1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47
48 #define MAX_TIMESTAMP (~0ULL)
49
50 #define INTEL_PT_CFG_PASS_THRU BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS BIT_ULL(55)
55
56 struct range {
57 u64 start;
58 u64 end;
59 };
60
61 struct intel_pt {
62 struct auxtrace auxtrace;
63 struct auxtrace_queues queues;
64 struct auxtrace_heap heap;
65 u32 auxtrace_type;
66 struct perf_session *session;
67 struct machine *machine;
68 struct evsel *switch_evsel;
69 struct thread *unknown_thread;
70 bool timeless_decoding;
71 bool sampling_mode;
72 bool snapshot_mode;
73 bool per_cpu_mmaps;
74 bool have_tsc;
75 bool data_queued;
76 bool est_tsc;
77 bool sync_switch;
78 bool sync_switch_not_supported;
79 bool mispred_all;
80 bool use_thread_stack;
81 bool callstack;
82 bool cap_event_trace;
83 bool have_guest_sideband;
84 unsigned int br_stack_sz;
85 unsigned int br_stack_sz_plus;
86 int have_sched_switch;
87 u32 pmu_type;
88 u64 kernel_start;
89 u64 switch_ip;
90 u64 ptss_ip;
91 u64 first_timestamp;
92
93 struct perf_tsc_conversion tc;
94 bool cap_user_time_zero;
95
96 struct itrace_synth_opts synth_opts;
97
98 bool sample_instructions;
99 u64 instructions_sample_type;
100 u64 instructions_id;
101
102 bool sample_cycles;
103 u64 cycles_sample_type;
104 u64 cycles_id;
105
106 bool sample_branches;
107 u32 branches_filter;
108 u64 branches_sample_type;
109 u64 branches_id;
110
111 bool sample_transactions;
112 u64 transactions_sample_type;
113 u64 transactions_id;
114
115 bool sample_ptwrites;
116 u64 ptwrites_sample_type;
117 u64 ptwrites_id;
118
119 bool sample_pwr_events;
120 u64 pwr_events_sample_type;
121 u64 mwait_id;
122 u64 pwre_id;
123 u64 exstop_id;
124 u64 pwrx_id;
125 u64 cbr_id;
126 u64 psb_id;
127
128 bool single_pebs;
129 bool sample_pebs;
130 struct evsel *pebs_evsel;
131
132 u64 evt_sample_type;
133 u64 evt_id;
134
135 u64 iflag_chg_sample_type;
136 u64 iflag_chg_id;
137
138 u64 tsc_bit;
139 u64 mtc_bit;
140 u64 mtc_freq_bits;
141 u32 tsc_ctc_ratio_n;
142 u32 tsc_ctc_ratio_d;
143 u64 cyc_bit;
144 u64 noretcomp_bit;
145 unsigned max_non_turbo_ratio;
146 unsigned cbr2khz;
147 int max_loops;
148
149 unsigned long num_events;
150
151 char *filter;
152 struct addr_filters filts;
153
154 struct range *time_ranges;
155 unsigned int range_cnt;
156
157 struct ip_callchain *chain;
158 struct branch_stack *br_stack;
159
160 u64 dflt_tsc_offset;
161 struct rb_root vmcs_info;
162 };
163
164 enum switch_state {
165 INTEL_PT_SS_NOT_TRACING,
166 INTEL_PT_SS_UNKNOWN,
167 INTEL_PT_SS_TRACING,
168 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169 INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174
175 struct intel_pt_pebs_event {
176 struct evsel *evsel;
177 u64 id;
178 };
179
180 struct intel_pt_queue {
181 struct intel_pt *pt;
182 unsigned int queue_nr;
183 struct auxtrace_buffer *buffer;
184 struct auxtrace_buffer *old_buffer;
185 void *decoder;
186 const struct intel_pt_state *state;
187 struct ip_callchain *chain;
188 struct branch_stack *last_branch;
189 union perf_event *event_buf;
190 bool on_heap;
191 bool stop;
192 bool step_through_buffers;
193 bool use_buffer_pid_tid;
194 bool sync_switch;
195 bool sample_ipc;
196 pid_t pid, tid;
197 int cpu;
198 int switch_state;
199 pid_t next_tid;
200 struct thread *thread;
201 struct machine *guest_machine;
202 struct thread *guest_thread;
203 struct thread *unknown_guest_thread;
204 pid_t guest_machine_pid;
205 pid_t guest_pid;
206 pid_t guest_tid;
207 int vcpu;
208 bool exclude_kernel;
209 bool have_sample;
210 u64 time;
211 u64 timestamp;
212 u64 sel_timestamp;
213 bool sel_start;
214 unsigned int sel_idx;
215 u32 flags;
216 u16 insn_len;
217 u64 last_insn_cnt;
218 u64 ipc_insn_cnt;
219 u64 ipc_cyc_cnt;
220 u64 last_in_insn_cnt;
221 u64 last_in_cyc_cnt;
222 u64 last_cy_insn_cnt;
223 u64 last_cy_cyc_cnt;
224 u64 last_br_insn_cnt;
225 u64 last_br_cyc_cnt;
226 unsigned int cbr_seen;
227 char insn[INTEL_PT_INSN_BUF_SZ];
228 struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232 unsigned char *buf, size_t len)
233 {
234 struct intel_pt_pkt packet;
235 size_t pos = 0;
236 int ret, pkt_len, i;
237 char desc[INTEL_PT_PKT_DESC_MAX];
238 const char *color = PERF_COLOR_BLUE;
239 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240
241 color_fprintf(stdout, color,
242 ". ... Intel Processor Trace data: size %zu bytes\n",
243 len);
244
245 while (len) {
246 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247 if (ret > 0)
248 pkt_len = ret;
249 else
250 pkt_len = 1;
251 printf(".");
252 color_fprintf(stdout, color, " %08zx: ", pos);
253 for (i = 0; i < pkt_len; i++)
254 color_fprintf(stdout, color, " %02x", buf[i]);
255 for (; i < 16; i++)
256 color_fprintf(stdout, color, " ");
257 if (ret > 0) {
258 ret = intel_pt_pkt_desc(&packet, desc,
259 INTEL_PT_PKT_DESC_MAX);
260 if (ret > 0)
261 color_fprintf(stdout, color, " %s\n", desc);
262 } else {
263 color_fprintf(stdout, color, " Bad packet!\n");
264 }
265 pos += pkt_len;
266 buf += pkt_len;
267 len -= pkt_len;
268 }
269 }
270
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272 size_t len)
273 {
274 printf(".\n");
275 intel_pt_dump(pt, buf, len);
276 }
277
intel_pt_log_event(union perf_event * event)278 static void intel_pt_log_event(union perf_event *event)
279 {
280 FILE *f = intel_pt_log_fp();
281
282 if (!intel_pt_enable_logging || !f)
283 return;
284
285 perf_event__fprintf(event, NULL, f);
286 }
287
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)288 static void intel_pt_dump_sample(struct perf_session *session,
289 struct perf_sample *sample)
290 {
291 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292 auxtrace);
293
294 printf("\n");
295 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297
intel_pt_log_events(struct intel_pt * pt,u64 tm)298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300 struct perf_time_interval *range = pt->synth_opts.ptime_range;
301 int n = pt->synth_opts.range_num;
302
303 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304 return true;
305
306 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307 return false;
308
309 /* perf_time__ranges_skip_sample does not work if time is zero */
310 if (!tm)
311 tm = 1;
312
313 return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315
intel_pt_findnew_vmcs(struct rb_root * rb_root,u64 vmcs,u64 dflt_tsc_offset)316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317 u64 vmcs,
318 u64 dflt_tsc_offset)
319 {
320 struct rb_node **p = &rb_root->rb_node;
321 struct rb_node *parent = NULL;
322 struct intel_pt_vmcs_info *v;
323
324 while (*p) {
325 parent = *p;
326 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327
328 if (v->vmcs == vmcs)
329 return v;
330
331 if (vmcs < v->vmcs)
332 p = &(*p)->rb_left;
333 else
334 p = &(*p)->rb_right;
335 }
336
337 v = zalloc(sizeof(*v));
338 if (v) {
339 v->vmcs = vmcs;
340 v->tsc_offset = dflt_tsc_offset;
341 v->reliable = dflt_tsc_offset;
342
343 rb_link_node(&v->rb_node, parent, p);
344 rb_insert_color(&v->rb_node, rb_root);
345 }
346
347 return v;
348 }
349
intel_pt_findnew_vmcs_info(void * data,uint64_t vmcs)350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352 struct intel_pt_queue *ptq = data;
353 struct intel_pt *pt = ptq->pt;
354
355 if (!vmcs && !pt->dflt_tsc_offset)
356 return NULL;
357
358 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360
intel_pt_free_vmcs_info(struct intel_pt * pt)361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363 struct intel_pt_vmcs_info *v;
364 struct rb_node *n;
365
366 n = rb_first(&pt->vmcs_info);
367 while (n) {
368 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369 n = rb_next(n);
370 rb_erase(&v->rb_node, &pt->vmcs_info);
371 free(v);
372 }
373 }
374
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376 struct auxtrace_buffer *b)
377 {
378 bool consecutive = false;
379 void *start;
380
381 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382 pt->have_tsc, &consecutive,
383 pt->synth_opts.vm_time_correlation);
384 if (!start)
385 return -EINVAL;
386 /*
387 * In the case of vm_time_correlation, the overlap might contain TSC
388 * packets that will not be fixed, and that will then no longer work for
389 * overlap detection. Avoid that by zeroing out the overlap.
390 */
391 if (pt->synth_opts.vm_time_correlation)
392 memset(b->data, 0, start - b->data);
393 b->use_size = b->data + b->size - start;
394 b->use_data = start;
395 if (b->use_size && consecutive)
396 b->consecutive = true;
397 return 0;
398 }
399
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401 struct auxtrace_buffer *buffer,
402 struct auxtrace_buffer *old_buffer,
403 struct intel_pt_buffer *b)
404 {
405 bool might_overlap;
406
407 if (!buffer->data) {
408 int fd = perf_data__fd(ptq->pt->session->data);
409
410 buffer->data = auxtrace_buffer__get_data(buffer, fd);
411 if (!buffer->data)
412 return -ENOMEM;
413 }
414
415 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416 if (might_overlap && !buffer->consecutive && old_buffer &&
417 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418 return -ENOMEM;
419
420 if (buffer->use_data) {
421 b->len = buffer->use_size;
422 b->buf = buffer->use_data;
423 } else {
424 b->len = buffer->size;
425 b->buf = buffer->data;
426 }
427 b->ref_timestamp = buffer->reference;
428
429 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430 b->consecutive = false;
431 b->trace_nr = buffer->buffer_nr + 1;
432 } else {
433 b->consecutive = true;
434 }
435
436 return 0;
437 }
438
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441 struct auxtrace_buffer *buffer)
442 {
443 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444 return;
445
446 auxtrace_buffer__drop_data(buffer);
447 }
448
449 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451 void *cb_data)
452 {
453 struct intel_pt_queue *ptq = data;
454 struct auxtrace_buffer *buffer = ptq->buffer;
455 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456 struct auxtrace_queue *queue;
457 int err = 0;
458
459 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460
461 while (1) {
462 struct intel_pt_buffer b = { .len = 0 };
463
464 buffer = auxtrace_buffer__next(queue, buffer);
465 if (!buffer)
466 break;
467
468 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469 if (err)
470 break;
471
472 if (b.len) {
473 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474 old_buffer = buffer;
475 } else {
476 intel_pt_lookahead_drop_buffer(ptq, buffer);
477 continue;
478 }
479
480 err = cb(&b, cb_data);
481 if (err)
482 break;
483 }
484
485 if (buffer != old_buffer)
486 intel_pt_lookahead_drop_buffer(ptq, buffer);
487 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488
489 return err;
490 }
491
492 /*
493 * This function assumes data is processed sequentially only.
494 * Must be serialized with respect to intel_pt_lookahead()
495 */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498 struct intel_pt_queue *ptq = data;
499 struct auxtrace_buffer *buffer = ptq->buffer;
500 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501 struct auxtrace_queue *queue;
502 int err;
503
504 if (ptq->stop) {
505 b->len = 0;
506 return 0;
507 }
508
509 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510
511 buffer = auxtrace_buffer__next(queue, buffer);
512 if (!buffer) {
513 if (old_buffer)
514 auxtrace_buffer__drop_data(old_buffer);
515 b->len = 0;
516 return 0;
517 }
518
519 ptq->buffer = buffer;
520
521 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522 if (err)
523 return err;
524
525 if (ptq->step_through_buffers)
526 ptq->stop = true;
527
528 if (b->len) {
529 if (old_buffer)
530 auxtrace_buffer__drop_data(old_buffer);
531 ptq->old_buffer = buffer;
532 } else {
533 auxtrace_buffer__drop_data(buffer);
534 return intel_pt_get_trace(b, data);
535 }
536
537 return 0;
538 }
539
540 struct intel_pt_cache_entry {
541 struct auxtrace_cache_entry entry;
542 u64 insn_cnt;
543 u64 byte_cnt;
544 enum intel_pt_insn_op op;
545 enum intel_pt_insn_branch branch;
546 bool emulated_ptwrite;
547 int length;
548 int32_t rel;
549 char insn[INTEL_PT_INSN_BUF_SZ];
550 };
551
intel_pt_config_div(const char * var,const char * value,void * data)552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554 int *d = data;
555 long val;
556
557 if (!strcmp(var, "intel-pt.cache-divisor")) {
558 val = strtol(value, NULL, 0);
559 if (val > 0 && val <= INT_MAX)
560 *d = val;
561 }
562
563 return 0;
564 }
565
intel_pt_cache_divisor(void)566 static int intel_pt_cache_divisor(void)
567 {
568 static int d;
569
570 if (d)
571 return d;
572
573 perf_config(intel_pt_config_div, &d);
574
575 if (!d)
576 d = 64;
577
578 return d;
579 }
580
intel_pt_cache_size(struct dso * dso,struct machine * machine)581 static unsigned int intel_pt_cache_size(struct dso *dso,
582 struct machine *machine)
583 {
584 off_t size;
585
586 size = dso__data_size(dso, machine);
587 size /= intel_pt_cache_divisor();
588 if (size < 1000)
589 return 10;
590 if (size > (1 << 21))
591 return 21;
592 return 32 - __builtin_clz(size);
593 }
594
intel_pt_cache(struct dso * dso,struct machine * machine)595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596 struct machine *machine)
597 {
598 struct auxtrace_cache *c;
599 unsigned int bits;
600
601 if (dso__auxtrace_cache(dso))
602 return dso__auxtrace_cache(dso);
603
604 bits = intel_pt_cache_size(dso, machine);
605
606 /* Ignoring cache creation failure */
607 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608
609 dso__set_auxtrace_cache(dso, c);
610
611 return c;
612 }
613
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615 u64 offset, u64 insn_cnt, u64 byte_cnt,
616 struct intel_pt_insn *intel_pt_insn)
617 {
618 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619 struct intel_pt_cache_entry *e;
620 int err;
621
622 if (!c)
623 return -ENOMEM;
624
625 e = auxtrace_cache__alloc_entry(c);
626 if (!e)
627 return -ENOMEM;
628
629 e->insn_cnt = insn_cnt;
630 e->byte_cnt = byte_cnt;
631 e->op = intel_pt_insn->op;
632 e->branch = intel_pt_insn->branch;
633 e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634 e->length = intel_pt_insn->length;
635 e->rel = intel_pt_insn->rel;
636 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637
638 err = auxtrace_cache__add(c, offset, &e->entry);
639 if (err)
640 auxtrace_cache__free_entry(c, e);
641
642 return err;
643 }
644
645 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649
650 if (!c)
651 return NULL;
652
653 return auxtrace_cache__lookup(dso__auxtrace_cache(dso), offset);
654 }
655
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657 u64 offset)
658 {
659 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660
661 if (!c)
662 return;
663
664 auxtrace_cache__remove(dso__auxtrace_cache(dso), offset);
665 }
666
intel_pt_guest_kernel_ip(uint64_t ip)667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669 /* Assumes 64-bit kernel */
670 return ip & (1ULL << 63);
671 }
672
intel_pt_nr_cpumode(struct intel_pt_queue * ptq,uint64_t ip,bool nr)673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675 if (nr) {
676 return intel_pt_guest_kernel_ip(ip) ?
