1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/cpu.h>
15 #include <linux/delay.h>
16 #include <linux/ioport.h>
17 #include <linux/export.h>
18 #include <linux/memblock.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31 #include <linux/dmi.h>
32 #include <linux/crash_dump.h>
33
34 #include <asm/addrspace.h>
35 #include <asm/bootinfo.h>
36 #include <asm/bugs.h>
37 #include <asm/cache.h>
38 #include <asm/cdmm.h>
39 #include <asm/cpu.h>
40 #include <asm/debug.h>
41 #include <asm/mmzone.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp-ops.h>
45 #include <asm/mips-cps.h>
46 #include <asm/prom.h>
47 #include <asm/fw/fw.h>
48
49 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
50 char __section(".appended_dtb") __appended_dtb[0x100000];
51 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
52
53 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
54
55 EXPORT_SYMBOL(cpu_data);
56
57 /*
58 * Setup information
59 *
60 * These are initialized so they are in the .data section
61 */
62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
63
64 EXPORT_SYMBOL(mips_machtype);
65
66 static char __initdata command_line[COMMAND_LINE_SIZE];
67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
68
69 #ifdef CONFIG_CMDLINE_BOOL
70 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE;
71 #else
72 static const char builtin_cmdline[] __initconst = "";
73 #endif
74
75 /*
76 * mips_io_port_base is the begin of the address space to which x86 style
77 * I/O ports are mapped.
78 */
79 unsigned long mips_io_port_base = -1;
80 EXPORT_SYMBOL(mips_io_port_base);
81
82 static struct resource code_resource = { .name = "Kernel code", };
83 static struct resource data_resource = { .name = "Kernel data", };
84 static struct resource bss_resource = { .name = "Kernel bss", };
85
86 unsigned long __kaslr_offset __ro_after_init;
87 EXPORT_SYMBOL(__kaslr_offset);
88
89 static void *detect_magic __initdata = detect_memory_region;
90
91 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
92 unsigned long ARCH_PFN_OFFSET;
93 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
94 #endif
95
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)96 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
97 {
98 void *dm = &detect_magic;
99 phys_addr_t size;
100
101 for (size = sz_min; size < sz_max; size <<= 1) {
102 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
103 break;
104 }
105
106 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
107 ((unsigned long long) size) / SZ_1M,
108 (unsigned long long) start,
109 ((unsigned long long) sz_min) / SZ_1M,
110 ((unsigned long long) sz_max) / SZ_1M);
111
112 memblock_add(start, size);
113 }
114
115 /*
116 * Manage initrd
117 */
118 #ifdef CONFIG_BLK_DEV_INITRD
119
rd_start_early(char * p)120 static int __init rd_start_early(char *p)
121 {
122 unsigned long start = memparse(p, &p);
123
124 #ifdef CONFIG_64BIT
125 /* Guess if the sign extension was forgotten by bootloader */
126 if (start < XKPHYS)
127 start = (int)start;
128 #endif
129 initrd_start = start;
130 initrd_end += start;
131 return 0;
132 }
133 early_param("rd_start", rd_start_early);
134
rd_size_early(char * p)135 static int __init rd_size_early(char *p)
136 {
137 initrd_end += memparse(p, &p);
138 return 0;
139 }
140 early_param("rd_size", rd_size_early);
141
142 /* it returns the next free pfn after initrd */
init_initrd(void)143 static unsigned long __init init_initrd(void)
144 {
145 unsigned long end;
146
147 /*
148 * Board specific code or command line parser should have
149 * already set up initrd_start and initrd_end. In these cases
150 * perform sanity checks and use them if all looks good.
151 */
152 if (!initrd_start || initrd_end <= initrd_start)
153 goto disable;
154
155 if (initrd_start & ~PAGE_MASK) {
156 pr_err("initrd start must be page aligned\n");
157 goto disable;
158 }
159
160 /*
161 * Sanitize initrd addresses. For example firmware
162 * can't guess if they need to pass them through
163 * 64-bits values if the kernel has been built in pure
164 * 32-bit. We need also to switch from KSEG0 to XKPHYS
165 * addresses now, so the code can now safely use __pa().
