4310 * true?)
4311 */
4312 if (req == H_CEDE) {
4313 /* H_CEDE has to be handled now */
4314 kvmppc_cede(vcpu);
4315 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4316 /*
4317 * Pending escalation so abort
4318 * the cede.
4319 */
4320 vcpu->arch.ceded = 0;
4321 }
4322 kvmppc_set_gpr(vcpu, 3, 0);
4323 trap = 0;
4324
4325 } else if (req == H_ENTER_NESTED) {
4326 /*
4327 * L2 should not run with the L1
4328 * context so rearm and pull it.
4329 */
4330 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4331 /*
4332 * Pending escalation so abort
4333 * H_ENTER_NESTED.
4334 */
4335 kvmppc_set_gpr(vcpu, 3, 0);
4336 trap = 0;
4337 }
4338
4339 } else if (hcall_is_xics(req)) {
4340 int ret;
4341
4342 ret = kvmppc_xive_xics_hcall(vcpu, req);
4343 if (ret != H_TOO_HARD) {
4344 kvmppc_set_gpr(vcpu, 3, ret);
4345 trap = 0;
4346 }
4347 }
4348 }
4349 kvmppc_xive_pull_vcpu(vcpu);
4350
4351 if (kvm_is_radix(kvm))
4352 vcpu->arch.slb_max = 0;
4353 }
4354
4355 vcpu_vpa_increment_dispatch(vcpu);
4356
4357 return trap;
4358 }
4359
4360 /*
4361 * Wait for some other vcpu thread to execute us, and
4362 * wake us up when we need to handle something in the host.
4363 */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)4364 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4365 struct kvm_vcpu *vcpu, int wait_state)
4366 {
4367 DEFINE_WAIT(wait);
4368
4369 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4370 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4371 spin_unlock(&vc->lock);
4372 schedule();
4373 spin_lock(&vc->lock);
4374 }
4375 finish_wait(&vcpu->arch.cpu_run, &wait);
4376 }
4377
grow_halt_poll_ns(struct kvmppc_vcore * vc)4378 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4379 {
4380 if (!halt_poll_ns_grow)
4381 return;
4382
4383 vc->halt_poll_ns *= halt_poll_ns_grow;
4384 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4385 vc->halt_poll_ns = halt_poll_ns_grow_start;
4386 }
4387
shrink_halt_poll_ns(struct kvmppc_vcore * vc)4388 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4389 {
4390 if (halt_poll_ns_shrink == 0)
4391 vc->halt_poll_ns = 0;
4392 else
4393 vc->halt_poll_ns /= halt_poll_ns_shrink;
4394 }
4395
4396 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)4397 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4398 {
4399 if (!xics_on_xive())
4400 return false;
4401 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4402 vcpu->arch.xive_saved_state.cppr;
4403 }
4404 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)4405 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4406 {
4407 return false;
4408 }
4409 #endif /* CONFIG_KVM_XICS */
4410
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)4411 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4412 {
4413 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4414 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4415 return true;
4416
4417 return false;
4418 }
4419
kvmppc_vcpu_check_block(struct kvm_vcpu * vcpu)4420 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4421 {
4422 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4423 return true;
4424 return false;
4425 }
4426
4427 /*
4428 * Check to see if any of the runnable vcpus on the vcore have pending
4429 * exceptions or are no longer ceded
4430 */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)4431 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4432 {
4433 struct kvm_vcpu *vcpu;
4434 int i;
4435
4436 for_each_runnable_thread(i, vcpu, vc) {
4437 if (kvmppc_vcpu_check_block(vcpu))
4438 return 1;
4439 }
4440
4441 return 0;
4442 }
4443
4444 /*
4445 * All the vcpus in this vcore are idle, so wait for a decrementer
4446 * or external interrupt to one of the vcpus. vc->lock is held.
4447 */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)4448 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4449 {
4450 ktime_t cur, start_poll, start_wait;
4451 int do_sleep = 1;
4452 u64 block_ns;
4453
4454 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4455
4456 /* Poll for pending exceptions and ceded state */
4457 cur = start_poll = ktime_get();
4458 if (vc->halt_poll_ns) {
4459 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4460 ++vc->runner->stat.generic.halt_attempted_poll;
4461
4462 vc->vcore_state = VCORE_POLLING;
4463 spin_unlock(&vc->lock);
4464
4465 do {
4466 if (kvmppc_vcore_check_block(vc)) {
4467 do_sleep = 0;
4468 break;
4469 }
4470 cur = ktime_get();
4471 } while (kvm_vcpu_can_poll(cur, stop));
4472
4473 spin_lock(&vc->lock);
4474 vc->vcore_state = VCORE_INACTIVE;
4475
4476 if (!do_sleep) {
4477 ++vc->runner->stat.generic.halt_successful_poll;
4478 goto out;
4479 }
4480 }
4481
4482 prepare_to_rcuwait(&vc->wait);
4483 set_current_state(TASK_INTERRUPTIBLE);
4484 if (kvmppc_vcore_check_block(vc)) {
4485 finish_rcuwait(&vc->wait);
4486 do_sleep = 0;
4487 /* If we polled, count this as a successful poll */
4488 if (vc->halt_poll_ns)
4489 ++vc->runner->stat.generic.halt_successful_poll;
4490 goto out;
4491 }
4492
4493 start_wait = ktime_get();
4494
4495 vc->vcore_state = VCORE_SLEEPING;
4496 trace_kvmppc_vcore_blocked(vc->runner, 0);
4497 spin_unlock(&vc->lock);
4498 schedule();
4499 finish_rcuwait(&vc->wait);
4500 spin_lock(&vc->lock);
4501 vc->vcore_state = VCORE_INACTIVE;
4502 trace_kvmppc_vcore_blocked(vc->runner, 1);
4503 ++vc->runner->stat.halt_successful_wait;
4504
4505 cur = ktime_get();
4506
4507 out:
4508 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4509
4510 /* Attribute wait time */
4511 if (do_sleep) {
4512 vc->runner->stat.generic.halt_wait_ns +=
4513 ktime_to_ns(cur) - ktime_to_ns(start_wait);
4514 KVM_STATS_LOG_HIST_UPDATE(
4515 vc->runner->stat.generic.halt_wait_hist,
4516 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4517 /* Attribute failed poll time */
4518 if (vc->halt_poll_ns) {
4519 vc->runner->stat.generic.halt_poll_fail_ns +=
4520 ktime_to_ns(start_wait) -
4521 ktime_to_ns(start_poll);
4522 KVM_STATS_LOG_HIST_UPDATE(
4523 vc->runner->stat.generic.halt_poll_fail_hist,
4524 ktime_to_ns(start_wait) -
4525 ktime_to_ns(start_poll));
4526 }
4527 } else {
4528 /* Attribute successful poll time */
4529 if (vc->halt_poll_ns) {
4530 vc->runner->stat.generic.halt_poll_success_ns +=
4531 ktime_to_ns(cur) -
4532 ktime_to_ns(start_poll);
4533 KVM_STATS_LOG_HIST_UPDATE(
4534 vc->runner->stat.generic.halt_poll_success_hist,
4535 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4536 }
4537 }
4538
4539 /* Adjust poll time */
4540 if (halt_poll_ns) {
4541 if (block_ns <= vc->halt_poll_ns)
4542 ;
4543 /* We slept and blocked for longer than the max halt time */
4544 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4545 shrink_halt_poll_ns(vc);
4546 /* We slept and our poll time is too small */
4547 else if (vc->halt_poll_ns < halt_poll_ns &&
4548 block_ns < halt_poll_ns)
4549 grow_halt_poll_ns(vc);
4550 if (vc->halt_poll_ns > halt_poll_ns)
4551 vc->halt_poll_ns = halt_poll_ns;
4552 } else
4553 vc->halt_poll_ns = 0;
4554
4555 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4556 }
4557
4558 /*
4559 * This never fails for a radix guest, as none of the operations it does
4560 * for a radix guest can fail or have a way to report failure.
4561 */
kvmhv_setup_mmu(struct kvm_vcpu * vcpu)4562 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4563 {
4564 int r = 0;
4565 struct kvm *kvm = vcpu->kvm;
4566
4567 mutex_lock(&kvm->arch.mmu_setup_lock);
4568 if (!kvm->arch.mmu_ready) {
4569 if (!kvm_is_radix(kvm))
4570 r = kvmppc_hv_setup_htab_rma(vcpu);
4571 if (!r) {
4572 if (cpu_has_feature(CPU_FTR_ARCH_300))
4573 kvmppc_setup_partition_table(kvm);
4574 kvm->arch.mmu_ready = 1;
4575 }
4576 }
4577 mutex_unlock(&kvm->arch.mmu_setup_lock);
4578 return r;
4579 }
4580
kvmppc_run_vcpu(struct kvm_vcpu * vcpu)4581 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4582 {
4583 struct kvm_run *run = vcpu->run;
4584 int n_ceded, i, r;
4585 struct kvmppc_vcore *vc;
4586 struct kvm_vcpu *v;
4587
4588 trace_kvmppc_run_vcpu_enter(vcpu);
4589
4590 run->exit_reason = 0;
4591 vcpu->arch.ret = RESUME_GUEST;
4592 vcpu->arch.trap = 0;
4593 kvmppc_update_vpas(vcpu);
4594
4595 /*
4596 * Synchronize with other threads in this virtual core
4597 */
4598 vc = vcpu->arch.vcore;
4599 spin_lock(&vc->lock);
4600 vcpu->arch.ceded = 0;
4601 vcpu->arch.run_task = current;
4602 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4603 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4604 vcpu->arch.busy_preempt = TB_NIL;
4605 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4606 ++vc->n_runnable;
4607
4608 /*
4609 * This happens the first time this is called for a vcpu.