677 PERF_RECORD_MISC_GUEST_KERNEL :
678 PERF_RECORD_MISC_GUEST_USER;
679 }
680
681 return ip >= ptq->pt->kernel_start ?
682 PERF_RECORD_MISC_KERNEL :
683 PERF_RECORD_MISC_USER;
684 }
685
intel_pt_cpumode(struct intel_pt_queue * ptq,uint64_t from_ip,uint64_t to_ip)686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688 /* No support for non-zero CS base */
689 if (from_ip)
690 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693
intel_pt_get_guest(struct intel_pt_queue * ptq)694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696 struct machines *machines = &ptq->pt->session->machines;
697 struct machine *machine;
698 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699
700 if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701 return 0;
702
703 ptq->guest_machine = NULL;
704 thread__zput(ptq->unknown_guest_thread);
705
706 if (symbol_conf.guest_code) {
707 thread__zput(ptq->guest_thread);
708 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709 }
710
711 machine = machines__find_guest(machines, pid);
712 if (!machine)
713 return -1;
714
715 ptq->unknown_guest_thread = machine__idle_thread(machine);
716 if (!ptq->unknown_guest_thread)
717 return -1;
718
719 ptq->guest_machine = machine;
720
721 return 0;
722 }
723
intel_pt_jmp_16(struct intel_pt_insn * intel_pt_insn)724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726 return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728
729 #define PTWRITE_MAGIC "\x0f\x0bperf,ptwrite "
730 #define PTWRITE_MAGIC_LEN 16
731
intel_pt_emulated_ptwrite(struct dso * dso,struct machine * machine,u64 offset)732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734 unsigned char buf[PTWRITE_MAGIC_LEN];
735 ssize_t len;
736
737 len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738 if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739 intel_pt_log("Emulated ptwrite signature found\n");
740 return true;
741 }
742 intel_pt_log("Emulated ptwrite signature not found\n");
743 return false;
744 }
745
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747 uint64_t *insn_cnt_ptr, uint64_t *ip,
748 uint64_t to_ip, uint64_t max_insn_cnt,
749 void *data)
750 {
751 struct intel_pt_queue *ptq = data;
752 struct machine *machine = ptq->pt->machine;
753 struct thread *thread;
754 struct addr_location al;
755 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756 ssize_t len;
757 int x86_64, ret = 0;
758 u8 cpumode;
759 u64 offset, start_offset, start_ip;
760 u64 insn_cnt = 0;
761 bool one_map = true;
762 bool nr;
763
764
765 addr_location__init(&al);
766 intel_pt_insn->length = 0;
767 intel_pt_insn->op = INTEL_PT_OP_OTHER;
768
769 if (to_ip && *ip == to_ip)
770 goto out_no_cache;
771
772 nr = ptq->state->to_nr;
773 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
774
775 if (nr) {
776 if (ptq->pt->have_guest_sideband) {
777 if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
778 intel_pt_log("ERROR: guest sideband but no guest machine\n");
779 ret = -EINVAL;
780 goto out_ret;
781 }
782 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
783 intel_pt_get_guest(ptq)) {
784 intel_pt_log("ERROR: no guest machine\n");
785 ret = -EINVAL;
786 goto out_ret;
787 }
788 machine = ptq->guest_machine;
789 thread = ptq->guest_thread;
790 if (!thread) {
791 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
792 intel_pt_log("ERROR: no guest thread\n");
793 ret = -EINVAL;
794 goto out_ret;
795 }
796 thread = ptq->unknown_guest_thread;
797 }
798 } else {
799 thread = ptq->thread;
800 if (!thread) {
801 if (cpumode != PERF_RECORD_MISC_KERNEL) {
802 intel_pt_log("ERROR: no thread\n");
803 ret = -EINVAL;
804 goto out_ret;
805 }
806 thread = ptq->pt->unknown_thread;
807 }
808 }
809
810 while (1) {
811 struct dso *dso;
812
813 if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
814 if (al.map)
815 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
816 else
817 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
818 addr_location__exit(&al);
819 ret = -EINVAL;
820 goto out_ret;
821 }
822 dso = map__dso(al.map);
823
824 if (dso__data(dso)->status == DSO_DATA_STATUS_ERROR &&
825 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
826 ret = -ENOENT;
827 goto out_ret;
828 }
829
830 offset = map__map_ip(al.map, *ip);
831
832 if (!to_ip && one_map) {
833 struct intel_pt_cache_entry *e;
834
835 e = intel_pt_cache_lookup(dso, machine, offset);
836 if (e &&
837 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
838 *insn_cnt_ptr = e->insn_cnt;
839 *ip += e->byte_cnt;
840 intel_pt_insn->op = e->op;
841 intel_pt_insn->branch = e->branch;
842 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
843 intel_pt_insn->length = e->length;
844 intel_pt_insn->rel = e->rel;
845 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
846 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
847 ret = 0;
848 goto out_ret;
849 }
850 }
851
852 start_offset = offset;
853 start_ip = *ip;
854
855 /* Load maps to ensure dso->is_64_bit has been updated */
856 map__load(al.map);
857
858 x86_64 = dso__is_64_bit(dso);
859
860 while (1) {
861 len = dso__data_read_offset(dso, machine,
862 offset, buf,
863 INTEL_PT_INSN_BUF_SZ);
864 if (len <= 0) {
865 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
866 offset);
867 if (intel_pt_enable_logging)
868 dso__fprintf(dso, intel_pt_log_fp());
869 ret = -EINVAL;
870 goto out_ret;
871 }
872
873 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
874 ret = -EINVAL;
875 goto out_ret;
876 }
877
878 intel_pt_log_insn(intel_pt_insn, *ip);
879
880 insn_cnt += 1;
881
882 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
883 bool eptw;
884 u64 offs;
885
886 if (!intel_pt_jmp_16(intel_pt_insn))
887 goto out;
888 /* Check for emulated ptwrite */
889 offs = offset + intel_pt_insn->length;
890 eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
891 intel_pt_insn->emulated_ptwrite = eptw;
892 goto out;
893 }
894
895 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
896 goto out_no_cache;
897
898 *ip += intel_pt_insn->length;
899
900 if (to_ip && *ip == to_ip) {
901 intel_pt_insn->length = 0;
902 intel_pt_insn->op = INTEL_PT_OP_OTHER;
903 goto out_no_cache;
904 }
905
906 if (*ip >= map__end(al.map))
907 break;
908
909 offset += intel_pt_insn->length;
910 }
911 one_map = false;
912 }
913 out:
914 *insn_cnt_ptr = insn_cnt;
915
916 if (!one_map)
917 goto out_no_cache;
918
919 /*
920 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
921 * entries.
922 */
923 if (to_ip) {
924 struct intel_pt_cache_entry *e;
925
926 e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
927 if (e)
928 goto out_ret;
929 }
930
931 /* Ignore cache errors */
932 intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
933 *ip - start_ip, intel_pt_insn);
934
935 out_ret:
936 addr_location__exit(&al);
937 return ret;
938
939 out_no_cache:
940 *insn_cnt_ptr = insn_cnt;
941 addr_location__exit(&al);
942 return 0;
943 }
944
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)945 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
946 uint64_t offset, const char *filename)
947 {
948 struct addr_filter *filt;
949 bool have_filter = false;
950 bool hit_tracestop = false;
951 bool hit_filter = false;
952
953 list_for_each_entry(filt, &pt->filts.head, list) {
954 if (filt->start)
955 have_filter = true;
956
957 if ((filename && !filt->filename) ||
958 (!filename && filt->filename) ||
959 (filename && strcmp(filename, filt->filename)))
960 continue;
961
962 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
963 continue;
964
965 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
966 ip, offset, filename ? filename : "[kernel]",
967 filt->start ? "filter" : "stop",
968 filt->addr, filt->size);
969
970 if (filt->start)
971 hit_filter = true;
972 else
973 hit_tracestop = true;
974 }
975
976 if (!hit_tracestop && !hit_filter)
977 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
978 ip, offset, filename ? filename : "[kernel]");
979
980 return hit_tracestop || (have_filter && !hit_filter);
981 }
982
__intel_pt_pgd_ip(uint64_t ip,void * data)983 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
984 {
985 struct intel_pt_queue *ptq = data;
986 struct thread *thread;
987 struct addr_location al;
988 u8 cpumode;
989 u64 offset;
990 int res;
991
992 if (ptq->state->to_nr) {
993 if (intel_pt_guest_kernel_ip(ip))
994 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
995 /* No support for decoding guest user space */
996 return -EINVAL;
997 } else if (ip >= ptq->pt->kernel_start) {
998 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
999 }
1000
1001 cpumode = PERF_RECORD_MISC_USER;
1002
1003 thread = ptq->thread;
1004 if (!thread)
1005 return -EINVAL;
1006
1007 addr_location__init(&al);
1008 if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1009 return -EINVAL;
1010
1011 offset = map__map_ip(al.map, ip);
1012
1013 res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, dso__long_name(map__dso(al.map)));
1014 addr_location__exit(&al);
1015 return res;
1016 }
1017
intel_pt_pgd_ip(uint64_t ip,void * data)1018 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1019 {
1020 return __intel_pt_pgd_ip(ip, data) > 0;
1021 }
1022
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)1023 static bool intel_pt_get_config(struct intel_pt *pt,
1024 struct perf_event_attr *attr, u64 *config)
1025 {
1026 if (attr->type == pt->pmu_type) {
1027 if (config)
1028 *config = attr->config;
1029 return true;
1030 }
1031
1032 return false;
1033 }
1034
intel_pt_exclude_kernel(struct intel_pt * pt)1035 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1036 {
1037 struct evsel *evsel;
1038
1039 evlist__for_each_entry(pt->session->evlist, evsel) {
1040 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1041 !evsel->core.attr.exclude_kernel)
1042 return false;
1043 }
1044 return true;
1045 }
1046
intel_pt_return_compression(struct intel_pt * pt)1047 static bool intel_pt_return_compression(struct intel_pt *pt)
1048 {
1049 struct evsel *evsel;
1050 u64 config;
1051
1052 if (!pt->noretcomp_bit)
1053 return true;
1054
1055 evlist__for_each_entry(pt->session->evlist, evsel) {
1056 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1057 (config & pt->noretcomp_bit))
1058 return false;
1059 }
1060 return true;
1061 }
1062
intel_pt_branch_enable(struct intel_pt * pt)1063 static bool intel_pt_branch_enable(struct intel_pt *pt)
1064 {
1065 struct evsel *evsel;
1066 u64 config;
1067
1068 evlist__for_each_entry(pt->session->evlist, evsel) {
1069 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1070 (config & INTEL_PT_CFG_PASS_THRU) &&
1071 !(config & INTEL_PT_CFG_BRANCH_EN))
1072 return false;
1073 }
1074 return true;
1075 }
1076
intel_pt_disabled_tnt(struct intel_pt * pt)1077 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1078 {
1079 struct evsel *evsel;
1080 u64 config;
1081
1082 evlist__for_each_entry(pt->session->evlist, evsel) {
1083 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1084 config & INTEL_PT_CFG_TNT_DIS)
1085 return true;
1086 }
1087 return false;
1088 }
1089
intel_pt_mtc_period(struct intel_pt * pt)1090 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1091 {
1092 struct evsel *evsel;
1093 unsigned int shift;
1094 u64 config;
1095
1096 if (!pt->mtc_freq_bits)
1097 return 0;
1098
1099 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1100 config >>= 1;
1101
1102 evlist__for_each_entry(pt->session->evlist, evsel) {
1103 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1104 return (config & pt->mtc_freq_bits) >> shift;
1105 }
1106 return 0;
1107 }
1108
intel_pt_timeless_decoding(struct intel_pt * pt)1109 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1110 {
1111 struct evsel *evsel;
1112 bool timeless_decoding = true;
1113 u64 config;
1114
1115 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1116 return true;
1117
1118 evlist__for_each_entry(pt->session->evlist, evsel) {
1119 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1120 return true;
1121 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1122 if (config & pt->tsc_bit)
1123 timeless_decoding = false;
1124 else
1125 return true;
1126 }
1127 }
1128 return timeless_decoding;
1129 }
1130
intel_pt_tracing_kernel(struct intel_pt * pt)1131 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1132 {
1133 struct evsel *evsel;
1134
1135 evlist__for_each_entry(pt->session->evlist, evsel) {
1136 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1137 !evsel->core.attr.exclude_kernel)
1138 return true;
1139 }
1140 return false;
1141 }
1142
intel_pt_have_tsc(struct intel_pt * pt)1143 static bool intel_pt_have_tsc(struct intel_pt *pt)
1144 {
1145 struct evsel *evsel;
1146 bool have_tsc = false;
1147 u64 config;
1148
1149 if (!pt->tsc_bit)
1150 return false;
1151
1152 evlist__for_each_entry(pt->session->evlist, evsel) {
1153 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1154 if (config & pt->tsc_bit)
1155 have_tsc = true;
1156 else
1157 return false;
1158 }
1159 }
1160 return have_tsc;
1161 }
1162
intel_pt_have_mtc(struct intel_pt * pt)1163 static bool intel_pt_have_mtc(struct intel_pt *pt)
1164 {
1165 struct evsel *evsel;
1166 u64 config;
1167
1168 evlist__for_each_entry(pt->session->evlist, evsel) {
1169 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1170 (config & pt->mtc_bit))
1171 return true;
1172 }
1173 return false;
1174 }
1175
intel_pt_sampling_mode(struct intel_pt * pt)1176 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1177 {
1178 struct evsel *evsel;
1179
1180 evlist__for_each_entry(pt->session->evlist, evsel) {
1181 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1182 evsel->core.attr.aux_sample_size)
1183 return true;
1184 }
1185 return false;
1186 }
1187
intel_pt_ctl(struct intel_pt * pt)1188 static u64 intel_pt_ctl(struct intel_pt *pt)
1189 {
1190 struct evsel *evsel;
1191 u64 config;
1192
1193 evlist__for_each_entry(pt->session->evlist, evsel) {
1194 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1195 return config;
1196 }
1197 return 0;
1198 }
1199
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)1200 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1201 {
1202 u64 quot, rem;
1203
1204 quot = ns / pt->tc.time_mult;
1205 rem = ns % pt->tc.time_mult;
1206 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1207 pt->tc.time_mult;
1208 }
1209
intel_pt_alloc_chain(struct intel_pt * pt)1210 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1211 {
1212 size_t sz = sizeof(struct ip_callchain);
1213
1214 /* Add 1 to callchain_sz for callchain context */
1215 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1216 return zalloc(sz);
1217 }
1218
intel_pt_callchain_init(struct intel_pt * pt)1219 static int intel_pt_callchain_init(struct intel_pt *pt)
1220 {
1221 struct evsel *evsel;
1222
1223 evlist__for_each_entry(pt->session->evlist, evsel) {
1224 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1225 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1226 }
1227
1228 pt->chain = intel_pt_alloc_chain(pt);
1229 if (!pt->chain)
1230 return -ENOMEM;
1231
1232 return 0;
1233 }
1234
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)1235 static void intel_pt_add_callchain(struct intel_pt *pt,
1236 struct perf_sample *sample)
1237 {
1238 struct thread *thread = machine__findnew_thread(pt->machine,
1239 sample->pid,
1240 sample->tid);
1241
1242 thread_stack__sample_late(thread, sample->cpu, pt->chain,
1243 pt->synth_opts.callchain_sz + 1, sample->ip,
1244 pt->kernel_start);
1245
1246 sample->callchain = pt->chain;
1247 }
1248
intel_pt_alloc_br_stack(unsigned int entry_cnt)1249 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1250 {
1251 size_t sz = sizeof(struct branch_stack);
1252
1253 sz += entry_cnt * sizeof(struct branch_entry);
1254 return zalloc(sz);
1255 }
1256
intel_pt_br_stack_init(struct intel_pt * pt)1257 static int intel_pt_br_stack_init(struct intel_pt *pt)
1258 {
1259 struct evsel *evsel;
1260
1261 evlist__for_each_entry(pt->session->evlist, evsel) {
