1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "mem-info.h"
20 #include "path.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "sort.h"
24 #include "strlist.h"
25 #include "target.h"
26 #include "thread.h"
27 #include "util.h"
28 #include "vdso.h"
29 #include <stdbool.h>
30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33 #include "unwind.h"
34 #include "linux/hash.h"
35 #include "asm/bug.h"
36 #include "bpf-event.h"
37 #include <internal/lib.h> // page_size
38 #include "cgroup.h"
39 #include "arm64-frame-pointer-unwind-support.h"
40 #include <api/io_dir.h>
41
42 #include <linux/ctype.h>
43 #include <symbol/kallsyms.h>
44 #include <linux/mman.h>
45 #include <linux/string.h>
46 #include <linux/zalloc.h>
47
machine__kernel_dso(struct machine * machine)48 static struct dso *machine__kernel_dso(struct machine *machine)
49 {
50 return map__dso(machine->vmlinux_map);
51 }
52
machine__set_mmap_name(struct machine * machine)53 static int machine__set_mmap_name(struct machine *machine)
54 {
55 if (machine__is_host(machine))
56 machine->mmap_name = strdup("[kernel.kallsyms]");
57 else if (machine__is_default_guest(machine))
58 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
59 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
60 machine->pid) < 0)
61 machine->mmap_name = NULL;
62
63 return machine->mmap_name ? 0 : -ENOMEM;
64 }
65
thread__set_guest_comm(struct thread * thread,pid_t pid)66 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
67 {
68 char comm[64];
69
70 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
71 thread__set_comm(thread, comm, 0);
72 }
73
machine__init(struct machine * machine,const char * root_dir,pid_t pid)74 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
75 {
76 int err = -ENOMEM;
77
78 memset(machine, 0, sizeof(*machine));
79 machine->kmaps = maps__new(machine);
80 if (machine->kmaps == NULL)
81 return -ENOMEM;
82
83 RB_CLEAR_NODE(&machine->rb_node);
84 dsos__init(&machine->dsos);
85
86 threads__init(&machine->threads);
87
88 machine->vdso_info = NULL;
89 machine->env = NULL;
90
91 machine->pid = pid;
92
93 machine->id_hdr_size = 0;
94 machine->kptr_restrict_warned = false;
95 machine->comm_exec = false;
96 machine->kernel_start = 0;
97 machine->vmlinux_map = NULL;
98 /* There is no initial context switch in, so we start at 1. */
99 machine->parallelism = 1;
100
101 machine->root_dir = strdup(root_dir);
102 if (machine->root_dir == NULL)
103 goto out;
104
105 if (machine__set_mmap_name(machine))
106 goto out;
107
108 if (pid != HOST_KERNEL_ID) {
109 struct thread *thread = machine__findnew_thread(machine, -1,
110 pid);
111
112 if (thread == NULL)
113 goto out;
114
115 thread__set_guest_comm(thread, pid);
116 thread__put(thread);
117 }
118
119 machine->current_tid = NULL;
120 err = 0;
121
122 out:
123 if (err) {
124 zfree(&machine->kmaps);
125 zfree(&machine->root_dir);
126 zfree(&machine->mmap_name);
127 }
128 return 0;
129 }
130
machine__new_host(void)131 struct machine *machine__new_host(void)
132 {
133 struct machine *machine = malloc(sizeof(*machine));
134
135 if (machine != NULL) {
136 machine__init(machine, "", HOST_KERNEL_ID);
137
138 if (machine__create_kernel_maps(machine) < 0)
139 goto out_delete;
140
141 machine->env = &perf_env;
142 }
143
144 return machine;
145 out_delete:
146 free(machine);
147 return NULL;
148 }
149
machine__new_kallsyms(void)150 struct machine *machine__new_kallsyms(void)
151 {
152 struct machine *machine = machine__new_host();
153 /*
154 * FIXME:
155 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
156 * ask for not using the kcore parsing code, once this one is fixed
157 * to create a map per module.
158 */
159 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
160 machine__delete(machine);
161 machine = NULL;
162 }
163
164 return machine;
165 }
166
machine__delete_threads(struct machine * machine)167 void machine__delete_threads(struct machine *machine)
168 {
169 threads__remove_all_threads(&machine->threads);
170 }
171
machine__exit(struct machine * machine)172 void machine__exit(struct machine *machine)
173 {
174 if (machine == NULL)
175 return;
176
177 machine__destroy_kernel_maps(machine);
178 maps__zput(machine->kmaps);
179 dsos__exit(&machine->dsos);
180 machine__exit_vdso(machine);
181 zfree(&machine->root_dir);
182 zfree(&machine->mmap_name);
183 zfree(&machine->current_tid);
184 zfree(&machine->kallsyms_filename);
185
186 threads__exit(&machine->threads);
187 }
188
machine__delete(struct machine * machine)189 void machine__delete(struct machine *machine)
190 {
191 if (machine) {
192 machine__exit(machine);
193 free(machine);
194 }
195 }
196
machines__init(struct machines * machines)197 void machines__init(struct machines *machines)
198 {
199 machine__init(&machines->host, "", HOST_KERNEL_ID);
200 machines->guests = RB_ROOT_CACHED;
201 }
202
machines__exit(struct machines * machines)203 void machines__exit(struct machines *machines)
204 {
205 machine__exit(&machines->host);
206 /* XXX exit guest */
207 }
208
machines__add(struct machines * machines,pid_t pid,const char * root_dir)209 struct machine *machines__add(struct machines *machines, pid_t pid,
210 const char *root_dir)
211 {
212 struct rb_node **p = &machines->guests.rb_root.rb_node;
213 struct rb_node *parent = NULL;
214 struct machine *pos, *machine = malloc(sizeof(*machine));
215 bool leftmost = true;
216
217 if (machine == NULL)
218 return NULL;
219
220 if (machine__init(machine, root_dir, pid) != 0) {
221 free(machine);
222 return NULL;
223 }
224
225 while (*p != NULL) {
226 parent = *p;
227 pos = rb_entry(parent, struct machine, rb_node);
228 if (pid < pos->pid)
229 p = &(*p)->rb_left;
230 else {
231 p = &(*p)->rb_right;
232 leftmost = false;
233 }
234 }
235
236 rb_link_node(&machine->rb_node, parent, p);
237 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
238
239 machine->machines = machines;
240
241 return machine;
242 }
243
machines__set_comm_exec(struct machines * machines,bool comm_exec)244 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
245 {
246 struct rb_node *nd;
247
248 machines->host.comm_exec = comm_exec;
249
250 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
251 struct machine *machine = rb_entry(nd, struct machine, rb_node);
252
253 machine->comm_exec = comm_exec;
254 }
255 }
256
machines__find(struct machines * machines,pid_t pid)257 struct machine *machines__find(struct machines *machines, pid_t pid)
258 {
259 struct rb_node **p = &machines->guests.rb_root.rb_node;
260 struct rb_node *parent = NULL;
261 struct machine *machine;
262 struct machine *default_machine = NULL;
263
264 if (pid == HOST_KERNEL_ID)
265 return &machines->host;
266
267 while (*p != NULL) {
268 parent = *p;
269 machine = rb_entry(parent, struct machine, rb_node);
270 if (pid < machine->pid)
271 p = &(*p)->rb_left;
272 else if (pid > machine->pid)
273 p = &(*p)->rb_right;
274 else
275 return machine;
276 if (!machine->pid)
277 default_machine = machine;
278 }
279
280 return default_machine;
281 }
282
machines__findnew(struct machines * machines,pid_t pid)283 struct machine *machines__findnew(struct machines *machines, pid_t pid)
284 {
285 char path[PATH_MAX];
286 const char *root_dir = "";
287 struct machine *machine = machines__find(machines, pid);
288
289 if (machine && (machine->pid == pid))
290 goto out;
291
292 if ((pid != HOST_KERNEL_ID) &&
293 (pid != DEFAULT_GUEST_KERNEL_ID) &&
294 (symbol_conf.guestmount)) {
295 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
296 if (access(path, R_OK)) {
297 static struct strlist *seen;
298
299 if (!seen)
300 seen = strlist__new(NULL, NULL);
301
302 if (!strlist__has_entry(seen, path)) {
303 pr_err("Can't access file %s\n", path);
304 strlist__add(seen, path);
305 }
306 machine = NULL;
307 goto out;
308 }
309 root_dir = path;
310 }
311
312 machine = machines__add(machines, pid, root_dir);
313 out:
314 return machine;
315 }
316
machines__find_guest(struct machines * machines,pid_t pid)317 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
318 {
319 struct machine *machine = machines__find(machines, pid);
320
321 if (!machine)
322 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
323 return machine;
324 }
325
326 /*
327 * A common case for KVM test programs is that the test program acts as the
328 * hypervisor, creating, running and destroying the virtual machine, and
329 * providing the guest object code from its own object code. In this case,
330 * the VM is not running an OS, but only the functions loaded into it by the
331 * hypervisor test program, and conveniently, loaded at the same virtual
332 * addresses.
333 *
334 * Normally to resolve addresses, MMAP events are needed to map addresses
335 * back to the object code and debug symbols for that object code.
336 *
337 * Currently, there is no way to get such mapping information from guests
338 * but, in the scenario described above, the guest has the same mappings
339 * as the hypervisor, so support for that scenario can be achieved.
340 *
341 * To support that, copy the host thread's maps to the guest thread's maps.
342 * Note, we do not discover the guest until we encounter a guest event,
343 * which works well because it is not until then that we know that the host
344 * thread's maps have been set up.
345 *
346 * This function returns the guest thread. Apart from keeping the data
347 * structures sane, using a thread belonging to the guest machine, instead
348 * of the host thread, allows it to have its own comm (refer
349 * thread__set_guest_comm()).
350 */
findnew_guest_code(struct machine * machine,struct machine * host_machine,pid_t pid)351 static struct thread *findnew_guest_code(struct machine *machine,
352 struct machine *host_machine,
353 pid_t pid)
354 {
355 struct thread *host_thread;
356 struct thread *thread;
357 int err;
358
359 if (!machine)
360 return NULL;
361
362 thread = machine__findnew_thread(machine, -1, pid);
363 if (!thread)
364 return NULL;
365
366 /* Assume maps are set up if there are any */
367 if (!maps__empty(thread__maps(thread)))
368 return thread;
369
370 host_thread = machine__find_thread(host_machine, -1, pid);
371 if (!host_thread)
372 goto out_err;
373
374 thread__set_guest_comm(thread, pid);
375
376 /*
377 * Guest code can be found in hypervisor process at the same address
378 * so copy host maps.
379 */
380 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
381 thread__put(host_thread);
382 if (err)
383 goto out_err;
384
385 return thread;
386
387 out_err:
388 thread__zput(thread);
389 return NULL;
390 }
391
machines__findnew_guest_code(struct machines * machines,pid_t pid)392 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
393 {
394 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
395 struct machine *machine = machines__findnew(machines, pid);
396
397 return findnew_guest_code(machine, host_machine, pid);
398 }
399
machine__findnew_guest_code(struct machine * machine,pid_t pid)400 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
401 {
402 struct machines *machines = machine->machines;
403 struct machine *host_machine;
404
405 if (!machines)
406 return NULL;
407
408 host_machine = machines__find(machines, HOST_KERNEL_ID);
409
410 return findnew_guest_code(machine, host_machine, pid);
411 }
412
machines__process_guests(struct machines * machines,machine__process_t process,void * data)413 void machines__process_guests(struct machines *machines,
414 machine__process_t process, void *data)
415 {
416 struct rb_node *nd;
417
418 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
419 struct machine *pos = rb_entry(nd, struct machine, rb_node);
420 process(pos, data);
421 }
422 }
423
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)424 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
425 {
426 struct rb_node *node;
427 struct machine *machine;
428
429 machines->host.id_hdr_size = id_hdr_size;
430
431 for (node = rb_first_cached(&machines->guests); node;
432 node = rb_next(node)) {
433 machine = rb_entry(node, struct machine, rb_node);
434 machine->id_hdr_size = id_hdr_size;
435 }
436
437 return;
438 }
439
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)440 static void machine__update_thread_pid(struct machine *machine,
441 struct thread *th, pid_t pid)
442 {
443 struct thread *leader;
444
445 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
446 return;
447
448 thread__set_pid(th, pid);
449
450 if (thread__pid(th) == thread__tid(th))
451 return;
452
453 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
454 if (!leader)
455 goto out_err;
456
457 if (!thread__maps(leader))
458 thread__set_maps(leader, maps__new(machine));
459
460 if (!thread__maps(leader))
461 goto out_err;
462
463 if (thread__maps(th) == thread__maps(leader))
464 goto out_put;
465
466 if (thread__maps(th)) {
467 /*
468 * Maps are created from MMAP events which provide the pid and
469 * tid. Consequently there never should be any maps on a thread
470 * with an unknown pid. Just print an error if there are.