166 */
167 end = __pa(initrd_end);
168 initrd_end = (unsigned long)__va(end);
169 initrd_start = (unsigned long)__va(__pa(initrd_start));
170
171 if (initrd_start < PAGE_OFFSET) {
172 pr_err("initrd start < PAGE_OFFSET\n");
173 goto disable;
174 }
175
176 ROOT_DEV = Root_RAM0;
177 return PFN_UP(end);
178 disable:
179 initrd_start = 0;
180 initrd_end = 0;
181 return 0;
182 }
183
184 /* In some conditions (e.g. big endian bootloader with a little endian
185 kernel), the initrd might appear byte swapped. Try to detect this and
186 byte swap it if needed. */
maybe_bswap_initrd(void)187 static void __init maybe_bswap_initrd(void)
188 {
189 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
190 u64 buf;
191
192 /* Check for CPIO signature */
193 if (!memcmp((void *)initrd_start, "070701", 6))
194 return;
195
196 /* Check for compressed initrd */
197 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
198 return;
199
200 /* Try again with a byte swapped header */
201 buf = swab64p((u64 *)initrd_start);
202 if (!memcmp(&buf, "070701", 6) ||
203 decompress_method((unsigned char *)(&buf), 8, NULL)) {
204 unsigned long i;
205
206 pr_info("Byteswapped initrd detected\n");
207 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
208 swab64s((u64 *)i);
209 }
210 #endif
211 }
212
finalize_initrd(void)213 static void __init finalize_initrd(void)
214 {
215 unsigned long size = initrd_end - initrd_start;
216
217 if (size == 0) {
218 printk(KERN_INFO "Initrd not found or empty");
219 goto disable;
220 }
221 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
222 printk(KERN_ERR "Initrd extends beyond end of memory");
223 goto disable;
224 }
225
226 maybe_bswap_initrd();
227
228 memblock_reserve(__pa(initrd_start), size);
229 initrd_below_start_ok = 1;
230
231 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
232 initrd_start, size);
233 return;
234 disable:
235 printk(KERN_CONT " - disabling initrd\n");
236 initrd_start = 0;
237 initrd_end = 0;
238 }
239
240 #else /* !CONFIG_BLK_DEV_INITRD */
241
init_initrd(void)242 static unsigned long __init init_initrd(void)
243 {
244 return 0;
245 }
246
247 #define finalize_initrd() do {} while (0)
248
249 #endif
250
251 /*
252 * Initialize the bootmem allocator. It also setup initrd related data
253 * if needed.
254 */
255 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA))
256
bootmem_init(void)257 static void __init bootmem_init(void)
258 {
259 init_initrd();
260 finalize_initrd();
261 }
262
263 #else /* !CONFIG_SGI_IP27 */
264
bootmem_init(void)265 static void __init bootmem_init(void)
266 {
267 phys_addr_t ramstart, ramend;
268 unsigned long start, end;
269 int i;
270
271 ramstart = memblock_start_of_DRAM();
272 ramend = memblock_end_of_DRAM();
273
274 /*
275 * Sanity check any INITRD first. We don't take it into account
276 * for bootmem setup initially, rely on the end-of-kernel-code
277 * as our memory range starting point. Once bootmem is inited we
278 * will reserve the area used for the initrd.
279 */
280 init_initrd();
281
282 /* Reserve memory occupied by kernel. */
283 memblock_reserve(__pa_symbol(&_text),
284 __pa_symbol(&_end) - __pa_symbol(&_text));
285
286 /* max_low_pfn is not a number of pages but the end pfn of low mem */
287
288 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
289 ARCH_PFN_OFFSET = PFN_UP(ramstart);
290 #else
291 /*
292 * Reserve any memory between the start of RAM and PHYS_OFFSET
293 */
294 if (ramstart > PHYS_OFFSET)
295 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
296
297 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) {
298 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
299 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)),
300 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET));
301 }
302 #endif
303
304 min_low_pfn = ARCH_PFN_OFFSET;
305 max_pfn = PFN_DOWN(ramend);
306 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
307 /*
308 * Skip highmem here so we get an accurate max_low_pfn if low
309 * memory stops short of high memory.