1262 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1263 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1264 }
1265
1266 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1267 if (!pt->br_stack)
1268 return -ENOMEM;
1269
1270 return 0;
1271 }
1272
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)1273 static void intel_pt_add_br_stack(struct intel_pt *pt,
1274 struct perf_sample *sample)
1275 {
1276 struct thread *thread = machine__findnew_thread(pt->machine,
1277 sample->pid,
1278 sample->tid);
1279
1280 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1281 pt->br_stack_sz, sample->ip,
1282 pt->kernel_start);
1283
1284 sample->branch_stack = pt->br_stack;
1285 thread__put(thread);
1286 }
1287
1288 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1289 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1290
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1291 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1292 unsigned int queue_nr)
1293 {
1294 struct intel_pt_params params = { .get_trace = 0, };
1295 struct perf_env *env = pt->machine->env;
1296 struct intel_pt_queue *ptq;
1297
1298 ptq = zalloc(sizeof(struct intel_pt_queue));
1299 if (!ptq)
1300 return NULL;
1301
1302 if (pt->synth_opts.callchain) {
1303 ptq->chain = intel_pt_alloc_chain(pt);
1304 if (!ptq->chain)
1305 goto out_free;
1306 }
1307
1308 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1309 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1310
1311 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1312 if (!ptq->last_branch)
1313 goto out_free;
1314 }
1315
1316 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1317 if (!ptq->event_buf)
1318 goto out_free;
1319
1320 ptq->pt = pt;
1321 ptq->queue_nr = queue_nr;
1322 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1323 ptq->pid = -1;
1324 ptq->tid = -1;
1325 ptq->cpu = -1;
1326 ptq->next_tid = -1;
1327
1328 params.get_trace = intel_pt_get_trace;
1329 params.walk_insn = intel_pt_walk_next_insn;
1330 params.lookahead = intel_pt_lookahead;
1331 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1332 params.data = ptq;
1333 params.return_compression = intel_pt_return_compression(pt);
1334 params.branch_enable = intel_pt_branch_enable(pt);
1335 params.ctl = intel_pt_ctl(pt);
1336 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1337 params.mtc_period = intel_pt_mtc_period(pt);
1338 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1339 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1340 params.quick = pt->synth_opts.quick;
1341 params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1342 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1343 params.first_timestamp = pt->first_timestamp;
1344 params.max_loops = pt->max_loops;
1345
1346 /* Cannot walk code without TNT, so force 'quick' mode */
1347 if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1348 params.quick = 1;
1349
1350 if (pt->filts.cnt > 0)
1351 params.pgd_ip = intel_pt_pgd_ip;
1352
1353 if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1354 if (pt->synth_opts.period) {
1355 switch (pt->synth_opts.period_type) {
1356 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1357 params.period_type =
1358 INTEL_PT_PERIOD_INSTRUCTIONS;
1359 params.period = pt->synth_opts.period;
1360 break;
1361 case PERF_ITRACE_PERIOD_TICKS:
1362 params.period_type = INTEL_PT_PERIOD_TICKS;
1363 params.period = pt->synth_opts.period;
1364 break;
1365 case PERF_ITRACE_PERIOD_NANOSECS:
1366 params.period_type = INTEL_PT_PERIOD_TICKS;
1367 params.period = intel_pt_ns_to_ticks(pt,
1368 pt->synth_opts.period);
1369 break;
1370 default:
1371 break;
1372 }
1373 }
1374
1375 if (!params.period) {
1376 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1377 params.period = 1;
1378 }
1379 }
1380
1381 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1382 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1383
1384 ptq->decoder = intel_pt_decoder_new(¶ms);
1385 if (!ptq->decoder)
1386 goto out_free;
1387
1388 return ptq;
1389
1390 out_free:
1391 zfree(&ptq->event_buf);
1392 zfree(&ptq->last_branch);
1393 zfree(&ptq->chain);
1394 free(ptq);
1395 return NULL;
1396 }
1397
intel_pt_free_queue(void * priv)1398 static void intel_pt_free_queue(void *priv)
1399 {
1400 struct intel_pt_queue *ptq = priv;
1401
1402 if (!ptq)
1403 return;
1404 thread__zput(ptq->thread);
1405 thread__zput(ptq->guest_thread);
1406 thread__zput(ptq->unknown_guest_thread);
1407 intel_pt_decoder_free(ptq->decoder);
1408 zfree(&ptq->event_buf);
1409 zfree(&ptq->last_branch);
1410 zfree(&ptq->chain);
1411 free(ptq);
1412 }
1413
intel_pt_first_timestamp(struct intel_pt * pt,u64 timestamp)1414 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1415 {
1416 unsigned int i;
1417
1418 pt->first_timestamp = timestamp;
1419
1420 for (i = 0; i < pt->queues.nr_queues; i++) {
1421 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1422 struct intel_pt_queue *ptq = queue->priv;
1423
1424 if (ptq && ptq->decoder)
1425 intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1426 }
1427 }
1428
intel_pt_get_guest_from_sideband(struct intel_pt_queue * ptq)1429 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1430 {
1431 struct machines *machines = &ptq->pt->session->machines;
1432 struct machine *machine;
1433 pid_t machine_pid = ptq->pid;
1434 pid_t tid;
1435 int vcpu;
1436
1437 if (machine_pid <= 0)
1438 return 0; /* Not a guest machine */
1439
1440 machine = machines__find(machines, machine_pid);
1441 if (!machine)
1442 return 0; /* Not a guest machine */
1443
1444 if (ptq->guest_machine != machine) {
1445 ptq->guest_machine = NULL;
1446 thread__zput(ptq->guest_thread);
1447 thread__zput(ptq->unknown_guest_thread);
1448
1449 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1450 if (!ptq->unknown_guest_thread)
1451 return -1;
1452 ptq->guest_machine = machine;
1453 }
1454
1455 vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1456 if (vcpu < 0)
1457 return -1;
1458
1459 tid = machine__get_current_tid(machine, vcpu);
1460
1461 if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1462 thread__zput(ptq->guest_thread);
1463
1464 if (!ptq->guest_thread) {
1465 ptq->guest_thread = machine__find_thread(machine, -1, tid);
1466 if (!ptq->guest_thread)
1467 return -1;
1468 }
1469
1470 ptq->guest_machine_pid = machine_pid;
1471 ptq->guest_pid = thread__pid(ptq->guest_thread);
1472 ptq->guest_tid = tid;
1473 ptq->vcpu = vcpu;
1474
1475 return 0;
1476 }
1477
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1478 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1479 struct auxtrace_queue *queue)
1480 {
1481 struct intel_pt_queue *ptq = queue->priv;
1482
1483 if (queue->tid == -1 || pt->have_sched_switch) {
1484 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1485 if (ptq->tid == -1)
1486 ptq->pid = -1;
1487 thread__zput(ptq->thread);
1488 }
1489
1490 if (!ptq->thread && ptq->tid != -1)
1491 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1492
1493 if (ptq->thread) {
1494 ptq->pid = thread__pid(ptq->thread);
1495 if (queue->cpu == -1)
1496 ptq->cpu = thread__cpu(ptq->thread);
1497 }
1498
1499 if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1500 ptq->guest_machine_pid = 0;
1501 ptq->guest_pid = -1;
1502 ptq->guest_tid = -1;
1503 ptq->vcpu = -1;
1504 }
1505 }
1506
intel_pt_sample_flags(struct intel_pt_queue * ptq)1507 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1508 {
1509 struct intel_pt *pt = ptq->pt;
1510
1511 ptq->insn_len = 0;
1512 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1513 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1514 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1515 if (!ptq->state->to_ip)
1516 ptq->flags = PERF_IP_FLAG_BRANCH |
1517 PERF_IP_FLAG_ASYNC |
1518 PERF_IP_FLAG_TRACE_END;
1519 else if (ptq->state->from_nr && !ptq->state->to_nr)
1520 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1521 PERF_IP_FLAG_ASYNC |
1522 PERF_IP_FLAG_VMEXIT;
1523 else
1524 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1525 PERF_IP_FLAG_ASYNC |
1526 PERF_IP_FLAG_INTERRUPT;
1527 } else {
1528 if (ptq->state->from_ip)
1529 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1530 else
1531 ptq->flags = PERF_IP_FLAG_BRANCH |
1532 PERF_IP_FLAG_TRACE_BEGIN;
1533 if (ptq->state->flags & INTEL_PT_IN_TX)
1534 ptq->flags |= PERF_IP_FLAG_IN_TX;
1535 ptq->insn_len = ptq->state->insn_len;
1536 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1537 }
1538
1539 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1540 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1541 if (ptq->state->type & INTEL_PT_TRACE_END)
1542 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1543
1544 if (pt->cap_event_trace) {
1545 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1546 if (!ptq->state->from_iflag)
1547 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1548 if (ptq->state->from_iflag != ptq->state->to_iflag)
1549 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1550 } else if (!ptq->state->to_iflag) {
1551 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1552 }
1553 }
1554 }
1555
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1556 static void intel_pt_setup_time_range(struct intel_pt *pt,
1557 struct intel_pt_queue *ptq)
1558 {
1559 if (!pt->range_cnt)
1560 return;
1561
1562 ptq->sel_timestamp = pt->time_ranges[0].start;
1563 ptq->sel_idx = 0;
1564
1565 if (ptq->sel_timestamp) {
1566 ptq->sel_start = true;
1567 } else {
1568 ptq->sel_timestamp = pt->time_ranges[0].end;
1569 ptq->sel_start = false;
1570 }
1571 }
1572
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1573 static int intel_pt_setup_queue(struct intel_pt *pt,
1574 struct auxtrace_queue *queue,
1575 unsigned int queue_nr)
1576 {
1577 struct intel_pt_queue *ptq = queue->priv;
1578
1579 if (list_empty(&queue->head))
1580 return 0;
1581
1582 if (!ptq) {
1583 ptq = intel_pt_alloc_queue(pt, queue_nr);
1584 if (!ptq)
1585 return -ENOMEM;
1586 queue->priv = ptq;
1587
1588 if (queue->cpu != -1)
1589 ptq->cpu = queue->cpu;
1590 ptq->tid = queue->tid;
1591
1592 ptq->cbr_seen = UINT_MAX;
1593
1594 if (pt->sampling_mode && !pt->snapshot_mode &&
1595 pt->timeless_decoding)
1596 ptq->step_through_buffers = true;
1597
1598 ptq->sync_switch = pt->sync_switch;
1599
1600 intel_pt_setup_time_range(pt, ptq);
1601 }
1602
1603 if (!ptq->on_heap &&
1604 (!ptq->sync_switch ||
1605 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1606 const struct intel_pt_state *state;
1607 int ret;
1608
1609 if (pt->timeless_decoding)
1610 return 0;
1611
1612 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1613 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1614 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1615
1616 if (ptq->sel_start && ptq->sel_timestamp) {
1617 ret = intel_pt_fast_forward(ptq->decoder,
1618 ptq->sel_timestamp);
1619 if (ret)
1620 return ret;
1621 }
1622
1623 while (1) {
1624 state = intel_pt_decode(ptq->decoder);
1625 if (state->err) {
1626 if (state->err == INTEL_PT_ERR_NODATA) {
1627 intel_pt_log("queue %u has no timestamp\n",
1628 queue_nr);
1629 return 0;
1630 }
1631 continue;
1632 }
1633 if (state->timestamp)
1634 break;
1635 }
1636
1637 ptq->timestamp = state->timestamp;
1638 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1639 queue_nr, ptq->timestamp);
1640 ptq->state = state;
1641 ptq->have_sample = true;
1642 if (ptq->sel_start && ptq->sel_timestamp &&
1643 ptq->timestamp < ptq->sel_timestamp)
1644 ptq->have_sample = false;
1645 intel_pt_sample_flags(ptq);
1646 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1647 if (ret)
1648 return ret;
1649 ptq->on_heap = true;
1650 }
1651
1652 return 0;
1653 }
1654
intel_pt_setup_queues(struct intel_pt * pt)1655 static int intel_pt_setup_queues(struct intel_pt *pt)
1656 {
1657 unsigned int i;
1658 int ret;
1659
1660 for (i = 0; i < pt->queues.nr_queues; i++) {
1661 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1662 if (ret)
1663 return ret;
1664 }
1665 return 0;
1666 }
1667
intel_pt_skip_event(struct intel_pt * pt)1668 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1669 {
1670 return pt->synth_opts.initial_skip &&
1671 pt->num_events++ < pt->synth_opts.initial_skip;
1672 }
1673
1674 /*
1675 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1676 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1677 * from this decoder state.
1678 */
intel_pt_skip_cbr_event(struct intel_pt * pt)1679 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1680 {
1681 return pt->synth_opts.initial_skip &&
1682 pt->num_events + 4 < pt->synth_opts.initial_skip;
1683 }
1684
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1685 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1686 union perf_event *event,
1687 struct perf_sample *sample)
1688 {
1689 event->sample.header.type = PERF_RECORD_SAMPLE;
1690 event->sample.header.size = sizeof(struct perf_event_header);
1691
1692 sample->pid = ptq->pid;
1693 sample->tid = ptq->tid;
1694
1695 if (ptq->pt->have_guest_sideband) {
1696 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1697 (ptq->state->to_ip && ptq->state->to_nr)) {
1698 sample->pid = ptq->guest_pid;
1699 sample->tid = ptq->guest_tid;
1700 sample->machine_pid = ptq->guest_machine_pid;
1701 sample->vcpu = ptq->vcpu;
1702 }
1703 }
1704
1705 sample->cpu = ptq->cpu;
1706 sample->insn_len = ptq->insn_len;
1707 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1708 }
1709
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1710 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1711 struct intel_pt_queue *ptq,
1712 union perf_event *event,
1713 struct perf_sample *sample)
1714 {
1715 intel_pt_prep_a_sample(ptq, event, sample);
1716
1717 if (!pt->timeless_decoding)
1718 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1719
1720 sample->ip = ptq->state->from_ip;
1721 sample->addr = ptq->state->to_ip;
1722 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1723 sample->period = 1;
1724 sample->flags = ptq->flags;
1725
1726 event->sample.header.misc = sample->cpumode;
1727 }
1728
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1729 static int intel_pt_inject_event(union perf_event *event,
1730 struct perf_sample *sample, u64 type)
1731 {
1732 event->header.size = perf_event__sample_event_size(sample, type, 0);
1733 return perf_event__synthesize_sample(event, type, 0, sample);
1734 }
1735
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1736 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1737 union perf_event *event,
1738 struct perf_sample *sample, u64 type)
1739 {
1740 if (!pt->synth_opts.inject)
1741 return 0;
1742
1743 return intel_pt_inject_event(event, sample, type);
1744 }
1745
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1746 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1747 union perf_event *event,
1748 struct perf_sample *sample, u64 type)
1749 {
1750 int ret;
1751
1752 ret = intel_pt_opt_inject(pt, event, sample, type);
1753 if (ret)
1754 return ret;
1755
1756 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1757 if (ret)
1758 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1759
1760 return ret;
1761 }
1762
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1763 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1764 {
1765 struct intel_pt *pt = ptq->pt;
1766 union perf_event *event = ptq->event_buf;
1767 struct perf_sample sample;
1768 struct dummy_branch_stack {
1769 u64 nr;
1770 u64 hw_idx;
1771 struct branch_entry entries;
1772 } dummy_bs;
1773 int ret;
1774
1775 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1776 return 0;
1777
1778 if (intel_pt_skip_event(pt))
1779 return 0;
1780
1781 perf_sample__init(&sample, /*all=*/true);
1782 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1783
1784 sample.id = ptq->pt->branches_id;
1785 sample.stream_id = ptq->pt->branches_id;
1786
1787 /*
1788 * perf report cannot handle events without a branch stack when using
1789 * SORT_MODE__BRANCH so make a dummy one.
