1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40 
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42 
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47 
48 #define MAX_TIMESTAMP (~0ULL)
49 
50 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
55 
56 struct range {
57 	u64 start;
58 	u64 end;
59 };
60 
61 struct intel_pt {
62 	struct auxtrace auxtrace;
63 	struct auxtrace_queues queues;
64 	struct auxtrace_heap heap;
65 	u32 auxtrace_type;
66 	struct perf_session *session;
67 	struct machine *machine;
68 	struct evsel *switch_evsel;
69 	struct thread *unknown_thread;
70 	bool timeless_decoding;
71 	bool sampling_mode;
72 	bool snapshot_mode;
73 	bool per_cpu_mmaps;
74 	bool have_tsc;
75 	bool data_queued;
76 	bool est_tsc;
77 	bool sync_switch;
78 	bool sync_switch_not_supported;
79 	bool mispred_all;
80 	bool use_thread_stack;
81 	bool callstack;
82 	bool cap_event_trace;
83 	bool have_guest_sideband;
84 	unsigned int br_stack_sz;
85 	unsigned int br_stack_sz_plus;
86 	int have_sched_switch;
87 	u32 pmu_type;
88 	u64 kernel_start;
89 	u64 switch_ip;
90 	u64 ptss_ip;
91 	u64 first_timestamp;
92 
93 	struct perf_tsc_conversion tc;
94 	bool cap_user_time_zero;
95 
96 	struct itrace_synth_opts synth_opts;
97 
98 	bool sample_instructions;
99 	u64 instructions_sample_type;
100 	u64 instructions_id;
101 
102 	bool sample_cycles;
103 	u64 cycles_sample_type;
104 	u64 cycles_id;
105 
106 	bool sample_branches;
107 	u32 branches_filter;
108 	u64 branches_sample_type;
109 	u64 branches_id;
110 
111 	bool sample_transactions;
112 	u64 transactions_sample_type;
113 	u64 transactions_id;
114 
115 	bool sample_ptwrites;
116 	u64 ptwrites_sample_type;
117 	u64 ptwrites_id;
118 
119 	bool sample_pwr_events;
120 	u64 pwr_events_sample_type;
121 	u64 mwait_id;
122 	u64 pwre_id;
123 	u64 exstop_id;
124 	u64 pwrx_id;
125 	u64 cbr_id;
126 	u64 psb_id;
127 
128 	bool single_pebs;
129 	bool sample_pebs;
130 	struct evsel *pebs_evsel;
131 
132 	u64 evt_sample_type;
133 	u64 evt_id;
134 
135 	u64 iflag_chg_sample_type;
136 	u64 iflag_chg_id;
137 
138 	u64 tsc_bit;
139 	u64 mtc_bit;
140 	u64 mtc_freq_bits;
141 	u32 tsc_ctc_ratio_n;
142 	u32 tsc_ctc_ratio_d;
143 	u64 cyc_bit;
144 	u64 noretcomp_bit;
145 	unsigned max_non_turbo_ratio;
146 	unsigned cbr2khz;
147 	int max_loops;
148 
149 	unsigned long num_events;
150 
151 	char *filter;
152 	struct addr_filters filts;
153 
154 	struct range *time_ranges;
155 	unsigned int range_cnt;
156 
157 	struct ip_callchain *chain;
158 	struct branch_stack *br_stack;
159 
160 	u64 dflt_tsc_offset;
161 	struct rb_root vmcs_info;
162 };
163 
164 enum switch_state {
165 	INTEL_PT_SS_NOT_TRACING,
166 	INTEL_PT_SS_UNKNOWN,
167 	INTEL_PT_SS_TRACING,
168 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171 
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174 
175 struct intel_pt_pebs_event {
176 	struct evsel *evsel;
177 	u64 id;
178 };
179 
180 struct intel_pt_queue {
181 	struct intel_pt *pt;
182 	unsigned int queue_nr;
183 	struct auxtrace_buffer *buffer;
184 	struct auxtrace_buffer *old_buffer;
185 	void *decoder;
186 	const struct intel_pt_state *state;
187 	struct ip_callchain *chain;
188 	struct branch_stack *last_branch;
189 	union perf_event *event_buf;
190 	bool on_heap;
191 	bool stop;
192 	bool step_through_buffers;
193 	bool use_buffer_pid_tid;
194 	bool sync_switch;
195 	bool sample_ipc;
196 	pid_t pid, tid;
197 	int cpu;
198 	int switch_state;
199 	pid_t next_tid;
200 	struct thread *thread;
201 	struct machine *guest_machine;
202 	struct thread *guest_thread;
203 	struct thread *unknown_guest_thread;
204 	pid_t guest_machine_pid;
205 	pid_t guest_pid;
206 	pid_t guest_tid;
207 	int vcpu;
208 	bool exclude_kernel;
209 	bool have_sample;
210 	u64 time;
211 	u64 timestamp;
212 	u64 sel_timestamp;
213 	bool sel_start;
214 	unsigned int sel_idx;
215 	u32 flags;
216 	u16 insn_len;
217 	u64 last_insn_cnt;
218 	u64 ipc_insn_cnt;
219 	u64 ipc_cyc_cnt;
220 	u64 last_in_insn_cnt;
221 	u64 last_in_cyc_cnt;
222 	u64 last_cy_insn_cnt;
223 	u64 last_cy_cyc_cnt;
224 	u64 last_br_insn_cnt;
225 	u64 last_br_cyc_cnt;
226 	unsigned int cbr_seen;
227 	char insn[INTEL_PT_INSN_BUF_SZ];
228 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230 
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232 			  unsigned char *buf, size_t len)
233 {
234 	struct intel_pt_pkt packet;
235 	size_t pos = 0;
236 	int ret, pkt_len, i;
237 	char desc[INTEL_PT_PKT_DESC_MAX];
238 	const char *color = PERF_COLOR_BLUE;
239 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240 
241 	color_fprintf(stdout, color,
242 		      ". ... Intel Processor Trace data: size %zu bytes\n",
243 		      len);
244 
245 	while (len) {
246 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247 		if (ret > 0)
248 			pkt_len = ret;
249 		else
250 			pkt_len = 1;
251 		printf(".");
252 		color_fprintf(stdout, color, "  %08zx: ", pos);
253 		for (i = 0; i < pkt_len; i++)
254 			color_fprintf(stdout, color, " %02x", buf[i]);
255 		for (; i < 16; i++)
256 			color_fprintf(stdout, color, "   ");
257 		if (ret > 0) {
258 			ret = intel_pt_pkt_desc(&packet, desc,
259 						INTEL_PT_PKT_DESC_MAX);
260 			if (ret > 0)
261 				color_fprintf(stdout, color, " %s\n", desc);
262 		} else {
263 			color_fprintf(stdout, color, " Bad packet!\n");
264 		}
265 		pos += pkt_len;
266 		buf += pkt_len;
267 		len -= pkt_len;
268 	}
269 }
270 
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272 				size_t len)
273 {
274 	printf(".\n");
275 	intel_pt_dump(pt, buf, len);
276 }
277 
intel_pt_log_event(union perf_event * event)278 static void intel_pt_log_event(union perf_event *event)
279 {
280 	FILE *f = intel_pt_log_fp();
281 
282 	if (!intel_pt_enable_logging || !f)
283 		return;
284 
285 	perf_event__fprintf(event, NULL, f);
286 }
287 
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)288 static void intel_pt_dump_sample(struct perf_session *session,
289 				 struct perf_sample *sample)
290 {
291 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292 					   auxtrace);
293 
294 	printf("\n");
295 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297 
intel_pt_log_events(struct intel_pt * pt,u64 tm)298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
301 	int n = pt->synth_opts.range_num;
302 
303 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304 		return true;
305 
306 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307 		return false;
308 
309 	/* perf_time__ranges_skip_sample does not work if time is zero */
310 	if (!tm)
311 		tm = 1;
312 
313 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315 
intel_pt_findnew_vmcs(struct rb_root * rb_root,u64 vmcs,u64 dflt_tsc_offset)316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317 							u64 vmcs,
318 							u64 dflt_tsc_offset)
319 {
320 	struct rb_node **p = &rb_root->rb_node;
321 	struct rb_node *parent = NULL;
322 	struct intel_pt_vmcs_info *v;
323 
324 	while (*p) {
325 		parent = *p;
326 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327 
328 		if (v->vmcs == vmcs)
329 			return v;
330 
331 		if (vmcs < v->vmcs)
332 			p = &(*p)->rb_left;
333 		else
334 			p = &(*p)->rb_right;
335 	}
336 
337 	v = zalloc(sizeof(*v));
338 	if (v) {
339 		v->vmcs = vmcs;
340 		v->tsc_offset = dflt_tsc_offset;
341 		v->reliable = dflt_tsc_offset;
342 
343 		rb_link_node(&v->rb_node, parent, p);
344 		rb_insert_color(&v->rb_node, rb_root);
345 	}
346 
347 	return v;
348 }
349 
intel_pt_findnew_vmcs_info(void * data,uint64_t vmcs)350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352 	struct intel_pt_queue *ptq = data;
353 	struct intel_pt *pt = ptq->pt;
354 
355 	if (!vmcs && !pt->dflt_tsc_offset)
356 		return NULL;
357 
358 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360 
intel_pt_free_vmcs_info(struct intel_pt * pt)361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363 	struct intel_pt_vmcs_info *v;
364 	struct rb_node *n;
365 
366 	n = rb_first(&pt->vmcs_info);
367 	while (n) {
368 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369 		n = rb_next(n);
370 		rb_erase(&v->rb_node, &pt->vmcs_info);
371 		free(v);
372 	}
373 }
374 
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376 				   struct auxtrace_buffer *b)
377 {
378 	bool consecutive = false;
379 	void *start;
380 
381 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382 				      pt->have_tsc, &consecutive,
383 				      pt->synth_opts.vm_time_correlation);
384 	if (!start)
385 		return -EINVAL;
386 	/*
387 	 * In the case of vm_time_correlation, the overlap might contain TSC
388 	 * packets that will not be fixed, and that will then no longer work for
389 	 * overlap detection. Avoid that by zeroing out the overlap.
390 	 */
391 	if (pt->synth_opts.vm_time_correlation)
392 		memset(b->data, 0, start - b->data);
393 	b->use_size = b->data + b->size - start;
394 	b->use_data = start;
395 	if (b->use_size && consecutive)
396 		b->consecutive = true;
397 	return 0;
398 }
399 
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401 			       struct auxtrace_buffer *buffer,
402 			       struct auxtrace_buffer *old_buffer,
403 			       struct intel_pt_buffer *b)
404 {
405 	bool might_overlap;
406 
407 	if (!buffer->data) {
408 		int fd = perf_data__fd(ptq->pt->session->data);
409 
410 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
411 		if (!buffer->data)
412 			return -ENOMEM;
413 	}
414 
415 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416 	if (might_overlap && !buffer->consecutive && old_buffer &&
417 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418 		return -ENOMEM;
419 
420 	if (buffer->use_data) {
421 		b->len = buffer->use_size;
422 		b->buf = buffer->use_data;
423 	} else {
424 		b->len = buffer->size;
425 		b->buf = buffer->data;
426 	}
427 	b->ref_timestamp = buffer->reference;
428 
429 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430 		b->consecutive = false;
431 		b->trace_nr = buffer->buffer_nr + 1;
432 	} else {
433 		b->consecutive = true;
434 	}
435 
436 	return 0;
437 }
438 
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441 					   struct auxtrace_buffer *buffer)
442 {
443 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444 		return;
445 
446 	auxtrace_buffer__drop_data(buffer);
447 }
448 
449 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451 			      void *cb_data)
452 {
453 	struct intel_pt_queue *ptq = data;
454 	struct auxtrace_buffer *buffer = ptq->buffer;
455 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456 	struct auxtrace_queue *queue;
457 	int err = 0;
458 
459 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460 
461 	while (1) {
462 		struct intel_pt_buffer b = { .len = 0 };
463 
464 		buffer = auxtrace_buffer__next(queue, buffer);
465 		if (!buffer)
466 			break;
467 
468 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469 		if (err)
470 			break;
471 
472 		if (b.len) {
473 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474 			old_buffer = buffer;
475 		} else {
476 			intel_pt_lookahead_drop_buffer(ptq, buffer);
477 			continue;
478 		}
479 
480 		err = cb(&b, cb_data);
481 		if (err)
482 			break;
483 	}
484 
485 	if (buffer != old_buffer)
486 		intel_pt_lookahead_drop_buffer(ptq, buffer);
487 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488 
489 	return err;
490 }
491 
492 /*
493  * This function assumes data is processed sequentially only.
494  * Must be serialized with respect to intel_pt_lookahead()
495  */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498 	struct intel_pt_queue *ptq = data;
499 	struct auxtrace_buffer *buffer = ptq->buffer;
500 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501 	struct auxtrace_queue *queue;
502 	int err;
503 
504 	if (ptq->stop) {
505 		b->len = 0;
506 		return 0;
507 	}
508 
509 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510 
511 	buffer = auxtrace_buffer__next(queue, buffer);
512 	if (!buffer) {
513 		if (old_buffer)
514 			auxtrace_buffer__drop_data(old_buffer);
515 		b->len = 0;
516 		return 0;
517 	}
518 
519 	ptq->buffer = buffer;
520 
521 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522 	if (err)
523 		return err;
524 
525 	if (ptq->step_through_buffers)
526 		ptq->stop = true;
527 
528 	if (b->len) {
529 		if (old_buffer)
530 			auxtrace_buffer__drop_data(old_buffer);
531 		ptq->old_buffer = buffer;
532 	} else {
533 		auxtrace_buffer__drop_data(buffer);
534 		return intel_pt_get_trace(b, data);
535 	}
536 
537 	return 0;
538 }
539 
540 struct intel_pt_cache_entry {
541 	struct auxtrace_cache_entry	entry;
542 	u64				insn_cnt;
543 	u64				byte_cnt;
544 	enum intel_pt_insn_op		op;
545 	enum intel_pt_insn_branch	branch;
546 	bool				emulated_ptwrite;
547 	int				length;
548 	int32_t				rel;
549 	char				insn[INTEL_PT_INSN_BUF_SZ];
550 };
551 
intel_pt_config_div(const char * var,const char * value,void * data)552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554 	int *d = data;
555 	long val;
556 
557 	if (!strcmp(var, "intel-pt.cache-divisor")) {
558 		val = strtol(value, NULL, 0);
559 		if (val > 0 && val <= INT_MAX)
560 			*d = val;
561 	}
562 
563 	return 0;
564 }
565 
intel_pt_cache_divisor(void)566 static int intel_pt_cache_divisor(void)
567 {
568 	static int d;
569 
570 	if (d)
571 		return d;
572 
573 	perf_config(intel_pt_config_div, &d);
574 
575 	if (!d)
576 		d = 64;
577 
578 	return d;
579 }
580 
intel_pt_cache_size(struct dso * dso,struct machine * machine)581 static unsigned int intel_pt_cache_size(struct dso *dso,
582 					struct machine *machine)
583 {
584 	off_t size;
585 
586 	size = dso__data_size(dso, machine);
587 	size /= intel_pt_cache_divisor();
588 	if (size < 1000)
589 		return 10;
590 	if (size > (1 << 21))
591 		return 21;
592 	return 32 - __builtin_clz(size);
593 }
594 
intel_pt_cache(struct dso * dso,struct machine * machine)595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596 					     struct machine *machine)
597 {
598 	struct auxtrace_cache *c;
599 	unsigned int bits;
600 
601 	if (dso__auxtrace_cache(dso))
602 		return dso__auxtrace_cache(dso);
603 
604 	bits = intel_pt_cache_size(dso, machine);
605 
606 	/* Ignoring cache creation failure */
607 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608 
609 	dso__set_auxtrace_cache(dso, c);
610 
611 	return c;
612 }
613 
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
616 			      struct intel_pt_insn *intel_pt_insn)
617 {
618 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619 	struct intel_pt_cache_entry *e;
620 	int err;
621 
622 	if (!c)
623 		return -ENOMEM;
624 
625 	e = auxtrace_cache__alloc_entry(c);
626 	if (!e)
627 		return -ENOMEM;
628 
629 	e->insn_cnt = insn_cnt;
630 	e->byte_cnt = byte_cnt;
631 	e->op = intel_pt_insn->op;
632 	e->branch = intel_pt_insn->branch;
633 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634 	e->length = intel_pt_insn->length;
635 	e->rel = intel_pt_insn->rel;
636 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637 
638 	err = auxtrace_cache__add(c, offset, &e->entry);
639 	if (err)
640 		auxtrace_cache__free_entry(c, e);
641 
642 	return err;
643 }
644 
645 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649 
650 	if (!c)
651 		return NULL;
652 
653 	return auxtrace_cache__lookup(dso__auxtrace_cache(dso), offset);
654 }
655 
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657 				      u64 offset)
658 {
659 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660 
661 	if (!c)
662 		return;
663 
664 	auxtrace_cache__remove(dso__auxtrace_cache(dso), offset);
665 }
666 
intel_pt_guest_kernel_ip(uint64_t ip)667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669 	/* Assumes 64-bit kernel */
670 	return ip & (1ULL << 63);
671 }
672 
intel_pt_nr_cpumode(struct intel_pt_queue * ptq,uint64_t ip,bool nr)673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675 	if (nr) {
676 		return intel_pt_guest_kernel_ip(ip) ?
