1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31 #include <linux/rseq.h>
32
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 struct pt_regs_offset {
48 const char *name;
49 int offset;
50 };
51
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56
57 static const struct pt_regs_offset regoffset_table[] = {
58 GPR_OFFSET_NAME(0),
59 GPR_OFFSET_NAME(1),
60 GPR_OFFSET_NAME(2),
61 GPR_OFFSET_NAME(3),
62 GPR_OFFSET_NAME(4),
63 GPR_OFFSET_NAME(5),
64 GPR_OFFSET_NAME(6),
65 GPR_OFFSET_NAME(7),
66 GPR_OFFSET_NAME(8),
67 GPR_OFFSET_NAME(9),
68 GPR_OFFSET_NAME(10),
69 GPR_OFFSET_NAME(11),
70 GPR_OFFSET_NAME(12),
71 GPR_OFFSET_NAME(13),
72 GPR_OFFSET_NAME(14),
73 GPR_OFFSET_NAME(15),
74 GPR_OFFSET_NAME(16),
75 GPR_OFFSET_NAME(17),
76 GPR_OFFSET_NAME(18),
77 GPR_OFFSET_NAME(19),
78 GPR_OFFSET_NAME(20),
79 GPR_OFFSET_NAME(21),
80 GPR_OFFSET_NAME(22),
81 GPR_OFFSET_NAME(23),
82 GPR_OFFSET_NAME(24),
83 GPR_OFFSET_NAME(25),
84 GPR_OFFSET_NAME(26),
85 GPR_OFFSET_NAME(27),
86 GPR_OFFSET_NAME(28),
87 GPR_OFFSET_NAME(29),
88 GPR_OFFSET_NAME(30),
89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 REG_OFFSET_NAME(sp),
91 REG_OFFSET_NAME(pc),
92 REG_OFFSET_NAME(pstate),
93 REG_OFFSET_END,
94 };
95
96 /**
97 * regs_query_register_offset() - query register offset from its name
98 * @name: the name of a register
99 *
100 * regs_query_register_offset() returns the offset of a register in struct
101 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102 */
regs_query_register_offset(const char * name)103 int regs_query_register_offset(const char *name)
104 {
105 const struct pt_regs_offset *roff;
106
107 for (roff = regoffset_table; roff->name != NULL; roff++)
108 if (!strcmp(roff->name, name))
109 return roff->offset;
110 return -EINVAL;
111 }
112
113 /**
114 * regs_within_kernel_stack() - check the address in the stack
115 * @regs: pt_regs which contains kernel stack pointer.
116 * @addr: address which is checked.
117 *
118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119 * If @addr is within the kernel stack, it returns true. If not, returns false.
120 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 return ((addr & ~(THREAD_SIZE - 1)) ==
124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 on_irq_stack(addr, sizeof(unsigned long));
126 }
127
128 /**
129 * regs_get_kernel_stack_nth() - get Nth entry of the stack
130 * @regs: pt_regs which contains kernel stack pointer.
131 * @n: stack entry number.
132 *
133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135 * this returns 0.
136 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140
141 addr += n;
142 if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 return *addr;
144 else
145 return 0;
146 }
147
148 /*
149 * TODO: does not yet catch signals sent when the child dies.
150 * in exit.c or in signal.c.
151 */
152
153 /*
154 * Called by kernel/ptrace.c when detaching..
155 */
ptrace_disable(struct task_struct * child)156 void ptrace_disable(struct task_struct *child)
157 {
158 /*
159 * This would be better off in core code, but PTRACE_DETACH has
160 * grown its fair share of arch-specific worts and changing it
161 * is likely to cause regressions on obscure architectures.
162 */
163 user_disable_single_step(child);
164 }
165
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168 * Handle hitting a HW-breakpoint.
169 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)170 static void ptrace_hbptriggered(struct perf_event *bp,
171 struct perf_sample_data *data,
172 struct pt_regs *regs)
173 {
174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 const char *desc = "Hardware breakpoint trap (ptrace)";
176
177 #ifdef CONFIG_COMPAT
178 if (is_compat_task()) {
179 int si_errno = 0;
180 int i;
181
182 for (i = 0; i < ARM_MAX_BRP; ++i) {
183 if (current->thread.debug.hbp_break[i] == bp) {
184 si_errno = (i << 1) + 1;
185 break;
186 }
187 }
188
189 for (i = 0; i < ARM_MAX_WRP; ++i) {
190 if (current->thread.debug.hbp_watch[i] == bp) {
191 si_errno = -((i << 1) + 1);
192 break;
193 }
194 }
195 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 desc);
197 return;
198 }
199 #endif
200 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202
203 /*
204 * Unregister breakpoints from this task and reset the pointers in
205 * the thread_struct.
206 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 int i;
210 struct thread_struct *t = &tsk->thread;
211
212 for (i = 0; i < ARM_MAX_BRP; i++) {
213 if (t->debug.hbp_break[i]) {
214 unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 t->debug.hbp_break[i] = NULL;
216 }
217 }
218
219 for (i = 0; i < ARM_MAX_WRP; i++) {
220 if (t->debug.hbp_watch[i]) {
221 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 t->debug.hbp_watch[i] = NULL;
223 }
224 }
225 }
226
ptrace_hw_copy_thread(struct task_struct * tsk)227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 struct task_struct *tsk,
234 unsigned long idx)
235 {
236 struct perf_event *bp = ERR_PTR(-EINVAL);
237
238 switch (note_type) {
239 case NT_ARM_HW_BREAK:
240 if (idx >= ARM_MAX_BRP)
241 goto out;
242 idx = array_index_nospec(idx, ARM_MAX_BRP);
243 bp = tsk->thread.debug.hbp_break[idx];
244 break;
245 case NT_ARM_HW_WATCH:
246 if (idx >= ARM_MAX_WRP)
247 goto out;
248 idx = array_index_nospec(idx, ARM_MAX_WRP);
249 bp = tsk->thread.debug.hbp_watch[idx];
250 break;
251 }
252
253 out:
254 return bp;
255 }
256
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)257 static int ptrace_hbp_set_event(unsigned int note_type,
258 struct task_struct *tsk,
259 unsigned long idx,
260 struct perf_event *bp)
261 {
262 int err = -EINVAL;
263
264 switch (note_type) {
265 case NT_ARM_HW_BREAK:
266 if (idx >= ARM_MAX_BRP)
267 goto out;
268 idx = array_index_nospec(idx, ARM_MAX_BRP);
269 tsk->thread.debug.hbp_break[idx] = bp;
270 err = 0;
271 break;
272 case NT_ARM_HW_WATCH:
273 if (idx >= ARM_MAX_WRP)
274 goto out;
275 idx = array_index_nospec(idx, ARM_MAX_WRP);
276 tsk->thread.debug.hbp_watch[idx] = bp;
277 err = 0;
278 break;
279 }
280
281 out:
282 return err;
283 }
284
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 struct task_struct *tsk,
287 unsigned long idx)
288 {
289 struct perf_event *bp;
290 struct perf_event_attr attr;
291 int err, type;
292
293 switch (note_type) {
294 case NT_ARM_HW_BREAK:
295 type = HW_BREAKPOINT_X;
296 break;
297 case NT_ARM_HW_WATCH:
298 type = HW_BREAKPOINT_RW;
299 break;
300 default:
301 return ERR_PTR(-EINVAL);
302 }
303
304 ptrace_breakpoint_init(&attr);
305
306 /*
307 * Initialise fields to sane defaults
308 * (i.e. values that will pass validation).