1790 */
1791 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1792 dummy_bs = (struct dummy_branch_stack){
1793 .nr = 1,
1794 .hw_idx = -1ULL,
1795 .entries = {
1796 .from = sample.ip,
1797 .to = sample.addr,
1798 },
1799 };
1800 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1801 }
1802
1803 if (ptq->sample_ipc)
1804 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1805 if (sample.cyc_cnt) {
1806 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1807 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1808 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1809 }
1810
1811 perf_sample__exit(&sample);
1812 ret = intel_pt_deliver_synth_event(pt, event, &sample,
1813 pt->branches_sample_type);
1814 return ret;
1815 }
1816
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1817 static void intel_pt_prep_sample(struct intel_pt *pt,
1818 struct intel_pt_queue *ptq,
1819 union perf_event *event,
1820 struct perf_sample *sample)
1821 {
1822 intel_pt_prep_b_sample(pt, ptq, event, sample);
1823
1824 if (pt->synth_opts.callchain) {
1825 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1826 pt->synth_opts.callchain_sz + 1,
1827 sample->ip, pt->kernel_start);
1828 sample->callchain = ptq->chain;
1829 }
1830
1831 if (pt->synth_opts.last_branch) {
1832 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1833 pt->br_stack_sz);
1834 sample->branch_stack = ptq->last_branch;
1835 }
1836 }
1837
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1838 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1839 {
1840 struct intel_pt *pt = ptq->pt;
1841 union perf_event *event = ptq->event_buf;
1842 struct perf_sample sample;
1843 int ret;
1844
1845 if (intel_pt_skip_event(pt))
1846 return 0;
1847
1848 perf_sample__init(&sample, /*all=*/true);
1849 intel_pt_prep_sample(pt, ptq, event, &sample);
1850
1851 sample.id = ptq->pt->instructions_id;
1852 sample.stream_id = ptq->pt->instructions_id;
1853 if (pt->synth_opts.quick)
1854 sample.period = 1;
1855 else
1856 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1857
1858 if (ptq->sample_ipc)
1859 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1860 if (sample.cyc_cnt) {
1861 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1862 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1863 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1864 }
1865
1866 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1867
1868 ret = intel_pt_deliver_synth_event(pt, event, &sample,
1869 pt->instructions_sample_type);
1870 perf_sample__exit(&sample);
1871 return ret;
1872 }
1873
intel_pt_synth_cycle_sample(struct intel_pt_queue * ptq)1874 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1875 {
1876 struct intel_pt *pt = ptq->pt;
1877 union perf_event *event = ptq->event_buf;
1878 struct perf_sample sample;
1879 u64 period = 0;
1880 int ret;
1881
1882 if (ptq->sample_ipc)
1883 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1884
1885 if (!period || intel_pt_skip_event(pt))
1886 return 0;
1887
1888 perf_sample__init(&sample, /*all=*/true);
1889 intel_pt_prep_sample(pt, ptq, event, &sample);
1890
1891 sample.id = ptq->pt->cycles_id;
1892 sample.stream_id = ptq->pt->cycles_id;
1893 sample.period = period;
1894
1895 sample.cyc_cnt = period;
1896 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1897 ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1898 ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1899
1900 ret = intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1901 perf_sample__exit(&sample);
1902 return ret;
1903 }
1904
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1905 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1906 {
1907 struct intel_pt *pt = ptq->pt;
1908 union perf_event *event = ptq->event_buf;
1909 struct perf_sample sample;
1910 int ret;
1911
1912 if (intel_pt_skip_event(pt))
1913 return 0;
1914
1915 perf_sample__init(&sample, /*all=*/true);
1916 intel_pt_prep_sample(pt, ptq, event, &sample);
1917
1918 sample.id = ptq->pt->transactions_id;
1919 sample.stream_id = ptq->pt->transactions_id;
1920
1921 ret = intel_pt_deliver_synth_event(pt, event, &sample,
1922 pt->transactions_sample_type);
1923 perf_sample__exit(&sample);
1924 return ret;
1925 }
1926
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1927 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1928 struct intel_pt_queue *ptq,
1929 union perf_event *event,
1930 struct perf_sample *sample)
1931 {
1932 intel_pt_prep_sample(pt, ptq, event, sample);
1933
1934 /*
1935 * Zero IP is used to mean "trace start" but that is not the case for
1936 * power or PTWRITE events with no IP, so clear the flags.
1937 */
1938 if (!sample->ip)
1939 sample->flags = 0;
1940 }
1941
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1942 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1943 {
1944 struct intel_pt *pt = ptq->pt;
1945 union perf_event *event = ptq->event_buf;
1946 struct perf_sample sample = { .ip = 0, };
1947 struct perf_synth_intel_ptwrite raw;
1948
1949 if (intel_pt_skip_event(pt))
1950 return 0;
1951
1952 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1953
1954 sample.id = ptq->pt->ptwrites_id;
1955 sample.stream_id = ptq->pt->ptwrites_id;
1956
1957 raw.flags = 0;
1958 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1959 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1960
1961 sample.raw_size = perf_synth__raw_size(raw);
1962 sample.raw_data = perf_synth__raw_data(&raw);
1963
1964 return intel_pt_deliver_synth_event(pt, event, &sample,
1965 pt->ptwrites_sample_type);
1966 }
1967
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1968 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1969 {
1970 struct intel_pt *pt = ptq->pt;
1971 union perf_event *event = ptq->event_buf;
1972 struct perf_sample sample;
1973 struct perf_synth_intel_cbr raw;
1974 u32 flags;
1975 int ret;
1976
1977 if (intel_pt_skip_cbr_event(pt))
1978 return 0;
1979
1980 ptq->cbr_seen = ptq->state->cbr;
1981
1982 perf_sample__init(&sample, /*all=*/true);
1983 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1984
1985 sample.id = ptq->pt->cbr_id;
1986 sample.stream_id = ptq->pt->cbr_id;
1987
1988 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1989 raw.flags = cpu_to_le32(flags);
1990 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1991 raw.reserved3 = 0;
1992
1993 sample.raw_size = perf_synth__raw_size(raw);
1994 sample.raw_data = perf_synth__raw_data(&raw);
1995
1996 ret = intel_pt_deliver_synth_event(pt, event, &sample,
1997 pt->pwr_events_sample_type);
1998 perf_sample__exit(&sample);
1999 return ret;
2000 }
2001
intel_pt_synth_psb_sample(struct intel_pt_queue * ptq)2002 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
2003 {
2004 struct intel_pt *pt = ptq->pt;
2005 union perf_event *event = ptq->event_buf;
2006 struct perf_sample sample;
2007 struct perf_synth_intel_psb raw;
2008 int ret;
2009
2010 if (intel_pt_skip_event(pt))
2011 return 0;
2012
2013 perf_sample__init(&sample, /*all=*/true);
2014 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2015
2016 sample.id = ptq->pt->psb_id;
2017 sample.stream_id = ptq->pt->psb_id;
2018 sample.flags = 0;
2019
2020 raw.reserved = 0;
2021 raw.offset = ptq->state->psb_offset;
2022
2023 sample.raw_size = perf_synth__raw_size(raw);
2024 sample.raw_data = perf_synth__raw_data(&raw);
2025
2026 ret = intel_pt_deliver_synth_event(pt, event, &sample,
2027 pt->pwr_events_sample_type);
2028 perf_sample__exit(&sample);
2029 return ret;
2030 }
2031
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)2032 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2033 {
2034 struct intel_pt *pt = ptq->pt;
2035 union perf_event *event = ptq->event_buf;
2036 struct perf_sample sample;
2037 struct perf_synth_intel_mwait raw;
2038 int ret;
2039
2040 if (intel_pt_skip_event(pt))
2041 return 0;
2042
2043 perf_sample__init(&sample, /*all=*/true);
2044 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2045
2046 sample.id = ptq->pt->mwait_id;
2047 sample.stream_id = ptq->pt->mwait_id;
2048
2049 raw.reserved = 0;
2050 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2051
2052 sample.raw_size = perf_synth__raw_size(raw);
2053 sample.raw_data = perf_synth__raw_data(&raw);
2054
2055 ret = intel_pt_deliver_synth_event(pt, event, &sample,
2056 pt->pwr_events_sample_type);
2057 perf_sample__exit(&sample);
2058 return ret;
2059 }
2060
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)2061 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2062 {
2063 struct intel_pt *pt = ptq->pt;
2064 union perf_event *event = ptq->event_buf;
2065 struct perf_sample sample;
2066 struct perf_synth_intel_pwre raw;
2067 int ret;
2068
2069 if (intel_pt_skip_event(pt))
2070 return 0;
2071
2072 perf_sample__init(&sample, /*all=*/true);
2073 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2074
2075 sample.id = ptq->pt->pwre_id;
2076 sample.stream_id = ptq->pt->pwre_id;
2077
2078 raw.reserved = 0;
2079 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2080
2081 sample.raw_size = perf_synth__raw_size(raw);
2082 sample.raw_data = perf_synth__raw_data(&raw);
2083
2084 ret = intel_pt_deliver_synth_event(pt, event, &sample,
2085 pt->pwr_events_sample_type);
2086 perf_sample__exit(&sample);
2087 return ret;
2088 }
2089
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)2090 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2091 {
2092 struct intel_pt *pt = ptq->pt;
2093 union perf_event *event = ptq->event_buf;
2094 struct perf_sample sample;
2095 struct perf_synth_intel_exstop raw;
2096 int ret;
2097
2098 if (intel_pt_skip_event(pt))
2099 return 0;
2100
2101 perf_sample__init(&sample, /*all=*/true);
2102 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2103
2104 sample.id = ptq->pt->exstop_id;
2105 sample.stream_id = ptq->pt->exstop_id;
2106
2107 raw.flags = 0;
2108 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2109
2110 sample.raw_size = perf_synth__raw_size(raw);
2111 sample.raw_data = perf_synth__raw_data(&raw);
2112
2113 ret = intel_pt_deliver_synth_event(pt, event, &sample,
2114 pt->pwr_events_sample_type);
2115 perf_sample__exit(&sample);
2116 return ret;
2117 }
2118
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)2119 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2120 {
2121 struct intel_pt *pt = ptq->pt;
2122 union perf_event *event = ptq->event_buf;
2123 struct perf_sample sample;
2124 struct perf_synth_intel_pwrx raw;
2125 int ret;
2126
2127 if (intel_pt_skip_event(pt))
2128 return 0;
2129
2130 perf_sample__init(&sample, /*all=*/true);
2131 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2132
2133 sample.id = ptq->pt->pwrx_id;
2134 sample.stream_id = ptq->pt->pwrx_id;
2135
2136 raw.reserved = 0;
2137 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2138
2139 sample.raw_size = perf_synth__raw_size(raw);
2140 sample.raw_data = perf_synth__raw_data(&raw);
2141
2142 ret = intel_pt_deliver_synth_event(pt, event, &sample,
2143 pt->pwr_events_sample_type);
2144 perf_sample__exit(&sample);
2145 return ret;
2146 }
2147
2148 /*
2149 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2150 * intel_pt_add_gp_regs().
2151 */
2152 static const int pebs_gp_regs[] = {
2153 [PERF_REG_X86_FLAGS] = 1,
2154 [PERF_REG_X86_IP] = 2,
2155 [PERF_REG_X86_AX] = 3,
2156 [PERF_REG_X86_CX] = 4,
2157 [PERF_REG_X86_DX] = 5,
2158 [PERF_REG_X86_BX] = 6,
2159 [PERF_REG_X86_SP] = 7,
2160 [PERF_REG_X86_BP] = 8,
2161 [PERF_REG_X86_SI] = 9,
2162 [PERF_REG_X86_DI] = 10,
2163 [PERF_REG_X86_R8] = 11,
2164 [PERF_REG_X86_R9] = 12,
2165 [PERF_REG_X86_R10] = 13,
2166 [PERF_REG_X86_R11] = 14,
2167 [PERF_REG_X86_R12] = 15,
2168 [PERF_REG_X86_R13] = 16,
2169 [PERF_REG_X86_R14] = 17,
2170 [PERF_REG_X86_R15] = 18,
2171 };
2172
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2173 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2174 const struct intel_pt_blk_items *items,
2175 u64 regs_mask)
2176 {
2177 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2178 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2179 u32 bit;
2180 int i;
2181
2182 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2183 /* Get the PEBS gp_regs array index */
2184 int n = pebs_gp_regs[i] - 1;
2185
2186 if (n < 0)
2187 continue;
2188 /*
2189 * Add only registers that were requested (i.e. 'regs_mask') and
2190 * that were provided (i.e. 'mask'), and update the resulting
2191 * mask (i.e. 'intr_regs->mask') accordingly.
2192 */
2193 if (mask & 1 << n && regs_mask & bit) {
2194 intr_regs->mask |= bit;
2195 *pos++ = gp_regs[n];
2196 }
2197 }
2198
2199 return pos;
2200 }
2201
2202 #ifndef PERF_REG_X86_XMM0
2203 #define PERF_REG_X86_XMM0 32
2204 #endif
2205
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2206 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2207 const struct intel_pt_blk_items *items,
2208 u64 regs_mask)
2209 {
2210 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2211 const u64 *xmm = items->xmm;
2212
2213 /*
2214 * If there are any XMM registers, then there should be all of them.
2215 * Nevertheless, follow the logic to add only registers that were
2216 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2217 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2218 */
2219 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2220
2221 for (; mask; mask >>= 1, xmm++) {
2222 if (mask & 1)
2223 *pos++ = *xmm;
2224 }
2225 }
2226
2227 #define LBR_INFO_MISPRED (1ULL << 63)
2228 #define LBR_INFO_IN_TX (1ULL << 62)
2229 #define LBR_INFO_ABORT (1ULL << 61)
2230 #define LBR_INFO_CYCLES 0xffff
2231
2232 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)2233 static u64 intel_pt_lbr_flags(u64 info)
2234 {
2235 union {
2236 struct branch_flags flags;
2237 u64 result;
2238 } u;
2239
2240 u.result = 0;
2241 u.flags.mispred = !!(info & LBR_INFO_MISPRED);
2242 u.flags.predicted = !(info & LBR_INFO_MISPRED);
2243 u.flags.in_tx = !!(info & LBR_INFO_IN_TX);
2244 u.flags.abort = !!(info & LBR_INFO_ABORT);
2245 u.flags.cycles = info & LBR_INFO_CYCLES;
2246
2247 return u.result;
2248 }
2249
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)2250 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2251 const struct intel_pt_blk_items *items)
2252 {
2253 u64 *to;
2254 int i;
2255
2256 br_stack->nr = 0;
2257
2258 to = &br_stack->entries[0].from;
2259
2260 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2261 u32 mask = items->mask[i];
2262 const u64 *from = items->val[i];
2263
2264 for (; mask; mask >>= 3, from += 3) {
2265 if ((mask & 7) == 7) {
2266 *to++ = from[0];
2267 *to++ = from[1];
2268 *to++ = intel_pt_lbr_flags(from[2]);
2269 br_stack->nr += 1;
2270 }
2271 }
2272 }
2273 }
2274
intel_pt_do_synth_pebs_sample(struct intel_pt_queue * ptq,struct evsel * evsel,u64 id)2275 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2276 {
2277 const struct intel_pt_blk_items *items = &ptq->state->items;
2278 struct perf_sample sample;
2279 union perf_event *event = ptq->event_buf;
2280 struct intel_pt *pt = ptq->pt;
2281 u64 sample_type = evsel->core.attr.sample_type;
2282 u8 cpumode;
2283 u64 regs[8 * sizeof(sample.intr_regs->mask)];
2284 int ret;
2285
2286 if (intel_pt_skip_event(pt))
2287 return 0;
2288
2289 perf_sample__init(&sample, /*all=*/true);
2290 intel_pt_prep_a_sample(ptq, event, &sample);
2291
2292 sample.id = id;
2293 sample.stream_id = id;
2294
2295 if (!evsel->core.attr.freq)
2296 sample.period = evsel->core.attr.sample_period;
2297
2298 /* No support for non-zero CS base */
2299 if (items->has_ip)
2300 sample.ip = items->ip;
2301 else if (items->has_rip)
2302 sample.ip = items->rip;
2303 else
2304 sample.ip = ptq->state->from_ip;
2305
2306 cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2307
2308 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2309
2310 sample.cpumode = cpumode;
2311
2312 if (sample_type & PERF_SAMPLE_TIME) {
2313 u64 timestamp = 0;
2314
2315 if (items->has_timestamp)
2316 timestamp = items->timestamp;
2317 else if (!pt->timeless_decoding)
2318 timestamp = ptq->timestamp;
2319 if (timestamp)
2320 sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2321 }
2322
2323 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2324 pt->synth_opts.callchain) {
2325 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2326 pt->synth_opts.callchain_sz, sample.ip,
2327 pt->kernel_start);
2328 sample.callchain = ptq->chain;
2329 }
2330
2331 if (sample_type & PERF_SAMPLE_REGS_INTR &&
2332 (items->mask[INTEL_PT_GP_REGS_POS] ||
2333 items->mask[INTEL_PT_XMM_POS])) {
2334 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2335 u64 *pos;
2336 struct regs_dump *intr_regs = perf_sample__intr_regs(&sample);
2337
2338 intr_regs->abi = items->is_32_bit ?
