1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
41 {
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
46
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
50
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
54
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
58
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
64
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67 /*
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
70 */
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
74
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
83 */
84 vgic_get_irq_kref(irq);
85
86 goto out_unlock;
87 }
88
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
91
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95 /*
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
99 *
100 * Should any of these fail, behave as if we couldn't create the LPI
101 * by dropping the refcount and returning the error.
102 */
103 ret = update_lpi_config(kvm, irq, NULL, false);
104 if (ret) {
105 vgic_put_irq(kvm, irq);
106 return ERR_PTR(ret);
107 }
108
109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 if (ret) {
111 vgic_put_irq(kvm, irq);
112 return ERR_PTR(ret);
113 }
114
115 return irq;
116 }
117
118 struct its_device {
119 struct list_head dev_list;
120
121 /* the head for the list of ITTEs */
122 struct list_head itt_head;
123 u32 num_eventid_bits;
124 gpa_t itt_addr;
125 u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131 struct list_head coll_list;
132
133 u32 collection_id;
134 u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141 struct list_head ite_list;
142
143 struct vgic_irq *irq;
144 struct its_collection *collection;
145 u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149 struct list_head entry;
150 phys_addr_t db;
151 u32 devid;
152 u32 eventid;
153 struct vgic_irq *irq;
154 };
155
156 /**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 * stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 * especially the entry sizes
166 */
167 struct vgic_its_abi {
168 int cte_esz;
169 int dte_esz;
170 int ite_esz;
171 int (*save_tables)(struct vgic_its *its);
172 int (*restore_tables)(struct vgic_its *its);
173 int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ 8
177 #define ESZ_MAX ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 [0] = {
181 .cte_esz = ABI_0_ESZ,
182 .dte_esz = ABI_0_ESZ,
183 .ite_esz = ABI_0_ESZ,
184 .save_tables = vgic_its_save_tables_v0,
185 .restore_tables = vgic_its_restore_tables_v0,
186 .commit = vgic_its_commit_v0,
187 },
188 };
189
190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
191
vgic_its_get_abi(struct vgic_its * its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 return &its_table_abi_versions[its->abi_rev];
195 }
196
vgic_its_set_abi(struct vgic_its * its,u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 const struct vgic_its_abi *abi;
200
201 its->abi_rev = rev;
202 abi = vgic_its_get_abi(its);
203 return abi->commit(its);
204 }
205
206 /*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
find_its_device(struct vgic_its * its,u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 struct its_device *device;
213
214 list_for_each_entry(device, &its->device_list, dev_list)
215 if (device_id == device->device_id)
216 return device;
217
218 return NULL;
219 }
220
221 /*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 u32 event_id)
228 {
229 struct its_device *device;
230 struct its_ite *ite;
231
232 device = find_its_device(its, device_id);
233 if (device == NULL)
234 return NULL;
235
236 list_for_each_entry(ite, &device->itt_head, ite_list)
237 if (ite->event_id == event_id)
238 return ite;
239
240 return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
254
255 /*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
find_collection(struct vgic_its * its,int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 struct its_collection *collection;
262
263 list_for_each_entry(collection, &its->collection_list, coll_list) {
264 if (coll_id == collection->collection_id)
265 return collection;
266 }
267
268 return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
273
274 /*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 u8 prop;
285 int ret;
286 unsigned long flags;
287
288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 &prop, 1);
290
291 if (ret)
292 return ret;
293
294 raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 irq->priority = LPI_PROP_PRIORITY(prop);
298 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300 if (!irq->hw) {
301 vgic_queue_irq_unlock(kvm, irq, flags);
302 return 0;
303 }
304 }
305
306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308 if (irq->hw)
309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311 return 0;
312 }
313
314 /*
315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316 * enumerate those LPIs without holding any lock.
317 * Returns their number and puts the kmalloc'ed array into intid_ptr.
318 */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 struct vgic_dist *dist = &kvm->arch.vgic;
322 struct vgic_irq *irq;
323 unsigned long flags;
324 u32 *intids;
325 int irq_count, i = 0;
326
327 /*
328 * There is an obvious race between allocating the array and LPIs
329 * being mapped/unmapped. If we ended up here as a result of a
330 * command, we're safe (locks are held, preventing another
331 * command). If coming from another path (such as enabling LPIs),
332 * we must be careful not to overrun the array.
333 */
334 irq_count = READ_ONCE(dist->lpi_list_count);
335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336 if (!intids)
337 return -ENOMEM;
338
339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 if (i == irq_count)
342 break;
343 /* We don't need to "get" the IRQ, as we hold the list lock. */
344 if (vcpu && irq->target_vcpu != vcpu)
345 continue;
346 intids[i++] = irq->intid;
347 }
348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350 *intid_ptr = intids;
351 return i;
352 }
353
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 int ret = 0;
357 unsigned long flags;
358
359 raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 irq->target_vcpu = vcpu;
361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363 if (irq->hw) {
364 struct its_vlpi_map map;
365
366 ret = its_get_vlpi(irq->host_irq, &map);
367 if (ret)
368 return ret;
369
370 if (map.vpe)
371 atomic_dec(&map.vpe->vlpi_count);
372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 atomic_inc(&map.vpe->vlpi_count);
374
375 ret = its_map_vlpi(irq->host_irq, &map);
376 }
377
378 return ret;
379 }
380
collection_to_vcpu(struct kvm * kvm,struct its_collection * col)381 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
382 struct its_collection *col)
383 {
384 return kvm_get_vcpu_by_id(kvm, col->target_addr);
385 }
386
387 /*
388 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
389 * is targeting) to the VGIC's view, which deals with target VCPUs.
390 * Needs to be called whenever either the collection for a LPIs has
391 * changed or the collection itself got retargeted.
392 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)393 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
394 {
395 struct kvm_vcpu *vcpu;
396
397 if (!its_is_collection_mapped(ite->collection))
398 return;
399
400 vcpu = collection_to_vcpu(kvm, ite->collection);
401 update_affinity(ite->irq, vcpu);
402 }
403
404 /*
405 * Updates the target VCPU for every LPI targeting this collection.
406 * Must be called with the its_lock mutex held.
407 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)408 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
409 struct its_collection *coll)
410 {
411 struct its_device *device;
412 struct its_ite *ite;
413
414 for_each_lpi_its(device, ite, its) {
415 if (ite->collection != coll)
416 continue;
417
418 update_affinity_ite(kvm, ite);
419 }
420 }
421
max_lpis_propbaser(u64 propbaser)422 static u32 max_lpis_propbaser(u64 propbaser)
423 {
424 int nr_idbits = (propbaser & 0x1f) + 1;
425
426 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
427 }
428
429 /*
430 * Sync the pending table pending bit of LPIs targeting @vcpu
431 * with our own data structures. This relies on the LPI being
432 * mapped before.
433 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)434 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
435 {
436 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
437 struct vgic_irq *irq;
438 int last_byte_offset = -1;
439 int ret = 0;
440 u32 *intids;
441 int nr_irqs, i;
442 unsigned long flags;
443 u8 pendmask;
444
445 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
446 if (nr_irqs < 0)
447 return nr_irqs;
448
449 for (i = 0; i < nr_irqs; i++) {
450 int byte_offset, bit_nr;
451
452 byte_offset = intids[i] / BITS_PER_BYTE;
453 bit_nr = intids[i] % BITS_PER_BYTE;
454
455 /*
456 * For contiguously allocated LPIs chances are we just read
457 * this very same byte in the last iteration. Reuse that.
458 */
459 if (byte_offset != last_byte_offset) {
460 ret = kvm_read_guest_lock(vcpu->kvm,
461 pendbase + byte_offset,
462 &pendmask, 1);
463 if (ret) {
464 kfree(intids);
465 return ret;
466 }
467 last_byte_offset = byte_offset;
468 }
469
470 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
471 if (!irq)
472 continue;
473
474 raw_spin_lock_irqsave(&irq->irq_lock, flags);
475 irq->pending_latch = pendmask & (1U << bit_nr);
476 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
477 vgic_put_irq(vcpu->kvm, irq);
478 }
479
480 kfree(intids);
481
482 return ret;
483 }
484
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)485 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
486 struct vgic_its *its,
487 gpa_t addr, unsigned int len)
488 {
489 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
490 u64 reg = GITS_TYPER_PLPIS;
491
492 /*
493 * We use linear CPU numbers for redistributor addressing,
494 * so GITS_TYPER.PTA is 0.
495 * Also we force all PROPBASER registers to be the same, so
496 * CommonLPIAff is 0 as well.
497 * To avoid memory waste in the guest, we keep the number of IDBits and
498 * DevBits low - as least for the time being.
