1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARMv6 Performance counter handling code.
4  *
5  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
6  *
7  * ARMv6 has 2 configurable performance counters and a single cycle counter.
8  * They all share a single reset bit but can be written to zero so we can use
9  * that for a reset.
10  *
11  * The counters can't be individually enabled or disabled so when we remove
12  * one event and replace it with another we could get spurious counts from the
13  * wrong event. However, we can take advantage of the fact that the
14  * performance counters can export events to the event bus, and the event bus
15  * itself can be monitored. This requires that we *don't* export the events to
16  * the event bus. The procedure for disabling a configurable counter is:
17  *	- change the counter to count the ETMEXTOUT[0] signal (0x20). This
18  *	  effectively stops the counter from counting.
19  *	- disable the counter's interrupt generation (each counter has it's
20  *	  own interrupt enable bit).
21  * Once stopped, the counter value can be written as 0 to reset.
22  *
23  * To enable a counter:
24  *	- enable the counter's interrupt generation.
25  *	- set the new event type.
26  *
27  * Note: the dedicated cycle counter only counts cycles and can't be
28  * enabled/disabled independently of the others. When we want to disable the
29  * cycle counter, we have to just disable the interrupt reporting and start
30  * ignoring that counter. When re-enabling, we have to reset the value and
31  * enable the interrupt.
32  */
33 
34 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
35 
36 #include <asm/cputype.h>
37 #include <asm/irq_regs.h>
38 
39 #include <linux/of.h>
40 #include <linux/perf/arm_pmu.h>
41 #include <linux/platform_device.h>
42 
43 enum armv6_perf_types {
44 	ARMV6_PERFCTR_ICACHE_MISS	    = 0x0,
45 	ARMV6_PERFCTR_IBUF_STALL	    = 0x1,
46 	ARMV6_PERFCTR_DDEP_STALL	    = 0x2,
47 	ARMV6_PERFCTR_ITLB_MISS		    = 0x3,
48 	ARMV6_PERFCTR_DTLB_MISS		    = 0x4,
49 	ARMV6_PERFCTR_BR_EXEC		    = 0x5,
50 	ARMV6_PERFCTR_BR_MISPREDICT	    = 0x6,
51 	ARMV6_PERFCTR_INSTR_EXEC	    = 0x7,
52 	ARMV6_PERFCTR_DCACHE_HIT	    = 0x9,
53 	ARMV6_PERFCTR_DCACHE_ACCESS	    = 0xA,
54 	ARMV6_PERFCTR_DCACHE_MISS	    = 0xB,
55 	ARMV6_PERFCTR_DCACHE_WBACK	    = 0xC,
56 	ARMV6_PERFCTR_SW_PC_CHANGE	    = 0xD,
57 	ARMV6_PERFCTR_MAIN_TLB_MISS	    = 0xF,
58 	ARMV6_PERFCTR_EXPL_D_ACCESS	    = 0x10,
59 	ARMV6_PERFCTR_LSU_FULL_STALL	    = 0x11,
60 	ARMV6_PERFCTR_WBUF_DRAINED	    = 0x12,
61 	ARMV6_PERFCTR_CPU_CYCLES	    = 0xFF,
62 	ARMV6_PERFCTR_NOP		    = 0x20,
63 };
64 
65 enum armv6_counters {
66 	ARMV6_CYCLE_COUNTER = 0,
67 	ARMV6_COUNTER0,
68 	ARMV6_COUNTER1,
69 };
70 
71 /*
72  * The hardware events that we support. We do support cache operations but
73  * we have harvard caches and no way to combine instruction and data
74  * accesses/misses in hardware.
75  */
76 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
77 	PERF_MAP_ALL_UNSUPPORTED,
78 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV6_PERFCTR_CPU_CYCLES,
79 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV6_PERFCTR_INSTR_EXEC,
80 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= ARMV6_PERFCTR_BR_EXEC,
81 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV6_PERFCTR_BR_MISPREDICT,
82 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV6_PERFCTR_IBUF_STALL,
83 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV6_PERFCTR_LSU_FULL_STALL,
84 };
85 
86 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
87 					  [PERF_COUNT_HW_CACHE_OP_MAX]
88 					  [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
89 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
90 
91 	/*
92 	 * The performance counters don't differentiate between read and write
93 	 * accesses/misses so this isn't strictly correct, but it's the best we
94 	 * can do. Writes and reads get combined.
95 	 */
96 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
97 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
98 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV6_PERFCTR_DCACHE_ACCESS,
99 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DCACHE_MISS,
100 
101 	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_ICACHE_MISS,
102 
103 	/*
104 	 * The ARM performance counters can count micro DTLB misses, micro ITLB
105 	 * misses and main TLB misses. There isn't an event for TLB misses, so
106 	 * use the micro misses here and if users want the main TLB misses they
107 	 * can use a raw counter.
