1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42
43 #include <linux/hash.h>
44
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62 #include "util/sample.h"
63
64 /*
65 * Make a group from 'leader' to 'last', requiring that the events were not
66 * already grouped to a different leader.
67 */
evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69 {
70 struct evsel *evsel;
71 bool grp;
72
73 if (!evsel__is_group_leader(leader))
74 return -EINVAL;
75
76 grp = false;
77 evlist__for_each_entry(evlist, evsel) {
78 if (grp) {
79 if (!(evsel__leader(evsel) == leader ||
80 (evsel__leader(evsel) == evsel &&
81 evsel->core.nr_members <= 1)))
82 return -EINVAL;
83 } else if (evsel == leader) {
84 grp = true;
85 }
86 if (evsel == last)
87 break;
88 }
89
90 grp = false;
91 evlist__for_each_entry(evlist, evsel) {
92 if (grp) {
93 if (!evsel__has_leader(evsel, leader)) {
94 evsel__set_leader(evsel, leader);
95 if (leader->core.nr_members < 1)
96 leader->core.nr_members = 1;
97 leader->core.nr_members += 1;
98 }
99 } else if (evsel == leader) {
100 grp = true;
101 }
102 if (evsel == last)
103 break;
104 }
105
106 return 0;
107 }
108
auxtrace__dont_decode(struct perf_session * session)109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 return !session->itrace_synth_opts ||
112 session->itrace_synth_opts->dont_decode;
113 }
114
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 struct auxtrace_mmap_params *mp,
117 void *userpg, int fd)
118 {
119 struct perf_event_mmap_page *pc = userpg;
120
121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122
123 mm->userpg = userpg;
124 mm->mask = mp->mask;
125 mm->len = mp->len;
126 mm->prev = 0;
127 mm->idx = mp->idx;
128 mm->tid = mp->tid;
129 mm->cpu = mp->cpu.cpu;
130
131 if (!mp->len || !mp->mmap_needed) {
132 mm->base = NULL;
133 return 0;
134 }
135
136 pc->aux_offset = mp->offset;
137 pc->aux_size = mp->len;
138
139 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140 if (mm->base == MAP_FAILED) {
141 pr_debug2("failed to mmap AUX area\n");
142 mm->base = NULL;
143 return -1;
144 }
145
146 return 0;
147 }
148
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150 {
151 if (mm->base) {
152 munmap(mm->base, mm->len);
153 mm->base = NULL;
154 }
155 }
156
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158 off_t auxtrace_offset,
159 unsigned int auxtrace_pages,
160 bool auxtrace_overwrite)
161 {
162 if (auxtrace_pages) {
163 mp->offset = auxtrace_offset;
164 mp->len = auxtrace_pages * (size_t)page_size;
165 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167 pr_debug2("AUX area mmap length %zu\n", mp->len);
168 } else {
169 mp->len = 0;
170 }
171 }
172
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,struct evsel * evsel,int idx)173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174 struct evlist *evlist,
175 struct evsel *evsel, int idx)
176 {
177 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
178
179 mp->mmap_needed = evsel->needs_auxtrace_mmap;
180
181 if (!mp->mmap_needed)
182 return;
183
184 mp->idx = idx;
185
186 if (per_cpu) {
187 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188 if (evlist->core.threads)
189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 else
191 mp->tid = -1;
192 } else {
193 mp->cpu.cpu = -1;
194 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195 }
196 }
197
198 #define AUXTRACE_INIT_NR_QUEUES 32
199
auxtrace_alloc_queue_array(unsigned int nr_queues)200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201 {
202 struct auxtrace_queue *queue_array;
203 unsigned int max_nr_queues, i;
204
205 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206 if (nr_queues > max_nr_queues)
207 return NULL;
208
209 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210 if (!queue_array)
211 return NULL;
212
213 for (i = 0; i < nr_queues; i++) {
214 INIT_LIST_HEAD(&queue_array[i].head);
215 queue_array[i].priv = NULL;
216 }
217
218 return queue_array;
219 }
220
auxtrace_queues__init_nr(struct auxtrace_queues * queues,int nr_queues)221 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
222 {
223 queues->nr_queues = nr_queues;
224 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225 if (!queues->queue_array)
226 return -ENOMEM;
227 return 0;
228 }
229
auxtrace_queues__init(struct auxtrace_queues * queues)230 int auxtrace_queues__init(struct auxtrace_queues *queues)
231 {
232 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
233 }
234
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)235 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
236 unsigned int new_nr_queues)
237 {
238 unsigned int nr_queues = queues->nr_queues;
239 struct auxtrace_queue *queue_array;
240 unsigned int i;
241
242 if (!nr_queues)
243 nr_queues = AUXTRACE_INIT_NR_QUEUES;
244
245 while (nr_queues && nr_queues < new_nr_queues)
246 nr_queues <<= 1;
247
248 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
249 return -EINVAL;
250
251 queue_array = auxtrace_alloc_queue_array(nr_queues);
252 if (!queue_array)
253 return -ENOMEM;
254
255 for (i = 0; i < queues->nr_queues; i++) {
256 list_splice_tail(&queues->queue_array[i].head,
257 &queue_array[i].head);
258 queue_array[i].tid = queues->queue_array[i].tid;
259 queue_array[i].cpu = queues->queue_array[i].cpu;
260 queue_array[i].set = queues->queue_array[i].set;
261 queue_array[i].priv = queues->queue_array[i].priv;
262 }
263
264 queues->nr_queues = nr_queues;
265 queues->queue_array = queue_array;
266
267 return 0;
268 }
269
auxtrace_copy_data(u64 size,struct perf_session * session)270 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
271 {
272 int fd = perf_data__fd(session->data);
273 void *p;
274 ssize_t ret;
275
276 if (size > SSIZE_MAX)
277 return NULL;
278
279 p = malloc(size);
280 if (!p)
281 return NULL;
282
283 ret = readn(fd, p, size);
284 if (ret != (ssize_t)size) {
285 free(p);
286 return NULL;
287 }
288
289 return p;
290 }
291
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)292 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
293 unsigned int idx,
294 struct auxtrace_buffer *buffer)
295 {
296 struct auxtrace_queue *queue;
297 int err;
298
299 if (idx >= queues->nr_queues) {
300 err = auxtrace_queues__grow(queues, idx + 1);
301 if (err)
302 return err;
303 }
304
305 queue = &queues->queue_array[idx];
306
307 if (!queue->set) {
308 queue->set = true;
309 queue->tid = buffer->tid;
310 queue->cpu = buffer->cpu.cpu;
311 }
312
313 buffer->buffer_nr = queues->next_buffer_nr++;
314
315 list_add_tail(&buffer->list, &queue->head);
316
317 queues->new_data = true;
318 queues->populated = true;
319
320 return 0;
321 }
322
323 /* Limit buffers to 32MiB on 32-bit */
324 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
325
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)326 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
