1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 #include <trace/events/sock.h>
18
19 #include "nvme.h"
20 #include "fabrics.h"
21
22 struct nvme_tcp_queue;
23
24 /* Define the socket priority to use for connections were it is desirable
25 * that the NIC consider performing optimized packet processing or filtering.
26 * A non-zero value being sufficient to indicate general consideration of any
27 * possible optimization. Making it a module param allows for alternative
28 * values that may be unique for some NIC implementations.
29 */
30 static int so_priority;
31 module_param(so_priority, int, 0644);
32 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33
34 #ifdef CONFIG_DEBUG_LOCK_ALLOC
35 /* lockdep can detect a circular dependency of the form
36 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
37 * because dependencies are tracked for both nvme-tcp and user contexts. Using
38 * a separate class prevents lockdep from conflating nvme-tcp socket use with
39 * user-space socket API use.
40 */
41 static struct lock_class_key nvme_tcp_sk_key[2];
42 static struct lock_class_key nvme_tcp_slock_key[2];
43
nvme_tcp_reclassify_socket(struct socket * sock)44 static void nvme_tcp_reclassify_socket(struct socket *sock)
45 {
46 struct sock *sk = sock->sk;
47
48 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
49 return;
50
51 switch (sk->sk_family) {
52 case AF_INET:
53 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
54 &nvme_tcp_slock_key[0],
55 "sk_lock-AF_INET-NVME",
56 &nvme_tcp_sk_key[0]);
57 break;
58 case AF_INET6:
59 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
60 &nvme_tcp_slock_key[1],
61 "sk_lock-AF_INET6-NVME",
62 &nvme_tcp_sk_key[1]);
63 break;
64 default:
65 WARN_ON_ONCE(1);
66 }
67 }
68 #else
nvme_tcp_reclassify_socket(struct socket * sock)69 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
70 #endif
71
72 enum nvme_tcp_send_state {
73 NVME_TCP_SEND_CMD_PDU = 0,
74 NVME_TCP_SEND_H2C_PDU,
75 NVME_TCP_SEND_DATA,
76 NVME_TCP_SEND_DDGST,
77 };
78
79 struct nvme_tcp_request {
80 struct nvme_request req;
81 void *pdu;
82 struct nvme_tcp_queue *queue;
83 u32 data_len;
84 u32 pdu_len;
85 u32 pdu_sent;
86 u32 h2cdata_left;
87 u32 h2cdata_offset;
88 u16 ttag;
89 __le16 status;
90 struct list_head entry;
91 struct llist_node lentry;
92 __le32 ddgst;
93
94 struct bio *curr_bio;
95 struct iov_iter iter;
96
97 /* send state */
98 size_t offset;
99 size_t data_sent;
100 enum nvme_tcp_send_state state;
101 };
102
103 enum nvme_tcp_queue_flags {
104 NVME_TCP_Q_ALLOCATED = 0,
105 NVME_TCP_Q_LIVE = 1,
106 NVME_TCP_Q_POLLING = 2,
107 };
108
109 enum nvme_tcp_recv_state {
110 NVME_TCP_RECV_PDU = 0,
111 NVME_TCP_RECV_DATA,
112 NVME_TCP_RECV_DDGST,
113 };
114
115 struct nvme_tcp_ctrl;
116 struct nvme_tcp_queue {
117 struct socket *sock;
118 struct work_struct io_work;
119 int io_cpu;
120
121 struct mutex queue_lock;
122 struct mutex send_mutex;
123 struct llist_head req_list;
124 struct list_head send_list;
125
126 /* recv state */
127 void *pdu;
128 int pdu_remaining;
129 int pdu_offset;
130 size_t data_remaining;
131 size_t ddgst_remaining;
132 unsigned int nr_cqe;
133
134 /* send state */
135 struct nvme_tcp_request *request;
136
137 u32 maxh2cdata;
138 size_t cmnd_capsule_len;
139 struct nvme_tcp_ctrl *ctrl;
140 unsigned long flags;
141 bool rd_enabled;
142
143 bool hdr_digest;
144 bool data_digest;
145 struct ahash_request *rcv_hash;
146 struct ahash_request *snd_hash;
147 __le32 exp_ddgst;
148 __le32 recv_ddgst;
149
150 struct page_frag_cache pf_cache;
151
152 void (*state_change)(struct sock *);
153 void (*data_ready)(struct sock *);
154 void (*write_space)(struct sock *);
155 };
156
157 struct nvme_tcp_ctrl {
158 /* read only in the hot path */
159 struct nvme_tcp_queue *queues;
160 struct blk_mq_tag_set tag_set;
161
162 /* other member variables */
163 struct list_head list;
164 struct blk_mq_tag_set admin_tag_set;
165 struct sockaddr_storage addr;
166 struct sockaddr_storage src_addr;
167 struct nvme_ctrl ctrl;
168
169 struct work_struct err_work;
170 struct delayed_work connect_work;
171 struct nvme_tcp_request async_req;
172 u32 io_queues[HCTX_MAX_TYPES];
173 };
174
175 static LIST_HEAD(nvme_tcp_ctrl_list);
176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
177 static struct workqueue_struct *nvme_tcp_wq;
178 static const struct blk_mq_ops nvme_tcp_mq_ops;
179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
181
to_tcp_ctrl(struct nvme_ctrl * ctrl)182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
183 {
184 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
185 }
186
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
188 {
189 return queue - queue->ctrl->queues;
190 }
191
nvme_tcp_tagset(struct nvme_tcp_queue * queue)192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
193 {
194 u32 queue_idx = nvme_tcp_queue_id(queue);
195
196 if (queue_idx == 0)
197 return queue->ctrl->admin_tag_set.tags[queue_idx];
198 return queue->ctrl->tag_set.tags[queue_idx - 1];
199 }
200
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
202 {
203 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
204 }
205
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
207 {
208 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
209 }
210
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)211 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
212 {
213 return req->pdu;
214 }
215
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)216 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
217 {
218 /* use the pdu space in the back for the data pdu */
219 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
220 sizeof(struct nvme_tcp_data_pdu);
221 }
222
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)223 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
224 {
225 if (nvme_is_fabrics(req->req.cmd))
226 return NVME_TCP_ADMIN_CCSZ;
227 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
228 }
229
nvme_tcp_async_req(struct nvme_tcp_request * req)230 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
231 {
232 return req == &req->queue->ctrl->async_req;
233 }
234
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)235 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
236 {
237 struct request *rq;
238
239 if (unlikely(nvme_tcp_async_req(req)))
240 return false; /* async events don't have a request */
241
242 rq = blk_mq_rq_from_pdu(req);
243
244 return rq_data_dir(rq) == WRITE && req->data_len &&
245 req->data_len <= nvme_tcp_inline_data_size(req);
246 }
247
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)248 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
249 {
250 return req->iter.bvec->bv_page;
251 }
252
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)253 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
254 {
255 return req->iter.bvec->bv_offset + req->iter.iov_offset;
256 }
257
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)258 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
259 {
260 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
261 req->pdu_len - req->pdu_sent);
262 }
263
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)264 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
265 {
266 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
267 req->pdu_len - req->pdu_sent : 0;
268 }
269
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)270 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
271 int len)
272 {
273 return nvme_tcp_pdu_data_left(req) <= len;
274 }
275
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)276 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
277 unsigned int dir)
278 {
279 struct request *rq = blk_mq_rq_from_pdu(req);
280 struct bio_vec *vec;
281 unsigned int size;
282 int nr_bvec;
283 size_t offset;
284
285 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
286 vec = &rq->special_vec;
287 nr_bvec = 1;
288 size = blk_rq_payload_bytes(rq);
289 offset = 0;
290 } else {
291 struct bio *bio = req->curr_bio;
292 struct bvec_iter bi;
293 struct bio_vec bv;
294
295 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
296 nr_bvec = 0;
297 bio_for_each_bvec(bv, bio, bi) {
298 nr_bvec++;
299 }
300 size = bio->bi_iter.bi_size;
301 offset = bio->bi_iter.bi_bvec_done;
302 }
303
304 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
305 req->iter.iov_offset = offset;
306 }
307
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)308 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
309 int len)
310 {
311 req->data_sent += len;
312 req->pdu_sent += len;
313 iov_iter_advance(&req->iter, len);
314 if (!iov_iter_count(&req->iter) &&
315 req->data_sent < req->data_len) {
316 req->curr_bio = req->curr_bio->bi_next;
317 nvme_tcp_init_iter(req, ITER_SOURCE);
318 }
319 }
320
nvme_tcp_send_all(struct nvme_tcp_queue * queue)321 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
322 {
323 int ret;
324
325 /* drain the send queue as much as we can... */
326 do {
327 ret = nvme_tcp_try_send(queue);
328 } while (ret > 0);
329 }
330
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)331 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
332 {
333 return !list_empty(&queue->send_list) ||
334 !llist_empty(&queue->req_list);
335 }
336
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)337 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
338 bool sync, bool last)
339 {
340 struct nvme_tcp_queue *queue = req->queue;
341 bool empty;
342
343 empty = llist_add(&req->lentry, &queue->req_list) &&
344 list_empty(&queue->send_list) && !queue->request;
345
346 /*
347 * if we're the first on the send_list and we can try to send
348 * directly, otherwise queue io_work. Also, only do that if we
349 * are on the same cpu, so we don't introduce contention.