677 		       PERF_RECORD_MISC_GUEST_KERNEL :
678 		       PERF_RECORD_MISC_GUEST_USER;
679 	}
680 
681 	return ip >= ptq->pt->kernel_start ?
682 	       PERF_RECORD_MISC_KERNEL :
683 	       PERF_RECORD_MISC_USER;
684 }
685 
intel_pt_cpumode(struct intel_pt_queue * ptq,uint64_t from_ip,uint64_t to_ip)686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688 	/* No support for non-zero CS base */
689 	if (from_ip)
690 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693 
intel_pt_get_guest(struct intel_pt_queue * ptq)694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696 	struct machines *machines = &ptq->pt->session->machines;
697 	struct machine *machine;
698 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699 
700 	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701 		return 0;
702 
703 	ptq->guest_machine = NULL;
704 	thread__zput(ptq->unknown_guest_thread);
705 
706 	if (symbol_conf.guest_code) {
707 		thread__zput(ptq->guest_thread);
708 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709 	}
710 
711 	machine = machines__find_guest(machines, pid);
712 	if (!machine)
713 		return -1;
714 
715 	ptq->unknown_guest_thread = machine__idle_thread(machine);
716 	if (!ptq->unknown_guest_thread)
717 		return -1;
718 
719 	ptq->guest_machine = machine;
720 
721 	return 0;
722 }
723 
intel_pt_jmp_16(struct intel_pt_insn * intel_pt_insn)724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728 
729 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
730 #define PTWRITE_MAGIC_LEN	16
731 
intel_pt_emulated_ptwrite(struct dso * dso,struct machine * machine,u64 offset)732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734 	unsigned char buf[PTWRITE_MAGIC_LEN];
735 	ssize_t len;
736 
737 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739 		intel_pt_log("Emulated ptwrite signature found\n");
740 		return true;
741 	}
742 	intel_pt_log("Emulated ptwrite signature not found\n");
743 	return false;
744 }
745 
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
748 				   uint64_t to_ip, uint64_t max_insn_cnt,
749 				   void *data)
750 {
751 	struct intel_pt_queue *ptq = data;
752 	struct machine *machine = ptq->pt->machine;
753 	struct thread *thread;
754 	struct addr_location al;
755 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756 	ssize_t len;
757 	int x86_64, ret = 0;
758 	u8 cpumode;
759 	u64 offset, start_offset, start_ip;
760 	u64 insn_cnt = 0;
761 	bool one_map = true;
762 	bool nr;
763 
764 
765 	addr_location__init(&al);
766 	intel_pt_insn->length = 0;
767 	intel_pt_insn->op = INTEL_PT_OP_OTHER;
768 
769 	if (to_ip && *ip == to_ip)
770 		goto out_no_cache;
771 
772 	nr = ptq->state->to_nr;
773 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
774 
775 	if (nr) {
776 		if (ptq->pt->have_guest_sideband) {
777 			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
778 				intel_pt_log("ERROR: guest sideband but no guest machine\n");
779 				ret = -EINVAL;
780 				goto out_ret;
781 			}
782 		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
783 			   intel_pt_get_guest(ptq)) {
784 			intel_pt_log("ERROR: no guest machine\n");
785 			ret = -EINVAL;
786 			goto out_ret;
787 		}
788 		machine = ptq->guest_machine;
789 		thread = ptq->guest_thread;
790 		if (!thread) {
791 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
792 				intel_pt_log("ERROR: no guest thread\n");
793 				ret = -EINVAL;
794 				goto out_ret;
795 			}
796 			thread = ptq->unknown_guest_thread;
797 		}
798 	} else {
799 		thread = ptq->thread;
800 		if (!thread) {
801 			if (cpumode != PERF_RECORD_MISC_KERNEL) {
802 				intel_pt_log("ERROR: no thread\n");
803 				ret = -EINVAL;
804 				goto out_ret;
805 			}
806 			thread = ptq->pt->unknown_thread;
807 		}
808 	}
809 
810 	while (1) {
811 		struct dso *dso;
812 
813 		if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
814 			if (al.map)
815 				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
816 			else
817 				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
818 			addr_location__exit(&al);
819 			ret = -EINVAL;
820 			goto out_ret;
821 		}
822 		dso = map__dso(al.map);
823 
824 		if (dso__data(dso)->status == DSO_DATA_STATUS_ERROR &&
825 		    dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
826 			ret = -ENOENT;
827 			goto out_ret;
828 		}
829 
830 		offset = map__map_ip(al.map, *ip);
831 
832 		if (!to_ip && one_map) {
833 			struct intel_pt_cache_entry *e;
834 
835 			e = intel_pt_cache_lookup(dso, machine, offset);
836 			if (e &&
837 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
838 				*insn_cnt_ptr = e->insn_cnt;
839 				*ip += e->byte_cnt;
840 				intel_pt_insn->op = e->op;
841 				intel_pt_insn->branch = e->branch;
842 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
843 				intel_pt_insn->length = e->length;
844 				intel_pt_insn->rel = e->rel;
845 				memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
846 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
847 				ret = 0;
848 				goto out_ret;
849 			}
850 		}
851 
852 		start_offset = offset;
853 		start_ip = *ip;
854 
855 		/* Load maps to ensure dso->is_64_bit has been updated */
856 		map__load(al.map);
857 
858 		x86_64 = dso__is_64_bit(dso);
859 
860 		while (1) {
861 			len = dso__data_read_offset(dso, machine,
862 						    offset, buf,
863 						    INTEL_PT_INSN_BUF_SZ);
864 			if (len <= 0) {
865 				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
866 					     offset);
867 				if (intel_pt_enable_logging)
868 					dso__fprintf(dso, intel_pt_log_fp());
869 				ret = -EINVAL;
870 				goto out_ret;
871 			}
872 
873 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
874 				ret = -EINVAL;
875 				goto out_ret;
876 			}
877 
878 			intel_pt_log_insn(intel_pt_insn, *ip);
879 
880 			insn_cnt += 1;
881 
882 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
883 				bool eptw;
884 				u64 offs;
885 
886 				if (!intel_pt_jmp_16(intel_pt_insn))
887 					goto out;
888 				/* Check for emulated ptwrite */
889 				offs = offset + intel_pt_insn->length;
890 				eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
891 				intel_pt_insn->emulated_ptwrite = eptw;
892 				goto out;
893 			}
894 
895 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
896 				goto out_no_cache;
897 
898 			*ip += intel_pt_insn->length;
899 
900 			if (to_ip && *ip == to_ip) {
901 				intel_pt_insn->length = 0;
902 				intel_pt_insn->op = INTEL_PT_OP_OTHER;
903 				goto out_no_cache;
904 			}
905 
906 			if (*ip >= map__end(al.map))
907 				break;
908 
909 			offset += intel_pt_insn->length;
910 		}
911 		one_map = false;
912 	}
913 out:
914 	*insn_cnt_ptr = insn_cnt;
915 
916 	if (!one_map)
917 		goto out_no_cache;
918 
919 	/*
920 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
921 	 * entries.
922 	 */
923 	if (to_ip) {
924 		struct intel_pt_cache_entry *e;
925 
926 		e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
927 		if (e)
928 			goto out_ret;
929 	}
930 
931 	/* Ignore cache errors */
932 	intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
933 			   *ip - start_ip, intel_pt_insn);
934 
935 out_ret:
936 	addr_location__exit(&al);
937 	return ret;
938 
939 out_no_cache:
940 	*insn_cnt_ptr = insn_cnt;
941 	addr_location__exit(&al);
942 	return 0;
943 }
944 
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)945 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
946 				  uint64_t offset, const char *filename)
947 {
948 	struct addr_filter *filt;
949 	bool have_filter   = false;
950 	bool hit_tracestop = false;
951 	bool hit_filter    = false;
952 
953 	list_for_each_entry(filt, &pt->filts.head, list) {
954 		if (filt->start)
955 			have_filter = true;
956 
957 		if ((filename && !filt->filename) ||
958 		    (!filename && filt->filename) ||
959 		    (filename && strcmp(filename, filt->filename)))
960 			continue;
961 
962 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
963 			continue;
964 
965 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
966 			     ip, offset, filename ? filename : "[kernel]",
967 			     filt->start ? "filter" : "stop",
968 			     filt->addr, filt->size);
969 
970 		if (filt->start)
971 			hit_filter = true;
972 		else
973 			hit_tracestop = true;
974 	}
975 
976 	if (!hit_tracestop && !hit_filter)
977 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
978 			     ip, offset, filename ? filename : "[kernel]");
979 
980 	return hit_tracestop || (have_filter && !hit_filter);
981 }
982 
__intel_pt_pgd_ip(uint64_t ip,void * data)983 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
984 {
985 	struct intel_pt_queue *ptq = data;
986 	struct thread *thread;
987 	struct addr_location al;
988 	u8 cpumode;
989 	u64 offset;
990 	int res;
991 
992 	if (ptq->state->to_nr) {
993 		if (intel_pt_guest_kernel_ip(ip))
994 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
995 		/* No support for decoding guest user space */
996 		return -EINVAL;
997 	} else if (ip >= ptq->pt->kernel_start) {
998 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
999 	}
1000 
1001 	cpumode = PERF_RECORD_MISC_USER;
1002 
1003 	thread = ptq->thread;
1004 	if (!thread)
1005 		return -EINVAL;
1006 
1007 	addr_location__init(&al);
1008 	if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1009 		return -EINVAL;
1010 
1011 	offset = map__map_ip(al.map, ip);
1012 
1013 	res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, dso__long_name(map__dso(al.map)));
1014 	addr_location__exit(&al);
1015 	return res;
1016 }
1017 
intel_pt_pgd_ip(uint64_t ip,void * data)1018 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1019 {
1020 	return __intel_pt_pgd_ip(ip, data) > 0;
1021 }
1022 
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)1023 static bool intel_pt_get_config(struct intel_pt *pt,
1024 				struct perf_event_attr *attr, u64 *config)
1025 {
1026 	if (attr->type == pt->pmu_type) {
1027 		if (config)
1028 			*config = attr->config;
1029 		return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
intel_pt_exclude_kernel(struct intel_pt * pt)1035 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1036 {
1037 	struct evsel *evsel;
1038 
1039 	evlist__for_each_entry(pt->session->evlist, evsel) {
1040 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1041 		    !evsel->core.attr.exclude_kernel)
1042 			return false;
1043 	}
1044 	return true;
1045 }
1046 
intel_pt_return_compression(struct intel_pt * pt)1047 static bool intel_pt_return_compression(struct intel_pt *pt)
1048 {
1049 	struct evsel *evsel;
1050 	u64 config;
1051 
1052 	if (!pt->noretcomp_bit)
1053 		return true;
1054 
1055 	evlist__for_each_entry(pt->session->evlist, evsel) {
1056 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1057 		    (config & pt->noretcomp_bit))
1058 			return false;
1059 	}
1060 	return true;
1061 }
1062 
intel_pt_branch_enable(struct intel_pt * pt)1063 static bool intel_pt_branch_enable(struct intel_pt *pt)
1064 {
1065 	struct evsel *evsel;
1066 	u64 config;
1067 
1068 	evlist__for_each_entry(pt->session->evlist, evsel) {
1069 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1070 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1071 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1072 			return false;
1073 	}
1074 	return true;
1075 }
1076 
intel_pt_disabled_tnt(struct intel_pt * pt)1077 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1078 {
1079 	struct evsel *evsel;
1080 	u64 config;
1081 
1082 	evlist__for_each_entry(pt->session->evlist, evsel) {
1083 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1084 		    config & INTEL_PT_CFG_TNT_DIS)
1085 			return true;
1086 	}
1087 	return false;
1088 }
1089 
intel_pt_mtc_period(struct intel_pt * pt)1090 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1091 {
1092 	struct evsel *evsel;
1093 	unsigned int shift;
1094 	u64 config;
1095 
1096 	if (!pt->mtc_freq_bits)
1097 		return 0;
1098 
1099 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1100 		config >>= 1;
1101 
1102 	evlist__for_each_entry(pt->session->evlist, evsel) {
1103 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1104 			return (config & pt->mtc_freq_bits) >> shift;
1105 	}
1106 	return 0;
1107 }
1108 
intel_pt_timeless_decoding(struct intel_pt * pt)1109 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1110 {
1111 	struct evsel *evsel;
1112 	bool timeless_decoding = true;
1113 	u64 config;
1114 
1115 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1116 		return true;
1117 
1118 	evlist__for_each_entry(pt->session->evlist, evsel) {
1119 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1120 			return true;
1121 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1122 			if (config & pt->tsc_bit)
1123 				timeless_decoding = false;
1124 			else
1125 				return true;
1126 		}
1127 	}
1128 	return timeless_decoding;
1129 }
1130 
intel_pt_tracing_kernel(struct intel_pt * pt)1131 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1132 {
1133 	struct evsel *evsel;
1134 
1135 	evlist__for_each_entry(pt->session->evlist, evsel) {
1136 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1137 		    !evsel->core.attr.exclude_kernel)
1138 			return true;
1139 	}
1140 	return false;
1141 }
1142 
intel_pt_have_tsc(struct intel_pt * pt)1143 static bool intel_pt_have_tsc(struct intel_pt *pt)
1144 {
1145 	struct evsel *evsel;
1146 	bool have_tsc = false;
1147 	u64 config;
1148 
1149 	if (!pt->tsc_bit)
1150 		return false;
1151 
1152 	evlist__for_each_entry(pt->session->evlist, evsel) {
1153 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1154 			if (config & pt->tsc_bit)
1155 				have_tsc = true;
1156 			else
1157 				return false;
1158 		}
1159 	}
1160 	return have_tsc;
1161 }
1162 
intel_pt_have_mtc(struct intel_pt * pt)1163 static bool intel_pt_have_mtc(struct intel_pt *pt)
1164 {
1165 	struct evsel *evsel;
1166 	u64 config;
1167 
1168 	evlist__for_each_entry(pt->session->evlist, evsel) {
1169 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1170 		    (config & pt->mtc_bit))
1171 			return true;
1172 	}
1173 	return false;
1174 }
1175 
intel_pt_sampling_mode(struct intel_pt * pt)1176 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1177 {
1178 	struct evsel *evsel;
1179 
1180 	evlist__for_each_entry(pt->session->evlist, evsel) {
1181 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1182 		    evsel->core.attr.aux_sample_size)
1183 			return true;
1184 	}
1185 	return false;
1186 }
1187 
intel_pt_ctl(struct intel_pt * pt)1188 static u64 intel_pt_ctl(struct intel_pt *pt)
1189 {
1190 	struct evsel *evsel;
1191 	u64 config;
1192 
1193 	evlist__for_each_entry(pt->session->evlist, evsel) {
1194 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1195 			return config;
1196 	}
1197 	return 0;
1198 }
1199 
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)1200 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1201 {
1202 	u64 quot, rem;
1203 
1204 	quot = ns / pt->tc.time_mult;
1205 	rem  = ns % pt->tc.time_mult;
1206 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1207 		pt->tc.time_mult;
1208 }
1209 
intel_pt_alloc_chain(struct intel_pt * pt)1210 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1211 {
1212 	size_t sz = sizeof(struct ip_callchain);
1213 
1214 	/* Add 1 to callchain_sz for callchain context */
1215 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1216 	return zalloc(sz);
1217 }
1218 
intel_pt_callchain_init(struct intel_pt * pt)1219 static int intel_pt_callchain_init(struct intel_pt *pt)
1220 {
1221 	struct evsel *evsel;
1222 
1223 	evlist__for_each_entry(pt->session->evlist, evsel) {
1224 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1225 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1226 	}
1227 
1228 	pt->chain = intel_pt_alloc_chain(pt);
1229 	if (!pt->chain)
1230 		return -ENOMEM;
1231 
1232 	return 0;
1233 }
1234 
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)1235 static void intel_pt_add_callchain(struct intel_pt *pt,
1236 				   struct perf_sample *sample)
1237 {
1238 	struct thread *thread = machine__findnew_thread(pt->machine,
1239 							sample->pid,
1240 							sample->tid);
1241 
1242 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1243 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1244 				  pt->kernel_start);
1245 
1246 	sample->callchain = pt->chain;
1247 }
1248 
intel_pt_alloc_br_stack(unsigned int entry_cnt)1249 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1250 {
1251 	size_t sz = sizeof(struct branch_stack);
1252 
1253 	sz += entry_cnt * sizeof(struct branch_entry);
1254 	return zalloc(sz);
1255 }
1256 
intel_pt_br_stack_init(struct intel_pt * pt)1257 static int intel_pt_br_stack_init(struct intel_pt *pt)
1258 {
1259 	struct evsel *evsel;
1260 
1261 	evlist__for_each_entry(pt->session->evlist, evsel) {