310 * If the region overlaps HIGHMEM_START, end is clipped so
311 * max_pfn excludes the highmem portion.
312 */
313 if (start >= PFN_DOWN(HIGHMEM_START))
314 continue;
315 if (end > PFN_DOWN(HIGHMEM_START))
316 end = PFN_DOWN(HIGHMEM_START);
317 if (end > max_low_pfn)
318 max_low_pfn = end;
319 }
320
321 if (min_low_pfn >= max_low_pfn)
322 panic("Incorrect memory mapping !!!");
323
324 if (max_pfn > PFN_DOWN(HIGHMEM_START)) {
325 max_low_pfn = PFN_DOWN(HIGHMEM_START);
326 #ifdef CONFIG_HIGHMEM
327 highstart_pfn = max_low_pfn;
328 highend_pfn = max_pfn;
329 #else
330 max_pfn = max_low_pfn;
331 #endif
332 }
333
334 /*
335 * Reserve initrd memory if needed.
336 */
337 finalize_initrd();
338 }
339
340 #endif /* CONFIG_SGI_IP27 */
341
342 static int usermem __initdata;
343
early_parse_mem(char * p)344 static int __init early_parse_mem(char *p)
345 {
346 phys_addr_t start, size;
347
348 if (!p) {
349 pr_err("mem parameter is empty, do nothing\n");
350 return -EINVAL;
351 }
352
353 /*
354 * If a user specifies memory size, we
355 * blow away any automatically generated
356 * size.
357 */
358 if (usermem == 0) {
359 usermem = 1;
360 memblock_remove(memblock_start_of_DRAM(),
361 memblock_end_of_DRAM() - memblock_start_of_DRAM());
362 }
363 start = 0;
364 size = memparse(p, &p);
365 if (*p == '@')
366 start = memparse(p + 1, &p);
367
368 if (IS_ENABLED(CONFIG_NUMA))
369 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
370 else
371 memblock_add(start, size);
372
373 return 0;
374 }
375 early_param("mem", early_parse_mem);
376
early_parse_memmap(char * p)377 static int __init early_parse_memmap(char *p)
378 {
379 char *oldp;
380 u64 start_at, mem_size;
381
382 if (!p)
383 return -EINVAL;
384
385 if (!strncmp(p, "exactmap", 8)) {
386 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
387 return 0;
388 }
389
390 oldp = p;
391 mem_size = memparse(p, &p);
392 if (p == oldp)
393 return -EINVAL;
394
395 if (*p == '@') {
396 start_at = memparse(p+1, &p);
397 memblock_add(start_at, mem_size);
398 } else if (*p == '#') {
399 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
400 return -EINVAL;
401 } else if (*p == '$') {
402 start_at = memparse(p+1, &p);
403 memblock_add(start_at, mem_size);
404 memblock_reserve(start_at, mem_size);
405 } else {
406 pr_err("\"memmap\" invalid format!\n");
407 return -EINVAL;
408 }
409
410 if (*p == '\0') {
411 usermem = 1;
412 return 0;
413 } else
414 return -EINVAL;
415 }
416 early_param("memmap", early_parse_memmap);
417
mips_reserve_vmcore(void)418 static void __init mips_reserve_vmcore(void)
419 {
420 #ifdef CONFIG_PROC_VMCORE
421 phys_addr_t start, end;
422 u64 i;
423
424 if (!elfcorehdr_size) {
425 for_each_mem_range(i, &start, &end) {
426 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
427 /*
428 * Reserve from the elf core header to the end of
429 * the memory segment, that should all be kdump
430 * reserved memory.