4610 * If the vcore is already running, we may be able to start
4611 * this thread straight away and have it join in.
4612 */
4613 if (!signal_pending(current)) {
4614 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4615 vc->vcore_state == VCORE_RUNNING) &&
4616 !VCORE_IS_EXITING(vc)) {
4617 kvmppc_update_vpa_dispatch(vcpu, vc);
4618 kvmppc_start_thread(vcpu, vc);
4619 trace_kvm_guest_enter(vcpu);
4620 } else if (vc->vcore_state == VCORE_SLEEPING) {
4621 rcuwait_wake_up(&vc->wait);
4622 }
4623
4624 }
4625
4626 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4627 !signal_pending(current)) {
4628 /* See if the MMU is ready to go */
4629 if (!vcpu->kvm->arch.mmu_ready) {
4630 spin_unlock(&vc->lock);
4631 r = kvmhv_setup_mmu(vcpu);
4632 spin_lock(&vc->lock);
4633 if (r) {
4634 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4635 run->fail_entry.
4636 hardware_entry_failure_reason = 0;
4637 vcpu->arch.ret = r;
4638 break;
4639 }
4640 }
4641
4642 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4643 kvmppc_vcore_end_preempt(vc);
4644
4645 if (vc->vcore_state != VCORE_INACTIVE) {
4646 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4647 continue;
4648 }
4649 for_each_runnable_thread(i, v, vc) {
4650 kvmppc_core_prepare_to_enter(v);
4651 if (signal_pending(v->arch.run_task)) {
4652 kvmppc_remove_runnable(vc, v, mftb());
4653 v->stat.signal_exits++;
4654 v->run->exit_reason = KVM_EXIT_INTR;
4655 v->arch.ret = -EINTR;
4656 wake_up(&v->arch.cpu_run);
4657 }
4658 }
4659 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4660 break;
4661 n_ceded = 0;
4662 for_each_runnable_thread(i, v, vc) {
4663 if (!kvmppc_vcpu_woken(v))
4664 n_ceded += v->arch.ceded;
4665 else
4666 v->arch.ceded = 0;
4667 }
4668 vc->runner = vcpu;
4669 if (n_ceded == vc->n_runnable) {
4670 kvmppc_vcore_blocked(vc);
4671 } else if (need_resched()) {
4672 kvmppc_vcore_preempt(vc);
4673 /* Let something else run */
4674 cond_resched_lock(&vc->lock);
4675 if (vc->vcore_state == VCORE_PREEMPT)
4676 kvmppc_vcore_end_preempt(vc);
4677 } else {
4678 kvmppc_run_core(vc);
4679 }
4680 vc->runner = NULL;
4681 }
4682
4683 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4684 (vc->vcore_state == VCORE_RUNNING ||
4685 vc->vcore_state == VCORE_EXITING ||
4686 vc->vcore_state == VCORE_PIGGYBACK))
4687 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4688
4689 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4690 kvmppc_vcore_end_preempt(vc);
4691
4692 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4693 kvmppc_remove_runnable(vc, vcpu, mftb());
4694 vcpu->stat.signal_exits++;
4695 run->exit_reason = KVM_EXIT_INTR;
4696 vcpu->arch.ret = -EINTR;
4697 }
4698
4699 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4700 /* Wake up some vcpu to run the core */
4701 i = -1;
4702 v = next_runnable_thread(vc, &i);
4703 wake_up(&v->arch.cpu_run);
4704 }
4705
4706 trace_kvmppc_run_vcpu_exit(vcpu);
4707 spin_unlock(&vc->lock);
4708 return vcpu->arch.ret;
4709 }
4710
kvmhv_run_single_vcpu(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)4711 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4712 unsigned long lpcr)
4713 {
4714 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4715 struct kvm_run *run = vcpu->run;
4716 int trap, r, pcpu;
4717 int srcu_idx;
4718 struct kvmppc_vcore *vc;
4719 struct kvm *kvm = vcpu->kvm;
4720 struct kvm_nested_guest *nested = vcpu->arch.nested;
4721 unsigned long flags;
4722 u64 tb;
4723
4724 trace_kvmppc_run_vcpu_enter(vcpu);
4725
4726 run->exit_reason = 0;
4727 vcpu->arch.ret = RESUME_GUEST;
4728 vcpu->arch.trap = 0;
4729
4730 vc = vcpu->arch.vcore;
4731 vcpu->arch.ceded = 0;
4732 vcpu->arch.run_task = current;
4733 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4734
4735 /* See if the MMU is ready to go */
4736 if (unlikely(!kvm->arch.mmu_ready)) {
4737 r = kvmhv_setup_mmu(vcpu);
4738 if (r) {
4739 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4740 run->fail_entry.hardware_entry_failure_reason = 0;
4741 vcpu->arch.ret = r;
4742 return r;
4743 }
4744 }
4745
4746 if (need_resched())
4747 cond_resched();
4748
4749 kvmppc_update_vpas(vcpu);
4750
4751 preempt_disable();
4752 pcpu = smp_processor_id();
4753 if (kvm_is_radix(kvm))
4754 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4755
4756 /* flags save not required, but irq_pmu has no disable/enable API */
4757 powerpc_local_irq_pmu_save(flags);
4758
4759 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4760
4761 if (signal_pending(current))
4762 goto sigpend;
4763 if (need_resched() || !kvm->arch.mmu_ready)
4764 goto out;
4765
4766 vcpu->cpu = pcpu;
4767 vcpu->arch.thread_cpu = pcpu;
4768 vc->pcpu = pcpu;
4769 local_paca->kvm_hstate.kvm_vcpu = vcpu;
4770 local_paca->kvm_hstate.ptid = 0;
4771 local_paca->kvm_hstate.fake_suspend = 0;
4772
4773 /*
4774 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4775 * doorbells below. The other side is when these fields are set vs
4776 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4777 * kick a vCPU to notice the pending interrupt.
4778 */
4779 smp_mb();
4780
4781 if (!nested) {
4782 kvmppc_core_prepare_to_enter(vcpu);
4783 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4784 &vcpu->arch.pending_exceptions) ||
4785 xive_interrupt_pending(vcpu)) {
4786 /*
4787 * For nested HV, don't synthesize but always pass MER,
4788 * the L0 will be able to optimise that more
4789 * effectively than manipulating registers directly.
4790 */
4791 if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
4792 kvmppc_inject_interrupt_hv(vcpu,
4793 BOOK3S_INTERRUPT_EXTERNAL, 0);
4794 else
4795 lpcr |= LPCR_MER;
4796 }
4797 } else if (vcpu->arch.pending_exceptions ||
4798 vcpu->arch.doorbell_request ||
4799 xive_interrupt_pending(vcpu)) {
4800 vcpu->arch.ret = RESUME_HOST;
4801 goto out;
4802 }
4803
4804 if (vcpu->arch.timer_running) {
4805 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4806 vcpu->arch.timer_running = 0;
4807 }
4808
4809 tb = mftb();
4810
4811 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu));
4812
4813 trace_kvm_guest_enter(vcpu);
4814
4815 guest_timing_enter_irqoff();
4816
4817 srcu_idx = srcu_read_lock(&kvm->srcu);
4818
4819 guest_state_enter_irqoff();
4820 this_cpu_disable_ftrace();
4821
4822 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4823 vcpu->arch.trap = trap;
4824
4825 this_cpu_enable_ftrace();
4826 guest_state_exit_irqoff();
4827
4828 srcu_read_unlock(&kvm->srcu, srcu_idx);
4829
4830 set_irq_happened(trap);
4831
4832 vcpu->cpu = -1;
4833 vcpu->arch.thread_cpu = -1;
4834 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4835
4836 if (!vtime_accounting_enabled_this_cpu()) {
4837 powerpc_local_irq_pmu_restore(flags);
4838 /*
4839 * Service IRQs here before guest_timing_exit_irqoff() so any
4840 * ticks that occurred while running the guest are accounted to
4841 * the guest. If vtime accounting is enabled, accounting uses
4842 * TB rather than ticks, so it can be done without enabling
4843 * interrupts here, which has the problem that it accounts
4844 * interrupt processing overhead to the host.