499 */
500 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
501 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
502 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
503
504 return extract_bytes(reg, addr & 7, len);
505 }
506
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)507 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
508 struct vgic_its *its,
509 gpa_t addr, unsigned int len)
510 {
511 u32 val;
512
513 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
514 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
515 return val;
516 }
517
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)518 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
519 struct vgic_its *its,
520 gpa_t addr, unsigned int len,
521 unsigned long val)
522 {
523 u32 rev = GITS_IIDR_REV(val);
524
525 if (rev >= NR_ITS_ABIS)
526 return -EINVAL;
527 return vgic_its_set_abi(its, rev);
528 }
529
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)530 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
531 struct vgic_its *its,
532 gpa_t addr, unsigned int len)
533 {
534 switch (addr & 0xffff) {
535 case GITS_PIDR0:
536 return 0x92; /* part number, bits[7:0] */
537 case GITS_PIDR1:
538 return 0xb4; /* part number, bits[11:8] */
539 case GITS_PIDR2:
540 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
541 case GITS_PIDR4:
542 return 0x40; /* This is a 64K software visible page */
543 /* The following are the ID registers for (any) GIC. */
544 case GITS_CIDR0:
545 return 0x0d;
546 case GITS_CIDR1:
547 return 0xf0;
548 case GITS_CIDR2:
549 return 0x05;
550 case GITS_CIDR3:
551 return 0xb1;
552 }
553
554 return 0;
555 }
556
__vgic_its_check_cache(struct vgic_dist * dist,phys_addr_t db,u32 devid,u32 eventid)557 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
558 phys_addr_t db,
559 u32 devid, u32 eventid)
560 {
561 struct vgic_translation_cache_entry *cte;
562
563 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
564 /*
565 * If we hit a NULL entry, there is nothing after this
566 * point.
567 */
568 if (!cte->irq)
569 break;
570
571 if (cte->db != db || cte->devid != devid ||
572 cte->eventid != eventid)
573 continue;
574
575 /*
576 * Move this entry to the head, as it is the most
577 * recently used.
578 */
579 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
580 list_move(&cte->entry, &dist->lpi_translation_cache);
581
582 return cte->irq;
583 }
584
585 return NULL;
586 }
587
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)588 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
589 u32 devid, u32 eventid)
590 {
591 struct vgic_dist *dist = &kvm->arch.vgic;
592 struct vgic_irq *irq;
593 unsigned long flags;
594
595 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
596
597 irq = __vgic_its_check_cache(dist, db, devid, eventid);
598 if (irq)
599 vgic_get_irq_kref(irq);
600
601 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
602
603 return irq;
604 }
605
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)606 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
607 u32 devid, u32 eventid,
608 struct vgic_irq *irq)
609 {
610 struct vgic_dist *dist = &kvm->arch.vgic;
611 struct vgic_translation_cache_entry *cte;
612 unsigned long flags;
613 phys_addr_t db;
614
615 /* Do not cache a directly injected interrupt */
616 if (irq->hw)
617 return;
618
619 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
620
621 if (unlikely(list_empty(&dist->lpi_translation_cache)))
622 goto out;
623
624 /*
625 * We could have raced with another CPU caching the same
626 * translation behind our back, so let's check it is not in
627 * already
628 */
629 db = its->vgic_its_base + GITS_TRANSLATER;
630 if (__vgic_its_check_cache(dist, db, devid, eventid))
631 goto out;
632
633 /* Always reuse the last entry (LRU policy) */
634 cte = list_last_entry(&dist->lpi_translation_cache,
635 typeof(*cte), entry);
636
637 /*
638 * Caching the translation implies having an extra reference
639 * to the interrupt, so drop the potential reference on what
640 * was in the cache, and increment it on the new interrupt.
641 */
642 if (cte->irq)
643 __vgic_put_lpi_locked(kvm, cte->irq);
644
645 vgic_get_irq_kref(irq);
646
647 cte->db = db;
648 cte->devid = devid;
649 cte->eventid = eventid;
650 cte->irq = irq;
651
652 /* Move the new translation to the head of the list */
653 list_move(&cte->entry, &dist->lpi_translation_cache);
654
655 out:
656 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
657 }
658
vgic_its_invalidate_cache(struct kvm * kvm)659 void vgic_its_invalidate_cache(struct kvm *kvm)
660 {
661 struct vgic_dist *dist = &kvm->arch.vgic;
662 struct vgic_translation_cache_entry *cte;
663 unsigned long flags;
664
665 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
666
667 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
668 /*
669 * If we hit a NULL entry, there is nothing after this
670 * point.
671 */
672 if (!cte->irq)
673 break;
674
675 __vgic_put_lpi_locked(kvm, cte->irq);
676 cte->irq = NULL;
677 }
678
679 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
680 }
681
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)682 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
683 u32 devid, u32 eventid, struct vgic_irq **irq)
684 {
685 struct kvm_vcpu *vcpu;
686 struct its_ite *ite;
687
688 if (!its->enabled)
689 return -EBUSY;
690
691 ite = find_ite(its, devid, eventid);
692 if (!ite || !its_is_collection_mapped(ite->collection))
693 return E_ITS_INT_UNMAPPED_INTERRUPT;
694
695 vcpu = collection_to_vcpu(kvm, ite->collection);
696 if (!vcpu)
697 return E_ITS_INT_UNMAPPED_INTERRUPT;
698
699 if (!vgic_lpis_enabled(vcpu))
700 return -EBUSY;
701
702 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
703
704 *irq = ite->irq;
705 return 0;
706 }
707
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)708 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
709 {
710 u64 address;
711 struct kvm_io_device *kvm_io_dev;
712 struct vgic_io_device *iodev;
713
714 if (!vgic_has_its(kvm))
715 return ERR_PTR(-ENODEV);
716
717 if (!(msi->flags & KVM_MSI_VALID_DEVID))
718 return ERR_PTR(-EINVAL);
719
720 address = (u64)msi->address_hi << 32 | msi->address_lo;
721
722 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
723 if (!kvm_io_dev)
724 return ERR_PTR(-EINVAL);
725
726 if (kvm_io_dev->ops != &kvm_io_gic_ops)
727 return ERR_PTR(-EINVAL);
728
729 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
730 if (iodev->iodev_type != IODEV_ITS)
731 return ERR_PTR(-EINVAL);
732
733 return iodev->its;
734 }
735
736 /*
737 * Find the target VCPU and the LPI number for a given devid/eventid pair
738 * and make this IRQ pending, possibly injecting it.
739 * Must be called with the its_lock mutex held.
740 * Returns 0 on success, a positive error value for any ITS mapping
741 * related errors and negative error values for generic errors.
742 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)743 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
744 u32 devid, u32 eventid)
745 {
746 struct vgic_irq *irq = NULL;
747 unsigned long flags;
748 int err;
749
750 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
751 if (err)
752 return err;
753
754 if (irq->hw)
755 return irq_set_irqchip_state(irq->host_irq,
756 IRQCHIP_STATE_PENDING, true);
757
758 raw_spin_lock_irqsave(&irq->irq_lock, flags);
759 irq->pending_latch = true;
760 vgic_queue_irq_unlock(kvm, irq, flags);
761
762 return 0;
763 }
764
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)765 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
766 {
767 struct vgic_irq *irq;
768 unsigned long flags;
769 phys_addr_t db;
770
771 db = (u64)msi->address_hi << 32 | msi->address_lo;
772 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
773 if (!irq)
774 return -EWOULDBLOCK;
775
776 raw_spin_lock_irqsave(&irq->irq_lock, flags);
777 irq->pending_latch = true;
778 vgic_queue_irq_unlock(kvm, irq, flags);
779 vgic_put_irq(kvm, irq);
780
781 return 0;
782 }
783
784 /*
785 * Queries the KVM IO bus framework to get the ITS pointer from the given
786 * doorbell address.
787 * We then call vgic_its_trigger_msi() with the decoded data.
788 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
789 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)790 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
791 {
792 struct vgic_its *its;
793 int ret;
794
795 if (!vgic_its_inject_cached_translation(kvm, msi))
796 return 1;
797
798 its = vgic_msi_to_its(kvm, msi);
799 if (IS_ERR(its))
800 return PTR_ERR(its);
801
802 mutex_lock(&its->its_lock);
803 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
804 mutex_unlock(&its->its_lock);
805
806 if (ret < 0)
807 return ret;
808
809 /*
810 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
811 * if the guest has blocked the MSI. So we map any LPI mapping
812 * related error to that.
813 */
814 if (ret)
815 return 0;
816 else
817 return 1;
818 }
819
820 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)821 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
822 {
823 list_del(&ite->ite_list);
824
825 /* This put matches the get in vgic_add_lpi. */
826 if (ite->irq) {
827 if (ite->irq->hw)
828 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
829
830 vgic_put_irq(kvm, ite->irq);
831 }
832
833 kfree(ite);
834 }
835
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)836 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
837 {
838 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
839 }
840
841 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
842 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
843 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
844 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
845 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
846 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
847 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
848 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
849 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
850
851 /*
852 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
853 * Must be called with the its_lock mutex held.
854 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)855 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
856 u64 *its_cmd)
857 {
858 u32 device_id = its_cmd_get_deviceid(its_cmd);
859 u32 event_id = its_cmd_get_id(its_cmd);
860 struct its_ite *ite;
861
862 ite = find_ite(its, device_id, event_id);
863 if (ite && its_is_collection_mapped(ite->collection)) {
864 /*
865 * Though the spec talks about removing the pending state, we
866 * don't bother here since we clear the ITTE anyway and the
867 * pending state is a property of the ITTE struct.
868 */
869 vgic_its_invalidate_cache(kvm);
870
871 its_free_ite(kvm, ite);
872 return 0;
873 }
874
875 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
876 }
877
878 /*
879 * The MOVI command moves an ITTE to a different collection.
880 * Must be called with the its_lock mutex held.