309 */
310 attr.bp_addr = 0;
311 attr.bp_len = HW_BREAKPOINT_LEN_4;
312 attr.bp_type = type;
313 attr.disabled = 1;
314
315 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 if (IS_ERR(bp))
317 return bp;
318
319 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 if (err)
321 return ERR_PTR(err);
322
323 return bp;
324 }
325
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 struct arch_hw_breakpoint_ctrl ctrl,
328 struct perf_event_attr *attr)
329 {
330 int err, len, type, offset, disabled = !ctrl.enabled;
331
332 attr->disabled = disabled;
333 if (disabled)
334 return 0;
335
336 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 if (err)
338 return err;
339
340 switch (note_type) {
341 case NT_ARM_HW_BREAK:
342 if ((type & HW_BREAKPOINT_X) != type)
343 return -EINVAL;
344 break;
345 case NT_ARM_HW_WATCH:
346 if ((type & HW_BREAKPOINT_RW) != type)
347 return -EINVAL;
348 break;
349 default:
350 return -EINVAL;
351 }
352
353 attr->bp_len = len;
354 attr->bp_type = type;
355 attr->bp_addr += offset;
356
357 return 0;
358 }
359
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 u8 num;
363 u32 reg = 0;
364
365 switch (note_type) {
366 case NT_ARM_HW_BREAK:
367 num = hw_breakpoint_slots(TYPE_INST);
368 break;
369 case NT_ARM_HW_WATCH:
370 num = hw_breakpoint_slots(TYPE_DATA);
371 break;
372 default:
373 return -EINVAL;
374 }
375
376 reg |= debug_monitors_arch();
377 reg <<= 8;
378 reg |= num;
379
380 *info = reg;
381 return 0;
382 }
383
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 struct task_struct *tsk,
386 unsigned long idx,
387 u32 *ctrl)
388 {
389 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390
391 if (IS_ERR(bp))
392 return PTR_ERR(bp);
393
394 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 return 0;
396 }
397
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 struct task_struct *tsk,
400 unsigned long idx,
401 u64 *addr)
402 {
403 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404
405 if (IS_ERR(bp))
406 return PTR_ERR(bp);
407
408 *addr = bp ? counter_arch_bp(bp)->address : 0;
409 return 0;
410 }
411
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 struct task_struct *tsk,
414 unsigned long idx)
415 {
416 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417
418 if (!bp)
419 bp = ptrace_hbp_create(note_type, tsk, idx);
420
421 return bp;
422 }
423
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 struct task_struct *tsk,
426 unsigned long idx,
427 u32 uctrl)
428 {
429 int err;
430 struct perf_event *bp;
431 struct perf_event_attr attr;
432 struct arch_hw_breakpoint_ctrl ctrl;
433
434 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 if (IS_ERR(bp)) {
436 err = PTR_ERR(bp);
437 return err;
438 }
439
440 attr = bp->attr;
441 decode_ctrl_reg(uctrl, &ctrl);
442 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 if (err)
444 return err;
445
446 return modify_user_hw_breakpoint(bp, &attr);
447 }
448
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 struct task_struct *tsk,
451 unsigned long idx,
452 u64 addr)
453 {
454 int err;
455 struct perf_event *bp;
456 struct perf_event_attr attr;
457
458 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 if (IS_ERR(bp)) {
460 err = PTR_ERR(bp);
461 return err;
462 }
463
464 attr = bp->attr;
465 attr.bp_addr = addr;
466 err = modify_user_hw_breakpoint(bp, &attr);
467 return err;
468 }
469
470 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ sizeof(u32)
473
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)474 static int hw_break_get(struct task_struct *target,
475 const struct user_regset *regset,
476 struct membuf to)
477 {
478 unsigned int note_type = regset->core_note_type;
479 int ret, idx = 0;
480 u32 info, ctrl;
481 u64 addr;
482
483 /* Resource info */
484 ret = ptrace_hbp_get_resource_info(note_type, &info);
485 if (ret)
486 return ret;
487
488 membuf_write(&to, &info, sizeof(info));
489 membuf_zero(&to, sizeof(u32));
490 /* (address, ctrl) registers */
491 while (to.left) {
492 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 if (ret)
494 return ret;
495 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 if (ret)
497 return ret;
498 membuf_store(&to, addr);
499 membuf_store(&to, ctrl);
500 membuf_zero(&to, sizeof(u32));
501 idx++;
502 }
503 return 0;
504 }
505
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)506 static int hw_break_set(struct task_struct *target,
507 const struct user_regset *regset,
508 unsigned int pos, unsigned int count,
509 const void *kbuf, const void __user *ubuf)
510 {
511 unsigned int note_type = regset->core_note_type;
512 int ret, idx = 0, offset, limit;
513 u32 ctrl;
514 u64 addr;
515
516 /* Resource info and pad */
517 offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519
520 /* (address, ctrl) registers */
521 limit = regset->n * regset->size;
522 while (count && offset < limit) {
523 if (count < PTRACE_HBP_ADDR_SZ)
524 return -EINVAL;
525 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
526 offset, offset + PTRACE_HBP_ADDR_SZ);
527 if (ret)
528 return ret;
529 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
530 if (ret)
531 return ret;
532 offset += PTRACE_HBP_ADDR_SZ;
533
534 if (!count)
535 break;
536 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
537 offset, offset + PTRACE_HBP_CTRL_SZ);
538 if (ret)
539 return ret;
540 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
541 if (ret)
542 return ret;
543 offset += PTRACE_HBP_CTRL_SZ;
544
545 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
546 offset, offset + PTRACE_HBP_PAD_SZ);
547 offset += PTRACE_HBP_PAD_SZ;
548 idx++;
549 }
550
551 return 0;
552 }
553 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
554
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)555 static int gpr_get(struct task_struct *target,
556 const struct user_regset *regset,
557 struct membuf to)
558 {
559 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
560 return membuf_write(&to, uregs, sizeof(*uregs));
561 }
562
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)563 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
564 unsigned int pos, unsigned int count,
565 const void *kbuf, const void __user *ubuf)
566 {
567 int ret;
568 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
569
570 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
571 if (ret)
572 return ret;
573
574 if (!valid_user_regs(&newregs, target))
575 return -EINVAL;
576
577 task_pt_regs(target)->user_regs = newregs;
578 return 0;
579 }
580
fpr_active(struct task_struct * target,const struct user_regset * regset)581 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
582 {
583 if (!system_supports_fpsimd())
584 return -ENODEV;
585 return regset->n;
586 }
587
588 /*
589 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
590 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)591 static int __fpr_get(struct task_struct *target,
592 const struct user_regset *regset,
593 struct membuf to)
594 {
595 struct user_fpsimd_state *uregs;
596
597 sve_sync_to_fpsimd(target);
598
599 uregs = &target->thread.uw.fpsimd_state;
600
601 return membuf_write(&to, uregs, sizeof(*uregs));
602 }
603
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)604 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
605 struct membuf to)
606 {
607 if (!system_supports_fpsimd())
608 return -EINVAL;
609
610 if (target == current)
611 fpsimd_preserve_current_state();
612
613 return __fpr_get(target, regset, to);
614 }
615
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)616 static int __fpr_set(struct task_struct *target,
617 const struct user_regset *regset,
618 unsigned int pos, unsigned int count,
619 const void *kbuf, const void __user *ubuf,
620 unsigned int start_pos)
621 {
622 int ret;
623 struct user_fpsimd_state newstate;
624
625 /*
626 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
627 * short copyin can't resurrect stale data.