1262 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1263 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1264 	}
1265 
1266 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1267 	if (!pt->br_stack)
1268 		return -ENOMEM;
1269 
1270 	return 0;
1271 }
1272 
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)1273 static void intel_pt_add_br_stack(struct intel_pt *pt,
1274 				  struct perf_sample *sample)
1275 {
1276 	struct thread *thread = machine__findnew_thread(pt->machine,
1277 							sample->pid,
1278 							sample->tid);
1279 
1280 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1281 				     pt->br_stack_sz, sample->ip,
1282 				     pt->kernel_start);
1283 
1284 	sample->branch_stack = pt->br_stack;
1285 	thread__put(thread);
1286 }
1287 
1288 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1289 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1290 
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1291 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1292 						   unsigned int queue_nr)
1293 {
1294 	struct intel_pt_params params = { .get_trace = 0, };
1295 	struct perf_env *env = pt->machine->env;
1296 	struct intel_pt_queue *ptq;
1297 
1298 	ptq = zalloc(sizeof(struct intel_pt_queue));
1299 	if (!ptq)
1300 		return NULL;
1301 
1302 	if (pt->synth_opts.callchain) {
1303 		ptq->chain = intel_pt_alloc_chain(pt);
1304 		if (!ptq->chain)
1305 			goto out_free;
1306 	}
1307 
1308 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1309 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1310 
1311 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1312 		if (!ptq->last_branch)
1313 			goto out_free;
1314 	}
1315 
1316 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1317 	if (!ptq->event_buf)
1318 		goto out_free;
1319 
1320 	ptq->pt = pt;
1321 	ptq->queue_nr = queue_nr;
1322 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1323 	ptq->pid = -1;
1324 	ptq->tid = -1;
1325 	ptq->cpu = -1;
1326 	ptq->next_tid = -1;
1327 
1328 	params.get_trace = intel_pt_get_trace;
1329 	params.walk_insn = intel_pt_walk_next_insn;
1330 	params.lookahead = intel_pt_lookahead;
1331 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1332 	params.data = ptq;
1333 	params.return_compression = intel_pt_return_compression(pt);
1334 	params.branch_enable = intel_pt_branch_enable(pt);
1335 	params.ctl = intel_pt_ctl(pt);
1336 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1337 	params.mtc_period = intel_pt_mtc_period(pt);
1338 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1339 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1340 	params.quick = pt->synth_opts.quick;
1341 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1342 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1343 	params.first_timestamp = pt->first_timestamp;
1344 	params.max_loops = pt->max_loops;
1345 
1346 	/* Cannot walk code without TNT, so force 'quick' mode */
1347 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1348 		params.quick = 1;
1349 
1350 	if (pt->filts.cnt > 0)
1351 		params.pgd_ip = intel_pt_pgd_ip;
1352 
1353 	if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1354 		if (pt->synth_opts.period) {
1355 			switch (pt->synth_opts.period_type) {
1356 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1357 				params.period_type =
1358 						INTEL_PT_PERIOD_INSTRUCTIONS;
1359 				params.period = pt->synth_opts.period;
1360 				break;
1361 			case PERF_ITRACE_PERIOD_TICKS:
1362 				params.period_type = INTEL_PT_PERIOD_TICKS;
1363 				params.period = pt->synth_opts.period;
1364 				break;
1365 			case PERF_ITRACE_PERIOD_NANOSECS:
1366 				params.period_type = INTEL_PT_PERIOD_TICKS;
1367 				params.period = intel_pt_ns_to_ticks(pt,
1368 							pt->synth_opts.period);
1369 				break;
1370 			default:
1371 				break;
1372 			}
1373 		}
1374 
1375 		if (!params.period) {
1376 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1377 			params.period = 1;
1378 		}
1379 	}
1380 
1381 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1382 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1383 
1384 	ptq->decoder = intel_pt_decoder_new(&params);
1385 	if (!ptq->decoder)
1386 		goto out_free;
1387 
1388 	return ptq;
1389 
1390 out_free:
1391 	zfree(&ptq->event_buf);
1392 	zfree(&ptq->last_branch);
1393 	zfree(&ptq->chain);
1394 	free(ptq);
1395 	return NULL;
1396 }
1397 
intel_pt_free_queue(void * priv)1398 static void intel_pt_free_queue(void *priv)
1399 {
1400 	struct intel_pt_queue *ptq = priv;
1401 
1402 	if (!ptq)
1403 		return;
1404 	thread__zput(ptq->thread);
1405 	thread__zput(ptq->guest_thread);
1406 	thread__zput(ptq->unknown_guest_thread);
1407 	intel_pt_decoder_free(ptq->decoder);
1408 	zfree(&ptq->event_buf);
1409 	zfree(&ptq->last_branch);
1410 	zfree(&ptq->chain);
1411 	free(ptq);
1412 }
1413 
intel_pt_first_timestamp(struct intel_pt * pt,u64 timestamp)1414 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1415 {
1416 	unsigned int i;
1417 
1418 	pt->first_timestamp = timestamp;
1419 
1420 	for (i = 0; i < pt->queues.nr_queues; i++) {
1421 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1422 		struct intel_pt_queue *ptq = queue->priv;
1423 
1424 		if (ptq && ptq->decoder)
1425 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1426 	}
1427 }
1428 
intel_pt_get_guest_from_sideband(struct intel_pt_queue * ptq)1429 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1430 {
1431 	struct machines *machines = &ptq->pt->session->machines;
1432 	struct machine *machine;
1433 	pid_t machine_pid = ptq->pid;
1434 	pid_t tid;
1435 	int vcpu;
1436 
1437 	if (machine_pid <= 0)
1438 		return 0; /* Not a guest machine */
1439 
1440 	machine = machines__find(machines, machine_pid);
1441 	if (!machine)
1442 		return 0; /* Not a guest machine */
1443 
1444 	if (ptq->guest_machine != machine) {
1445 		ptq->guest_machine = NULL;
1446 		thread__zput(ptq->guest_thread);
1447 		thread__zput(ptq->unknown_guest_thread);
1448 
1449 		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1450 		if (!ptq->unknown_guest_thread)
1451 			return -1;
1452 		ptq->guest_machine = machine;
1453 	}
1454 
1455 	vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1456 	if (vcpu < 0)
1457 		return -1;
1458 
1459 	tid = machine__get_current_tid(machine, vcpu);
1460 
1461 	if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1462 		thread__zput(ptq->guest_thread);
1463 
1464 	if (!ptq->guest_thread) {
1465 		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1466 		if (!ptq->guest_thread)
1467 			return -1;
1468 	}
1469 
1470 	ptq->guest_machine_pid = machine_pid;
1471 	ptq->guest_pid = thread__pid(ptq->guest_thread);
1472 	ptq->guest_tid = tid;
1473 	ptq->vcpu = vcpu;
1474 
1475 	return 0;
1476 }
1477 
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1478 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1479 				     struct auxtrace_queue *queue)
1480 {
1481 	struct intel_pt_queue *ptq = queue->priv;
1482 
1483 	if (queue->tid == -1 || pt->have_sched_switch) {
1484 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1485 		if (ptq->tid == -1)
1486 			ptq->pid = -1;
1487 		thread__zput(ptq->thread);
1488 	}
1489 
1490 	if (!ptq->thread && ptq->tid != -1)
1491 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1492 
1493 	if (ptq->thread) {
1494 		ptq->pid = thread__pid(ptq->thread);
1495 		if (queue->cpu == -1)
1496 			ptq->cpu = thread__cpu(ptq->thread);
1497 	}
1498 
1499 	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1500 		ptq->guest_machine_pid = 0;
1501 		ptq->guest_pid = -1;
1502 		ptq->guest_tid = -1;
1503 		ptq->vcpu = -1;
1504 	}
1505 }
1506 
intel_pt_sample_flags(struct intel_pt_queue * ptq)1507 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1508 {
1509 	struct intel_pt *pt = ptq->pt;
1510 
1511 	ptq->insn_len = 0;
1512 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1513 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1514 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1515 		if (!ptq->state->to_ip)
1516 			ptq->flags = PERF_IP_FLAG_BRANCH |
1517 				     PERF_IP_FLAG_ASYNC |
1518 				     PERF_IP_FLAG_TRACE_END;
1519 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1520 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1521 				     PERF_IP_FLAG_ASYNC |
1522 				     PERF_IP_FLAG_VMEXIT;
1523 		else
1524 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1525 				     PERF_IP_FLAG_ASYNC |
1526 				     PERF_IP_FLAG_INTERRUPT;
1527 	} else {
1528 		if (ptq->state->from_ip)
1529 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1530 		else
1531 			ptq->flags = PERF_IP_FLAG_BRANCH |
1532 				     PERF_IP_FLAG_TRACE_BEGIN;
1533 		if (ptq->state->flags & INTEL_PT_IN_TX)
1534 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1535 		ptq->insn_len = ptq->state->insn_len;
1536 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1537 	}
1538 
1539 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1540 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1541 	if (ptq->state->type & INTEL_PT_TRACE_END)
1542 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1543 
1544 	if (pt->cap_event_trace) {
1545 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1546 			if (!ptq->state->from_iflag)
1547 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1548 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1549 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1550 		} else if (!ptq->state->to_iflag) {
1551 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1552 		}
1553 	}
1554 }
1555 
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1556 static void intel_pt_setup_time_range(struct intel_pt *pt,
1557 				      struct intel_pt_queue *ptq)
1558 {
1559 	if (!pt->range_cnt)
1560 		return;
1561 
1562 	ptq->sel_timestamp = pt->time_ranges[0].start;
1563 	ptq->sel_idx = 0;
1564 
1565 	if (ptq->sel_timestamp) {
1566 		ptq->sel_start = true;
1567 	} else {
1568 		ptq->sel_timestamp = pt->time_ranges[0].end;
1569 		ptq->sel_start = false;
1570 	}
1571 }
1572 
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1573 static int intel_pt_setup_queue(struct intel_pt *pt,
1574 				struct auxtrace_queue *queue,
1575 				unsigned int queue_nr)
1576 {
1577 	struct intel_pt_queue *ptq = queue->priv;
1578 
1579 	if (list_empty(&queue->head))
1580 		return 0;
1581 
1582 	if (!ptq) {
1583 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1584 		if (!ptq)
1585 			return -ENOMEM;
1586 		queue->priv = ptq;
1587 
1588 		if (queue->cpu != -1)
1589 			ptq->cpu = queue->cpu;
1590 		ptq->tid = queue->tid;
1591 
1592 		ptq->cbr_seen = UINT_MAX;
1593 
1594 		if (pt->sampling_mode && !pt->snapshot_mode &&
1595 		    pt->timeless_decoding)
1596 			ptq->step_through_buffers = true;
1597 
1598 		ptq->sync_switch = pt->sync_switch;
1599 
1600 		intel_pt_setup_time_range(pt, ptq);
1601 	}
1602 
1603 	if (!ptq->on_heap &&
1604 	    (!ptq->sync_switch ||
1605 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1606 		const struct intel_pt_state *state;
1607 		int ret;
1608 
1609 		if (pt->timeless_decoding)
1610 			return 0;
1611 
1612 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1613 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1614 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1615 
1616 		if (ptq->sel_start && ptq->sel_timestamp) {
1617 			ret = intel_pt_fast_forward(ptq->decoder,
1618 						    ptq->sel_timestamp);
1619 			if (ret)
1620 				return ret;
1621 		}
1622 
1623 		while (1) {
1624 			state = intel_pt_decode(ptq->decoder);
1625 			if (state->err) {
1626 				if (state->err == INTEL_PT_ERR_NODATA) {
1627 					intel_pt_log("queue %u has no timestamp\n",
1628 						     queue_nr);
1629 					return 0;
1630 				}
1631 				continue;
1632 			}
1633 			if (state->timestamp)
1634 				break;
1635 		}
1636 
1637 		ptq->timestamp = state->timestamp;
1638 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1639 			     queue_nr, ptq->timestamp);
1640 		ptq->state = state;
1641 		ptq->have_sample = true;
1642 		if (ptq->sel_start && ptq->sel_timestamp &&
1643 		    ptq->timestamp < ptq->sel_timestamp)
1644 			ptq->have_sample = false;
1645 		intel_pt_sample_flags(ptq);
1646 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1647 		if (ret)
1648 			return ret;
1649 		ptq->on_heap = true;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
intel_pt_setup_queues(struct intel_pt * pt)1655 static int intel_pt_setup_queues(struct intel_pt *pt)
1656 {
1657 	unsigned int i;
1658 	int ret;
1659 
1660 	for (i = 0; i < pt->queues.nr_queues; i++) {
1661 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1662 		if (ret)
1663 			return ret;
1664 	}
1665 	return 0;
1666 }
1667 
intel_pt_skip_event(struct intel_pt * pt)1668 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1669 {
1670 	return pt->synth_opts.initial_skip &&
1671 	       pt->num_events++ < pt->synth_opts.initial_skip;
1672 }
1673 
1674 /*
1675  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1676  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1677  * from this decoder state.
1678  */
intel_pt_skip_cbr_event(struct intel_pt * pt)1679 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1680 {
1681 	return pt->synth_opts.initial_skip &&
1682 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1683 }
1684 
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1685 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1686 				   union perf_event *event,
1687 				   struct perf_sample *sample)
1688 {
1689 	event->sample.header.type = PERF_RECORD_SAMPLE;
1690 	event->sample.header.size = sizeof(struct perf_event_header);
1691 
1692 	sample->pid = ptq->pid;
1693 	sample->tid = ptq->tid;
1694 
1695 	if (ptq->pt->have_guest_sideband) {
1696 		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1697 		    (ptq->state->to_ip && ptq->state->to_nr)) {
1698 			sample->pid = ptq->guest_pid;
1699 			sample->tid = ptq->guest_tid;
1700 			sample->machine_pid = ptq->guest_machine_pid;
1701 			sample->vcpu = ptq->vcpu;
1702 		}
1703 	}
1704 
1705 	sample->cpu = ptq->cpu;
1706 	sample->insn_len = ptq->insn_len;
1707 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1708 }
1709 
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1710 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1711 				   struct intel_pt_queue *ptq,
1712 				   union perf_event *event,
1713 				   struct perf_sample *sample)
1714 {
1715 	intel_pt_prep_a_sample(ptq, event, sample);
1716 
1717 	if (!pt->timeless_decoding)
1718 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1719 
1720 	sample->ip = ptq->state->from_ip;
1721 	sample->addr = ptq->state->to_ip;
1722 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1723 	sample->period = 1;
1724 	sample->flags = ptq->flags;
1725 
1726 	event->sample.header.misc = sample->cpumode;
1727 }
1728 
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1729 static int intel_pt_inject_event(union perf_event *event,
1730 				 struct perf_sample *sample, u64 type)
1731 {
1732 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1733 	return perf_event__synthesize_sample(event, type, 0, sample);
1734 }
1735 
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1736 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1737 				      union perf_event *event,
1738 				      struct perf_sample *sample, u64 type)
1739 {
1740 	if (!pt->synth_opts.inject)
1741 		return 0;
1742 
1743 	return intel_pt_inject_event(event, sample, type);
1744 }
1745 
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1746 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1747 					union perf_event *event,
1748 					struct perf_sample *sample, u64 type)
1749 {
1750 	int ret;
1751 
1752 	ret = intel_pt_opt_inject(pt, event, sample, type);
1753 	if (ret)
1754 		return ret;
1755 
1756 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1757 	if (ret)
1758 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1759 
1760 	return ret;
1761 }
1762 
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1763 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1764 {
1765 	struct intel_pt *pt = ptq->pt;
1766 	union perf_event *event = ptq->event_buf;
1767 	struct perf_sample sample;
1768 	struct dummy_branch_stack {
1769 		u64			nr;
1770 		u64			hw_idx;
1771 		struct branch_entry	entries;
1772 	} dummy_bs;
1773 	int ret;
1774 
1775 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1776 		return 0;
1777 
1778 	if (intel_pt_skip_event(pt))
1779 		return 0;
1780 
1781 	perf_sample__init(&sample, /*all=*/true);
1782 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1783 
1784 	sample.id = ptq->pt->branches_id;
1785 	sample.stream_id = ptq->pt->branches_id;
1786 
1787 	/*
1788 	 * perf report cannot handle events without a branch stack when using
1789 	 * SORT_MODE__BRANCH so make a dummy one.