881 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)882 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
883 u64 *its_cmd)
884 {
885 u32 device_id = its_cmd_get_deviceid(its_cmd);
886 u32 event_id = its_cmd_get_id(its_cmd);
887 u32 coll_id = its_cmd_get_collection(its_cmd);
888 struct kvm_vcpu *vcpu;
889 struct its_ite *ite;
890 struct its_collection *collection;
891
892 ite = find_ite(its, device_id, event_id);
893 if (!ite)
894 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
895
896 if (!its_is_collection_mapped(ite->collection))
897 return E_ITS_MOVI_UNMAPPED_COLLECTION;
898
899 collection = find_collection(its, coll_id);
900 if (!its_is_collection_mapped(collection))
901 return E_ITS_MOVI_UNMAPPED_COLLECTION;
902
903 ite->collection = collection;
904 vcpu = collection_to_vcpu(kvm, collection);
905
906 vgic_its_invalidate_cache(kvm);
907
908 return update_affinity(ite->irq, vcpu);
909 }
910
__is_visible_gfn_locked(struct vgic_its * its,gpa_t gpa)911 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
912 {
913 gfn_t gfn = gpa >> PAGE_SHIFT;
914 int idx;
915 bool ret;
916
917 idx = srcu_read_lock(&its->dev->kvm->srcu);
918 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
919 srcu_read_unlock(&its->dev->kvm->srcu, idx);
920 return ret;
921 }
922
923 /*
924 * Check whether an ID can be stored into the corresponding guest table.
925 * For a direct table this is pretty easy, but gets a bit nasty for
926 * indirect tables. We check whether the resulting guest physical address
927 * is actually valid (covered by a memslot and guest accessible).
928 * For this we have to read the respective first level entry.
929 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)930 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
931 gpa_t *eaddr)
932 {
933 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
934 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
935 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
936 int esz = GITS_BASER_ENTRY_SIZE(baser);
937 int index;
938
939 switch (type) {
940 case GITS_BASER_TYPE_DEVICE:
941 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
942 return false;
943 break;
944 case GITS_BASER_TYPE_COLLECTION:
945 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
946 if (id >= BIT_ULL(16))
947 return false;
948 break;
949 default:
950 return false;
951 }
952
953 if (!(baser & GITS_BASER_INDIRECT)) {
954 phys_addr_t addr;
955
956 if (id >= (l1_tbl_size / esz))
957 return false;
958
959 addr = base + id * esz;
960
961 if (eaddr)
962 *eaddr = addr;
963
964 return __is_visible_gfn_locked(its, addr);
965 }
966
967 /* calculate and check the index into the 1st level */
968 index = id / (SZ_64K / esz);
969 if (index >= (l1_tbl_size / sizeof(u64)))
970 return false;
971
972 /* Each 1st level entry is represented by a 64-bit value. */
973 if (kvm_read_guest_lock(its->dev->kvm,
974 base + index * sizeof(indirect_ptr),
975 &indirect_ptr, sizeof(indirect_ptr)))
976 return false;
977
978 indirect_ptr = le64_to_cpu(indirect_ptr);
979
980 /* check the valid bit of the first level entry */
981 if (!(indirect_ptr & BIT_ULL(63)))
982 return false;
983
984 /* Mask the guest physical address and calculate the frame number. */
985 indirect_ptr &= GENMASK_ULL(51, 16);
986
987 /* Find the address of the actual entry */
988 index = id % (SZ_64K / esz);
989 indirect_ptr += index * esz;
990
991 if (eaddr)
992 *eaddr = indirect_ptr;
993
994 return __is_visible_gfn_locked(its, indirect_ptr);
995 }
996
997 /*
998 * Check whether an event ID can be stored in the corresponding Interrupt
999 * Translation Table, which starts at device->itt_addr.
1000 */
vgic_its_check_event_id(struct vgic_its * its,struct its_device * device,u32 event_id)1001 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
1002 u32 event_id)
1003 {
1004 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1005 int ite_esz = abi->ite_esz;
1006 gpa_t gpa;
1007
1008 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1009 if (event_id >= BIT_ULL(device->num_eventid_bits))
1010 return false;
1011
1012 gpa = device->itt_addr + event_id * ite_esz;
1013 return __is_visible_gfn_locked(its, gpa);
1014 }
1015
1016 /*
1017 * Add a new collection into the ITS collection table.
1018 * Returns 0 on success, and a negative error value for generic errors.
1019 */
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)1020 static int vgic_its_alloc_collection(struct vgic_its *its,
1021 struct its_collection **colp,
1022 u32 coll_id)
1023 {
1024 struct its_collection *collection;
1025
1026 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1027 if (!collection)
1028 return -ENOMEM;
1029
1030 collection->collection_id = coll_id;
1031 collection->target_addr = COLLECTION_NOT_MAPPED;
1032
1033 list_add_tail(&collection->coll_list, &its->collection_list);
1034 *colp = collection;
1035
1036 return 0;
1037 }
1038
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)1039 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1040 {
1041 struct its_collection *collection;
1042 struct its_device *device;
1043 struct its_ite *ite;
1044
1045 /*
1046 * Clearing the mapping for that collection ID removes the
1047 * entry from the list. If there wasn't any before, we can
1048 * go home early.
1049 */
1050 collection = find_collection(its, coll_id);
1051 if (!collection)
1052 return;
1053
1054 for_each_lpi_its(device, ite, its)
1055 if (ite->collection &&
1056 ite->collection->collection_id == coll_id)
1057 ite->collection = NULL;
1058
1059 list_del(&collection->coll_list);
1060 kfree(collection);
1061 }
1062
1063 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1064 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1065 struct its_collection *collection,
1066 u32 event_id)
1067 {
1068 struct its_ite *ite;
1069
1070 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1071 if (!ite)
1072 return ERR_PTR(-ENOMEM);
1073
1074 ite->event_id = event_id;
1075 ite->collection = collection;
1076
1077 list_add_tail(&ite->ite_list, &device->itt_head);
1078 return ite;
1079 }
1080
1081 /*
1082 * The MAPTI and MAPI commands map LPIs to ITTEs.
1083 * Must be called with its_lock mutex held.
1084 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1085 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1086 u64 *its_cmd)
1087 {
1088 u32 device_id = its_cmd_get_deviceid(its_cmd);
1089 u32 event_id = its_cmd_get_id(its_cmd);
1090 u32 coll_id = its_cmd_get_collection(its_cmd);
1091 struct its_ite *ite;
1092 struct kvm_vcpu *vcpu = NULL;
1093 struct its_device *device;
1094 struct its_collection *collection, *new_coll = NULL;
1095 struct vgic_irq *irq;
1096 int lpi_nr;
1097
1098 device = find_its_device(its, device_id);
1099 if (!device)
1100 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1101
1102 if (!vgic_its_check_event_id(its, device, event_id))
1103 return E_ITS_MAPTI_ID_OOR;
1104
1105 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1106 lpi_nr = its_cmd_get_physical_id(its_cmd);
1107 else
1108 lpi_nr = event_id;
1109 if (lpi_nr < GIC_LPI_OFFSET ||
1110 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1111 return E_ITS_MAPTI_PHYSICALID_OOR;
1112
1113 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1114 if (find_ite(its, device_id, event_id))
1115 return 0;
1116
1117 collection = find_collection(its, coll_id);
1118 if (!collection) {
1119 int ret;
1120
1121 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1122 return E_ITS_MAPC_COLLECTION_OOR;
1123
1124 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1125 if (ret)
1126 return ret;
1127 new_coll = collection;
1128 }
1129
1130 ite = vgic_its_alloc_ite(device, collection, event_id);
1131 if (IS_ERR(ite)) {
1132 if (new_coll)
1133 vgic_its_free_collection(its, coll_id);
1134 return PTR_ERR(ite);
1135 }
1136
1137 if (its_is_collection_mapped(collection))
1138 vcpu = collection_to_vcpu(kvm, collection);
1139
1140 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1141 if (IS_ERR(irq)) {
1142 if (new_coll)
1143 vgic_its_free_collection(its, coll_id);
1144 its_free_ite(kvm, ite);
1145 return PTR_ERR(irq);
1146 }
1147 ite->irq = irq;
1148
1149 return 0;
1150 }
1151
1152 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)1153 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1154 {
1155 struct its_ite *ite, *temp;
1156
1157 /*
1158 * The spec says that unmapping a device with still valid
1159 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1160 * since we cannot leave the memory unreferenced.
1161 */
1162 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1163 its_free_ite(kvm, ite);
1164
1165 vgic_its_invalidate_cache(kvm);
1166
1167 list_del(&device->dev_list);
1168 kfree(device);
1169 }
1170
1171 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1172 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1173 {
1174 struct its_device *cur, *temp;
1175
1176 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1177 vgic_its_free_device(kvm, cur);
1178 }
1179
1180 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1181 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1182 {
1183 struct its_collection *cur, *temp;
1184
1185 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1186 vgic_its_free_collection(its, cur->collection_id);
1187 }
1188
1189 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1190 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1191 u32 device_id, gpa_t itt_addr,
1192 u8 num_eventid_bits)
1193 {
1194 struct its_device *device;
1195
1196 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1197 if (!device)
1198 return ERR_PTR(-ENOMEM);
1199
1200 device->device_id = device_id;
1201 device->itt_addr = itt_addr;
1202 device->num_eventid_bits = num_eventid_bits;
1203 INIT_LIST_HEAD(&device->itt_head);
1204
1205 list_add_tail(&device->dev_list, &its->device_list);
1206 return device;
1207 }
1208
1209 /*
1210 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1211 * Must be called with the its_lock mutex held.