327 unsigned int idx,
328 struct auxtrace_buffer *buffer)
329 {
330 u64 sz = buffer->size;
331 bool consecutive = false;
332 struct auxtrace_buffer *b;
333 int err;
334
335 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
336 b = memdup(buffer, sizeof(struct auxtrace_buffer));
337 if (!b)
338 return -ENOMEM;
339 b->size = BUFFER_LIMIT_FOR_32_BIT;
340 b->consecutive = consecutive;
341 err = auxtrace_queues__queue_buffer(queues, idx, b);
342 if (err) {
343 auxtrace_buffer__free(b);
344 return err;
345 }
346 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
347 sz -= BUFFER_LIMIT_FOR_32_BIT;
348 consecutive = true;
349 }
350
351 buffer->size = sz;
352 buffer->consecutive = consecutive;
353
354 return 0;
355 }
356
filter_cpu(struct perf_session * session,struct perf_cpu cpu)357 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
358 {
359 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
360
361 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
362 }
363
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)364 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
365 struct perf_session *session,
366 unsigned int idx,
367 struct auxtrace_buffer *buffer,
368 struct auxtrace_buffer **buffer_ptr)
369 {
370 int err = -ENOMEM;
371
372 if (filter_cpu(session, buffer->cpu))
373 return 0;
374
375 buffer = memdup(buffer, sizeof(*buffer));
376 if (!buffer)
377 return -ENOMEM;
378
379 if (session->one_mmap) {
380 buffer->data = buffer->data_offset - session->one_mmap_offset +
381 session->one_mmap_addr;
382 } else if (perf_data__is_pipe(session->data)) {
383 buffer->data = auxtrace_copy_data(buffer->size, session);
384 if (!buffer->data)
385 goto out_free;
386 buffer->data_needs_freeing = true;
387 } else if (BITS_PER_LONG == 32 &&
388 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
389 err = auxtrace_queues__split_buffer(queues, idx, buffer);
390 if (err)
391 goto out_free;
392 }
393
394 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
395 if (err)
396 goto out_free;
397
398 /* FIXME: Doesn't work for split buffer */
399 if (buffer_ptr)
400 *buffer_ptr = buffer;
401
402 return 0;
403
404 out_free:
405 auxtrace_buffer__free(buffer);
406 return err;
407 }
408
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)409 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
410 struct perf_session *session,
411 union perf_event *event, off_t data_offset,
412 struct auxtrace_buffer **buffer_ptr)
413 {
414 struct auxtrace_buffer buffer = {
415 .pid = -1,
416 .tid = event->auxtrace.tid,
417 .cpu = { event->auxtrace.cpu },
418 .data_offset = data_offset,
419 .offset = event->auxtrace.offset,
420 .reference = event->auxtrace.reference,
421 .size = event->auxtrace.size,
422 };
423 unsigned int idx = event->auxtrace.idx;
424
425 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
426 buffer_ptr);
427 }
428
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)429 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
430 struct perf_session *session,
431 off_t file_offset, size_t sz)
432 {
433 union perf_event *event;
434 int err;
435 char buf[PERF_SAMPLE_MAX_SIZE];
436
437 err = perf_session__peek_event(session, file_offset, buf,
438 PERF_SAMPLE_MAX_SIZE, &event, NULL);
439 if (err)
440 return err;
441
442 if (event->header.type == PERF_RECORD_AUXTRACE) {
443 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
444 event->header.size != sz) {
445 err = -EINVAL;
446 goto out;
447 }
448 file_offset += event->header.size;
449 err = auxtrace_queues__add_event(queues, session, event,
450 file_offset, NULL);
451 }
452 out:
453 return err;
454 }
455
auxtrace_queues__free(struct auxtrace_queues * queues)456 void auxtrace_queues__free(struct auxtrace_queues *queues)
457 {
458 unsigned int i;
459
460 for (i = 0; i < queues->nr_queues; i++) {
461 while (!list_empty(&queues->queue_array[i].head)) {
462 struct auxtrace_buffer *buffer;
463
464 buffer = list_entry(queues->queue_array[i].head.next,
465 struct auxtrace_buffer, list);
466 list_del_init(&buffer->list);
467 auxtrace_buffer__free(buffer);
468 }
469 }
470
471 zfree(&queues->queue_array);
472 queues->nr_queues = 0;
473 }
474
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)475 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
476 unsigned int pos, unsigned int queue_nr,
477 u64 ordinal)
478 {
479 unsigned int parent;
480
481 while (pos) {
482 parent = (pos - 1) >> 1;
483 if (heap_array[parent].ordinal <= ordinal)
484 break;
485 heap_array[pos] = heap_array[parent];
486 pos = parent;
487 }
488 heap_array[pos].queue_nr = queue_nr;
489 heap_array[pos].ordinal = ordinal;
490 }
491
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)492 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
493 u64 ordinal)
494 {
495 struct auxtrace_heap_item *heap_array;
496
497 if (queue_nr >= heap->heap_sz) {
498 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
499
500 while (heap_sz <= queue_nr)
501 heap_sz <<= 1;
502 heap_array = realloc(heap->heap_array,
503 heap_sz * sizeof(struct auxtrace_heap_item));
504 if (!heap_array)
505 return -ENOMEM;
506 heap->heap_array = heap_array;
507 heap->heap_sz = heap_sz;
508 }
509
510 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
511
512 return 0;
513 }
514
auxtrace_heap__free(struct auxtrace_heap * heap)515 void auxtrace_heap__free(struct auxtrace_heap *heap)
516 {
517 zfree(&heap->heap_array);
518 heap->heap_cnt = 0;
519 heap->heap_sz = 0;
520 }
521
auxtrace_heap__pop(struct auxtrace_heap * heap)522 void auxtrace_heap__pop(struct auxtrace_heap *heap)
523 {
524 unsigned int pos, last, heap_cnt = heap->heap_cnt;
525 struct auxtrace_heap_item *heap_array;
526
527 if (!heap_cnt)
528 return;
529
530 heap->heap_cnt -= 1;
531
532 heap_array = heap->heap_array;
533
534 pos = 0;
535 while (1) {
536 unsigned int left, right;
537
538 left = (pos << 1) + 1;
539 if (left >= heap_cnt)
540 break;
541 right = left + 1;
542 if (right >= heap_cnt) {
543 heap_array[pos] = heap_array[left];
544 return;
545 }
546 if (heap_array[left].ordinal < heap_array[right].ordinal) {
547 heap_array[pos] = heap_array[left];
548 pos = left;
549 } else {
550 heap_array[pos] = heap_array[right];
551 pos = right;
552 }
553 }
554
555 last = heap_cnt - 1;
556 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
557 heap_array[last].ordinal);
558 }
559
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)560 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
561 struct evlist *evlist)
562 {
563 if (itr)
564 return itr->info_priv_size(itr, evlist);
565 return 0;
566 }
567
auxtrace_not_supported(void)568 static int auxtrace_not_supported(void)
569 {
570 pr_err("AUX area tracing is not supported on this architecture\n");
571 return -EINVAL;
572 }
573