350 */
351 if (queue->io_cpu == raw_smp_processor_id() &&
352 sync && empty && mutex_trylock(&queue->send_mutex)) {
353 nvme_tcp_send_all(queue);
354 mutex_unlock(&queue->send_mutex);
355 }
356
357 if (last && nvme_tcp_queue_more(queue))
358 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
359 }
360
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)361 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
362 {
363 struct nvme_tcp_request *req;
364 struct llist_node *node;
365
366 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
367 req = llist_entry(node, struct nvme_tcp_request, lentry);
368 list_add(&req->entry, &queue->send_list);
369 }
370 }
371
372 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)373 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
374 {
375 struct nvme_tcp_request *req;
376
377 req = list_first_entry_or_null(&queue->send_list,
378 struct nvme_tcp_request, entry);
379 if (!req) {
380 nvme_tcp_process_req_list(queue);
381 req = list_first_entry_or_null(&queue->send_list,
382 struct nvme_tcp_request, entry);
383 if (unlikely(!req))
384 return NULL;
385 }
386
387 list_del(&req->entry);
388 return req;
389 }
390
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)391 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
392 __le32 *dgst)
393 {
394 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
395 crypto_ahash_final(hash);
396 }
397
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)398 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
399 struct page *page, off_t off, size_t len)
400 {
401 struct scatterlist sg;
402
403 sg_init_table(&sg, 1);
404 sg_set_page(&sg, page, len, off);
405 ahash_request_set_crypt(hash, &sg, NULL, len);
406 crypto_ahash_update(hash);
407 }
408
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)409 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
410 void *pdu, size_t len)
411 {
412 struct scatterlist sg;
413
414 sg_init_one(&sg, pdu, len);
415 ahash_request_set_crypt(hash, &sg, pdu + len, len);
416 crypto_ahash_digest(hash);
417 }
418
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)419 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
420 void *pdu, size_t pdu_len)
421 {
422 struct nvme_tcp_hdr *hdr = pdu;
423 __le32 recv_digest;
424 __le32 exp_digest;
425
426 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
427 dev_err(queue->ctrl->ctrl.device,
428 "queue %d: header digest flag is cleared\n",
429 nvme_tcp_queue_id(queue));
430 return -EPROTO;
431 }
432
433 recv_digest = *(__le32 *)(pdu + hdr->hlen);
434 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
435 exp_digest = *(__le32 *)(pdu + hdr->hlen);
436 if (recv_digest != exp_digest) {
437 dev_err(queue->ctrl->ctrl.device,
438 "header digest error: recv %#x expected %#x\n",
439 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
440 return -EIO;
441 }
442
443 return 0;
444 }
445
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)446 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
447 {
448 struct nvme_tcp_hdr *hdr = pdu;
449 u8 digest_len = nvme_tcp_hdgst_len(queue);
450 u32 len;
451
452 len = le32_to_cpu(hdr->plen) - hdr->hlen -
453 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
454
455 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
456 dev_err(queue->ctrl->ctrl.device,
457 "queue %d: data digest flag is cleared\n",
458 nvme_tcp_queue_id(queue));
459 return -EPROTO;
460 }
461 crypto_ahash_init(queue->rcv_hash);
462
463 return 0;
464 }
465
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)466 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
467 struct request *rq, unsigned int hctx_idx)
468 {
469 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
470
471 page_frag_free(req->pdu);
472 }
473
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)474 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
475 struct request *rq, unsigned int hctx_idx,
476 unsigned int numa_node)
477 {
478 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
479 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
480 struct nvme_tcp_cmd_pdu *pdu;
481 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
482 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
483 u8 hdgst = nvme_tcp_hdgst_len(queue);
484
485 req->pdu = page_frag_alloc(&queue->pf_cache,
486 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
487 GFP_KERNEL | __GFP_ZERO);
488 if (!req->pdu)
489 return -ENOMEM;
490
491 pdu = req->pdu;
492 req->queue = queue;
493 nvme_req(rq)->ctrl = &ctrl->ctrl;
494 nvme_req(rq)->cmd = &pdu->cmd;
495
496 return 0;
497 }
498
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)499 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
500 unsigned int hctx_idx)
501 {
502 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
503 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
504
505 hctx->driver_data = queue;
506 return 0;
507 }
508
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)509 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
510 unsigned int hctx_idx)
511 {
512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
513 struct nvme_tcp_queue *queue = &ctrl->queues[0];
514
515 hctx->driver_data = queue;
516 return 0;
517 }
518
519 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)520 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
521 {
522 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
523 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
524 NVME_TCP_RECV_DATA;
525 }
526
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)527 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
528 {
529 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
530 nvme_tcp_hdgst_len(queue);
531 queue->pdu_offset = 0;
532 queue->data_remaining = -1;
533 queue->ddgst_remaining = 0;
534 }
535
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)536 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
537 {
538 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
539 return;
540
541 dev_warn(ctrl->device, "starting error recovery\n");
542 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
543 }
544
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)545 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
546 struct nvme_completion *cqe)
547 {
548 struct nvme_tcp_request *req;
549 struct request *rq;
550
551 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
552 if (!rq) {
553 dev_err(queue->ctrl->ctrl.device,
554 "got bad cqe.command_id %#x on queue %d\n",
555 cqe->command_id, nvme_tcp_queue_id(queue));
556 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
557 return -EINVAL;
558 }
559
560 req = blk_mq_rq_to_pdu(rq);
561 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
562 req->status = cqe->status;
563
564 if (!nvme_try_complete_req(rq, req->status, cqe->result))
565 nvme_complete_rq(rq);
566 queue->nr_cqe++;
567
568 return 0;
569 }
570
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)571 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
572 struct nvme_tcp_data_pdu *pdu)
573 {
574 struct request *rq;
575
576 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
577 if (!rq) {
578 dev_err(queue->ctrl->ctrl.device,
579 "got bad c2hdata.command_id %#x on queue %d\n",
580 pdu->command_id, nvme_tcp_queue_id(queue));
581 return -ENOENT;
582 }
583
584 if (!blk_rq_payload_bytes(rq)) {
585 dev_err(queue->ctrl->ctrl.device,
586 "queue %d tag %#x unexpected data\n",
587 nvme_tcp_queue_id(queue), rq->tag);
588 return -EIO;
589 }
590
591 queue->data_remaining = le32_to_cpu(pdu->data_length);
592
593 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
594 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
595 dev_err(queue->ctrl->ctrl.device,
596 "queue %d tag %#x SUCCESS set but not last PDU\n",
597 nvme_tcp_queue_id(queue), rq->tag);
598 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
599 return -EPROTO;
600 }
601
602 return 0;
603 }
604
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)605 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
606 struct nvme_tcp_rsp_pdu *pdu)
607 {
608 struct nvme_completion *cqe = &pdu->cqe;
609 int ret = 0;
610
611 /*
612 * AEN requests are special as they don't time out and can
613 * survive any kind of queue freeze and often don't respond to
614 * aborts. We don't even bother to allocate a struct request
615 * for them but rather special case them here.