471 */
472 if (!maps__empty(thread__maps(th)))
473 pr_err("Discarding thread maps for %d:%d\n",
474 thread__pid(th), thread__tid(th));
475 maps__put(thread__maps(th));
476 }
477
478 thread__set_maps(th, maps__get(thread__maps(leader)));
479 out_put:
480 thread__put(leader);
481 return;
482 out_err:
483 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
484 goto out_put;
485 }
486
487 /*
488 * Caller must eventually drop thread->refcnt returned with a successful
489 * lookup/new thread inserted.
490 */
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid,bool create)491 static struct thread *__machine__findnew_thread(struct machine *machine,
492 pid_t pid,
493 pid_t tid,
494 bool create)
495 {
496 struct thread *th = threads__find(&machine->threads, tid);
497 bool created;
498
499 if (th) {
500 machine__update_thread_pid(machine, th, pid);
501 return th;
502 }
503 if (!create)
504 return NULL;
505
506 th = threads__findnew(&machine->threads, pid, tid, &created);
507 if (created) {
508 /*
509 * We have to initialize maps separately after rb tree is
510 * updated.
511 *
512 * The reason is that we call machine__findnew_thread within
513 * thread__init_maps to find the thread leader and that would
514 * screwed the rb tree.
515 */
516 if (thread__init_maps(th, machine)) {
517 pr_err("Thread init failed thread %d\n", pid);
518 threads__remove(&machine->threads, th);
519 thread__put(th);
520 return NULL;
521 }
522 } else
523 machine__update_thread_pid(machine, th, pid);
524
525 return th;
526 }
527
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)528 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
529 {
530 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
531 }
532
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)533 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
534 pid_t tid)
535 {
536 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
537 }
538
539 /*
540 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
541 * So here a single thread is created for that, but actually there is a separate
542 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
543 * is only 1. That causes problems for some tools, requiring workarounds. For
544 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
545 */
machine__idle_thread(struct machine * machine)546 struct thread *machine__idle_thread(struct machine *machine)
547 {
548 struct thread *thread = machine__findnew_thread(machine, 0, 0);
549
550 if (!thread || thread__set_comm(thread, "swapper", 0) ||
551 thread__set_namespaces(thread, 0, NULL))
552 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
553
554 return thread;
555 }
556
machine__thread_exec_comm(struct machine * machine,struct thread * thread)557 struct comm *machine__thread_exec_comm(struct machine *machine,
558 struct thread *thread)
559 {
560 if (machine->comm_exec)
561 return thread__exec_comm(thread);
562 else
563 return thread__comm(thread);
564 }
565
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)566 int machine__process_comm_event(struct machine *machine, union perf_event *event,
567 struct perf_sample *sample)
568 {
569 struct thread *thread = machine__findnew_thread(machine,
570 event->comm.pid,
571 event->comm.tid);
572 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
573 int err = 0;
574
575 if (exec)
576 machine->comm_exec = true;
577
578 if (dump_trace)
579 perf_event__fprintf_comm(event, stdout);
580
581 if (thread == NULL ||
582 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
583 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
584 err = -1;
585 }
586
587 thread__put(thread);
588
589 return err;
590 }
591
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)592 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
593 union perf_event *event,
594 struct perf_sample *sample __maybe_unused)
595 {
596 struct thread *thread = machine__findnew_thread(machine,
597 event->namespaces.pid,
598 event->namespaces.tid);
599 int err = 0;
600
601 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
602 "\nWARNING: kernel seems to support more namespaces than perf"
603 " tool.\nTry updating the perf tool..\n\n");
604
605 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
606 "\nWARNING: perf tool seems to support more namespaces than"
607 " the kernel.\nTry updating the kernel..\n\n");
608
609 if (dump_trace)
610 perf_event__fprintf_namespaces(event, stdout);
611
612 if (thread == NULL ||
613 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
614 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
615 err = -1;
616 }
617
618 thread__put(thread);
619
620 return err;
621 }
622
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)623 int machine__process_cgroup_event(struct machine *machine,
624 union perf_event *event,
625 struct perf_sample *sample __maybe_unused)
626 {
627 struct cgroup *cgrp;
628
629 if (dump_trace)
630 perf_event__fprintf_cgroup(event, stdout);
631
632 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
633 if (cgrp == NULL)
634 return -ENOMEM;
635
636 return 0;
637 }
638
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)639 int machine__process_lost_event(struct machine *machine __maybe_unused,
640 union perf_event *event, struct perf_sample *sample __maybe_unused)
641 {
642 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
643 event->lost.id, event->lost.lost);
644 return 0;
645 }
646
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)647 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
648 union perf_event *event, struct perf_sample *sample)
649 {
650 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
651 sample->id, event->lost_samples.lost,
652 event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
653 return 0;
654 }
655
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)656 int machine__process_aux_event(struct machine *machine __maybe_unused,
657 union perf_event *event)
658 {
659 if (dump_trace)
660 perf_event__fprintf_aux(event, stdout);
661 return 0;
662 }
663
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)664 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
665 union perf_event *event)
666 {
667 if (dump_trace)
668 perf_event__fprintf_itrace_start(event, stdout);
669 return 0;
670 }
671
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)672 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
673 union perf_event *event)
674 {
675 if (dump_trace)
676 perf_event__fprintf_aux_output_hw_id(event, stdout);
677 return 0;
678 }
679
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)680 int machine__process_switch_event(struct machine *machine __maybe_unused,
681 union perf_event *event)
682 {
683 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
684
685 if (dump_trace)
686 perf_event__fprintf_switch(event, stdout);
687 machine->parallelism += out ? -1 : 1;
688 return 0;
689 }
690
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)691 static int machine__process_ksymbol_register(struct machine *machine,
692 union perf_event *event,
693 struct perf_sample *sample __maybe_unused)
694 {
695 struct symbol *sym;
696 struct dso *dso = NULL;
697 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
698 int err = 0;
699
700 if (!map) {
701 dso = dso__new(event->ksymbol.name);
702
703 if (!dso) {
704 err = -ENOMEM;
705 goto out;
706 }
707 dso__set_kernel(dso, DSO_SPACE__KERNEL);
708 map = map__new2(0, dso);
709 if (!map) {
710 err = -ENOMEM;
711 goto out;
712 }
713 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
714 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
715 dso__data(dso)->file_size = event->ksymbol.len;
716 dso__set_loaded(dso);
717 }
718
719 map__set_start(map, event->ksymbol.addr);
720 map__set_end(map, map__start(map) + event->ksymbol.len);
721 err = maps__fixup_overlap_and_insert(machine__kernel_maps(machine), map);
722 if (err) {
723 err = -ENOMEM;
724 goto out;
725 }
726
727 dso__set_loaded(dso);
728
729 if (is_bpf_image(event->ksymbol.name)) {
730 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
731 dso__set_long_name(dso, "", false);
732 }
733 } else {
734 dso = dso__get(map__dso(map));
735 }
736
737 sym = symbol__new(map__map_ip(map, map__start(map)),
738 event->ksymbol.len,
739 0, 0, event->ksymbol.name);
740 if (!sym) {
741 err = -ENOMEM;
742 goto out;
743 }
744 dso__insert_symbol(dso, sym);
745 out:
746 map__put(map);
747 dso__put(dso);
748 return err;
749 }
750
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)751 static int machine__process_ksymbol_unregister(struct machine *machine,
752 union perf_event *event,
753 struct perf_sample *sample __maybe_unused)
754 {
755 struct symbol *sym;
756 struct map *map;
757
758 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
759 if (!map)
760 return 0;
761
762 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
763 maps__remove(machine__kernel_maps(machine), map);
764 else {
765 struct dso *dso = map__dso(map);
766
767 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
768 if (sym)
769 dso__delete_symbol(dso, sym);
770 }
771 map__put(map);
772 return 0;
773 }
774
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)775 int machine__process_ksymbol(struct machine *machine __maybe_unused,
776 union perf_event *event,
777 struct perf_sample *sample)
778 {
779 if (dump_trace)
780 perf_event__fprintf_ksymbol(event, stdout);
781
782 /* no need to process non-JIT BPF as it cannot get samples */
783 if (event->ksymbol.len == 0)
784 return 0;
785
786 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
787 return machine__process_ksymbol_unregister(machine, event,
788 sample);
789 return machine__process_ksymbol_register(machine, event, sample);
790 }
791
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)792 int machine__process_text_poke(struct machine *machine, union perf_event *event,
793 struct perf_sample *sample __maybe_unused)
794 {
795 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
796 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
797 struct dso *dso = map ? map__dso(map) : NULL;
798
799 if (dump_trace)
800 perf_event__fprintf_text_poke(event, machine, stdout);
801
802 if (!event->text_poke.new_len)
803 goto out;
804
805 if (cpumode != PERF_RECORD_MISC_KERNEL) {
806 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
807 goto out;
808 }
809
810 if (dso) {
811 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
812 int ret;
813
814 /*
815 * Kernel maps might be changed when loading symbols so loading
816 * must be done prior to using kernel maps.