2339 PERF_SAMPLE_REGS_ABI_32 :
2340 PERF_SAMPLE_REGS_ABI_64;
2341 intr_regs->regs = regs;
2342
2343 pos = intel_pt_add_gp_regs(intr_regs, regs, items, regs_mask);
2344
2345 intel_pt_add_xmm(intr_regs, pos, items, regs_mask);
2346 }
2347
2348 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2349 if (items->mask[INTEL_PT_LBR_0_POS] ||
2350 items->mask[INTEL_PT_LBR_1_POS] ||
2351 items->mask[INTEL_PT_LBR_2_POS]) {
2352 intel_pt_add_lbrs(ptq->last_branch, items);
2353 } else if (pt->synth_opts.last_branch) {
2354 thread_stack__br_sample(ptq->thread, ptq->cpu,
2355 ptq->last_branch,
2356 pt->br_stack_sz);
2357 } else {
2358 ptq->last_branch->nr = 0;
2359 }
2360 sample.branch_stack = ptq->last_branch;
2361 }
2362
2363 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2364 sample.addr = items->mem_access_address;
2365
2366 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2367 /*
2368 * Refer kernel's setup_pebs_adaptive_sample_data() and
2369 * intel_hsw_weight().
2370 */
2371 if (items->has_mem_access_latency) {
2372 u64 weight = items->mem_access_latency >> 32;
2373
2374 /*
2375 * Starts from SPR, the mem access latency field
2376 * contains both cache latency [47:32] and instruction
2377 * latency [15:0]. The cache latency is the same as the
2378 * mem access latency on previous platforms.
2379 *
2380 * In practice, no memory access could last than 4G
2381 * cycles. Use latency >> 32 to distinguish the
2382 * different format of the mem access latency field.
2383 */
2384 if (weight > 0) {
2385 sample.weight = weight & 0xffff;
2386 sample.ins_lat = items->mem_access_latency & 0xffff;
2387 } else
2388 sample.weight = items->mem_access_latency;
2389 }
2390 if (!sample.weight && items->has_tsx_aux_info) {
2391 /* Cycles last block */
2392 sample.weight = (u32)items->tsx_aux_info;
2393 }
2394 }
2395
2396 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2397 u64 ax = items->has_rax ? items->rax : 0;
2398 /* Refer kernel's intel_hsw_transaction() */
2399 u64 txn = (u8)(items->tsx_aux_info >> 32);
2400
2401 /* For RTM XABORTs also log the abort code from AX */
2402 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2403 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2404 sample.transaction = txn;
2405 }
2406
2407 ret = intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2408 perf_sample__exit(&sample);
2409 return ret;
2410 }
2411
intel_pt_synth_single_pebs_sample(struct intel_pt_queue * ptq)2412 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2413 {
2414 struct intel_pt *pt = ptq->pt;
2415 struct evsel *evsel = pt->pebs_evsel;
2416 u64 id = evsel->core.id[0];
2417
2418 return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2419 }
2420
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)2421 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2422 {
2423 const struct intel_pt_blk_items *items = &ptq->state->items;
2424 struct intel_pt_pebs_event *pe;
2425 struct intel_pt *pt = ptq->pt;
2426 int err = -EINVAL;
2427 int hw_id;
2428
2429 if (!items->has_applicable_counters || !items->applicable_counters) {
2430 if (!pt->single_pebs)
2431 pr_err("PEBS-via-PT record with no applicable_counters\n");
2432 return intel_pt_synth_single_pebs_sample(ptq);
2433 }
2434
2435 for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2436 pe = &ptq->pebs[hw_id];
2437 if (!pe->evsel) {
2438 if (!pt->single_pebs)
2439 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2440 hw_id);
2441 return intel_pt_synth_single_pebs_sample(ptq);
2442 }
2443 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2444 if (err)
2445 return err;
2446 }
2447
2448 return err;
2449 }
2450
intel_pt_synth_events_sample(struct intel_pt_queue * ptq)2451 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2452 {
2453 struct intel_pt *pt = ptq->pt;
2454 union perf_event *event = ptq->event_buf;
2455 struct perf_sample sample;
2456 struct {
2457 struct perf_synth_intel_evt cfe;
2458 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2459 } raw;
2460 int i, ret;
2461
2462 if (intel_pt_skip_event(pt))
2463 return 0;
2464
2465 perf_sample__init(&sample, /*all=*/true);
2466 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2467
2468 sample.id = ptq->pt->evt_id;
2469 sample.stream_id = ptq->pt->evt_id;
2470
2471 raw.cfe.type = ptq->state->cfe_type;
2472 raw.cfe.reserved = 0;
2473 raw.cfe.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2474 raw.cfe.vector = ptq->state->cfe_vector;
2475 raw.cfe.evd_cnt = ptq->state->evd_cnt;
2476
2477 for (i = 0; i < ptq->state->evd_cnt; i++) {
2478 raw.evd[i].et = 0;
2479 raw.evd[i].evd_type = ptq->state->evd[i].type;
2480 raw.evd[i].payload = ptq->state->evd[i].payload;
2481 }
2482
2483 sample.raw_size = perf_synth__raw_size(raw) +
2484 ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2485 sample.raw_data = perf_synth__raw_data(&raw);
2486
2487 ret = intel_pt_deliver_synth_event(pt, event, &sample,
2488 pt->evt_sample_type);
2489 perf_sample__exit(&sample);
2490 return ret;
2491 }
2492
intel_pt_synth_iflag_chg_sample(struct intel_pt_queue * ptq)2493 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2494 {
2495 struct intel_pt *pt = ptq->pt;
2496 union perf_event *event = ptq->event_buf;
2497 struct perf_sample sample;
2498 struct perf_synth_intel_iflag_chg raw;
2499 int ret;
2500
2501 if (intel_pt_skip_event(pt))
2502 return 0;
2503
2504 perf_sample__init(&sample, /*all=*/true);
2505 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2506
2507 sample.id = ptq->pt->iflag_chg_id;
2508 sample.stream_id = ptq->pt->iflag_chg_id;
2509
2510 raw.flags = 0;
2511 raw.iflag = ptq->state->to_iflag;
2512
2513 if (ptq->state->type & INTEL_PT_BRANCH) {
2514 raw.via_branch = 1;
2515 raw.branch_ip = ptq->state->to_ip;
2516 } else {
2517 sample.addr = 0;
2518 }
2519 sample.flags = ptq->flags;
2520
2521 sample.raw_size = perf_synth__raw_size(raw);
2522 sample.raw_data = perf_synth__raw_data(&raw);
2523
2524 ret = intel_pt_deliver_synth_event(pt, event, &sample,
2525 pt->iflag_chg_sample_type);
2526 perf_sample__exit(&sample);
2527 return ret;
2528 }
2529
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp,pid_t machine_pid,int vcpu)2530 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2531 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2532 pid_t machine_pid, int vcpu)
2533 {
2534 bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2535 bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2536 union perf_event event;
2537 char msg[MAX_AUXTRACE_ERROR_MSG];
2538 int err;
2539
2540 if (pt->synth_opts.error_minus_flags) {
2541 if (code == INTEL_PT_ERR_OVR &&
2542 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2543 return 0;
2544 if (code == INTEL_PT_ERR_LOST &&
2545 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2546 return 0;
2547 }
2548
2549 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2550
2551 auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2552 code, cpu, pid, tid, ip, msg, timestamp,
2553 machine_pid, vcpu);
2554
2555 if (intel_pt_enable_logging && !log_on_stdout) {
2556 FILE *fp = intel_pt_log_fp();
2557
2558 if (fp)
2559 perf_event__fprintf_auxtrace_error(&event, fp);
2560 }
2561
2562 if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2563 intel_pt_log_dump_buf();
2564
2565 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2566 if (err)
2567 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2568 err);
2569
2570 return err;
2571 }
2572
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)2573 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2574 const struct intel_pt_state *state)
2575 {
2576 struct intel_pt *pt = ptq->pt;
2577 u64 tm = ptq->timestamp;
2578 pid_t machine_pid = 0;
2579 pid_t pid = ptq->pid;
2580 pid_t tid = ptq->tid;
2581 int vcpu = -1;
2582
2583 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2584
2585 if (pt->have_guest_sideband && state->from_nr) {
2586 machine_pid = ptq->guest_machine_pid;
2587 vcpu = ptq->vcpu;
2588 pid = ptq->guest_pid;
2589 tid = ptq->guest_tid;
2590 }
2591
2592 return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2593 state->from_ip, tm, machine_pid, vcpu);
2594 }
2595
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)2596 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2597 {
2598 struct auxtrace_queue *queue;
2599 pid_t tid = ptq->next_tid;
2600 int err;
2601
2602 if (tid == -1)
2603 return 0;
2604
2605 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2606
2607 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2608
2609 queue = &pt->queues.queue_array[ptq->queue_nr];
2610 intel_pt_set_pid_tid_cpu(pt, queue);
2611
2612 ptq->next_tid = -1;
2613
2614 return err;
2615 }
2616
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)2617 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2618 {
2619 struct intel_pt *pt = ptq->pt;
2620
2621 return ip == pt->switch_ip &&
2622 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2623 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2624 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2625 }
2626
2627 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2628 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2629
intel_pt_sample(struct intel_pt_queue * ptq)2630 static int intel_pt_sample(struct intel_pt_queue *ptq)
2631 {
2632 const struct intel_pt_state *state = ptq->state;
2633 struct intel_pt *pt = ptq->pt;
2634 int err;
2635
2636 if (!ptq->have_sample)
2637 return 0;
2638
2639 ptq->have_sample = false;
2640
2641 if (pt->synth_opts.approx_ipc) {
2642 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2643 ptq->ipc_cyc_cnt = ptq->state->cycles;
2644 ptq->sample_ipc = true;
2645 } else {
2646 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2647 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2648 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2649 }
2650
2651 /* Ensure guest code maps are set up */
2652 if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2653 intel_pt_get_guest(ptq);
2654
2655 /*
2656 * Do PEBS first to allow for the possibility that the PEBS timestamp
2657 * precedes the current timestamp.
2658 */
2659 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2660 err = intel_pt_synth_pebs_sample(ptq);
2661 if (err)
2662 return err;
2663 }
2664
2665 if (pt->synth_opts.intr_events) {
2666 if (state->type & INTEL_PT_EVT) {
2667 err = intel_pt_synth_events_sample(ptq);
2668 if (err)
2669 return err;
2670 }
2671 if (state->type & INTEL_PT_IFLAG_CHG) {
2672 err = intel_pt_synth_iflag_chg_sample(ptq);
2673 if (err)
2674 return err;
2675 }
2676 }
2677
2678 if (pt->sample_pwr_events) {
2679 if (state->type & INTEL_PT_PSB_EVT) {
2680 err = intel_pt_synth_psb_sample(ptq);
2681 if (err)
2682 return err;
2683 }
2684 if (ptq->state->cbr != ptq->cbr_seen) {
2685 err = intel_pt_synth_cbr_sample(ptq);
2686 if (err)
2687 return err;
2688 }
2689 if (state->type & INTEL_PT_PWR_EVT) {
2690 if (state->type & INTEL_PT_MWAIT_OP) {
2691 err = intel_pt_synth_mwait_sample(ptq);
2692 if (err)
2693 return err;
2694 }
2695 if (state->type & INTEL_PT_PWR_ENTRY) {
2696 err = intel_pt_synth_pwre_sample(ptq);
2697 if (err)
2698 return err;
2699 }
2700 if (state->type & INTEL_PT_EX_STOP) {
2701 err = intel_pt_synth_exstop_sample(ptq);
2702 if (err)
2703 return err;
2704 }
2705 if (state->type & INTEL_PT_PWR_EXIT) {
2706 err = intel_pt_synth_pwrx_sample(ptq);
2707 if (err)
2708 return err;
2709 }
2710 }
2711 }
2712
2713 if (state->type & INTEL_PT_INSTRUCTION) {
2714 if (pt->sample_instructions) {
2715 err = intel_pt_synth_instruction_sample(ptq);
2716 if (err)
2717 return err;
2718 }
2719 if (pt->sample_cycles) {
2720 err = intel_pt_synth_cycle_sample(ptq);
2721 if (err)
2722 return err;
2723 }
2724 }
2725
2726 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2727 err = intel_pt_synth_transaction_sample(ptq);
2728 if (err)
2729 return err;
2730 }
2731
2732 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2733 err = intel_pt_synth_ptwrite_sample(ptq);
2734 if (err)
2735 return err;
2736 }
2737
2738 if (!(state->type & INTEL_PT_BRANCH))
2739 return 0;
2740
2741 if (pt->use_thread_stack) {
2742 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2743 state->from_ip, state->to_ip, ptq->insn_len,
2744 state->trace_nr, pt->callstack,
2745 pt->br_stack_sz_plus,
2746 pt->mispred_all);
2747 } else {
2748 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2749 }
2750
2751 if (pt->sample_branches) {
2752 if (state->from_nr != state->to_nr &&
2753 state->from_ip && state->to_ip) {
2754 struct intel_pt_state *st = (struct intel_pt_state *)state;
2755 u64 to_ip = st->to_ip;
2756 u64 from_ip = st->from_ip;
2757
2758 /*
2759 * perf cannot handle having different machines for ip
2760 * and addr, so create 2 branches.
2761 */
2762 st->to_ip = 0;
2763 err = intel_pt_synth_branch_sample(ptq);
2764 if (err)
2765 return err;
2766 st->from_ip = 0;
2767 st->to_ip = to_ip;
2768 err = intel_pt_synth_branch_sample(ptq);
2769 st->from_ip = from_ip;
2770 } else {
2771 err = intel_pt_synth_branch_sample(ptq);
2772 }
2773 if (err)
2774 return err;
2775 }
2776
2777 if (!ptq->sync_switch)
2778 return 0;
2779
2780 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2781 switch (ptq->switch_state) {
2782 case INTEL_PT_SS_NOT_TRACING:
2783 case INTEL_PT_SS_UNKNOWN:
2784 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2785 err = intel_pt_next_tid(pt, ptq);
2786 if (err)
2787 return err;
2788 ptq->switch_state = INTEL_PT_SS_TRACING;
2789 break;
2790 default:
2791 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2792 return 1;
2793 }
2794 } else if (!state->to_ip) {
2795 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2796 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2797 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2798 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2799 state->to_ip == pt->ptss_ip &&
2800 (ptq->flags & PERF_IP_FLAG_CALL)) {
2801 ptq->switch_state = INTEL_PT_SS_TRACING;
2802 }
2803
2804 return 0;
2805 }
2806
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2807 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2808 {
2809 struct machine *machine = pt->machine;
2810 struct map *map;
2811 struct symbol *sym, *start;
2812 u64 ip, switch_ip = 0;
2813 const char *ptss;
2814
2815 if (ptss_ip)
2816 *ptss_ip = 0;
2817
2818 map = machine__kernel_map(machine);
2819 if (!map)
2820 return 0;
2821
2822 if (map__load(map))
2823 return 0;
2824
2825 start = dso__first_symbol(map__dso(map));
2826
2827 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2828 if (sym->binding == STB_GLOBAL &&
2829 !strcmp(sym->name, "__switch_to")) {
2830 ip = map__unmap_ip(map, sym->start);
2831 if (ip >= map__start(map) && ip < map__end(map)) {
2832 switch_ip = ip;
2833 break;
2834 }
2835 }
2836 }
2837
2838 if (!switch_ip || !ptss_ip)
2839 return 0;
2840
2841 if (pt->have_sched_switch == 1)
2842 ptss = "perf_trace_sched_switch";
2843 else
2844 ptss = "__perf_event_task_sched_out";
2845
2846 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2847 if (!strcmp(sym->name, ptss)) {
2848 ip = map__unmap_ip(map, sym->start);
2849 if (ip >= map__start(map) && ip < map__end(map)) {
2850 *ptss_ip = ip;
2851 break;
2852 }
2853 }
2854 }
2855
2856 return switch_ip;
2857 }
2858
intel_pt_enable_sync_switch(struct intel_pt * pt)2859 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2860 {
2861 unsigned int i;
2862
2863 if (pt->sync_switch_not_supported)
2864 return;
2865
2866 pt->sync_switch = true;
2867
2868 for (i = 0; i < pt->queues.nr_queues; i++) {
2869 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2870 struct intel_pt_queue *ptq = queue->priv;
2871
2872 if (ptq)
2873 ptq->sync_switch = true;
2874 }
2875 }
2876
intel_pt_disable_sync_switch(struct intel_pt * pt)2877 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2878 {
2879 unsigned int i;
2880
2881 pt->sync_switch = false;
2882
2883 for (i = 0; i < pt->queues.nr_queues; i++) {
2884 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2885 struct intel_pt_queue *ptq = queue->priv;
2886
2887 if (ptq) {
2888 ptq->sync_switch = false;
2889 intel_pt_next_tid(pt, ptq);
2890 }
2891 }
2892 }
2893
2894 /*
2895 * To filter against time ranges, it is only necessary to look at the next start
2896 * or end time.