1212 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1213 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1214 u64 *its_cmd)
1215 {
1216 u32 device_id = its_cmd_get_deviceid(its_cmd);
1217 bool valid = its_cmd_get_validbit(its_cmd);
1218 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1219 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1220 struct its_device *device;
1221
1222 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1223 return E_ITS_MAPD_DEVICE_OOR;
1224
1225 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1226 return E_ITS_MAPD_ITTSIZE_OOR;
1227
1228 device = find_its_device(its, device_id);
1229
1230 /*
1231 * The spec says that calling MAPD on an already mapped device
1232 * invalidates all cached data for this device. We implement this
1233 * by removing the mapping and re-establishing it.
1234 */
1235 if (device)
1236 vgic_its_free_device(kvm, device);
1237
1238 /*
1239 * The spec does not say whether unmapping a not-mapped device
1240 * is an error, so we are done in any case.
1241 */
1242 if (!valid)
1243 return 0;
1244
1245 device = vgic_its_alloc_device(its, device_id, itt_addr,
1246 num_eventid_bits);
1247
1248 return PTR_ERR_OR_ZERO(device);
1249 }
1250
1251 /*
1252 * The MAPC command maps collection IDs to redistributors.
1253 * Must be called with the its_lock mutex held.
1254 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1255 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1256 u64 *its_cmd)
1257 {
1258 u16 coll_id;
1259 struct its_collection *collection;
1260 bool valid;
1261
1262 valid = its_cmd_get_validbit(its_cmd);
1263 coll_id = its_cmd_get_collection(its_cmd);
1264
1265 if (!valid) {
1266 vgic_its_free_collection(its, coll_id);
1267 vgic_its_invalidate_cache(kvm);
1268 } else {
1269 struct kvm_vcpu *vcpu;
1270
1271 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1272 if (!vcpu)
1273 return E_ITS_MAPC_PROCNUM_OOR;
1274
1275 collection = find_collection(its, coll_id);
1276
1277 if (!collection) {
1278 int ret;
1279
1280 if (!vgic_its_check_id(its, its->baser_coll_table,
1281 coll_id, NULL))
1282 return E_ITS_MAPC_COLLECTION_OOR;
1283
1284 ret = vgic_its_alloc_collection(its, &collection,
1285 coll_id);
1286 if (ret)
1287 return ret;
1288 collection->target_addr = vcpu->vcpu_id;
1289 } else {
1290 collection->target_addr = vcpu->vcpu_id;
1291 update_affinity_collection(kvm, its, collection);
1292 }
1293 }
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * The CLEAR command removes the pending state for a particular LPI.
1300 * Must be called with the its_lock mutex held.
1301 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1302 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1303 u64 *its_cmd)
1304 {
1305 u32 device_id = its_cmd_get_deviceid(its_cmd);
1306 u32 event_id = its_cmd_get_id(its_cmd);
1307 struct its_ite *ite;
1308
1309
1310 ite = find_ite(its, device_id, event_id);
1311 if (!ite)
1312 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1313
1314 ite->irq->pending_latch = false;
1315
1316 if (ite->irq->hw)
1317 return irq_set_irqchip_state(ite->irq->host_irq,
1318 IRQCHIP_STATE_PENDING, false);
1319
1320 return 0;
1321 }
1322
vgic_its_inv_lpi(struct kvm * kvm,struct vgic_irq * irq)1323 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1324 {
1325 return update_lpi_config(kvm, irq, NULL, true);
1326 }
1327
1328 /*
1329 * The INV command syncs the configuration bits from the memory table.
1330 * Must be called with the its_lock mutex held.
1331 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1332 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1333 u64 *its_cmd)
1334 {
1335 u32 device_id = its_cmd_get_deviceid(its_cmd);
1336 u32 event_id = its_cmd_get_id(its_cmd);
1337 struct its_ite *ite;
1338
1339
1340 ite = find_ite(its, device_id, event_id);
1341 if (!ite)
1342 return E_ITS_INV_UNMAPPED_INTERRUPT;
1343
1344 return vgic_its_inv_lpi(kvm, ite->irq);
1345 }
1346
1347 /**
1348 * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1349 * @vcpu: the vcpu for which the RD is targetted by an invalidation
1350 *
1351 * Contrary to the INVALL command, this targets a RD instead of a
1352 * collection, and we don't need to hold the its_lock, since no ITS is
1353 * involved here.
1354 */
vgic_its_invall(struct kvm_vcpu * vcpu)1355 int vgic_its_invall(struct kvm_vcpu *vcpu)
1356 {
1357 struct kvm *kvm = vcpu->kvm;
1358 int irq_count, i = 0;
1359 u32 *intids;
1360
1361 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1362 if (irq_count < 0)
1363 return irq_count;
1364
1365 for (i = 0; i < irq_count; i++) {
1366 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1367 if (!irq)
1368 continue;
1369 update_lpi_config(kvm, irq, vcpu, false);
1370 vgic_put_irq(kvm, irq);
1371 }
1372
1373 kfree(intids);
1374
1375 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1376 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1377
1378 return 0;
1379 }
1380
1381 /*
1382 * The INVALL command requests flushing of all IRQ data in this collection.
1383 * Find the VCPU mapped to that collection, then iterate over the VM's list
1384 * of mapped LPIs and update the configuration for each IRQ which targets
1385 * the specified vcpu. The configuration will be read from the in-memory
1386 * configuration table.
1387 * Must be called with the its_lock mutex held.
1388 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1389 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1390 u64 *its_cmd)
1391 {
1392 u32 coll_id = its_cmd_get_collection(its_cmd);
1393 struct its_collection *collection;
1394 struct kvm_vcpu *vcpu;
1395
1396 collection = find_collection(its, coll_id);
1397 if (!its_is_collection_mapped(collection))
1398 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1399
1400 vcpu = collection_to_vcpu(kvm, collection);
1401 vgic_its_invall(vcpu);
1402
1403 return 0;
1404 }
1405
1406 /*
1407 * The MOVALL command moves the pending state of all IRQs targeting one
1408 * redistributor to another. We don't hold the pending state in the VCPUs,
1409 * but in the IRQs instead, so there is really not much to do for us here.
1410 * However the spec says that no IRQ must target the old redistributor
1411 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1412 * This command affects all LPIs in the system that target that redistributor.
1413 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1414 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1415 u64 *its_cmd)
1416 {
1417 struct kvm_vcpu *vcpu1, *vcpu2;
1418 struct vgic_irq *irq;
1419 u32 *intids;
1420 int irq_count, i;
1421
1422 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1423 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1424 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1425
1426 if (!vcpu1 || !vcpu2)
1427 return E_ITS_MOVALL_PROCNUM_OOR;
1428
1429 if (vcpu1 == vcpu2)
1430 return 0;
1431
1432 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1433 if (irq_count < 0)
1434 return irq_count;
1435
1436 for (i = 0; i < irq_count; i++) {
1437 irq = vgic_get_irq(kvm, NULL, intids[i]);
1438 if (!irq)
1439 continue;
1440
1441 update_affinity(irq, vcpu2);
1442
1443 vgic_put_irq(kvm, irq);
1444 }
1445
1446 vgic_its_invalidate_cache(kvm);
1447
1448 kfree(intids);
1449 return 0;
1450 }
1451
1452 /*
1453 * The INT command injects the LPI associated with that DevID/EvID pair.
1454 * Must be called with the its_lock mutex held.
1455 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1456 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1457 u64 *its_cmd)
1458 {
1459 u32 msi_data = its_cmd_get_id(its_cmd);
1460 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1461
1462 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1463 }
1464
1465 /*
1466 * This function is called with the its_cmd lock held, but the ITS data
1467 * structure lock dropped.
1468 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1469 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1470 u64 *its_cmd)
1471 {
1472 int ret = -ENODEV;
1473
1474 mutex_lock(&its->its_lock);
1475 switch (its_cmd_get_command(its_cmd)) {
1476 case GITS_CMD_MAPD:
1477 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1478 break;
1479 case GITS_CMD_MAPC:
1480 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1481 break;
1482 case GITS_CMD_MAPI:
1483 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1484 break;
1485 case GITS_CMD_MAPTI:
1486 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1487 break;
1488 case GITS_CMD_MOVI:
1489 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1490 break;
1491 case GITS_CMD_DISCARD:
1492 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1493 break;
1494 case GITS_CMD_CLEAR:
1495 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1496 break;
1497 case GITS_CMD_MOVALL:
1498 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1499 break;
1500 case GITS_CMD_INT:
1501 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1502 break;
1503 case GITS_CMD_INV:
1504 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1505 break;
1506 case GITS_CMD_INVALL:
1507 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1508 break;
1509 case GITS_CMD_SYNC:
1510 /* we ignore this command: we are in sync all of the time */
1511 ret = 0;
1512 break;
1513 }
1514 mutex_unlock(&its->its_lock);
1515
1516 return ret;
1517 }
1518
vgic_sanitise_its_baser(u64 reg)1519 static u64 vgic_sanitise_its_baser(u64 reg)
1520 {
1521 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1522 GITS_BASER_SHAREABILITY_SHIFT,
1523 vgic_sanitise_shareability);
1524 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1525 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1526 vgic_sanitise_inner_cacheability);
1527 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1528 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1529 vgic_sanitise_outer_cacheability);
1530
1531 /* We support only one (ITS) page size: 64K */
1532 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1533
1534 return reg;
1535 }
1536
vgic_sanitise_its_cbaser(u64 reg)1537 static u64 vgic_sanitise_its_cbaser(u64 reg)
1538 {
1539 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1540 GITS_CBASER_SHAREABILITY_SHIFT,
1541 vgic_sanitise_shareability);
1542 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1543 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1544 vgic_sanitise_inner_cacheability);
1545 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1546 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1547 vgic_sanitise_outer_cacheability);
1548
1549 /* Sanitise the physical address to be 64k aligned. */
1550 reg &= ~GENMASK_ULL(15, 12);
1551
1552 return reg;
1553 }
1554
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1555 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1556 struct vgic_its *its,
1557 gpa_t addr, unsigned int len)
1558 {
1559 return extract_bytes(its->cbaser, addr & 7, len);
1560 }
1561
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1562 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1563 gpa_t addr, unsigned int len,
1564 unsigned long val)
1565 {
1566 /* When GITS_CTLR.Enable is 1, this register is RO. */
1567 if (its->enabled)
1568 return;
1569
1570 mutex_lock(&its->cmd_lock);
1571 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1572 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1573 its->creadr = 0;
1574 /*
1575 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1576 * it to CREADR to make sure we start with an empty command buffer.