817 */
818 map__load(map);
819 ret = dso__data_write_cache_addr(dso, map, machine,
820 event->text_poke.addr,
821 new_bytes,
822 event->text_poke.new_len);
823 if (ret != event->text_poke.new_len)
824 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
825 event->text_poke.addr);
826 } else {
827 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
828 event->text_poke.addr);
829 }
830 out:
831 map__put(map);
832 return 0;
833 }
834
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)835 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
836 const char *filename)
837 {
838 struct map *map = NULL;
839 struct kmod_path m;
840 struct dso *dso;
841 int err;
842
843 if (kmod_path__parse_name(&m, filename))
844 return NULL;
845
846 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
847 if (dso == NULL)
848 goto out;
849
850 map = map__new2(start, dso);
851 if (map == NULL)
852 goto out;
853
854 err = maps__insert(machine__kernel_maps(machine), map);
855 /* If maps__insert failed, return NULL. */
856 if (err) {
857 map__put(map);
858 map = NULL;
859 }
860 out:
861 /* put the dso here, corresponding to machine__findnew_module_dso */
862 dso__put(dso);
863 zfree(&m.name);
864 return map;
865 }
866
machines__fprintf_dsos(struct machines * machines,FILE * fp)867 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
868 {
869 struct rb_node *nd;
870 size_t ret = dsos__fprintf(&machines->host.dsos, fp);
871
872 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
873 struct machine *pos = rb_entry(nd, struct machine, rb_node);
874 ret += dsos__fprintf(&pos->dsos, fp);
875 }
876
877 return ret;
878 }
879
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)880 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
881 bool (skip)(struct dso *dso, int parm), int parm)
882 {
883 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
884 }
885
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)886 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
887 bool (skip)(struct dso *dso, int parm), int parm)
888 {
889 struct rb_node *nd;
890 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
891
892 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
893 struct machine *pos = rb_entry(nd, struct machine, rb_node);
894 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
895 }
896 return ret;
897 }
898
899 struct machine_fprintf_cb_args {
900 FILE *fp;
901 size_t printed;
902 };
903
machine_fprintf_cb(struct thread * thread,void * data)904 static int machine_fprintf_cb(struct thread *thread, void *data)
905 {
906 struct machine_fprintf_cb_args *args = data;
907
908 /* TODO: handle fprintf errors. */
909 args->printed += thread__fprintf(thread, args->fp);
910 return 0;
911 }
912
machine__fprintf(struct machine * machine,FILE * fp)913 size_t machine__fprintf(struct machine *machine, FILE *fp)
914 {
915 struct machine_fprintf_cb_args args = {
916 .fp = fp,
917 .printed = 0,
918 };
919 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
920
921 machine__for_each_thread(machine, machine_fprintf_cb, &args);
922 return ret + args.printed;
923 }
924
machine__get_kernel(struct machine * machine)925 static struct dso *machine__get_kernel(struct machine *machine)
926 {
927 const char *vmlinux_name = machine->mmap_name;
928 struct dso *kernel;
929
930 if (machine__is_host(machine)) {
931 if (symbol_conf.vmlinux_name)
932 vmlinux_name = symbol_conf.vmlinux_name;
933
934 kernel = machine__findnew_kernel(machine, vmlinux_name,
935 "[kernel]", DSO_SPACE__KERNEL);
936 } else {
937 if (symbol_conf.default_guest_vmlinux_name)
938 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
939
940 kernel = machine__findnew_kernel(machine, vmlinux_name,
941 "[guest.kernel]",
942 DSO_SPACE__KERNEL_GUEST);
943 }
944
945 if (kernel != NULL && (!dso__has_build_id(kernel)))
946 dso__read_running_kernel_build_id(kernel, machine);
947
948 return kernel;
949 }
950
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)951 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
952 size_t bufsz)
953 {
954 if (machine__is_default_guest(machine))
955 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
956 else
957 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
958 }
959
960 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
961
962 /* Figure out the start address of kernel map from /proc/kallsyms.
963 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
964 * symbol_name if it's not that important.
965 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)966 static int machine__get_running_kernel_start(struct machine *machine,
967 const char **symbol_name,
968 u64 *start, u64 *end)
969 {
970 char filename[PATH_MAX];
971 int i, err = -1;
972 const char *name;
973 u64 addr = 0;
974
975 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
976
977 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
978 return 0;
979
980 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
981 err = kallsyms__get_function_start(filename, name, &addr);
982 if (!err)
983 break;
984 }
985
986 if (err)
987 return -1;
988
989 if (symbol_name)
990 *symbol_name = name;
991
992 *start = addr;
993
994 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
995 if (err)
996 err = kallsyms__get_symbol_start(filename, "_etext", &addr);
997 if (!err)
998 *end = addr;
999
1000 return 0;
1001 }
1002
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1003 int machine__create_extra_kernel_map(struct machine *machine,
1004 struct dso *kernel,
1005 struct extra_kernel_map *xm)
1006 {
1007 struct kmap *kmap;
1008 struct map *map;
1009 int err;
1010
1011 map = map__new2(xm->start, kernel);
1012 if (!map)
1013 return -ENOMEM;
1014
1015 map__set_end(map, xm->end);
1016 map__set_pgoff(map, xm->pgoff);
1017
1018 kmap = map__kmap(map);
1019
1020 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1021
1022 err = maps__insert(machine__kernel_maps(machine), map);
1023
1024 if (!err) {
1025 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1026 kmap->name, map__start(map), map__end(map));
1027 }
1028
1029 map__put(map);
1030
1031 return err;
1032 }
1033
find_entry_trampoline(struct dso * dso)1034 static u64 find_entry_trampoline(struct dso *dso)
1035 {
1036 /* Duplicates are removed so lookup all aliases */
1037 const char *syms[] = {
1038 "_entry_trampoline",
1039 "__entry_trampoline_start",
1040 "entry_SYSCALL_64_trampoline",
1041 };
1042 struct symbol *sym = dso__first_symbol(dso);
1043 unsigned int i;
1044
1045 for (; sym; sym = dso__next_symbol(sym)) {
1046 if (sym->binding != STB_GLOBAL)
1047 continue;
1048 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1049 if (!strcmp(sym->name, syms[i]))
1050 return sym->start;
1051 }
1052 }
1053
1054 return 0;
1055 }
1056
1057 /*
1058 * These values can be used for kernels that do not have symbols for the entry
1059 * trampolines in kallsyms.
1060 */
1061 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1062 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1063 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1064
1065 struct machine__map_x86_64_entry_trampolines_args {
1066 struct maps *kmaps;
1067 bool found;
1068 };
1069
machine__map_x86_64_entry_trampolines_cb(struct map * map,void * data)1070 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1071 {
1072 struct machine__map_x86_64_entry_trampolines_args *args = data;
1073 struct map *dest_map;
1074 struct kmap *kmap = __map__kmap(map);
1075
1076 if (!kmap || !is_entry_trampoline(kmap->name))
1077 return 0;
1078
1079 dest_map = maps__find(args->kmaps, map__pgoff(map));
1080 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1081 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1082
1083 map__put(dest_map);
1084 args->found = true;
1085 return 0;
1086 }
1087
1088 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1089 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1090 struct dso *kernel)
1091 {
1092 struct machine__map_x86_64_entry_trampolines_args args = {
1093 .kmaps = machine__kernel_maps(machine),
1094 .found = false,
1095 };
1096 int nr_cpus_avail, cpu;
1097 u64 pgoff;
1098
1099 /*
1100 * In the vmlinux case, pgoff is a virtual address which must now be
1101 * mapped to a vmlinux offset.
1102 */
1103 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1104
1105 if (args.found || machine->trampolines_mapped)
1106 return 0;
1107
1108 pgoff = find_entry_trampoline(kernel);
1109 if (!pgoff)
1110 return 0;
1111
1112 nr_cpus_avail = machine__nr_cpus_avail(machine);
1113
1114 /* Add a 1 page map for each CPU's entry trampoline */
1115 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1116 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1117 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1118 X86_64_ENTRY_TRAMPOLINE;
1119 struct extra_kernel_map xm = {
1120 .start = va,
1121 .end = va + page_size,
1122 .pgoff = pgoff,
1123 };
1124
1125 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1126
1127 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1128 return -1;
1129 }
1130
1131 machine->trampolines_mapped = nr_cpus_avail;
1132
1133 return 0;
1134 }
1135
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1136 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1137 struct dso *kernel __maybe_unused)
1138 {
1139 return 0;
1140 }
1141
1142 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1143 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1144 {
1145 /* In case of renewal the kernel map, destroy previous one */
1146 machine__destroy_kernel_maps(machine);
1147
1148 map__put(machine->vmlinux_map);
1149 machine->vmlinux_map = map__new2(0, kernel);
1150 if (machine->vmlinux_map == NULL)
1151 return -ENOMEM;
1152
1153 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1154 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1155 }
1156
machine__destroy_kernel_maps(struct machine * machine)1157 void machine__destroy_kernel_maps(struct machine *machine)
1158 {
1159 struct kmap *kmap;
1160 struct map *map = machine__kernel_map(machine);
1161
1162 if (map == NULL)
1163 return;
1164
1165 kmap = map__kmap(map);
1166 maps__remove(machine__kernel_maps(machine), map);
1167 if (kmap && kmap->ref_reloc_sym) {
1168 zfree((char **)&kmap->ref_reloc_sym->name);
1169 zfree(&kmap->ref_reloc_sym);
1170 }
1171
1172 map__zput(machine->vmlinux_map);
1173 }
1174
machines__create_guest_kernel_maps(struct machines * machines)1175 int machines__create_guest_kernel_maps(struct machines *machines)
1176 {
1177 int ret = 0;
1178 struct dirent **namelist = NULL;
1179 int i, items = 0;
1180 char path[PATH_MAX];
1181 pid_t pid;
1182 char *endp;
1183
1184 if (symbol_conf.default_guest_vmlinux_name ||
1185 symbol_conf.default_guest_modules ||
1186 symbol_conf.default_guest_kallsyms) {
1187 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1188 }
1189
1190 if (symbol_conf.guestmount) {
1191 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1192 if (items <= 0)
1193 return -ENOENT;
1194 for (i = 0; i < items; i++) {
1195 if (!isdigit(namelist[i]->d_name[0])) {
1196 /* Filter out . and .. */
1197 continue;
1198 }
1199 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1200 if ((*endp != '\0') ||
1201 (endp == namelist[i]->d_name) ||
1202 (errno == ERANGE)) {
1203 pr_debug("invalid directory (%s). Skipping.\n",
1204 namelist[i]->d_name);
1205 continue;
1206 }
1207 sprintf(path, "%s/%s/proc/kallsyms",
1208 symbol_conf.guestmount,
1209 namelist[i]->d_name);
1210 ret = access(path, R_OK);
1211 if (ret) {
1212 pr_debug("Can't access file %s\n", path);
1213 goto failure;
1214 }
1215 machines__create_kernel_maps(machines, pid);
1216 }
1217 failure:
1218 free(namelist);
1219 }
1220
1221 return ret;
1222 }
1223
machines__destroy_kernel_maps(struct machines * machines)1224 void machines__destroy_kernel_maps(struct machines *machines)
1225 {
1226 struct rb_node *next = rb_first_cached(&machines->guests);
1227
1228 machine__destroy_kernel_maps(&machines->host);
1229
1230 while (next) {
1231 struct machine *pos = rb_entry(next, struct machine, rb_node);
1232
1233 next = rb_next(&pos->rb_node);
1234 rb_erase_cached(&pos->rb_node, &machines->guests);
1235 machine__delete(pos);
1236 }
1237 }
1238
machines__create_kernel_maps(struct machines * machines,pid_t pid)1239 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1240 {
1241 struct machine *machine = machines__findnew(machines, pid);
1242
1243 if (machine == NULL)
1244 return -1;
1245
1246 return machine__create_kernel_maps(machine);
1247 }
1248
machine__load_kallsyms(struct machine * machine,const char * filename)1249 int machine__load_kallsyms(struct machine *machine, const char *filename)
1250 {
1251 struct map *map = machine__kernel_map(machine);
1252 struct dso *dso = map__dso(map);
1253 int ret = __dso__load_kallsyms(dso, filename, map, true);
1254
1255 if (ret > 0) {
1256 dso__set_loaded(dso);
1257 /*
1258 * Since /proc/kallsyms will have multiple sessions for the
1259 * kernel, with modules between them, fixup the end of all
1260 * sections.
1261 */
1262 maps__fixup_end(machine__kernel_maps(machine));
1263 }
1264
1265 return ret;
1266 }
1267
machine__load_vmlinux_path(struct machine * machine)1268 int machine__load_vmlinux_path(struct machine *machine)
1269 {
1270 struct map *map = machine__kernel_map(machine);
1271 struct dso *dso = map__dso(map);
1272 int ret = dso__load_vmlinux_path(dso, map);
1273
1274 if (ret > 0)
1275 dso__set_loaded(dso);
1276
1277 return ret;
1278 }
1279
get_kernel_version(const char * root_dir)1280 static char *get_kernel_version(const char *root_dir)
1281 {
1282 char version[PATH_MAX];
1283 FILE *file;
1284 char *name, *tmp;
1285 const char *prefix = "Linux version ";
1286
1287 sprintf(version, "%s/proc/version", root_dir);
1288 file = fopen(version, "r");
1289 if (!file)
1290 return NULL;
1291
1292 tmp = fgets(version, sizeof(version), file);
1293 fclose(file);
1294 if (!tmp)
1295 return NULL;
1296
1297 name = strstr(version, prefix);
1298 if (!name)
1299 return NULL;
1300 name += strlen(prefix);
1301 tmp = strchr(name, ' ');
1302 if (tmp)
1303 *tmp = '\0';
1304
1305 return strdup(name);
1306 }
1307
is_kmod_dso(struct dso * dso)1308 static bool is_kmod_dso(struct dso *dso)
1309 {
1310 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1311 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1312 }
1313
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1314 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1315 {
1316 char *long_name;
1317 struct dso *dso;
1318 struct map *map = maps__find_by_name(maps, m->name);
1319
1320 if (map == NULL)
1321 return 0;
1322
1323 long_name = strdup(path);
1324 if (long_name == NULL) {
1325 map__put(map);
1326 return -ENOMEM;
1327 }
1328
1329 dso = map__dso(map);
1330 dso__set_long_name(dso, long_name, true);
1331 dso__kernel_module_get_build_id(dso, "");
1332
1333 /*
1334 * Full name could reveal us kmod compression, so
1335 * we need to update the symtab_type if needed.