628 */
629 sve_sync_to_fpsimd(target);
630
631 newstate = target->thread.uw.fpsimd_state;
632
633 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
634 start_pos, start_pos + sizeof(newstate));
635 if (ret)
636 return ret;
637
638 target->thread.uw.fpsimd_state = newstate;
639
640 return ret;
641 }
642
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)643 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
644 unsigned int pos, unsigned int count,
645 const void *kbuf, const void __user *ubuf)
646 {
647 int ret;
648
649 if (!system_supports_fpsimd())
650 return -EINVAL;
651
652 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
653 if (ret)
654 return ret;
655
656 sve_sync_from_fpsimd_zeropad(target);
657 fpsimd_flush_task_state(target);
658
659 return ret;
660 }
661
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)662 static int tls_get(struct task_struct *target, const struct user_regset *regset,
663 struct membuf to)
664 {
665 int ret;
666
667 if (target == current)
668 tls_preserve_current_state();
669
670 ret = membuf_store(&to, target->thread.uw.tp_value);
671 if (system_supports_tpidr2())
672 ret = membuf_store(&to, target->thread.tpidr2_el0);
673 else
674 ret = membuf_zero(&to, sizeof(u64));
675
676 return ret;
677 }
678
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)679 static int tls_set(struct task_struct *target, const struct user_regset *regset,
680 unsigned int pos, unsigned int count,
681 const void *kbuf, const void __user *ubuf)
682 {
683 int ret;
684 unsigned long tls[2];
685
686 tls[0] = target->thread.uw.tp_value;
687 if (system_supports_tpidr2())
688 tls[1] = target->thread.tpidr2_el0;
689
690 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
691 if (ret)
692 return ret;
693
694 target->thread.uw.tp_value = tls[0];
695 if (system_supports_tpidr2())
696 target->thread.tpidr2_el0 = tls[1];
697
698 return ret;
699 }
700
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)701 static int system_call_get(struct task_struct *target,
702 const struct user_regset *regset,
703 struct membuf to)
704 {
705 return membuf_store(&to, task_pt_regs(target)->syscallno);
706 }
707
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)708 static int system_call_set(struct task_struct *target,
709 const struct user_regset *regset,
710 unsigned int pos, unsigned int count,
711 const void *kbuf, const void __user *ubuf)
712 {
713 int syscallno = task_pt_regs(target)->syscallno;
714 int ret;
715
716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
717 if (ret)
718 return ret;
719
720 task_pt_regs(target)->syscallno = syscallno;
721 return ret;
722 }
723
724 #ifdef CONFIG_ARM64_SVE
725
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target,enum vec_type type)726 static void sve_init_header_from_task(struct user_sve_header *header,
727 struct task_struct *target,
728 enum vec_type type)
729 {
730 unsigned int vq;
731 bool active;
732 bool fpsimd_only;
733 enum vec_type task_type;
734
735 memset(header, 0, sizeof(*header));
736
737 /* Check if the requested registers are active for the task */
738 if (thread_sm_enabled(&target->thread))
739 task_type = ARM64_VEC_SME;
740 else
741 task_type = ARM64_VEC_SVE;
742 active = (task_type == type);
743
744 switch (type) {
745 case ARM64_VEC_SVE:
746 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
747 header->flags |= SVE_PT_VL_INHERIT;
748 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
749 break;
750 case ARM64_VEC_SME:
751 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
752 header->flags |= SVE_PT_VL_INHERIT;
753 fpsimd_only = false;
754 break;
755 default:
756 WARN_ON_ONCE(1);
757 return;
758 }
759
760 if (active) {
761 if (fpsimd_only) {
762 header->flags |= SVE_PT_REGS_FPSIMD;
763 } else {
764 header->flags |= SVE_PT_REGS_SVE;
765 }
766 }
767
768 header->vl = task_get_vl(target, type);
769 vq = sve_vq_from_vl(header->vl);
770
771 header->max_vl = vec_max_vl(type);
772 header->size = SVE_PT_SIZE(vq, header->flags);
773 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
774 SVE_PT_REGS_SVE);
775 }
776
sve_size_from_header(struct user_sve_header const * header)777 static unsigned int sve_size_from_header(struct user_sve_header const *header)
778 {
779 return ALIGN(header->size, SVE_VQ_BYTES);
780 }
781
sve_get_common(struct task_struct * target,const struct user_regset * regset,struct membuf to,enum vec_type type)782 static int sve_get_common(struct task_struct *target,
783 const struct user_regset *regset,
784 struct membuf to,
785 enum vec_type type)
786 {
787 struct user_sve_header header;
788 unsigned int vq;
789 unsigned long start, end;
790
791 /* Header */
792 sve_init_header_from_task(&header, target, type);
793 vq = sve_vq_from_vl(header.vl);
794
795 membuf_write(&to, &header, sizeof(header));
796
797 if (target == current)
798 fpsimd_preserve_current_state();
799
800 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
801 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
802
803 switch ((header.flags & SVE_PT_REGS_MASK)) {
804 case SVE_PT_REGS_FPSIMD:
805 return __fpr_get(target, regset, to);
806
807 case SVE_PT_REGS_SVE:
808 start = SVE_PT_SVE_OFFSET;
809 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
810 membuf_write(&to, target->thread.sve_state, end - start);
811
812 start = end;
813 end = SVE_PT_SVE_FPSR_OFFSET(vq);
814 membuf_zero(&to, end - start);
815
816 /*
817 * Copy fpsr, and fpcr which must follow contiguously in
818 * struct fpsimd_state:
819 */
820 start = end;
821 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
822 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
823 end - start);
824
825 start = end;
826 end = sve_size_from_header(&header);
827 return membuf_zero(&to, end - start);
828
829 default:
830 return 0;
831 }
832 }
833
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)834 static int sve_get(struct task_struct *target,
835 const struct user_regset *regset,
836 struct membuf to)
837 {
838 if (!system_supports_sve())
839 return -EINVAL;
840
841 return sve_get_common(target, regset, to, ARM64_VEC_SVE);
842 }
843
sve_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,enum vec_type type)844 static int sve_set_common(struct task_struct *target,
845 const struct user_regset *regset,
846 unsigned int pos, unsigned int count,
847 const void *kbuf, const void __user *ubuf,
848 enum vec_type type)
849 {
850 int ret;
851 struct user_sve_header header;
852 unsigned int vq;
853 unsigned long start, end;
854
855 /* Header */
856 if (count < sizeof(header))
857 return -EINVAL;
858 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
859 0, sizeof(header));
860 if (ret)
861 goto out;
862
863 /*
864 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
865 * vec_set_vector_length(), which will also validate them for us:
866 */
867 ret = vec_set_vector_length(target, type, header.vl,
868 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
869 if (ret)
870 goto out;
871
872 /* Actual VL set may be less than the user asked for: */
873 vq = sve_vq_from_vl(task_get_vl(target, type));
874
875 /* Enter/exit streaming mode */
876 if (system_supports_sme()) {
877 u64 old_svcr = target->thread.svcr;
878
879 switch (type) {
880 case ARM64_VEC_SVE:
881 target->thread.svcr &= ~SVCR_SM_MASK;
882 break;
883 case ARM64_VEC_SME:
884 target->thread.svcr |= SVCR_SM_MASK;
885
886 /*
887 * Disable traps and ensure there is SME storage but
888 * preserve any currently set values in ZA/ZT.
889 */
890 sme_alloc(target, false);
891 set_tsk_thread_flag(target, TIF_SME);
892 break;
893 default:
894 WARN_ON_ONCE(1);
895 ret = -EINVAL;
896 goto out;
897 }
898
899 /*
900 * If we switched then invalidate any existing SVE
901 * state and ensure there's storage.
902 */
903 if (target->thread.svcr != old_svcr)
904 sve_alloc(target, true);
905 }
906
907 /* Registers: FPSIMD-only case */
908
909 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
910 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
911 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
912 SVE_PT_FPSIMD_OFFSET);
913 clear_tsk_thread_flag(target, TIF_SVE);
914 target->thread.fp_type = FP_STATE_FPSIMD;
915 goto out;
916 }
917
918 /*
919 * Otherwise: no registers or full SVE case. For backwards
920 * compatibility reasons we treat empty flags as SVE registers.
921 */
922
923 /*
924 * If setting a different VL from the requested VL and there is
925 * register data, the data layout will be wrong: don't even
926 * try to set the registers in this case.
927 */
928 if (count && vq != sve_vq_from_vl(header.vl)) {
929 ret = -EIO;
930 goto out;
931 }
932
933 sve_alloc(target, true);
934 if (!target->thread.sve_state) {
935 ret = -ENOMEM;
936 clear_tsk_thread_flag(target, TIF_SVE);
937 target->thread.fp_type = FP_STATE_FPSIMD;
938 goto out;
939 }
940
941 /*
942 * Ensure target->thread.sve_state is up to date with target's
943 * FPSIMD regs, so that a short copyin leaves trailing
944 * registers unmodified. Only enable SVE if we are
945 * configuring normal SVE, a system with streaming SVE may not
946 * have normal SVE.