431 */
432 elfcorehdr_size = end - elfcorehdr_addr;
433 break;
434 }
435 }
436 }
437
438 pr_info("Reserving %ldKB of memory at %ldKB for kdump\n",
439 (unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10);
440
441 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
442 #endif
443 }
444
445 #ifdef CONFIG_KEXEC
446
447 /* 64M alignment for crash kernel regions */
448 #define CRASH_ALIGN SZ_64M
449 #define CRASH_ADDR_MAX SZ_512M
450
mips_parse_crashkernel(void)451 static void __init mips_parse_crashkernel(void)
452 {
453 unsigned long long total_mem;
454 unsigned long long crash_size, crash_base;
455 int ret;
456
457 total_mem = memblock_phys_mem_size();
458 ret = parse_crashkernel(boot_command_line, total_mem,
459 &crash_size, &crash_base,
460 NULL, NULL);
461 if (ret != 0 || crash_size <= 0)
462 return;
463
464 if (crash_base <= 0) {
465 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
466 CRASH_ALIGN,
467 CRASH_ADDR_MAX);
468 if (!crash_base) {
469 pr_warn("crashkernel reservation failed - No suitable area found.\n");
470 return;
471 }
472 } else {
473 unsigned long long start;
474
475 start = memblock_phys_alloc_range(crash_size, 1,
476 crash_base,
477 crash_base + crash_size);
478 if (start != crash_base) {
479 pr_warn("Invalid memory region reserved for crash kernel\n");
480 return;
481 }
482 }
483
484 crashk_res.start = crash_base;
485 crashk_res.end = crash_base + crash_size - 1;
486 }
487
request_crashkernel(struct resource * res)488 static void __init request_crashkernel(struct resource *res)
489 {
490 int ret;
491
492 if (crashk_res.start == crashk_res.end)
493 return;
494
495 ret = request_resource(res, &crashk_res);
496 if (!ret)
497 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
498 (unsigned long)(resource_size(&crashk_res) >> 20),
499 (unsigned long)(crashk_res.start >> 20));
500 }
501 #else /* !defined(CONFIG_KEXEC) */
mips_parse_crashkernel(void)502 static void __init mips_parse_crashkernel(void)
503 {
504 }
505
request_crashkernel(struct resource * res)506 static void __init request_crashkernel(struct resource *res)
507 {
508 }
509 #endif /* !defined(CONFIG_KEXEC) */
510
check_kernel_sections_mem(void)511 static void __init check_kernel_sections_mem(void)
512 {
513 phys_addr_t start = __pa_symbol(&_text);
514 phys_addr_t size = __pa_symbol(&_end) - start;
515
516 if (!memblock_is_region_memory(start, size)) {
517 pr_info("Kernel sections are not in the memory maps\n");
518 memblock_add(start, size);
519 }
520 }
521
bootcmdline_append(const char * s,size_t max)522 static void __init bootcmdline_append(const char *s, size_t max)
523 {
524 if (!s[0] || !max)
525 return;
526
527 if (boot_command_line[0])
528 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
529
530 strlcat(boot_command_line, s, max);
531 }
532
533 #ifdef CONFIG_OF_EARLY_FLATTREE
534
bootcmdline_scan_chosen(unsigned long node,const char * uname,int depth,void * data)535 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname,
536 int depth, void *data)
537 {
538 bool *dt_bootargs = data;
539 const char *p;
540 int l;
541
542 if (depth != 1 || !data ||
543 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
544 return 0;
545
546 p = of_get_flat_dt_prop(node, "bootargs", &l);
547 if (p != NULL && l > 0) {
548 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE));
549 *dt_bootargs = true;
550 }
551
552 return 1;
553 }
554
555 #endif /* CONFIG_OF_EARLY_FLATTREE */
556
bootcmdline_init(void)557 static void __init bootcmdline_init(void)
558 {
559 bool dt_bootargs = false;
560
561 /*
562 * If CMDLINE_OVERRIDE is enabled then initializing the command line is
563 * trivial - we simply use the built-in command line unconditionally &
564 * unmodified.
565 */
566 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
567 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
568 return;
569 }
570
571 /*
572 * If the user specified a built-in command line &
573 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is
574 * prepended to arguments from the bootloader or DT so we'll copy them
575 * to the start of boot_command_line here. Otherwise, empty
576 * boot_command_line to undo anything early_init_dt_scan_chosen() did.