1336 */
1337 if (m->comp && is_kmod_dso(dso)) {
1338 dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1339 dso__set_comp(dso, m->comp);
1340 }
1341 map__put(map);
1342 return 0;
1343 }
1344
maps__set_modules_path_dir(struct maps * maps,char * path,size_t path_size,int depth)1345 static int maps__set_modules_path_dir(struct maps *maps, char *path, size_t path_size, int depth)
1346 {
1347 struct io_dirent64 *dent;
1348 struct io_dir iod;
1349 size_t root_len = strlen(path);
1350 int ret = 0;
1351
1352 io_dir__init(&iod, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1353 if (iod.dirfd < 0) {
1354 pr_debug("%s: cannot open %s dir\n", __func__, path);
1355 return -1;
1356 }
1357 /* Bounds check, should never happen. */
1358 if (root_len >= path_size)
1359 return -1;
1360 path[root_len++] = '/';
1361 while ((dent = io_dir__readdir(&iod)) != NULL) {
1362 if (io_dir__is_dir(&iod, dent)) {
1363 if (!strcmp(dent->d_name, ".") ||
1364 !strcmp(dent->d_name, ".."))
1365 continue;
1366
1367 /* Do not follow top-level source and build symlinks */
1368 if (depth == 0) {
1369 if (!strcmp(dent->d_name, "source") ||
1370 !strcmp(dent->d_name, "build"))
1371 continue;
1372 }
1373
1374 /* Bounds check, should never happen. */
1375 if (root_len + strlen(dent->d_name) >= path_size)
1376 continue;
1377
1378 strcpy(path + root_len, dent->d_name);
1379 ret = maps__set_modules_path_dir(maps, path, path_size, depth + 1);
1380 if (ret < 0)
1381 goto out;
1382 } else {
1383 struct kmod_path m;
1384
1385 ret = kmod_path__parse_name(&m, dent->d_name);
1386 if (ret)
1387 goto out;
1388
1389 if (m.kmod) {
1390 /* Bounds check, should never happen. */
1391 if (root_len + strlen(dent->d_name) < path_size) {
1392 strcpy(path + root_len, dent->d_name);
1393 ret = maps__set_module_path(maps, path, &m);
1394
1395 }
1396 }
1397 zfree(&m.name);
1398
1399 if (ret)
1400 goto out;
1401 }
1402 }
1403
1404 out:
1405 close(iod.dirfd);
1406 return ret;
1407 }
1408
machine__set_modules_path(struct machine * machine)1409 static int machine__set_modules_path(struct machine *machine)
1410 {
1411 char *version;
1412 char modules_path[PATH_MAX];
1413
1414 version = get_kernel_version(machine->root_dir);
1415 if (!version)
1416 return -1;
1417
1418 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1419 machine->root_dir, version);
1420 free(version);
1421
1422 return maps__set_modules_path_dir(machine__kernel_maps(machine),
1423 modules_path, sizeof(modules_path), 0);
1424 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1425 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1426 u64 *size __maybe_unused,
1427 const char *name __maybe_unused)
1428 {
1429 return 0;
1430 }
1431
machine__create_module(void * arg,const char * name,u64 start,u64 size)1432 static int machine__create_module(void *arg, const char *name, u64 start,
1433 u64 size)
1434 {
1435 struct machine *machine = arg;
1436 struct map *map;
1437
1438 if (arch__fix_module_text_start(&start, &size, name) < 0)
1439 return -1;
1440
1441 map = machine__addnew_module_map(machine, start, name);
1442 if (map == NULL)
1443 return -1;
1444 map__set_end(map, start + size);
1445
1446 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1447 map__put(map);
1448 return 0;
1449 }
1450
machine__create_modules(struct machine * machine)1451 static int machine__create_modules(struct machine *machine)
1452 {
1453 const char *modules;
1454 char path[PATH_MAX];
1455
1456 if (machine__is_default_guest(machine)) {
1457 modules = symbol_conf.default_guest_modules;
1458 } else {
1459 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1460 modules = path;
1461 }
1462
1463 if (symbol__restricted_filename(modules, "/proc/modules"))
1464 return -1;
1465
1466 if (modules__parse(modules, machine, machine__create_module))
1467 return -1;
1468
1469 if (!machine__set_modules_path(machine))
1470 return 0;
1471
1472 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1473
1474 return 0;
1475 }
1476
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1477 static void machine__set_kernel_mmap(struct machine *machine,
1478 u64 start, u64 end)
1479 {
1480 map__set_start(machine->vmlinux_map, start);
1481 map__set_end(machine->vmlinux_map, end);
1482 /*
1483 * Be a bit paranoid here, some perf.data file came with
1484 * a zero sized synthesized MMAP event for the kernel.
1485 */
1486 if (start == 0 && end == 0)
1487 map__set_end(machine->vmlinux_map, ~0ULL);
1488 }
1489
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1490 static int machine__update_kernel_mmap(struct machine *machine,
1491 u64 start, u64 end)
1492 {
1493 struct map *orig, *updated;
1494 int err;
1495
1496 orig = machine->vmlinux_map;
1497 updated = map__get(orig);
1498
1499 machine->vmlinux_map = updated;
1500 maps__remove(machine__kernel_maps(machine), orig);
1501 machine__set_kernel_mmap(machine, start, end);
1502 err = maps__insert(machine__kernel_maps(machine), updated);
1503 map__put(orig);
1504
1505 return err;
1506 }
1507
machine__create_kernel_maps(struct machine * machine)1508 int machine__create_kernel_maps(struct machine *machine)
1509 {
1510 struct dso *kernel = machine__get_kernel(machine);
1511 const char *name = NULL;
1512 u64 start = 0, end = ~0ULL;
1513 int ret;
1514
1515 if (kernel == NULL)
1516 return -1;
1517
1518 ret = __machine__create_kernel_maps(machine, kernel);
1519 if (ret < 0)
1520 goto out_put;
1521
1522 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1523 if (machine__is_host(machine))
1524 pr_debug("Problems creating module maps, "
1525 "continuing anyway...\n");
1526 else
1527 pr_debug("Problems creating module maps for guest %d, "
1528 "continuing anyway...\n", machine->pid);
1529 }
1530
1531 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1532 if (name &&
1533 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1534 machine__destroy_kernel_maps(machine);
1535 ret = -1;
1536 goto out_put;
1537 }
1538
1539 /*
1540 * we have a real start address now, so re-order the kmaps
1541 * assume it's the last in the kmaps
1542 */
1543 ret = machine__update_kernel_mmap(machine, start, end);
1544 if (ret < 0)
1545 goto out_put;
1546 }
1547
1548 if (machine__create_extra_kernel_maps(machine, kernel))
1549 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1550
1551 if (end == ~0ULL) {
1552 /* update end address of the kernel map using adjacent module address */
1553 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1554 machine__kernel_map(machine));
1555
1556 if (next) {
1557 machine__set_kernel_mmap(machine, start, map__start(next));
1558 map__put(next);
1559 }
1560 }
1561
1562 maps__fixup_end(machine__kernel_maps(machine));
1563
1564 out_put:
1565 dso__put(kernel);
1566 return ret;
1567 }
1568
machine__uses_kcore_cb(struct dso * dso,void * data __maybe_unused)1569 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1570 {
1571 return dso__is_kcore(dso) ? 1 : 0;
1572 }
1573
machine__uses_kcore(struct machine * machine)1574 static bool machine__uses_kcore(struct machine *machine)
1575 {
1576 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1577 }
1578
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1579 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1580 struct extra_kernel_map *xm)
1581 {
1582 return machine__is(machine, "x86_64") &&
1583 is_entry_trampoline(xm->name);
1584 }
1585
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1586 static int machine__process_extra_kernel_map(struct machine *machine,
1587 struct extra_kernel_map *xm)
1588 {
1589 struct dso *kernel = machine__kernel_dso(machine);
1590
1591 if (kernel == NULL)
1592 return -1;
1593
1594 return machine__create_extra_kernel_map(machine, kernel, xm);
1595 }
1596
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1597 static int machine__process_kernel_mmap_event(struct machine *machine,
1598 struct extra_kernel_map *xm,
1599 struct build_id *bid)
1600 {
1601 enum dso_space_type dso_space;
1602 bool is_kernel_mmap;
1603 const char *mmap_name = machine->mmap_name;
1604
1605 /* If we have maps from kcore then we do not need or want any others */
1606 if (machine__uses_kcore(machine))
1607 return 0;
1608
1609 if (machine__is_host(machine))
1610 dso_space = DSO_SPACE__KERNEL;
1611 else
1612 dso_space = DSO_SPACE__KERNEL_GUEST;
1613
1614 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1615 if (!is_kernel_mmap && !machine__is_host(machine)) {
1616 /*
1617 * If the event was recorded inside the guest and injected into
1618 * the host perf.data file, then it will match a host mmap_name,
1619 * so try that - see machine__set_mmap_name().
1620 */
1621 mmap_name = "[kernel.kallsyms]";
1622 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1623 }
1624 if (xm->name[0] == '/' ||
1625 (!is_kernel_mmap && xm->name[0] == '[')) {
1626 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1627
1628 if (map == NULL)
1629 goto out_problem;
1630
1631 map__set_end(map, map__start(map) + xm->end - xm->start);
1632
1633 if (build_id__is_defined(bid))
1634 dso__set_build_id(map__dso(map), bid);
1635
1636 map__put(map);
1637 } else if (is_kernel_mmap) {
1638 const char *symbol_name = xm->name + strlen(mmap_name);
1639 /*
1640 * Should be there already, from the build-id table in
1641 * the header.
1642 */
1643 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1644
1645 if (kernel == NULL)
1646 kernel = machine__findnew_dso(machine, machine->mmap_name);
1647 if (kernel == NULL)
1648 goto out_problem;
1649
1650 dso__set_kernel(kernel, dso_space);
1651 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1652 dso__put(kernel);
1653 goto out_problem;
1654 }
1655
1656 if (strstr(dso__long_name(kernel), "vmlinux"))
1657 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1658
1659 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1660 dso__put(kernel);
1661 goto out_problem;
1662 }
1663
1664 if (build_id__is_defined(bid))
1665 dso__set_build_id(kernel, bid);
1666
1667 /*
1668 * Avoid using a zero address (kptr_restrict) for the ref reloc
1669 * symbol. Effectively having zero here means that at record
1670 * time /proc/sys/kernel/kptr_restrict was non zero.