947 */
948 fpsimd_sync_to_sve(target);
949 if (type == ARM64_VEC_SVE)
950 set_tsk_thread_flag(target, TIF_SVE);
951 target->thread.fp_type = FP_STATE_SVE;
952
953 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
954 start = SVE_PT_SVE_OFFSET;
955 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
956 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
957 target->thread.sve_state,
958 start, end);
959 if (ret)
960 goto out;
961
962 start = end;
963 end = SVE_PT_SVE_FPSR_OFFSET(vq);
964 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
965
966 /*
967 * Copy fpsr, and fpcr which must follow contiguously in
968 * struct fpsimd_state:
969 */
970 start = end;
971 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
972 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
973 &target->thread.uw.fpsimd_state.fpsr,
974 start, end);
975
976 out:
977 fpsimd_flush_task_state(target);
978 return ret;
979 }
980
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)981 static int sve_set(struct task_struct *target,
982 const struct user_regset *regset,
983 unsigned int pos, unsigned int count,
984 const void *kbuf, const void __user *ubuf)
985 {
986 if (!system_supports_sve())
987 return -EINVAL;
988
989 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
990 ARM64_VEC_SVE);
991 }
992
993 #endif /* CONFIG_ARM64_SVE */
994
995 #ifdef CONFIG_ARM64_SME
996
ssve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)997 static int ssve_get(struct task_struct *target,
998 const struct user_regset *regset,
999 struct membuf to)
1000 {
1001 if (!system_supports_sme())
1002 return -EINVAL;
1003
1004 return sve_get_common(target, regset, to, ARM64_VEC_SME);
1005 }
1006
ssve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1007 static int ssve_set(struct task_struct *target,
1008 const struct user_regset *regset,
1009 unsigned int pos, unsigned int count,
1010 const void *kbuf, const void __user *ubuf)
1011 {
1012 if (!system_supports_sme())
1013 return -EINVAL;
1014
1015 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1016 ARM64_VEC_SME);
1017 }
1018
za_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1019 static int za_get(struct task_struct *target,
1020 const struct user_regset *regset,
1021 struct membuf to)
1022 {
1023 struct user_za_header header;
1024 unsigned int vq;
1025 unsigned long start, end;
1026
1027 if (!system_supports_sme())
1028 return -EINVAL;
1029
1030 /* Header */
1031 memset(&header, 0, sizeof(header));
1032
1033 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1034 header.flags |= ZA_PT_VL_INHERIT;
1035
1036 header.vl = task_get_sme_vl(target);
1037 vq = sve_vq_from_vl(header.vl);
1038 header.max_vl = sme_max_vl();
1039 header.max_size = ZA_PT_SIZE(vq);
1040
1041 /* If ZA is not active there is only the header */
1042 if (thread_za_enabled(&target->thread))
1043 header.size = ZA_PT_SIZE(vq);
1044 else
1045 header.size = ZA_PT_ZA_OFFSET;
1046
1047 membuf_write(&to, &header, sizeof(header));
1048
1049 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1050 end = ZA_PT_ZA_OFFSET;
1051
1052 if (target == current)
1053 fpsimd_preserve_current_state();
1054
1055 /* Any register data to include? */
1056 if (thread_za_enabled(&target->thread)) {
1057 start = end;
1058 end = ZA_PT_SIZE(vq);
1059 membuf_write(&to, target->thread.sme_state, end - start);
1060 }
1061
1062 /* Zero any trailing padding */
1063 start = end;
1064 end = ALIGN(header.size, SVE_VQ_BYTES);
1065 return membuf_zero(&to, end - start);
1066 }
1067
za_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1068 static int za_set(struct task_struct *target,
1069 const struct user_regset *regset,
1070 unsigned int pos, unsigned int count,
1071 const void *kbuf, const void __user *ubuf)
1072 {
1073 int ret;
1074 struct user_za_header header;
1075 unsigned int vq;
1076 unsigned long start, end;
1077
1078 if (!system_supports_sme())
1079 return -EINVAL;
1080
1081 /* Header */
1082 if (count < sizeof(header))
1083 return -EINVAL;
1084 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1085 0, sizeof(header));
1086 if (ret)
1087 goto out;
1088
1089 /*
1090 * All current ZA_PT_* flags are consumed by
1091 * vec_set_vector_length(), which will also validate them for
1092 * us:
1093 */
1094 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1095 ((unsigned long)header.flags) << 16);
1096 if (ret)
1097 goto out;
1098
1099 /* Actual VL set may be less than the user asked for: */
1100 vq = sve_vq_from_vl(task_get_sme_vl(target));
1101
1102 /* Ensure there is some SVE storage for streaming mode */
1103 if (!target->thread.sve_state) {
1104 sve_alloc(target, false);
1105 if (!target->thread.sve_state) {
1106 ret = -ENOMEM;
1107 goto out;
1108 }
1109 }
1110
1111 /*
1112 * Only flush the storage if PSTATE.ZA was not already set,
1113 * otherwise preserve any existing data.
1114 */
1115 sme_alloc(target, !thread_za_enabled(&target->thread));
1116 if (!target->thread.sme_state)
1117 return -ENOMEM;
1118
1119 /* If there is no data then disable ZA */
1120 if (!count) {
1121 target->thread.svcr &= ~SVCR_ZA_MASK;
1122 goto out;
1123 }
1124
1125 /*
1126 * If setting a different VL from the requested VL and there is
1127 * register data, the data layout will be wrong: don't even
1128 * try to set the registers in this case.
1129 */
1130 if (vq != sve_vq_from_vl(header.vl)) {
1131 ret = -EIO;
1132 goto out;
1133 }
1134
1135 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1136 start = ZA_PT_ZA_OFFSET;
1137 end = ZA_PT_SIZE(vq);
1138 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1139 target->thread.sme_state,
1140 start, end);
1141 if (ret)
1142 goto out;
1143
1144 /* Mark ZA as active and let userspace use it */
1145 set_tsk_thread_flag(target, TIF_SME);
1146 target->thread.svcr |= SVCR_ZA_MASK;
1147
1148 out:
1149 fpsimd_flush_task_state(target);
1150 return ret;
1151 }
1152
zt_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1153 static int zt_get(struct task_struct *target,
1154 const struct user_regset *regset,
1155 struct membuf to)
1156 {
1157 if (!system_supports_sme2())
1158 return -EINVAL;
1159
1160 /*
1161 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1162 * enabled so report the current register value as zero.
1163 */
1164 if (thread_za_enabled(&target->thread))
1165 membuf_write(&to, thread_zt_state(&target->thread),
1166 ZT_SIG_REG_BYTES);
1167 else
1168 membuf_zero(&to, ZT_SIG_REG_BYTES);
1169
1170 return 0;
1171 }
1172
zt_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1173 static int zt_set(struct task_struct *target,
1174 const struct user_regset *regset,
1175 unsigned int pos, unsigned int count,
1176 const void *kbuf, const void __user *ubuf)
1177 {
1178 int ret;
1179
1180 if (!system_supports_sme2())
1181 return -EINVAL;
1182
1183 /* Ensure SVE storage in case this is first use of SME */
1184 sve_alloc(target, false);
1185 if (!target->thread.sve_state)
1186 return -ENOMEM;
1187
1188 if (!thread_za_enabled(&target->thread)) {
1189 sme_alloc(target, true);
1190 if (!target->thread.sme_state)
1191 return -ENOMEM;
1192 }
1193
1194 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1195 thread_zt_state(&target->thread),
1196 0, ZT_SIG_REG_BYTES);
1197 if (ret == 0) {
1198 target->thread.svcr |= SVCR_ZA_MASK;
1199 set_tsk_thread_flag(target, TIF_SME);
1200 }
1201
1202 fpsimd_flush_task_state(target);
1203
1204 return ret;
1205 }
1206
1207 #endif /* CONFIG_ARM64_SME */
1208
1209 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1210 static int pac_mask_get(struct task_struct *target,
1211 const struct user_regset *regset,
1212 struct membuf to)
1213 {
1214 /*
1215 * The PAC bits can differ across data and instruction pointers
1216 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1217 * we expose separate masks.