616 */
617 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
618 cqe->command_id)))
619 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
620 &cqe->result);
621 else
622 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
623
624 return ret;
625 }
626
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)627 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
628 {
629 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
630 struct nvme_tcp_queue *queue = req->queue;
631 struct request *rq = blk_mq_rq_from_pdu(req);
632 u32 h2cdata_sent = req->pdu_len;
633 u8 hdgst = nvme_tcp_hdgst_len(queue);
634 u8 ddgst = nvme_tcp_ddgst_len(queue);
635
636 req->state = NVME_TCP_SEND_H2C_PDU;
637 req->offset = 0;
638 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
639 req->pdu_sent = 0;
640 req->h2cdata_left -= req->pdu_len;
641 req->h2cdata_offset += h2cdata_sent;
642
643 memset(data, 0, sizeof(*data));
644 data->hdr.type = nvme_tcp_h2c_data;
645 if (!req->h2cdata_left)
646 data->hdr.flags = NVME_TCP_F_DATA_LAST;
647 if (queue->hdr_digest)
648 data->hdr.flags |= NVME_TCP_F_HDGST;
649 if (queue->data_digest)
650 data->hdr.flags |= NVME_TCP_F_DDGST;
651 data->hdr.hlen = sizeof(*data);
652 data->hdr.pdo = data->hdr.hlen + hdgst;
653 data->hdr.plen =
654 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
655 data->ttag = req->ttag;
656 data->command_id = nvme_cid(rq);
657 data->data_offset = cpu_to_le32(req->h2cdata_offset);
658 data->data_length = cpu_to_le32(req->pdu_len);
659 }
660
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)661 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
662 struct nvme_tcp_r2t_pdu *pdu)
663 {
664 struct nvme_tcp_request *req;
665 struct request *rq;
666 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
667 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
668
669 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
670 if (!rq) {
671 dev_err(queue->ctrl->ctrl.device,
672 "got bad r2t.command_id %#x on queue %d\n",
673 pdu->command_id, nvme_tcp_queue_id(queue));
674 return -ENOENT;
675 }
676 req = blk_mq_rq_to_pdu(rq);
677
678 if (unlikely(!r2t_length)) {
679 dev_err(queue->ctrl->ctrl.device,
680 "req %d r2t len is %u, probably a bug...\n",
681 rq->tag, r2t_length);
682 return -EPROTO;
683 }
684
685 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
686 dev_err(queue->ctrl->ctrl.device,
687 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
688 rq->tag, r2t_length, req->data_len, req->data_sent);
689 return -EPROTO;
690 }
691
692 if (unlikely(r2t_offset < req->data_sent)) {
693 dev_err(queue->ctrl->ctrl.device,
694 "req %d unexpected r2t offset %u (expected %zu)\n",
695 rq->tag, r2t_offset, req->data_sent);
696 return -EPROTO;
697 }
698
699 req->pdu_len = 0;
700 req->h2cdata_left = r2t_length;
701 req->h2cdata_offset = r2t_offset;
702 req->ttag = pdu->ttag;
703
704 nvme_tcp_setup_h2c_data_pdu(req);
705 nvme_tcp_queue_request(req, false, true);
706
707 return 0;
708 }
709
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)710 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
711 unsigned int *offset, size_t *len)
712 {
713 struct nvme_tcp_hdr *hdr;
714 char *pdu = queue->pdu;
715 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
716 int ret;
717
718 ret = skb_copy_bits(skb, *offset,
719 &pdu[queue->pdu_offset], rcv_len);
720 if (unlikely(ret))
721 return ret;
722
723 queue->pdu_remaining -= rcv_len;
724 queue->pdu_offset += rcv_len;
725 *offset += rcv_len;
726 *len -= rcv_len;
727 if (queue->pdu_remaining)
728 return 0;
729
730 hdr = queue->pdu;
731 if (queue->hdr_digest) {
732 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
733 if (unlikely(ret))
734 return ret;
735 }
736
737
738 if (queue->data_digest) {
739 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
740 if (unlikely(ret))
741 return ret;
742 }
743
744 switch (hdr->type) {
745 case nvme_tcp_c2h_data:
746 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
747 case nvme_tcp_rsp:
748 nvme_tcp_init_recv_ctx(queue);
749 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
750 case nvme_tcp_r2t:
751 nvme_tcp_init_recv_ctx(queue);
752 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
753 default:
754 dev_err(queue->ctrl->ctrl.device,
755 "unsupported pdu type (%d)\n", hdr->type);
756 return -EINVAL;
757 }
758 }
759
nvme_tcp_end_request(struct request * rq,u16 status)760 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
761 {
762 union nvme_result res = {};
763
764 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
765 nvme_complete_rq(rq);
766 }
767
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)768 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
769 unsigned int *offset, size_t *len)
770 {
771 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
772 struct request *rq =
773 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
774 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
775
776 while (true) {
777 int recv_len, ret;
778
779 recv_len = min_t(size_t, *len, queue->data_remaining);
780 if (!recv_len)
781 break;
782
783 if (!iov_iter_count(&req->iter)) {
784 req->curr_bio = req->curr_bio->bi_next;
785
786 /*
787 * If we don`t have any bios it means that controller
788 * sent more data than we requested, hence error
789 */
790 if (!req->curr_bio) {
791 dev_err(queue->ctrl->ctrl.device,
792 "queue %d no space in request %#x",
793 nvme_tcp_queue_id(queue), rq->tag);
794 nvme_tcp_init_recv_ctx(queue);
795 return -EIO;
796 }
797 nvme_tcp_init_iter(req, ITER_DEST);
798 }
799
800 /* we can read only from what is left in this bio */
801 recv_len = min_t(size_t, recv_len,
802 iov_iter_count(&req->iter));
803
804 if (queue->data_digest)
805 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
806 &req->iter, recv_len, queue->rcv_hash);
807 else
808 ret = skb_copy_datagram_iter(skb, *offset,
809 &req->iter, recv_len);
810 if (ret) {
811 dev_err(queue->ctrl->ctrl.device,
812 "queue %d failed to copy request %#x data",
813 nvme_tcp_queue_id(queue), rq->tag);
814 return ret;
815 }
816
817 *len -= recv_len;
818 *offset += recv_len;
819 queue->data_remaining -= recv_len;
820 }
821
822 if (!queue->data_remaining) {
823 if (queue->data_digest) {
824 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
825 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
826 } else {
827 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
828 nvme_tcp_end_request(rq,
829 le16_to_cpu(req->status));
830 queue->nr_cqe++;
831 }
832 nvme_tcp_init_recv_ctx(queue);
833 }
834 }
835
836 return 0;
837 }
838
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)839 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
840 struct sk_buff *skb, unsigned int *offset, size_t *len)
841 {
842 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
843 char *ddgst = (char *)&queue->recv_ddgst;
844 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
845 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
846 int ret;
847
848 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
849 if (unlikely(ret))
850 return ret;
851
852 queue->ddgst_remaining -= recv_len;
853 *offset += recv_len;
854 *len -= recv_len;
855 if (queue->ddgst_remaining)
856 return 0;
857
858 if (queue->recv_ddgst != queue->exp_ddgst) {
859 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
860 pdu->command_id);
861 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
862
863 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
864
865 dev_err(queue->ctrl->ctrl.device,
866 "data digest error: recv %#x expected %#x\n",
867 le32_to_cpu(queue->recv_ddgst),
868 le32_to_cpu(queue->exp_ddgst));
869 }
870
871 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
872 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
873 pdu->command_id);
874 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
875
876 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
877 queue->nr_cqe++;
878 }
879
880 nvme_tcp_init_recv_ctx(queue);
881 return 0;
882 }
883
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)884 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
885 unsigned int offset, size_t len)
886 {
887 struct nvme_tcp_queue *queue = desc->arg.data;
888 size_t consumed = len;
889 int result;
890
891 if (unlikely(!queue->rd_enabled))
892 return -EFAULT;
893
894 while (len) {
895 switch (nvme_tcp_recv_state(queue)) {
896 case NVME_TCP_RECV_PDU:
897 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
898 break;
899 case NVME_TCP_RECV_DATA:
900 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
901 break;
902 case NVME_TCP_RECV_DDGST:
903 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
904 break;
905 default:
906 result = -EFAULT;
907 }
908 if (result) {
909 dev_err(queue->ctrl->ctrl.device,
910 "receive failed: %d\n", result);
911 queue->rd_enabled = false;
912 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
913 return result;
914 }
915 }
916
917 return consumed;
918 }
919
nvme_tcp_data_ready(struct sock * sk)920 static void nvme_tcp_data_ready(struct sock *sk)
921 {
922 struct nvme_tcp_queue *queue;
923
924 trace_sk_data_ready(sk);
925
926 read_lock_bh(&sk->sk_callback_lock);
927 queue = sk->sk_user_data;
928 if (likely(queue && queue->rd_enabled) &&
929 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
930 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
931 read_unlock_bh(&sk->sk_callback_lock);
932 }
933
nvme_tcp_write_space(struct sock * sk)934 static void nvme_tcp_write_space(struct sock *sk)
935 {
936 struct nvme_tcp_queue *queue;
937
938 read_lock_bh(&sk->sk_callback_lock);
939 queue = sk->sk_user_data;
940 if (likely(queue && sk_stream_is_writeable(sk))) {
941 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
942 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
943 }
944 read_unlock_bh(&sk->sk_callback_lock);
945 }
946
nvme_tcp_state_change(struct sock * sk)947 static void nvme_tcp_state_change(struct sock *sk)
948 {
949 struct nvme_tcp_queue *queue;
950
951 read_lock_bh(&sk->sk_callback_lock);
952 queue = sk->sk_user_data;
953 if (!queue)
954 goto done;
955
956 switch (sk->sk_state) {
957 case TCP_CLOSE:
958 case TCP_CLOSE_WAIT:
959 case TCP_LAST_ACK:
960 case TCP_FIN_WAIT1:
961 case TCP_FIN_WAIT2:
962 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
963 break;
964 default:
965 dev_info(queue->ctrl->ctrl.device,
966 "queue %d socket state %d\n",
967 nvme_tcp_queue_id(queue), sk->sk_state);
968 }
969
970 queue->state_change(sk);
971 done:
972 read_unlock_bh(&sk->sk_callback_lock);
973 }
974
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)975 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
976 {
977 queue->request = NULL;
978 }
979
nvme_tcp_fail_request(struct nvme_tcp_request * req)980 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
981 {
982 if (nvme_tcp_async_req(req)) {
983 union nvme_result res = {};
984
985 nvme_complete_async_event(&req->queue->ctrl->ctrl,
986 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
987 } else {
988 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
989 NVME_SC_HOST_PATH_ERROR);
990 }
991 }
992
nvme_tcp_try_send_data(struct nvme_tcp_request * req)993 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
994 {
995 struct nvme_tcp_queue *queue = req->queue;
996 int req_data_len = req->data_len;
997 u32 h2cdata_left = req->h2cdata_left;
998
999 while (true) {
1000 struct bio_vec bvec;
1001 struct msghdr msg = {
1002 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1003 };
1004 struct page *page = nvme_tcp_req_cur_page(req);
1005 size_t offset = nvme_tcp_req_cur_offset(req);
1006 size_t len = nvme_tcp_req_cur_length(req);
1007 bool last = nvme_tcp_pdu_last_send(req, len);
1008 int req_data_sent = req->data_sent;
1009 int ret;
1010
1011 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1012 msg.msg_flags |= MSG_EOR;
1013 else
1014 msg.msg_flags |= MSG_MORE;
1015
1016 if (!sendpage_ok(page))
1017 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1018
1019 bvec_set_page(&bvec, page, len, offset);
1020 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1021 ret = sock_sendmsg(queue->sock, &msg);
1022 if (ret <= 0)
1023 return ret;
1024
1025 if (queue->data_digest)
1026 nvme_tcp_ddgst_update(queue->snd_hash, page,
1027 offset, ret);
1028
1029 /*
1030 * update the request iterator except for the last payload send
1031 * in the request where we don't want to modify it as we may
1032 * compete with the RX path completing the request.