2897 */
intel_pt_next_time(struct intel_pt_queue * ptq)2898 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2899 {
2900 struct intel_pt *pt = ptq->pt;
2901
2902 if (ptq->sel_start) {
2903 /* Next time is an end time */
2904 ptq->sel_start = false;
2905 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2906 return true;
2907 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2908 /* Next time is a start time */
2909 ptq->sel_start = true;
2910 ptq->sel_idx += 1;
2911 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2912 return true;
2913 }
2914
2915 /* No next time */
2916 return false;
2917 }
2918
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2919 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2920 {
2921 int err;
2922
2923 while (1) {
2924 if (ptq->sel_start) {
2925 if (ptq->timestamp >= ptq->sel_timestamp) {
2926 /* After start time, so consider next time */
2927 intel_pt_next_time(ptq);
2928 if (!ptq->sel_timestamp) {
2929 /* No end time */
2930 return 0;
2931 }
2932 /* Check against end time */
2933 continue;
2934 }
2935 /* Before start time, so fast forward */
2936 ptq->have_sample = false;
2937 if (ptq->sel_timestamp > *ff_timestamp) {
2938 if (ptq->sync_switch) {
2939 intel_pt_next_tid(ptq->pt, ptq);
2940 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2941 }
2942 *ff_timestamp = ptq->sel_timestamp;
2943 err = intel_pt_fast_forward(ptq->decoder,
2944 ptq->sel_timestamp);
2945 if (err)
2946 return err;
2947 }
2948 return 0;
2949 } else if (ptq->timestamp > ptq->sel_timestamp) {
2950 /* After end time, so consider next time */
2951 if (!intel_pt_next_time(ptq)) {
2952 /* No next time range, so stop decoding */
2953 ptq->have_sample = false;
2954 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2955 return 1;
2956 }
2957 /* Check against next start time */
2958 continue;
2959 } else {
2960 /* Before end time */
2961 return 0;
2962 }
2963 }
2964 }
2965
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2966 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2967 {
2968 const struct intel_pt_state *state = ptq->state;
2969 struct intel_pt *pt = ptq->pt;
2970 u64 ff_timestamp = 0;
2971 int err;
2972
2973 if (!pt->kernel_start) {
2974 pt->kernel_start = machine__kernel_start(pt->machine);
2975 if (pt->per_cpu_mmaps &&
2976 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2977 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2978 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2979 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2980 if (pt->switch_ip) {
2981 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2982 pt->switch_ip, pt->ptss_ip);
2983 intel_pt_enable_sync_switch(pt);
2984 }
2985 }
2986 }
2987
2988 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2989 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2990 while (1) {
2991 err = intel_pt_sample(ptq);
2992 if (err)
2993 return err;
2994
2995 state = intel_pt_decode(ptq->decoder);
2996 if (state->err) {
2997 if (state->err == INTEL_PT_ERR_NODATA)
2998 return 1;
2999 if (ptq->sync_switch &&
3000 state->from_ip >= pt->kernel_start) {
3001 ptq->sync_switch = false;
3002 intel_pt_next_tid(pt, ptq);
3003 }
3004 ptq->timestamp = state->est_timestamp;
3005 if (pt->synth_opts.errors) {
3006 err = intel_ptq_synth_error(ptq, state);
3007 if (err)
3008 return err;
3009 }
3010 continue;
3011 }
3012
3013 ptq->state = state;
3014 ptq->have_sample = true;
3015 intel_pt_sample_flags(ptq);
3016
3017 /* Use estimated TSC upon return to user space */
3018 if (pt->est_tsc &&
3019 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
3020 state->to_ip && state->to_ip < pt->kernel_start) {
3021 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3022 state->timestamp, state->est_timestamp);
3023 ptq->timestamp = state->est_timestamp;
3024 /* Use estimated TSC in unknown switch state */
3025 } else if (ptq->sync_switch &&
3026 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
3027 intel_pt_is_switch_ip(ptq, state->to_ip) &&
3028 ptq->next_tid == -1) {
3029 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3030 state->timestamp, state->est_timestamp);
3031 ptq->timestamp = state->est_timestamp;
3032 } else if (state->timestamp > ptq->timestamp) {
3033 ptq->timestamp = state->timestamp;
3034 }
3035
3036 if (ptq->sel_timestamp) {
3037 err = intel_pt_time_filter(ptq, &ff_timestamp);
3038 if (err)
3039 return err;
3040 }
3041
3042 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
3043 *timestamp = ptq->timestamp;
3044 return 0;
3045 }
3046 }
3047 return 0;
3048 }
3049
intel_pt_update_queues(struct intel_pt * pt)3050 static inline int intel_pt_update_queues(struct intel_pt *pt)
3051 {
3052 if (pt->queues.new_data) {
3053 pt->queues.new_data = false;
3054 return intel_pt_setup_queues(pt);
3055 }
3056 return 0;
3057 }
3058
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)3059 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3060 {
3061 unsigned int queue_nr;
3062 u64 ts;
3063 int ret;
3064
3065 while (1) {
3066 struct auxtrace_queue *queue;
3067 struct intel_pt_queue *ptq;
3068
3069 if (!pt->heap.heap_cnt)
3070 return 0;
3071
3072 if (pt->heap.heap_array[0].ordinal >= timestamp)
3073 return 0;
3074
3075 queue_nr = pt->heap.heap_array[0].queue_nr;
3076 queue = &pt->queues.queue_array[queue_nr];
3077 ptq = queue->priv;
3078
3079 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3080 queue_nr, pt->heap.heap_array[0].ordinal,
3081 timestamp);
3082
3083 auxtrace_heap__pop(&pt->heap);
3084
3085 if (pt->heap.heap_cnt) {
3086 ts = pt->heap.heap_array[0].ordinal + 1;
3087 if (ts > timestamp)
3088 ts = timestamp;
3089 } else {
3090 ts = timestamp;
3091 }
3092
3093 intel_pt_set_pid_tid_cpu(pt, queue);
3094
3095 ret = intel_pt_run_decoder(ptq, &ts);
3096
3097 if (ret < 0) {
3098 auxtrace_heap__add(&pt->heap, queue_nr, ts);
3099 return ret;
3100 }
3101
3102 if (!ret) {
3103 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3104 if (ret < 0)
3105 return ret;
3106 } else {
3107 ptq->on_heap = false;
3108 }
3109 }
3110
3111 return 0;
3112 }
3113
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)3114 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3115 u64 time_)
3116 {
3117 struct auxtrace_queues *queues = &pt->queues;
3118 unsigned int i;
3119 u64 ts = 0;
3120
3121 for (i = 0; i < queues->nr_queues; i++) {
3122 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3123 struct intel_pt_queue *ptq = queue->priv;
3124
3125 if (ptq && (tid == -1 || ptq->tid == tid)) {
3126 ptq->time = time_;
3127 intel_pt_set_pid_tid_cpu(pt, queue);
3128 intel_pt_run_decoder(ptq, &ts);
3129 }
3130 }
3131 return 0;
3132 }
3133
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)3134 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3135 struct auxtrace_queue *queue,
3136 struct perf_sample *sample)
3137 {
3138 struct machine *m = ptq->pt->machine;
3139
3140 ptq->pid = sample->pid;
3141 ptq->tid = sample->tid;
3142 ptq->cpu = queue->cpu;
3143
3144 intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3145 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3146
3147 thread__zput(ptq->thread);
3148
3149 if (ptq->tid == -1)
3150 return;
3151
3152 if (ptq->pid == -1) {
3153 ptq->thread = machine__find_thread(m, -1, ptq->tid);
3154 if (ptq->thread)
3155 ptq->pid = thread__pid(ptq->thread);
3156 return;
3157 }
3158
3159 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3160 }
3161
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)3162 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3163 struct perf_sample *sample)
3164 {
3165 struct auxtrace_queue *queue;
3166 struct intel_pt_queue *ptq;
3167 u64 ts = 0;
3168
3169 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3170 if (!queue)
3171 return -EINVAL;
3172
3173 ptq = queue->priv;
3174 if (!ptq)
3175 return 0;
3176
3177 ptq->stop = false;
3178 ptq->time = sample->time;
3179 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3180 intel_pt_run_decoder(ptq, &ts);
3181 return 0;
3182 }
3183
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)3184 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3185 {
3186 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3187 sample->pid, sample->tid, 0, sample->time,
3188 sample->machine_pid, sample->vcpu);
3189 }
3190
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)3191 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3192 {
3193 unsigned i, j;
3194
3195 if (cpu < 0 || !pt->queues.nr_queues)
3196 return NULL;
3197
3198 if ((unsigned)cpu >= pt->queues.nr_queues)
3199 i = pt->queues.nr_queues - 1;
3200 else
3201 i = cpu;
3202
3203 if (pt->queues.queue_array[i].cpu == cpu)
3204 return pt->queues.queue_array[i].priv;
3205
3206 for (j = 0; i > 0; j++) {
3207 if (pt->queues.queue_array[--i].cpu == cpu)
3208 return pt->queues.queue_array[i].priv;
3209 }
3210
3211 for (; j < pt->queues.nr_queues; j++) {
3212 if (pt->queues.queue_array[j].cpu == cpu)
3213 return pt->queues.queue_array[j].priv;
3214 }
3215
3216 return NULL;
3217 }
3218
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)3219 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3220 u64 timestamp)
3221 {
3222 struct intel_pt_queue *ptq;
3223 int err;
3224
3225 if (!pt->sync_switch)
3226 return 1;
3227
3228 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3229 if (!ptq || !ptq->sync_switch)
3230 return 1;
3231
3232 switch (ptq->switch_state) {
3233 case INTEL_PT_SS_NOT_TRACING:
3234 break;
3235 case INTEL_PT_SS_UNKNOWN:
3236 case INTEL_PT_SS_TRACING:
3237 ptq->next_tid = tid;
3238 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3239 return 0;
3240 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3241 if (!ptq->on_heap) {
3242 ptq->timestamp = perf_time_to_tsc(timestamp,
3243 &pt->tc);
3244 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3245 ptq->timestamp);
3246 if (err)
3247 return err;
3248 ptq->on_heap = true;
3249 }
3250 ptq->switch_state = INTEL_PT_SS_TRACING;
3251 break;
3252 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3253 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3254 break;
3255 default:
3256 break;
3257 }
3258
3259 ptq->next_tid = -1;
3260
3261 return 1;
3262 }
3263
3264 #ifdef HAVE_LIBTRACEEVENT
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)3265 static int intel_pt_process_switch(struct intel_pt *pt,
3266 struct perf_sample *sample)
3267 {
3268 pid_t tid;
3269 int cpu, ret;
3270 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3271
3272 if (evsel != pt->switch_evsel)
3273 return 0;
3274
3275 tid = evsel__intval(evsel, sample, "next_pid");
3276 cpu = sample->cpu;
3277
3278 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3279 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3280 &pt->tc));
3281
3282 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3283 if (ret <= 0)
3284 return ret;
3285
3286 return machine__set_current_tid(pt->machine, cpu, -1, tid);
3287 }
3288 #endif /* HAVE_LIBTRACEEVENT */
3289
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)3290 static int intel_pt_context_switch_in(struct intel_pt *pt,
3291 struct perf_sample *sample)
3292 {
3293 pid_t pid = sample->pid;
3294 pid_t tid = sample->tid;
3295 int cpu = sample->cpu;
3296
3297 if (pt->sync_switch) {
3298 struct intel_pt_queue *ptq;
3299
3300 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3301 if (ptq && ptq->sync_switch) {
3302 ptq->next_tid = -1;
3303 switch (ptq->switch_state) {
3304 case INTEL_PT_SS_NOT_TRACING:
3305 case INTEL_PT_SS_UNKNOWN:
3306 case INTEL_PT_SS_TRACING:
3307 break;
3308 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3309 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3310 ptq->switch_state = INTEL_PT_SS_TRACING;
3311 break;
3312 default:
3313 break;
3314 }
3315 }
3316 }
3317
3318 /*
3319 * If the current tid has not been updated yet, ensure it is now that
3320 * a "switch in" event has occurred.
3321 */
3322 if (machine__get_current_tid(pt->machine, cpu) == tid)
3323 return 0;
3324
3325 return machine__set_current_tid(pt->machine, cpu, pid, tid);
3326 }
3327
intel_pt_guest_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3328 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3329 union perf_event *event,
3330 struct perf_sample *sample)
3331 {
3332 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3333 struct machines *machines = &pt->session->machines;
3334 struct machine *machine = machines__find(machines, sample->machine_pid);
3335
3336 pt->have_guest_sideband = true;
3337
3338 /*
3339 * sync_switch cannot handle guest machines at present, so just disable
3340 * it.
3341 */
3342 pt->sync_switch_not_supported = true;
3343 if (pt->sync_switch)
3344 intel_pt_disable_sync_switch(pt);
3345
3346 if (out)
3347 return 0;
3348
3349 if (!machine)
3350 return -EINVAL;
3351
3352 return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3353 }
3354
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3355 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3356 struct perf_sample *sample)
3357 {
3358 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3359 pid_t pid, tid;
3360 int cpu, ret;
3361
3362 if (perf_event__is_guest(event))
3363 return intel_pt_guest_context_switch(pt, event, sample);
3364
3365 cpu = sample->cpu;
3366
3367 if (pt->have_sched_switch == 3) {
3368 if (!out)
3369 return intel_pt_context_switch_in(pt, sample);
3370 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3371 pr_err("Expecting CPU-wide context switch event\n");
3372 return -EINVAL;
3373 }
3374 pid = event->context_switch.next_prev_pid;
3375 tid = event->context_switch.next_prev_tid;
3376 } else {
3377 if (out)
3378 return 0;
3379 pid = sample->pid;
3380 tid = sample->tid;
3381 }
3382
3383 if (tid == -1)
3384 intel_pt_log("context_switch event has no tid\n");
3385
3386 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3387 if (ret <= 0)
3388 return ret;
3389
3390 return machine__set_current_tid(pt->machine, cpu, pid, tid);
3391 }
3392
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3393 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3394 union perf_event *event,
3395 struct perf_sample *sample)
3396 {
3397 if (!pt->per_cpu_mmaps)
3398 return 0;
3399
3400 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3401 sample->cpu, event->itrace_start.pid,
3402 event->itrace_start.tid, sample->time,
3403 perf_time_to_tsc(sample->time, &pt->tc));
3404
3405 return machine__set_current_tid(pt->machine, sample->cpu,
3406 event->itrace_start.pid,
3407 event->itrace_start.tid);
3408 }
3409
intel_pt_process_aux_output_hw_id(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3410 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3411 union perf_event *event,
3412 struct perf_sample *sample)
3413 {
3414 u64 hw_id = event->aux_output_hw_id.hw_id;
3415 struct auxtrace_queue *queue;
3416 struct intel_pt_queue *ptq;
3417 struct evsel *evsel;
3418
3419 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3420 evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3421 if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3422 pr_err("Bad AUX output hardware ID\n");
3423 return -EINVAL;
3424 }
3425
3426 ptq = queue->priv;
3427
3428 ptq->pebs[hw_id].evsel = evsel;
3429 ptq->pebs[hw_id].id = sample->id;
3430
3431 return 0;
3432 }
3433
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)3434 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3435 struct addr_location *al)
3436 {
3437 if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3438 if (!thread__find_map(thread, cpumode, addr, al))
3439 return -1;
3440 }
3441
3442 return 0;
3443 }
3444
3445 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)3446 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3447 {
3448 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3449 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3450 /* Assume text poke begins in a basic block no more than 4096 bytes */
3451 int cnt = 4096 + event->text_poke.new_len;
3452 struct thread *thread = pt->unknown_thread;
3453 struct addr_location al;
3454 struct machine *machine = pt->machine;
3455 struct intel_pt_cache_entry *e;
3456 u64 offset;
3457 int ret = 0;
3458
3459 addr_location__init(&al);
3460 if (!event->text_poke.new_len)
3461 goto out;
3462
3463 for (; cnt; cnt--, addr--) {
3464 struct dso *dso;
3465
3466 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3467 if (addr < event->text_poke.addr)
3468 goto out;
3469 continue;
3470 }
3471
3472 dso = map__dso(al.map);
3473 if (!dso || !dso__auxtrace_cache(dso))
3474 continue;
3475
3476 offset = map__map_ip(al.map, addr);
3477
3478 e = intel_pt_cache_lookup(dso, machine, offset);
3479 if (!e)
3480 continue;
3481
3482 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3483 /*
3484 * No overlap. Working backwards there cannot be another
3485 * basic block that overlaps the text poke if there is a
3486 * branch instruction before the text poke address.