1218 */
1219 unsigned long mask = ptrauth_user_pac_mask();
1220 struct user_pac_mask uregs = {
1221 .data_mask = mask,
1222 .insn_mask = mask,
1223 };
1224
1225 if (!system_supports_address_auth())
1226 return -EINVAL;
1227
1228 return membuf_write(&to, &uregs, sizeof(uregs));
1229 }
1230
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1231 static int pac_enabled_keys_get(struct task_struct *target,
1232 const struct user_regset *regset,
1233 struct membuf to)
1234 {
1235 long enabled_keys = ptrauth_get_enabled_keys(target);
1236
1237 if (IS_ERR_VALUE(enabled_keys))
1238 return enabled_keys;
1239
1240 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1241 }
1242
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1243 static int pac_enabled_keys_set(struct task_struct *target,
1244 const struct user_regset *regset,
1245 unsigned int pos, unsigned int count,
1246 const void *kbuf, const void __user *ubuf)
1247 {
1248 int ret;
1249 long enabled_keys = ptrauth_get_enabled_keys(target);
1250
1251 if (IS_ERR_VALUE(enabled_keys))
1252 return enabled_keys;
1253
1254 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1255 sizeof(long));
1256 if (ret)
1257 return ret;
1258
1259 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1260 enabled_keys);
1261 }
1262
1263 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)1264 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1265 {
1266 return (__uint128_t)key->hi << 64 | key->lo;
1267 }
1268
pac_key_from_user(__uint128_t ukey)1269 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1270 {
1271 struct ptrauth_key key = {
1272 .lo = (unsigned long)ukey,
1273 .hi = (unsigned long)(ukey >> 64),
1274 };
1275
1276 return key;
1277 }
1278
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)1279 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1280 const struct ptrauth_keys_user *keys)
1281 {
1282 ukeys->apiakey = pac_key_to_user(&keys->apia);
1283 ukeys->apibkey = pac_key_to_user(&keys->apib);
1284 ukeys->apdakey = pac_key_to_user(&keys->apda);
1285 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1286 }
1287
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)1288 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1289 const struct user_pac_address_keys *ukeys)
1290 {
1291 keys->apia = pac_key_from_user(ukeys->apiakey);
1292 keys->apib = pac_key_from_user(ukeys->apibkey);
1293 keys->apda = pac_key_from_user(ukeys->apdakey);
1294 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1295 }
1296
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1297 static int pac_address_keys_get(struct task_struct *target,
1298 const struct user_regset *regset,
1299 struct membuf to)
1300 {
1301 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1302 struct user_pac_address_keys user_keys;
1303
1304 if (!system_supports_address_auth())
1305 return -EINVAL;
1306
1307 pac_address_keys_to_user(&user_keys, keys);
1308
1309 return membuf_write(&to, &user_keys, sizeof(user_keys));
1310 }
1311
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1312 static int pac_address_keys_set(struct task_struct *target,
1313 const struct user_regset *regset,
1314 unsigned int pos, unsigned int count,
1315 const void *kbuf, const void __user *ubuf)
1316 {
1317 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1318 struct user_pac_address_keys user_keys;
1319 int ret;
1320
1321 if (!system_supports_address_auth())
1322 return -EINVAL;
1323
1324 pac_address_keys_to_user(&user_keys, keys);
1325 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1326 &user_keys, 0, -1);
1327 if (ret)
1328 return ret;
1329 pac_address_keys_from_user(keys, &user_keys);
1330
1331 return 0;
1332 }
1333
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1334 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1335 const struct ptrauth_keys_user *keys)
1336 {
1337 ukeys->apgakey = pac_key_to_user(&keys->apga);
1338 }
1339
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1340 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1341 const struct user_pac_generic_keys *ukeys)
1342 {
1343 keys->apga = pac_key_from_user(ukeys->apgakey);
1344 }
1345
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1346 static int pac_generic_keys_get(struct task_struct *target,
1347 const struct user_regset *regset,
1348 struct membuf to)
1349 {
1350 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1351 struct user_pac_generic_keys user_keys;
1352
1353 if (!system_supports_generic_auth())
1354 return -EINVAL;
1355
1356 pac_generic_keys_to_user(&user_keys, keys);
1357
1358 return membuf_write(&to, &user_keys, sizeof(user_keys));
1359 }
1360
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1361 static int pac_generic_keys_set(struct task_struct *target,
1362 const struct user_regset *regset,
1363 unsigned int pos, unsigned int count,
1364 const void *kbuf, const void __user *ubuf)
1365 {
1366 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1367 struct user_pac_generic_keys user_keys;
1368 int ret;
1369
1370 if (!system_supports_generic_auth())
1371 return -EINVAL;
1372
1373 pac_generic_keys_to_user(&user_keys, keys);
1374 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1375 &user_keys, 0, -1);
1376 if (ret)
1377 return ret;
1378 pac_generic_keys_from_user(keys, &user_keys);
1379
1380 return 0;
1381 }
1382 #endif /* CONFIG_CHECKPOINT_RESTORE */
1383 #endif /* CONFIG_ARM64_PTR_AUTH */
1384
1385 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1386 static int tagged_addr_ctrl_get(struct task_struct *target,
1387 const struct user_regset *regset,
1388 struct membuf to)
1389 {
1390 long ctrl = get_tagged_addr_ctrl(target);
1391
1392 if (IS_ERR_VALUE(ctrl))
1393 return ctrl;
1394
1395 return membuf_write(&to, &ctrl, sizeof(ctrl));
1396 }
1397
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1398 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1399 user_regset *regset, unsigned int pos,
1400 unsigned int count, const void *kbuf, const
1401 void __user *ubuf)
1402 {
1403 int ret;
1404 long ctrl;
1405
1406 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1407 if (ret)
1408 return ret;
1409
1410 return set_tagged_addr_ctrl(target, ctrl);
1411 }
1412 #endif
1413
1414 enum aarch64_regset {
1415 REGSET_GPR,
1416 REGSET_FPR,
1417 REGSET_TLS,
1418 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1419 REGSET_HW_BREAK,
1420 REGSET_HW_WATCH,
1421 #endif
1422 REGSET_SYSTEM_CALL,
1423 #ifdef CONFIG_ARM64_SVE
1424 REGSET_SVE,
1425 #endif
1426 #ifdef CONFIG_ARM64_SME
1427 REGSET_SSVE,
1428 REGSET_ZA,
1429 REGSET_ZT,
1430 #endif
1431 #ifdef CONFIG_ARM64_PTR_AUTH
1432 REGSET_PAC_MASK,
1433 REGSET_PAC_ENABLED_KEYS,
1434 #ifdef CONFIG_CHECKPOINT_RESTORE
1435 REGSET_PACA_KEYS,
1436 REGSET_PACG_KEYS,
1437 #endif
1438 #endif
1439 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1440 REGSET_TAGGED_ADDR_CTRL,
1441 #endif
1442 };
1443
1444 static const struct user_regset aarch64_regsets[] = {
1445 [REGSET_GPR] = {
1446 .core_note_type = NT_PRSTATUS,
1447 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1448 .size = sizeof(u64),
1449 .align = sizeof(u64),
1450 .regset_get = gpr_get,
1451 .set = gpr_set
1452 },
1453 [REGSET_FPR] = {
1454 .core_note_type = NT_PRFPREG,
1455 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1456 /*
1457 * We pretend we have 32-bit registers because the fpsr and
1458 * fpcr are 32-bits wide.
1459 */
1460 .size = sizeof(u32),
1461 .align = sizeof(u32),
1462 .active = fpr_active,
1463 .regset_get = fpr_get,
1464 .set = fpr_set
1465 },
1466 [REGSET_TLS] = {
1467 .core_note_type = NT_ARM_TLS,
1468 .n = 2,
1469 .size = sizeof(void *),
1470 .align = sizeof(void *),
1471 .regset_get = tls_get,
1472 .set = tls_set,
1473 },
1474 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1475 [REGSET_HW_BREAK] = {
1476 .core_note_type = NT_ARM_HW_BREAK,
1477 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1478 .size = sizeof(u32),
1479 .align = sizeof(u32),
1480 .regset_get = hw_break_get,
1481 .set = hw_break_set,
1482 },
1483 [REGSET_HW_WATCH] = {
1484 .core_note_type = NT_ARM_HW_WATCH,
1485 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1486 .size = sizeof(u32),
1487 .align = sizeof(u32),
1488 .regset_get = hw_break_get,
1489 .set = hw_break_set,
1490 },
1491 #endif
1492 [REGSET_SYSTEM_CALL] = {
1493 .core_note_type = NT_ARM_SYSTEM_CALL,
1494 .n = 1,
1495 .size = sizeof(int),
1496 .align = sizeof(int),
1497 .regset_get = system_call_get,
1498 .set = system_call_set,
1499 },
1500 #ifdef CONFIG_ARM64_SVE
1501 [REGSET_SVE] = { /* Scalable Vector Extension */
1502 .core_note_type = NT_ARM_SVE,
1503 .n = DIV_ROUND_UP(SVE_PT_SIZE(ARCH_SVE_VQ_MAX,
1504 SVE_PT_REGS_SVE),
1505 SVE_VQ_BYTES),
1506 .size = SVE_VQ_BYTES,
1507 .align = SVE_VQ_BYTES,
1508 .regset_get = sve_get,
1509 .set = sve_set,
1510 },
1511 #endif
1512 #ifdef CONFIG_ARM64_SME
1513 [REGSET_SSVE] = { /* Streaming mode SVE */
1514 .core_note_type = NT_ARM_SSVE,
1515 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1516 SVE_VQ_BYTES),
1517 .size = SVE_VQ_BYTES,
1518 .align = SVE_VQ_BYTES,
1519 .regset_get = ssve_get,
1520 .set = ssve_set,
1521 },
1522 [REGSET_ZA] = { /* SME ZA */
1523 .core_note_type = NT_ARM_ZA,
1524 /*
1525 * ZA is a single register but it's variably sized and
1526 * the ptrace core requires that the size of any data
1527 * be an exact multiple of the configured register
1528 * size so report as though we had SVE_VQ_BYTES
1529 * registers. These values aren't exposed to
1530 * userspace.