4845 */
4846 powerpc_local_irq_pmu_save(flags);
4847 }
4848 guest_timing_exit_irqoff();
4849
4850 powerpc_local_irq_pmu_restore(flags);
4851
4852 preempt_enable();
4853
4854 /*
4855 * cancel pending decrementer exception if DEC is now positive, or if
4856 * entering a nested guest in which case the decrementer is now owned
4857 * by L2 and the L1 decrementer is provided in hdec_expires
4858 */
4859 if (!kvmhv_is_nestedv2() && kvmppc_core_pending_dec(vcpu) &&
4860 ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4861 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4862 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4863 kvmppc_core_dequeue_dec(vcpu);
4864
4865 trace_kvm_guest_exit(vcpu);
4866 r = RESUME_GUEST;
4867 if (trap) {
4868 if (!nested)
4869 r = kvmppc_handle_exit_hv(vcpu, current);
4870 else
4871 r = kvmppc_handle_nested_exit(vcpu);
4872 }
4873 vcpu->arch.ret = r;
4874
4875 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4876 kvmppc_set_timer(vcpu);
4877
4878 prepare_to_rcuwait(wait);
4879 for (;;) {
4880 set_current_state(TASK_INTERRUPTIBLE);
4881 if (signal_pending(current)) {
4882 vcpu->stat.signal_exits++;
4883 run->exit_reason = KVM_EXIT_INTR;
4884 vcpu->arch.ret = -EINTR;
4885 break;
4886 }
4887
4888 if (kvmppc_vcpu_check_block(vcpu))
4889 break;
4890
4891 trace_kvmppc_vcore_blocked(vcpu, 0);
4892 schedule();
4893 trace_kvmppc_vcore_blocked(vcpu, 1);
4894 }
4895 finish_rcuwait(wait);
4896 }
4897 vcpu->arch.ceded = 0;
4898
4899 done:
4900 trace_kvmppc_run_vcpu_exit(vcpu);
4901
4902 return vcpu->arch.ret;
4903
4904 sigpend:
4905 vcpu->stat.signal_exits++;
4906 run->exit_reason = KVM_EXIT_INTR;
4907 vcpu->arch.ret = -EINTR;
4908 out:
4909 vcpu->cpu = -1;
4910 vcpu->arch.thread_cpu = -1;
4911 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4912 powerpc_local_irq_pmu_restore(flags);
4913 preempt_enable();
4914 goto done;
4915 }
4916
kvmppc_vcpu_run_hv(struct kvm_vcpu * vcpu)4917 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4918 {
4919 struct kvm_run *run = vcpu->run;
4920 int r;
4921 int srcu_idx;
4922 struct kvm *kvm;
4923 unsigned long msr;
4924
4925 start_timing(vcpu, &vcpu->arch.vcpu_entry);
4926
4927 if (!vcpu->arch.sane) {
4928 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4929 return -EINVAL;
4930 }
4931
4932 /* No need to go into the guest when all we'll do is come back out */
4933 if (signal_pending(current)) {
4934 run->exit_reason = KVM_EXIT_INTR;
4935 return -EINTR;
4936 }
4937
4938 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4939 /*
4940 * Don't allow entry with a suspended transaction, because
4941 * the guest entry/exit code will lose it.
4942 */
4943 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4944 (current->thread.regs->msr & MSR_TM)) {
4945 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4946 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4947 run->fail_entry.hardware_entry_failure_reason = 0;
4948 return -EINVAL;
4949 }
4950 }
4951 #endif
4952
4953 /*
4954 * Force online to 1 for the sake of old userspace which doesn't
4955 * set it.
4956 */
4957 if (!vcpu->arch.online) {
4958 atomic_inc(&vcpu->arch.vcore->online_count);
4959 vcpu->arch.online = 1;
4960 }
4961
4962 kvmppc_core_prepare_to_enter(vcpu);
4963
4964 kvm = vcpu->kvm;
4965 atomic_inc(&kvm->arch.vcpus_running);
4966 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4967 smp_mb();
4968
4969 msr = 0;
4970 if (IS_ENABLED(CONFIG_PPC_FPU))
4971 msr |= MSR_FP;
4972 if (cpu_has_feature(CPU_FTR_ALTIVEC))
4973 msr |= MSR_VEC;
4974 if (cpu_has_feature(CPU_FTR_VSX))
4975 msr |= MSR_VSX;
4976 if ((cpu_has_feature(CPU_FTR_TM) ||
4977 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4978 (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4979 msr |= MSR_TM;
4980 msr = msr_check_and_set(msr);
4981
4982 kvmppc_save_user_regs();
4983
4984 kvmppc_save_current_sprs();
4985
4986 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4987 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4988 vcpu->arch.pgdir = kvm->mm->pgd;
4989 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4990
4991 do {
4992 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4993 if (cpu_has_feature(CPU_FTR_ARCH_300))
4994 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4995 vcpu->arch.vcore->lpcr);
4996 else
4997 r = kvmppc_run_vcpu(vcpu);
4998
4999 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
5000 accumulate_time(vcpu, &vcpu->arch.hcall);
5001
5002 if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
5003 /*
5004 * These should have been caught reflected
5005 * into the guest by now. Final sanity check:
5006 * don't allow userspace to execute hcalls in
5007 * the hypervisor.
5008 */
5009 r = RESUME_GUEST;
5010 continue;
5011 }
5012 trace_kvm_hcall_enter(vcpu);
5013 r = kvmppc_pseries_do_hcall(vcpu);
5014 trace_kvm_hcall_exit(vcpu, r);
5015 kvmppc_core_prepare_to_enter(vcpu);
5016 } else if (r == RESUME_PAGE_FAULT) {
5017 accumulate_time(vcpu, &vcpu->arch.pg_fault);
5018 srcu_idx = srcu_read_lock(&kvm->srcu);
5019 r = kvmppc_book3s_hv_page_fault(vcpu,
5020 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
5021 srcu_read_unlock(&kvm->srcu, srcu_idx);
5022 } else if (r == RESUME_PASSTHROUGH) {
5023 if (WARN_ON(xics_on_xive()))
5024 r = H_SUCCESS;
5025 else
5026 r = kvmppc_xics_rm_complete(vcpu, 0);
5027 }
5028 } while (is_kvmppc_resume_guest(r));
5029 accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
5030
5031 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
5032 atomic_dec(&kvm->arch.vcpus_running);
5033
5034 srr_regs_clobbered();
5035
5036 end_timing(vcpu);
5037
5038 return r;
5039 }
5040
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int shift,int sllp)5041 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
5042 int shift, int sllp)
5043 {
5044 (*sps)->page_shift = shift;
5045 (*sps)->slb_enc = sllp;
5046 (*sps)->enc[0].page_shift = shift;
5047 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
5048 /*
5049 * Add 16MB MPSS support (may get filtered out by userspace)
5050 */
5051 if (shift != 24) {
5052 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
5053 if (penc != -1) {
5054 (*sps)->enc[1].page_shift = 24;
5055 (*sps)->enc[1].pte_enc = penc;
5056 }
5057 }
5058 (*sps)++;
5059 }
5060
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)5061 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
5062 struct kvm_ppc_smmu_info *info)
5063 {
5064 struct kvm_ppc_one_seg_page_size *sps;
5065
5066 /*
5067 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
5068 * POWER7 doesn't support keys for instruction accesses,
5069 * POWER8 and POWER9 do.
5070 */
5071 info->data_keys = 32;
5072 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
5073
5074 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
5075 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
5076 info->slb_size = 32;
5077
5078 /* We only support these sizes for now, and no muti-size segments */
5079 sps = &info->sps[0];
5080 kvmppc_add_seg_page_size(&sps, 12, 0);
5081 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
5082 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5083
5084 /* If running as a nested hypervisor, we don't support HPT guests */
5085 if (kvmhv_on_pseries())
5086 info->flags |= KVM_PPC_NO_HASH;
5087
5088 return 0;
5089 }
5090
5091 /*
5092 * Get (and clear) the dirty memory log for a memory slot.
5093 */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)5094 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
5095 struct kvm_dirty_log *log)
5096 {
5097 struct kvm_memslots *slots;
5098 struct kvm_memory_slot *memslot;
5099 int r;
5100 unsigned long n, i;
5101 unsigned long *buf, *p;
5102 struct kvm_vcpu *vcpu;
5103
5104 mutex_lock(&kvm->slots_lock);
5105
5106 r = -EINVAL;
5107 if (log->slot >= KVM_USER_MEM_SLOTS)
5108 goto out;
5109
5110 slots = kvm_memslots(kvm);
5111 memslot = id_to_memslot(slots, log->slot);
5112 r = -ENOENT;
5113 if (!memslot || !memslot->dirty_bitmap)
5114 goto out;
5115
5116 /*
5117 * Use second half of bitmap area because both HPT and radix
5118 * accumulate bits in the first half.