1033 */
1034 if (req_data_sent + ret < req_data_len)
1035 nvme_tcp_advance_req(req, ret);
1036
1037 /* fully successful last send in current PDU */
1038 if (last && ret == len) {
1039 if (queue->data_digest) {
1040 nvme_tcp_ddgst_final(queue->snd_hash,
1041 &req->ddgst);
1042 req->state = NVME_TCP_SEND_DDGST;
1043 req->offset = 0;
1044 } else {
1045 if (h2cdata_left)
1046 nvme_tcp_setup_h2c_data_pdu(req);
1047 else
1048 nvme_tcp_done_send_req(queue);
1049 }
1050 return 1;
1051 }
1052 }
1053 return -EAGAIN;
1054 }
1055
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1056 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1057 {
1058 struct nvme_tcp_queue *queue = req->queue;
1059 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1060 struct bio_vec bvec;
1061 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1062 bool inline_data = nvme_tcp_has_inline_data(req);
1063 u8 hdgst = nvme_tcp_hdgst_len(queue);
1064 int len = sizeof(*pdu) + hdgst - req->offset;
1065 int ret;
1066
1067 if (inline_data || nvme_tcp_queue_more(queue))
1068 msg.msg_flags |= MSG_MORE;
1069 else
1070 msg.msg_flags |= MSG_EOR;
1071
1072 if (queue->hdr_digest && !req->offset)
1073 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1074
1075 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1076 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1077 ret = sock_sendmsg(queue->sock, &msg);
1078 if (unlikely(ret <= 0))
1079 return ret;
1080
1081 len -= ret;
1082 if (!len) {
1083 if (inline_data) {
1084 req->state = NVME_TCP_SEND_DATA;
1085 if (queue->data_digest)
1086 crypto_ahash_init(queue->snd_hash);
1087 } else {
1088 nvme_tcp_done_send_req(queue);
1089 }
1090 return 1;
1091 }
1092 req->offset += ret;
1093
1094 return -EAGAIN;
1095 }
1096
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1097 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1098 {
1099 struct nvme_tcp_queue *queue = req->queue;
1100 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1101 struct bio_vec bvec;
1102 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1103 u8 hdgst = nvme_tcp_hdgst_len(queue);
1104 int len = sizeof(*pdu) - req->offset + hdgst;
1105 int ret;
1106
1107 if (queue->hdr_digest && !req->offset)
1108 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1109
1110 if (!req->h2cdata_left)
1111 msg.msg_flags |= MSG_SPLICE_PAGES;
1112
1113 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1114 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1115 ret = sock_sendmsg(queue->sock, &msg);
1116 if (unlikely(ret <= 0))
1117 return ret;
1118
1119 len -= ret;
1120 if (!len) {
1121 req->state = NVME_TCP_SEND_DATA;
1122 if (queue->data_digest)
1123 crypto_ahash_init(queue->snd_hash);
1124 return 1;
1125 }
1126 req->offset += ret;
1127
1128 return -EAGAIN;
1129 }
1130
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1131 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1132 {
1133 struct nvme_tcp_queue *queue = req->queue;
1134 size_t offset = req->offset;
1135 u32 h2cdata_left = req->h2cdata_left;
1136 int ret;
1137 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1138 struct kvec iov = {
1139 .iov_base = (u8 *)&req->ddgst + req->offset,
1140 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1141 };
1142
1143 if (nvme_tcp_queue_more(queue))
1144 msg.msg_flags |= MSG_MORE;
1145 else
1146 msg.msg_flags |= MSG_EOR;
1147
1148 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1149 if (unlikely(ret <= 0))
1150 return ret;
1151
1152 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1153 if (h2cdata_left)
1154 nvme_tcp_setup_h2c_data_pdu(req);
1155 else
1156 nvme_tcp_done_send_req(queue);
1157 return 1;
1158 }
1159
1160 req->offset += ret;
1161 return -EAGAIN;
1162 }
1163
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1164 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1165 {
1166 struct nvme_tcp_request *req;
1167 unsigned int noreclaim_flag;
1168 int ret = 1;
1169
1170 if (!queue->request) {
1171 queue->request = nvme_tcp_fetch_request(queue);
1172 if (!queue->request)
1173 return 0;
1174 }
1175 req = queue->request;
1176
1177 noreclaim_flag = memalloc_noreclaim_save();
1178 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1179 ret = nvme_tcp_try_send_cmd_pdu(req);
1180 if (ret <= 0)
1181 goto done;
1182 if (!nvme_tcp_has_inline_data(req))
1183 goto out;
1184 }
1185
1186 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1187 ret = nvme_tcp_try_send_data_pdu(req);
1188 if (ret <= 0)
1189 goto done;
1190 }
1191
1192 if (req->state == NVME_TCP_SEND_DATA) {
1193 ret = nvme_tcp_try_send_data(req);
1194 if (ret <= 0)
1195 goto done;
1196 }
1197
1198 if (req->state == NVME_TCP_SEND_DDGST)
1199 ret = nvme_tcp_try_send_ddgst(req);
1200 done:
1201 if (ret == -EAGAIN) {
1202 ret = 0;
1203 } else if (ret < 0) {
1204 dev_err(queue->ctrl->ctrl.device,
1205 "failed to send request %d\n", ret);
1206 nvme_tcp_fail_request(queue->request);
1207 nvme_tcp_done_send_req(queue);
1208 }
1209 out:
1210 memalloc_noreclaim_restore(noreclaim_flag);
1211 return ret;
1212 }
1213
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1214 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1215 {
1216 struct socket *sock = queue->sock;
1217 struct sock *sk = sock->sk;
1218 read_descriptor_t rd_desc;
1219 int consumed;
1220
1221 rd_desc.arg.data = queue;
1222 rd_desc.count = 1;
1223 lock_sock(sk);
1224 queue->nr_cqe = 0;
1225 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1226 release_sock(sk);
1227 return consumed;
1228 }
1229
nvme_tcp_io_work(struct work_struct * w)1230 static void nvme_tcp_io_work(struct work_struct *w)
1231 {
1232 struct nvme_tcp_queue *queue =
1233 container_of(w, struct nvme_tcp_queue, io_work);
1234 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1235
1236 do {
1237 bool pending = false;
1238 int result;
1239
1240 if (mutex_trylock(&queue->send_mutex)) {
1241 result = nvme_tcp_try_send(queue);
1242 mutex_unlock(&queue->send_mutex);
1243 if (result > 0)
1244 pending = true;
1245 else if (unlikely(result < 0))
1246 break;
1247 }
1248
1249 result = nvme_tcp_try_recv(queue);
1250 if (result > 0)
1251 pending = true;
1252 else if (unlikely(result < 0))
1253 return;
1254
1255 if (!pending || !queue->rd_enabled)
1256 return;
1257
1258 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1259
1260 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1261 }
1262
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1263 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1264 {
1265 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1266
1267 ahash_request_free(queue->rcv_hash);
1268 ahash_request_free(queue->snd_hash);
1269 crypto_free_ahash(tfm);
1270 }
1271
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1272 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1273 {
1274 struct crypto_ahash *tfm;
1275
1276 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1277 if (IS_ERR(tfm))
1278 return PTR_ERR(tfm);
1279
1280 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1281 if (!queue->snd_hash)
1282 goto free_tfm;
1283 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1284
1285 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1286 if (!queue->rcv_hash)
1287 goto free_snd_hash;
1288 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1289
1290 return 0;
1291 free_snd_hash:
1292 ahash_request_free(queue->snd_hash);
1293 free_tfm:
1294 crypto_free_ahash(tfm);
1295 return -ENOMEM;
1296 }
1297
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1298 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1299 {
1300 struct nvme_tcp_request *async = &ctrl->async_req;
1301
1302 page_frag_free(async->pdu);
1303 }
1304
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1305 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1306 {
1307 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1308 struct nvme_tcp_request *async = &ctrl->async_req;
1309 u8 hdgst = nvme_tcp_hdgst_len(queue);
1310
1311 async->pdu = page_frag_alloc(&queue->pf_cache,
1312 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1313 GFP_KERNEL | __GFP_ZERO);
1314 if (!async->pdu)
1315 return -ENOMEM;
1316
1317 async->queue = &ctrl->queues[0];
1318 return 0;
1319 }
1320
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1321 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1322 {
1323 struct page *page;
1324 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1325 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1326 unsigned int noreclaim_flag;
1327
1328 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1329 return;
1330
1331 if (queue->hdr_digest || queue->data_digest)
1332 nvme_tcp_free_crypto(queue);
1333
1334 if (queue->pf_cache.va) {
1335 page = virt_to_head_page(queue->pf_cache.va);
1336 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1337 queue->pf_cache.va = NULL;
1338 }
1339
1340 noreclaim_flag = memalloc_noreclaim_save();
1341 sock_release(queue->sock);
1342 memalloc_noreclaim_restore(noreclaim_flag);
1343
1344 kfree(queue->pdu);
1345 mutex_destroy(&queue->send_mutex);
1346 mutex_destroy(&queue->queue_lock);
1347 }
1348
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1349 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1350 {
1351 struct nvme_tcp_icreq_pdu *icreq;
1352 struct nvme_tcp_icresp_pdu *icresp;
1353 struct msghdr msg = {};
1354 struct kvec iov;
1355 bool ctrl_hdgst, ctrl_ddgst;
1356 u32 maxh2cdata;
1357 int ret;
1358
1359 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1360 if (!icreq)
1361 return -ENOMEM;
1362
1363 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1364 if (!icresp) {
1365 ret = -ENOMEM;
1366 goto free_icreq;
1367 }
1368
1369 icreq->hdr.type = nvme_tcp_icreq;
1370 icreq->hdr.hlen = sizeof(*icreq);
1371 icreq->hdr.pdo = 0;
1372 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1373 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1374 icreq->maxr2t = 0; /* single inflight r2t supported */
1375 icreq->hpda = 0; /* no alignment constraint */
1376 if (queue->hdr_digest)
1377 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1378 if (queue->data_digest)
1379 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1380
1381 iov.iov_base = icreq;
1382 iov.iov_len = sizeof(*icreq);
1383 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1384 if (ret < 0)