577 */
578 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
579 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
580 else
581 boot_command_line[0] = 0;
582
583 #ifdef CONFIG_OF_EARLY_FLATTREE
584 /*
585 * If we're configured to take boot arguments from DT, look for those
586 * now.
587 */
588 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) ||
589 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND))
590 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs);
591 #endif
592
593 /*
594 * If we didn't get any arguments from DT (regardless of whether that's
595 * because we weren't configured to look for them, or because we looked
596 * & found none) then we'll take arguments from the bootloader.
597 * plat_mem_setup() should have filled arcs_cmdline with arguments from
598 * the bootloader.
599 */
600 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs)
601 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE);
602
603 /*
604 * If the user specified a built-in command line & we didn't already
605 * prepend it, we append it to boot_command_line here.
606 */
607 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) &&
608 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
609 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE);
610 }
611
612 /*
613 * arch_mem_init - initialize memory management subsystem
614 *
615 * o plat_mem_setup() detects the memory configuration and will record detected
616 * memory areas using memblock_add.
617 *
618 * At this stage the memory configuration of the system is known to the
619 * kernel but generic memory management system is still entirely uninitialized.
620 *
621 * o bootmem_init()
622 * o sparse_init()
623 * o paging_init()
624 * o dma_contiguous_reserve()
625 *
626 * At this stage the bootmem allocator is ready to use.
627 *
628 * NOTE: historically plat_mem_setup did the entire platform initialization.
629 * This was rather impractical because it meant plat_mem_setup had to
630 * get away without any kind of memory allocator. To keep old code from
631 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
632 * initialization hook for anything else was introduced.
633 */
arch_mem_init(char ** cmdline_p)634 static void __init arch_mem_init(char **cmdline_p)
635 {
636 /* call board setup routine */
637 plat_mem_setup();
638 memblock_set_bottom_up(true);
639
640 bootcmdline_init();
641 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
642 *cmdline_p = command_line;
643
644 parse_early_param();
645
646 if (usermem)
647 pr_info("User-defined physical RAM map overwrite\n");
648
649 check_kernel_sections_mem();
650
651 early_init_fdt_reserve_self();
652 early_init_fdt_scan_reserved_mem();
653
654 #ifndef CONFIG_NUMA
655 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
656 #endif
657 bootmem_init();
658
659 /*
660 * Prevent memblock from allocating high memory.
661 * This cannot be done before max_low_pfn is detected, so up
662 * to this point is possible to only reserve physical memory
663 * with memblock_reserve; memblock_alloc* can be used
664 * only after this point
665 */
666 memblock_set_current_limit(PFN_PHYS(max_low_pfn));
667
668 mips_reserve_vmcore();
669
670 mips_parse_crashkernel();
671 device_tree_init();
672
673 /*
674 * In order to reduce the possibility of kernel panic when failed to
675 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
676 * low memory as small as possible before plat_swiotlb_setup(), so
677 * make sparse_init() using top-down allocation.
678 */
679 memblock_set_bottom_up(false);
680 sparse_init();
681 memblock_set_bottom_up(true);
682
683 plat_swiotlb_setup();
684
685 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
686
687 /* Reserve for hibernation. */
688 memblock_reserve(__pa_symbol(&__nosave_begin),
689 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin));
690
691 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
692 }
693
resource_init(void)694 static void __init resource_init(void)
695 {
696 phys_addr_t start, end;
697 u64 i;
698
699 if (UNCAC_BASE != IO_BASE)
700 return;
701
702 code_resource.start = __pa_symbol(&_text);
703 code_resource.end = __pa_symbol(&_etext) - 1;
704 data_resource.start = __pa_symbol(&_etext);
705 data_resource.end = __pa_symbol(&_edata) - 1;
706 bss_resource.start = __pa_symbol(&__bss_start);
707 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
708
709 for_each_mem_range(i, &start, &end) {
710 struct resource *res;
711
712 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
713 if (!res)
714 panic("%s: Failed to allocate %zu bytes\n", __func__,
715 sizeof(struct resource));
716
717 res->start = start;
718 /*
719 * In memblock, end points to the first byte after the
720 * range while in resourses, end points to the last byte in
721 * the range.