5119 */
5120 n = kvm_dirty_bitmap_bytes(memslot);
5121 buf = memslot->dirty_bitmap + n / sizeof(long);
5122 memset(buf, 0, n);
5123
5124 if (kvm_is_radix(kvm))
5125 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5126 else
5127 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5128 if (r)
5129 goto out;
5130
5131 /*
5132 * We accumulate dirty bits in the first half of the
5133 * memslot's dirty_bitmap area, for when pages are paged
5134 * out or modified by the host directly. Pick up these
5135 * bits and add them to the map.
5136 */
5137 p = memslot->dirty_bitmap;
5138 for (i = 0; i < n / sizeof(long); ++i)
5139 buf[i] |= xchg(&p[i], 0);
5140
5141 /* Harvest dirty bits from VPA and DTL updates */
5142 /* Note: we never modify the SLB shadow buffer areas */
5143 kvm_for_each_vcpu(i, vcpu, kvm) {
5144 spin_lock(&vcpu->arch.vpa_update_lock);
5145 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5146 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5147 spin_unlock(&vcpu->arch.vpa_update_lock);
5148 }
5149
5150 r = -EFAULT;
5151 if (copy_to_user(log->dirty_bitmap, buf, n))
5152 goto out;
5153
5154 r = 0;
5155 out:
5156 mutex_unlock(&kvm->slots_lock);
5157 return r;
5158 }
5159
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * slot)5160 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5161 {
5162 vfree(slot->arch.rmap);
5163 slot->arch.rmap = NULL;
5164 }
5165
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)5166 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5167 const struct kvm_memory_slot *old,
5168 struct kvm_memory_slot *new,
5169 enum kvm_mr_change change)
5170 {
5171 if (change == KVM_MR_CREATE) {
5172 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5173
5174 if ((size >> PAGE_SHIFT) > totalram_pages())
5175 return -ENOMEM;
5176
5177 new->arch.rmap = vzalloc(size);
5178 if (!new->arch.rmap)
5179 return -ENOMEM;
5180 } else if (change != KVM_MR_DELETE) {
5181 new->arch.rmap = old->arch.rmap;
5182 }
5183
5184 return 0;
5185 }
5186
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)5187 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5188 struct kvm_memory_slot *old,
5189 const struct kvm_memory_slot *new,
5190 enum kvm_mr_change change)
5191 {
5192 /*
5193 * If we are creating or modifying a memslot, it might make
5194 * some address that was previously cached as emulated
5195 * MMIO be no longer emulated MMIO, so invalidate
5196 * all the caches of emulated MMIO translations.
5197 */
5198 if (change != KVM_MR_DELETE)
5199 atomic64_inc(&kvm->arch.mmio_update);
5200
5201 /*
5202 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5203 * have already called kvm_arch_flush_shadow_memslot() to
5204 * flush shadow mappings. For KVM_MR_CREATE we have no
5205 * previous mappings. So the only case to handle is
5206 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5207 * has been changed.
5208 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5209 * to get rid of any THP PTEs in the partition-scoped page tables
5210 * so we can track dirtiness at the page level; we flush when
5211 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5212 * using THP PTEs.
5213 */
5214 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5215 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5216 kvmppc_radix_flush_memslot(kvm, old);
5217 /*
5218 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5219 */
5220 if (!kvm->arch.secure_guest)
5221 return;
5222
5223 switch (change) {
5224 case KVM_MR_CREATE:
5225 /*
5226 * @TODO kvmppc_uvmem_memslot_create() can fail and
5227 * return error. Fix this.
5228 */
5229 kvmppc_uvmem_memslot_create(kvm, new);
5230 break;
5231 case KVM_MR_DELETE:
5232 kvmppc_uvmem_memslot_delete(kvm, old);
5233 break;
5234 default:
5235 /* TODO: Handle KVM_MR_MOVE */
5236 break;
5237 }
5238 }
5239
5240 /*
5241 * Update LPCR values in kvm->arch and in vcores.
5242 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5243 * of kvm->arch.lpcr update).
5244 */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)5245 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5246 {
5247 long int i;
5248 u32 cores_done = 0;
5249
5250 if ((kvm->arch.lpcr & mask) == lpcr)
5251 return;
5252
5253 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5254
5255 for (i = 0; i < KVM_MAX_VCORES; ++i) {
5256 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5257 if (!vc)
5258 continue;
5259
5260 spin_lock(&vc->lock);
5261 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5262 verify_lpcr(kvm, vc->lpcr);
5263 spin_unlock(&vc->lock);
5264 if (++cores_done >= kvm->arch.online_vcores)
5265 break;
5266 }
5267
5268 if (kvmhv_is_nestedv2()) {
5269 struct kvm_vcpu *vcpu;
5270
5271 kvm_for_each_vcpu(i, vcpu, kvm) {
5272 kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
5273 }
5274 }
5275 }
5276
kvmppc_setup_partition_table(struct kvm * kvm)5277 void kvmppc_setup_partition_table(struct kvm *kvm)
5278 {
5279 unsigned long dw0, dw1;
5280
5281 if (!kvm_is_radix(kvm)) {
5282 /* PS field - page size for VRMA */
5283 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5284 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5285 /* HTABSIZE and HTABORG fields */
5286 dw0 |= kvm->arch.sdr1;
5287
5288 /* Second dword as set by userspace */
5289 dw1 = kvm->arch.process_table;
5290 } else {
5291 dw0 = PATB_HR | radix__get_tree_size() |
5292 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5293 dw1 = PATB_GR | kvm->arch.process_table;
5294 }
5295 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5296 }
5297
5298 /*
5299 * Set up HPT (hashed page table) and RMA (real-mode area).
5300 * Must be called with kvm->arch.mmu_setup_lock held.
5301 */
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)5302 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5303 {
5304 int err = 0;
5305 struct kvm *kvm = vcpu->kvm;
5306 unsigned long hva;
5307 struct kvm_memory_slot *memslot;
5308 struct vm_area_struct *vma;
5309 unsigned long lpcr = 0, senc;
5310 unsigned long psize, porder;
5311 int srcu_idx;
5312
5313 /* Allocate hashed page table (if not done already) and reset it */
5314 if (!kvm->arch.hpt.virt) {
5315 int order = KVM_DEFAULT_HPT_ORDER;
5316 struct kvm_hpt_info info;
5317
5318 err = kvmppc_allocate_hpt(&info, order);
5319 /* If we get here, it means userspace didn't specify a
5320 * size explicitly. So, try successively smaller
5321 * sizes if the default failed. */
5322 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5323 err = kvmppc_allocate_hpt(&info, order);
5324
5325 if (err < 0) {
5326 pr_err("KVM: Couldn't alloc HPT\n");
5327 goto out;
5328 }
5329
5330 kvmppc_set_hpt(kvm, &info);
5331 }
5332
5333 /* Look up the memslot for guest physical address 0 */
5334 srcu_idx = srcu_read_lock(&kvm->srcu);
5335 memslot = gfn_to_memslot(kvm, 0);
5336
5337 /* We must have some memory at 0 by now */
5338 err = -EINVAL;
5339 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5340 goto out_srcu;
5341
5342 /* Look up the VMA for the start of this memory slot */
5343 hva = memslot->userspace_addr;
5344 mmap_read_lock(kvm->mm);
5345 vma = vma_lookup(kvm->mm, hva);
5346 if (!vma || (vma->vm_flags & VM_IO))
5347 goto up_out;
5348
5349 psize = vma_kernel_pagesize(vma);
5350
5351 mmap_read_unlock(kvm->mm);
5352
5353 /* We can handle 4k, 64k or 16M pages in the VRMA */
5354 if (psize >= 0x1000000)
5355 psize = 0x1000000;
5356 else if (psize >= 0x10000)
5357 psize = 0x10000;
5358 else
5359 psize = 0x1000;
5360 porder = __ilog2(psize);
5361
5362 senc = slb_pgsize_encoding(psize);
5363 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5364 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5365 /* Create HPTEs in the hash page table for the VRMA */
5366 kvmppc_map_vrma(vcpu, memslot, porder);
5367
5368 /* Update VRMASD field in the LPCR */
5369 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5370 /* the -4 is to account for senc values starting at 0x10 */
5371 lpcr = senc << (LPCR_VRMASD_SH - 4);
5372 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5373 }
5374
5375 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5376 smp_wmb();
5377 err = 0;
5378 out_srcu:
5379 srcu_read_unlock(&kvm->srcu, srcu_idx);
5380 out:
5381 return err;
5382
5383 up_out:
5384 mmap_read_unlock(kvm->mm);
5385 goto out_srcu;
5386 }
5387
5388 /*
5389 * Must be called with kvm->arch.mmu_setup_lock held and
5390 * mmu_ready = 0 and no vcpus running.