3487 */
3488 if (e->branch != INTEL_PT_BR_NO_BRANCH)
3489 goto out;
3490 } else {
3491 intel_pt_cache_invalidate(dso, machine, offset);
3492 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3493 dso__long_name(dso), addr);
3494 }
3495 }
3496 out:
3497 addr_location__exit(&al);
3498 return ret;
3499 }
3500
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,const struct perf_tool * tool)3501 static int intel_pt_process_event(struct perf_session *session,
3502 union perf_event *event,
3503 struct perf_sample *sample,
3504 const struct perf_tool *tool)
3505 {
3506 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3507 auxtrace);
3508 u64 timestamp;
3509 int err = 0;
3510
3511 if (dump_trace)
3512 return 0;
3513
3514 if (!tool->ordered_events) {
3515 pr_err("Intel Processor Trace requires ordered events\n");
3516 return -EINVAL;
3517 }
3518
3519 if (sample->time && sample->time != (u64)-1)
3520 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3521 else
3522 timestamp = 0;
3523
3524 if (timestamp || pt->timeless_decoding) {
3525 err = intel_pt_update_queues(pt);
3526 if (err)
3527 return err;
3528 }
3529
3530 if (pt->timeless_decoding) {
3531 if (pt->sampling_mode) {
3532 if (sample->aux_sample.size)
3533 err = intel_pt_process_timeless_sample(pt,
3534 sample);
3535 } else if (event->header.type == PERF_RECORD_EXIT) {
3536 err = intel_pt_process_timeless_queues(pt,
3537 event->fork.tid,
3538 sample->time);
3539 }
3540 } else if (timestamp) {
3541 if (!pt->first_timestamp)
3542 intel_pt_first_timestamp(pt, timestamp);
3543 err = intel_pt_process_queues(pt, timestamp);
3544 }
3545 if (err)
3546 return err;
3547
3548 if (event->header.type == PERF_RECORD_SAMPLE) {
3549 if (pt->synth_opts.add_callchain && !sample->callchain)
3550 intel_pt_add_callchain(pt, sample);
3551 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3552 intel_pt_add_br_stack(pt, sample);
3553 }
3554
3555 if (event->header.type == PERF_RECORD_AUX &&
3556 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3557 pt->synth_opts.errors) {
3558 err = intel_pt_lost(pt, sample);
3559 if (err)
3560 return err;
3561 }
3562
3563 #ifdef HAVE_LIBTRACEEVENT
3564 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3565 err = intel_pt_process_switch(pt, sample);
3566 else
3567 #endif
3568 if (event->header.type == PERF_RECORD_ITRACE_START)
3569 err = intel_pt_process_itrace_start(pt, event, sample);
3570 else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3571 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3572 else if (event->header.type == PERF_RECORD_SWITCH ||
3573 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3574 err = intel_pt_context_switch(pt, event, sample);
3575
3576 if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3577 err = intel_pt_text_poke(pt, event);
3578
3579 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3580 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3581 event->header.type, sample->cpu, sample->time, timestamp);
3582 intel_pt_log_event(event);
3583 }
3584
3585 return err;
3586 }
3587
intel_pt_flush(struct perf_session * session,const struct perf_tool * tool)3588 static int intel_pt_flush(struct perf_session *session, const struct perf_tool *tool)
3589 {
3590 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3591 auxtrace);
3592 int ret;
3593
3594 if (dump_trace)
3595 return 0;
3596
3597 if (!tool->ordered_events)
3598 return -EINVAL;
3599
3600 ret = intel_pt_update_queues(pt);
3601 if (ret < 0)
3602 return ret;
3603
3604 if (pt->timeless_decoding)
3605 return intel_pt_process_timeless_queues(pt, -1,
3606 MAX_TIMESTAMP - 1);
3607
3608 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3609 }
3610
intel_pt_free_events(struct perf_session * session)3611 static void intel_pt_free_events(struct perf_session *session)
3612 {
3613 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3614 auxtrace);
3615 struct auxtrace_queues *queues = &pt->queues;
3616 unsigned int i;
3617
3618 for (i = 0; i < queues->nr_queues; i++) {
3619 intel_pt_free_queue(queues->queue_array[i].priv);
3620 queues->queue_array[i].priv = NULL;
3621 }
3622 intel_pt_log_disable();
3623 auxtrace_queues__free(queues);
3624 }
3625
intel_pt_free(struct perf_session * session)3626 static void intel_pt_free(struct perf_session *session)
3627 {
3628 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3629 auxtrace);
3630
3631 auxtrace_heap__free(&pt->heap);
3632 intel_pt_free_events(session);
3633 session->auxtrace = NULL;
3634 intel_pt_free_vmcs_info(pt);
3635 thread__put(pt->unknown_thread);
3636 addr_filters__exit(&pt->filts);
3637 zfree(&pt->chain);
3638 zfree(&pt->filter);
3639 zfree(&pt->time_ranges);
3640 zfree(&pt->br_stack);
3641 free(pt);
3642 }
3643
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)3644 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3645 struct evsel *evsel)
3646 {
3647 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3648 auxtrace);
3649
3650 return evsel->core.attr.type == pt->pmu_type;
3651 }
3652
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,const struct perf_tool * tool __maybe_unused)3653 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3654 union perf_event *event,
3655 const struct perf_tool *tool __maybe_unused)
3656 {
3657 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3658 auxtrace);
3659
3660 if (!pt->data_queued) {
3661 struct auxtrace_buffer *buffer;
3662 off_t data_offset;
3663 int fd = perf_data__fd(session->data);
3664 int err;
3665
3666 if (perf_data__is_pipe(session->data)) {
3667 data_offset = 0;
3668 } else {
3669 data_offset = lseek(fd, 0, SEEK_CUR);
3670 if (data_offset == -1)
3671 return -errno;
3672 }
3673
3674 err = auxtrace_queues__add_event(&pt->queues, session, event,
3675 data_offset, &buffer);
3676 if (err)
3677 return err;
3678
3679 /* Dump here now we have copied a piped trace out of the pipe */
3680 if (dump_trace) {
3681 if (auxtrace_buffer__get_data(buffer, fd)) {
3682 intel_pt_dump_event(pt, buffer->data,
3683 buffer->size);
3684 auxtrace_buffer__put_data(buffer);
3685 }
3686 }
3687 }
3688
3689 return 0;
3690 }
3691
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)3692 static int intel_pt_queue_data(struct perf_session *session,
3693 struct perf_sample *sample,
3694 union perf_event *event, u64 data_offset)
3695 {
3696 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3697 auxtrace);
3698 u64 timestamp;
3699
3700 if (event) {
3701 return auxtrace_queues__add_event(&pt->queues, session, event,
3702 data_offset, NULL);
3703 }
3704
3705 if (sample->time && sample->time != (u64)-1)
3706 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3707 else
3708 timestamp = 0;
3709
3710 return auxtrace_queues__add_sample(&pt->queues, session, sample,
3711 data_offset, timestamp);
3712 }
3713
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)3714 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3715 struct perf_event_attr *attr, u64 id)
3716 {
3717 int err;
3718
3719 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3720 name, id, (u64)attr->sample_type);
3721
3722 err = perf_session__deliver_synth_attr_event(session, attr, id);
3723 if (err)
3724 pr_err("%s: failed to synthesize '%s' event type\n",
3725 __func__, name);
3726
3727 return err;
3728 }
3729
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)3730 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3731 const char *name)
3732 {
3733 struct evsel *evsel;
3734
3735 evlist__for_each_entry(evlist, evsel) {
3736 if (evsel->core.id && evsel->core.id[0] == id) {
3737 if (evsel->name)
3738 zfree(&evsel->name);
3739 evsel->name = strdup(name);
3740 break;
3741 }
3742 }
3743 }
3744
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)3745 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3746 struct evlist *evlist)
3747 {
3748 struct evsel *evsel;
3749
3750 evlist__for_each_entry(evlist, evsel) {
3751 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3752 return evsel;
3753 }
3754
3755 return NULL;
3756 }
3757
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)3758 static int intel_pt_synth_events(struct intel_pt *pt,
3759 struct perf_session *session)
3760 {
3761 struct evlist *evlist = session->evlist;
3762 struct evsel *evsel = intel_pt_evsel(pt, evlist);
3763 struct perf_event_attr attr;
3764 u64 id;
3765 int err;
3766
3767 if (!evsel) {
3768 pr_debug("There are no selected events with Intel Processor Trace data\n");
3769 return 0;
3770 }
3771
3772 memset(&attr, 0, sizeof(struct perf_event_attr));
3773 attr.size = sizeof(struct perf_event_attr);
3774 attr.type = PERF_TYPE_HARDWARE;
3775 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3776 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3777 PERF_SAMPLE_PERIOD;
3778 if (pt->timeless_decoding)
3779 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3780 else
3781 attr.sample_type |= PERF_SAMPLE_TIME;
3782 if (!pt->per_cpu_mmaps)
3783 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3784 attr.exclude_user = evsel->core.attr.exclude_user;
3785 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3786 attr.exclude_hv = evsel->core.attr.exclude_hv;
3787 attr.exclude_host = evsel->core.attr.exclude_host;
3788 attr.exclude_guest = evsel->core.attr.exclude_guest;
3789 attr.sample_id_all = evsel->core.attr.sample_id_all;
3790 attr.read_format = evsel->core.attr.read_format;
3791
3792 id = evsel->core.id[0] + 1000000000;
3793 if (!id)
3794 id = 1;
3795
3796 if (pt->synth_opts.branches) {
3797 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3798 attr.sample_period = 1;
3799 attr.sample_type |= PERF_SAMPLE_ADDR;
3800 err = intel_pt_synth_event(session, "branches", &attr, id);
3801 if (err)
3802 return err;
3803 pt->sample_branches = true;
3804 pt->branches_sample_type = attr.sample_type;
3805 pt->branches_id = id;
3806 id += 1;
3807 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3808 }
3809
3810 if (pt->synth_opts.callchain)
3811 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3812 if (pt->synth_opts.last_branch) {
3813 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3814 /*
3815 * We don't use the hardware index, but the sample generation
3816 * code uses the new format branch_stack with this field,
3817 * so the event attributes must indicate that it's present.
3818 */
3819 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3820 }
3821
3822 if (pt->synth_opts.instructions) {
3823 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3824 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3825 attr.sample_period =
3826 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3827 else
3828 attr.sample_period = pt->synth_opts.period;
3829 err = intel_pt_synth_event(session, "instructions", &attr, id);
3830 if (err)
3831 return err;
3832 pt->sample_instructions = true;
3833 pt->instructions_sample_type = attr.sample_type;
3834 pt->instructions_id = id;
3835 id += 1;
3836 }
3837
3838 if (pt->synth_opts.cycles) {
3839 attr.config = PERF_COUNT_HW_CPU_CYCLES;
3840 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3841 attr.sample_period =
3842 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3843 else
3844 attr.sample_period = pt->synth_opts.period;
3845 err = intel_pt_synth_event(session, "cycles", &attr, id);
3846 if (err)
3847 return err;
3848 pt->sample_cycles = true;
3849 pt->cycles_sample_type = attr.sample_type;
3850 pt->cycles_id = id;
3851 id += 1;
3852 }
3853
3854 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3855 attr.sample_period = 1;
3856
3857 if (pt->synth_opts.transactions) {
3858 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3859 err = intel_pt_synth_event(session, "transactions", &attr, id);
3860 if (err)
3861 return err;
3862 pt->sample_transactions = true;
3863 pt->transactions_sample_type = attr.sample_type;
3864 pt->transactions_id = id;
3865 intel_pt_set_event_name(evlist, id, "transactions");
3866 id += 1;
3867 }
3868
3869 attr.type = PERF_TYPE_SYNTH;
3870 attr.sample_type |= PERF_SAMPLE_RAW;
3871
3872 if (pt->synth_opts.ptwrites) {
3873 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3874 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3875 if (err)
3876 return err;
3877 pt->sample_ptwrites = true;
3878 pt->ptwrites_sample_type = attr.sample_type;
3879 pt->ptwrites_id = id;
3880 intel_pt_set_event_name(evlist, id, "ptwrite");
3881 id += 1;
3882 }
3883
3884 if (pt->synth_opts.pwr_events) {
3885 pt->sample_pwr_events = true;
3886 pt->pwr_events_sample_type = attr.sample_type;
3887
3888 attr.config = PERF_SYNTH_INTEL_CBR;
3889 err = intel_pt_synth_event(session, "cbr", &attr, id);
3890 if (err)
3891 return err;
3892 pt->cbr_id = id;
3893 intel_pt_set_event_name(evlist, id, "cbr");
3894 id += 1;
3895
3896 attr.config = PERF_SYNTH_INTEL_PSB;
3897 err = intel_pt_synth_event(session, "psb", &attr, id);
3898 if (err)
3899 return err;
3900 pt->psb_id = id;
3901 intel_pt_set_event_name(evlist, id, "psb");
3902 id += 1;
3903 }
3904
3905 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3906 attr.config = PERF_SYNTH_INTEL_MWAIT;
3907 err = intel_pt_synth_event(session, "mwait", &attr, id);
3908 if (err)
3909 return err;
3910 pt->mwait_id = id;
3911 intel_pt_set_event_name(evlist, id, "mwait");
3912 id += 1;
3913
3914 attr.config = PERF_SYNTH_INTEL_PWRE;
3915 err = intel_pt_synth_event(session, "pwre", &attr, id);
3916 if (err)
3917 return err;
3918 pt->pwre_id = id;
3919 intel_pt_set_event_name(evlist, id, "pwre");
3920 id += 1;
3921
3922 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3923 err = intel_pt_synth_event(session, "exstop", &attr, id);
3924 if (err)
3925 return err;
3926 pt->exstop_id = id;
3927 intel_pt_set_event_name(evlist, id, "exstop");
3928 id += 1;
3929
3930 attr.config = PERF_SYNTH_INTEL_PWRX;
3931 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3932 if (err)
3933 return err;
3934 pt->pwrx_id = id;
3935 intel_pt_set_event_name(evlist, id, "pwrx");
3936 id += 1;
3937 }
3938
3939 if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3940 attr.config = PERF_SYNTH_INTEL_EVT;
3941 err = intel_pt_synth_event(session, "evt", &attr, id);
3942 if (err)
3943 return err;
3944 pt->evt_sample_type = attr.sample_type;
3945 pt->evt_id = id;
3946 intel_pt_set_event_name(evlist, id, "evt");
3947 id += 1;
3948 }
3949
3950 if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3951 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3952 err = intel_pt_synth_event(session, "iflag", &attr, id);
3953 if (err)
3954 return err;
3955 pt->iflag_chg_sample_type = attr.sample_type;
3956 pt->iflag_chg_id = id;
3957 intel_pt_set_event_name(evlist, id, "iflag");
3958 id += 1;
3959 }
3960
3961 return 0;
3962 }
3963
intel_pt_setup_pebs_events(struct intel_pt * pt)3964 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3965 {
3966 struct evsel *evsel;
3967
3968 if (!pt->synth_opts.other_events)
3969 return;
3970
3971 evlist__for_each_entry(pt->session->evlist, evsel) {
3972 if (evsel->core.attr.aux_output && evsel->core.id) {
3973 if (pt->single_pebs) {
3974 pt->single_pebs = false;
3975 return;
3976 }
3977 pt->single_pebs = true;
3978 pt->sample_pebs = true;
3979 pt->pebs_evsel = evsel;
3980 }
3981 }
3982 }
3983
intel_pt_find_sched_switch(struct evlist * evlist)3984 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3985 {
3986 struct evsel *evsel;
3987
3988 evlist__for_each_entry_reverse(evlist, evsel) {
3989 const char *name = evsel__name(evsel);
3990
3991 if (!strcmp(name, "sched:sched_switch"))
3992 return evsel;
3993 }
3994
3995 return NULL;
3996 }
3997
intel_pt_find_switch(struct evlist * evlist)3998 static bool intel_pt_find_switch(struct evlist *evlist)
3999 {
4000 struct evsel *evsel;
4001
4002 evlist__for_each_entry(evlist, evsel) {
4003 if (evsel->core.attr.context_switch)
4004 return true;
4005 }
4006
4007 return false;
4008 }
4009
intel_pt_perf_config(const char * var,const char * value,void * data)4010 static int intel_pt_perf_config(const char *var, const char *value, void *data)
4011 {
4012 struct intel_pt *pt = data;
4013
4014 if (!strcmp(var, "intel-pt.mispred-all"))
4015 pt->mispred_all = perf_config_bool(var, value);
4016
4017 if (!strcmp(var, "intel-pt.max-loops"))
4018 perf_config_int(&pt->max_loops, var, value);
4019
4020 return 0;
4021 }
4022
4023 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)4024 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
4025 {
4026 u64 tsc, tm;
4027
4028 tsc = perf_time_to_tsc(ns, &pt->tc);
4029
4030 while (1) {
4031 tm = tsc_to_perf_time(tsc, &pt->tc);
4032 if (tm < ns)
4033 break;
4034 tsc -= 1;
4035 }
4036
4037 while (tm < ns)
4038 tm = tsc_to_perf_time(++tsc, &pt->tc);
4039
4040 return tsc;
4041 }
4042
4043 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)4044 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4045 {
4046 u64 tsc, tm;
4047
4048 tsc = perf_time_to_tsc(ns, &pt->tc);
4049
4050 while (1) {
4051 tm = tsc_to_perf_time(tsc, &pt->tc);
4052 if (tm > ns)
4053 break;
4054 tsc += 1;
4055 }
4056
4057 while (tm > ns)
4058 tm = tsc_to_perf_time(--tsc, &pt->tc);
4059
4060 return tsc;
4061 }
4062
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)4063 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4064 struct itrace_synth_opts *opts)
4065 {
4066 struct perf_time_interval *p = opts->ptime_range;
4067 int n = opts->range_num;
4068 int i;
4069
4070 if (!n || !p || pt->timeless_decoding)
4071 return 0;
4072
4073 pt->time_ranges = calloc(n, sizeof(struct range));
4074 if (!pt->time_ranges)
4075 return -ENOMEM;
4076
4077 pt->range_cnt = n;
4078
4079 intel_pt_log("%s: %u range(s)\n", __func__, n);
4080
4081 for (i = 0; i < n; i++) {
4082 struct range *r = &pt->time_ranges[i];
4083 u64 ts = p[i].start;
4084 u64 te = p[i].end;
4085
4086 /*
4087 * Take care to ensure the TSC range matches the perf-time range
4088 * when converted back to perf-time.