1790 	 */
1791 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1792 		dummy_bs = (struct dummy_branch_stack){
1793 			.nr = 1,
1794 			.hw_idx = -1ULL,
1795 			.entries = {
1796 				.from = sample.ip,
1797 				.to = sample.addr,
1798 			},
1799 		};
1800 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1801 	}
1802 
1803 	if (ptq->sample_ipc)
1804 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1805 	if (sample.cyc_cnt) {
1806 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1807 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1808 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1809 	}
1810 
1811 	perf_sample__exit(&sample);
1812 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
1813 					    pt->branches_sample_type);
1814 	return ret;
1815 }
1816 
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1817 static void intel_pt_prep_sample(struct intel_pt *pt,
1818 				 struct intel_pt_queue *ptq,
1819 				 union perf_event *event,
1820 				 struct perf_sample *sample)
1821 {
1822 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1823 
1824 	if (pt->synth_opts.callchain) {
1825 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1826 				     pt->synth_opts.callchain_sz + 1,
1827 				     sample->ip, pt->kernel_start);
1828 		sample->callchain = ptq->chain;
1829 	}
1830 
1831 	if (pt->synth_opts.last_branch) {
1832 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1833 					pt->br_stack_sz);
1834 		sample->branch_stack = ptq->last_branch;
1835 	}
1836 }
1837 
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1838 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1839 {
1840 	struct intel_pt *pt = ptq->pt;
1841 	union perf_event *event = ptq->event_buf;
1842 	struct perf_sample sample;
1843 	int ret;
1844 
1845 	if (intel_pt_skip_event(pt))
1846 		return 0;
1847 
1848 	perf_sample__init(&sample, /*all=*/true);
1849 	intel_pt_prep_sample(pt, ptq, event, &sample);
1850 
1851 	sample.id = ptq->pt->instructions_id;
1852 	sample.stream_id = ptq->pt->instructions_id;
1853 	if (pt->synth_opts.quick)
1854 		sample.period = 1;
1855 	else
1856 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1857 
1858 	if (ptq->sample_ipc)
1859 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1860 	if (sample.cyc_cnt) {
1861 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1862 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1863 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1864 	}
1865 
1866 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1867 
1868 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
1869 					   pt->instructions_sample_type);
1870 	perf_sample__exit(&sample);
1871 	return ret;
1872 }
1873 
intel_pt_synth_cycle_sample(struct intel_pt_queue * ptq)1874 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1875 {
1876 	struct intel_pt *pt = ptq->pt;
1877 	union perf_event *event = ptq->event_buf;
1878 	struct perf_sample sample;
1879 	u64 period = 0;
1880 	int ret;
1881 
1882 	if (ptq->sample_ipc)
1883 		period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1884 
1885 	if (!period || intel_pt_skip_event(pt))
1886 		return 0;
1887 
1888 	perf_sample__init(&sample, /*all=*/true);
1889 	intel_pt_prep_sample(pt, ptq, event, &sample);
1890 
1891 	sample.id = ptq->pt->cycles_id;
1892 	sample.stream_id = ptq->pt->cycles_id;
1893 	sample.period = period;
1894 
1895 	sample.cyc_cnt = period;
1896 	sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1897 	ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1898 	ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1899 
1900 	ret = intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1901 	perf_sample__exit(&sample);
1902 	return ret;
1903 }
1904 
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1905 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1906 {
1907 	struct intel_pt *pt = ptq->pt;
1908 	union perf_event *event = ptq->event_buf;
1909 	struct perf_sample sample;
1910 	int ret;
1911 
1912 	if (intel_pt_skip_event(pt))
1913 		return 0;
1914 
1915 	perf_sample__init(&sample, /*all=*/true);
1916 	intel_pt_prep_sample(pt, ptq, event, &sample);
1917 
1918 	sample.id = ptq->pt->transactions_id;
1919 	sample.stream_id = ptq->pt->transactions_id;
1920 
1921 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
1922 					   pt->transactions_sample_type);
1923 	perf_sample__exit(&sample);
1924 	return ret;
1925 }
1926 
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1927 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1928 				   struct intel_pt_queue *ptq,
1929 				   union perf_event *event,
1930 				   struct perf_sample *sample)
1931 {
1932 	intel_pt_prep_sample(pt, ptq, event, sample);
1933 
1934 	/*
1935 	 * Zero IP is used to mean "trace start" but that is not the case for
1936 	 * power or PTWRITE events with no IP, so clear the flags.
1937 	 */
1938 	if (!sample->ip)
1939 		sample->flags = 0;
1940 }
1941 
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1942 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1943 {
1944 	struct intel_pt *pt = ptq->pt;
1945 	union perf_event *event = ptq->event_buf;
1946 	struct perf_sample sample = { .ip = 0, };
1947 	struct perf_synth_intel_ptwrite raw;
1948 
1949 	if (intel_pt_skip_event(pt))
1950 		return 0;
1951 
1952 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1953 
1954 	sample.id = ptq->pt->ptwrites_id;
1955 	sample.stream_id = ptq->pt->ptwrites_id;
1956 
1957 	raw.flags = 0;
1958 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1959 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1960 
1961 	sample.raw_size = perf_synth__raw_size(raw);
1962 	sample.raw_data = perf_synth__raw_data(&raw);
1963 
1964 	return intel_pt_deliver_synth_event(pt, event, &sample,
1965 					    pt->ptwrites_sample_type);
1966 }
1967 
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1968 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1969 {
1970 	struct intel_pt *pt = ptq->pt;
1971 	union perf_event *event = ptq->event_buf;
1972 	struct perf_sample sample;
1973 	struct perf_synth_intel_cbr raw;
1974 	u32 flags;
1975 	int ret;
1976 
1977 	if (intel_pt_skip_cbr_event(pt))
1978 		return 0;
1979 
1980 	ptq->cbr_seen = ptq->state->cbr;
1981 
1982 	perf_sample__init(&sample, /*all=*/true);
1983 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1984 
1985 	sample.id = ptq->pt->cbr_id;
1986 	sample.stream_id = ptq->pt->cbr_id;
1987 
1988 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1989 	raw.flags = cpu_to_le32(flags);
1990 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1991 	raw.reserved3 = 0;
1992 
1993 	sample.raw_size = perf_synth__raw_size(raw);
1994 	sample.raw_data = perf_synth__raw_data(&raw);
1995 
1996 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
1997 					   pt->pwr_events_sample_type);
1998 	perf_sample__exit(&sample);
1999 	return ret;
2000 }
2001 
intel_pt_synth_psb_sample(struct intel_pt_queue * ptq)2002 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
2003 {
2004 	struct intel_pt *pt = ptq->pt;
2005 	union perf_event *event = ptq->event_buf;
2006 	struct perf_sample sample;
2007 	struct perf_synth_intel_psb raw;
2008 	int ret;
2009 
2010 	if (intel_pt_skip_event(pt))
2011 		return 0;
2012 
2013 	perf_sample__init(&sample, /*all=*/true);
2014 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2015 
2016 	sample.id = ptq->pt->psb_id;
2017 	sample.stream_id = ptq->pt->psb_id;
2018 	sample.flags = 0;
2019 
2020 	raw.reserved = 0;
2021 	raw.offset = ptq->state->psb_offset;
2022 
2023 	sample.raw_size = perf_synth__raw_size(raw);
2024 	sample.raw_data = perf_synth__raw_data(&raw);
2025 
2026 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
2027 					   pt->pwr_events_sample_type);
2028 	perf_sample__exit(&sample);
2029 	return ret;
2030 }
2031 
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)2032 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2033 {
2034 	struct intel_pt *pt = ptq->pt;
2035 	union perf_event *event = ptq->event_buf;
2036 	struct perf_sample sample;
2037 	struct perf_synth_intel_mwait raw;
2038 	int ret;
2039 
2040 	if (intel_pt_skip_event(pt))
2041 		return 0;
2042 
2043 	perf_sample__init(&sample, /*all=*/true);
2044 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2045 
2046 	sample.id = ptq->pt->mwait_id;
2047 	sample.stream_id = ptq->pt->mwait_id;
2048 
2049 	raw.reserved = 0;
2050 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2051 
2052 	sample.raw_size = perf_synth__raw_size(raw);
2053 	sample.raw_data = perf_synth__raw_data(&raw);
2054 
2055 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
2056 					   pt->pwr_events_sample_type);
2057 	perf_sample__exit(&sample);
2058 	return ret;
2059 }
2060 
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)2061 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2062 {
2063 	struct intel_pt *pt = ptq->pt;
2064 	union perf_event *event = ptq->event_buf;
2065 	struct perf_sample sample;
2066 	struct perf_synth_intel_pwre raw;
2067 	int ret;
2068 
2069 	if (intel_pt_skip_event(pt))
2070 		return 0;
2071 
2072 	perf_sample__init(&sample, /*all=*/true);
2073 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2074 
2075 	sample.id = ptq->pt->pwre_id;
2076 	sample.stream_id = ptq->pt->pwre_id;
2077 
2078 	raw.reserved = 0;
2079 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2080 
2081 	sample.raw_size = perf_synth__raw_size(raw);
2082 	sample.raw_data = perf_synth__raw_data(&raw);
2083 
2084 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
2085 					   pt->pwr_events_sample_type);
2086 	perf_sample__exit(&sample);
2087 	return ret;
2088 }
2089 
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)2090 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2091 {
2092 	struct intel_pt *pt = ptq->pt;
2093 	union perf_event *event = ptq->event_buf;
2094 	struct perf_sample sample;
2095 	struct perf_synth_intel_exstop raw;
2096 	int ret;
2097 
2098 	if (intel_pt_skip_event(pt))
2099 		return 0;
2100 
2101 	perf_sample__init(&sample, /*all=*/true);
2102 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2103 
2104 	sample.id = ptq->pt->exstop_id;
2105 	sample.stream_id = ptq->pt->exstop_id;
2106 
2107 	raw.flags = 0;
2108 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2109 
2110 	sample.raw_size = perf_synth__raw_size(raw);
2111 	sample.raw_data = perf_synth__raw_data(&raw);
2112 
2113 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
2114 					   pt->pwr_events_sample_type);
2115 	perf_sample__exit(&sample);
2116 	return ret;
2117 }
2118 
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)2119 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2120 {
2121 	struct intel_pt *pt = ptq->pt;
2122 	union perf_event *event = ptq->event_buf;
2123 	struct perf_sample sample;
2124 	struct perf_synth_intel_pwrx raw;
2125 	int ret;
2126 
2127 	if (intel_pt_skip_event(pt))
2128 		return 0;
2129 
2130 	perf_sample__init(&sample, /*all=*/true);
2131 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2132 
2133 	sample.id = ptq->pt->pwrx_id;
2134 	sample.stream_id = ptq->pt->pwrx_id;
2135 
2136 	raw.reserved = 0;
2137 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2138 
2139 	sample.raw_size = perf_synth__raw_size(raw);
2140 	sample.raw_data = perf_synth__raw_data(&raw);
2141 
2142 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
2143 					   pt->pwr_events_sample_type);
2144 	perf_sample__exit(&sample);
2145 	return ret;
2146 }
2147 
2148 /*
2149  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2150  * intel_pt_add_gp_regs().
2151  */
2152 static const int pebs_gp_regs[] = {
2153 	[PERF_REG_X86_FLAGS]	= 1,
2154 	[PERF_REG_X86_IP]	= 2,
2155 	[PERF_REG_X86_AX]	= 3,
2156 	[PERF_REG_X86_CX]	= 4,
2157 	[PERF_REG_X86_DX]	= 5,
2158 	[PERF_REG_X86_BX]	= 6,
2159 	[PERF_REG_X86_SP]	= 7,
2160 	[PERF_REG_X86_BP]	= 8,
2161 	[PERF_REG_X86_SI]	= 9,
2162 	[PERF_REG_X86_DI]	= 10,
2163 	[PERF_REG_X86_R8]	= 11,
2164 	[PERF_REG_X86_R9]	= 12,
2165 	[PERF_REG_X86_R10]	= 13,
2166 	[PERF_REG_X86_R11]	= 14,
2167 	[PERF_REG_X86_R12]	= 15,
2168 	[PERF_REG_X86_R13]	= 16,
2169 	[PERF_REG_X86_R14]	= 17,
2170 	[PERF_REG_X86_R15]	= 18,
2171 };
2172 
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2173 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2174 				 const struct intel_pt_blk_items *items,
2175 				 u64 regs_mask)
2176 {
2177 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2178 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2179 	u32 bit;
2180 	int i;
2181 
2182 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2183 		/* Get the PEBS gp_regs array index */
2184 		int n = pebs_gp_regs[i] - 1;
2185 
2186 		if (n < 0)
2187 			continue;
2188 		/*
2189 		 * Add only registers that were requested (i.e. 'regs_mask') and
2190 		 * that were provided (i.e. 'mask'), and update the resulting
2191 		 * mask (i.e. 'intr_regs->mask') accordingly.
2192 		 */
2193 		if (mask & 1 << n && regs_mask & bit) {
2194 			intr_regs->mask |= bit;
2195 			*pos++ = gp_regs[n];
2196 		}
2197 	}
2198 
2199 	return pos;
2200 }
2201 
2202 #ifndef PERF_REG_X86_XMM0
2203 #define PERF_REG_X86_XMM0 32
2204 #endif
2205 
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2206 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2207 			     const struct intel_pt_blk_items *items,
2208 			     u64 regs_mask)
2209 {
2210 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2211 	const u64 *xmm = items->xmm;
2212 
2213 	/*
2214 	 * If there are any XMM registers, then there should be all of them.
2215 	 * Nevertheless, follow the logic to add only registers that were
2216 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2217 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2218 	 */
2219 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2220 
2221 	for (; mask; mask >>= 1, xmm++) {
2222 		if (mask & 1)
2223 			*pos++ = *xmm;
2224 	}
2225 }
2226 
2227 #define LBR_INFO_MISPRED	(1ULL << 63)
2228 #define LBR_INFO_IN_TX		(1ULL << 62)
2229 #define LBR_INFO_ABORT		(1ULL << 61)
2230 #define LBR_INFO_CYCLES		0xffff
2231 
2232 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)2233 static u64 intel_pt_lbr_flags(u64 info)
2234 {
2235 	union {
2236 		struct branch_flags flags;
2237 		u64 result;
2238 	} u;
2239 
2240 	u.result	  = 0;
2241 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2242 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2243 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2244 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2245 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2246 
2247 	return u.result;
2248 }
2249 
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)2250 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2251 			      const struct intel_pt_blk_items *items)
2252 {
2253 	u64 *to;
2254 	int i;
2255 
2256 	br_stack->nr = 0;
2257 
2258 	to = &br_stack->entries[0].from;
2259 
2260 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2261 		u32 mask = items->mask[i];
2262 		const u64 *from = items->val[i];
2263 
2264 		for (; mask; mask >>= 3, from += 3) {
2265 			if ((mask & 7) == 7) {
2266 				*to++ = from[0];
2267 				*to++ = from[1];
2268 				*to++ = intel_pt_lbr_flags(from[2]);
2269 				br_stack->nr += 1;
2270 			}
2271 		}
2272 	}
2273 }
2274 
intel_pt_do_synth_pebs_sample(struct intel_pt_queue * ptq,struct evsel * evsel,u64 id)2275 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2276 {
2277 	const struct intel_pt_blk_items *items = &ptq->state->items;
2278 	struct perf_sample sample;
2279 	union perf_event *event = ptq->event_buf;
2280 	struct intel_pt *pt = ptq->pt;
2281 	u64 sample_type = evsel->core.attr.sample_type;
2282 	u8 cpumode;
2283 	u64 regs[8 * sizeof(sample.intr_regs->mask)];
2284 	int ret;
2285 
2286 	if (intel_pt_skip_event(pt))
2287 		return 0;
2288 
2289 	perf_sample__init(&sample, /*all=*/true);
2290 	intel_pt_prep_a_sample(ptq, event, &sample);
2291 
2292 	sample.id = id;
2293 	sample.stream_id = id;
2294 
2295 	if (!evsel->core.attr.freq)
2296 		sample.period = evsel->core.attr.sample_period;
2297 
2298 	/* No support for non-zero CS base */
2299 	if (items->has_ip)
2300 		sample.ip = items->ip;
2301 	else if (items->has_rip)
2302 		sample.ip = items->rip;
2303 	else
2304 		sample.ip = ptq->state->from_ip;
2305 
2306 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2307 
2308 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2309 
2310 	sample.cpumode = cpumode;
2311 
2312 	if (sample_type & PERF_SAMPLE_TIME) {
2313 		u64 timestamp = 0;
2314 
2315 		if (items->has_timestamp)
2316 			timestamp = items->timestamp;
2317 		else if (!pt->timeless_decoding)
2318 			timestamp = ptq->timestamp;
2319 		if (timestamp)
2320 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2321 	}
2322 
2323 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2324 	    pt->synth_opts.callchain) {
2325 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2326 				     pt->synth_opts.callchain_sz, sample.ip,
2327 				     pt->kernel_start);
2328 		sample.callchain = ptq->chain;
2329 	}
2330 
2331 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2332 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2333 	     items->mask[INTEL_PT_XMM_POS])) {
2334 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2335 		u64 *pos;
2336 		struct regs_dump *intr_regs = perf_sample__intr_regs(&sample);
2337 
2338 		intr_regs->abi = items->is_32_bit ?