5391 */
kvmppc_switch_mmu_to_hpt(struct kvm * kvm)5392 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5393 {
5394 unsigned long lpcr, lpcr_mask;
5395
5396 if (nesting_enabled(kvm))
5397 kvmhv_release_all_nested(kvm);
5398 kvmppc_rmap_reset(kvm);
5399 kvm->arch.process_table = 0;
5400 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5401 spin_lock(&kvm->mmu_lock);
5402 kvm->arch.radix = 0;
5403 spin_unlock(&kvm->mmu_lock);
5404 kvmppc_free_radix(kvm);
5405
5406 lpcr = LPCR_VPM1;
5407 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5408 if (cpu_has_feature(CPU_FTR_ARCH_31))
5409 lpcr_mask |= LPCR_HAIL;
5410 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5411
5412 return 0;
5413 }
5414
5415 /*
5416 * Must be called with kvm->arch.mmu_setup_lock held and
5417 * mmu_ready = 0 and no vcpus running.
5418 */
kvmppc_switch_mmu_to_radix(struct kvm * kvm)5419 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5420 {
5421 unsigned long lpcr, lpcr_mask;
5422 int err;
5423
5424 err = kvmppc_init_vm_radix(kvm);
5425 if (err)
5426 return err;
5427 kvmppc_rmap_reset(kvm);
5428 /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5429 spin_lock(&kvm->mmu_lock);
5430 kvm->arch.radix = 1;
5431 spin_unlock(&kvm->mmu_lock);
5432 kvmppc_free_hpt(&kvm->arch.hpt);
5433
5434 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5435 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5436 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5437 lpcr_mask |= LPCR_HAIL;
5438 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5439 (kvm->arch.host_lpcr & LPCR_HAIL))
5440 lpcr |= LPCR_HAIL;
5441 }
5442 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5443
5444 return 0;
5445 }
5446
5447 #ifdef CONFIG_KVM_XICS
5448 /*
5449 * Allocate a per-core structure for managing state about which cores are
5450 * running in the host versus the guest and for exchanging data between
5451 * real mode KVM and CPU running in the host.
5452 * This is only done for the first VM.
5453 * The allocated structure stays even if all VMs have stopped.
5454 * It is only freed when the kvm-hv module is unloaded.
5455 * It's OK for this routine to fail, we just don't support host
5456 * core operations like redirecting H_IPI wakeups.
5457 */
kvmppc_alloc_host_rm_ops(void)5458 void kvmppc_alloc_host_rm_ops(void)
5459 {
5460 struct kvmppc_host_rm_ops *ops;
5461 unsigned long l_ops;
5462 int cpu, core;
5463 int size;
5464
5465 if (cpu_has_feature(CPU_FTR_ARCH_300))
5466 return;
5467
5468 /* Not the first time here ? */
5469 if (kvmppc_host_rm_ops_hv != NULL)
5470 return;
5471
5472 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5473 if (!ops)
5474 return;
5475
5476 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5477 ops->rm_core = kzalloc(size, GFP_KERNEL);
5478
5479 if (!ops->rm_core) {
5480 kfree(ops);
5481 return;
5482 }
5483
5484 cpus_read_lock();
5485
5486 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5487 if (!cpu_online(cpu))
5488 continue;
5489
5490 core = cpu >> threads_shift;
5491 ops->rm_core[core].rm_state.in_host = 1;
5492 }
5493
5494 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5495
5496 /*
5497 * Make the contents of the kvmppc_host_rm_ops structure visible
5498 * to other CPUs before we assign it to the global variable.
5499 * Do an atomic assignment (no locks used here), but if someone
5500 * beats us to it, just free our copy and return.
5501 */
5502 smp_wmb();
5503 l_ops = (unsigned long) ops;
5504
5505 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5506 cpus_read_unlock();
5507 kfree(ops->rm_core);
5508 kfree(ops);
5509 return;
5510 }
5511
5512 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5513 "ppc/kvm_book3s:prepare",
5514 kvmppc_set_host_core,
5515 kvmppc_clear_host_core);
5516 cpus_read_unlock();
5517 }
5518
kvmppc_free_host_rm_ops(void)5519 void kvmppc_free_host_rm_ops(void)
5520 {
5521 if (kvmppc_host_rm_ops_hv) {
5522 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5523 kfree(kvmppc_host_rm_ops_hv->rm_core);
5524 kfree(kvmppc_host_rm_ops_hv);
5525 kvmppc_host_rm_ops_hv = NULL;
5526 }
5527 }
5528 #endif
5529
kvmppc_core_init_vm_hv(struct kvm * kvm)5530 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5531 {
5532 unsigned long lpcr, lpid;
5533 int ret;
5534
5535 mutex_init(&kvm->arch.uvmem_lock);
5536 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5537 mutex_init(&kvm->arch.mmu_setup_lock);
5538
5539 /* Allocate the guest's logical partition ID */
5540
5541 if (!kvmhv_is_nestedv2()) {
5542 lpid = kvmppc_alloc_lpid();
5543 if ((long)lpid < 0)
5544 return -ENOMEM;
5545 kvm->arch.lpid = lpid;
5546 }
5547
5548 kvmppc_alloc_host_rm_ops();
5549
5550 kvmhv_vm_nested_init(kvm);
5551
5552 if (kvmhv_is_nestedv2()) {
5553 long rc;
5554 unsigned long guest_id;
5555
5556 rc = plpar_guest_create(0, &guest_id);
5557
5558 if (rc != H_SUCCESS)
5559 pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
5560
5561 switch (rc) {
5562 case H_PARAMETER:
5563 case H_FUNCTION:
5564 case H_STATE:
5565 return -EINVAL;
5566 case H_NOT_ENOUGH_RESOURCES:
5567 case H_ABORTED:
5568 return -ENOMEM;
5569 case H_AUTHORITY:
5570 return -EPERM;
5571 case H_NOT_AVAILABLE:
5572 return -EBUSY;
5573 }
5574 kvm->arch.lpid = guest_id;
5575 }
5576
5577
5578 /*
5579 * Since we don't flush the TLB when tearing down a VM,
5580 * and this lpid might have previously been used,
5581 * make sure we flush on each core before running the new VM.
5582 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5583 * does this flush for us.
5584 */
5585 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5586 cpumask_setall(&kvm->arch.need_tlb_flush);
5587
5588 /* Start out with the default set of hcalls enabled */
5589 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5590 sizeof(kvm->arch.enabled_hcalls));
5591
5592 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5593 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5594
5595 /* Init LPCR for virtual RMA mode */
5596 if (cpu_has_feature(CPU_FTR_HVMODE)) {
5597 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5598 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5599 lpcr &= LPCR_PECE | LPCR_LPES;
5600 } else {
5601 /*
5602 * The L2 LPES mode will be set by the L0 according to whether
5603 * or not it needs to take external interrupts in HV mode.
5604 */
5605 lpcr = 0;
5606 }
5607 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5608 LPCR_VPM0 | LPCR_VPM1;
5609 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5610 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5611 /* On POWER8 turn on online bit to enable PURR/SPURR */
5612 if (cpu_has_feature(CPU_FTR_ARCH_207S))
5613 lpcr |= LPCR_ONL;
5614 /*
5615 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5616 * Set HVICE bit to enable hypervisor virtualization interrupts.
5617 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5618 * be unnecessary but better safe than sorry in case we re-enable
5619 * EE in HV mode with this LPCR still set)
5620 */
5621 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5622 lpcr &= ~LPCR_VPM0;
5623 lpcr |= LPCR_HVICE | LPCR_HEIC;
5624
5625 /*
5626 * If xive is enabled, we route 0x500 interrupts directly
5627 * to the guest.
5628 */
5629 if (xics_on_xive())
5630 lpcr |= LPCR_LPES;
5631 }
5632
5633 /*
5634 * If the host uses radix, the guest starts out as radix.
5635 */
5636 if (radix_enabled()) {
5637 kvm->arch.radix = 1;
5638 kvm->arch.mmu_ready = 1;
5639 lpcr &= ~LPCR_VPM1;
5640 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5641 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5642 cpu_has_feature(CPU_FTR_ARCH_31) &&
5643 (kvm->arch.host_lpcr & LPCR_HAIL))
5644 lpcr |= LPCR_HAIL;
5645 ret = kvmppc_init_vm_radix(kvm);
5646 if (ret) {
5647 if (kvmhv_is_nestedv2())
5648 plpar_guest_delete(0, kvm->arch.lpid);
5649 else
5650 kvmppc_free_lpid(kvm->arch.lpid);
5651 return ret;
5652 }
5653 kvmppc_setup_partition_table(kvm);
5654 }
5655
5656 verify_lpcr(kvm, lpcr);
5657 kvm->arch.lpcr = lpcr;
5658
5659 /* Initialization for future HPT resizes */
5660 kvm->arch.resize_hpt = NULL;
5661
5662 /*
5663 * Work out how many sets the TLB has, for the use of
5664 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5665 */
5666 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5667 /*
5668 * P10 will flush all the congruence class with a single tlbiel
5669 */
5670 kvm->arch.tlb_sets = 1;
5671 } else if (radix_enabled())
5672 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
5673 else if (cpu_has_feature(CPU_FTR_ARCH_300))
5674 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
5675 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5676 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
5677 else
5678 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
5679
5680 /*
5681 * Track that we now have a HV mode VM active. This blocks secondary
5682 * CPU threads from coming online.