1531 */
1532 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1533 .size = SVE_VQ_BYTES,
1534 .align = SVE_VQ_BYTES,
1535 .regset_get = za_get,
1536 .set = za_set,
1537 },
1538 [REGSET_ZT] = { /* SME ZT */
1539 .core_note_type = NT_ARM_ZT,
1540 .n = 1,
1541 .size = ZT_SIG_REG_BYTES,
1542 .align = sizeof(u64),
1543 .regset_get = zt_get,
1544 .set = zt_set,
1545 },
1546 #endif
1547 #ifdef CONFIG_ARM64_PTR_AUTH
1548 [REGSET_PAC_MASK] = {
1549 .core_note_type = NT_ARM_PAC_MASK,
1550 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1551 .size = sizeof(u64),
1552 .align = sizeof(u64),
1553 .regset_get = pac_mask_get,
1554 /* this cannot be set dynamically */
1555 },
1556 [REGSET_PAC_ENABLED_KEYS] = {
1557 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1558 .n = 1,
1559 .size = sizeof(long),
1560 .align = sizeof(long),
1561 .regset_get = pac_enabled_keys_get,
1562 .set = pac_enabled_keys_set,
1563 },
1564 #ifdef CONFIG_CHECKPOINT_RESTORE
1565 [REGSET_PACA_KEYS] = {
1566 .core_note_type = NT_ARM_PACA_KEYS,
1567 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1568 .size = sizeof(__uint128_t),
1569 .align = sizeof(__uint128_t),
1570 .regset_get = pac_address_keys_get,
1571 .set = pac_address_keys_set,
1572 },
1573 [REGSET_PACG_KEYS] = {
1574 .core_note_type = NT_ARM_PACG_KEYS,
1575 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1576 .size = sizeof(__uint128_t),
1577 .align = sizeof(__uint128_t),
1578 .regset_get = pac_generic_keys_get,
1579 .set = pac_generic_keys_set,
1580 },
1581 #endif
1582 #endif
1583 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1584 [REGSET_TAGGED_ADDR_CTRL] = {
1585 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1586 .n = 1,
1587 .size = sizeof(long),
1588 .align = sizeof(long),
1589 .regset_get = tagged_addr_ctrl_get,
1590 .set = tagged_addr_ctrl_set,
1591 },
1592 #endif
1593 };
1594
1595 static const struct user_regset_view user_aarch64_view = {
1596 .name = "aarch64", .e_machine = EM_AARCH64,
1597 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1598 };
1599
1600 #ifdef CONFIG_COMPAT
1601 enum compat_regset {
1602 REGSET_COMPAT_GPR,
1603 REGSET_COMPAT_VFP,
1604 };
1605
compat_get_user_reg(struct task_struct * task,int idx)1606 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1607 {
1608 struct pt_regs *regs = task_pt_regs(task);
1609
1610 switch (idx) {
1611 case 15:
1612 return regs->pc;
1613 case 16:
1614 return pstate_to_compat_psr(regs->pstate);
1615 case 17:
1616 return regs->orig_x0;
1617 default:
1618 return regs->regs[idx];
1619 }
1620 }
1621
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1622 static int compat_gpr_get(struct task_struct *target,
1623 const struct user_regset *regset,
1624 struct membuf to)
1625 {
1626 int i = 0;
1627
1628 while (to.left)
1629 membuf_store(&to, compat_get_user_reg(target, i++));
1630 return 0;
1631 }
1632
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1633 static int compat_gpr_set(struct task_struct *target,
1634 const struct user_regset *regset,
1635 unsigned int pos, unsigned int count,
1636 const void *kbuf, const void __user *ubuf)
1637 {
1638 struct pt_regs newregs;
1639 int ret = 0;
1640 unsigned int i, start, num_regs;
1641
1642 /* Calculate the number of AArch32 registers contained in count */
1643 num_regs = count / regset->size;
1644
1645 /* Convert pos into an register number */
1646 start = pos / regset->size;
1647
1648 if (start + num_regs > regset->n)
1649 return -EIO;
1650
1651 newregs = *task_pt_regs(target);
1652
1653 for (i = 0; i < num_regs; ++i) {
1654 unsigned int idx = start + i;
1655 compat_ulong_t reg;
1656
1657 if (kbuf) {
1658 memcpy(®, kbuf, sizeof(reg));
1659 kbuf += sizeof(reg);
1660 } else {
1661 ret = copy_from_user(®, ubuf, sizeof(reg));
1662 if (ret) {
1663 ret = -EFAULT;
1664 break;
1665 }
1666
1667 ubuf += sizeof(reg);
1668 }
1669
1670 switch (idx) {
1671 case 15:
1672 newregs.pc = reg;
1673 break;
1674 case 16:
1675 reg = compat_psr_to_pstate(reg);
1676 newregs.pstate = reg;
1677 break;
1678 case 17:
1679 newregs.orig_x0 = reg;
1680 break;
1681 default:
1682 newregs.regs[idx] = reg;
1683 }
1684
1685 }
1686
1687 if (valid_user_regs(&newregs.user_regs, target))
1688 *task_pt_regs(target) = newregs;
1689 else
1690 ret = -EINVAL;
1691
1692 return ret;
1693 }
1694
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1695 static int compat_vfp_get(struct task_struct *target,
1696 const struct user_regset *regset,
1697 struct membuf to)
1698 {
1699 struct user_fpsimd_state *uregs;
1700 compat_ulong_t fpscr;
1701
1702 if (!system_supports_fpsimd())
1703 return -EINVAL;
1704
1705 uregs = &target->thread.uw.fpsimd_state;
1706
1707 if (target == current)
1708 fpsimd_preserve_current_state();
1709
1710 /*
1711 * The VFP registers are packed into the fpsimd_state, so they all sit
1712 * nicely together for us. We just need to create the fpscr separately.