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)574 int auxtrace_record__info_fill(struct auxtrace_record *itr,
575 struct perf_session *session,
576 struct perf_record_auxtrace_info *auxtrace_info,
577 size_t priv_size)
578 {
579 if (itr)
580 return itr->info_fill(itr, session, auxtrace_info, priv_size);
581 return auxtrace_not_supported();
582 }
583
auxtrace_record__free(struct auxtrace_record * itr)584 void auxtrace_record__free(struct auxtrace_record *itr)
585 {
586 if (itr)
587 itr->free(itr);
588 }
589
auxtrace_record__snapshot_start(struct auxtrace_record * itr)590 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
591 {
592 if (itr && itr->snapshot_start)
593 return itr->snapshot_start(itr);
594 return 0;
595 }
596
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)597 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
598 {
599 if (!on_exit && itr && itr->snapshot_finish)
600 return itr->snapshot_finish(itr);
601 return 0;
602 }
603
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)604 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
605 struct auxtrace_mmap *mm,
606 unsigned char *data, u64 *head, u64 *old)
607 {
608 if (itr && itr->find_snapshot)
609 return itr->find_snapshot(itr, idx, mm, data, head, old);
610 return 0;
611 }
612
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)613 int auxtrace_record__options(struct auxtrace_record *itr,
614 struct evlist *evlist,
615 struct record_opts *opts)
616 {
617 if (itr) {
618 itr->evlist = evlist;
619 return itr->recording_options(itr, evlist, opts);
620 }
621 return 0;
622 }
623
auxtrace_record__reference(struct auxtrace_record * itr)624 u64 auxtrace_record__reference(struct auxtrace_record *itr)
625 {
626 if (itr)
627 return itr->reference(itr);
628 return 0;
629 }
630
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)631 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
632 struct record_opts *opts, const char *str)
633 {
634 if (!str)
635 return 0;
636
637 /* PMU-agnostic options */
638 switch (*str) {
639 case 'e':
640 opts->auxtrace_snapshot_on_exit = true;
641 str++;
642 break;
643 default:
644 break;
645 }
646
647 if (itr && itr->parse_snapshot_options)
648 return itr->parse_snapshot_options(itr, opts, str);
649
650 pr_err("No AUX area tracing to snapshot\n");
651 return -EINVAL;
652 }
653
evlist__enable_event_idx(struct evlist * evlist,struct evsel * evsel,int idx)654 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
655 {
656 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
657
658 if (per_cpu_mmaps) {
659 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
660 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
661
662 if (cpu_map_idx == -1)
663 return -EINVAL;
664 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
665 }
666
667 return perf_evsel__enable_thread(&evsel->core, idx);
668 }
669
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)670 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
671 {
672 struct evsel *evsel;
673
674 if (!itr->evlist)
675 return -EINVAL;
676
677 evlist__for_each_entry(itr->evlist, evsel) {
678 if (evsel__is_aux_event(evsel)) {
679 if (evsel->disabled)
680 return 0;
681 return evlist__enable_event_idx(itr->evlist, evsel, idx);
682 }
683 }
684 return -EINVAL;
685 }
686
687 /*
688 * Event record size is 16-bit which results in a maximum size of about 64KiB.
689 * Allow about 4KiB for the rest of the sample record, to give a maximum
690 * AUX area sample size of 60KiB.
691 */
692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
693
694 /* Arbitrary default size if no other default provided */
695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
696
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
698 struct record_opts *opts)
699 {
700 struct evsel *evsel;
701 bool has_aux_leader = false;
702 u32 sz;
703
704 evlist__for_each_entry(evlist, evsel) {
705 sz = evsel->core.attr.aux_sample_size;
706 if (evsel__is_group_leader(evsel)) {
707 has_aux_leader = evsel__is_aux_event(evsel);
708 if (sz) {
709 if (has_aux_leader)
710 pr_err("Cannot add AUX area sampling to an AUX area event\n");
711 else
712 pr_err("Cannot add AUX area sampling to a group leader\n");
713 return -EINVAL;
714 }
715 }
716 if (sz > MAX_AUX_SAMPLE_SIZE) {
717 pr_err("AUX area sample size %u too big, max. %d\n",
718 sz, MAX_AUX_SAMPLE_SIZE);
719 return -EINVAL;
720 }
721 if (sz) {
722 if (!has_aux_leader) {
723 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
724 return -EINVAL;
725 }
726 evsel__set_sample_bit(evsel, AUX);
727 opts->auxtrace_sample_mode = true;
728 } else {
729 evsel__reset_sample_bit(evsel, AUX);
730 }
731 }
732
733 if (!opts->auxtrace_sample_mode) {
734 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
735 return -EINVAL;
736 }
737
738 if (!perf_can_aux_sample()) {
739 pr_err("AUX area sampling is not supported by kernel\n");
740 return -EINVAL;
741 }
742
743 return 0;
744 }
745
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)746 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
747 struct evlist *evlist,
748 struct record_opts *opts, const char *str)
749 {
750 struct evsel_config_term *term;
751 struct evsel *aux_evsel;
752 bool has_aux_sample_size = false;
753 bool has_aux_leader = false;
754 struct evsel *evsel;
755 char *endptr;
756 unsigned long sz;
757
758 if (!str)
759 goto no_opt;
760
761 if (!itr) {
762 pr_err("No AUX area event to sample\n");
763 return -EINVAL;
764 }
765
766 sz = strtoul(str, &endptr, 0);
767 if (*endptr || sz > UINT_MAX) {
768 pr_err("Bad AUX area sampling option: '%s'\n", str);
769 return -EINVAL;
770 }
771
772 if (!sz)
773 sz = itr->default_aux_sample_size;
774
775 if (!sz)
776 sz = DEFAULT_AUX_SAMPLE_SIZE;
777
778 /* Set aux_sample_size based on --aux-sample option */
779 evlist__for_each_entry(evlist, evsel) {
780 if (evsel__is_group_leader(evsel)) {
781 has_aux_leader = evsel__is_aux_event(evsel);
782 } else if (has_aux_leader) {
783 evsel->core.attr.aux_sample_size = sz;
784 }
785 }
786 no_opt:
787 aux_evsel = NULL;
788 /* Override with aux_sample_size from config term */
789 evlist__for_each_entry(evlist, evsel) {
790 if (evsel__is_aux_event(evsel))
791 aux_evsel = evsel;
792 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
793 if (term) {
794 has_aux_sample_size = true;
795 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
796 /* If possible, group with the AUX event */
797 if (aux_evsel && evsel->core.attr.aux_sample_size)
798 evlist__regroup(evlist, aux_evsel, evsel);
799 }
800 }
801
802 if (!str && !has_aux_sample_size)
803 return 0;
804
805 if (!itr) {
806 pr_err("No AUX area event to sample\n");
807 return -EINVAL;
808 }
809
810 return auxtrace_validate_aux_sample_size(evlist, opts);
811 }
812
813 static struct aux_action_opt {
814 const char *str;
815 u32 aux_action;