1577 */
1578 its->cwriter = its->creadr;
1579 mutex_unlock(&its->cmd_lock);
1580 }
1581
1582 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1583 #define ITS_CMD_SIZE 32
1584 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1585
1586 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1587 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1588 {
1589 gpa_t cbaser;
1590 u64 cmd_buf[4];
1591
1592 /* Commands are only processed when the ITS is enabled. */
1593 if (!its->enabled)
1594 return;
1595
1596 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1597
1598 while (its->cwriter != its->creadr) {
1599 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1600 cmd_buf, ITS_CMD_SIZE);
1601 /*
1602 * If kvm_read_guest() fails, this could be due to the guest
1603 * programming a bogus value in CBASER or something else going
1604 * wrong from which we cannot easily recover.
1605 * According to section 6.3.2 in the GICv3 spec we can just
1606 * ignore that command then.
1607 */
1608 if (!ret)
1609 vgic_its_handle_command(kvm, its, cmd_buf);
1610
1611 its->creadr += ITS_CMD_SIZE;
1612 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1613 its->creadr = 0;
1614 }
1615 }
1616
1617 /*
1618 * By writing to CWRITER the guest announces new commands to be processed.
1619 * To avoid any races in the first place, we take the its_cmd lock, which
1620 * protects our ring buffer variables, so that there is only one user
1621 * per ITS handling commands at a given time.
1622 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1623 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1624 gpa_t addr, unsigned int len,
1625 unsigned long val)
1626 {
1627 u64 reg;
1628
1629 if (!its)
1630 return;
1631
1632 mutex_lock(&its->cmd_lock);
1633
1634 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1635 reg = ITS_CMD_OFFSET(reg);
1636 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1637 mutex_unlock(&its->cmd_lock);
1638 return;
1639 }
1640 its->cwriter = reg;
1641
1642 vgic_its_process_commands(kvm, its);
1643
1644 mutex_unlock(&its->cmd_lock);
1645 }
1646
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1647 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1648 struct vgic_its *its,
1649 gpa_t addr, unsigned int len)
1650 {
1651 return extract_bytes(its->cwriter, addr & 0x7, len);
1652 }
1653
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1654 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1655 struct vgic_its *its,
1656 gpa_t addr, unsigned int len)
1657 {
1658 return extract_bytes(its->creadr, addr & 0x7, len);
1659 }
1660
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1661 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1662 struct vgic_its *its,
1663 gpa_t addr, unsigned int len,
1664 unsigned long val)
1665 {
1666 u32 cmd_offset;
1667 int ret = 0;
1668
1669 mutex_lock(&its->cmd_lock);
1670
1671 if (its->enabled) {
1672 ret = -EBUSY;
1673 goto out;
1674 }
1675
1676 cmd_offset = ITS_CMD_OFFSET(val);
1677 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1678 ret = -EINVAL;
1679 goto out;
1680 }
1681
1682 its->creadr = cmd_offset;
1683 out:
1684 mutex_unlock(&its->cmd_lock);
1685 return ret;
1686 }
1687
1688 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1689 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1690 struct vgic_its *its,
1691 gpa_t addr, unsigned int len)
1692 {
1693 u64 reg;
1694
1695 switch (BASER_INDEX(addr)) {
1696 case 0:
1697 reg = its->baser_device_table;
1698 break;
1699 case 1:
1700 reg = its->baser_coll_table;
1701 break;
1702 default:
1703 reg = 0;
1704 break;
1705 }
1706
1707 return extract_bytes(reg, addr & 7, len);
1708 }
1709
1710 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1711 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1712 struct vgic_its *its,
1713 gpa_t addr, unsigned int len,
1714 unsigned long val)
1715 {
1716 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1717 u64 entry_size, table_type;
1718 u64 reg, *regptr, clearbits = 0;
1719
1720 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1721 if (its->enabled)
1722 return;
1723
1724 switch (BASER_INDEX(addr)) {
1725 case 0:
1726 regptr = &its->baser_device_table;
1727 entry_size = abi->dte_esz;
1728 table_type = GITS_BASER_TYPE_DEVICE;
1729 break;
1730 case 1:
1731 regptr = &its->baser_coll_table;
1732 entry_size = abi->cte_esz;
1733 table_type = GITS_BASER_TYPE_COLLECTION;
1734 clearbits = GITS_BASER_INDIRECT;
1735 break;
1736 default:
1737 return;
1738 }
1739
1740 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1741 reg &= ~GITS_BASER_RO_MASK;
1742 reg &= ~clearbits;
1743
1744 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1745 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1746 reg = vgic_sanitise_its_baser(reg);
1747
1748 *regptr = reg;
1749
1750 if (!(reg & GITS_BASER_VALID)) {
1751 /* Take the its_lock to prevent a race with a save/restore */
1752 mutex_lock(&its->its_lock);
1753 switch (table_type) {
1754 case GITS_BASER_TYPE_DEVICE:
1755 vgic_its_free_device_list(kvm, its);
1756 break;
1757 case GITS_BASER_TYPE_COLLECTION:
1758 vgic_its_free_collection_list(kvm, its);
1759 break;
1760 }
1761 mutex_unlock(&its->its_lock);
1762 }
1763 }
1764
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1765 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1766 struct vgic_its *its,
1767 gpa_t addr, unsigned int len)
1768 {
1769 u32 reg = 0;
1770
1771 mutex_lock(&its->cmd_lock);
1772 if (its->creadr == its->cwriter)
1773 reg |= GITS_CTLR_QUIESCENT;
1774 if (its->enabled)
1775 reg |= GITS_CTLR_ENABLE;
1776 mutex_unlock(&its->cmd_lock);
1777
1778 return reg;
1779 }
1780
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1781 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1782 gpa_t addr, unsigned int len,
1783 unsigned long val)
1784 {
1785 mutex_lock(&its->cmd_lock);
1786
1787 /*
1788 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1789 * device/collection BASER are invalid
1790 */
1791 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1792 (!(its->baser_device_table & GITS_BASER_VALID) ||
1793 !(its->baser_coll_table & GITS_BASER_VALID) ||
1794 !(its->cbaser & GITS_CBASER_VALID)))
1795 goto out;
1796
1797 its->enabled = !!(val & GITS_CTLR_ENABLE);
1798 if (!its->enabled)
1799 vgic_its_invalidate_cache(kvm);
1800
1801 /*
1802 * Try to process any pending commands. This function bails out early
1803 * if the ITS is disabled or no commands have been queued.