1713 */
1714 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1715 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1716 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1717 return membuf_store(&to, fpscr);
1718 }
1719
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1720 static int compat_vfp_set(struct task_struct *target,
1721 const struct user_regset *regset,
1722 unsigned int pos, unsigned int count,
1723 const void *kbuf, const void __user *ubuf)
1724 {
1725 struct user_fpsimd_state *uregs;
1726 compat_ulong_t fpscr;
1727 int ret, vregs_end_pos;
1728
1729 if (!system_supports_fpsimd())
1730 return -EINVAL;
1731
1732 uregs = &target->thread.uw.fpsimd_state;
1733
1734 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1735 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1736 vregs_end_pos);
1737
1738 if (count && !ret) {
1739 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1740 vregs_end_pos, VFP_STATE_SIZE);
1741 if (!ret) {
1742 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1743 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1744 }
1745 }
1746
1747 fpsimd_flush_task_state(target);
1748 return ret;
1749 }
1750
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1751 static int compat_tls_get(struct task_struct *target,
1752 const struct user_regset *regset,
1753 struct membuf to)
1754 {
1755 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1756 }
1757
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1758 static int compat_tls_set(struct task_struct *target,
1759 const struct user_regset *regset, unsigned int pos,
1760 unsigned int count, const void *kbuf,
1761 const void __user *ubuf)
1762 {
1763 int ret;
1764 compat_ulong_t tls = target->thread.uw.tp_value;
1765
1766 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1767 if (ret)
1768 return ret;
1769
1770 target->thread.uw.tp_value = tls;
1771 return ret;
1772 }
1773
1774 static const struct user_regset aarch32_regsets[] = {
1775 [REGSET_COMPAT_GPR] = {
1776 .core_note_type = NT_PRSTATUS,
1777 .n = COMPAT_ELF_NGREG,
1778 .size = sizeof(compat_elf_greg_t),
1779 .align = sizeof(compat_elf_greg_t),
1780 .regset_get = compat_gpr_get,
1781 .set = compat_gpr_set
1782 },
1783 [REGSET_COMPAT_VFP] = {
1784 .core_note_type = NT_ARM_VFP,
1785 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1786 .size = sizeof(compat_ulong_t),
1787 .align = sizeof(compat_ulong_t),
1788 .active = fpr_active,
1789 .regset_get = compat_vfp_get,
1790 .set = compat_vfp_set
1791 },
1792 };
1793
1794 static const struct user_regset_view user_aarch32_view = {
1795 .name = "aarch32", .e_machine = EM_ARM,
1796 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1797 };
1798
1799 static const struct user_regset aarch32_ptrace_regsets[] = {
1800 [REGSET_GPR] = {
1801 .core_note_type = NT_PRSTATUS,
1802 .n = COMPAT_ELF_NGREG,
1803 .size = sizeof(compat_elf_greg_t),
1804 .align = sizeof(compat_elf_greg_t),
1805 .regset_get = compat_gpr_get,
1806 .set = compat_gpr_set
1807 },
1808 [REGSET_FPR] = {
1809 .core_note_type = NT_ARM_VFP,
1810 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1811 .size = sizeof(compat_ulong_t),
1812 .align = sizeof(compat_ulong_t),
1813 .regset_get = compat_vfp_get,
1814 .set = compat_vfp_set
1815 },
1816 [REGSET_TLS] = {
1817 .core_note_type = NT_ARM_TLS,
1818 .n = 1,
1819 .size = sizeof(compat_ulong_t),
1820 .align = sizeof(compat_ulong_t),
1821 .regset_get = compat_tls_get,
1822 .set = compat_tls_set,
1823 },
1824 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1825 [REGSET_HW_BREAK] = {
1826 .core_note_type = NT_ARM_HW_BREAK,
1827 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1828 .size = sizeof(u32),
1829 .align = sizeof(u32),
1830 .regset_get = hw_break_get,
1831 .set = hw_break_set,
1832 },
1833 [REGSET_HW_WATCH] = {
1834 .core_note_type = NT_ARM_HW_WATCH,
1835 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1836 .size = sizeof(u32),
1837 .align = sizeof(u32),
1838 .regset_get = hw_break_get,
1839 .set = hw_break_set,
1840 },
1841 #endif
1842 [REGSET_SYSTEM_CALL] = {
1843 .core_note_type = NT_ARM_SYSTEM_CALL,
1844 .n = 1,
1845 .size = sizeof(int),
1846 .align = sizeof(int),
1847 .regset_get = system_call_get,
1848 .set = system_call_set,
1849 },
1850 };
1851
1852 static const struct user_regset_view user_aarch32_ptrace_view = {
1853 .name = "aarch32", .e_machine = EM_ARM,
1854 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1855 };
1856
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1857 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1858 compat_ulong_t __user *ret)
1859 {
1860 compat_ulong_t tmp;
1861
1862 if (off & 3)
1863 return -EIO;
1864
1865 if (off == COMPAT_PT_TEXT_ADDR)
1866 tmp = tsk->mm->start_code;
1867 else if (off == COMPAT_PT_DATA_ADDR)
1868 tmp = tsk->mm->start_data;
1869 else if (off == COMPAT_PT_TEXT_END_ADDR)
1870 tmp = tsk->mm->end_code;
1871 else if (off < sizeof(compat_elf_gregset_t))
1872 tmp = compat_get_user_reg(tsk, off >> 2);
1873 else if (off >= COMPAT_USER_SZ)
1874 return -EIO;
1875 else
1876 tmp = 0;
1877
1878 return put_user(tmp, ret);
1879 }
1880
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1881 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1882 compat_ulong_t val)
1883 {
1884 struct pt_regs newregs = *task_pt_regs(tsk);
1885 unsigned int idx = off / 4;
1886
1887 if (off & 3 || off >= COMPAT_USER_SZ)
1888 return -EIO;
1889
1890 if (off >= sizeof(compat_elf_gregset_t))
1891 return 0;
1892
1893 switch (idx) {
1894 case 15:
1895 newregs.pc = val;
1896 break;
1897 case 16:
1898 newregs.pstate = compat_psr_to_pstate(val);
1899 break;
1900 case 17:
1901 newregs.orig_x0 = val;
1902 break;
1903 default:
1904 newregs.regs[idx] = val;
1905 }
1906
1907 if (!valid_user_regs(&newregs.user_regs, tsk))
1908 return -EINVAL;
1909
1910 *task_pt_regs(tsk) = newregs;
1911 return 0;
1912 }
1913
1914 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1915
1916 /*
1917 * Convert a virtual register number into an index for a thread_info
1918 * breakpoint array. Breakpoints are identified using positive numbers
1919 * whilst watchpoints are negative. The registers are laid out as pairs
1920 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1921 * Register 0 is reserved for describing resource information.
1922 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1923 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1924 {
1925 return (abs(num) - 1) >> 1;
1926 }
1927
compat_ptrace_hbp_get_resource_info(u32 * kdata)1928 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1929 {
1930 u8 num_brps, num_wrps, debug_arch, wp_len;
1931 u32 reg = 0;
1932
1933 num_brps = hw_breakpoint_slots(TYPE_INST);
1934 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1935
1936 debug_arch = debug_monitors_arch();
1937 wp_len = 8;
1938 reg |= debug_arch;
1939 reg <<= 8;
1940 reg |= wp_len;
1941 reg <<= 8;
1942 reg |= num_wrps;
1943 reg <<= 8;
1944 reg |= num_brps;
1945
1946 *kdata = reg;
1947 return 0;
1948 }
1949
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1950 static int compat_ptrace_hbp_get(unsigned int note_type,
1951 struct task_struct *tsk,
1952 compat_long_t num,
1953 u32 *kdata)
1954 {
1955 u64 addr = 0;
1956 u32 ctrl = 0;
1957
1958 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1959
1960 if (num & 1) {
1961 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1962 *kdata = (u32)addr;
1963 } else {
1964 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1965 *kdata = ctrl;
1966 }
1967
1968 return err;
1969 }
1970
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1971 static int compat_ptrace_hbp_set(unsigned int note_type,
1972 struct task_struct *tsk,
1973 compat_long_t num,
1974 u32 *kdata)
1975 {
1976 u64 addr;
1977 u32 ctrl;
1978
1979 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1980
1981 if (num & 1) {
1982 addr = *kdata;
1983 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1984 } else {
1985 ctrl = *kdata;
1986 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1987 }
1988
1989 return err;
1990 }
1991
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1992 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1993 compat_ulong_t __user *data)
1994 {
1995 int ret;
1996 u32 kdata;
1997
1998 /* Watchpoint */
1999 if (num < 0) {
2000 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
2001 /* Resource info */
2002 } else if (num == 0) {
2003 ret = compat_ptrace_hbp_get_resource_info(&kdata);
2004 /* Breakpoint */
2005 } else {
2006 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2007 }
2008
2009 if (!ret)
2010 ret = put_user(kdata, data);
2011
2012 return ret;
2013 }
2014
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)2015 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2016 compat_ulong_t __user *data)
2017 {
2018 int ret;
2019 u32 kdata = 0;
2020
2021 if (num == 0)
2022 return 0;
2023
2024 ret = get_user(kdata, data);
2025 if (ret)