2339 				       PERF_SAMPLE_REGS_ABI_32 :
2340 				       PERF_SAMPLE_REGS_ABI_64;
2341 		intr_regs->regs = regs;
2342 
2343 		pos = intel_pt_add_gp_regs(intr_regs, regs, items, regs_mask);
2344 
2345 		intel_pt_add_xmm(intr_regs, pos, items, regs_mask);
2346 	}
2347 
2348 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2349 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2350 		    items->mask[INTEL_PT_LBR_1_POS] ||
2351 		    items->mask[INTEL_PT_LBR_2_POS]) {
2352 			intel_pt_add_lbrs(ptq->last_branch, items);
2353 		} else if (pt->synth_opts.last_branch) {
2354 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2355 						ptq->last_branch,
2356 						pt->br_stack_sz);
2357 		} else {
2358 			ptq->last_branch->nr = 0;
2359 		}
2360 		sample.branch_stack = ptq->last_branch;
2361 	}
2362 
2363 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2364 		sample.addr = items->mem_access_address;
2365 
2366 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2367 		/*
2368 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2369 		 * intel_hsw_weight().
2370 		 */
2371 		if (items->has_mem_access_latency) {
2372 			u64 weight = items->mem_access_latency >> 32;
2373 
2374 			/*
2375 			 * Starts from SPR, the mem access latency field
2376 			 * contains both cache latency [47:32] and instruction
2377 			 * latency [15:0]. The cache latency is the same as the
2378 			 * mem access latency on previous platforms.
2379 			 *
2380 			 * In practice, no memory access could last than 4G
2381 			 * cycles. Use latency >> 32 to distinguish the
2382 			 * different format of the mem access latency field.
2383 			 */
2384 			if (weight > 0) {
2385 				sample.weight = weight & 0xffff;
2386 				sample.ins_lat = items->mem_access_latency & 0xffff;
2387 			} else
2388 				sample.weight = items->mem_access_latency;
2389 		}
2390 		if (!sample.weight && items->has_tsx_aux_info) {
2391 			/* Cycles last block */
2392 			sample.weight = (u32)items->tsx_aux_info;
2393 		}
2394 	}
2395 
2396 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2397 		u64 ax = items->has_rax ? items->rax : 0;
2398 		/* Refer kernel's intel_hsw_transaction() */
2399 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2400 
2401 		/* For RTM XABORTs also log the abort code from AX */
2402 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2403 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2404 		sample.transaction = txn;
2405 	}
2406 
2407 	ret = intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2408 	perf_sample__exit(&sample);
2409 	return ret;
2410 }
2411 
intel_pt_synth_single_pebs_sample(struct intel_pt_queue * ptq)2412 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2413 {
2414 	struct intel_pt *pt = ptq->pt;
2415 	struct evsel *evsel = pt->pebs_evsel;
2416 	u64 id = evsel->core.id[0];
2417 
2418 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2419 }
2420 
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)2421 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2422 {
2423 	const struct intel_pt_blk_items *items = &ptq->state->items;
2424 	struct intel_pt_pebs_event *pe;
2425 	struct intel_pt *pt = ptq->pt;
2426 	int err = -EINVAL;
2427 	int hw_id;
2428 
2429 	if (!items->has_applicable_counters || !items->applicable_counters) {
2430 		if (!pt->single_pebs)
2431 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2432 		return intel_pt_synth_single_pebs_sample(ptq);
2433 	}
2434 
2435 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2436 		pe = &ptq->pebs[hw_id];
2437 		if (!pe->evsel) {
2438 			if (!pt->single_pebs)
2439 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2440 				       hw_id);
2441 			return intel_pt_synth_single_pebs_sample(ptq);
2442 		}
2443 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2444 		if (err)
2445 			return err;
2446 	}
2447 
2448 	return err;
2449 }
2450 
intel_pt_synth_events_sample(struct intel_pt_queue * ptq)2451 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2452 {
2453 	struct intel_pt *pt = ptq->pt;
2454 	union perf_event *event = ptq->event_buf;
2455 	struct perf_sample sample;
2456 	struct {
2457 		struct perf_synth_intel_evt cfe;
2458 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2459 	} raw;
2460 	int i, ret;
2461 
2462 	if (intel_pt_skip_event(pt))
2463 		return 0;
2464 
2465 	perf_sample__init(&sample, /*all=*/true);
2466 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2467 
2468 	sample.id        = ptq->pt->evt_id;
2469 	sample.stream_id = ptq->pt->evt_id;
2470 
2471 	raw.cfe.type     = ptq->state->cfe_type;
2472 	raw.cfe.reserved = 0;
2473 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2474 	raw.cfe.vector   = ptq->state->cfe_vector;
2475 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2476 
2477 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2478 		raw.evd[i].et       = 0;
2479 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2480 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2481 	}
2482 
2483 	sample.raw_size = perf_synth__raw_size(raw) +
2484 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2485 	sample.raw_data = perf_synth__raw_data(&raw);
2486 
2487 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
2488 					   pt->evt_sample_type);
2489 	perf_sample__exit(&sample);
2490 	return ret;
2491 }
2492 
intel_pt_synth_iflag_chg_sample(struct intel_pt_queue * ptq)2493 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2494 {
2495 	struct intel_pt *pt = ptq->pt;
2496 	union perf_event *event = ptq->event_buf;
2497 	struct perf_sample sample;
2498 	struct perf_synth_intel_iflag_chg raw;
2499 	int ret;
2500 
2501 	if (intel_pt_skip_event(pt))
2502 		return 0;
2503 
2504 	perf_sample__init(&sample, /*all=*/true);
2505 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2506 
2507 	sample.id = ptq->pt->iflag_chg_id;
2508 	sample.stream_id = ptq->pt->iflag_chg_id;
2509 
2510 	raw.flags = 0;
2511 	raw.iflag = ptq->state->to_iflag;
2512 
2513 	if (ptq->state->type & INTEL_PT_BRANCH) {
2514 		raw.via_branch = 1;
2515 		raw.branch_ip = ptq->state->to_ip;
2516 	} else {
2517 		sample.addr = 0;
2518 	}
2519 	sample.flags = ptq->flags;
2520 
2521 	sample.raw_size = perf_synth__raw_size(raw);
2522 	sample.raw_data = perf_synth__raw_data(&raw);
2523 
2524 	ret = intel_pt_deliver_synth_event(pt, event, &sample,
2525 					   pt->iflag_chg_sample_type);
2526 	perf_sample__exit(&sample);
2527 	return ret;
2528 }
2529 
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp,pid_t machine_pid,int vcpu)2530 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2531 				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2532 				pid_t machine_pid, int vcpu)
2533 {
2534 	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2535 	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2536 	union perf_event event;
2537 	char msg[MAX_AUXTRACE_ERROR_MSG];
2538 	int err;
2539 
2540 	if (pt->synth_opts.error_minus_flags) {
2541 		if (code == INTEL_PT_ERR_OVR &&
2542 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2543 			return 0;
2544 		if (code == INTEL_PT_ERR_LOST &&
2545 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2546 			return 0;
2547 	}
2548 
2549 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2550 
2551 	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2552 				   code, cpu, pid, tid, ip, msg, timestamp,
2553 				   machine_pid, vcpu);
2554 
2555 	if (intel_pt_enable_logging && !log_on_stdout) {
2556 		FILE *fp = intel_pt_log_fp();
2557 
2558 		if (fp)
2559 			perf_event__fprintf_auxtrace_error(&event, fp);
2560 	}
2561 
2562 	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2563 		intel_pt_log_dump_buf();
2564 
2565 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2566 	if (err)
2567 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2568 		       err);
2569 
2570 	return err;
2571 }
2572 
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)2573 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2574 				 const struct intel_pt_state *state)
2575 {
2576 	struct intel_pt *pt = ptq->pt;
2577 	u64 tm = ptq->timestamp;
2578 	pid_t machine_pid = 0;
2579 	pid_t pid = ptq->pid;
2580 	pid_t tid = ptq->tid;
2581 	int vcpu = -1;
2582 
2583 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2584 
2585 	if (pt->have_guest_sideband && state->from_nr) {
2586 		machine_pid = ptq->guest_machine_pid;
2587 		vcpu = ptq->vcpu;
2588 		pid = ptq->guest_pid;
2589 		tid = ptq->guest_tid;
2590 	}
2591 
2592 	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2593 				    state->from_ip, tm, machine_pid, vcpu);
2594 }
2595 
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)2596 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2597 {
2598 	struct auxtrace_queue *queue;
2599 	pid_t tid = ptq->next_tid;
2600 	int err;
2601 
2602 	if (tid == -1)
2603 		return 0;
2604 
2605 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2606 
2607 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2608 
2609 	queue = &pt->queues.queue_array[ptq->queue_nr];
2610 	intel_pt_set_pid_tid_cpu(pt, queue);
2611 
2612 	ptq->next_tid = -1;
2613 
2614 	return err;
2615 }
2616 
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)2617 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2618 {
2619 	struct intel_pt *pt = ptq->pt;
2620 
2621 	return ip == pt->switch_ip &&
2622 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2623 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2624 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2625 }
2626 
2627 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2628 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2629 
intel_pt_sample(struct intel_pt_queue * ptq)2630 static int intel_pt_sample(struct intel_pt_queue *ptq)
2631 {
2632 	const struct intel_pt_state *state = ptq->state;
2633 	struct intel_pt *pt = ptq->pt;
2634 	int err;
2635 
2636 	if (!ptq->have_sample)
2637 		return 0;
2638 
2639 	ptq->have_sample = false;
2640 
2641 	if (pt->synth_opts.approx_ipc) {
2642 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2643 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2644 		ptq->sample_ipc = true;
2645 	} else {
2646 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2647 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2648 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2649 	}
2650 
2651 	/* Ensure guest code maps are set up */
2652 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2653 		intel_pt_get_guest(ptq);
2654 
2655 	/*
2656 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2657 	 * precedes the current timestamp.
2658 	 */
2659 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2660 		err = intel_pt_synth_pebs_sample(ptq);
2661 		if (err)
2662 			return err;
2663 	}
2664 
2665 	if (pt->synth_opts.intr_events) {
2666 		if (state->type & INTEL_PT_EVT) {
2667 			err = intel_pt_synth_events_sample(ptq);
2668 			if (err)
2669 				return err;
2670 		}
2671 		if (state->type & INTEL_PT_IFLAG_CHG) {
2672 			err = intel_pt_synth_iflag_chg_sample(ptq);
2673 			if (err)
2674 				return err;
2675 		}
2676 	}
2677 
2678 	if (pt->sample_pwr_events) {
2679 		if (state->type & INTEL_PT_PSB_EVT) {
2680 			err = intel_pt_synth_psb_sample(ptq);
2681 			if (err)
2682 				return err;
2683 		}
2684 		if (ptq->state->cbr != ptq->cbr_seen) {
2685 			err = intel_pt_synth_cbr_sample(ptq);
2686 			if (err)
2687 				return err;
2688 		}
2689 		if (state->type & INTEL_PT_PWR_EVT) {
2690 			if (state->type & INTEL_PT_MWAIT_OP) {
2691 				err = intel_pt_synth_mwait_sample(ptq);
2692 				if (err)
2693 					return err;
2694 			}
2695 			if (state->type & INTEL_PT_PWR_ENTRY) {
2696 				err = intel_pt_synth_pwre_sample(ptq);
2697 				if (err)
2698 					return err;
2699 			}
2700 			if (state->type & INTEL_PT_EX_STOP) {
2701 				err = intel_pt_synth_exstop_sample(ptq);
2702 				if (err)
2703 					return err;
2704 			}
2705 			if (state->type & INTEL_PT_PWR_EXIT) {
2706 				err = intel_pt_synth_pwrx_sample(ptq);
2707 				if (err)
2708 					return err;
2709 			}
2710 		}
2711 	}
2712 
2713 	if (state->type & INTEL_PT_INSTRUCTION) {
2714 		if (pt->sample_instructions) {
2715 			err = intel_pt_synth_instruction_sample(ptq);
2716 			if (err)
2717 				return err;
2718 		}
2719 		if (pt->sample_cycles) {
2720 			err = intel_pt_synth_cycle_sample(ptq);
2721 			if (err)
2722 				return err;
2723 		}
2724 	}
2725 
2726 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2727 		err = intel_pt_synth_transaction_sample(ptq);
2728 		if (err)
2729 			return err;
2730 	}
2731 
2732 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2733 		err = intel_pt_synth_ptwrite_sample(ptq);
2734 		if (err)
2735 			return err;
2736 	}
2737 
2738 	if (!(state->type & INTEL_PT_BRANCH))
2739 		return 0;
2740 
2741 	if (pt->use_thread_stack) {
2742 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2743 				    state->from_ip, state->to_ip, ptq->insn_len,
2744 				    state->trace_nr, pt->callstack,
2745 				    pt->br_stack_sz_plus,
2746 				    pt->mispred_all);
2747 	} else {
2748 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2749 	}
2750 
2751 	if (pt->sample_branches) {
2752 		if (state->from_nr != state->to_nr &&
2753 		    state->from_ip && state->to_ip) {
2754 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2755 			u64 to_ip = st->to_ip;
2756 			u64 from_ip = st->from_ip;
2757 
2758 			/*
2759 			 * perf cannot handle having different machines for ip
2760 			 * and addr, so create 2 branches.
2761 			 */
2762 			st->to_ip = 0;
2763 			err = intel_pt_synth_branch_sample(ptq);
2764 			if (err)
2765 				return err;
2766 			st->from_ip = 0;
2767 			st->to_ip = to_ip;
2768 			err = intel_pt_synth_branch_sample(ptq);
2769 			st->from_ip = from_ip;
2770 		} else {
2771 			err = intel_pt_synth_branch_sample(ptq);
2772 		}
2773 		if (err)
2774 			return err;
2775 	}
2776 
2777 	if (!ptq->sync_switch)
2778 		return 0;
2779 
2780 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2781 		switch (ptq->switch_state) {
2782 		case INTEL_PT_SS_NOT_TRACING:
2783 		case INTEL_PT_SS_UNKNOWN:
2784 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2785 			err = intel_pt_next_tid(pt, ptq);
2786 			if (err)
2787 				return err;
2788 			ptq->switch_state = INTEL_PT_SS_TRACING;
2789 			break;
2790 		default:
2791 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2792 			return 1;
2793 		}
2794 	} else if (!state->to_ip) {
2795 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2796 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2797 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2798 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2799 		   state->to_ip == pt->ptss_ip &&
2800 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2801 		ptq->switch_state = INTEL_PT_SS_TRACING;
2802 	}
2803 
2804 	return 0;
2805 }
2806 
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2807 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2808 {
2809 	struct machine *machine = pt->machine;
2810 	struct map *map;
2811 	struct symbol *sym, *start;
2812 	u64 ip, switch_ip = 0;
2813 	const char *ptss;
2814 
2815 	if (ptss_ip)
2816 		*ptss_ip = 0;
2817 
2818 	map = machine__kernel_map(machine);
2819 	if (!map)
2820 		return 0;
2821 
2822 	if (map__load(map))
2823 		return 0;
2824 
2825 	start = dso__first_symbol(map__dso(map));
2826 
2827 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2828 		if (sym->binding == STB_GLOBAL &&
2829 		    !strcmp(sym->name, "__switch_to")) {
2830 			ip = map__unmap_ip(map, sym->start);
2831 			if (ip >= map__start(map) && ip < map__end(map)) {
2832 				switch_ip = ip;
2833 				break;
2834 			}
2835 		}
2836 	}
2837 
2838 	if (!switch_ip || !ptss_ip)
2839 		return 0;
2840 
2841 	if (pt->have_sched_switch == 1)
2842 		ptss = "perf_trace_sched_switch";
2843 	else
2844 		ptss = "__perf_event_task_sched_out";
2845 
2846 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2847 		if (!strcmp(sym->name, ptss)) {
2848 			ip = map__unmap_ip(map, sym->start);
2849 			if (ip >= map__start(map) && ip < map__end(map)) {
2850 				*ptss_ip = ip;
2851 				break;
2852 			}
2853 		}
2854 	}
2855 
2856 	return switch_ip;
2857 }
2858 
intel_pt_enable_sync_switch(struct intel_pt * pt)2859 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2860 {
2861 	unsigned int i;
2862 
2863 	if (pt->sync_switch_not_supported)
2864 		return;
2865 
2866 	pt->sync_switch = true;
2867 
2868 	for (i = 0; i < pt->queues.nr_queues; i++) {
2869 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2870 		struct intel_pt_queue *ptq = queue->priv;
2871 
2872 		if (ptq)
2873 			ptq->sync_switch = true;
2874 	}
2875 }
2876 
intel_pt_disable_sync_switch(struct intel_pt * pt)2877 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2878 {
2879 	unsigned int i;
2880 
2881 	pt->sync_switch = false;
2882 
2883 	for (i = 0; i < pt->queues.nr_queues; i++) {
2884 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2885 		struct intel_pt_queue *ptq = queue->priv;
2886 
2887 		if (ptq) {
2888 			ptq->sync_switch = false;
2889 			intel_pt_next_tid(pt, ptq);
2890 		}
2891 	}
2892 }
2893 
2894 /*
2895  * To filter against time ranges, it is only necessary to look at the next start
2896  * or end time.