816 bool aux_event_opt;
817 } aux_action_opts[] = {
818 {"start-paused", BIT(0), true},
819 {"pause", BIT(1), false},
820 {"resume", BIT(2), false},
821 {.str = NULL},
822 };
823
auxtrace_parse_aux_action_str(const char * str)824 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str)
825 {
826 const struct aux_action_opt *opt;
827
828 if (!str)
829 return NULL;
830
831 for (opt = aux_action_opts; opt->str; opt++)
832 if (!strcmp(str, opt->str))
833 return opt;
834
835 return NULL;
836 }
837
auxtrace_parse_aux_action(struct evlist * evlist)838 int auxtrace_parse_aux_action(struct evlist *evlist)
839 {
840 struct evsel_config_term *term;
841 struct evsel *aux_evsel = NULL;
842 struct evsel *evsel;
843
844 evlist__for_each_entry(evlist, evsel) {
845 bool is_aux_event = evsel__is_aux_event(evsel);
846 const struct aux_action_opt *opt;
847
848 if (is_aux_event)
849 aux_evsel = evsel;
850 term = evsel__get_config_term(evsel, AUX_ACTION);
851 if (!term) {
852 if (evsel__get_config_term(evsel, AUX_OUTPUT))
853 goto regroup;
854 continue;
855 }
856 opt = auxtrace_parse_aux_action_str(term->val.str);
857 if (!opt) {
858 pr_err("Bad aux-action '%s'\n", term->val.str);
859 return -EINVAL;
860 }
861 if (opt->aux_event_opt && !is_aux_event) {
862 pr_err("aux-action '%s' can only be used with AUX area event\n",
863 term->val.str);
864 return -EINVAL;
865 }
866 if (!opt->aux_event_opt && is_aux_event) {
867 pr_err("aux-action '%s' cannot be used for AUX area event itself\n",
868 term->val.str);
869 return -EINVAL;
870 }
871 evsel->core.attr.aux_action = opt->aux_action;
872 regroup:
873 /* If possible, group with the AUX event */
874 if (aux_evsel)
875 evlist__regroup(evlist, aux_evsel, evsel);
876 if (!evsel__is_aux_event(evsel__leader(evsel))) {
877 pr_err("Events with aux-action must have AUX area event group leader\n");
878 return -EINVAL;
879 }
880 }
881
882 return 0;
883 }
884
885 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)886 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
887 {
888 *err = 0;
889 return NULL;
890 }
891
auxtrace_index__alloc(struct list_head * head)892 static int auxtrace_index__alloc(struct list_head *head)
893 {
894 struct auxtrace_index *auxtrace_index;
895
896 auxtrace_index = malloc(sizeof(struct auxtrace_index));
897 if (!auxtrace_index)
898 return -ENOMEM;
899
900 auxtrace_index->nr = 0;
901 INIT_LIST_HEAD(&auxtrace_index->list);
902
903 list_add_tail(&auxtrace_index->list, head);
904
905 return 0;
906 }
907
auxtrace_index__free(struct list_head * head)908 void auxtrace_index__free(struct list_head *head)
909 {
910 struct auxtrace_index *auxtrace_index, *n;
911
912 list_for_each_entry_safe(auxtrace_index, n, head, list) {
913 list_del_init(&auxtrace_index->list);
914 free(auxtrace_index);
915 }
916 }
917
auxtrace_index__last(struct list_head * head)918 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
919 {
920 struct auxtrace_index *auxtrace_index;
921 int err;
922
923 if (list_empty(head)) {
924 err = auxtrace_index__alloc(head);
925 if (err)
926 return NULL;
927 }
928
929 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
930
931 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
932 err = auxtrace_index__alloc(head);
933 if (err)
934 return NULL;
935 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
936 list);
937 }
938
939 return auxtrace_index;
940 }
941
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)942 int auxtrace_index__auxtrace_event(struct list_head *head,
943 union perf_event *event, off_t file_offset)
944 {
945 struct auxtrace_index *auxtrace_index;
946 size_t nr;
947
948 auxtrace_index = auxtrace_index__last(head);
949 if (!auxtrace_index)
950 return -ENOMEM;
951
952 nr = auxtrace_index->nr;
953 auxtrace_index->entries[nr].file_offset = file_offset;
954 auxtrace_index->entries[nr].sz = event->header.size;
955 auxtrace_index->nr += 1;
956
957 return 0;
958 }
959
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)960 static int auxtrace_index__do_write(int fd,
961 struct auxtrace_index *auxtrace_index)
962 {
963 struct auxtrace_index_entry ent;
964 size_t i;
965
966 for (i = 0; i < auxtrace_index->nr; i++) {
967 ent.file_offset = auxtrace_index->entries[i].file_offset;
968 ent.sz = auxtrace_index->entries[i].sz;
969 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
970 return -errno;
971 }
972 return 0;
973 }
974
auxtrace_index__write(int fd,struct list_head * head)975 int auxtrace_index__write(int fd, struct list_head *head)
976 {
977 struct auxtrace_index *auxtrace_index;
978 u64 total = 0;
979 int err;
980
981 list_for_each_entry(auxtrace_index, head, list)
982 total += auxtrace_index->nr;
983
984 if (writen(fd, &total, sizeof(total)) != sizeof(total))
985 return -errno;
986
987 list_for_each_entry(auxtrace_index, head, list) {
988 err = auxtrace_index__do_write(fd, auxtrace_index);
989 if (err)
990 return err;
991 }
992
993 return 0;
994 }
995
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)996 static int auxtrace_index__process_entry(int fd, struct list_head *head,
997 bool needs_swap)
998 {
999 struct auxtrace_index *auxtrace_index;
1000 struct auxtrace_index_entry ent;
1001 size_t nr;
1002
1003 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
1004 return -1;
1005
1006 auxtrace_index = auxtrace_index__last(head);
1007 if (!auxtrace_index)
1008 return -1;
1009
1010 nr = auxtrace_index->nr;
1011 if (needs_swap) {
1012 auxtrace_index->entries[nr].file_offset =
1013 bswap_64(ent.file_offset);
1014 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
1015 } else {
1016 auxtrace_index->entries[nr].file_offset = ent.file_offset;
1017 auxtrace_index->entries[nr].sz = ent.sz;
1018 }
1019
1020 auxtrace_index->nr = nr + 1;
1021
1022 return 0;
1023 }
1024
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)1025 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
1026 bool needs_swap)
1027 {
1028 struct list_head *head = &session->auxtrace_index;
1029 u64 nr;
1030
1031 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
1032 return -1;
1033
1034 if (needs_swap)
1035 nr = bswap_64(nr);
1036
1037 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
1038 return -1;
1039
1040 while (nr--) {
1041 int err;
1042
1043 err = auxtrace_index__process_entry(fd, head, needs_swap);
1044 if (err)
1045 return -1;
1046 }
1047
1048 return 0;
1049 }
1050
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)1051 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
1052 struct perf_session *session,
1053 struct auxtrace_index_entry *ent)
1054 {
1055 return auxtrace_queues__add_indexed_event(queues, session,
1056 ent->file_offset, ent->sz);
1057 }
1058
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)1059 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1060 struct perf_session *session)