722 */
723 res->end = end - 1;
724 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
725 res->name = "System RAM";
726
727 request_resource(&iomem_resource, res);
728
729 /*
730 * We don't know which RAM region contains kernel data,
731 * so we try it repeatedly and let the resource manager
732 * test it.
733 */
734 request_resource(res, &code_resource);
735 request_resource(res, &data_resource);
736 request_resource(res, &bss_resource);
737 request_crashkernel(res);
738 }
739 }
740
741 #ifdef CONFIG_SMP
prefill_possible_map(void)742 static void __init prefill_possible_map(void)
743 {
744 int i, possible = num_possible_cpus();
745
746 if (possible > nr_cpu_ids)
747 possible = nr_cpu_ids;
748
749 for (i = 0; i < possible; i++)
750 set_cpu_possible(i, true);
751 for (; i < NR_CPUS; i++)
752 set_cpu_possible(i, false);
753
754 set_nr_cpu_ids(possible);
755 }
756 #else
prefill_possible_map(void)757 static inline void prefill_possible_map(void) {}
758 #endif
759
setup_rng_seed(void)760 static void __init setup_rng_seed(void)
761 {
762 char *rng_seed_hex = fw_getenv("rngseed");
763 u8 rng_seed[512];
764 size_t len;
765
766 if (!rng_seed_hex)
767 return;
768
769 len = min(sizeof(rng_seed), strlen(rng_seed_hex) / 2);
770 if (hex2bin(rng_seed, rng_seed_hex, len))
771 return;
772
773 add_bootloader_randomness(rng_seed, len);
774 memzero_explicit(rng_seed, len);
775 memzero_explicit(rng_seed_hex, len * 2);
776 }
777
setup_arch(char ** cmdline_p)778 void __init setup_arch(char **cmdline_p)
779 {
780 cpu_probe();
781 mips_cm_probe();
782 prom_init();
783
784 setup_early_fdc_console();
785 #ifdef CONFIG_EARLY_PRINTK
786 setup_early_printk();
787 #endif
788 cpu_report();
789 if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64))
790 check_bugs64_early();
791
792 arch_mem_init(cmdline_p);
793 dmi_setup();
794
795 resource_init();
796 plat_smp_setup();
797 prefill_possible_map();
798
799 cpu_cache_init();
800 paging_init();
801
802 memblock_dump_all();
803
804 setup_rng_seed();
805 }
806
807 unsigned long kernelsp[NR_CPUS];
808 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
809
810 #ifdef CONFIG_DEBUG_FS
811 struct dentry *mips_debugfs_dir;
debugfs_mips(void)812 static int __init debugfs_mips(void)
813 {
814 mips_debugfs_dir = debugfs_create_dir("mips", NULL);
815 return 0;
816 }
817 arch_initcall(debugfs_mips);
818 #endif
819
820 #ifdef CONFIG_DMA_NONCOHERENT
setcoherentio(char * str)821 static int __init setcoherentio(char *str)
822 {
823 dma_default_coherent = true;
824 pr_info("Hardware DMA cache coherency (command line)\n");
825 return 0;
826 }
827 early_param("coherentio", setcoherentio);
828
setnocoherentio(char * str)829 static int __init setnocoherentio(char *str)
830 {
831 dma_default_coherent = false;
832 pr_info("Software DMA cache coherency (command line)\n");
833 return 0;
834 }
835 early_param("nocoherentio", setnocoherentio);
836 #endif
837
arch_cpu_finalize_init(void)838 void __init arch_cpu_finalize_init(void)
839 {
840 unsigned int cpu = smp_processor_id();
841
842 cpu_data[cpu].udelay_val = loops_per_jiffy;
843 check_bugs32();
844
845 if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64))
846 check_bugs64();
847 }
848