2897  */
intel_pt_next_time(struct intel_pt_queue * ptq)2898 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2899 {
2900 	struct intel_pt *pt = ptq->pt;
2901 
2902 	if (ptq->sel_start) {
2903 		/* Next time is an end time */
2904 		ptq->sel_start = false;
2905 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2906 		return true;
2907 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2908 		/* Next time is a start time */
2909 		ptq->sel_start = true;
2910 		ptq->sel_idx += 1;
2911 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2912 		return true;
2913 	}
2914 
2915 	/* No next time */
2916 	return false;
2917 }
2918 
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2919 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2920 {
2921 	int err;
2922 
2923 	while (1) {
2924 		if (ptq->sel_start) {
2925 			if (ptq->timestamp >= ptq->sel_timestamp) {
2926 				/* After start time, so consider next time */
2927 				intel_pt_next_time(ptq);
2928 				if (!ptq->sel_timestamp) {
2929 					/* No end time */
2930 					return 0;
2931 				}
2932 				/* Check against end time */
2933 				continue;
2934 			}
2935 			/* Before start time, so fast forward */
2936 			ptq->have_sample = false;
2937 			if (ptq->sel_timestamp > *ff_timestamp) {
2938 				if (ptq->sync_switch) {
2939 					intel_pt_next_tid(ptq->pt, ptq);
2940 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2941 				}
2942 				*ff_timestamp = ptq->sel_timestamp;
2943 				err = intel_pt_fast_forward(ptq->decoder,
2944 							    ptq->sel_timestamp);
2945 				if (err)
2946 					return err;
2947 			}
2948 			return 0;
2949 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2950 			/* After end time, so consider next time */
2951 			if (!intel_pt_next_time(ptq)) {
2952 				/* No next time range, so stop decoding */
2953 				ptq->have_sample = false;
2954 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2955 				return 1;
2956 			}
2957 			/* Check against next start time */
2958 			continue;
2959 		} else {
2960 			/* Before end time */
2961 			return 0;
2962 		}
2963 	}
2964 }
2965 
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2966 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2967 {
2968 	const struct intel_pt_state *state = ptq->state;
2969 	struct intel_pt *pt = ptq->pt;
2970 	u64 ff_timestamp = 0;
2971 	int err;
2972 
2973 	if (!pt->kernel_start) {
2974 		pt->kernel_start = machine__kernel_start(pt->machine);
2975 		if (pt->per_cpu_mmaps &&
2976 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2977 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2978 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2979 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2980 			if (pt->switch_ip) {
2981 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2982 					     pt->switch_ip, pt->ptss_ip);
2983 				intel_pt_enable_sync_switch(pt);
2984 			}
2985 		}
2986 	}
2987 
2988 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2989 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2990 	while (1) {
2991 		err = intel_pt_sample(ptq);
2992 		if (err)
2993 			return err;
2994 
2995 		state = intel_pt_decode(ptq->decoder);
2996 		if (state->err) {
2997 			if (state->err == INTEL_PT_ERR_NODATA)
2998 				return 1;
2999 			if (ptq->sync_switch &&
3000 			    state->from_ip >= pt->kernel_start) {
3001 				ptq->sync_switch = false;
3002 				intel_pt_next_tid(pt, ptq);
3003 			}
3004 			ptq->timestamp = state->est_timestamp;
3005 			if (pt->synth_opts.errors) {
3006 				err = intel_ptq_synth_error(ptq, state);
3007 				if (err)
3008 					return err;
3009 			}
3010 			continue;
3011 		}
3012 
3013 		ptq->state = state;
3014 		ptq->have_sample = true;
3015 		intel_pt_sample_flags(ptq);
3016 
3017 		/* Use estimated TSC upon return to user space */
3018 		if (pt->est_tsc &&
3019 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
3020 		    state->to_ip && state->to_ip < pt->kernel_start) {
3021 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3022 				     state->timestamp, state->est_timestamp);
3023 			ptq->timestamp = state->est_timestamp;
3024 		/* Use estimated TSC in unknown switch state */
3025 		} else if (ptq->sync_switch &&
3026 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
3027 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
3028 			   ptq->next_tid == -1) {
3029 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3030 				     state->timestamp, state->est_timestamp);
3031 			ptq->timestamp = state->est_timestamp;
3032 		} else if (state->timestamp > ptq->timestamp) {
3033 			ptq->timestamp = state->timestamp;
3034 		}
3035 
3036 		if (ptq->sel_timestamp) {
3037 			err = intel_pt_time_filter(ptq, &ff_timestamp);
3038 			if (err)
3039 				return err;
3040 		}
3041 
3042 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
3043 			*timestamp = ptq->timestamp;
3044 			return 0;
3045 		}
3046 	}
3047 	return 0;
3048 }
3049 
intel_pt_update_queues(struct intel_pt * pt)3050 static inline int intel_pt_update_queues(struct intel_pt *pt)
3051 {
3052 	if (pt->queues.new_data) {
3053 		pt->queues.new_data = false;
3054 		return intel_pt_setup_queues(pt);
3055 	}
3056 	return 0;
3057 }
3058 
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)3059 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3060 {
3061 	unsigned int queue_nr;
3062 	u64 ts;
3063 	int ret;
3064 
3065 	while (1) {
3066 		struct auxtrace_queue *queue;
3067 		struct intel_pt_queue *ptq;
3068 
3069 		if (!pt->heap.heap_cnt)
3070 			return 0;
3071 
3072 		if (pt->heap.heap_array[0].ordinal >= timestamp)
3073 			return 0;
3074 
3075 		queue_nr = pt->heap.heap_array[0].queue_nr;
3076 		queue = &pt->queues.queue_array[queue_nr];
3077 		ptq = queue->priv;
3078 
3079 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3080 			     queue_nr, pt->heap.heap_array[0].ordinal,
3081 			     timestamp);
3082 
3083 		auxtrace_heap__pop(&pt->heap);
3084 
3085 		if (pt->heap.heap_cnt) {
3086 			ts = pt->heap.heap_array[0].ordinal + 1;
3087 			if (ts > timestamp)
3088 				ts = timestamp;
3089 		} else {
3090 			ts = timestamp;
3091 		}
3092 
3093 		intel_pt_set_pid_tid_cpu(pt, queue);
3094 
3095 		ret = intel_pt_run_decoder(ptq, &ts);
3096 
3097 		if (ret < 0) {
3098 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
3099 			return ret;
3100 		}
3101 
3102 		if (!ret) {
3103 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3104 			if (ret < 0)
3105 				return ret;
3106 		} else {
3107 			ptq->on_heap = false;
3108 		}
3109 	}
3110 
3111 	return 0;
3112 }
3113 
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)3114 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3115 					    u64 time_)
3116 {
3117 	struct auxtrace_queues *queues = &pt->queues;
3118 	unsigned int i;
3119 	u64 ts = 0;
3120 
3121 	for (i = 0; i < queues->nr_queues; i++) {
3122 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3123 		struct intel_pt_queue *ptq = queue->priv;
3124 
3125 		if (ptq && (tid == -1 || ptq->tid == tid)) {
3126 			ptq->time = time_;
3127 			intel_pt_set_pid_tid_cpu(pt, queue);
3128 			intel_pt_run_decoder(ptq, &ts);
3129 		}
3130 	}
3131 	return 0;
3132 }
3133 
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)3134 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3135 					    struct auxtrace_queue *queue,
3136 					    struct perf_sample *sample)
3137 {
3138 	struct machine *m = ptq->pt->machine;
3139 
3140 	ptq->pid = sample->pid;
3141 	ptq->tid = sample->tid;
3142 	ptq->cpu = queue->cpu;
3143 
3144 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3145 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3146 
3147 	thread__zput(ptq->thread);
3148 
3149 	if (ptq->tid == -1)
3150 		return;
3151 
3152 	if (ptq->pid == -1) {
3153 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3154 		if (ptq->thread)
3155 			ptq->pid = thread__pid(ptq->thread);
3156 		return;
3157 	}
3158 
3159 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3160 }
3161 
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)3162 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3163 					    struct perf_sample *sample)
3164 {
3165 	struct auxtrace_queue *queue;
3166 	struct intel_pt_queue *ptq;
3167 	u64 ts = 0;
3168 
3169 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3170 	if (!queue)
3171 		return -EINVAL;
3172 
3173 	ptq = queue->priv;
3174 	if (!ptq)
3175 		return 0;
3176 
3177 	ptq->stop = false;
3178 	ptq->time = sample->time;
3179 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3180 	intel_pt_run_decoder(ptq, &ts);
3181 	return 0;
3182 }
3183 
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)3184 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3185 {
3186 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3187 				    sample->pid, sample->tid, 0, sample->time,
3188 				    sample->machine_pid, sample->vcpu);
3189 }
3190 
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)3191 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3192 {
3193 	unsigned i, j;
3194 
3195 	if (cpu < 0 || !pt->queues.nr_queues)
3196 		return NULL;
3197 
3198 	if ((unsigned)cpu >= pt->queues.nr_queues)
3199 		i = pt->queues.nr_queues - 1;
3200 	else
3201 		i = cpu;
3202 
3203 	if (pt->queues.queue_array[i].cpu == cpu)
3204 		return pt->queues.queue_array[i].priv;
3205 
3206 	for (j = 0; i > 0; j++) {
3207 		if (pt->queues.queue_array[--i].cpu == cpu)
3208 			return pt->queues.queue_array[i].priv;
3209 	}
3210 
3211 	for (; j < pt->queues.nr_queues; j++) {
3212 		if (pt->queues.queue_array[j].cpu == cpu)
3213 			return pt->queues.queue_array[j].priv;
3214 	}
3215 
3216 	return NULL;
3217 }
3218 
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)3219 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3220 				u64 timestamp)
3221 {
3222 	struct intel_pt_queue *ptq;
3223 	int err;
3224 
3225 	if (!pt->sync_switch)
3226 		return 1;
3227 
3228 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3229 	if (!ptq || !ptq->sync_switch)
3230 		return 1;
3231 
3232 	switch (ptq->switch_state) {
3233 	case INTEL_PT_SS_NOT_TRACING:
3234 		break;
3235 	case INTEL_PT_SS_UNKNOWN:
3236 	case INTEL_PT_SS_TRACING:
3237 		ptq->next_tid = tid;
3238 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3239 		return 0;
3240 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3241 		if (!ptq->on_heap) {
3242 			ptq->timestamp = perf_time_to_tsc(timestamp,
3243 							  &pt->tc);
3244 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3245 						 ptq->timestamp);
3246 			if (err)
3247 				return err;
3248 			ptq->on_heap = true;
3249 		}
3250 		ptq->switch_state = INTEL_PT_SS_TRACING;
3251 		break;
3252 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3253 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3254 		break;
3255 	default:
3256 		break;
3257 	}
3258 
3259 	ptq->next_tid = -1;
3260 
3261 	return 1;
3262 }
3263 
3264 #ifdef HAVE_LIBTRACEEVENT
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)3265 static int intel_pt_process_switch(struct intel_pt *pt,
3266 				   struct perf_sample *sample)
3267 {
3268 	pid_t tid;
3269 	int cpu, ret;
3270 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3271 
3272 	if (evsel != pt->switch_evsel)
3273 		return 0;
3274 
3275 	tid = evsel__intval(evsel, sample, "next_pid");
3276 	cpu = sample->cpu;
3277 
3278 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3279 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3280 		     &pt->tc));
3281 
3282 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3283 	if (ret <= 0)
3284 		return ret;
3285 
3286 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3287 }
3288 #endif /* HAVE_LIBTRACEEVENT */
3289 
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)3290 static int intel_pt_context_switch_in(struct intel_pt *pt,
3291 				      struct perf_sample *sample)
3292 {
3293 	pid_t pid = sample->pid;
3294 	pid_t tid = sample->tid;
3295 	int cpu = sample->cpu;
3296 
3297 	if (pt->sync_switch) {
3298 		struct intel_pt_queue *ptq;
3299 
3300 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3301 		if (ptq && ptq->sync_switch) {
3302 			ptq->next_tid = -1;
3303 			switch (ptq->switch_state) {
3304 			case INTEL_PT_SS_NOT_TRACING:
3305 			case INTEL_PT_SS_UNKNOWN:
3306 			case INTEL_PT_SS_TRACING:
3307 				break;
3308 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3309 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3310 				ptq->switch_state = INTEL_PT_SS_TRACING;
3311 				break;
3312 			default:
3313 				break;
3314 			}
3315 		}
3316 	}
3317 
3318 	/*
3319 	 * If the current tid has not been updated yet, ensure it is now that
3320 	 * a "switch in" event has occurred.
3321 	 */
3322 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3323 		return 0;
3324 
3325 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3326 }
3327 
intel_pt_guest_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3328 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3329 					 union perf_event *event,
3330 					 struct perf_sample *sample)
3331 {
3332 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3333 	struct machines *machines = &pt->session->machines;
3334 	struct machine *machine = machines__find(machines, sample->machine_pid);
3335 
3336 	pt->have_guest_sideband = true;
3337 
3338 	/*
3339 	 * sync_switch cannot handle guest machines at present, so just disable
3340 	 * it.
3341 	 */
3342 	pt->sync_switch_not_supported = true;
3343 	if (pt->sync_switch)
3344 		intel_pt_disable_sync_switch(pt);
3345 
3346 	if (out)
3347 		return 0;
3348 
3349 	if (!machine)
3350 		return -EINVAL;
3351 
3352 	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3353 }
3354 
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3355 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3356 				   struct perf_sample *sample)
3357 {
3358 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3359 	pid_t pid, tid;
3360 	int cpu, ret;
3361 
3362 	if (perf_event__is_guest(event))
3363 		return intel_pt_guest_context_switch(pt, event, sample);
3364 
3365 	cpu = sample->cpu;
3366 
3367 	if (pt->have_sched_switch == 3) {
3368 		if (!out)
3369 			return intel_pt_context_switch_in(pt, sample);
3370 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3371 			pr_err("Expecting CPU-wide context switch event\n");
3372 			return -EINVAL;
3373 		}
3374 		pid = event->context_switch.next_prev_pid;
3375 		tid = event->context_switch.next_prev_tid;
3376 	} else {
3377 		if (out)
3378 			return 0;
3379 		pid = sample->pid;
3380 		tid = sample->tid;
3381 	}
3382 
3383 	if (tid == -1)
3384 		intel_pt_log("context_switch event has no tid\n");
3385 
3386 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3387 	if (ret <= 0)
3388 		return ret;
3389 
3390 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3391 }
3392 
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3393 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3394 					 union perf_event *event,
3395 					 struct perf_sample *sample)
3396 {
3397 	if (!pt->per_cpu_mmaps)
3398 		return 0;
3399 
3400 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3401 		     sample->cpu, event->itrace_start.pid,
3402 		     event->itrace_start.tid, sample->time,
3403 		     perf_time_to_tsc(sample->time, &pt->tc));
3404 
3405 	return machine__set_current_tid(pt->machine, sample->cpu,
3406 					event->itrace_start.pid,
3407 					event->itrace_start.tid);
3408 }
3409 
intel_pt_process_aux_output_hw_id(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3410 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3411 					     union perf_event *event,
3412 					     struct perf_sample *sample)
3413 {
3414 	u64 hw_id = event->aux_output_hw_id.hw_id;
3415 	struct auxtrace_queue *queue;
3416 	struct intel_pt_queue *ptq;
3417 	struct evsel *evsel;
3418 
3419 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3420 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3421 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3422 		pr_err("Bad AUX output hardware ID\n");
3423 		return -EINVAL;
3424 	}
3425 
3426 	ptq = queue->priv;
3427 
3428 	ptq->pebs[hw_id].evsel = evsel;
3429 	ptq->pebs[hw_id].id = sample->id;
3430 
3431 	return 0;
3432 }
3433 
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)3434 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3435 			     struct addr_location *al)
3436 {
3437 	if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3438 		if (!thread__find_map(thread, cpumode, addr, al))
3439 			return -1;
3440 	}
3441 
3442 	return 0;
3443 }
3444 
3445 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)3446 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3447 {
3448 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3449 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3450 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3451 	int cnt = 4096 + event->text_poke.new_len;
3452 	struct thread *thread = pt->unknown_thread;
3453 	struct addr_location al;
3454 	struct machine *machine = pt->machine;
3455 	struct intel_pt_cache_entry *e;
3456 	u64 offset;
3457 	int ret = 0;
3458 
3459 	addr_location__init(&al);
3460 	if (!event->text_poke.new_len)
3461 		goto out;
3462 
3463 	for (; cnt; cnt--, addr--) {
3464 		struct dso *dso;
3465 
3466 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3467 			if (addr < event->text_poke.addr)
3468 				goto out;
3469 			continue;
3470 		}
3471 
3472 		dso = map__dso(al.map);
3473 		if (!dso || !dso__auxtrace_cache(dso))
3474 			continue;
3475 
3476 		offset = map__map_ip(al.map, addr);
3477 
3478 		e = intel_pt_cache_lookup(dso, machine, offset);
3479 		if (!e)
3480 			continue;
3481 
3482 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3483 			/*
3484 			 * No overlap. Working backwards there cannot be another
3485 			 * basic block that overlaps the text poke if there is a
3486 			 * branch instruction before the text poke address.