1061 {
1062 struct auxtrace_index *auxtrace_index;
1063 struct auxtrace_index_entry *ent;
1064 size_t i;
1065 int err;
1066
1067 if (auxtrace__dont_decode(session))
1068 return 0;
1069
1070 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1071 for (i = 0; i < auxtrace_index->nr; i++) {
1072 ent = &auxtrace_index->entries[i];
1073 err = auxtrace_queues__process_index_entry(queues,
1074 session,
1075 ent);
1076 if (err)
1077 return err;
1078 }
1079 }
1080 return 0;
1081 }
1082
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)1083 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1084 struct auxtrace_buffer *buffer)
1085 {
1086 if (buffer) {
1087 if (list_is_last(&buffer->list, &queue->head))
1088 return NULL;
1089 return list_entry(buffer->list.next, struct auxtrace_buffer,
1090 list);
1091 } else {
1092 if (list_empty(&queue->head))
1093 return NULL;
1094 return list_entry(queue->head.next, struct auxtrace_buffer,
1095 list);
1096 }
1097 }
1098
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1099 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1100 struct perf_sample *sample,
1101 struct perf_session *session)
1102 {
1103 struct perf_sample_id *sid;
1104 unsigned int idx;
1105 u64 id;
1106
1107 id = sample->id;
1108 if (!id)
1109 return NULL;
1110
1111 sid = evlist__id2sid(session->evlist, id);
1112 if (!sid)
1113 return NULL;
1114
1115 idx = sid->idx;
1116
1117 if (idx >= queues->nr_queues)
1118 return NULL;
1119
1120 return &queues->queue_array[idx];
1121 }
1122
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1123 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1124 struct perf_session *session,
1125 struct perf_sample *sample, u64 data_offset,
1126 u64 reference)
1127 {
1128 struct auxtrace_buffer buffer = {
1129 .pid = -1,
1130 .data_offset = data_offset,
1131 .reference = reference,
1132 .size = sample->aux_sample.size,
1133 };
1134 struct perf_sample_id *sid;
1135 u64 id = sample->id;
1136 unsigned int idx;
1137
1138 if (!id)
1139 return -EINVAL;
1140
1141 sid = evlist__id2sid(session->evlist, id);
1142 if (!sid)
1143 return -ENOENT;
1144
1145 idx = sid->idx;
1146 buffer.tid = sid->tid;
1147 buffer.cpu = sid->cpu;
1148
1149 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1150 }
1151
1152 struct queue_data {
1153 bool samples;
1154 bool events;
1155 };
1156
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1157 static int auxtrace_queue_data_cb(struct perf_session *session,
1158 union perf_event *event, u64 offset,
1159 void *data)
1160 {
1161 struct queue_data *qd = data;
1162 struct perf_sample sample;
1163 int err;
1164
1165 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1166 if (event->header.size < sizeof(struct perf_record_auxtrace))
1167 return -EINVAL;
1168 offset += event->header.size;
1169 return session->auxtrace->queue_data(session, NULL, event,
1170 offset);
1171 }
1172
1173 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1174 return 0;
1175
1176 perf_sample__init(&sample, /*all=*/false);
1177 err = evlist__parse_sample(session->evlist, event, &sample);
1178 if (err)
1179 goto out;
1180
1181 if (sample.aux_sample.size) {
1182 offset += sample.aux_sample.data - (void *)event;
1183
1184 err = session->auxtrace->queue_data(session, &sample, NULL, offset);
1185 }
1186 out:
1187 perf_sample__exit(&sample);
1188 return err;
1189 }
1190
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1191 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1192 {
1193 struct queue_data qd = {
1194 .samples = samples,
1195 .events = events,
1196 };
1197
1198 if (auxtrace__dont_decode(session))
1199 return 0;
1200
1201 if (perf_data__is_pipe(session->data))
1202 return 0;
1203
1204 if (!session->auxtrace || !session->auxtrace->queue_data)
1205 return -EINVAL;
1206
1207 return perf_session__peek_events(session, session->header.data_offset,
1208 session->header.data_size,
1209 auxtrace_queue_data_cb, &qd);
1210 }
1211
auxtrace_buffer__get_data_rw(struct auxtrace_buffer * buffer,int fd,bool rw)1212 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1213 {
1214 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1215 size_t adj = buffer->data_offset & (page_size - 1);
1216 size_t size = buffer->size + adj;
1217 off_t file_offset = buffer->data_offset - adj;
1218 void *addr;
1219
1220 if (buffer->data)
1221 return buffer->data;
1222
1223 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1224 if (addr == MAP_FAILED)
1225 return NULL;
1226
1227 buffer->mmap_addr = addr;
1228 buffer->mmap_size = size;
1229
1230 buffer->data = addr + adj;
1231
1232 return buffer->data;
1233 }
1234
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1235 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1236 {
1237 if (!buffer->data || !buffer->mmap_addr)
1238 return;
1239 munmap(buffer->mmap_addr, buffer->mmap_size);
1240 buffer->mmap_addr = NULL;
1241 buffer->mmap_size = 0;
1242 buffer->data = NULL;
1243 buffer->use_data = NULL;
1244 }
1245
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1246 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1247 {
1248 auxtrace_buffer__put_data(buffer);
1249 if (buffer->data_needs_freeing) {
1250 buffer->data_needs_freeing = false;
1251 zfree(&buffer->data);
1252 buffer->use_data = NULL;
1253 buffer->size = 0;
1254 }
1255 }
1256
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1257 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1258 {
1259 auxtrace_buffer__drop_data(buffer);
1260 free(buffer);
1261 }
1262
auxtrace_synth_guest_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp,pid_t machine_pid,int vcpu)1263 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1264 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1265 const char *msg, u64 timestamp,
1266 pid_t machine_pid, int vcpu)
1267 {
1268 size_t size;
1269
1270 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1271
1272 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1273 auxtrace_error->type = type;
1274 auxtrace_error->code = code;
1275 auxtrace_error->cpu = cpu;
1276 auxtrace_error->pid = pid;
1277 auxtrace_error->tid = tid;
1278 auxtrace_error->fmt = 1;
1279 auxtrace_error->ip = ip;
1280 auxtrace_error->time = timestamp;
1281 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1282 if (machine_pid) {
1283 auxtrace_error->fmt = 2;
1284 auxtrace_error->machine_pid = machine_pid;
1285 auxtrace_error->vcpu = vcpu;
1286 size = sizeof(*auxtrace_error);
1287 } else {
1288 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1289 strlen(auxtrace_error->msg) + 1;
1290 }
1291 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1292 }
1293
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1294 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1295 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1296 const char *msg, u64 timestamp)