1671 */
1672 if (xm->pgoff != 0) {
1673 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1674 symbol_name,
1675 xm->pgoff);
1676 }
1677
1678 if (machine__is_default_guest(machine)) {
1679 /*
1680 * preload dso of guest kernel and modules
1681 */
1682 dso__load(kernel, machine__kernel_map(machine));
1683 }
1684 dso__put(kernel);
1685 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1686 return machine__process_extra_kernel_map(machine, xm);
1687 }
1688 return 0;
1689 out_problem:
1690 return -1;
1691 }
1692
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1693 int machine__process_mmap2_event(struct machine *machine,
1694 union perf_event *event,
1695 struct perf_sample *sample)
1696 {
1697 struct thread *thread;
1698 struct map *map;
1699 struct dso_id dso_id = {
1700 .maj = event->mmap2.maj,
1701 .min = event->mmap2.min,
1702 .ino = event->mmap2.ino,
1703 .ino_generation = event->mmap2.ino_generation,
1704 };
1705 struct build_id __bid, *bid = NULL;
1706 int ret = 0;
1707
1708 if (dump_trace)
1709 perf_event__fprintf_mmap2(event, stdout);
1710
1711 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1712 bid = &__bid;
1713 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1714 }
1715
1716 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1717 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1718 struct extra_kernel_map xm = {
1719 .start = event->mmap2.start,
1720 .end = event->mmap2.start + event->mmap2.len,
1721 .pgoff = event->mmap2.pgoff,
1722 };
1723
1724 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1725 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1726 if (ret < 0)
1727 goto out_problem;
1728 return 0;
1729 }
1730
1731 thread = machine__findnew_thread(machine, event->mmap2.pid,
1732 event->mmap2.tid);
1733 if (thread == NULL)
1734 goto out_problem;
1735
1736 map = map__new(machine, event->mmap2.start,
1737 event->mmap2.len, event->mmap2.pgoff,
1738 &dso_id, event->mmap2.prot,
1739 event->mmap2.flags, bid,
1740 event->mmap2.filename, thread);
1741
1742 if (map == NULL)
1743 goto out_problem_map;
1744
1745 ret = thread__insert_map(thread, map);
1746 if (ret)
1747 goto out_problem_insert;
1748
1749 thread__put(thread);
1750 map__put(map);
1751 return 0;
1752
1753 out_problem_insert:
1754 map__put(map);
1755 out_problem_map:
1756 thread__put(thread);
1757 out_problem:
1758 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1759 return 0;
1760 }
1761
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1762 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1763 struct perf_sample *sample)
1764 {
1765 struct thread *thread;
1766 struct map *map;
1767 u32 prot = 0;
1768 int ret = 0;
1769
1770 if (dump_trace)
1771 perf_event__fprintf_mmap(event, stdout);
1772
1773 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1774 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1775 struct extra_kernel_map xm = {
1776 .start = event->mmap.start,
1777 .end = event->mmap.start + event->mmap.len,
1778 .pgoff = event->mmap.pgoff,
1779 };
1780
1781 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1782 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1783 if (ret < 0)
1784 goto out_problem;
1785 return 0;
1786 }
1787
1788 thread = machine__findnew_thread(machine, event->mmap.pid,
1789 event->mmap.tid);
1790 if (thread == NULL)
1791 goto out_problem;
1792
1793 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1794 prot = PROT_EXEC;
1795
1796 map = map__new(machine, event->mmap.start,
1797 event->mmap.len, event->mmap.pgoff,
1798 NULL, prot, 0, NULL, event->mmap.filename, thread);
1799
1800 if (map == NULL)
1801 goto out_problem_map;
1802
1803 ret = thread__insert_map(thread, map);
1804 if (ret)
1805 goto out_problem_insert;
1806
1807 thread__put(thread);
1808 map__put(map);
1809 return 0;
1810
1811 out_problem_insert:
1812 map__put(map);
1813 out_problem_map:
1814 thread__put(thread);
1815 out_problem:
1816 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1817 return 0;
1818 }
1819
machine__remove_thread(struct machine * machine,struct thread * th)1820 void machine__remove_thread(struct machine *machine, struct thread *th)
1821 {
1822 return threads__remove(&machine->threads, th);
1823 }
1824
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1825 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1826 struct perf_sample *sample)
1827 {
1828 struct thread *thread = machine__find_thread(machine,
1829 event->fork.pid,
1830 event->fork.tid);
1831 struct thread *parent = machine__findnew_thread(machine,
1832 event->fork.ppid,
1833 event->fork.ptid);
1834 bool do_maps_clone = true;
1835 int err = 0;
1836
1837 if (dump_trace)
1838 perf_event__fprintf_task(event, stdout);
1839
1840 /*
1841 * There may be an existing thread that is not actually the parent,
1842 * either because we are processing events out of order, or because the
1843 * (fork) event that would have removed the thread was lost. Assume the
1844 * latter case and continue on as best we can.
1845 */
1846 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1847 dump_printf("removing erroneous parent thread %d/%d\n",
1848 thread__pid(parent), thread__tid(parent));
1849 machine__remove_thread(machine, parent);
1850 thread__put(parent);
1851 parent = machine__findnew_thread(machine, event->fork.ppid,
1852 event->fork.ptid);
1853 }
1854
1855 /* if a thread currently exists for the thread id remove it */
1856 if (thread != NULL) {
1857 machine__remove_thread(machine, thread);
1858 thread__put(thread);
1859 }
1860
1861 thread = machine__findnew_thread(machine, event->fork.pid,
1862 event->fork.tid);
1863 /*
1864 * When synthesizing FORK events, we are trying to create thread
1865 * objects for the already running tasks on the machine.
1866 *
1867 * Normally, for a kernel FORK event, we want to clone the parent's
1868 * maps because that is what the kernel just did.
1869 *
1870 * But when synthesizing, this should not be done. If we do, we end up
1871 * with overlapping maps as we process the synthesized MMAP2 events that
1872 * get delivered shortly thereafter.
1873 *
1874 * Use the FORK event misc flags in an internal way to signal this
1875 * situation, so we can elide the map clone when appropriate.
1876 */
1877 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1878 do_maps_clone = false;
1879
1880 if (thread == NULL || parent == NULL ||
1881 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1882 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1883 err = -1;
1884 }
1885 thread__put(thread);
1886 thread__put(parent);
1887
1888 return err;
1889 }
1890
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1891 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1892 struct perf_sample *sample __maybe_unused)
1893 {
1894 struct thread *thread = machine__find_thread(machine,
1895 event->fork.pid,
1896 event->fork.tid);
1897
1898 if (dump_trace)
1899 perf_event__fprintf_task(event, stdout);
1900
1901 /* There is no context switch out before exit, so we decrement here. */
1902 machine->parallelism--;
1903 if (thread != NULL) {
1904 if (symbol_conf.keep_exited_threads)
1905 thread__set_exited(thread, /*exited=*/true);
1906 else
1907 machine__remove_thread(machine, thread);
1908 }
1909 thread__put(thread);
1910 return 0;
1911 }
1912
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1913 int machine__process_event(struct machine *machine, union perf_event *event,
1914 struct perf_sample *sample)
1915 {
1916 int ret;
1917
1918 switch (event->header.type) {
1919 case PERF_RECORD_COMM:
1920 ret = machine__process_comm_event(machine, event, sample); break;
1921 case PERF_RECORD_MMAP:
1922 ret = machine__process_mmap_event(machine, event, sample); break;
1923 case PERF_RECORD_NAMESPACES:
1924 ret = machine__process_namespaces_event(machine, event, sample); break;
1925 case PERF_RECORD_CGROUP:
1926 ret = machine__process_cgroup_event(machine, event, sample); break;
1927 case PERF_RECORD_MMAP2:
1928 ret = machine__process_mmap2_event(machine, event, sample); break;
1929 case PERF_RECORD_FORK:
1930 ret = machine__process_fork_event(machine, event, sample); break;
1931 case PERF_RECORD_EXIT:
1932 ret = machine__process_exit_event(machine, event, sample); break;
1933 case PERF_RECORD_LOST:
1934 ret = machine__process_lost_event(machine, event, sample); break;
1935 case PERF_RECORD_AUX:
1936 ret = machine__process_aux_event(machine, event); break;
1937 case PERF_RECORD_ITRACE_START:
1938 ret = machine__process_itrace_start_event(machine, event); break;
1939 case PERF_RECORD_LOST_SAMPLES:
1940 ret = machine__process_lost_samples_event(machine, event, sample); break;
1941 case PERF_RECORD_SWITCH:
1942 case PERF_RECORD_SWITCH_CPU_WIDE:
1943 ret = machine__process_switch_event(machine, event); break;
1944 case PERF_RECORD_KSYMBOL:
1945 ret = machine__process_ksymbol(machine, event, sample); break;
1946 case PERF_RECORD_BPF_EVENT:
1947 ret = machine__process_bpf(machine, event, sample); break;
1948 case PERF_RECORD_TEXT_POKE:
1949 ret = machine__process_text_poke(machine, event, sample); break;
1950 case PERF_RECORD_AUX_OUTPUT_HW_ID:
1951 ret = machine__process_aux_output_hw_id_event(machine, event); break;
1952 default:
1953 ret = -1;
1954 break;
1955 }
1956
1957 return ret;
1958 }
1959
symbol__match_regex(struct symbol * sym,regex_t * regex)1960 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1961 {
1962 return regexec(regex, sym->name, 0, NULL, 0) == 0;
1963 }
1964
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1965 static void ip__resolve_ams(struct thread *thread,
1966 struct addr_map_symbol *ams,
1967 u64 ip)
1968 {
1969 struct addr_location al;
1970
1971 addr_location__init(&al);
1972 /*
1973 * We cannot use the header.misc hint to determine whether a
1974 * branch stack address is user, kernel, guest, hypervisor.
1975 * Branches may straddle the kernel/user/hypervisor boundaries.
1976 * Thus, we have to try consecutively until we find a match
1977 * or else, the symbol is unknown
1978 */
1979 thread__find_cpumode_addr_location(thread, ip, &al);
1980
1981 ams->addr = ip;
1982 ams->al_addr = al.addr;
1983 ams->al_level = al.level;
1984 ams->ms.maps = maps__get(al.maps);
1985 ams->ms.sym = al.sym;
1986 ams->ms.map = map__get(al.map);
1987 ams->phys_addr = 0;
1988 ams->data_page_size = 0;
1989 addr_location__exit(&al);
1990 }
1991
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)1992 static void ip__resolve_data(struct thread *thread,
1993 u8 m, struct addr_map_symbol *ams,
1994 u64 addr, u64 phys_addr, u64 daddr_page_size)
1995 {
1996 struct addr_location al;
1997
1998 addr_location__init(&al);
1999
2000 thread__find_symbol(thread, m, addr, &al);
2001
2002 ams->addr = addr;
2003 ams->al_addr = al.addr;
2004 ams->al_level = al.level;
2005 ams->ms.maps = maps__get(al.maps);
2006 ams->ms.sym = al.sym;
2007 ams->ms.map = map__get(al.map);
2008 ams->phys_addr = phys_addr;
2009 ams->data_page_size = daddr_page_size;
2010 addr_location__exit(&al);
2011 }
2012
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2013 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2014 struct addr_location *al)
2015 {
2016 struct mem_info *mi = mem_info__new();
2017
2018 if (!mi)
2019 return NULL;
2020
2021 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2022 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2023 sample->addr, sample->phys_addr,
2024 sample->data_page_size);
2025 mem_info__data_src(mi)->val = sample->data_src;
2026
2027 return mi;
2028 }
2029
callchain_srcline(struct map_symbol * ms,u64 ip)2030 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2031 {
2032 struct map *map = ms->map;
2033 char *srcline = NULL;
2034 struct dso *dso;
2035
2036 if (!map || callchain_param.key == CCKEY_FUNCTION)
2037 return srcline;
2038
2039 dso = map__dso(map);
2040 srcline = srcline__tree_find(dso__srclines(dso), ip);
2041 if (!srcline) {
2042 bool show_sym = false;
2043 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2044
2045 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2046 ms->sym, show_sym, show_addr, ip);
2047 srcline__tree_insert(dso__srclines(dso), ip, srcline);
2048 }
2049
2050 return srcline;
2051 }
2052
2053 struct iterations {
2054 int nr_loop_iter;
2055 u64 cycles;
2056 };
2057
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from,bool symbols)2058 static int add_callchain_ip(struct thread *thread,
2059 struct callchain_cursor *cursor,
2060 struct symbol **parent,
2061 struct addr_location *root_al,
2062 u8 *cpumode,
2063 u64 ip,
2064 bool branch,
2065 struct branch_flags *flags,
2066 struct iterations *iter,
2067 u64 branch_from,
2068 bool symbols)
2069 {
2070 struct map_symbol ms = {};
2071 struct addr_location al;
2072 int nr_loop_iter = 0, err = 0;
2073 u64 iter_cycles = 0;
2074 const char *srcline = NULL;
2075
2076 addr_location__init(&al);
2077 al.filtered = 0;
2078 al.sym = NULL;
2079 al.srcline = NULL;
2080 if (!cpumode) {
2081 thread__find_cpumode_addr_location(thread, ip, &al);
2082 } else {
2083 if (ip >= PERF_CONTEXT_MAX) {
2084 switch (ip) {
2085 case PERF_CONTEXT_HV:
2086 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2087 break;
2088 case PERF_CONTEXT_KERNEL:
2089 *cpumode = PERF_RECORD_MISC_KERNEL;
2090 break;
2091 case PERF_CONTEXT_USER:
2092 *cpumode = PERF_RECORD_MISC_USER;
2093 break;
2094 default:
2095 pr_debug("invalid callchain context: "
2096 "%"PRId64"\n", (s64) ip);
2097 /*
2098 * It seems the callchain is corrupted.