3487 			 */
3488 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3489 				goto out;
3490 		} else {
3491 			intel_pt_cache_invalidate(dso, machine, offset);
3492 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3493 				     dso__long_name(dso), addr);
3494 		}
3495 	}
3496 out:
3497 	addr_location__exit(&al);
3498 	return ret;
3499 }
3500 
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,const struct perf_tool * tool)3501 static int intel_pt_process_event(struct perf_session *session,
3502 				  union perf_event *event,
3503 				  struct perf_sample *sample,
3504 				  const struct perf_tool *tool)
3505 {
3506 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3507 					   auxtrace);
3508 	u64 timestamp;
3509 	int err = 0;
3510 
3511 	if (dump_trace)
3512 		return 0;
3513 
3514 	if (!tool->ordered_events) {
3515 		pr_err("Intel Processor Trace requires ordered events\n");
3516 		return -EINVAL;
3517 	}
3518 
3519 	if (sample->time && sample->time != (u64)-1)
3520 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3521 	else
3522 		timestamp = 0;
3523 
3524 	if (timestamp || pt->timeless_decoding) {
3525 		err = intel_pt_update_queues(pt);
3526 		if (err)
3527 			return err;
3528 	}
3529 
3530 	if (pt->timeless_decoding) {
3531 		if (pt->sampling_mode) {
3532 			if (sample->aux_sample.size)
3533 				err = intel_pt_process_timeless_sample(pt,
3534 								       sample);
3535 		} else if (event->header.type == PERF_RECORD_EXIT) {
3536 			err = intel_pt_process_timeless_queues(pt,
3537 							       event->fork.tid,
3538 							       sample->time);
3539 		}
3540 	} else if (timestamp) {
3541 		if (!pt->first_timestamp)
3542 			intel_pt_first_timestamp(pt, timestamp);
3543 		err = intel_pt_process_queues(pt, timestamp);
3544 	}
3545 	if (err)
3546 		return err;
3547 
3548 	if (event->header.type == PERF_RECORD_SAMPLE) {
3549 		if (pt->synth_opts.add_callchain && !sample->callchain)
3550 			intel_pt_add_callchain(pt, sample);
3551 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3552 			intel_pt_add_br_stack(pt, sample);
3553 	}
3554 
3555 	if (event->header.type == PERF_RECORD_AUX &&
3556 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3557 	    pt->synth_opts.errors) {
3558 		err = intel_pt_lost(pt, sample);
3559 		if (err)
3560 			return err;
3561 	}
3562 
3563 #ifdef HAVE_LIBTRACEEVENT
3564 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3565 		err = intel_pt_process_switch(pt, sample);
3566 	else
3567 #endif
3568 	if (event->header.type == PERF_RECORD_ITRACE_START)
3569 		err = intel_pt_process_itrace_start(pt, event, sample);
3570 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3571 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3572 	else if (event->header.type == PERF_RECORD_SWITCH ||
3573 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3574 		err = intel_pt_context_switch(pt, event, sample);
3575 
3576 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3577 		err = intel_pt_text_poke(pt, event);
3578 
3579 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3580 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3581 			     event->header.type, sample->cpu, sample->time, timestamp);
3582 		intel_pt_log_event(event);
3583 	}
3584 
3585 	return err;
3586 }
3587 
intel_pt_flush(struct perf_session * session,const struct perf_tool * tool)3588 static int intel_pt_flush(struct perf_session *session, const struct perf_tool *tool)
3589 {
3590 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3591 					   auxtrace);
3592 	int ret;
3593 
3594 	if (dump_trace)
3595 		return 0;
3596 
3597 	if (!tool->ordered_events)
3598 		return -EINVAL;
3599 
3600 	ret = intel_pt_update_queues(pt);
3601 	if (ret < 0)
3602 		return ret;
3603 
3604 	if (pt->timeless_decoding)
3605 		return intel_pt_process_timeless_queues(pt, -1,
3606 							MAX_TIMESTAMP - 1);
3607 
3608 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3609 }
3610 
intel_pt_free_events(struct perf_session * session)3611 static void intel_pt_free_events(struct perf_session *session)
3612 {
3613 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3614 					   auxtrace);
3615 	struct auxtrace_queues *queues = &pt->queues;
3616 	unsigned int i;
3617 
3618 	for (i = 0; i < queues->nr_queues; i++) {
3619 		intel_pt_free_queue(queues->queue_array[i].priv);
3620 		queues->queue_array[i].priv = NULL;
3621 	}
3622 	intel_pt_log_disable();
3623 	auxtrace_queues__free(queues);
3624 }
3625 
intel_pt_free(struct perf_session * session)3626 static void intel_pt_free(struct perf_session *session)
3627 {
3628 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3629 					   auxtrace);
3630 
3631 	auxtrace_heap__free(&pt->heap);
3632 	intel_pt_free_events(session);
3633 	session->auxtrace = NULL;
3634 	intel_pt_free_vmcs_info(pt);
3635 	thread__put(pt->unknown_thread);
3636 	addr_filters__exit(&pt->filts);
3637 	zfree(&pt->chain);
3638 	zfree(&pt->filter);
3639 	zfree(&pt->time_ranges);
3640 	zfree(&pt->br_stack);
3641 	free(pt);
3642 }
3643 
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)3644 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3645 				       struct evsel *evsel)
3646 {
3647 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3648 					   auxtrace);
3649 
3650 	return evsel->core.attr.type == pt->pmu_type;
3651 }
3652 
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,const struct perf_tool * tool __maybe_unused)3653 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3654 					   union perf_event *event,
3655 					   const struct perf_tool *tool __maybe_unused)
3656 {
3657 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3658 					   auxtrace);
3659 
3660 	if (!pt->data_queued) {
3661 		struct auxtrace_buffer *buffer;
3662 		off_t data_offset;
3663 		int fd = perf_data__fd(session->data);
3664 		int err;
3665 
3666 		if (perf_data__is_pipe(session->data)) {
3667 			data_offset = 0;
3668 		} else {
3669 			data_offset = lseek(fd, 0, SEEK_CUR);
3670 			if (data_offset == -1)
3671 				return -errno;
3672 		}
3673 
3674 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3675 						 data_offset, &buffer);
3676 		if (err)
3677 			return err;
3678 
3679 		/* Dump here now we have copied a piped trace out of the pipe */
3680 		if (dump_trace) {
3681 			if (auxtrace_buffer__get_data(buffer, fd)) {
3682 				intel_pt_dump_event(pt, buffer->data,
3683 						    buffer->size);
3684 				auxtrace_buffer__put_data(buffer);
3685 			}
3686 		}
3687 	}
3688 
3689 	return 0;
3690 }
3691 
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)3692 static int intel_pt_queue_data(struct perf_session *session,
3693 			       struct perf_sample *sample,
3694 			       union perf_event *event, u64 data_offset)
3695 {
3696 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3697 					   auxtrace);
3698 	u64 timestamp;
3699 
3700 	if (event) {
3701 		return auxtrace_queues__add_event(&pt->queues, session, event,
3702 						  data_offset, NULL);
3703 	}
3704 
3705 	if (sample->time && sample->time != (u64)-1)
3706 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3707 	else
3708 		timestamp = 0;
3709 
3710 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3711 					   data_offset, timestamp);
3712 }
3713 
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)3714 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3715 				struct perf_event_attr *attr, u64 id)
3716 {
3717 	int err;
3718 
3719 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3720 		 name, id, (u64)attr->sample_type);
3721 
3722 	err = perf_session__deliver_synth_attr_event(session, attr, id);
3723 	if (err)
3724 		pr_err("%s: failed to synthesize '%s' event type\n",
3725 		       __func__, name);
3726 
3727 	return err;
3728 }
3729 
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)3730 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3731 				    const char *name)
3732 {
3733 	struct evsel *evsel;
3734 
3735 	evlist__for_each_entry(evlist, evsel) {
3736 		if (evsel->core.id && evsel->core.id[0] == id) {
3737 			if (evsel->name)
3738 				zfree(&evsel->name);
3739 			evsel->name = strdup(name);
3740 			break;
3741 		}
3742 	}
3743 }
3744 
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)3745 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3746 					 struct evlist *evlist)
3747 {
3748 	struct evsel *evsel;
3749 
3750 	evlist__for_each_entry(evlist, evsel) {
3751 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3752 			return evsel;
3753 	}
3754 
3755 	return NULL;
3756 }
3757 
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)3758 static int intel_pt_synth_events(struct intel_pt *pt,
3759 				 struct perf_session *session)
3760 {
3761 	struct evlist *evlist = session->evlist;
3762 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3763 	struct perf_event_attr attr;
3764 	u64 id;
3765 	int err;
3766 
3767 	if (!evsel) {
3768 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3769 		return 0;
3770 	}
3771 
3772 	memset(&attr, 0, sizeof(struct perf_event_attr));
3773 	attr.size = sizeof(struct perf_event_attr);
3774 	attr.type = PERF_TYPE_HARDWARE;
3775 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3776 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3777 			    PERF_SAMPLE_PERIOD;
3778 	if (pt->timeless_decoding)
3779 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3780 	else
3781 		attr.sample_type |= PERF_SAMPLE_TIME;
3782 	if (!pt->per_cpu_mmaps)
3783 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3784 	attr.exclude_user = evsel->core.attr.exclude_user;
3785 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3786 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3787 	attr.exclude_host = evsel->core.attr.exclude_host;
3788 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3789 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3790 	attr.read_format = evsel->core.attr.read_format;
3791 
3792 	id = evsel->core.id[0] + 1000000000;
3793 	if (!id)
3794 		id = 1;
3795 
3796 	if (pt->synth_opts.branches) {
3797 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3798 		attr.sample_period = 1;
3799 		attr.sample_type |= PERF_SAMPLE_ADDR;
3800 		err = intel_pt_synth_event(session, "branches", &attr, id);
3801 		if (err)
3802 			return err;
3803 		pt->sample_branches = true;
3804 		pt->branches_sample_type = attr.sample_type;
3805 		pt->branches_id = id;
3806 		id += 1;
3807 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3808 	}
3809 
3810 	if (pt->synth_opts.callchain)
3811 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3812 	if (pt->synth_opts.last_branch) {
3813 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3814 		/*
3815 		 * We don't use the hardware index, but the sample generation
3816 		 * code uses the new format branch_stack with this field,
3817 		 * so the event attributes must indicate that it's present.
3818 		 */
3819 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3820 	}
3821 
3822 	if (pt->synth_opts.instructions) {
3823 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3824 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3825 			attr.sample_period =
3826 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3827 		else
3828 			attr.sample_period = pt->synth_opts.period;
3829 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3830 		if (err)
3831 			return err;
3832 		pt->sample_instructions = true;
3833 		pt->instructions_sample_type = attr.sample_type;
3834 		pt->instructions_id = id;
3835 		id += 1;
3836 	}
3837 
3838 	if (pt->synth_opts.cycles) {
3839 		attr.config = PERF_COUNT_HW_CPU_CYCLES;
3840 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3841 			attr.sample_period =
3842 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3843 		else
3844 			attr.sample_period = pt->synth_opts.period;
3845 		err = intel_pt_synth_event(session, "cycles", &attr, id);
3846 		if (err)
3847 			return err;
3848 		pt->sample_cycles = true;
3849 		pt->cycles_sample_type = attr.sample_type;
3850 		pt->cycles_id = id;
3851 		id += 1;
3852 	}
3853 
3854 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3855 	attr.sample_period = 1;
3856 
3857 	if (pt->synth_opts.transactions) {
3858 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3859 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3860 		if (err)
3861 			return err;
3862 		pt->sample_transactions = true;
3863 		pt->transactions_sample_type = attr.sample_type;
3864 		pt->transactions_id = id;
3865 		intel_pt_set_event_name(evlist, id, "transactions");
3866 		id += 1;
3867 	}
3868 
3869 	attr.type = PERF_TYPE_SYNTH;
3870 	attr.sample_type |= PERF_SAMPLE_RAW;
3871 
3872 	if (pt->synth_opts.ptwrites) {
3873 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3874 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3875 		if (err)
3876 			return err;
3877 		pt->sample_ptwrites = true;
3878 		pt->ptwrites_sample_type = attr.sample_type;
3879 		pt->ptwrites_id = id;
3880 		intel_pt_set_event_name(evlist, id, "ptwrite");
3881 		id += 1;
3882 	}
3883 
3884 	if (pt->synth_opts.pwr_events) {
3885 		pt->sample_pwr_events = true;
3886 		pt->pwr_events_sample_type = attr.sample_type;
3887 
3888 		attr.config = PERF_SYNTH_INTEL_CBR;
3889 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3890 		if (err)
3891 			return err;
3892 		pt->cbr_id = id;
3893 		intel_pt_set_event_name(evlist, id, "cbr");
3894 		id += 1;
3895 
3896 		attr.config = PERF_SYNTH_INTEL_PSB;
3897 		err = intel_pt_synth_event(session, "psb", &attr, id);
3898 		if (err)
3899 			return err;
3900 		pt->psb_id = id;
3901 		intel_pt_set_event_name(evlist, id, "psb");
3902 		id += 1;
3903 	}
3904 
3905 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3906 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3907 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3908 		if (err)
3909 			return err;
3910 		pt->mwait_id = id;
3911 		intel_pt_set_event_name(evlist, id, "mwait");
3912 		id += 1;
3913 
3914 		attr.config = PERF_SYNTH_INTEL_PWRE;
3915 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3916 		if (err)
3917 			return err;
3918 		pt->pwre_id = id;
3919 		intel_pt_set_event_name(evlist, id, "pwre");
3920 		id += 1;
3921 
3922 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3923 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3924 		if (err)
3925 			return err;
3926 		pt->exstop_id = id;
3927 		intel_pt_set_event_name(evlist, id, "exstop");
3928 		id += 1;
3929 
3930 		attr.config = PERF_SYNTH_INTEL_PWRX;
3931 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3932 		if (err)
3933 			return err;
3934 		pt->pwrx_id = id;
3935 		intel_pt_set_event_name(evlist, id, "pwrx");
3936 		id += 1;
3937 	}
3938 
3939 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3940 		attr.config = PERF_SYNTH_INTEL_EVT;
3941 		err = intel_pt_synth_event(session, "evt", &attr, id);
3942 		if (err)
3943 			return err;
3944 		pt->evt_sample_type = attr.sample_type;
3945 		pt->evt_id = id;
3946 		intel_pt_set_event_name(evlist, id, "evt");
3947 		id += 1;
3948 	}
3949 
3950 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3951 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3952 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3953 		if (err)
3954 			return err;
3955 		pt->iflag_chg_sample_type = attr.sample_type;
3956 		pt->iflag_chg_id = id;
3957 		intel_pt_set_event_name(evlist, id, "iflag");
3958 		id += 1;
3959 	}
3960 
3961 	return 0;
3962 }
3963 
intel_pt_setup_pebs_events(struct intel_pt * pt)3964 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3965 {
3966 	struct evsel *evsel;
3967 
3968 	if (!pt->synth_opts.other_events)
3969 		return;
3970 
3971 	evlist__for_each_entry(pt->session->evlist, evsel) {
3972 		if (evsel->core.attr.aux_output && evsel->core.id) {
3973 			if (pt->single_pebs) {
3974 				pt->single_pebs = false;
3975 				return;
3976 			}
3977 			pt->single_pebs = true;
3978 			pt->sample_pebs = true;
3979 			pt->pebs_evsel = evsel;
3980 		}
3981 	}
3982 }
3983 
intel_pt_find_sched_switch(struct evlist * evlist)3984 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3985 {
3986 	struct evsel *evsel;
3987 
3988 	evlist__for_each_entry_reverse(evlist, evsel) {
3989 		const char *name = evsel__name(evsel);
3990 
3991 		if (!strcmp(name, "sched:sched_switch"))
3992 			return evsel;
3993 	}
3994 
3995 	return NULL;
3996 }
3997 
intel_pt_find_switch(struct evlist * evlist)3998 static bool intel_pt_find_switch(struct evlist *evlist)
3999 {
4000 	struct evsel *evsel;
4001 
4002 	evlist__for_each_entry(evlist, evsel) {
4003 		if (evsel->core.attr.context_switch)
4004 			return true;
4005 	}
4006 
4007 	return false;
4008 }
4009 
intel_pt_perf_config(const char * var,const char * value,void * data)4010 static int intel_pt_perf_config(const char *var, const char *value, void *data)
4011 {
4012 	struct intel_pt *pt = data;
4013 
4014 	if (!strcmp(var, "intel-pt.mispred-all"))
4015 		pt->mispred_all = perf_config_bool(var, value);
4016 
4017 	if (!strcmp(var, "intel-pt.max-loops"))
4018 		perf_config_int(&pt->max_loops, var, value);
4019 
4020 	return 0;
4021 }
4022 
4023 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)4024 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
4025 {
4026 	u64 tsc, tm;
4027 
4028 	tsc = perf_time_to_tsc(ns, &pt->tc);
4029 
4030 	while (1) {
4031 		tm = tsc_to_perf_time(tsc, &pt->tc);
4032 		if (tm < ns)
4033 			break;
4034 		tsc -= 1;
4035 	}
4036 
4037 	while (tm < ns)
4038 		tm = tsc_to_perf_time(++tsc, &pt->tc);
4039 
4040 	return tsc;
4041 }
4042 
4043 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)4044 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4045 {
4046 	u64 tsc, tm;
4047 
4048 	tsc = perf_time_to_tsc(ns, &pt->tc);
4049 
4050 	while (1) {
4051 		tm = tsc_to_perf_time(tsc, &pt->tc);
4052 		if (tm > ns)
4053 			break;
4054 		tsc += 1;
4055 	}
4056 
4057 	while (tm > ns)
4058 		tm = tsc_to_perf_time(--tsc, &pt->tc);
4059 
4060 	return tsc;
4061 }
4062 
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)4063 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4064 				      struct itrace_synth_opts *opts)
4065 {
4066 	struct perf_time_interval *p = opts->ptime_range;
4067 	int n = opts->range_num;
4068 	int i;
4069 
4070 	if (!n || !p || pt->timeless_decoding)
4071 		return 0;
4072 
4073 	pt->time_ranges = calloc(n, sizeof(struct range));
4074 	if (!pt->time_ranges)
4075 		return -ENOMEM;
4076 
4077 	pt->range_cnt = n;
4078 
4079 	intel_pt_log("%s: %u range(s)\n", __func__, n);
4080 
4081 	for (i = 0; i < n; i++) {
4082 		struct range *r = &pt->time_ranges[i];
4083 		u64 ts = p[i].start;
4084 		u64 te = p[i].end;
4085 
4086 		/*
4087 		 * Take care to ensure the TSC range matches the perf-time range
4088 		 * when converted back to perf-time.