1297 {
1298 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1299 ip, msg, timestamp, 0, -1);
1300 }
1301
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,const struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1302 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1303 const struct perf_tool *tool,
1304 struct perf_session *session,
1305 perf_event__handler_t process)
1306 {
1307 union perf_event *ev;
1308 size_t priv_size;
1309 int err;
1310
1311 pr_debug2("Synthesizing auxtrace information\n");
1312 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1313 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1314 if (!ev)
1315 return -ENOMEM;
1316
1317 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1318 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1319 priv_size;
1320 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1321 priv_size);
1322 if (err)
1323 goto out_free;
1324
1325 err = process(tool, ev, NULL, NULL);
1326 out_free:
1327 free(ev);
1328 return err;
1329 }
1330
unleader_evsel(struct evlist * evlist,struct evsel * leader)1331 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1332 {
1333 struct evsel *new_leader = NULL;
1334 struct evsel *evsel;
1335
1336 /* Find new leader for the group */
1337 evlist__for_each_entry(evlist, evsel) {
1338 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1339 continue;
1340 if (!new_leader)
1341 new_leader = evsel;
1342 evsel__set_leader(evsel, new_leader);
1343 }
1344
1345 /* Update group information */
1346 if (new_leader) {
1347 zfree(&new_leader->group_name);
1348 new_leader->group_name = leader->group_name;
1349 leader->group_name = NULL;
1350
1351 new_leader->core.nr_members = leader->core.nr_members - 1;
1352 leader->core.nr_members = 1;
1353 }
1354 }
1355
unleader_auxtrace(struct perf_session * session)1356 static void unleader_auxtrace(struct perf_session *session)
1357 {
1358 struct evsel *evsel;
1359
1360 evlist__for_each_entry(session->evlist, evsel) {
1361 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1362 evsel__is_group_leader(evsel)) {
1363 unleader_evsel(session->evlist, evsel);
1364 }
1365 }
1366 }
1367
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1368 int perf_event__process_auxtrace_info(struct perf_session *session,
1369 union perf_event *event)
1370 {
1371 enum auxtrace_type type = event->auxtrace_info.type;
1372 int err;
1373
1374 if (dump_trace)
1375 fprintf(stdout, " type: %u\n", type);
1376
1377 switch (type) {
1378 case PERF_AUXTRACE_INTEL_PT:
1379 err = intel_pt_process_auxtrace_info(event, session);
1380 break;
1381 case PERF_AUXTRACE_INTEL_BTS:
1382 err = intel_bts_process_auxtrace_info(event, session);
1383 break;
1384 case PERF_AUXTRACE_ARM_SPE:
1385 err = arm_spe_process_auxtrace_info(event, session);
1386 break;
1387 case PERF_AUXTRACE_CS_ETM:
1388 err = cs_etm__process_auxtrace_info(event, session);
1389 break;
1390 case PERF_AUXTRACE_S390_CPUMSF:
1391 err = s390_cpumsf_process_auxtrace_info(event, session);
1392 break;
1393 case PERF_AUXTRACE_HISI_PTT:
1394 err = hisi_ptt_process_auxtrace_info(event, session);
1395 break;
1396 case PERF_AUXTRACE_UNKNOWN:
1397 default:
1398 return -EINVAL;
1399 }
1400
1401 if (err)
1402 return err;
1403
1404 unleader_auxtrace(session);
1405
1406 return 0;
1407 }
1408
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1409 s64 perf_event__process_auxtrace(struct perf_session *session,
1410 union perf_event *event)
1411 {
1412 s64 err;
1413
1414 if (dump_trace)
1415 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1416 event->auxtrace.size, event->auxtrace.offset,
1417 event->auxtrace.reference, event->auxtrace.idx,
1418 event->auxtrace.tid, event->auxtrace.cpu);
1419
1420 if (auxtrace__dont_decode(session))
1421 return event->auxtrace.size;
1422
1423 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1424 return -EINVAL;
1425
1426 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1427 if (err < 0)
1428 return err;
1429
1430 return event->auxtrace.size;
1431 }
1432
1433 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1434 #define PERF_ITRACE_DEFAULT_PERIOD 100000
1435 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1436 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1437 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1438 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1439
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1440 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1441 bool no_sample)
1442 {
1443 synth_opts->branches = true;
1444 synth_opts->transactions = true;
1445 synth_opts->ptwrites = true;
1446 synth_opts->pwr_events = true;
1447 synth_opts->other_events = true;
1448 synth_opts->intr_events = true;
1449 synth_opts->errors = true;
1450 synth_opts->flc = true;
1451 synth_opts->llc = true;
1452 synth_opts->tlb = true;
1453 synth_opts->mem = true;
1454 synth_opts->remote_access = true;
1455
1456 if (no_sample) {
1457 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1458 synth_opts->period = 1;
1459 synth_opts->calls = true;
1460 } else {
1461 synth_opts->instructions = true;
1462 synth_opts->cycles = true;
1463 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1464 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1465 }
1466 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1467 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1468 synth_opts->initial_skip = 0;
1469 }
1470
get_flag(const char ** ptr,unsigned int * flags)1471 static int get_flag(const char **ptr, unsigned int *flags)
1472 {
1473 while (1) {
1474 char c = **ptr;
1475
1476 if (c >= 'a' && c <= 'z') {
1477 *flags |= 1 << (c - 'a');
1478 ++*ptr;
1479 return 0;
1480 } else if (c == ' ') {
1481 ++*ptr;
1482 continue;
1483 } else {
1484 return -1;
1485 }
1486 }
1487 }
1488
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1489 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1490 {
1491 while (1) {
1492 switch (**ptr) {
1493 case '+':
1494 ++*ptr;
1495 if (get_flag(ptr, plus_flags))
1496 return -1;
1497 break;
1498 case '-':
1499 ++*ptr;
1500 if (get_flag(ptr, minus_flags))
1501 return -1;
1502 break;
1503 case ' ':
1504 ++*ptr;
1505 break;
1506 default:
1507 return 0;
1508 }
1509 }
1510 }
1511
1512 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1513
itrace_log_on_error_size(void)1514 static unsigned int itrace_log_on_error_size(void)
1515 {
1516 unsigned int sz = 0;
1517
1518 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1519 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1520 }
1521
1522 /*
1523 * Please check tools/perf/Documentation/perf-script.txt for information
1524 * about the options parsed here, which is introduced after this cset,
1525 * when support in 'perf script' for these options is introduced.