5683 */
5684 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5685 kvm_hv_vm_activated();
5686
5687 /*
5688 * Initialize smt_mode depending on processor.
5689 * POWER8 and earlier have to use "strict" threading, where
5690 * all vCPUs in a vcore have to run on the same (sub)core,
5691 * whereas on POWER9 the threads can each run a different
5692 * guest.
5693 */
5694 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5695 kvm->arch.smt_mode = threads_per_subcore;
5696 else
5697 kvm->arch.smt_mode = 1;
5698 kvm->arch.emul_smt_mode = 1;
5699
5700 return 0;
5701 }
5702
kvmppc_arch_create_vm_debugfs_hv(struct kvm * kvm)5703 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5704 {
5705 kvmppc_mmu_debugfs_init(kvm);
5706 if (radix_enabled())
5707 kvmhv_radix_debugfs_init(kvm);
5708 return 0;
5709 }
5710
kvmppc_free_vcores(struct kvm * kvm)5711 static void kvmppc_free_vcores(struct kvm *kvm)
5712 {
5713 long int i;
5714
5715 for (i = 0; i < KVM_MAX_VCORES; ++i)
5716 kfree(kvm->arch.vcores[i]);
5717 kvm->arch.online_vcores = 0;
5718 }
5719
kvmppc_core_destroy_vm_hv(struct kvm * kvm)5720 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5721 {
5722 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5723 kvm_hv_vm_deactivated();
5724
5725 kvmppc_free_vcores(kvm);
5726
5727
5728 if (kvm_is_radix(kvm))
5729 kvmppc_free_radix(kvm);
5730 else
5731 kvmppc_free_hpt(&kvm->arch.hpt);
5732
5733 /* Perform global invalidation and return lpid to the pool */
5734 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5735 if (nesting_enabled(kvm))
5736 kvmhv_release_all_nested(kvm);
5737 kvm->arch.process_table = 0;
5738 if (kvm->arch.secure_guest)
5739 uv_svm_terminate(kvm->arch.lpid);
5740 if (!kvmhv_is_nestedv2())
5741 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5742 }
5743
5744 if (kvmhv_is_nestedv2()) {
5745 kvmhv_flush_lpid(kvm->arch.lpid);
5746 plpar_guest_delete(0, kvm->arch.lpid);
5747 } else {
5748 kvmppc_free_lpid(kvm->arch.lpid);
5749 }
5750
5751 kvmppc_free_pimap(kvm);
5752 }
5753
5754 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_vcpu * vcpu,unsigned int inst,int * advance)5755 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5756 unsigned int inst, int *advance)
5757 {
5758 return EMULATE_FAIL;
5759 }
5760
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)5761 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5762 ulong spr_val)
5763 {
5764 return EMULATE_FAIL;
5765 }
5766
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)5767 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5768 ulong *spr_val)
5769 {
5770 return EMULATE_FAIL;
5771 }
5772
kvmppc_core_check_processor_compat_hv(void)5773 static int kvmppc_core_check_processor_compat_hv(void)
5774 {
5775 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5776 cpu_has_feature(CPU_FTR_ARCH_206))
5777 return 0;
5778
5779 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5780 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5781 return 0;
5782
5783 return -EIO;
5784 }
5785
5786 #ifdef CONFIG_KVM_XICS
5787
kvmppc_free_pimap(struct kvm * kvm)5788 void kvmppc_free_pimap(struct kvm *kvm)
5789 {
5790 kfree(kvm->arch.pimap);
5791 }
5792
kvmppc_alloc_pimap(void)5793 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5794 {
5795 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5796 }
5797
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5798 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5799 {
5800 struct irq_desc *desc;
5801 struct kvmppc_irq_map *irq_map;
5802 struct kvmppc_passthru_irqmap *pimap;
5803 struct irq_chip *chip;
5804 int i, rc = 0;
5805 struct irq_data *host_data;
5806
5807 if (!kvm_irq_bypass)
5808 return 1;
5809
5810 desc = irq_to_desc(host_irq);
5811 if (!desc)
5812 return -EIO;
5813
5814 mutex_lock(&kvm->lock);
5815
5816 pimap = kvm->arch.pimap;
5817 if (pimap == NULL) {
5818 /* First call, allocate structure to hold IRQ map */
5819 pimap = kvmppc_alloc_pimap();
5820 if (pimap == NULL) {
5821 mutex_unlock(&kvm->lock);
5822 return -ENOMEM;
5823 }
5824 kvm->arch.pimap = pimap;
5825 }
5826
5827 /*
5828 * For now, we only support interrupts for which the EOI operation
5829 * is an OPAL call followed by a write to XIRR, since that's
5830 * what our real-mode EOI code does, or a XIVE interrupt
5831 */
5832 chip = irq_data_get_irq_chip(&desc->irq_data);
5833 if (!chip || !is_pnv_opal_msi(chip)) {
5834 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5835 host_irq, guest_gsi);
5836 mutex_unlock(&kvm->lock);
5837 return -ENOENT;
5838 }
5839
5840 /*
5841 * See if we already have an entry for this guest IRQ number.
5842 * If it's mapped to a hardware IRQ number, that's an error,
5843 * otherwise re-use this entry.
5844 */
5845 for (i = 0; i < pimap->n_mapped; i++) {
5846 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5847 if (pimap->mapped[i].r_hwirq) {
5848 mutex_unlock(&kvm->lock);
5849 return -EINVAL;
5850 }
5851 break;
5852 }
5853 }
5854
5855 if (i == KVMPPC_PIRQ_MAPPED) {
5856 mutex_unlock(&kvm->lock);
5857 return -EAGAIN; /* table is full */
5858 }
5859
5860 irq_map = &pimap->mapped[i];
5861
5862 irq_map->v_hwirq = guest_gsi;
5863 irq_map->desc = desc;
5864
5865 /*
5866 * Order the above two stores before the next to serialize with
5867 * the KVM real mode handler.
5868 */
5869 smp_wmb();
5870
5871 /*
5872 * The 'host_irq' number is mapped in the PCI-MSI domain but
5873 * the underlying calls, which will EOI the interrupt in real
5874 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5875 */
5876 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5877 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5878
5879 if (i == pimap->n_mapped)
5880 pimap->n_mapped++;
5881
5882 if (xics_on_xive())
5883 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5884 else
5885 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5886 if (rc)
5887 irq_map->r_hwirq = 0;
5888
5889 mutex_unlock(&kvm->lock);
5890
5891 return 0;
5892 }
5893
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5894 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5895 {
5896 struct irq_desc *desc;
5897 struct kvmppc_passthru_irqmap *pimap;
5898 int i, rc = 0;
5899
5900 if (!kvm_irq_bypass)
5901 return 0;
5902
5903 desc = irq_to_desc(host_irq);
5904 if (!desc)
5905 return -EIO;
5906
5907 mutex_lock(&kvm->lock);
5908 if (!kvm->arch.pimap)
5909 goto unlock;
5910
5911 pimap = kvm->arch.pimap;
5912
5913 for (i = 0; i < pimap->n_mapped; i++) {
5914 if (guest_gsi == pimap->mapped[i].v_hwirq)
5915 break;
5916 }
5917
5918 if (i == pimap->n_mapped) {
5919 mutex_unlock(&kvm->lock);
5920 return -ENODEV;
5921 }
5922
5923 if (xics_on_xive())
5924 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5925 else
5926 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5927
5928 /* invalidate the entry (what to do on error from the above ?) */
5929 pimap->mapped[i].r_hwirq = 0;
5930
5931 /*
5932 * We don't free this structure even when the count goes to
5933 * zero. The structure is freed when we destroy the VM.
5934 */
5935 unlock:
5936 mutex_unlock(&kvm->lock);
5937 return rc;
5938 }
5939
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5940 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5941 struct irq_bypass_producer *prod)
5942 {
5943 int ret = 0;
5944 struct kvm_kernel_irqfd *irqfd =
5945 container_of(cons, struct kvm_kernel_irqfd, consumer);
5946
5947 irqfd->producer = prod;
5948
5949 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5950 if (ret)
5951 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5952 prod->irq, irqfd->gsi, ret);
5953
5954 return ret;
5955 }
5956
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5957 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5958 struct irq_bypass_producer *prod)
5959 {
5960 int ret;
5961 struct kvm_kernel_irqfd *irqfd =
5962 container_of(cons, struct kvm_kernel_irqfd, consumer);
5963
5964 irqfd->producer = NULL;
5965
5966 /*
5967 * When producer of consumer is unregistered, we change back to
5968 * default external interrupt handling mode - KVM real mode
5969 * will switch back to host.