1385 goto free_icresp;
1386
1387 memset(&msg, 0, sizeof(msg));
1388 iov.iov_base = icresp;
1389 iov.iov_len = sizeof(*icresp);
1390 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1391 iov.iov_len, msg.msg_flags);
1392 if (ret < 0)
1393 goto free_icresp;
1394
1395 ret = -EINVAL;
1396 if (icresp->hdr.type != nvme_tcp_icresp) {
1397 pr_err("queue %d: bad type returned %d\n",
1398 nvme_tcp_queue_id(queue), icresp->hdr.type);
1399 goto free_icresp;
1400 }
1401
1402 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1403 pr_err("queue %d: bad pdu length returned %d\n",
1404 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1405 goto free_icresp;
1406 }
1407
1408 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1409 pr_err("queue %d: bad pfv returned %d\n",
1410 nvme_tcp_queue_id(queue), icresp->pfv);
1411 goto free_icresp;
1412 }
1413
1414 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1415 if ((queue->data_digest && !ctrl_ddgst) ||
1416 (!queue->data_digest && ctrl_ddgst)) {
1417 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1418 nvme_tcp_queue_id(queue),
1419 queue->data_digest ? "enabled" : "disabled",
1420 ctrl_ddgst ? "enabled" : "disabled");
1421 goto free_icresp;
1422 }
1423
1424 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1425 if ((queue->hdr_digest && !ctrl_hdgst) ||
1426 (!queue->hdr_digest && ctrl_hdgst)) {
1427 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1428 nvme_tcp_queue_id(queue),
1429 queue->hdr_digest ? "enabled" : "disabled",
1430 ctrl_hdgst ? "enabled" : "disabled");
1431 goto free_icresp;
1432 }
1433
1434 if (icresp->cpda != 0) {
1435 pr_err("queue %d: unsupported cpda returned %d\n",
1436 nvme_tcp_queue_id(queue), icresp->cpda);
1437 goto free_icresp;
1438 }
1439
1440 maxh2cdata = le32_to_cpu(icresp->maxdata);
1441 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1442 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1443 nvme_tcp_queue_id(queue), maxh2cdata);
1444 goto free_icresp;
1445 }
1446 queue->maxh2cdata = maxh2cdata;
1447
1448 ret = 0;
1449 free_icresp:
1450 kfree(icresp);
1451 free_icreq:
1452 kfree(icreq);
1453 return ret;
1454 }
1455
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1456 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1457 {
1458 return nvme_tcp_queue_id(queue) == 0;
1459 }
1460
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1461 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1462 {
1463 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1464 int qid = nvme_tcp_queue_id(queue);
1465
1466 return !nvme_tcp_admin_queue(queue) &&
1467 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1468 }
1469
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1470 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1471 {
1472 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1473 int qid = nvme_tcp_queue_id(queue);
1474
1475 return !nvme_tcp_admin_queue(queue) &&
1476 !nvme_tcp_default_queue(queue) &&
1477 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1478 ctrl->io_queues[HCTX_TYPE_READ];
1479 }
1480
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1481 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1482 {
1483 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1484 int qid = nvme_tcp_queue_id(queue);
1485
1486 return !nvme_tcp_admin_queue(queue) &&
1487 !nvme_tcp_default_queue(queue) &&
1488 !nvme_tcp_read_queue(queue) &&
1489 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1490 ctrl->io_queues[HCTX_TYPE_READ] +
1491 ctrl->io_queues[HCTX_TYPE_POLL];
1492 }
1493
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1494 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1495 {
1496 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1497 int qid = nvme_tcp_queue_id(queue);
1498 int n = 0;
1499
1500 if (nvme_tcp_default_queue(queue))
1501 n = qid - 1;
1502 else if (nvme_tcp_read_queue(queue))
1503 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1504 else if (nvme_tcp_poll_queue(queue))
1505 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1506 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1507 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1508 }
1509
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid)1510 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid)
1511 {
1512 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1513 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1514 int ret, rcv_pdu_size;
1515
1516 mutex_init(&queue->queue_lock);
1517 queue->ctrl = ctrl;
1518 init_llist_head(&queue->req_list);
1519 INIT_LIST_HEAD(&queue->send_list);
1520 mutex_init(&queue->send_mutex);
1521 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1522
1523 if (qid > 0)
1524 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1525 else
1526 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1527 NVME_TCP_ADMIN_CCSZ;
1528
1529 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1530 IPPROTO_TCP, &queue->sock);
1531 if (ret) {
1532 dev_err(nctrl->device,
1533 "failed to create socket: %d\n", ret);
1534 goto err_destroy_mutex;
1535 }
1536
1537 nvme_tcp_reclassify_socket(queue->sock);
1538
1539 /* Single syn retry */
1540 tcp_sock_set_syncnt(queue->sock->sk, 1);
1541
1542 /* Set TCP no delay */
1543 tcp_sock_set_nodelay(queue->sock->sk);
1544
1545 /*
1546 * Cleanup whatever is sitting in the TCP transmit queue on socket
1547 * close. This is done to prevent stale data from being sent should
1548 * the network connection be restored before TCP times out.
1549 */
1550 sock_no_linger(queue->sock->sk);
1551
1552 if (so_priority > 0)
1553 sock_set_priority(queue->sock->sk, so_priority);
1554
1555 /* Set socket type of service */
1556 if (nctrl->opts->tos >= 0)
1557 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1558
1559 /* Set 10 seconds timeout for icresp recvmsg */
1560 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1561
1562 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1563 queue->sock->sk->sk_use_task_frag = false;
1564 nvme_tcp_set_queue_io_cpu(queue);
1565 queue->request = NULL;
1566 queue->data_remaining = 0;
1567 queue->ddgst_remaining = 0;
1568 queue->pdu_remaining = 0;
1569 queue->pdu_offset = 0;
1570 sk_set_memalloc(queue->sock->sk);
1571
1572 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1573 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1574 sizeof(ctrl->src_addr));
1575 if (ret) {
1576 dev_err(nctrl->device,
1577 "failed to bind queue %d socket %d\n",
1578 qid, ret);
1579 goto err_sock;
1580 }
1581 }
1582
1583 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1584 char *iface = nctrl->opts->host_iface;
1585 sockptr_t optval = KERNEL_SOCKPTR(iface);
1586
1587 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1588 optval, strlen(iface));
1589 if (ret) {
1590 dev_err(nctrl->device,
1591 "failed to bind to interface %s queue %d err %d\n",
1592 iface, qid, ret);
1593 goto err_sock;
1594 }
1595 }
1596
1597 queue->hdr_digest = nctrl->opts->hdr_digest;
1598 queue->data_digest = nctrl->opts->data_digest;
1599 if (queue->hdr_digest || queue->data_digest) {
1600 ret = nvme_tcp_alloc_crypto(queue);
1601 if (ret) {
1602 dev_err(nctrl->device,
1603 "failed to allocate queue %d crypto\n", qid);
1604 goto err_sock;
1605 }
1606 }
1607
1608 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1609 nvme_tcp_hdgst_len(queue);
1610 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1611 if (!queue->pdu) {
1612 ret = -ENOMEM;
1613 goto err_crypto;
1614 }
1615
1616 dev_dbg(nctrl->device, "connecting queue %d\n",
1617 nvme_tcp_queue_id(queue));
1618
1619 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1620 sizeof(ctrl->addr), 0);
1621 if (ret) {
1622 dev_err(nctrl->device,
1623 "failed to connect socket: %d\n", ret);
1624 goto err_rcv_pdu;
1625 }
1626
1627 ret = nvme_tcp_init_connection(queue);
1628 if (ret)
1629 goto err_init_connect;
1630
1631 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1632
1633 return 0;
1634
1635 err_init_connect:
1636 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1637 err_rcv_pdu:
1638 kfree(queue->pdu);
1639 err_crypto:
1640 if (queue->hdr_digest || queue->data_digest)
1641 nvme_tcp_free_crypto(queue);
1642 err_sock:
1643 sock_release(queue->sock);
1644 queue->sock = NULL;
1645 err_destroy_mutex:
1646 mutex_destroy(&queue->send_mutex);
1647 mutex_destroy(&queue->queue_lock);
1648 return ret;
1649 }
1650
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1651 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1652 {
1653 struct socket *sock = queue->sock;
1654
1655 write_lock_bh(&sock->sk->sk_callback_lock);
1656 sock->sk->sk_user_data = NULL;
1657 sock->sk->sk_data_ready = queue->data_ready;
1658 sock->sk->sk_state_change = queue->state_change;
1659 sock->sk->sk_write_space = queue->write_space;
1660 write_unlock_bh(&sock->sk->sk_callback_lock);
1661 }
1662
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1663 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1664 {
1665 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1666 nvme_tcp_restore_sock_ops(queue);
1667 cancel_work_sync(&queue->io_work);
1668 }
1669
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1670 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1671 {
1672 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1673 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1674
1675 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1676 return;
1677
1678 mutex_lock(&queue->queue_lock);
1679 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1680 __nvme_tcp_stop_queue(queue);
1681 mutex_unlock(&queue->queue_lock);
1682 }
1683
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1684 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1685 {
1686 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1687 queue->sock->sk->sk_user_data = queue;
1688 queue->state_change = queue->sock->sk->sk_state_change;
1689 queue->data_ready = queue->sock->sk->sk_data_ready;
1690 queue->write_space = queue->sock->sk->sk_write_space;
1691 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1692 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1693 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1694 #ifdef CONFIG_NET_RX_BUSY_POLL