108 	 */
109 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
110 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV6_PERFCTR_DTLB_MISS,
111 
112 	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
113 	[C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV6_PERFCTR_ITLB_MISS,
114 };
115 
116 static inline unsigned long
armv6_pmcr_read(void)117 armv6_pmcr_read(void)
118 {
119 	u32 val;
120 	asm volatile("mrc   p15, 0, %0, c15, c12, 0" : "=r"(val));
121 	return val;
122 }
123 
124 static inline void
armv6_pmcr_write(unsigned long val)125 armv6_pmcr_write(unsigned long val)
126 {
127 	asm volatile("mcr   p15, 0, %0, c15, c12, 0" : : "r"(val));
128 }
129 
130 #define ARMV6_PMCR_ENABLE		(1 << 0)
131 #define ARMV6_PMCR_CTR01_RESET		(1 << 1)
132 #define ARMV6_PMCR_CCOUNT_RESET		(1 << 2)
133 #define ARMV6_PMCR_CCOUNT_DIV		(1 << 3)
134 #define ARMV6_PMCR_COUNT0_IEN		(1 << 4)
135 #define ARMV6_PMCR_COUNT1_IEN		(1 << 5)
136 #define ARMV6_PMCR_CCOUNT_IEN		(1 << 6)
137 #define ARMV6_PMCR_COUNT0_OVERFLOW	(1 << 8)
138 #define ARMV6_PMCR_COUNT1_OVERFLOW	(1 << 9)
139 #define ARMV6_PMCR_CCOUNT_OVERFLOW	(1 << 10)
140 #define ARMV6_PMCR_EVT_COUNT0_SHIFT	20
141 #define ARMV6_PMCR_EVT_COUNT0_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
142 #define ARMV6_PMCR_EVT_COUNT1_SHIFT	12
143 #define ARMV6_PMCR_EVT_COUNT1_MASK	(0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
144 
145 #define ARMV6_PMCR_OVERFLOWED_MASK \
146 	(ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
147 	 ARMV6_PMCR_CCOUNT_OVERFLOW)
148 
149 static inline int
armv6_pmcr_has_overflowed(unsigned long pmcr)150 armv6_pmcr_has_overflowed(unsigned long pmcr)
151 {
152 	return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
153 }
154 
155 static inline int
armv6_pmcr_counter_has_overflowed(unsigned long pmcr,enum armv6_counters counter)156 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
157 				  enum armv6_counters counter)
158 {
159 	int ret = 0;
160 
161 	if (ARMV6_CYCLE_COUNTER == counter)
162 		ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
163 	else if (ARMV6_COUNTER0 == counter)
164 		ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
165 	else if (ARMV6_COUNTER1 == counter)
166 		ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
167 	else
168 		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
169 
170 	return ret;
171 }
172 
armv6pmu_read_counter(struct perf_event * event)173 static inline u64 armv6pmu_read_counter(struct perf_event *event)
174 {
175 	struct hw_perf_event *hwc = &event->hw;
176 	int counter = hwc->idx;
177 	unsigned long value = 0;
178 
179 	if (ARMV6_CYCLE_COUNTER == counter)
180 		asm volatile("mrc   p15, 0, %0, c15, c12, 1" : "=r"(value));
181 	else if (ARMV6_COUNTER0 == counter)
182 		asm volatile("mrc   p15, 0, %0, c15, c12, 2" : "=r"(value));
183 	else if (ARMV6_COUNTER1 == counter)
184 		asm volatile("mrc   p15, 0, %0, c15, c12, 3" : "=r"(value));
185 	else
186 		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
187 
188 	return value;
189 }
190 
armv6pmu_write_counter(struct perf_event * event,u64 value)191 static inline void armv6pmu_write_counter(struct perf_event *event, u64 value)
192 {
193 	struct hw_perf_event *hwc = &event->hw;
194 	int counter = hwc->idx;
195 
196 	if (ARMV6_CYCLE_COUNTER == counter)
197 		asm volatile("mcr   p15, 0, %0, c15, c12, 1" : : "r"(value));
198 	else if (ARMV6_COUNTER0 == counter)
199 		asm volatile("mcr   p15, 0, %0, c15, c12, 2" : : "r"(value));
200 	else if (ARMV6_COUNTER1 == counter)
201 		asm volatile("mcr   p15, 0, %0, c15, c12, 3" : : "r"(value));
202 	else
203 		WARN_ONCE(1, "invalid counter number (%d)\n", counter);
204 }
205 
armv6pmu_enable_event(struct perf_event * event)206 static void armv6pmu_enable_event(struct perf_event *event)
207 {
208 	unsigned long val, mask, evt;
209 	struct hw_perf_event *hwc = &event->hw;
210 	int idx = hwc->idx;
211 
212 	if (ARMV6_CYCLE_COUNTER == idx) {
213 		mask	= 0;
214 		evt	= ARMV6_PMCR_CCOUNT_IEN;
215 	} else if (ARMV6_COUNTER0 == idx) {
216 		mask	= ARMV6_PMCR_EVT_COUNT0_MASK;
217 		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
218 			  ARMV6_PMCR_COUNT0_IEN;
219 	} else if (ARMV6_COUNTER1 == idx) {
220 		mask	= ARMV6_PMCR_EVT_COUNT1_MASK;
221 		evt	= (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
222 			  ARMV6_PMCR_COUNT1_IEN;
223 	} else {
224 		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
225 		return;
226 	}
227 
228 	/*
229 	 * Mask out the current event and set the counter to count the event
230 	 * that we're interested in.