5970 */
5971 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5972 if (ret)
5973 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5974 prod->irq, irqfd->gsi, ret);
5975 }
5976 #endif
5977
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)5978 static int kvm_arch_vm_ioctl_hv(struct file *filp,
5979 unsigned int ioctl, unsigned long arg)
5980 {
5981 struct kvm *kvm __maybe_unused = filp->private_data;
5982 void __user *argp = (void __user *)arg;
5983 int r;
5984
5985 switch (ioctl) {
5986
5987 case KVM_PPC_ALLOCATE_HTAB: {
5988 u32 htab_order;
5989
5990 /* If we're a nested hypervisor, we currently only support radix */
5991 if (kvmhv_on_pseries()) {
5992 r = -EOPNOTSUPP;
5993 break;
5994 }
5995
5996 r = -EFAULT;
5997 if (get_user(htab_order, (u32 __user *)argp))
5998 break;
5999 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
6000 if (r)
6001 break;
6002 r = 0;
6003 break;
6004 }
6005
6006 case KVM_PPC_GET_HTAB_FD: {
6007 struct kvm_get_htab_fd ghf;
6008
6009 r = -EFAULT;
6010 if (copy_from_user(&ghf, argp, sizeof(ghf)))
6011 break;
6012 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
6013 break;
6014 }
6015
6016 case KVM_PPC_RESIZE_HPT_PREPARE: {
6017 struct kvm_ppc_resize_hpt rhpt;
6018
6019 r = -EFAULT;
6020 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6021 break;
6022
6023 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
6024 break;
6025 }
6026
6027 case KVM_PPC_RESIZE_HPT_COMMIT: {
6028 struct kvm_ppc_resize_hpt rhpt;
6029
6030 r = -EFAULT;
6031 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6032 break;
6033
6034 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
6035 break;
6036 }
6037
6038 default:
6039 r = -ENOTTY;
6040 }
6041
6042 return r;
6043 }
6044
6045 /*
6046 * List of hcall numbers to enable by default.
6047 * For compatibility with old userspace, we enable by default
6048 * all hcalls that were implemented before the hcall-enabling
6049 * facility was added. Note this list should not include H_RTAS.
6050 */
6051 static unsigned int default_hcall_list[] = {
6052 H_REMOVE,
6053 H_ENTER,
6054 H_READ,
6055 H_PROTECT,
6056 H_BULK_REMOVE,
6057 #ifdef CONFIG_SPAPR_TCE_IOMMU
6058 H_GET_TCE,
6059 H_PUT_TCE,
6060 #endif
6061 H_SET_DABR,
6062 H_SET_XDABR,
6063 H_CEDE,
6064 H_PROD,
6065 H_CONFER,
6066 H_REGISTER_VPA,
6067 #ifdef CONFIG_KVM_XICS
6068 H_EOI,
6069 H_CPPR,
6070 H_IPI,
6071 H_IPOLL,
6072 H_XIRR,
6073 H_XIRR_X,
6074 #endif
6075 0
6076 };
6077
init_default_hcalls(void)6078 static void init_default_hcalls(void)
6079 {
6080 int i;
6081 unsigned int hcall;
6082
6083 for (i = 0; default_hcall_list[i]; ++i) {
6084 hcall = default_hcall_list[i];
6085 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
6086 __set_bit(hcall / 4, default_enabled_hcalls);
6087 }
6088 }
6089
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)6090 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
6091 {
6092 unsigned long lpcr;
6093 int radix;
6094 int err;
6095
6096 /* If not on a POWER9, reject it */
6097 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6098 return -ENODEV;
6099
6100 /* If any unknown flags set, reject it */
6101 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
6102 return -EINVAL;
6103
6104 /* GR (guest radix) bit in process_table field must match */
6105 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
6106 if (!!(cfg->process_table & PATB_GR) != radix)
6107 return -EINVAL;
6108
6109 /* Process table size field must be reasonable, i.e. <= 24 */
6110 if ((cfg->process_table & PRTS_MASK) > 24)
6111 return -EINVAL;
6112
6113 /* We can change a guest to/from radix now, if the host is radix */
6114 if (radix && !radix_enabled())
6115 return -EINVAL;
6116
6117 /* If we're a nested hypervisor, we currently only support radix */
6118 if (kvmhv_on_pseries() && !radix)
6119 return -EINVAL;
6120
6121 mutex_lock(&kvm->arch.mmu_setup_lock);
6122 if (radix != kvm_is_radix(kvm)) {
6123 if (kvm->arch.mmu_ready) {
6124 kvm->arch.mmu_ready = 0;
6125 /* order mmu_ready vs. vcpus_running */
6126 smp_mb();
6127 if (atomic_read(&kvm->arch.vcpus_running)) {
6128 kvm->arch.mmu_ready = 1;
6129 err = -EBUSY;
6130 goto out_unlock;
6131 }
6132 }
6133 if (radix)
6134 err = kvmppc_switch_mmu_to_radix(kvm);
6135 else
6136 err = kvmppc_switch_mmu_to_hpt(kvm);
6137 if (err)
6138 goto out_unlock;
6139 }
6140
6141 kvm->arch.process_table = cfg->process_table;
6142 kvmppc_setup_partition_table(kvm);
6143
6144 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
6145 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
6146 err = 0;
6147
6148 out_unlock:
6149 mutex_unlock(&kvm->arch.mmu_setup_lock);
6150 return err;
6151 }
6152
kvmhv_enable_nested(struct kvm * kvm)6153 static int kvmhv_enable_nested(struct kvm *kvm)
6154 {
6155 if (!nested)
6156 return -EPERM;
6157 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6158 return -ENODEV;
6159 if (!radix_enabled())
6160 return -ENODEV;
6161 if (kvmhv_is_nestedv2())
6162 return -ENODEV;
6163
6164 /* kvm == NULL means the caller is testing if the capability exists */
6165 if (kvm)
6166 kvm->arch.nested_enable = true;
6167 return 0;
6168 }
6169
kvmhv_load_from_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)6170 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6171 int size)
6172 {
6173 int rc = -EINVAL;
6174
6175 if (kvmhv_vcpu_is_radix(vcpu)) {
6176 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6177
6178 if (rc > 0)
6179 rc = -EINVAL;
6180 }
6181
6182 /* For now quadrants are the only way to access nested guest memory */
6183 if (rc && vcpu->arch.nested)
6184 rc = -EAGAIN;
6185
6186 return rc;
6187 }
6188
kvmhv_store_to_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)6189 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6190 int size)
6191 {
6192 int rc = -EINVAL;
6193
6194 if (kvmhv_vcpu_is_radix(vcpu)) {
6195 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6196
6197 if (rc > 0)
6198 rc = -EINVAL;
6199 }
6200
6201 /* For now quadrants are the only way to access nested guest memory */
6202 if (rc && vcpu->arch.nested)
6203 rc = -EAGAIN;
6204
6205 return rc;
6206 }
6207
unpin_vpa_reset(struct kvm * kvm,struct kvmppc_vpa * vpa)6208 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6209 {
6210 unpin_vpa(kvm, vpa);
6211 vpa->gpa = 0;
6212 vpa->pinned_addr = NULL;
6213 vpa->dirty = false;
6214 vpa->update_pending = 0;
6215 }
6216
6217 /*
6218 * Enable a guest to become a secure VM, or test whether
6219 * that could be enabled.
6220 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6221 * tested (kvm == NULL) or enabled (kvm != NULL).
6222 */
kvmhv_enable_svm(struct kvm * kvm)6223 static int kvmhv_enable_svm(struct kvm *kvm)
6224 {
6225 if (!kvmppc_uvmem_available())
6226 return -EINVAL;
6227 if (kvm)
6228 kvm->arch.svm_enabled = 1;
6229 return 0;
6230 }
6231
6232 /*
6233 * IOCTL handler to turn off secure mode of guest
6234 *
6235 * - Release all device pages
6236 * - Issue ucall to terminate the guest on the UV side
6237 * - Unpin the VPA pages.