1695 queue->sock->sk->sk_ll_usec = 1;
1696 #endif
1697 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1698 }
1699
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1700 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1701 {
1702 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1703 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1704 int ret;
1705
1706 queue->rd_enabled = true;
1707 nvme_tcp_init_recv_ctx(queue);
1708 nvme_tcp_setup_sock_ops(queue);
1709
1710 if (idx)
1711 ret = nvmf_connect_io_queue(nctrl, idx);
1712 else
1713 ret = nvmf_connect_admin_queue(nctrl);
1714
1715 if (!ret) {
1716 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1717 } else {
1718 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1719 __nvme_tcp_stop_queue(queue);
1720 dev_err(nctrl->device,
1721 "failed to connect queue: %d ret=%d\n", idx, ret);
1722 }
1723 return ret;
1724 }
1725
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1726 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1727 {
1728 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1729 cancel_work_sync(&ctrl->async_event_work);
1730 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1731 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1732 }
1733
1734 nvme_tcp_free_queue(ctrl, 0);
1735 }
1736
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1737 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1738 {
1739 int i;
1740
1741 for (i = 1; i < ctrl->queue_count; i++)
1742 nvme_tcp_free_queue(ctrl, i);
1743 }
1744
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1745 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1746 {
1747 int i;
1748
1749 for (i = 1; i < ctrl->queue_count; i++)
1750 nvme_tcp_stop_queue(ctrl, i);
1751 }
1752
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)1753 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1754 int first, int last)
1755 {
1756 int i, ret;
1757
1758 for (i = first; i < last; i++) {
1759 ret = nvme_tcp_start_queue(ctrl, i);
1760 if (ret)
1761 goto out_stop_queues;
1762 }
1763
1764 return 0;
1765
1766 out_stop_queues:
1767 for (i--; i >= first; i--)
1768 nvme_tcp_stop_queue(ctrl, i);
1769 return ret;
1770 }
1771
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1772 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1773 {
1774 int ret;
1775
1776 ret = nvme_tcp_alloc_queue(ctrl, 0);
1777 if (ret)
1778 return ret;
1779
1780 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1781 if (ret)
1782 goto out_free_queue;
1783
1784 return 0;
1785
1786 out_free_queue:
1787 nvme_tcp_free_queue(ctrl, 0);
1788 return ret;
1789 }
1790
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1791 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1792 {
1793 int i, ret;
1794
1795 for (i = 1; i < ctrl->queue_count; i++) {
1796 ret = nvme_tcp_alloc_queue(ctrl, i);
1797 if (ret)
1798 goto out_free_queues;
1799 }
1800
1801 return 0;
1802
1803 out_free_queues:
1804 for (i--; i >= 1; i--)
1805 nvme_tcp_free_queue(ctrl, i);
1806
1807 return ret;
1808 }
1809
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1810 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1811 {
1812 unsigned int nr_io_queues;
1813 int ret;
1814
1815 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1816 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1817 if (ret)
1818 return ret;
1819
1820 if (nr_io_queues == 0) {
1821 dev_err(ctrl->device,
1822 "unable to set any I/O queues\n");
1823 return -ENOMEM;
1824 }
1825
1826 ctrl->queue_count = nr_io_queues + 1;
1827 dev_info(ctrl->device,
1828 "creating %d I/O queues.\n", nr_io_queues);
1829
1830 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1831 to_tcp_ctrl(ctrl)->io_queues);
1832 return __nvme_tcp_alloc_io_queues(ctrl);
1833 }
1834
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1835 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1836 {
1837 nvme_tcp_stop_io_queues(ctrl);
1838 if (remove)
1839 nvme_remove_io_tag_set(ctrl);
1840 nvme_tcp_free_io_queues(ctrl);
1841 }
1842
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1843 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1844 {
1845 int ret, nr_queues;
1846
1847 ret = nvme_tcp_alloc_io_queues(ctrl);
1848 if (ret)
1849 return ret;
1850
1851 if (new) {
1852 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
1853 &nvme_tcp_mq_ops,
1854 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
1855 sizeof(struct nvme_tcp_request));
1856 if (ret)
1857 goto out_free_io_queues;
1858 }
1859
1860 /*
1861 * Only start IO queues for which we have allocated the tagset
1862 * and limitted it to the available queues. On reconnects, the
1863 * queue number might have changed.
1864 */
1865 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
1866 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
1867 if (ret)
1868 goto out_cleanup_connect_q;
1869
1870 if (!new) {
1871 nvme_start_freeze(ctrl);
1872 nvme_unquiesce_io_queues(ctrl);
1873 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1874 /*
1875 * If we timed out waiting for freeze we are likely to
1876 * be stuck. Fail the controller initialization just
1877 * to be safe.
1878 */
1879 ret = -ENODEV;
1880 nvme_unfreeze(ctrl);
1881 goto out_wait_freeze_timed_out;
1882 }
1883 blk_mq_update_nr_hw_queues(ctrl->tagset,
1884 ctrl->queue_count - 1);
1885 nvme_unfreeze(ctrl);
1886 }
1887
1888 /*
1889 * If the number of queues has increased (reconnect case)
1890 * start all new queues now.
1891 */
1892 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
1893 ctrl->tagset->nr_hw_queues + 1);
1894 if (ret)
1895 goto out_wait_freeze_timed_out;
1896
1897 return 0;
1898
1899 out_wait_freeze_timed_out:
1900 nvme_quiesce_io_queues(ctrl);
1901 nvme_sync_io_queues(ctrl);
1902 nvme_tcp_stop_io_queues(ctrl);
1903 out_cleanup_connect_q:
1904 nvme_cancel_tagset(ctrl);
1905 if (new)
1906 nvme_remove_io_tag_set(ctrl);
1907 out_free_io_queues:
1908 nvme_tcp_free_io_queues(ctrl);
1909 return ret;
1910 }
1911
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1912 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1913 {
1914 nvme_tcp_stop_queue(ctrl, 0);
1915 if (remove)
1916 nvme_remove_admin_tag_set(ctrl);
1917 nvme_tcp_free_admin_queue(ctrl);
1918 }
1919
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1920 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1921 {
1922 int error;
1923
1924 error = nvme_tcp_alloc_admin_queue(ctrl);
1925 if (error)
1926 return error;
1927
1928 if (new) {
1929 error = nvme_alloc_admin_tag_set(ctrl,
1930 &to_tcp_ctrl(ctrl)->admin_tag_set,
1931 &nvme_tcp_admin_mq_ops,
1932 sizeof(struct nvme_tcp_request));
1933 if (error)
1934 goto out_free_queue;
1935 }
1936
1937 error = nvme_tcp_start_queue(ctrl, 0);
1938 if (error)
1939 goto out_cleanup_tagset;
1940
1941 error = nvme_enable_ctrl(ctrl);
1942 if (error)
1943 goto out_stop_queue;
1944
1945 nvme_unquiesce_admin_queue(ctrl);
1946
1947 error = nvme_init_ctrl_finish(ctrl, false);
1948 if (error)
1949 goto out_quiesce_queue;
1950
1951 return 0;
1952
1953 out_quiesce_queue:
1954 nvme_quiesce_admin_queue(ctrl);
1955 blk_sync_queue(ctrl->admin_q);
1956 out_stop_queue:
1957 nvme_tcp_stop_queue(ctrl, 0);
1958 nvme_cancel_admin_tagset(ctrl);
1959 out_cleanup_tagset:
1960 if (new)
1961 nvme_remove_admin_tag_set(ctrl);
1962 out_free_queue:
1963 nvme_tcp_free_admin_queue(ctrl);
1964 return error;
1965 }
1966
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)1967 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1968 bool remove)
1969 {
1970 nvme_quiesce_admin_queue(ctrl);
1971 blk_sync_queue(ctrl->admin_q);
1972 nvme_tcp_stop_queue(ctrl, 0);
1973 nvme_cancel_admin_tagset(ctrl);
1974 if (remove)
1975 nvme_unquiesce_admin_queue(ctrl);
1976 nvme_tcp_destroy_admin_queue(ctrl, remove);
1977 }
1978
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)1979 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1980 bool remove)
1981 {
1982 if (ctrl->queue_count <= 1)
1983 return;
1984 nvme_quiesce_admin_queue(ctrl);
1985 nvme_quiesce_io_queues(ctrl);
1986 nvme_sync_io_queues(ctrl);
1987 nvme_tcp_stop_io_queues(ctrl);
1988 nvme_cancel_tagset(ctrl);
1989 if (remove)
1990 nvme_unquiesce_io_queues(ctrl);
1991 nvme_tcp_destroy_io_queues(ctrl, remove);
1992 }
1993
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)1994 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1995 {
1996 /* If we are resetting/deleting then do nothing */
1997 if (ctrl->state != NVME_CTRL_CONNECTING) {
1998 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1999 ctrl->state == NVME_CTRL_LIVE);
2000 return;
2001 }
2002
2003 if (nvmf_should_reconnect(ctrl)) {
2004 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2005 ctrl->opts->reconnect_delay);
2006 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2007 ctrl->opts->reconnect_delay * HZ);
2008 } else {
2009 dev_info(ctrl->device, "Removing controller...\n");
2010 nvme_delete_ctrl(ctrl);
2011 }
2012 }
2013
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2014 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2015 {
2016 struct nvmf_ctrl_options *opts = ctrl->opts;
2017 int ret;
2018
2019 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2020 if (ret)
2021 return ret;
2022
2023 if (ctrl->icdoff) {
2024 ret = -EOPNOTSUPP;
2025 dev_err(ctrl->device, "icdoff is not supported!\n");
2026 goto destroy_admin;
2027 }
2028
2029 if (!nvme_ctrl_sgl_supported(ctrl)) {
2030 ret = -EOPNOTSUPP;
2031 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2032 goto destroy_admin;
2033 }
2034
2035 if (opts->queue_size > ctrl->sqsize + 1)
2036 dev_warn(ctrl->device,
2037 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2038 opts->queue_size, ctrl->sqsize + 1);
2039
2040 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2041 dev_warn(ctrl->device,
2042 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2043 ctrl->sqsize + 1, ctrl->maxcmd);
2044 ctrl->sqsize = ctrl->maxcmd - 1;
2045 }
2046
2047 if (ctrl->queue_count > 1) {
2048 ret = nvme_tcp_configure_io_queues(ctrl, new);
2049 if (ret)
2050 goto destroy_admin;
2051 }
2052
2053 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2054 /*
2055 * state change failure is ok if we started ctrl delete,
2056 * unless we're during creation of a new controller to
2057 * avoid races with teardown flow.