1804 */
1805 vgic_its_process_commands(kvm, its);
1806
1807 out:
1808 mutex_unlock(&its->cmd_lock);
1809 }
1810
1811 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1812 { \
1813 .reg_offset = off, \
1814 .len = length, \
1815 .access_flags = acc, \
1816 .its_read = rd, \
1817 .its_write = wr, \
1818 }
1819
1820 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1821 { \
1822 .reg_offset = off, \
1823 .len = length, \
1824 .access_flags = acc, \
1825 .its_read = rd, \
1826 .its_write = wr, \
1827 .uaccess_its_write = uwr, \
1828 }
1829
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1830 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1831 gpa_t addr, unsigned int len, unsigned long val)
1832 {
1833 /* Ignore */
1834 }
1835
1836 static struct vgic_register_region its_registers[] = {
1837 REGISTER_ITS_DESC(GITS_CTLR,
1838 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1839 VGIC_ACCESS_32bit),
1840 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1841 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1842 vgic_mmio_uaccess_write_its_iidr, 4,
1843 VGIC_ACCESS_32bit),
1844 REGISTER_ITS_DESC(GITS_TYPER,
1845 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1846 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1847 REGISTER_ITS_DESC(GITS_CBASER,
1848 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1849 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1850 REGISTER_ITS_DESC(GITS_CWRITER,
1851 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1852 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1853 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1854 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1855 vgic_mmio_uaccess_write_its_creadr, 8,
1856 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1857 REGISTER_ITS_DESC(GITS_BASER,
1858 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1859 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1860 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1861 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1862 VGIC_ACCESS_32bit),
1863 };
1864
1865 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1866 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1867 {
1868 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1869 its_sync_lpi_pending_table(vcpu);
1870 }
1871
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1872 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1873 u64 addr)
1874 {
1875 struct vgic_io_device *iodev = &its->iodev;
1876 int ret;
1877
1878 mutex_lock(&kvm->slots_lock);
1879 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1880 ret = -EBUSY;
1881 goto out;
1882 }
1883
1884 its->vgic_its_base = addr;
1885 iodev->regions = its_registers;
1886 iodev->nr_regions = ARRAY_SIZE(its_registers);
1887 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1888
1889 iodev->base_addr = its->vgic_its_base;
1890 iodev->iodev_type = IODEV_ITS;
1891 iodev->its = its;
1892 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1893 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1894 out:
1895 mutex_unlock(&kvm->slots_lock);
1896
1897 return ret;
1898 }
1899
1900 /* Default is 16 cached LPIs per vcpu */
1901 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1902
vgic_lpi_translation_cache_init(struct kvm * kvm)1903 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1904 {
1905 struct vgic_dist *dist = &kvm->arch.vgic;
1906 unsigned int sz;
1907 int i;
1908
1909 if (!list_empty(&dist->lpi_translation_cache))
1910 return;
1911
1912 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1913
1914 for (i = 0; i < sz; i++) {
1915 struct vgic_translation_cache_entry *cte;
1916
1917 /* An allocation failure is not fatal */
1918 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1919 if (WARN_ON(!cte))
1920 break;
1921
1922 INIT_LIST_HEAD(&cte->entry);
1923 list_add(&cte->entry, &dist->lpi_translation_cache);
1924 }
1925 }
1926
vgic_lpi_translation_cache_destroy(struct kvm * kvm)1927 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1928 {
1929 struct vgic_dist *dist = &kvm->arch.vgic;
1930 struct vgic_translation_cache_entry *cte, *tmp;
1931
1932 vgic_its_invalidate_cache(kvm);
1933
1934 list_for_each_entry_safe(cte, tmp,
1935 &dist->lpi_translation_cache, entry) {
1936 list_del(&cte->entry);
1937 kfree(cte);
1938 }
1939 }
1940
1941 #define INITIAL_BASER_VALUE \
1942 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1943 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1944 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1945 GITS_BASER_PAGE_SIZE_64K)
1946
1947 #define INITIAL_PROPBASER_VALUE \
1948 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1949 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1950 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1951
vgic_its_create(struct kvm_device * dev,u32 type)1952 static int vgic_its_create(struct kvm_device *dev, u32 type)
1953 {
1954 int ret;
1955 struct vgic_its *its;
1956
1957 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1958 return -ENODEV;
1959
1960 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1961 if (!its)
1962 return -ENOMEM;
1963
1964 mutex_lock(&dev->kvm->arch.config_lock);
1965
1966 if (vgic_initialized(dev->kvm)) {
1967 ret = vgic_v4_init(dev->kvm);
1968 if (ret < 0) {
1969 mutex_unlock(&dev->kvm->arch.config_lock);
1970 kfree(its);
1971 return ret;
1972 }
1973
1974 vgic_lpi_translation_cache_init(dev->kvm);
1975 }
1976
1977 mutex_init(&its->its_lock);
1978 mutex_init(&its->cmd_lock);
1979
1980 /* Yep, even more trickery for lock ordering... */
1981 #ifdef CONFIG_LOCKDEP
1982 mutex_lock(&its->cmd_lock);
1983 mutex_lock(&its->its_lock);
1984 mutex_unlock(&its->its_lock);
1985 mutex_unlock(&its->cmd_lock);
1986 #endif
1987
1988 its->vgic_its_base = VGIC_ADDR_UNDEF;
1989
1990 INIT_LIST_HEAD(&its->device_list);
1991 INIT_LIST_HEAD(&its->collection_list);
1992
1993 dev->kvm->arch.vgic.msis_require_devid = true;
1994 dev->kvm->arch.vgic.has_its = true;
1995 its->enabled = false;
1996 its->dev = dev;
1997
1998 its->baser_device_table = INITIAL_BASER_VALUE |
1999 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
2000 its->baser_coll_table = INITIAL_BASER_VALUE |
2001 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
2002 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
2003
2004 dev->private = its;
2005
2006 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2007
2008 mutex_unlock(&dev->kvm->arch.config_lock);
2009
2010 return ret;
2011 }
2012
vgic_its_destroy(struct kvm_device * kvm_dev)2013 static void vgic_its_destroy(struct kvm_device *kvm_dev)
2014 {
2015 struct kvm *kvm = kvm_dev->kvm;
2016 struct vgic_its *its = kvm_dev->private;
2017
2018 mutex_lock(&its->its_lock);
2019
2020 vgic_its_free_device_list(kvm, its);
2021 vgic_its_free_collection_list(kvm, its);
2022
2023 mutex_unlock(&its->its_lock);
2024 kfree(its);
2025 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2026 }
2027
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)2028 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2029 struct kvm_device_attr *attr)
2030 {
2031 const struct vgic_register_region *region;
2032 gpa_t offset = attr->attr;
2033 int align;
2034
2035 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2036
2037 if (offset & align)
2038 return -EINVAL;
2039
2040 region = vgic_find_mmio_region(its_registers,
2041 ARRAY_SIZE(its_registers),
2042 offset);
2043 if (!region)
2044 return -ENXIO;
2045
2046 return 0;
2047 }
2048
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)2049 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2050 struct kvm_device_attr *attr,
2051 u64 *reg, bool is_write)
2052 {
2053 const struct vgic_register_region *region;
2054 struct vgic_its *its;
2055 gpa_t addr, offset;
2056 unsigned int len;
2057 int align, ret = 0;
2058
2059 its = dev->private;
2060 offset = attr->attr;
2061
2062 /*
2063 * Although the spec supports upper/lower 32-bit accesses to
2064 * 64-bit ITS registers, the userspace ABI requires 64-bit
2065 * accesses to all 64-bit wide registers. We therefore only
2066 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2067 * registers
2068 */
2069 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2070 align = 0x3;
2071 else
2072 align = 0x7;
2073
2074 if (offset & align)
2075 return -EINVAL;
2076
2077 mutex_lock(&dev->kvm->lock);
2078
2079 if (!lock_all_vcpus(dev->kvm)) {
2080 mutex_unlock(&dev->kvm->lock);
2081 return -EBUSY;
2082 }
2083
2084 mutex_lock(&dev->kvm->arch.config_lock);
2085
2086 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2087 ret = -ENXIO;
2088 goto out;
2089 }
2090
2091 region = vgic_find_mmio_region(its_registers,
2092 ARRAY_SIZE(its_registers),
2093 offset);
2094 if (!region) {
2095 ret = -ENXIO;
2096 goto out;
2097 }
2098
2099 addr = its->vgic_its_base + offset;
2100
2101 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2102
2103 if (is_write) {
2104 if (region->uaccess_its_write)
2105 ret = region->uaccess_its_write(dev->kvm, its, addr,
2106 len, *reg);
2107 else
2108 region->its_write(dev->kvm, its, addr, len, *reg);
2109 } else {
2110 *reg = region->its_read(dev->kvm, its, addr, len);
2111 }
2112 out:
2113 mutex_unlock(&dev->kvm->arch.config_lock);
2114 unlock_all_vcpus(dev->kvm);
2115 mutex_unlock(&dev->kvm->lock);
2116 return ret;
2117 }
2118
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2119 static u32 compute_next_devid_offset(struct list_head *h,
2120 struct its_device *dev)
2121 {
2122 struct its_device *next;
2123 u32 next_offset;
2124
2125 if (list_is_last(&dev->dev_list, h))
2126 return 0;
2127 next = list_next_entry(dev, dev_list);
2128 next_offset = next->device_id - dev->device_id;
2129
2130 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2131 }
2132
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2133 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2134 {
2135 struct its_ite *next;
2136 u32 next_offset;
2137
2138 if (list_is_last(&ite->ite_list, h))
2139 return 0;
2140 next = list_next_entry(ite, ite_list);
2141 next_offset = next->event_id - ite->event_id;
2142
2143 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2144 }
2145
2146 /**
2147 * entry_fn_t - Callback called on a table entry restore path
2148 * @its: its handle
2149 * @id: id of the entry
2150 * @entry: pointer to the entry
2151 * @opaque: pointer to an opaque data
2152 *
2153 * Return: < 0 on error, 0 if last element was identified, id offset to next
2154 * element otherwise
2155 */
2156 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2157 void *opaque);
2158
2159 /**
2160 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2161 * to each entry
2162 *
2163 * @its: its handle
2164 * @base: base gpa of the table
2165 * @size: size of the table in bytes
2166 * @esz: entry size in bytes
2167 * @start_id: the ID of the first entry in the table
2168 * (non zero for 2d level tables)
2169 * @fn: function to apply on each entry
2170 *
2171 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2172 * (the last element may not be found on second level tables)
2173 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2174 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2175 int start_id, entry_fn_t fn, void *opaque)
2176 {
2177 struct kvm *kvm = its->dev->kvm;
2178 unsigned long len = size;
2179 int id = start_id;
2180 gpa_t gpa = base;
2181 char entry[ESZ_MAX];
2182 int ret;
2183
2184 memset(entry, 0, esz);
2185
2186 while (true) {
2187 int next_offset;
2188 size_t byte_offset;
2189
2190 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2191 if (ret)
2192 return ret;
2193
2194 next_offset = fn(its, id, entry, opaque);
2195 if (next_offset <= 0)
2196 return next_offset;
2197
2198 byte_offset = next_offset * esz;
2199 if (byte_offset >= len)
2200 break;
2201
2202 id += next_offset;
2203 gpa += byte_offset;
2204 len -= byte_offset;
2205 }
2206 return 1;
2207 }
2208
2209 /**
2210 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2211 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2212 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2213 struct its_ite *ite, gpa_t gpa, int ite_esz)
2214 {
2215 struct kvm *kvm = its->dev->kvm;
2216 u32 next_offset;
2217 u64 val;
2218
2219 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2220 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2221 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2222 ite->collection->collection_id;
2223 val = cpu_to_le64(val);
2224 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2225 }
2226
2227 /**
2228 * vgic_its_restore_ite - restore an interrupt translation entry
2229 * @event_id: id used for indexing
2230 * @ptr: pointer to the ITE entry
2231 * @opaque: pointer to the its_device
2232 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2233 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2234 void *ptr, void *opaque)
2235 {
2236 struct its_device *dev = opaque;
2237 struct its_collection *collection;
2238 struct kvm *kvm = its->dev->kvm;
2239 struct kvm_vcpu *vcpu = NULL;
2240 u64 val;
2241 u64 *p = (u64 *)ptr;
2242 struct vgic_irq *irq;
2243 u32 coll_id, lpi_id;
2244 struct its_ite *ite;
2245 u32 offset;
2246
2247 val = *p;
2248
2249 val = le64_to_cpu(val);
2250
2251 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2252 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2253
2254 if (!lpi_id)
2255 return 1; /* invalid entry, no choice but to scan next entry */
2256
2257 if (lpi_id < VGIC_MIN_LPI)
2258 return -EINVAL;
2259
2260 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2261 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2262 return -EINVAL;
2263
2264 collection = find_collection(its, coll_id);
2265 if (!collection)
2266 return -EINVAL;
2267
2268 if (!vgic_its_check_event_id(its, dev, event_id))
2269 return -EINVAL;
2270
2271 ite = vgic_its_alloc_ite(dev, collection, event_id);
2272 if (IS_ERR(ite))
2273 return PTR_ERR(ite);
2274
2275 if (its_is_collection_mapped(collection))
2276 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2277
2278 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2279 if (IS_ERR(irq)) {
2280 its_free_ite(kvm, ite);
2281 return PTR_ERR(irq);
2282 }
2283 ite->irq = irq;
2284
2285 return offset;
2286 }
2287
vgic_its_ite_cmp(void * priv,const struct list_head * a,const struct list_head * b)2288 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2289 const struct list_head *b)
2290 {
2291 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2292 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2293
2294 if (itea->event_id < iteb->event_id)
2295 return -1;
2296 else
2297 return 1;
2298 }
2299
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2300 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2301 {
2302 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2303 gpa_t base = device->itt_addr;
2304 struct its_ite *ite;
2305 int ret;
2306 int ite_esz = abi->ite_esz;
2307
2308 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2309
2310 list_for_each_entry(ite, &device->itt_head, ite_list) {
2311 gpa_t gpa = base + ite->event_id * ite_esz;
2312
2313 /*
2314 * If an LPI carries the HW bit, this means that this
2315 * interrupt is controlled by GICv4, and we do not
2316 * have direct access to that state without GICv4.1.