231 	 */
232 	val = armv6_pmcr_read();
233 	val &= ~mask;
234 	val |= evt;
235 	armv6_pmcr_write(val);
236 }
237 
238 static irqreturn_t
armv6pmu_handle_irq(struct arm_pmu * cpu_pmu)239 armv6pmu_handle_irq(struct arm_pmu *cpu_pmu)
240 {
241 	unsigned long pmcr = armv6_pmcr_read();
242 	struct perf_sample_data data;
243 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
244 	struct pt_regs *regs;
245 	int idx;
246 
247 	if (!armv6_pmcr_has_overflowed(pmcr))
248 		return IRQ_NONE;
249 
250 	regs = get_irq_regs();
251 
252 	/*
253 	 * The interrupts are cleared by writing the overflow flags back to
254 	 * the control register. All of the other bits don't have any effect
255 	 * if they are rewritten, so write the whole value back.
256 	 */
257 	armv6_pmcr_write(pmcr);
258 
259 	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
260 		struct perf_event *event = cpuc->events[idx];
261 		struct hw_perf_event *hwc;
262 
263 		/* Ignore if we don't have an event. */
264 		if (!event)
265 			continue;
266 
267 		/*
268 		 * We have a single interrupt for all counters. Check that
269 		 * each counter has overflowed before we process it.
270 		 */
271 		if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
272 			continue;
273 
274 		hwc = &event->hw;
275 		armpmu_event_update(event);
276 		perf_sample_data_init(&data, 0, hwc->last_period);
277 		if (!armpmu_event_set_period(event))
278 			continue;
279 
280 		if (perf_event_overflow(event, &data, regs))
281 			cpu_pmu->disable(event);
282 	}
283 
284 	/*
285 	 * Handle the pending perf events.
286 	 *
287 	 * Note: this call *must* be run with interrupts disabled. For
288 	 * platforms that can have the PMU interrupts raised as an NMI, this
289 	 * will not work.
290 	 */
291 	irq_work_run();
292 
293 	return IRQ_HANDLED;
294 }
295 
armv6pmu_start(struct arm_pmu * cpu_pmu)296 static void armv6pmu_start(struct arm_pmu *cpu_pmu)
297 {
298 	unsigned long val;
299 
300 	val = armv6_pmcr_read();
301 	val |= ARMV6_PMCR_ENABLE;
302 	armv6_pmcr_write(val);
303 }
304 
armv6pmu_stop(struct arm_pmu * cpu_pmu)305 static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
306 {
307 	unsigned long val;
308 
309 	val = armv6_pmcr_read();
310 	val &= ~ARMV6_PMCR_ENABLE;
311 	armv6_pmcr_write(val);
312 }
313 
314 static int
armv6pmu_get_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)315 armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
316 				struct perf_event *event)
317 {
318 	struct hw_perf_event *hwc = &event->hw;
319 	/* Always place a cycle counter into the cycle counter. */
320 	if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
321 		if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
322 			return -EAGAIN;
323 
324 		return ARMV6_CYCLE_COUNTER;
325 	} else {
326 		/*
327 		 * For anything other than a cycle counter, try and use
328 		 * counter0 and counter1.