2099 * Discard all.
2100 */
2101 callchain_cursor_reset(cursor);
2102 err = 1;
2103 goto out;
2104 }
2105 goto out;
2106 }
2107 if (symbols)
2108 thread__find_symbol(thread, *cpumode, ip, &al);
2109 }
2110
2111 if (al.sym != NULL) {
2112 if (perf_hpp_list.parent && !*parent &&
2113 symbol__match_regex(al.sym, &parent_regex))
2114 *parent = al.sym;
2115 else if (have_ignore_callees && root_al &&
2116 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2117 /* Treat this symbol as the root,
2118 forgetting its callees. */
2119 addr_location__copy(root_al, &al);
2120 callchain_cursor_reset(cursor);
2121 }
2122 }
2123
2124 if (symbol_conf.hide_unresolved && al.sym == NULL)
2125 goto out;
2126
2127 if (iter) {
2128 nr_loop_iter = iter->nr_loop_iter;
2129 iter_cycles = iter->cycles;
2130 }
2131
2132 ms.maps = maps__get(al.maps);
2133 ms.map = map__get(al.map);
2134 ms.sym = al.sym;
2135 srcline = callchain_srcline(&ms, al.addr);
2136 err = callchain_cursor_append(cursor, ip, &ms,
2137 branch, flags, nr_loop_iter,
2138 iter_cycles, branch_from, srcline);
2139 out:
2140 addr_location__exit(&al);
2141 map_symbol__exit(&ms);
2142 return err;
2143 }
2144
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2145 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2146 struct addr_location *al)
2147 {
2148 unsigned int i;
2149 const struct branch_stack *bs = sample->branch_stack;
2150 struct branch_entry *entries = perf_sample__branch_entries(sample);
2151 u64 *branch_stack_cntr = sample->branch_stack_cntr;
2152 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2153
2154 if (!bi)
2155 return NULL;
2156
2157 for (i = 0; i < bs->nr; i++) {
2158 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2159 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2160 bi[i].flags = entries[i].flags;
2161 if (branch_stack_cntr)
2162 bi[i].branch_stack_cntr = branch_stack_cntr[i];
2163 }
2164 return bi;
2165 }
2166
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2167 static void save_iterations(struct iterations *iter,
2168 struct branch_entry *be, int nr)
2169 {
2170 int i;
2171
2172 iter->nr_loop_iter++;
2173 iter->cycles = 0;
2174
2175 for (i = 0; i < nr; i++)
2176 iter->cycles += be[i].flags.cycles;
2177 }
2178
2179 #define CHASHSZ 127
2180 #define CHASHBITS 7
2181 #define NO_ENTRY 0xff
2182
2183 #define PERF_MAX_BRANCH_DEPTH 127
2184
2185 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2186 static int remove_loops(struct branch_entry *l, int nr,
2187 struct iterations *iter)
2188 {
2189 int i, j, off;
2190 unsigned char chash[CHASHSZ];
2191
2192 memset(chash, NO_ENTRY, sizeof(chash));
2193
2194 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2195
2196 for (i = 0; i < nr; i++) {
2197 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2198
2199 /* no collision handling for now */
2200 if (chash[h] == NO_ENTRY) {
2201 chash[h] = i;
2202 } else if (l[chash[h]].from == l[i].from) {
2203 bool is_loop = true;
2204 /* check if it is a real loop */
2205 off = 0;
2206 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2207 if (l[j].from != l[i + off].from) {
2208 is_loop = false;
2209 break;
2210 }
2211 if (is_loop) {
2212 j = nr - (i + off);
2213 if (j > 0) {
2214 save_iterations(iter + i + off,
2215 l + i, off);
2216
2217 memmove(iter + i, iter + i + off,
2218 j * sizeof(*iter));
2219
2220 memmove(l + i, l + i + off,
2221 j * sizeof(*l));
2222 }
2223
2224 nr -= off;
2225 }
2226 }
2227 }
2228 return nr;
2229 }
2230
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end,bool symbols)2231 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2232 struct callchain_cursor *cursor,
2233 struct perf_sample *sample,
2234 struct symbol **parent,
2235 struct addr_location *root_al,
2236 u64 branch_from,
2237 bool callee, int end,
2238 bool symbols)
2239 {
2240 struct ip_callchain *chain = sample->callchain;
2241 u8 cpumode = PERF_RECORD_MISC_USER;
2242 int err, i;
2243
2244 if (callee) {
2245 for (i = 0; i < end + 1; i++) {
2246 err = add_callchain_ip(thread, cursor, parent,
2247 root_al, &cpumode, chain->ips[i],
2248 false, NULL, NULL, branch_from,
2249 symbols);
2250 if (err)
2251 return err;
2252 }
2253 return 0;
2254 }
2255
2256 for (i = end; i >= 0; i--) {
2257 err = add_callchain_ip(thread, cursor, parent,
2258 root_al, &cpumode, chain->ips[i],
2259 false, NULL, NULL, branch_from,
2260 symbols);
2261 if (err)
2262 return err;
2263 }
2264
2265 return 0;
2266 }
2267
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2268 static void save_lbr_cursor_node(struct thread *thread,
2269 struct callchain_cursor *cursor,
2270 int idx)
2271 {
2272 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2273
2274 if (!lbr_stitch)
2275 return;
2276
2277 if (cursor->pos == cursor->nr) {
2278 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2279 return;
2280 }
2281
2282 if (!cursor->curr)
2283 cursor->curr = cursor->first;
2284 else
2285 cursor->curr = cursor->curr->next;
2286
2287 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2288 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2289 sizeof(struct callchain_cursor_node));
2290 lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2291 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2292
2293 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2294 cursor->pos++;
2295 }
2296
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee,bool symbols)2297 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2298 struct callchain_cursor *cursor,
2299 struct perf_sample *sample,
2300 struct symbol **parent,
2301 struct addr_location *root_al,
2302 u64 *branch_from,
2303 bool callee,
2304 bool symbols)
2305 {
2306 struct branch_stack *lbr_stack = sample->branch_stack;
2307 struct branch_entry *entries = perf_sample__branch_entries(sample);
2308 u8 cpumode = PERF_RECORD_MISC_USER;
2309 int lbr_nr = lbr_stack->nr;
2310 struct branch_flags *flags;
2311 int err, i;
2312 u64 ip;
2313
2314 /*
2315 * The curr and pos are not used in writing session. They are cleared
2316 * in callchain_cursor_commit() when the writing session is closed.
2317 * Using curr and pos to track the current cursor node.
2318 */
2319 if (thread__lbr_stitch(thread)) {
2320 cursor->curr = NULL;
2321 cursor->pos = cursor->nr;
2322 if (cursor->nr) {
2323 cursor->curr = cursor->first;
2324 for (i = 0; i < (int)(cursor->nr - 1); i++)
2325 cursor->curr = cursor->curr->next;
2326 }
2327 }
2328
2329 if (callee) {
2330 /* Add LBR ip from first entries.to */
2331 ip = entries[0].to;
2332 flags = &entries[0].flags;
2333 *branch_from = entries[0].from;
2334 err = add_callchain_ip(thread, cursor, parent,
2335 root_al, &cpumode, ip,
2336 true, flags, NULL,
2337 *branch_from, symbols);
2338 if (err)
2339 return err;
2340
2341 /*
2342 * The number of cursor node increases.
2343 * Move the current cursor node.
2344 * But does not need to save current cursor node for entry 0.
2345 * It's impossible to stitch the whole LBRs of previous sample.
2346 */
2347 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2348 if (!cursor->curr)
2349 cursor->curr = cursor->first;
2350 else
2351 cursor->curr = cursor->curr->next;
2352 cursor->pos++;
2353 }
2354
2355 /* Add LBR ip from entries.from one by one. */
2356 for (i = 0; i < lbr_nr; i++) {
2357 ip = entries[i].from;
2358 flags = &entries[i].flags;
2359 err = add_callchain_ip(thread, cursor, parent,
2360 root_al, &cpumode, ip,
2361 true, flags, NULL,
2362 *branch_from, symbols);
2363 if (err)
2364 return err;
2365 save_lbr_cursor_node(thread, cursor, i);
2366 }
2367 return 0;
2368 }
2369
2370 /* Add LBR ip from entries.from one by one. */
2371 for (i = lbr_nr - 1; i >= 0; i--) {
2372 ip = entries[i].from;
2373 flags = &entries[i].flags;
2374 err = add_callchain_ip(thread, cursor, parent,
2375 root_al, &cpumode, ip,
2376 true, flags, NULL,
2377 *branch_from, symbols);
2378 if (err)
2379 return err;
2380 save_lbr_cursor_node(thread, cursor, i);
2381 }
2382
2383 if (lbr_nr > 0) {
2384 /* Add LBR ip from first entries.to */
2385 ip = entries[0].to;
2386 flags = &entries[0].flags;
2387 *branch_from = entries[0].from;
2388 err = add_callchain_ip(thread, cursor, parent,
2389 root_al, &cpumode, ip,
2390 true, flags, NULL,
2391 *branch_from, symbols);
2392 if (err)
2393 return err;
2394 }
2395
2396 return 0;
2397 }
2398
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2399 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2400 struct callchain_cursor *cursor)
2401 {
2402 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2403 struct callchain_cursor_node *cnode;
2404 struct stitch_list *stitch_node;
2405 int err;
2406
2407 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2408 cnode = &stitch_node->cursor;
2409
2410 err = callchain_cursor_append(cursor, cnode->ip,
2411 &cnode->ms,
2412 cnode->branch,
2413 &cnode->branch_flags,
2414 cnode->nr_loop_iter,
2415 cnode->iter_cycles,
2416 cnode->branch_from,
2417 cnode->srcline);
2418 if (err)
2419 return err;
2420 }
2421 return 0;
2422 }
2423
get_stitch_node(struct thread * thread)2424 static struct stitch_list *get_stitch_node(struct thread *thread)
2425 {
2426 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2427 struct stitch_list *stitch_node;
2428
2429 if (!list_empty(&lbr_stitch->free_lists)) {
2430 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2431 struct stitch_list, node);
2432 list_del(&stitch_node->node);
2433
2434 return stitch_node;
2435 }
2436
2437 return malloc(sizeof(struct stitch_list));
2438 }
2439
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2440 static bool has_stitched_lbr(struct thread *thread,
2441 struct perf_sample *cur,
2442 struct perf_sample *prev,
2443 unsigned int max_lbr,
2444 bool callee)
2445 {
2446 struct branch_stack *cur_stack = cur->branch_stack;
2447 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2448 struct branch_stack *prev_stack = prev->branch_stack;
2449 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2450 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2451 int i, j, nr_identical_branches = 0;
2452 struct stitch_list *stitch_node;
2453 u64 cur_base, distance;
2454
2455 if (!cur_stack || !prev_stack)
2456 return false;
2457
2458 /* Find the physical index of the base-of-stack for current sample. */
2459 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2460
2461 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2462 (max_lbr + prev_stack->hw_idx - cur_base);
2463 /* Previous sample has shorter stack. Nothing can be stitched. */
2464 if (distance + 1 > prev_stack->nr)
2465 return false;
2466
2467 /*
2468 * Check if there are identical LBRs between two samples.