2317 * Let's simply fail the save operation...
2318 */
2319 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2320 return -EACCES;
2321
2322 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2323 if (ret)
2324 return ret;
2325 }
2326 return 0;
2327 }
2328
2329 /**
2330 * vgic_its_restore_itt - restore the ITT of a device
2331 *
2332 * @its: its handle
2333 * @dev: device handle
2334 *
2335 * Return 0 on success, < 0 on error
2336 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2337 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2338 {
2339 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2340 gpa_t base = dev->itt_addr;
2341 int ret;
2342 int ite_esz = abi->ite_esz;
2343 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2344
2345 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2346 vgic_its_restore_ite, dev);
2347
2348 /* scan_its_table returns +1 if all ITEs are invalid */
2349 if (ret > 0)
2350 ret = 0;
2351
2352 return ret;
2353 }
2354
2355 /**
2356 * vgic_its_save_dte - Save a device table entry at a given GPA
2357 *
2358 * @its: ITS handle
2359 * @dev: ITS device
2360 * @ptr: GPA
2361 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2362 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2363 gpa_t ptr, int dte_esz)
2364 {
2365 struct kvm *kvm = its->dev->kvm;
2366 u64 val, itt_addr_field;
2367 u32 next_offset;
2368
2369 itt_addr_field = dev->itt_addr >> 8;
2370 next_offset = compute_next_devid_offset(&its->device_list, dev);
2371 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2372 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2373 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2374 (dev->num_eventid_bits - 1));
2375 val = cpu_to_le64(val);
2376 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2377 }
2378
2379 /**
2380 * vgic_its_restore_dte - restore a device table entry
2381 *
2382 * @its: its handle
2383 * @id: device id the DTE corresponds to
2384 * @ptr: kernel VA where the 8 byte DTE is located
2385 * @opaque: unused
2386 *
2387 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2388 * next dte otherwise
2389 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2390 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2391 void *ptr, void *opaque)
2392 {
2393 struct its_device *dev;
2394 u64 baser = its->baser_device_table;
2395 gpa_t itt_addr;
2396 u8 num_eventid_bits;
2397 u64 entry = *(u64 *)ptr;
2398 bool valid;
2399 u32 offset;
2400 int ret;
2401
2402 entry = le64_to_cpu(entry);
2403
2404 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2405 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2406 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2407 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2408
2409 if (!valid)
2410 return 1;
2411
2412 /* dte entry is valid */
2413 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2414
2415 if (!vgic_its_check_id(its, baser, id, NULL))
2416 return -EINVAL;
2417
2418 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2419 if (IS_ERR(dev))
2420 return PTR_ERR(dev);
2421
2422 ret = vgic_its_restore_itt(its, dev);
2423 if (ret) {
2424 vgic_its_free_device(its->dev->kvm, dev);
2425 return ret;
2426 }
2427
2428 return offset;
2429 }
2430
vgic_its_device_cmp(void * priv,const struct list_head * a,const struct list_head * b)2431 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2432 const struct list_head *b)
2433 {
2434 struct its_device *deva = container_of(a, struct its_device, dev_list);
2435 struct its_device *devb = container_of(b, struct its_device, dev_list);
2436
2437 if (deva->device_id < devb->device_id)
2438 return -1;
2439 else
2440 return 1;
2441 }
2442
2443 /**
2444 * vgic_its_save_device_tables - Save the device table and all ITT
2445 * into guest RAM
2446 *
2447 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2448 * returns the GPA of the device entry
2449 */
vgic_its_save_device_tables(struct vgic_its * its)2450 static int vgic_its_save_device_tables(struct vgic_its *its)
2451 {
2452 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2453 u64 baser = its->baser_device_table;
2454 struct its_device *dev;
2455 int dte_esz = abi->dte_esz;
2456
2457 if (!(baser & GITS_BASER_VALID))
2458 return 0;
2459
2460 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2461
2462 list_for_each_entry(dev, &its->device_list, dev_list) {
2463 int ret;
2464 gpa_t eaddr;
2465
2466 if (!vgic_its_check_id(its, baser,
2467 dev->device_id, &eaddr))
2468 return -EINVAL;
2469
2470 ret = vgic_its_save_itt(its, dev);
2471 if (ret)
2472 return ret;
2473
2474 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2475 if (ret)
2476 return ret;
2477 }
2478 return 0;
2479 }
2480
2481 /**
2482 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2483 *
2484 * @its: its handle
2485 * @id: index of the entry in the L1 table
2486 * @addr: kernel VA
2487 * @opaque: unused
2488 *
2489 * L1 table entries are scanned by steps of 1 entry
2490 * Return < 0 if error, 0 if last dte was found when scanning the L2
2491 * table, +1 otherwise (meaning next L1 entry must be scanned)
2492 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2493 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2494 void *opaque)
2495 {
2496 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2497 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2498 u64 entry = *(u64 *)addr;
2499 int dte_esz = abi->dte_esz;
2500 gpa_t gpa;
2501 int ret;
2502
2503 entry = le64_to_cpu(entry);
2504
2505 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2506 return 1;
2507
2508 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2509
2510 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2511 l2_start_id, vgic_its_restore_dte, NULL);
2512
2513 return ret;
2514 }
2515
2516 /**
2517 * vgic_its_restore_device_tables - Restore the device table and all ITT
2518 * from guest RAM to internal data structs
2519 */
vgic_its_restore_device_tables(struct vgic_its * its)2520 static int vgic_its_restore_device_tables(struct vgic_its *its)
2521 {
2522 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2523 u64 baser = its->baser_device_table;
2524 int l1_esz, ret;
2525 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2526 gpa_t l1_gpa;
2527
2528 if (!(baser & GITS_BASER_VALID))
2529 return 0;
2530
2531 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2532
2533 if (baser & GITS_BASER_INDIRECT) {
2534 l1_esz = GITS_LVL1_ENTRY_SIZE;
2535 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2536 handle_l1_dte, NULL);
2537 } else {
2538 l1_esz = abi->dte_esz;
2539 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2540 vgic_its_restore_dte, NULL);
2541 }
2542
2543 /* scan_its_table returns +1 if all entries are invalid */
2544 if (ret > 0)
2545 ret = 0;
2546
2547 if (ret < 0)
2548 vgic_its_free_device_list(its->dev->kvm, its);
2549
2550 return ret;
2551 }
2552
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2553 static int vgic_its_save_cte(struct vgic_its *its,
2554 struct its_collection *collection,
2555 gpa_t gpa, int esz)
2556 {
2557 u64 val;
2558
2559 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2560 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2561 collection->collection_id);
2562 val = cpu_to_le64(val);
2563 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2564 }
2565
2566 /*
2567 * Restore a collection entry into the ITS collection table.
2568 * Return +1 on success, 0 if the entry was invalid (which should be
2569 * interpreted as end-of-table), and a negative error value for generic errors.