2058 */
2059 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2060 ctrl->state != NVME_CTRL_DELETING_NOIO);
2061 WARN_ON_ONCE(new);
2062 ret = -EINVAL;
2063 goto destroy_io;
2064 }
2065
2066 nvme_start_ctrl(ctrl);
2067 return 0;
2068
2069 destroy_io:
2070 if (ctrl->queue_count > 1) {
2071 nvme_quiesce_io_queues(ctrl);
2072 nvme_sync_io_queues(ctrl);
2073 nvme_tcp_stop_io_queues(ctrl);
2074 nvme_cancel_tagset(ctrl);
2075 nvme_tcp_destroy_io_queues(ctrl, new);
2076 }
2077 destroy_admin:
2078 nvme_quiesce_admin_queue(ctrl);
2079 blk_sync_queue(ctrl->admin_q);
2080 nvme_tcp_stop_queue(ctrl, 0);
2081 nvme_cancel_admin_tagset(ctrl);
2082 nvme_tcp_destroy_admin_queue(ctrl, new);
2083 return ret;
2084 }
2085
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2086 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2087 {
2088 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2089 struct nvme_tcp_ctrl, connect_work);
2090 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2091
2092 ++ctrl->nr_reconnects;
2093
2094 if (nvme_tcp_setup_ctrl(ctrl, false))
2095 goto requeue;
2096
2097 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2098 ctrl->nr_reconnects);
2099
2100 ctrl->nr_reconnects = 0;
2101
2102 return;
2103
2104 requeue:
2105 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2106 ctrl->nr_reconnects);
2107 nvme_tcp_reconnect_or_remove(ctrl);
2108 }
2109
nvme_tcp_error_recovery_work(struct work_struct * work)2110 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2111 {
2112 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2113 struct nvme_tcp_ctrl, err_work);
2114 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2115
2116 nvme_stop_keep_alive(ctrl);
2117 flush_work(&ctrl->async_event_work);
2118 nvme_tcp_teardown_io_queues(ctrl, false);
2119 /* unquiesce to fail fast pending requests */
2120 nvme_unquiesce_io_queues(ctrl);
2121 nvme_tcp_teardown_admin_queue(ctrl, false);
2122 nvme_unquiesce_admin_queue(ctrl);
2123 nvme_auth_stop(ctrl);
2124
2125 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2126 /* state change failure is ok if we started ctrl delete */
2127 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2128 ctrl->state != NVME_CTRL_DELETING_NOIO);
2129 return;
2130 }
2131
2132 nvme_tcp_reconnect_or_remove(ctrl);
2133 }
2134
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2135 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2136 {
2137 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2138 nvme_quiesce_admin_queue(ctrl);
2139 nvme_disable_ctrl(ctrl, shutdown);
2140 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2141 }
2142
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2143 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2144 {
2145 nvme_tcp_teardown_ctrl(ctrl, true);
2146 }
2147
nvme_reset_ctrl_work(struct work_struct * work)2148 static void nvme_reset_ctrl_work(struct work_struct *work)
2149 {
2150 struct nvme_ctrl *ctrl =
2151 container_of(work, struct nvme_ctrl, reset_work);
2152
2153 nvme_stop_ctrl(ctrl);
2154 nvme_tcp_teardown_ctrl(ctrl, false);
2155
2156 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2157 /* state change failure is ok if we started ctrl delete */
2158 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2159 ctrl->state != NVME_CTRL_DELETING_NOIO);
2160 return;
2161 }
2162
2163 if (nvme_tcp_setup_ctrl(ctrl, false))
2164 goto out_fail;
2165
2166 return;
2167
2168 out_fail:
2169 ++ctrl->nr_reconnects;
2170 nvme_tcp_reconnect_or_remove(ctrl);
2171 }
2172
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2173 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2174 {
2175 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2176 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2177 }
2178
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2179 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2180 {
2181 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2182
2183 if (list_empty(&ctrl->list))
2184 goto free_ctrl;
2185
2186 mutex_lock(&nvme_tcp_ctrl_mutex);
2187 list_del(&ctrl->list);
2188 mutex_unlock(&nvme_tcp_ctrl_mutex);
2189
2190 nvmf_free_options(nctrl->opts);
2191 free_ctrl:
2192 kfree(ctrl->queues);
2193 kfree(ctrl);
2194 }
2195
nvme_tcp_set_sg_null(struct nvme_command * c)2196 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2197 {
2198 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2199
2200 sg->addr = 0;
2201 sg->length = 0;
2202 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2203 NVME_SGL_FMT_TRANSPORT_A;
2204 }
2205
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2206 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2207 struct nvme_command *c, u32 data_len)
2208 {
2209 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2210
2211 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2212 sg->length = cpu_to_le32(data_len);
2213 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2214 }
2215
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2216 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2217 u32 data_len)
2218 {
2219 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2220
2221 sg->addr = 0;
2222 sg->length = cpu_to_le32(data_len);
2223 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2224 NVME_SGL_FMT_TRANSPORT_A;
2225 }
2226
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2227 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2228 {
2229 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2230 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2231 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2232 struct nvme_command *cmd = &pdu->cmd;
2233 u8 hdgst = nvme_tcp_hdgst_len(queue);
2234
2235 memset(pdu, 0, sizeof(*pdu));
2236 pdu->hdr.type = nvme_tcp_cmd;
2237 if (queue->hdr_digest)
2238 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2239 pdu->hdr.hlen = sizeof(*pdu);
2240 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2241
2242 cmd->common.opcode = nvme_admin_async_event;
2243 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2244 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2245 nvme_tcp_set_sg_null(cmd);
2246
2247 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2248 ctrl->async_req.offset = 0;
2249 ctrl->async_req.curr_bio = NULL;
2250 ctrl->async_req.data_len = 0;
2251
2252 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2253 }
2254
nvme_tcp_complete_timed_out(struct request * rq)2255 static void nvme_tcp_complete_timed_out(struct request *rq)
2256 {
2257 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2258 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2259
2260 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2261 nvmf_complete_timed_out_request(rq);
2262 }
2263
nvme_tcp_timeout(struct request * rq)2264 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2265 {
2266 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2267 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2268 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2269 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2270 int qid = nvme_tcp_queue_id(req->queue);
2271
2272 dev_warn(ctrl->device,
2273 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2274 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2275 opc, nvme_opcode_str(qid, opc, fctype));
2276
2277 if (ctrl->state != NVME_CTRL_LIVE) {
2278 /*
2279 * If we are resetting, connecting or deleting we should
2280 * complete immediately because we may block controller
2281 * teardown or setup sequence
2282 * - ctrl disable/shutdown fabrics requests
2283 * - connect requests
2284 * - initialization admin requests
2285 * - I/O requests that entered after unquiescing and
2286 * the controller stopped responding
2287 *
2288 * All other requests should be cancelled by the error
2289 * recovery work, so it's fine that we fail it here.
2290 */
2291 nvme_tcp_complete_timed_out(rq);
2292 return BLK_EH_DONE;
2293 }
2294
2295 /*
2296 * LIVE state should trigger the normal error recovery which will
2297 * handle completing this request.
2298 */
2299 nvme_tcp_error_recovery(ctrl);
2300 return BLK_EH_RESET_TIMER;
2301 }
2302
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2303 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2304 struct request *rq)
2305 {
2306 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2307 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2308 struct nvme_command *c = &pdu->cmd;
2309
2310 c->common.flags |= NVME_CMD_SGL_METABUF;
2311
2312 if (!blk_rq_nr_phys_segments(rq))
2313 nvme_tcp_set_sg_null(c);
2314 else if (rq_data_dir(rq) == WRITE &&
2315 req->data_len <= nvme_tcp_inline_data_size(req))
2316 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2317 else
2318 nvme_tcp_set_sg_host_data(c, req->data_len);
2319
2320 return 0;
2321 }
2322
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2323 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2324 struct request *rq)
2325 {
2326 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2327 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2328 struct nvme_tcp_queue *queue = req->queue;
2329 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2330 blk_status_t ret;
2331
2332 ret = nvme_setup_cmd(ns, rq);
2333 if (ret)
2334 return ret;
2335
2336 req->state = NVME_TCP_SEND_CMD_PDU;
2337 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2338 req->offset = 0;
2339 req->data_sent = 0;
2340 req->pdu_len = 0;
2341 req->pdu_sent = 0;
2342 req->h2cdata_left = 0;
2343 req->data_len = blk_rq_nr_phys_segments(rq) ?