2469 * Identical LBRs must have same from, to and flags values. Also,
2470 * they have to be saved in the same LBR registers (same physical
2471 * index).
2472 *
2473 * Starts from the base-of-stack of current sample.
2474 */
2475 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2476 if ((prev_entries[i].from != cur_entries[j].from) ||
2477 (prev_entries[i].to != cur_entries[j].to) ||
2478 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2479 break;
2480 nr_identical_branches++;
2481 }
2482
2483 if (!nr_identical_branches)
2484 return false;
2485
2486 /*
2487 * Save the LBRs between the base-of-stack of previous sample
2488 * and the base-of-stack of current sample into lbr_stitch->lists.
2489 * These LBRs will be stitched later.
2490 */
2491 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2492
2493 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2494 continue;
2495
2496 stitch_node = get_stitch_node(thread);
2497 if (!stitch_node)
2498 return false;
2499
2500 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2501 sizeof(struct callchain_cursor_node));
2502
2503 stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2504 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2505
2506 if (callee)
2507 list_add(&stitch_node->node, &lbr_stitch->lists);
2508 else
2509 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2510 }
2511
2512 return true;
2513 }
2514
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2515 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2516 {
2517 if (thread__lbr_stitch(thread))
2518 return true;
2519
2520 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2521 if (!thread__lbr_stitch(thread))
2522 goto err;
2523
2524 thread__lbr_stitch(thread)->prev_lbr_cursor =
2525 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2526 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2527 goto free_lbr_stitch;
2528
2529 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2530
2531 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2532 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2533
2534 return true;
2535
2536 free_lbr_stitch:
2537 free(thread__lbr_stitch(thread));
2538 thread__set_lbr_stitch(thread, NULL);
2539 err:
2540 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2541 thread__set_lbr_stitch_enable(thread, false);
2542 return false;
2543 }
2544
2545 /*
2546 * Resolve LBR callstack chain sample
2547 * Return:
2548 * 1 on success get LBR callchain information
2549 * 0 no available LBR callchain information, should try fp
2550 * negative error code on other errors.
2551 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr,bool symbols)2552 static int resolve_lbr_callchain_sample(struct thread *thread,
2553 struct callchain_cursor *cursor,
2554 struct perf_sample *sample,
2555 struct symbol **parent,
2556 struct addr_location *root_al,
2557 int max_stack,
2558 unsigned int max_lbr,
2559 bool symbols)
2560 {
2561 bool callee = (callchain_param.order == ORDER_CALLEE);
2562 struct ip_callchain *chain = sample->callchain;
2563 int chain_nr = min(max_stack, (int)chain->nr), i;
2564 struct lbr_stitch *lbr_stitch;
2565 bool stitched_lbr = false;
2566 u64 branch_from = 0;
2567 int err;
2568
2569 for (i = 0; i < chain_nr; i++) {
2570 if (chain->ips[i] == PERF_CONTEXT_USER)
2571 break;
2572 }
2573
2574 /* LBR only affects the user callchain */
2575 if (i == chain_nr)
2576 return 0;
2577
2578 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2579 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2580 lbr_stitch = thread__lbr_stitch(thread);
2581
2582 stitched_lbr = has_stitched_lbr(thread, sample,
2583 &lbr_stitch->prev_sample,
2584 max_lbr, callee);
2585
2586 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2587 struct stitch_list *stitch_node;
2588
2589 list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2590 map_symbol__exit(&stitch_node->cursor.ms);
2591
2592 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2593 }
2594 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2595 }
2596
2597 if (callee) {
2598 /* Add kernel ip */
2599 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2600 parent, root_al, branch_from,
2601 true, i, symbols);
2602 if (err)
2603 goto error;
2604
2605 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2606 root_al, &branch_from, true, symbols);
2607 if (err)
2608 goto error;
2609
2610 if (stitched_lbr) {
2611 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2612 if (err)
2613 goto error;
2614 }
2615
2616 } else {
2617 if (stitched_lbr) {
2618 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2619 if (err)
2620 goto error;
2621 }
2622 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2623 root_al, &branch_from, false, symbols);
2624 if (err)
2625 goto error;
2626
2627 /* Add kernel ip */
2628 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2629 parent, root_al, branch_from,
2630 false, i, symbols);
2631 if (err)
2632 goto error;
2633 }
2634 return 1;
2635
2636 error:
2637 return (err < 0) ? err : 0;
2638 }
2639
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent,bool symbols)2640 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2641 struct callchain_cursor *cursor,
2642 struct symbol **parent,
2643 struct addr_location *root_al,
2644 u8 *cpumode, int ent, bool symbols)
2645 {
2646 int err = 0;
2647
2648 while (--ent >= 0) {
2649 u64 ip = chain->ips[ent];
2650
2651 if (ip >= PERF_CONTEXT_MAX) {
2652 err = add_callchain_ip(thread, cursor, parent,
2653 root_al, cpumode, ip,
2654 false, NULL, NULL, 0, symbols);
2655 break;
2656 }
2657 }
2658 return err;
2659 }
2660
get_leaf_frame_caller(struct perf_sample * sample,struct thread * thread,int usr_idx)2661 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2662 struct thread *thread, int usr_idx)
2663 {
2664 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2665 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2666 else
2667 return 0;
2668 }
2669
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)2670 static int thread__resolve_callchain_sample(struct thread *thread,
2671 struct callchain_cursor *cursor,
2672 struct evsel *evsel,
2673 struct perf_sample *sample,
2674 struct symbol **parent,
2675 struct addr_location *root_al,
2676 int max_stack,
2677 bool symbols)
2678 {
2679 struct branch_stack *branch = sample->branch_stack;
2680 struct branch_entry *entries = perf_sample__branch_entries(sample);
2681 struct ip_callchain *chain = sample->callchain;
2682 int chain_nr = 0;
2683 u8 cpumode = PERF_RECORD_MISC_USER;
2684 int i, j, err, nr_entries, usr_idx;
2685 int skip_idx = -1;
2686 int first_call = 0;
2687 u64 leaf_frame_caller;
2688
2689 if (chain)
2690 chain_nr = chain->nr;
2691
2692 if (evsel__has_branch_callstack(evsel)) {
2693 struct perf_env *env = evsel__env(evsel);
2694
2695 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2696 root_al, max_stack,
2697 !env ? 0 : env->max_branches,
2698 symbols);
2699 if (err)
2700 return (err < 0) ? err : 0;
2701 }
2702
2703 /*
2704 * Based on DWARF debug information, some architectures skip
2705 * a callchain entry saved by the kernel.
2706 */
2707 skip_idx = arch_skip_callchain_idx(thread, chain);
2708
2709 /*
2710 * Add branches to call stack for easier browsing. This gives
2711 * more context for a sample than just the callers.
2712 *
2713 * This uses individual histograms of paths compared to the
2714 * aggregated histograms the normal LBR mode uses.
2715 *
2716 * Limitations for now:
2717 * - No extra filters
2718 * - No annotations (should annotate somehow)
2719 */
2720
2721 if (branch && callchain_param.branch_callstack) {
2722 int nr = min(max_stack, (int)branch->nr);
2723 struct branch_entry be[nr];
2724 struct iterations iter[nr];
2725
2726 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2727 pr_warning("corrupted branch chain. skipping...\n");
2728 goto check_calls;
2729 }
2730
2731 for (i = 0; i < nr; i++) {
2732 if (callchain_param.order == ORDER_CALLEE) {
2733 be[i] = entries[i];
2734
2735 if (chain == NULL)
2736 continue;
2737
2738 /*
2739 * Check for overlap into the callchain.
2740 * The return address is one off compared to
2741 * the branch entry. To adjust for this
2742 * assume the calling instruction is not longer
2743 * than 8 bytes.
2744 */
2745 if (i == skip_idx ||
2746 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2747 first_call++;
2748 else if (be[i].from < chain->ips[first_call] &&
2749 be[i].from >= chain->ips[first_call] - 8)
2750 first_call++;
2751 } else
2752 be[i] = entries[branch->nr - i - 1];
2753 }
2754
2755 memset(iter, 0, sizeof(struct iterations) * nr);
2756 nr = remove_loops(be, nr, iter);
2757
2758 for (i = 0; i < nr; i++) {
2759 err = add_callchain_ip(thread, cursor, parent,
2760 root_al,
2761 NULL, be[i].to,
2762 true, &be[i].flags,
2763 NULL, be[i].from, symbols);
2764
2765 if (!err) {
2766 err = add_callchain_ip(thread, cursor, parent, root_al,
2767 NULL, be[i].from,
2768 true, &be[i].flags,
2769 &iter[i], 0, symbols);
2770 }
2771 if (err == -EINVAL)
2772 break;
2773 if (err)
2774 return err;
2775 }
2776
2777 if (chain_nr == 0)
2778 return 0;
2779
2780 chain_nr -= nr;
2781 }
2782
2783 check_calls:
2784 if (chain && callchain_param.order != ORDER_CALLEE) {
2785 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2786 &cpumode, chain->nr - first_call, symbols);
2787 if (err)
2788 return (err < 0) ? err : 0;
2789 }
2790 for (i = first_call, nr_entries = 0;
2791 i < chain_nr && nr_entries < max_stack; i++) {
2792 u64 ip;
2793
2794 if (callchain_param.order == ORDER_CALLEE)
2795 j = i;
2796 else
2797 j = chain->nr - i - 1;
2798
2799 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2800 if (j == skip_idx)
2801 continue;
2802 #endif
2803 ip = chain->ips[j];
2804 if (ip < PERF_CONTEXT_MAX)
2805 ++nr_entries;
2806 else if (callchain_param.order != ORDER_CALLEE) {
2807 err = find_prev_cpumode(chain, thread, cursor, parent,
2808 root_al, &cpumode, j, symbols);
2809 if (err)
2810 return (err < 0) ? err : 0;
2811 continue;
2812 }
2813
2814 /*
2815 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2816 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2817 * the index will be different in order to add the missing frame
2818 * at the right place.
2819 */
2820
2821 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2822
2823 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2824
2825 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2826
2827 /*
2828 * check if leaf_frame_Caller != ip to not add the same
2829 * value twice.