2570 */
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2571 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2572 {
2573 struct its_collection *collection;
2574 struct kvm *kvm = its->dev->kvm;
2575 u32 target_addr, coll_id;
2576 u64 val;
2577 int ret;
2578
2579 BUG_ON(esz > sizeof(val));
2580 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2581 if (ret)
2582 return ret;
2583 val = le64_to_cpu(val);
2584 if (!(val & KVM_ITS_CTE_VALID_MASK))
2585 return 0;
2586
2587 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2588 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2589
2590 if (target_addr != COLLECTION_NOT_MAPPED &&
2591 !kvm_get_vcpu_by_id(kvm, target_addr))
2592 return -EINVAL;
2593
2594 collection = find_collection(its, coll_id);
2595 if (collection)
2596 return -EEXIST;
2597
2598 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2599 return -EINVAL;
2600
2601 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2602 if (ret)
2603 return ret;
2604 collection->target_addr = target_addr;
2605 return 1;
2606 }
2607
2608 /**
2609 * vgic_its_save_collection_table - Save the collection table into
2610 * guest RAM
2611 */
vgic_its_save_collection_table(struct vgic_its * its)2612 static int vgic_its_save_collection_table(struct vgic_its *its)
2613 {
2614 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2615 u64 baser = its->baser_coll_table;
2616 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2617 struct its_collection *collection;
2618 u64 val;
2619 size_t max_size, filled = 0;
2620 int ret, cte_esz = abi->cte_esz;
2621
2622 if (!(baser & GITS_BASER_VALID))
2623 return 0;
2624
2625 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2626
2627 list_for_each_entry(collection, &its->collection_list, coll_list) {
2628 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2629 if (ret)
2630 return ret;
2631 gpa += cte_esz;
2632 filled += cte_esz;
2633 }
2634
2635 if (filled == max_size)
2636 return 0;
2637
2638 /*
2639 * table is not fully filled, add a last dummy element
2640 * with valid bit unset
2641 */
2642 val = 0;
2643 BUG_ON(cte_esz > sizeof(val));
2644 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2645 return ret;
2646 }
2647
2648 /**
2649 * vgic_its_restore_collection_table - reads the collection table
2650 * in guest memory and restores the ITS internal state. Requires the
2651 * BASER registers to be restored before.
2652 */
vgic_its_restore_collection_table(struct vgic_its * its)2653 static int vgic_its_restore_collection_table(struct vgic_its *its)
2654 {
2655 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2656 u64 baser = its->baser_coll_table;
2657 int cte_esz = abi->cte_esz;
2658 size_t max_size, read = 0;
2659 gpa_t gpa;
2660 int ret;
2661
2662 if (!(baser & GITS_BASER_VALID))
2663 return 0;
2664
2665 gpa = GITS_BASER_ADDR_48_to_52(baser);
2666
2667 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2668
2669 while (read < max_size) {
2670 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2671 if (ret <= 0)
2672 break;
2673 gpa += cte_esz;
2674 read += cte_esz;
2675 }
2676
2677 if (ret > 0)
2678 return 0;
2679
2680 if (ret < 0)
2681 vgic_its_free_collection_list(its->dev->kvm, its);
2682
2683 return ret;
2684 }
2685
2686 /**
2687 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2688 * according to v0 ABI
2689 */
vgic_its_save_tables_v0(struct vgic_its * its)2690 static int vgic_its_save_tables_v0(struct vgic_its *its)
2691 {
2692 int ret;
2693
2694 ret = vgic_its_save_device_tables(its);
2695 if (ret)
2696 return ret;
2697
2698 return vgic_its_save_collection_table(its);
2699 }
2700
2701 /**
2702 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2703 * to internal data structs according to V0 ABI
2704 *
2705 */
vgic_its_restore_tables_v0(struct vgic_its * its)2706 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2707 {
2708 int ret;
2709
2710 ret = vgic_its_restore_collection_table(its);
2711 if (ret)
2712 return ret;
2713
2714 ret = vgic_its_restore_device_tables(its);
2715 if (ret)
2716 vgic_its_free_collection_list(its->dev->kvm, its);
2717 return ret;
2718 }
2719
vgic_its_commit_v0(struct vgic_its * its)2720 static int vgic_its_commit_v0(struct vgic_its *its)
2721 {
2722 const struct vgic_its_abi *abi;
2723
2724 abi = vgic_its_get_abi(its);
2725 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2726 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2727
2728 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2729 << GITS_BASER_ENTRY_SIZE_SHIFT);
2730
2731 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2732 << GITS_BASER_ENTRY_SIZE_SHIFT);
2733 return 0;
2734 }
2735
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2736 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2737 {
2738 /* We need to keep the ABI specific field values */
2739 its->baser_coll_table &= ~GITS_BASER_VALID;
2740 its->baser_device_table &= ~GITS_BASER_VALID;
2741 its->cbaser = 0;
2742 its->creadr = 0;
2743 its->cwriter = 0;
2744 its->enabled = 0;
2745 vgic_its_free_device_list(kvm, its);
2746 vgic_its_free_collection_list(kvm, its);
2747 }
2748
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2749 static int vgic_its_has_attr(struct kvm_device *dev,
2750 struct kvm_device_attr *attr)
2751 {
2752 switch (attr->group) {
2753 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2754 switch (attr->attr) {
2755 case KVM_VGIC_ITS_ADDR_TYPE:
2756 return 0;
2757 }
2758 break;
2759 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2760 switch (attr->attr) {
2761 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2762 return 0;
2763 case KVM_DEV_ARM_ITS_CTRL_RESET:
2764 return 0;
2765 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2766 return 0;
2767 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2768 return 0;
2769 }
2770 break;
2771 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2772 return vgic_its_has_attr_regs(dev, attr);
2773 }
2774 return -ENXIO;
2775 }
2776
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2777 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2778 {
2779 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2780 int ret = 0;
2781
2782 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2783 return 0;
2784
2785 mutex_lock(&kvm->lock);
2786
2787 if (!lock_all_vcpus(kvm)) {
2788 mutex_unlock(&kvm->lock);
2789 return -EBUSY;
2790 }
2791
2792 mutex_lock(&kvm->arch.config_lock);
2793 mutex_lock(&its->its_lock);
2794
2795 switch (attr) {
2796 case KVM_DEV_ARM_ITS_CTRL_RESET:
2797 vgic_its_reset(kvm, its);
2798 break;
2799 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2800 ret = abi->save_tables(its);
2801 break;
2802 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2803 ret = abi->restore_tables(its);
2804 break;
2805 }
2806
2807 mutex_unlock(&its->its_lock);
2808 mutex_unlock(&kvm->arch.config_lock);
2809 unlock_all_vcpus(kvm);
2810 mutex_unlock(&kvm->lock);
2811 return ret;
2812 }
2813
2814 /*
2815 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2816 * without the running VCPU when dirty ring is enabled.
2817 *
2818 * The running VCPU is required to track dirty guest pages when dirty ring
2819 * is enabled. Otherwise, the backup bitmap should be used to track the
2820 * dirty guest pages. When vgic/its tables are being saved, the backup
2821 * bitmap is used to track the dirty guest pages due to the missed running
2822 * VCPU in the period.
2823 */
kvm_arch_allow_write_without_running_vcpu(struct kvm * kvm)2824 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2825 {
2826 struct vgic_dist *dist = &kvm->arch.vgic;
2827
2828 return dist->table_write_in_progress;
2829 }
2830
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2831 static int vgic_its_set_attr(struct kvm_device *dev,
2832 struct kvm_device_attr *attr)
2833 {
2834 struct vgic_its *its = dev->private;
2835 int ret;
2836
2837 switch (attr->group) {
2838 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2839 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2840 unsigned long type = (unsigned long)attr->attr;
2841 u64 addr;
2842
2843 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2844 return -ENODEV;
2845
2846 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2847 return -EFAULT;
2848
2849 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2850 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2851 if (ret)
2852 return ret;
2853
2854 return vgic_register_its_iodev(dev->kvm, its, addr);
2855 }
2856 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2857 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2858 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2859 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2860 u64 reg;
2861
2862 if (get_user(reg, uaddr))
2863 return -EFAULT;
2864
2865 return vgic_its_attr_regs_access(dev, attr, ®, true);
2866 }
2867 }
2868 return -ENXIO;
2869 }
2870
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2871 static int vgic_its_get_attr(struct kvm_device *dev,
2872 struct kvm_device_attr *attr)
2873 {
2874 switch (attr->group) {
2875 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2876 struct vgic_its *its = dev->private;
2877 u64 addr = its->vgic_its_base;
2878 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2879 unsigned long type = (unsigned long)attr->attr;
2880
2881 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2882 return -ENODEV;
2883
2884 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2885 return -EFAULT;
2886 break;
2887 }
2888 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2889 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2890 u64 reg;
2891 int ret;
2892
2893 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2894 if (ret)
2895 return ret;
2896 return put_user(reg, uaddr);
2897 }
2898 default:
2899 return -ENXIO;
2900 }
2901
2902 return 0;
2903 }
2904
2905 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2906 .name = "kvm-arm-vgic-its",
2907 .create = vgic_its_create,
2908 .destroy = vgic_its_destroy,
2909 .set_attr = vgic_its_set_attr,
2910 .get_attr = vgic_its_get_attr,
2911 .has_attr = vgic_its_has_attr,
2912 };
2913
kvm_vgic_register_its_device(void)2914 int kvm_vgic_register_its_device(void)
2915 {
2916 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2917 KVM_DEV_TYPE_ARM_VGIC_ITS);
2918 }
2919