2344 blk_rq_payload_bytes(rq) : 0;
2345 req->curr_bio = rq->bio;
2346 if (req->curr_bio && req->data_len)
2347 nvme_tcp_init_iter(req, rq_data_dir(rq));
2348
2349 if (rq_data_dir(rq) == WRITE &&
2350 req->data_len <= nvme_tcp_inline_data_size(req))
2351 req->pdu_len = req->data_len;
2352
2353 pdu->hdr.type = nvme_tcp_cmd;
2354 pdu->hdr.flags = 0;
2355 if (queue->hdr_digest)
2356 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2357 if (queue->data_digest && req->pdu_len) {
2358 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2359 ddgst = nvme_tcp_ddgst_len(queue);
2360 }
2361 pdu->hdr.hlen = sizeof(*pdu);
2362 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2363 pdu->hdr.plen =
2364 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2365
2366 ret = nvme_tcp_map_data(queue, rq);
2367 if (unlikely(ret)) {
2368 nvme_cleanup_cmd(rq);
2369 dev_err(queue->ctrl->ctrl.device,
2370 "Failed to map data (%d)\n", ret);
2371 return ret;
2372 }
2373
2374 return 0;
2375 }
2376
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2377 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2378 {
2379 struct nvme_tcp_queue *queue = hctx->driver_data;
2380
2381 if (!llist_empty(&queue->req_list))
2382 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2383 }
2384
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2385 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2386 const struct blk_mq_queue_data *bd)
2387 {
2388 struct nvme_ns *ns = hctx->queue->queuedata;
2389 struct nvme_tcp_queue *queue = hctx->driver_data;
2390 struct request *rq = bd->rq;
2391 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2392 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2393 blk_status_t ret;
2394
2395 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2396 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2397
2398 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2399 if (unlikely(ret))
2400 return ret;
2401
2402 nvme_start_request(rq);
2403
2404 nvme_tcp_queue_request(req, true, bd->last);
2405
2406 return BLK_STS_OK;
2407 }
2408
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2409 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2410 {
2411 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2412
2413 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2414 }
2415
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2416 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2417 {
2418 struct nvme_tcp_queue *queue = hctx->driver_data;
2419 struct sock *sk = queue->sock->sk;
2420
2421 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2422 return 0;
2423
2424 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2425 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2426 sk_busy_loop(sk, true);
2427 nvme_tcp_try_recv(queue);
2428 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2429 return queue->nr_cqe;
2430 }
2431
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2432 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2433 {
2434 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2435 struct sockaddr_storage src_addr;
2436 int ret, len;
2437
2438 len = nvmf_get_address(ctrl, buf, size);
2439
2440 mutex_lock(&queue->queue_lock);
2441
2442 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2443 goto done;
2444 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2445 if (ret > 0) {
2446 if (len > 0)
2447 len--; /* strip trailing newline */
2448 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2449 (len) ? "," : "", &src_addr);
2450 }
2451 done:
2452 mutex_unlock(&queue->queue_lock);
2453
2454 return len;
2455 }
2456
2457 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2458 .queue_rq = nvme_tcp_queue_rq,
2459 .commit_rqs = nvme_tcp_commit_rqs,
2460 .complete = nvme_complete_rq,
2461 .init_request = nvme_tcp_init_request,
2462 .exit_request = nvme_tcp_exit_request,
2463 .init_hctx = nvme_tcp_init_hctx,
2464 .timeout = nvme_tcp_timeout,
2465 .map_queues = nvme_tcp_map_queues,
2466 .poll = nvme_tcp_poll,
2467 };
2468
2469 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2470 .queue_rq = nvme_tcp_queue_rq,
2471 .complete = nvme_complete_rq,
2472 .init_request = nvme_tcp_init_request,
2473 .exit_request = nvme_tcp_exit_request,
2474 .init_hctx = nvme_tcp_init_admin_hctx,
2475 .timeout = nvme_tcp_timeout,
2476 };
2477
2478 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2479 .name = "tcp",
2480 .module = THIS_MODULE,
2481 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2482 .reg_read32 = nvmf_reg_read32,
2483 .reg_read64 = nvmf_reg_read64,
2484 .reg_write32 = nvmf_reg_write32,
2485 .free_ctrl = nvme_tcp_free_ctrl,
2486 .submit_async_event = nvme_tcp_submit_async_event,
2487 .delete_ctrl = nvme_tcp_delete_ctrl,
2488 .get_address = nvme_tcp_get_address,
2489 .stop_ctrl = nvme_tcp_stop_ctrl,
2490 };
2491
2492 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2493 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2494 {
2495 struct nvme_tcp_ctrl *ctrl;
2496 bool found = false;
2497
2498 mutex_lock(&nvme_tcp_ctrl_mutex);
2499 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2500 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2501 if (found)
2502 break;
2503 }
2504 mutex_unlock(&nvme_tcp_ctrl_mutex);
2505
2506 return found;
2507 }
2508
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2509 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2510 struct nvmf_ctrl_options *opts)
2511 {
2512 struct nvme_tcp_ctrl *ctrl;
2513 int ret;
2514
2515 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2516 if (!ctrl)
2517 return ERR_PTR(-ENOMEM);
2518
2519 INIT_LIST_HEAD(&ctrl->list);
2520 ctrl->ctrl.opts = opts;
2521 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2522 opts->nr_poll_queues + 1;
2523 ctrl->ctrl.sqsize = opts->queue_size - 1;
2524 ctrl->ctrl.kato = opts->kato;
2525
2526 INIT_DELAYED_WORK(&ctrl->connect_work,
2527 nvme_tcp_reconnect_ctrl_work);
2528 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2529 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2530
2531 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2532 opts->trsvcid =
2533 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2534 if (!opts->trsvcid) {
2535 ret = -ENOMEM;
2536 goto out_free_ctrl;
2537 }
2538 opts->mask |= NVMF_OPT_TRSVCID;
2539 }
2540
2541 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2542 opts->traddr, opts->trsvcid, &ctrl->addr);
2543 if (ret) {
2544 pr_err("malformed address passed: %s:%s\n",
2545 opts->traddr, opts->trsvcid);
2546 goto out_free_ctrl;
2547 }
2548
2549 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2550 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2551 opts->host_traddr, NULL, &ctrl->src_addr);
2552 if (ret) {
2553 pr_err("malformed src address passed: %s\n",
2554 opts->host_traddr);
2555 goto out_free_ctrl;
2556 }
2557 }
2558
2559 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2560 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2561 pr_err("invalid interface passed: %s\n",
2562 opts->host_iface);
2563 ret = -ENODEV;
2564 goto out_free_ctrl;
2565 }
2566 }
2567
2568 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2569 ret = -EALREADY;
2570 goto out_free_ctrl;
2571 }
2572
2573 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2574 GFP_KERNEL);
2575 if (!ctrl->queues) {
2576 ret = -ENOMEM;
2577 goto out_free_ctrl;
2578 }
2579
2580 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2581 if (ret)
2582 goto out_kfree_queues;
2583
2584 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2585 WARN_ON_ONCE(1);
2586 ret = -EINTR;
2587 goto out_uninit_ctrl;
2588 }
2589
2590 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2591 if (ret)
2592 goto out_uninit_ctrl;
2593
2594 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2595 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2596
2597 mutex_lock(&nvme_tcp_ctrl_mutex);
2598 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2599 mutex_unlock(&nvme_tcp_ctrl_mutex);
2600
2601 return &ctrl->ctrl;
2602
2603 out_uninit_ctrl:
2604 nvme_uninit_ctrl(&ctrl->ctrl);
2605 nvme_put_ctrl(&ctrl->ctrl);
2606 if (ret > 0)
2607 ret = -EIO;
2608 return ERR_PTR(ret);
2609 out_kfree_queues:
2610 kfree(ctrl->queues);
2611 out_free_ctrl:
2612 kfree(ctrl);
2613 return ERR_PTR(ret);
2614 }
2615
2616 static struct nvmf_transport_ops nvme_tcp_transport = {
2617 .name = "tcp",
2618 .module = THIS_MODULE,
2619 .required_opts = NVMF_OPT_TRADDR,
2620 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2621 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2622 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2623 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2624 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2625 .create_ctrl = nvme_tcp_create_ctrl,
2626 };
2627
nvme_tcp_init_module(void)2628 static int __init nvme_tcp_init_module(void)
2629 {
2630 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2631 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2632 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2633 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2634 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2635 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2636 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2637 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2638
2639 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2640 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2641 if (!nvme_tcp_wq)
2642 return -ENOMEM;
2643
2644 nvmf_register_transport(&nvme_tcp_transport);
2645 return 0;
2646 }
2647
nvme_tcp_cleanup_module(void)2648 static void __exit nvme_tcp_cleanup_module(void)
2649 {
2650 struct nvme_tcp_ctrl *ctrl;
2651
2652 nvmf_unregister_transport(&nvme_tcp_transport);
2653
2654 mutex_lock(&nvme_tcp_ctrl_mutex);
2655 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2656 nvme_delete_ctrl(&ctrl->ctrl);
2657 mutex_unlock(&nvme_tcp_ctrl_mutex);
2658 flush_workqueue(nvme_delete_wq);
2659
2660 destroy_workqueue(nvme_tcp_wq);
2661 }
2662
2663 module_init(nvme_tcp_init_module);
2664 module_exit(nvme_tcp_cleanup_module);
2665
2666 MODULE_LICENSE("GPL v2");
2667