2830 */
2831
2832 if (leaf_frame_caller && leaf_frame_caller != ip) {
2833
2834 err = add_callchain_ip(thread, cursor, parent,
2835 root_al, &cpumode, leaf_frame_caller,
2836 false, NULL, NULL, 0, symbols);
2837 if (err)
2838 return (err < 0) ? err : 0;
2839 }
2840 }
2841
2842 err = add_callchain_ip(thread, cursor, parent,
2843 root_al, &cpumode, ip,
2844 false, NULL, NULL, 0, symbols);
2845
2846 if (err)
2847 return (err < 0) ? err : 0;
2848 }
2849
2850 return 0;
2851 }
2852
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)2853 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2854 {
2855 struct symbol *sym = ms->sym;
2856 struct map *map = ms->map;
2857 struct inline_node *inline_node;
2858 struct inline_list *ilist;
2859 struct dso *dso;
2860 u64 addr;
2861 int ret = 1;
2862 struct map_symbol ilist_ms;
2863
2864 if (!symbol_conf.inline_name || !map || !sym)
2865 return ret;
2866
2867 addr = map__dso_map_ip(map, ip);
2868 addr = map__rip_2objdump(map, addr);
2869 dso = map__dso(map);
2870
2871 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2872 if (!inline_node) {
2873 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2874 if (!inline_node)
2875 return ret;
2876 inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2877 }
2878
2879 ilist_ms = (struct map_symbol) {
2880 .maps = maps__get(ms->maps),
2881 .map = map__get(map),
2882 };
2883 list_for_each_entry(ilist, &inline_node->val, list) {
2884 ilist_ms.sym = ilist->symbol;
2885 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2886 NULL, 0, 0, 0, ilist->srcline);
2887
2888 if (ret != 0)
2889 return ret;
2890 }
2891 map_symbol__exit(&ilist_ms);
2892
2893 return ret;
2894 }
2895
unwind_entry(struct unwind_entry * entry,void * arg)2896 static int unwind_entry(struct unwind_entry *entry, void *arg)
2897 {
2898 struct callchain_cursor *cursor = arg;
2899 const char *srcline = NULL;
2900 u64 addr = entry->ip;
2901
2902 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2903 return 0;
2904
2905 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2906 return 0;
2907
2908 /*
2909 * Convert entry->ip from a virtual address to an offset in
2910 * its corresponding binary.
2911 */
2912 if (entry->ms.map)
2913 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2914
2915 srcline = callchain_srcline(&entry->ms, addr);
2916 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2917 false, NULL, 0, 0, 0, srcline);
2918 }
2919
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack,bool symbols)2920 static int thread__resolve_callchain_unwind(struct thread *thread,
2921 struct callchain_cursor *cursor,
2922 struct evsel *evsel,
2923 struct perf_sample *sample,
2924 int max_stack, bool symbols)
2925 {
2926 /* Can we do dwarf post unwind? */
2927 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2928 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2929 return 0;
2930
2931 /* Bail out if nothing was captured. */
2932 if (!sample->user_regs || !sample->user_regs->regs ||
2933 !sample->user_stack.size)
2934 return 0;
2935
2936 if (!symbols)
2937 pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2938
2939 return unwind__get_entries(unwind_entry, cursor,
2940 thread, sample, max_stack, false);
2941 }
2942
__thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,bool symbols)2943 int __thread__resolve_callchain(struct thread *thread,
2944 struct callchain_cursor *cursor,
2945 struct evsel *evsel,
2946 struct perf_sample *sample,
2947 struct symbol **parent,
2948 struct addr_location *root_al,
2949 int max_stack,
2950 bool symbols)
2951 {
2952 int ret = 0;
2953
2954 if (cursor == NULL)
2955 return -ENOMEM;
2956
2957 callchain_cursor_reset(cursor);
2958
2959 if (callchain_param.order == ORDER_CALLEE) {
2960 ret = thread__resolve_callchain_sample(thread, cursor,
2961 evsel, sample,
2962 parent, root_al,
2963 max_stack, symbols);
2964 if (ret)
2965 return ret;
2966 ret = thread__resolve_callchain_unwind(thread, cursor,
2967 evsel, sample,
2968 max_stack, symbols);
2969 } else {
2970 ret = thread__resolve_callchain_unwind(thread, cursor,
2971 evsel, sample,
2972 max_stack, symbols);
2973 if (ret)
2974 return ret;
2975 ret = thread__resolve_callchain_sample(thread, cursor,
2976 evsel, sample,
2977 parent, root_al,
2978 max_stack, symbols);
2979 }
2980
2981 return ret;
2982 }
2983
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2984 int machine__for_each_thread(struct machine *machine,
2985 int (*fn)(struct thread *thread, void *p),
2986 void *priv)
2987 {
2988 return threads__for_each_thread(&machine->threads, fn, priv);
2989 }
2990
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2991 int machines__for_each_thread(struct machines *machines,
2992 int (*fn)(struct thread *thread, void *p),
2993 void *priv)
2994 {
2995 struct rb_node *nd;
2996 int rc = 0;
2997
2998 rc = machine__for_each_thread(&machines->host, fn, priv);
2999 if (rc != 0)
3000 return rc;
3001
3002 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3003 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3004
3005 rc = machine__for_each_thread(machine, fn, priv);
3006 if (rc != 0)
3007 return rc;
3008 }
3009 return rc;
3010 }
3011
3012
thread_list_cb(struct thread * thread,void * data)3013 static int thread_list_cb(struct thread *thread, void *data)
3014 {
3015 struct list_head *list = data;
3016 struct thread_list *entry = malloc(sizeof(*entry));
3017
3018 if (!entry)
3019 return -ENOMEM;
3020
3021 entry->thread = thread__get(thread);
3022 list_add_tail(&entry->list, list);
3023 return 0;
3024 }
3025
machine__thread_list(struct machine * machine,struct list_head * list)3026 int machine__thread_list(struct machine *machine, struct list_head *list)
3027 {
3028 return machine__for_each_thread(machine, thread_list_cb, list);
3029 }
3030
thread_list__delete(struct list_head * list)3031 void thread_list__delete(struct list_head *list)
3032 {
3033 struct thread_list *pos, *next;
3034
3035 list_for_each_entry_safe(pos, next, list, list) {
3036 thread__zput(pos->thread);
3037 list_del(&pos->list);
3038 free(pos);
3039 }
3040 }
3041
machine__get_current_tid(struct machine * machine,int cpu)3042 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3043 {
3044 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3045 return -1;
3046
3047 return machine->current_tid[cpu];
3048 }
3049
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3050 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3051 pid_t tid)
3052 {
3053 struct thread *thread;
3054 const pid_t init_val = -1;
3055
3056 if (cpu < 0)
3057 return -EINVAL;
3058
3059 if (realloc_array_as_needed(machine->current_tid,
3060 machine->current_tid_sz,
3061 (unsigned int)cpu,
3062 &init_val))
3063 return -ENOMEM;
3064
3065 machine->current_tid[cpu] = tid;
3066
3067 thread = machine__findnew_thread(machine, pid, tid);
3068 if (!thread)
3069 return -ENOMEM;
3070
3071 thread__set_cpu(thread, cpu);
3072 thread__put(thread);
3073
3074 return 0;
3075 }
3076
3077 /*
3078 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3079 * machine__normalized_is() if a normalized arch is needed.
3080 */
machine__is(struct machine * machine,const char * arch)3081 bool machine__is(struct machine *machine, const char *arch)
3082 {
3083 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3084 }
3085
machine__normalized_is(struct machine * machine,const char * arch)3086 bool machine__normalized_is(struct machine *machine, const char *arch)
3087 {
3088 return machine && !strcmp(perf_env__arch(machine->env), arch);
3089 }
3090
machine__nr_cpus_avail(struct machine * machine)3091 int machine__nr_cpus_avail(struct machine *machine)
3092 {
3093 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3094 }
3095
machine__get_kernel_start(struct machine * machine)3096 int machine__get_kernel_start(struct machine *machine)
3097 {
3098 struct map *map = machine__kernel_map(machine);
3099 int err = 0;
3100
3101 /*
3102 * The only addresses above 2^63 are kernel addresses of a 64-bit
3103 * kernel. Note that addresses are unsigned so that on a 32-bit system
3104 * all addresses including kernel addresses are less than 2^32. In
3105 * that case (32-bit system), if the kernel mapping is unknown, all
3106 * addresses will be assumed to be in user space - see
3107 * machine__kernel_ip().
3108 */
3109 machine->kernel_start = 1ULL << 63;
3110 if (map) {
3111 err = map__load(map);
3112 /*
3113 * On x86_64, PTI entry trampolines are less than the
3114 * start of kernel text, but still above 2^63. So leave
3115 * kernel_start = 1ULL << 63 for x86_64.
3116 */
3117 if (!err && !machine__is(machine, "x86_64"))
3118 machine->kernel_start = map__start(map);
3119 }
3120 return err;
3121 }
3122
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3123 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3124 {
3125 u8 addr_cpumode = cpumode;
3126 bool kernel_ip;
3127
3128 if (!machine->single_address_space)
3129 goto out;
3130
3131 kernel_ip = machine__kernel_ip(machine, addr);
3132 switch (cpumode) {
3133 case PERF_RECORD_MISC_KERNEL:
3134 case PERF_RECORD_MISC_USER:
3135 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3136 PERF_RECORD_MISC_USER;
3137 break;
3138 case PERF_RECORD_MISC_GUEST_KERNEL:
3139 case PERF_RECORD_MISC_GUEST_USER:
3140 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3141 PERF_RECORD_MISC_GUEST_USER;
3142 break;
3143 default:
3144 break;
3145 }
3146 out:
3147 return addr_cpumode;
3148 }
3149
machine__findnew_dso_id(struct machine * machine,const char * filename,const struct dso_id * id)3150 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3151 const struct dso_id *id)
3152 {
3153 return dsos__findnew_id(&machine->dsos, filename, id);
3154 }
3155
machine__findnew_dso(struct machine * machine,const char * filename)3156 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3157 {
3158 return machine__findnew_dso_id(machine, filename, NULL);
3159 }
3160
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3161 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3162 {
3163 struct machine *machine = vmachine;
3164 struct map *map;
3165 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3166
3167 if (sym == NULL)
3168 return NULL;
3169
3170 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3171 *addrp = map__unmap_ip(map, sym->start);
3172 return sym->name;
3173 }
3174
3175 struct machine__for_each_dso_cb_args {
3176 struct machine *machine;
3177 machine__dso_t fn;
3178 void *priv;
3179 };
3180
machine__for_each_dso_cb(struct dso * dso,void * data)3181 static int machine__for_each_dso_cb(struct dso *dso, void *data)
3182 {
3183 struct machine__for_each_dso_cb_args *args = data;
3184
3185 return args->fn(dso, args->machine, args->priv);
3186 }
3187
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3188 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3189 {
3190 struct machine__for_each_dso_cb_args args = {
3191 .machine = machine,
3192 .fn = fn,
3193 .priv = priv,
3194 };
3195
3196 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3197 }
3198
machine__for_each_kernel_map(struct machine * machine,machine__map_t fn,void * priv)3199 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3200 {
3201 struct maps *maps = machine__kernel_maps(machine);
3202
3203 return maps__for_each_map(maps, fn, priv);
3204 }
3205
machine__is_lock_function(struct machine * machine,u64 addr)3206 bool machine__is_lock_function(struct machine *machine, u64 addr)
3207 {
3208 if (!machine->sched.text_start) {
3209 struct map *kmap;
3210 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3211
3212 if (!sym) {
3213 /* to avoid retry */
3214 machine->sched.text_start = 1;
3215 return false;
3216 }
3217
3218 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3219
3220 /* should not fail from here */
3221 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3222 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3223
3224 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3225 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3226
3227 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3228 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3229
3230 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3231 if (sym) {
3232 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3233 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3234 }
3235 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3236 if (sym) {
3237 machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3238 machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3239 }
3240 }
3241
3242 /* failed to get kernel symbols */
3243 if (machine->sched.text_start == 1)
3244 return false;
3245
3246 /* mutex and rwsem functions are in sched text section */
3247 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3248 return true;
3249
3250 /* spinlock functions are in lock text section */
3251 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3252 return true;
3253
3254 /* traceiter functions currently don't have their own section
3255 * but we consider them lock functions
3256 */
3257 if (machine->traceiter.text_start != 0) {
3258 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3259 return true;
3260 }
3261
3262 if (machine->trace.text_start != 0) {
3263 if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3264 return true;
3265 }
3266
3267 return false;
3268 }
3269
machine__hit_all_dsos(struct machine * machine)3270 int machine__hit_all_dsos(struct machine *machine)
3271 {
3272 return dsos__hit_all(&machine->dsos);
3273 }
3274