4089 		 */
4090 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4091 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4092 
4093 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4094 			     i, ts, te);
4095 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4096 			     i, r->start, r->end);
4097 	}
4098 
4099 	return 0;
4100 }
4101 
intel_pt_parse_vm_tm_corr_arg(struct intel_pt * pt,char ** args)4102 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4103 {
4104 	struct intel_pt_vmcs_info *vmcs_info;
4105 	u64 tsc_offset, vmcs;
4106 	char *p = *args;
4107 
4108 	errno = 0;
4109 
4110 	p = skip_spaces(p);
4111 	if (!*p)
4112 		return 1;
4113 
4114 	tsc_offset = strtoull(p, &p, 0);
4115 	if (errno)
4116 		return -errno;
4117 	p = skip_spaces(p);
4118 	if (*p != ':') {
4119 		pt->dflt_tsc_offset = tsc_offset;
4120 		*args = p;
4121 		return 0;
4122 	}
4123 	p += 1;
4124 	while (1) {
4125 		vmcs = strtoull(p, &p, 0);
4126 		if (errno)
4127 			return -errno;
4128 		if (!vmcs)
4129 			return -EINVAL;
4130 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4131 		if (!vmcs_info)
4132 			return -ENOMEM;
4133 		p = skip_spaces(p);
4134 		if (*p != ',')
4135 			break;
4136 		p += 1;
4137 	}
4138 	*args = p;
4139 	return 0;
4140 }
4141 
intel_pt_parse_vm_tm_corr_args(struct intel_pt * pt)4142 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4143 {
4144 	char *args = pt->synth_opts.vm_tm_corr_args;
4145 	int ret;
4146 
4147 	if (!args)
4148 		return 0;
4149 
4150 	do {
4151 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4152 	} while (!ret);
4153 
4154 	if (ret < 0) {
4155 		pr_err("Failed to parse VM Time Correlation options\n");
4156 		return ret;
4157 	}
4158 
4159 	return 0;
4160 }
4161 
4162 static const char * const intel_pt_info_fmts[] = {
4163 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4164 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4165 	[INTEL_PT_TIME_MULT]		= "  Time Multiplier     %"PRIu64"\n",
4166 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4167 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4168 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4169 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4170 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4171 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4172 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4173 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4174 	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4175 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4176 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4177 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4178 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4179 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4180 };
4181 
intel_pt_print_info(__u64 * arr,int start,int finish)4182 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4183 {
4184 	int i;
4185 
4186 	if (!dump_trace)
4187 		return;
4188 
4189 	for (i = start; i <= finish; i++) {
4190 		const char *fmt = intel_pt_info_fmts[i];
4191 
4192 		if (fmt)
4193 			fprintf(stdout, fmt, arr[i]);
4194 	}
4195 }
4196 
intel_pt_print_info_str(const char * name,const char * str)4197 static void intel_pt_print_info_str(const char *name, const char *str)
4198 {
4199 	if (!dump_trace)
4200 		return;
4201 
4202 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4203 }
4204 
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)4205 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4206 {
4207 	return auxtrace_info->header.size >=
4208 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4209 }
4210 
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)4211 int intel_pt_process_auxtrace_info(union perf_event *event,
4212 				   struct perf_session *session)
4213 {
4214 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4215 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4216 	struct intel_pt *pt;
4217 	void *info_end;
4218 	__u64 *info;
4219 	int err;
4220 
4221 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4222 					min_sz)
4223 		return -EINVAL;
4224 
4225 	pt = zalloc(sizeof(struct intel_pt));
4226 	if (!pt)
4227 		return -ENOMEM;
4228 
4229 	pt->vmcs_info = RB_ROOT;
4230 
4231 	addr_filters__init(&pt->filts);
4232 
4233 	err = perf_config(intel_pt_perf_config, pt);
4234 	if (err)
4235 		goto err_free;
4236 
4237 	err = auxtrace_queues__init(&pt->queues);
4238 	if (err)
4239 		goto err_free;
4240 
4241 	if (session->itrace_synth_opts->set) {
4242 		pt->synth_opts = *session->itrace_synth_opts;
4243 	} else {
4244 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4245 
4246 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4247 		if (!opts->default_no_sample && !opts->inject) {
4248 			pt->synth_opts.branches = false;
4249 			pt->synth_opts.callchain = true;
4250 			pt->synth_opts.add_callchain = true;
4251 		}
4252 		pt->synth_opts.thread_stack = opts->thread_stack;
4253 	}
4254 
4255 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4256 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4257 
4258 	pt->session = session;
4259 	pt->machine = &session->machines.host; /* No kvm support */
4260 	pt->auxtrace_type = auxtrace_info->type;
4261 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4262 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4263 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4264 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4265 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4266 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4267 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4268 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4269 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4270 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4271 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4272 			    INTEL_PT_PER_CPU_MMAPS);
4273 
4274 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4275 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4276 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4277 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4278 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4279 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4280 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4281 				    INTEL_PT_CYC_BIT);
4282 	}
4283 
4284 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4285 		pt->max_non_turbo_ratio =
4286 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4287 		intel_pt_print_info(&auxtrace_info->priv[0],
4288 				    INTEL_PT_MAX_NONTURBO_RATIO,
4289 				    INTEL_PT_MAX_NONTURBO_RATIO);
4290 	}
4291 
4292 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4293 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4294 
4295 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4296 		size_t len;
4297 
4298 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4299 		intel_pt_print_info(&auxtrace_info->priv[0],
4300 				    INTEL_PT_FILTER_STR_LEN,
4301 				    INTEL_PT_FILTER_STR_LEN);
4302 		if (len) {
4303 			const char *filter = (const char *)info;
4304 
4305 			len = roundup(len + 1, 8);
4306 			info += len >> 3;
4307 			if ((void *)info > info_end) {
4308 				pr_err("%s: bad filter string length\n", __func__);
4309 				err = -EINVAL;
4310 				goto err_free_queues;
4311 			}
4312 			pt->filter = memdup(filter, len);
4313 			if (!pt->filter) {
4314 				err = -ENOMEM;
4315 				goto err_free_queues;
4316 			}
4317 			if (session->header.needs_swap)
4318 				mem_bswap_64(pt->filter, len);
4319 			if (pt->filter[len - 1]) {
4320 				pr_err("%s: filter string not null terminated\n", __func__);
4321 				err = -EINVAL;
4322 				goto err_free_queues;
4323 			}
4324 			err = addr_filters__parse_bare_filter(&pt->filts,
4325 							      filter);
4326 			if (err)
4327 				goto err_free_queues;
4328 		}
4329 		intel_pt_print_info_str("Filter string", pt->filter);
4330 	}
4331 
4332 	if ((void *)info < info_end) {
4333 		pt->cap_event_trace = *info++;
4334 		if (dump_trace)
4335 			fprintf(stdout, "  Cap Event Trace     %d\n",
4336 				pt->cap_event_trace);
4337 	}
4338 
4339 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4340 	if (pt->timeless_decoding && !pt->tc.time_mult)
4341 		pt->tc.time_mult = 1;
4342 	pt->have_tsc = intel_pt_have_tsc(pt);
4343 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4344 	pt->est_tsc = !pt->timeless_decoding;
4345 
4346 	if (pt->synth_opts.vm_time_correlation) {
4347 		if (pt->timeless_decoding) {
4348 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4349 			err = -EINVAL;
4350 			goto err_free_queues;
4351 		}
4352 		if (session->itrace_synth_opts->ptime_range) {
4353 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4354 			err = -EINVAL;
4355 			goto err_free_queues;
4356 		}
4357 		/* Currently TSC Offset is calculated using MTC packets */
4358 		if (!intel_pt_have_mtc(pt)) {
4359 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4360 			err = -EINVAL;
4361 			goto err_free_queues;
4362 		}
4363 		err = intel_pt_parse_vm_tm_corr_args(pt);
4364 		if (err)
4365 			goto err_free_queues;
4366 	}
4367 
4368 	pt->unknown_thread = thread__new(999999999, 999999999);
4369 	if (!pt->unknown_thread) {
4370 		err = -ENOMEM;
4371 		goto err_free_queues;
4372 	}
4373 
4374 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4375 	if (err)
4376 		goto err_delete_thread;
4377 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4378 		err = -ENOMEM;
4379 		goto err_delete_thread;
4380 	}
4381 
4382 	pt->auxtrace.process_event = intel_pt_process_event;
4383 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4384 	pt->auxtrace.queue_data = intel_pt_queue_data;
4385 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4386 	pt->auxtrace.flush_events = intel_pt_flush;
4387 	pt->auxtrace.free_events = intel_pt_free_events;
4388 	pt->auxtrace.free = intel_pt_free;
4389 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4390 	session->auxtrace = &pt->auxtrace;
4391 
4392 	if (dump_trace)
4393 		return 0;
4394 
4395 	if (pt->have_sched_switch == 1) {
4396 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4397 		if (!pt->switch_evsel) {
4398 			pr_err("%s: missing sched_switch event\n", __func__);
4399 			err = -EINVAL;
4400 			goto err_delete_thread;
4401 		}
4402 	} else if (pt->have_sched_switch == 2 &&
4403 		   !intel_pt_find_switch(session->evlist)) {
4404 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4405 		err = -EINVAL;
4406 		goto err_delete_thread;
4407 	}
4408 
4409 	if (pt->synth_opts.log) {
4410 		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4411 		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4412 
4413 		intel_pt_log_enable(log_on_error, log_on_error_size);
4414 	}
4415 
4416 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4417 	if (pt->tc.time_mult) {
4418 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4419 
4420 		if (!pt->max_non_turbo_ratio)
4421 			pt->max_non_turbo_ratio =
4422 					(tsc_freq + 50000000) / 100000000;
4423 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4424 		intel_pt_log("Maximum non-turbo ratio %u\n",
4425 			     pt->max_non_turbo_ratio);
4426 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4427 	}
4428 
4429 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4430 	if (err)
4431 		goto err_delete_thread;
4432 
4433 	if (pt->synth_opts.calls)
4434 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4435 				       PERF_IP_FLAG_TRACE_END;
4436 	if (pt->synth_opts.returns)
4437 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4438 				       PERF_IP_FLAG_TRACE_BEGIN;
4439 
4440 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4441 	    !symbol_conf.use_callchain) {
4442 		symbol_conf.use_callchain = true;
4443 		if (callchain_register_param(&callchain_param) < 0) {
4444 			symbol_conf.use_callchain = false;
4445 			pt->synth_opts.callchain = false;
4446 			pt->synth_opts.add_callchain = false;
4447 		}
4448 	}
4449 
4450 	if (pt->synth_opts.add_callchain) {
4451 		err = intel_pt_callchain_init(pt);
4452 		if (err)
4453 			goto err_delete_thread;
4454 	}
4455 
4456 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4457 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4458 		pt->br_stack_sz_plus = pt->br_stack_sz;
4459 	}
4460 
4461 	if (pt->synth_opts.add_last_branch) {
4462 		err = intel_pt_br_stack_init(pt);
4463 		if (err)
4464 			goto err_delete_thread;
4465 		/*
4466 		 * Additional branch stack size to cater for tracing from the
4467 		 * actual sample ip to where the sample time is recorded.
4468 		 * Measured at about 200 branches, but generously set to 1024.
4469 		 * If kernel space is not being traced, then add just 1 for the
4470 		 * branch to kernel space.
4471 		 */
4472 		if (intel_pt_tracing_kernel(pt))
4473 			pt->br_stack_sz_plus += 1024;
4474 		else
4475 			pt->br_stack_sz_plus += 1;
4476 	}
4477 
4478 	pt->use_thread_stack = pt->synth_opts.callchain ||
4479 			       pt->synth_opts.add_callchain ||
4480 			       pt->synth_opts.thread_stack ||
4481 			       pt->synth_opts.last_branch ||
4482 			       pt->synth_opts.add_last_branch;
4483 
4484 	pt->callstack = pt->synth_opts.callchain ||
4485 			pt->synth_opts.add_callchain ||
4486 			pt->synth_opts.thread_stack;
4487 
4488 	err = intel_pt_synth_events(pt, session);
4489 	if (err)
4490 		goto err_delete_thread;
4491 
4492 	intel_pt_setup_pebs_events(pt);
4493 
4494 	if (perf_data__is_pipe(session->data)) {
4495 		pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4496 			   "         The output cannot relied upon.  In particular,\n"
4497 			   "         timestamps and the order of events may be incorrect.\n");
4498 	}
4499 
4500 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4501 		err = auxtrace_queue_data(session, true, true);
4502 	else
4503 		err = auxtrace_queues__process_index(&pt->queues, session);
4504 	if (err)
4505 		goto err_delete_thread;
4506 
4507 	if (pt->queues.populated)
4508 		pt->data_queued = true;
4509 
4510 	if (pt->timeless_decoding)
4511 		pr_debug2("Intel PT decoding without timestamps\n");
4512 
4513 	return 0;
4514 
4515 err_delete_thread:
4516 	zfree(&pt->chain);
4517 	thread__zput(pt->unknown_thread);
4518 err_free_queues:
4519 	intel_pt_log_disable();
4520 	auxtrace_queues__free(&pt->queues);
4521 	session->auxtrace = NULL;
4522 err_free:
4523 	addr_filters__exit(&pt->filts);
4524 	zfree(&pt->filter);
4525 	zfree(&pt->time_ranges);
4526 	free(pt);
4527 	return err;
4528 }
4529