6238 * - Reinit the partition scoped page tables
6239 */
kvmhv_svm_off(struct kvm * kvm)6240 static int kvmhv_svm_off(struct kvm *kvm)
6241 {
6242 struct kvm_vcpu *vcpu;
6243 int mmu_was_ready;
6244 int srcu_idx;
6245 int ret = 0;
6246 unsigned long i;
6247
6248 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6249 return ret;
6250
6251 mutex_lock(&kvm->arch.mmu_setup_lock);
6252 mmu_was_ready = kvm->arch.mmu_ready;
6253 if (kvm->arch.mmu_ready) {
6254 kvm->arch.mmu_ready = 0;
6255 /* order mmu_ready vs. vcpus_running */
6256 smp_mb();
6257 if (atomic_read(&kvm->arch.vcpus_running)) {
6258 kvm->arch.mmu_ready = 1;
6259 ret = -EBUSY;
6260 goto out;
6261 }
6262 }
6263
6264 srcu_idx = srcu_read_lock(&kvm->srcu);
6265 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6266 struct kvm_memory_slot *memslot;
6267 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6268 int bkt;
6269
6270 if (!slots)
6271 continue;
6272
6273 kvm_for_each_memslot(memslot, bkt, slots) {
6274 kvmppc_uvmem_drop_pages(memslot, kvm, true);
6275 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6276 }
6277 }
6278 srcu_read_unlock(&kvm->srcu, srcu_idx);
6279
6280 ret = uv_svm_terminate(kvm->arch.lpid);
6281 if (ret != U_SUCCESS) {
6282 ret = -EINVAL;
6283 goto out;
6284 }
6285
6286 /*
6287 * When secure guest is reset, all the guest pages are sent
6288 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6289 * chance to run and unpin their VPA pages. Unpinning of all
6290 * VPA pages is done here explicitly so that VPA pages
6291 * can be migrated to the secure side.
6292 *
6293 * This is required to for the secure SMP guest to reboot
6294 * correctly.
6295 */
6296 kvm_for_each_vcpu(i, vcpu, kvm) {
6297 spin_lock(&vcpu->arch.vpa_update_lock);
6298 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6299 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6300 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6301 spin_unlock(&vcpu->arch.vpa_update_lock);
6302 }
6303
6304 kvmppc_setup_partition_table(kvm);
6305 kvm->arch.secure_guest = 0;
6306 kvm->arch.mmu_ready = mmu_was_ready;
6307 out:
6308 mutex_unlock(&kvm->arch.mmu_setup_lock);
6309 return ret;
6310 }
6311
kvmhv_enable_dawr1(struct kvm * kvm)6312 static int kvmhv_enable_dawr1(struct kvm *kvm)
6313 {
6314 if (!cpu_has_feature(CPU_FTR_DAWR1))
6315 return -ENODEV;
6316
6317 /* kvm == NULL means the caller is testing if the capability exists */
6318 if (kvm)
6319 kvm->arch.dawr1_enabled = true;
6320 return 0;
6321 }
6322
kvmppc_hash_v3_possible(void)6323 static bool kvmppc_hash_v3_possible(void)
6324 {
6325 if (!cpu_has_feature(CPU_FTR_ARCH_300))
6326 return false;
6327
6328 if (!cpu_has_feature(CPU_FTR_HVMODE))
6329 return false;
6330
6331 /*
6332 * POWER9 chips before version 2.02 can't have some threads in
6333 * HPT mode and some in radix mode on the same core.
6334 */
6335 if (radix_enabled()) {
6336 unsigned int pvr = mfspr(SPRN_PVR);
6337 if ((pvr >> 16) == PVR_POWER9 &&
6338 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6339 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6340 return false;
6341 }
6342
6343 return true;
6344 }
6345
6346 static struct kvmppc_ops kvm_ops_hv = {
6347 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6348 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6349 .get_one_reg = kvmppc_get_one_reg_hv,
6350 .set_one_reg = kvmppc_set_one_reg_hv,
6351 .vcpu_load = kvmppc_core_vcpu_load_hv,
6352 .vcpu_put = kvmppc_core_vcpu_put_hv,
6353 .inject_interrupt = kvmppc_inject_interrupt_hv,
6354 .set_msr = kvmppc_set_msr_hv,
6355 .vcpu_run = kvmppc_vcpu_run_hv,
6356 .vcpu_create = kvmppc_core_vcpu_create_hv,
6357 .vcpu_free = kvmppc_core_vcpu_free_hv,
6358 .check_requests = kvmppc_core_check_requests_hv,
6359 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
6360 .flush_memslot = kvmppc_core_flush_memslot_hv,
6361 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6362 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
6363 .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6364 .age_gfn = kvm_age_gfn_hv,
6365 .test_age_gfn = kvm_test_age_gfn_hv,
6366 .set_spte_gfn = kvm_set_spte_gfn_hv,
6367 .free_memslot = kvmppc_core_free_memslot_hv,
6368 .init_vm = kvmppc_core_init_vm_hv,
6369 .destroy_vm = kvmppc_core_destroy_vm_hv,
6370 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6371 .emulate_op = kvmppc_core_emulate_op_hv,
6372 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6373 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6374 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6375 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
6376 .hcall_implemented = kvmppc_hcall_impl_hv,
6377 #ifdef CONFIG_KVM_XICS
6378 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6379 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6380 #endif
6381 .configure_mmu = kvmhv_configure_mmu,
6382 .get_rmmu_info = kvmhv_get_rmmu_info,
6383 .set_smt_mode = kvmhv_set_smt_mode,
6384 .enable_nested = kvmhv_enable_nested,
6385 .load_from_eaddr = kvmhv_load_from_eaddr,
6386 .store_to_eaddr = kvmhv_store_to_eaddr,
6387 .enable_svm = kvmhv_enable_svm,
6388 .svm_off = kvmhv_svm_off,
6389 .enable_dawr1 = kvmhv_enable_dawr1,
6390 .hash_v3_possible = kvmppc_hash_v3_possible,
6391 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6392 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6393 };
6394
kvm_init_subcore_bitmap(void)6395 static int kvm_init_subcore_bitmap(void)
6396 {
6397 int i, j;
6398 int nr_cores = cpu_nr_cores();
6399 struct sibling_subcore_state *sibling_subcore_state;
6400
6401 for (i = 0; i < nr_cores; i++) {
6402 int first_cpu = i * threads_per_core;
6403 int node = cpu_to_node(first_cpu);
6404
6405 /* Ignore if it is already allocated. */
6406 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6407 continue;
6408
6409 sibling_subcore_state =
6410 kzalloc_node(sizeof(struct sibling_subcore_state),
6411 GFP_KERNEL, node);
6412 if (!sibling_subcore_state)
6413 return -ENOMEM;
6414
6415
6416 for (j = 0; j < threads_per_core; j++) {
6417 int cpu = first_cpu + j;
6418
6419 paca_ptrs[cpu]->sibling_subcore_state =
6420 sibling_subcore_state;
6421 }
6422 }
6423 return 0;
6424 }
6425
kvmppc_radix_possible(void)6426 static int kvmppc_radix_possible(void)
6427 {
6428 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6429 }
6430
kvmppc_book3s_init_hv(void)6431 static int kvmppc_book3s_init_hv(void)
6432 {
6433 int r;
6434
6435 if (!tlbie_capable) {
6436 pr_err("KVM-HV: Host does not support TLBIE\n");
6437 return -ENODEV;
6438 }
6439
6440 /*
6441 * FIXME!! Do we need to check on all cpus ?
6442 */
6443 r = kvmppc_core_check_processor_compat_hv();
6444 if (r < 0)
6445 return -ENODEV;
6446
6447 r = kvmhv_nested_init();
6448 if (r)
6449 return r;
6450
6451 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6452 r = kvm_init_subcore_bitmap();
6453 if (r)
6454 goto err;
6455 }
6456
6457 /*
6458 * We need a way of accessing the XICS interrupt controller,
6459 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6460 * indirectly, via OPAL.
6461 */
6462 #ifdef CONFIG_SMP
6463 if (!xics_on_xive() && !kvmhv_on_pseries() &&
6464 !local_paca->kvm_hstate.xics_phys) {
6465 struct device_node *np;
6466
6467 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6468 if (!np) {
6469 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6470 r = -ENODEV;
6471 goto err;
6472 }
6473 /* presence of intc confirmed - node can be dropped again */
6474 of_node_put(np);
6475 }
6476 #endif
6477
6478 init_default_hcalls();
6479
6480 init_vcore_lists();
6481
6482 r = kvmppc_mmu_hv_init();
6483 if (r)
6484 goto err;
6485
6486 if (kvmppc_radix_possible()) {
6487 r = kvmppc_radix_init();
6488 if (r)
6489 goto err;
6490 }
6491
6492 r = kvmppc_uvmem_init();
6493 if (r < 0) {
6494 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6495 return r;
6496 }
6497
6498 kvm_ops_hv.owner = THIS_MODULE;
6499 kvmppc_hv_ops = &kvm_ops_hv;
6500
6501 return 0;
6502
6503 err:
6504 kvmhv_nested_exit();
6505 kvmppc_radix_exit();
6506
6507 return r;
6508 }
6509
kvmppc_book3s_exit_hv(void)6510 static void kvmppc_book3s_exit_hv(void)
6511 {
6512 kvmppc_uvmem_free();
6513 kvmppc_free_host_rm_ops();
6514 if (kvmppc_radix_possible())
6515 kvmppc_radix_exit();
6516 kvmppc_hv_ops = NULL;
6517 kvmhv_nested_exit();
6518 }
6519
6520 module_init(kvmppc_book3s_init_hv);
6521 module_exit(kvmppc_book3s_exit_hv);
6522 MODULE_LICENSE("GPL");
6523 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6524 MODULE_ALIAS("devname:kvm");
6525