1526 */
itrace_do_parse_synth_opts(struct itrace_synth_opts * synth_opts,const char * str,int unset)1527 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1528 const char *str, int unset)
1529 {
1530 const char *p;
1531 char *endptr;
1532 bool period_type_set = false;
1533 bool period_set = false;
1534 bool iy = false;
1535
1536 synth_opts->set = true;
1537
1538 if (unset) {
1539 synth_opts->dont_decode = true;
1540 return 0;
1541 }
1542
1543 if (!str) {
1544 itrace_synth_opts__set_default(synth_opts,
1545 synth_opts->default_no_sample);
1546 return 0;
1547 }
1548
1549 for (p = str; *p;) {
1550 switch (*p++) {
1551 case 'i':
1552 case 'y':
1553 iy = true;
1554 if (p[-1] == 'y')
1555 synth_opts->cycles = true;
1556 else
1557 synth_opts->instructions = true;
1558 while (*p == ' ' || *p == ',')
1559 p += 1;
1560 if (isdigit(*p)) {
1561 synth_opts->period = strtoull(p, &endptr, 10);
1562 period_set = true;
1563 p = endptr;
1564 while (*p == ' ' || *p == ',')
1565 p += 1;
1566 switch (*p++) {
1567 case 'i':
1568 synth_opts->period_type =
1569 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1570 period_type_set = true;
1571 break;
1572 case 't':
1573 synth_opts->period_type =
1574 PERF_ITRACE_PERIOD_TICKS;
1575 period_type_set = true;
1576 break;
1577 case 'm':
1578 synth_opts->period *= 1000;
1579 /* Fall through */
1580 case 'u':
1581 synth_opts->period *= 1000;
1582 /* Fall through */
1583 case 'n':
1584 if (*p++ != 's')
1585 goto out_err;
1586 synth_opts->period_type =
1587 PERF_ITRACE_PERIOD_NANOSECS;
1588 period_type_set = true;
1589 break;
1590 case '\0':
1591 goto out;
1592 default:
1593 goto out_err;
1594 }
1595 }
1596 break;
1597 case 'b':
1598 synth_opts->branches = true;
1599 break;
1600 case 'x':
1601 synth_opts->transactions = true;
1602 break;
1603 case 'w':
1604 synth_opts->ptwrites = true;
1605 break;
1606 case 'p':
1607 synth_opts->pwr_events = true;
1608 break;
1609 case 'o':
1610 synth_opts->other_events = true;
1611 break;
1612 case 'I':
1613 synth_opts->intr_events = true;
1614 break;
1615 case 'e':
1616 synth_opts->errors = true;
1617 if (get_flags(&p, &synth_opts->error_plus_flags,
1618 &synth_opts->error_minus_flags))
1619 goto out_err;
1620 break;
1621 case 'd':
1622 synth_opts->log = true;
1623 if (get_flags(&p, &synth_opts->log_plus_flags,
1624 &synth_opts->log_minus_flags))
1625 goto out_err;
1626 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1627 synth_opts->log_on_error_size = itrace_log_on_error_size();
1628 break;
1629 case 'c':
1630 synth_opts->branches = true;
1631 synth_opts->calls = true;
1632 break;
1633 case 'r':
1634 synth_opts->branches = true;
1635 synth_opts->returns = true;
1636 break;
1637 case 'G':
1638 case 'g':
1639 if (p[-1] == 'G')
1640 synth_opts->add_callchain = true;
1641 else
1642 synth_opts->callchain = true;
1643 synth_opts->callchain_sz =
1644 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1645 while (*p == ' ' || *p == ',')
1646 p += 1;
1647 if (isdigit(*p)) {
1648 unsigned int val;
1649
1650 val = strtoul(p, &endptr, 10);
1651 p = endptr;
1652 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1653 goto out_err;
1654 synth_opts->callchain_sz = val;
1655 }
1656 break;
1657 case 'L':
1658 case 'l':
1659 if (p[-1] == 'L')
1660 synth_opts->add_last_branch = true;
1661 else
1662 synth_opts->last_branch = true;
1663 synth_opts->last_branch_sz =
1664 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1665 while (*p == ' ' || *p == ',')
1666 p += 1;
1667 if (isdigit(*p)) {
1668 unsigned int val;
1669
1670 val = strtoul(p, &endptr, 10);
1671 p = endptr;
1672 if (!val ||
1673 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1674 goto out_err;
1675 synth_opts->last_branch_sz = val;
1676 }
1677 break;
1678 case 's':
1679 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1680 if (p == endptr)
1681 goto out_err;
1682 p = endptr;
1683 break;
1684 case 'f':
1685 synth_opts->flc = true;
1686 break;
1687 case 'm':
1688 synth_opts->llc = true;
1689 break;
1690 case 't':
1691 synth_opts->tlb = true;
1692 break;
1693 case 'a':
1694 synth_opts->remote_access = true;
1695 break;
1696 case 'M':
1697 synth_opts->mem = true;
1698 break;
1699 case 'q':
1700 synth_opts->quick += 1;
1701 break;
1702 case 'A':
1703 synth_opts->approx_ipc = true;
1704 break;
1705 case 'Z':
1706 synth_opts->timeless_decoding = true;
1707 break;
1708 case 'T':
1709 synth_opts->use_timestamp = true;
1710 break;
1711 case ' ':
1712 case ',':
1713 break;
1714 default:
1715 goto out_err;
1716 }
1717 }
1718 out:
1719 if (iy) {
1720 if (!period_type_set)
1721 synth_opts->period_type =
1722 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1723 if (!period_set)
1724 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1725 }
1726
1727 return 0;
1728
1729 out_err:
1730 pr_err("Bad Instruction Tracing options '%s'\n", str);
1731 return -EINVAL;
1732 }
1733
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1734 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1735 {
1736 return itrace_do_parse_synth_opts(opt->value, str, unset);
1737 }
1738
1739 static const char * const auxtrace_error_type_name[] = {
1740 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1741 };
1742
auxtrace_error_name(int type)1743 static const char *auxtrace_error_name(int type)
1744 {
1745 const char *error_type_name = NULL;
1746
1747 if (type < PERF_AUXTRACE_ERROR_MAX)
1748 error_type_name = auxtrace_error_type_name[type];
1749 if (!error_type_name)
1750 error_type_name = "unknown AUX";
1751 return error_type_name;
1752 }
1753
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1754 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1755 {
1756 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1757 unsigned long long nsecs = e->time;
1758 const char *msg = e->msg;
1759 int ret;
1760
1761 ret = fprintf(fp, " %s error type %u",
1762 auxtrace_error_name(e->type), e->type);
1763
1764 if (e->fmt && nsecs) {
1765 unsigned long secs = nsecs / NSEC_PER_SEC;
1766
1767 nsecs -= secs * NSEC_PER_SEC;
1768 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1769 } else {
1770 ret += fprintf(fp, " time 0");
1771 }
1772
1773 if (!e->fmt)
1774 msg = (const char *)&e->time;
1775
1776 if (e->fmt >= 2 && e->machine_pid)
1777 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1778
1779 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1780 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1781 return ret;
1782 }
1783
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1784 void perf_session__auxtrace_error_inc(struct perf_session *session,
1785 union perf_event *event)
1786 {
1787 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1788
1789 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1790 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1791 }
1792
events_stats__auxtrace_error_warn(const struct events_stats * stats)1793 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1794 {
1795 int i;
1796
1797 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1798 if (!stats->nr_auxtrace_errors[i])
1799 continue;
1800 ui__warning("%u %s errors\n",
1801 stats->nr_auxtrace_errors[i],
1802 auxtrace_error_name(i));
1803 }
1804 }
1805
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1806 int perf_event__process_auxtrace_error(struct perf_session *session,
1807 union perf_event *event)
1808 {
1809 if (auxtrace__dont_decode(session))
1810 return 0;
1811
1812 perf_event__fprintf_auxtrace_error(event, stdout);
1813 return 0;
1814 }
1815
1816 /*
1817 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1818 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1819 * the issues caused by the below sequence on multiple CPUs: when perf tool
1820 * accesses either the load operation or the store operation for 64-bit value,
1821 * on some architectures the operation is divided into two instructions, one
1822 * is for accessing the low 32-bit value and another is for the high 32-bit;
1823 * thus these two user operations can give the kernel chances to access the
1824 * 64-bit value, and thus leads to the unexpected load values.