2026 return ret;
2027
2028 if (num < 0)
2029 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2030 else
2031 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2032
2033 return ret;
2034 }
2035 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2036
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)2037 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2038 compat_ulong_t caddr, compat_ulong_t cdata)
2039 {
2040 unsigned long addr = caddr;
2041 unsigned long data = cdata;
2042 void __user *datap = compat_ptr(data);
2043 int ret;
2044
2045 switch (request) {
2046 case PTRACE_PEEKUSR:
2047 ret = compat_ptrace_read_user(child, addr, datap);
2048 break;
2049
2050 case PTRACE_POKEUSR:
2051 ret = compat_ptrace_write_user(child, addr, data);
2052 break;
2053
2054 case COMPAT_PTRACE_GETREGS:
2055 ret = copy_regset_to_user(child,
2056 &user_aarch32_view,
2057 REGSET_COMPAT_GPR,
2058 0, sizeof(compat_elf_gregset_t),
2059 datap);
2060 break;
2061
2062 case COMPAT_PTRACE_SETREGS:
2063 ret = copy_regset_from_user(child,
2064 &user_aarch32_view,
2065 REGSET_COMPAT_GPR,
2066 0, sizeof(compat_elf_gregset_t),
2067 datap);
2068 break;
2069
2070 case COMPAT_PTRACE_GET_THREAD_AREA:
2071 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2072 (compat_ulong_t __user *)datap);
2073 break;
2074
2075 case COMPAT_PTRACE_SET_SYSCALL:
2076 task_pt_regs(child)->syscallno = data;
2077 ret = 0;
2078 break;
2079
2080 case COMPAT_PTRACE_GETVFPREGS:
2081 ret = copy_regset_to_user(child,
2082 &user_aarch32_view,
2083 REGSET_COMPAT_VFP,
2084 0, VFP_STATE_SIZE,
2085 datap);
2086 break;
2087
2088 case COMPAT_PTRACE_SETVFPREGS:
2089 ret = copy_regset_from_user(child,
2090 &user_aarch32_view,
2091 REGSET_COMPAT_VFP,
2092 0, VFP_STATE_SIZE,
2093 datap);
2094 break;
2095
2096 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2097 case COMPAT_PTRACE_GETHBPREGS:
2098 ret = compat_ptrace_gethbpregs(child, addr, datap);
2099 break;
2100
2101 case COMPAT_PTRACE_SETHBPREGS:
2102 ret = compat_ptrace_sethbpregs(child, addr, datap);
2103 break;
2104 #endif
2105
2106 default:
2107 ret = compat_ptrace_request(child, request, addr,
2108 data);
2109 break;
2110 }
2111
2112 return ret;
2113 }
2114 #endif /* CONFIG_COMPAT */
2115
task_user_regset_view(struct task_struct * task)2116 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2117 {
2118 #ifdef CONFIG_COMPAT
2119 /*
2120 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2121 * user_aarch32_view compatible with arm32. Native ptrace requests on
2122 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2123 * access to the TLS register.
2124 */
2125 if (is_compat_task())
2126 return &user_aarch32_view;
2127 else if (is_compat_thread(task_thread_info(task)))
2128 return &user_aarch32_ptrace_view;
2129 #endif
2130 return &user_aarch64_view;
2131 }
2132
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2133 long arch_ptrace(struct task_struct *child, long request,
2134 unsigned long addr, unsigned long data)
2135 {
2136 switch (request) {
2137 case PTRACE_PEEKMTETAGS:
2138 case PTRACE_POKEMTETAGS:
2139 return mte_ptrace_copy_tags(child, request, addr, data);
2140 }
2141
2142 return ptrace_request(child, request, addr, data);
2143 }
2144
2145 enum ptrace_syscall_dir {
2146 PTRACE_SYSCALL_ENTER = 0,
2147 PTRACE_SYSCALL_EXIT,
2148 };
2149
report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)2150 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2151 {
2152 int regno;
2153 unsigned long saved_reg;
2154
2155 /*
2156 * We have some ABI weirdness here in the way that we handle syscall
2157 * exit stops because we indicate whether or not the stop has been
2158 * signalled from syscall entry or syscall exit by clobbering a general
2159 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2160 * and restoring its old value after the stop. This means that:
2161 *
2162 * - Any writes by the tracer to this register during the stop are
2163 * ignored/discarded.
2164 *
2165 * - The actual value of the register is not available during the stop,
2166 * so the tracer cannot save it and restore it later.
2167 *
2168 * - Syscall stops behave differently to seccomp and pseudo-step traps
2169 * (the latter do not nobble any registers).
2170 */
2171 regno = (is_compat_task() ? 12 : 7);
2172 saved_reg = regs->regs[regno];
2173 regs->regs[regno] = dir;
2174
2175 if (dir == PTRACE_SYSCALL_ENTER) {
2176 if (ptrace_report_syscall_entry(regs))
2177 forget_syscall(regs);
2178 regs->regs[regno] = saved_reg;
2179 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2180 ptrace_report_syscall_exit(regs, 0);
2181 regs->regs[regno] = saved_reg;
2182 } else {
2183 regs->regs[regno] = saved_reg;
2184
2185 /*
2186 * Signal a pseudo-step exception since we are stepping but
2187 * tracer modifications to the registers may have rewound the
2188 * state machine.
2189 */
2190 ptrace_report_syscall_exit(regs, 1);
2191 }
2192 }
2193
syscall_trace_enter(struct pt_regs * regs)2194 int syscall_trace_enter(struct pt_regs *regs)
2195 {
2196 unsigned long flags = read_thread_flags();
2197
2198 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2199 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2200 if (flags & _TIF_SYSCALL_EMU)
2201 return NO_SYSCALL;
2202 }
2203
2204 /* Do the secure computing after ptrace; failures should be fast. */
2205 if (secure_computing() == -1)
2206 return NO_SYSCALL;
2207
2208 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2209 trace_sys_enter(regs, regs->syscallno);
2210
2211 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2212 regs->regs[2], regs->regs[3]);
2213
2214 return regs->syscallno;
2215 }
2216
syscall_trace_exit(struct pt_regs * regs)2217 void syscall_trace_exit(struct pt_regs *regs)
2218 {
2219 unsigned long flags = read_thread_flags();
2220
2221 audit_syscall_exit(regs);
2222
2223 if (flags & _TIF_SYSCALL_TRACEPOINT)
2224 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2225
2226 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2227 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2228
2229 rseq_syscall(regs);
2230 }
2231
2232 /*
2233 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2234 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2235 * not described in ARM DDI 0487D.a.
2236 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2237 * be allocated an EL0 meaning in future.
2238 * Userspace cannot use these until they have an architectural meaning.
2239 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2240 * We also reserve IL for the kernel; SS is handled dynamically.
2241 */
2242 #define SPSR_EL1_AARCH64_RES0_BITS \
2243 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2244 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2245 #define SPSR_EL1_AARCH32_RES0_BITS \
2246 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2247
valid_compat_regs(struct user_pt_regs * regs)2248 static int valid_compat_regs(struct user_pt_regs *regs)
2249 {
2250 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2251
2252 if (!system_supports_mixed_endian_el0()) {
2253 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2254 regs->pstate |= PSR_AA32_E_BIT;
2255 else
2256 regs->pstate &= ~PSR_AA32_E_BIT;
2257 }
2258
2259 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2260 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2261 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2262 (regs->pstate & PSR_AA32_F_BIT) == 0) {
2263 return 1;
2264 }
2265
2266 /*
2267 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2268 * arch/arm.
2269 */
2270 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2271 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2272 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2273 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2274 PSR_AA32_T_BIT;
2275 regs->pstate |= PSR_MODE32_BIT;
2276
2277 return 0;
2278 }
2279
valid_native_regs(struct user_pt_regs * regs)2280 static int valid_native_regs(struct user_pt_regs *regs)
2281 {
2282 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2283
2284 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2285 (regs->pstate & PSR_D_BIT) == 0 &&
2286 (regs->pstate & PSR_A_BIT) == 0 &&
2287 (regs->pstate & PSR_I_BIT) == 0 &&
2288 (regs->pstate & PSR_F_BIT) == 0) {
2289 return 1;
2290 }
2291
2292 /* Force PSR to a valid 64-bit EL0t */
2293 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2294
2295 return 0;
2296 }
2297
2298 /*
2299 * Are the current registers suitable for user mode? (used to maintain
2300 * security in signal handlers)
2301 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)2302 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2303 {
2304 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2305 user_regs_reset_single_step(regs, task);
2306
2307 if (is_compat_thread(task_thread_info(task)))
2308 return valid_compat_regs(regs);
2309 else
2310 return valid_native_regs(regs);
2311 }
2312