4089 */
4090 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4091 r->end = te ? intel_pt_tsc_end(te, pt) : 0;
4092
4093 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4094 i, ts, te);
4095 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4096 i, r->start, r->end);
4097 }
4098
4099 return 0;
4100 }
4101
intel_pt_parse_vm_tm_corr_arg(struct intel_pt * pt,char ** args)4102 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4103 {
4104 struct intel_pt_vmcs_info *vmcs_info;
4105 u64 tsc_offset, vmcs;
4106 char *p = *args;
4107
4108 errno = 0;
4109
4110 p = skip_spaces(p);
4111 if (!*p)
4112 return 1;
4113
4114 tsc_offset = strtoull(p, &p, 0);
4115 if (errno)
4116 return -errno;
4117 p = skip_spaces(p);
4118 if (*p != ':') {
4119 pt->dflt_tsc_offset = tsc_offset;
4120 *args = p;
4121 return 0;
4122 }
4123 p += 1;
4124 while (1) {
4125 vmcs = strtoull(p, &p, 0);
4126 if (errno)
4127 return -errno;
4128 if (!vmcs)
4129 return -EINVAL;
4130 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4131 if (!vmcs_info)
4132 return -ENOMEM;
4133 p = skip_spaces(p);
4134 if (*p != ',')
4135 break;
4136 p += 1;
4137 }
4138 *args = p;
4139 return 0;
4140 }
4141
intel_pt_parse_vm_tm_corr_args(struct intel_pt * pt)4142 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4143 {
4144 char *args = pt->synth_opts.vm_tm_corr_args;
4145 int ret;
4146
4147 if (!args)
4148 return 0;
4149
4150 do {
4151 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4152 } while (!ret);
4153
4154 if (ret < 0) {
4155 pr_err("Failed to parse VM Time Correlation options\n");
4156 return ret;
4157 }
4158
4159 return 0;
4160 }
4161
4162 static const char * const intel_pt_info_fmts[] = {
4163 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
4164 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
4165 [INTEL_PT_TIME_MULT] = " Time Multiplier %"PRIu64"\n",
4166 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
4167 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
4168 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
4169 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
4170 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
4171 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
4172 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
4173 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
4174 [INTEL_PT_MTC_FREQ_BITS] = " MTC freq bits %#"PRIx64"\n",
4175 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
4176 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
4177 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
4178 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
4179 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
4180 };
4181
intel_pt_print_info(__u64 * arr,int start,int finish)4182 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4183 {
4184 int i;
4185
4186 if (!dump_trace)
4187 return;
4188
4189 for (i = start; i <= finish; i++) {
4190 const char *fmt = intel_pt_info_fmts[i];
4191
4192 if (fmt)
4193 fprintf(stdout, fmt, arr[i]);
4194 }
4195 }
4196
intel_pt_print_info_str(const char * name,const char * str)4197 static void intel_pt_print_info_str(const char *name, const char *str)
4198 {
4199 if (!dump_trace)
4200 return;
4201
4202 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
4203 }
4204
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)4205 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4206 {
4207 return auxtrace_info->header.size >=
4208 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4209 }
4210
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)4211 int intel_pt_process_auxtrace_info(union perf_event *event,
4212 struct perf_session *session)
4213 {
4214 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4215 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4216 struct intel_pt *pt;
4217 void *info_end;
4218 __u64 *info;
4219 int err;
4220
4221 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4222 min_sz)
4223 return -EINVAL;
4224
4225 pt = zalloc(sizeof(struct intel_pt));
4226 if (!pt)
4227 return -ENOMEM;
4228
4229 pt->vmcs_info = RB_ROOT;
4230
4231 addr_filters__init(&pt->filts);
4232
4233 err = perf_config(intel_pt_perf_config, pt);
4234 if (err)
4235 goto err_free;
4236
4237 err = auxtrace_queues__init(&pt->queues);
4238 if (err)
4239 goto err_free;
4240
4241 if (session->itrace_synth_opts->set) {
4242 pt->synth_opts = *session->itrace_synth_opts;
4243 } else {
4244 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4245
4246 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4247 if (!opts->default_no_sample && !opts->inject) {
4248 pt->synth_opts.branches = false;
4249 pt->synth_opts.callchain = true;
4250 pt->synth_opts.add_callchain = true;
4251 }
4252 pt->synth_opts.thread_stack = opts->thread_stack;
4253 }
4254
4255 if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4256 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4257
4258 pt->session = session;
4259 pt->machine = &session->machines.host; /* No kvm support */
4260 pt->auxtrace_type = auxtrace_info->type;
4261 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4262 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4263 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4264 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4265 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4266 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4267 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4268 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4269 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4270 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4271 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4272 INTEL_PT_PER_CPU_MMAPS);
4273
4274 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4275 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4276 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4277 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4278 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4279 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4280 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4281 INTEL_PT_CYC_BIT);
4282 }
4283
4284 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4285 pt->max_non_turbo_ratio =
4286 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4287 intel_pt_print_info(&auxtrace_info->priv[0],
4288 INTEL_PT_MAX_NONTURBO_RATIO,
4289 INTEL_PT_MAX_NONTURBO_RATIO);
4290 }
4291
4292 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4293 info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4294
4295 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4296 size_t len;
4297
4298 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4299 intel_pt_print_info(&auxtrace_info->priv[0],
4300 INTEL_PT_FILTER_STR_LEN,
4301 INTEL_PT_FILTER_STR_LEN);
4302 if (len) {
4303 const char *filter = (const char *)info;
4304
4305 len = roundup(len + 1, 8);
4306 info += len >> 3;
4307 if ((void *)info > info_end) {
4308 pr_err("%s: bad filter string length\n", __func__);
4309 err = -EINVAL;
4310 goto err_free_queues;
4311 }
4312 pt->filter = memdup(filter, len);
4313 if (!pt->filter) {
4314 err = -ENOMEM;
4315 goto err_free_queues;
4316 }
4317 if (session->header.needs_swap)
4318 mem_bswap_64(pt->filter, len);
4319 if (pt->filter[len - 1]) {
4320 pr_err("%s: filter string not null terminated\n", __func__);
4321 err = -EINVAL;
4322 goto err_free_queues;
4323 }
4324 err = addr_filters__parse_bare_filter(&pt->filts,
4325 filter);
4326 if (err)
4327 goto err_free_queues;
4328 }
4329 intel_pt_print_info_str("Filter string", pt->filter);
4330 }
4331
4332 if ((void *)info < info_end) {
4333 pt->cap_event_trace = *info++;
4334 if (dump_trace)
4335 fprintf(stdout, " Cap Event Trace %d\n",
4336 pt->cap_event_trace);
4337 }
4338
4339 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4340 if (pt->timeless_decoding && !pt->tc.time_mult)
4341 pt->tc.time_mult = 1;
4342 pt->have_tsc = intel_pt_have_tsc(pt);
4343 pt->sampling_mode = intel_pt_sampling_mode(pt);
4344 pt->est_tsc = !pt->timeless_decoding;
4345
4346 if (pt->synth_opts.vm_time_correlation) {
4347 if (pt->timeless_decoding) {
4348 pr_err("Intel PT has no time information for VM Time Correlation\n");
4349 err = -EINVAL;
4350 goto err_free_queues;
4351 }
4352 if (session->itrace_synth_opts->ptime_range) {
4353 pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4354 err = -EINVAL;
4355 goto err_free_queues;
4356 }
4357 /* Currently TSC Offset is calculated using MTC packets */
4358 if (!intel_pt_have_mtc(pt)) {
4359 pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4360 err = -EINVAL;
4361 goto err_free_queues;
4362 }
4363 err = intel_pt_parse_vm_tm_corr_args(pt);
4364 if (err)
4365 goto err_free_queues;
4366 }
4367
4368 pt->unknown_thread = thread__new(999999999, 999999999);
4369 if (!pt->unknown_thread) {
4370 err = -ENOMEM;
4371 goto err_free_queues;
4372 }
4373
4374 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4375 if (err)
4376 goto err_delete_thread;
4377 if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4378 err = -ENOMEM;
4379 goto err_delete_thread;
4380 }
4381
4382 pt->auxtrace.process_event = intel_pt_process_event;
4383 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4384 pt->auxtrace.queue_data = intel_pt_queue_data;
4385 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4386 pt->auxtrace.flush_events = intel_pt_flush;
4387 pt->auxtrace.free_events = intel_pt_free_events;
4388 pt->auxtrace.free = intel_pt_free;
4389 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4390 session->auxtrace = &pt->auxtrace;
4391
4392 if (dump_trace)
4393 return 0;
4394
4395 if (pt->have_sched_switch == 1) {
4396 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4397 if (!pt->switch_evsel) {
4398 pr_err("%s: missing sched_switch event\n", __func__);
4399 err = -EINVAL;
4400 goto err_delete_thread;
4401 }
4402 } else if (pt->have_sched_switch == 2 &&
4403 !intel_pt_find_switch(session->evlist)) {
4404 pr_err("%s: missing context_switch attribute flag\n", __func__);
4405 err = -EINVAL;
4406 goto err_delete_thread;
4407 }
4408
4409 if (pt->synth_opts.log) {
4410 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4411 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4412
4413 intel_pt_log_enable(log_on_error, log_on_error_size);
4414 }
4415
4416 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4417 if (pt->tc.time_mult) {
4418 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4419
4420 if (!pt->max_non_turbo_ratio)
4421 pt->max_non_turbo_ratio =
4422 (tsc_freq + 50000000) / 100000000;
4423 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4424 intel_pt_log("Maximum non-turbo ratio %u\n",
4425 pt->max_non_turbo_ratio);
4426 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4427 }
4428
4429 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4430 if (err)
4431 goto err_delete_thread;
4432
4433 if (pt->synth_opts.calls)
4434 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4435 PERF_IP_FLAG_TRACE_END;
4436 if (pt->synth_opts.returns)
4437 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4438 PERF_IP_FLAG_TRACE_BEGIN;
4439
4440 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4441 !symbol_conf.use_callchain) {
4442 symbol_conf.use_callchain = true;
4443 if (callchain_register_param(&callchain_param) < 0) {
4444 symbol_conf.use_callchain = false;
4445 pt->synth_opts.callchain = false;
4446 pt->synth_opts.add_callchain = false;
4447 }
4448 }
4449
4450 if (pt->synth_opts.add_callchain) {
4451 err = intel_pt_callchain_init(pt);
4452 if (err)
4453 goto err_delete_thread;
4454 }
4455
4456 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4457 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4458 pt->br_stack_sz_plus = pt->br_stack_sz;
4459 }
4460
4461 if (pt->synth_opts.add_last_branch) {
4462 err = intel_pt_br_stack_init(pt);
4463 if (err)
4464 goto err_delete_thread;
4465 /*
4466 * Additional branch stack size to cater for tracing from the
4467 * actual sample ip to where the sample time is recorded.
4468 * Measured at about 200 branches, but generously set to 1024.
4469 * If kernel space is not being traced, then add just 1 for the
4470 * branch to kernel space.
4471 */
4472 if (intel_pt_tracing_kernel(pt))
4473 pt->br_stack_sz_plus += 1024;
4474 else
4475 pt->br_stack_sz_plus += 1;
4476 }
4477
4478 pt->use_thread_stack = pt->synth_opts.callchain ||
4479 pt->synth_opts.add_callchain ||
4480 pt->synth_opts.thread_stack ||
4481 pt->synth_opts.last_branch ||
4482 pt->synth_opts.add_last_branch;
4483
4484 pt->callstack = pt->synth_opts.callchain ||
4485 pt->synth_opts.add_callchain ||
4486 pt->synth_opts.thread_stack;
4487
4488 err = intel_pt_synth_events(pt, session);
4489 if (err)
4490 goto err_delete_thread;
4491
4492 intel_pt_setup_pebs_events(pt);
4493
4494 if (perf_data__is_pipe(session->data)) {
4495 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4496 " The output cannot relied upon. In particular,\n"
4497 " timestamps and the order of events may be incorrect.\n");
4498 }
4499
4500 if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4501 err = auxtrace_queue_data(session, true, true);
4502 else
4503 err = auxtrace_queues__process_index(&pt->queues, session);
4504 if (err)
4505 goto err_delete_thread;
4506
4507 if (pt->queues.populated)
4508 pt->data_queued = true;
4509
4510 if (pt->timeless_decoding)
4511 pr_debug2("Intel PT decoding without timestamps\n");
4512
4513 return 0;
4514
4515 err_delete_thread:
4516 zfree(&pt->chain);
4517 thread__zput(pt->unknown_thread);
4518 err_free_queues:
4519 intel_pt_log_disable();
4520 auxtrace_queues__free(&pt->queues);
4521 session->auxtrace = NULL;
4522 err_free:
4523 addr_filters__exit(&pt->filts);
4524 zfree(&pt->filter);
4525 zfree(&pt->time_ranges);
4526 free(pt);
4527 return err;
4528 }
4529