329 		 */
330 		if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
331 			return ARMV6_COUNTER1;
332 
333 		if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
334 			return ARMV6_COUNTER0;
335 
336 		/* The counters are all in use. */
337 		return -EAGAIN;
338 	}
339 }
340 
armv6pmu_clear_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)341 static void armv6pmu_clear_event_idx(struct pmu_hw_events *cpuc,
342 				     struct perf_event *event)
343 {
344 	clear_bit(event->hw.idx, cpuc->used_mask);
345 }
346 
armv6pmu_disable_event(struct perf_event * event)347 static void armv6pmu_disable_event(struct perf_event *event)
348 {
349 	unsigned long val, mask, evt;
350 	struct hw_perf_event *hwc = &event->hw;
351 	int idx = hwc->idx;
352 
353 	if (ARMV6_CYCLE_COUNTER == idx) {
354 		mask	= ARMV6_PMCR_CCOUNT_IEN;
355 		evt	= 0;
356 	} else if (ARMV6_COUNTER0 == idx) {
357 		mask	= ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
358 		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
359 	} else if (ARMV6_COUNTER1 == idx) {
360 		mask	= ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
361 		evt	= ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
362 	} else {
363 		WARN_ONCE(1, "invalid counter number (%d)\n", idx);
364 		return;
365 	}
366 
367 	/*
368 	 * Mask out the current event and set the counter to count the number
369 	 * of ETM bus signal assertion cycles. The external reporting should
370 	 * be disabled and so this should never increment.
371 	 */
372 	val = armv6_pmcr_read();
373 	val &= ~mask;
374 	val |= evt;
375 	armv6_pmcr_write(val);
376 }
377 
armv6_map_event(struct perf_event * event)378 static int armv6_map_event(struct perf_event *event)
379 {
380 	return armpmu_map_event(event, &armv6_perf_map,
381 				&armv6_perf_cache_map, 0xFF);
382 }
383 
armv6pmu_init(struct arm_pmu * cpu_pmu)384 static void armv6pmu_init(struct arm_pmu *cpu_pmu)
385 {
386 	cpu_pmu->handle_irq	= armv6pmu_handle_irq;
387 	cpu_pmu->enable		= armv6pmu_enable_event;
388 	cpu_pmu->disable	= armv6pmu_disable_event;
389 	cpu_pmu->read_counter	= armv6pmu_read_counter;
390 	cpu_pmu->write_counter	= armv6pmu_write_counter;
391 	cpu_pmu->get_event_idx	= armv6pmu_get_event_idx;
392 	cpu_pmu->clear_event_idx = armv6pmu_clear_event_idx;
393 	cpu_pmu->start		= armv6pmu_start;
394 	cpu_pmu->stop		= armv6pmu_stop;
395 	cpu_pmu->map_event	= armv6_map_event;
396 	cpu_pmu->num_events	= 3;
397 }
398 
armv6_1136_pmu_init(struct arm_pmu * cpu_pmu)399 static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
400 {
401 	armv6pmu_init(cpu_pmu);
402 	cpu_pmu->name		= "armv6_1136";
403 	return 0;
404 }
405 
armv6_1156_pmu_init(struct arm_pmu * cpu_pmu)406 static int armv6_1156_pmu_init(struct arm_pmu *cpu_pmu)
407 {
408 	armv6pmu_init(cpu_pmu);
409 	cpu_pmu->name		= "armv6_1156";
410 	return 0;
411 }
412 
armv6_1176_pmu_init(struct arm_pmu * cpu_pmu)413 static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
414 {
415 	armv6pmu_init(cpu_pmu);
416 	cpu_pmu->name		= "armv6_1176";
417 	return 0;
418 }
419 
420 static const struct of_device_id armv6_pmu_of_device_ids[] = {
421 	{.compatible = "arm,arm1176-pmu",	.data = armv6_1176_pmu_init},
422 	{.compatible = "arm,arm1136-pmu",	.data = armv6_1136_pmu_init},
423 	{ /* sentinel value */ }
424 };
425 
426 static const struct pmu_probe_info armv6_pmu_probe_table[] = {
427 	ARM_PMU_PROBE(ARM_CPU_PART_ARM1136, armv6_1136_pmu_init),
428 	ARM_PMU_PROBE(ARM_CPU_PART_ARM1156, armv6_1156_pmu_init),
429 	ARM_PMU_PROBE(ARM_CPU_PART_ARM1176, armv6_1176_pmu_init),
430 	{ /* sentinel value */ }
431 };
432 
armv6_pmu_device_probe(struct platform_device * pdev)433 static int armv6_pmu_device_probe(struct platform_device *pdev)
434 {
435 	return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids,
436 				    armv6_pmu_probe_table);
437 }
438 
439 static struct platform_driver armv6_pmu_driver = {
440 	.driver		= {
441 		.name	= "armv6-pmu",
442 		.of_match_table = armv6_pmu_of_device_ids,
443 	},
444 	.probe		= armv6_pmu_device_probe,
445 };
446 
447 builtin_platform_driver(armv6_pmu_driver);
448 #endif	/* CONFIG_CPU_V6 || CONFIG_CPU_V6K */
449