1825 *
1826 * kernel (64-bit) user (32-bit)
1827 *
1828 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo
1829 * STORE $aux_data | ,--->
1830 * FLUSH $aux_data | | LOAD ->aux_head_hi
1831 * STORE ->aux_head --|-------` smp_rmb()
1832 * } | LOAD $data
1833 * | smp_mb()
1834 * | STORE ->aux_tail_lo
1835 * `----------->
1836 * STORE ->aux_tail_hi
1837 *
1838 * For this reason, it's impossible for the perf tool to work correctly when
1839 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1840 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1841 * the pointers can be increased monotonically, whatever the buffer size it is,
1842 * at the end the head and tail can be bigger than 4GB and carry out to the
1843 * high 32-bit.
1844 *
1845 * To mitigate the issues and improve the user experience, we can allow the
1846 * perf tool working in certain conditions and bail out with error if detect
1847 * any overflow cannot be handled.
1848 *
1849 * For reading the AUX head, it reads out the values for three times, and
1850 * compares the high 4 bytes of the values between the first time and the last
1851 * time, if there has no change for high 4 bytes injected by the kernel during
1852 * the user reading sequence, it's safe for use the second value.
1853 *
1854 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1855 * 32 bits, it means there have two store operations in user space and it cannot
1856 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1857 * the caller an overflow error has happened.
1858 */
compat_auxtrace_mmap__read_head(struct auxtrace_mmap * mm)1859 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1860 {
1861 struct perf_event_mmap_page *pc = mm->userpg;
1862 u64 first, second, last;
1863 u64 mask = (u64)(UINT32_MAX) << 32;
1864
1865 do {
1866 first = READ_ONCE(pc->aux_head);
1867 /* Ensure all reads are done after we read the head */
1868 smp_rmb();
1869 second = READ_ONCE(pc->aux_head);
1870 /* Ensure all reads are done after we read the head */
1871 smp_rmb();
1872 last = READ_ONCE(pc->aux_head);
1873 } while ((first & mask) != (last & mask));
1874
1875 return second;
1876 }
1877
compat_auxtrace_mmap__write_tail(struct auxtrace_mmap * mm,u64 tail)1878 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1879 {
1880 struct perf_event_mmap_page *pc = mm->userpg;
1881 u64 mask = (u64)(UINT32_MAX) << 32;
1882
1883 if (tail & mask)
1884 return -1;
1885
1886 /* Ensure all reads are done before we write the tail out */
1887 smp_mb();
1888 WRITE_ONCE(pc->aux_tail, tail);
1889 return 0;
1890 }
1891
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1892 static int __auxtrace_mmap__read(struct mmap *map,
1893 struct auxtrace_record *itr,
1894 const struct perf_tool *tool, process_auxtrace_t fn,
1895 bool snapshot, size_t snapshot_size)
1896 {
1897 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1898 u64 head, old = mm->prev, offset, ref;
1899 unsigned char *data = mm->base;
1900 size_t size, head_off, old_off, len1, len2, padding;
1901 union perf_event ev;
1902 void *data1, *data2;
1903 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1904
1905 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1906
1907 if (snapshot &&
1908 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1909 return -1;
1910
1911 if (old == head)
1912 return 0;
1913
1914 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1915 mm->idx, old, head, head - old);
1916
1917 if (mm->mask) {
1918 head_off = head & mm->mask;
1919 old_off = old & mm->mask;
1920 } else {
1921 head_off = head % mm->len;
1922 old_off = old % mm->len;
1923 }
1924
1925 if (head_off > old_off)
1926 size = head_off - old_off;
1927 else
1928 size = mm->len - (old_off - head_off);
1929
1930 if (snapshot && size > snapshot_size)
1931 size = snapshot_size;
1932
1933 ref = auxtrace_record__reference(itr);
1934
1935 if (head > old || size <= head || mm->mask) {
1936 offset = head - size;
1937 } else {
1938 /*
1939 * When the buffer size is not a power of 2, 'head' wraps at the
1940 * highest multiple of the buffer size, so we have to subtract
1941 * the remainder here.
1942 */
1943 u64 rem = (0ULL - mm->len) % mm->len;
1944
1945 offset = head - size - rem;
1946 }
1947
1948 if (size > head_off) {
1949 len1 = size - head_off;
1950 data1 = &data[mm->len - len1];
1951 len2 = head_off;
1952 data2 = &data[0];
1953 } else {
1954 len1 = size;
1955 data1 = &data[head_off - len1];
1956 len2 = 0;
1957 data2 = NULL;
1958 }
1959
1960 if (itr->alignment) {
1961 unsigned int unwanted = len1 % itr->alignment;
1962
1963 len1 -= unwanted;
1964 size -= unwanted;
1965 }
1966
1967 /* padding must be written by fn() e.g. record__process_auxtrace() */
1968 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1969 if (padding)
1970 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1971
1972 memset(&ev, 0, sizeof(ev));
1973 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1974 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1975 ev.auxtrace.size = size + padding;
1976 ev.auxtrace.offset = offset;
1977 ev.auxtrace.reference = ref;
1978 ev.auxtrace.idx = mm->idx;
1979 ev.auxtrace.tid = mm->tid;
1980 ev.auxtrace.cpu = mm->cpu;
1981
1982 if (fn(tool, map, &ev, data1, len1, data2, len2))
1983 return -1;
1984
1985 mm->prev = head;
1986
1987 if (!snapshot) {
1988 int err;
1989
1990 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1991 if (err < 0)
1992 return err;
1993
1994 if (itr->read_finish) {
1995 err = itr->read_finish(itr, mm->idx);
1996 if (err < 0)
1997 return err;
1998 }
1999 }
2000
2001 return 1;
2002 }
2003
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn)2004 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
2005 const struct perf_tool *tool, process_auxtrace_t fn)
2006 {
2007 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
2008 }
2009
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)2010 int auxtrace_mmap__read_snapshot(struct mmap *map,
2011 struct auxtrace_record *itr,
2012 const struct perf_tool *tool, process_auxtrace_t fn,
2013 size_t snapshot_size)
2014 {
2015 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
2016 }
2017
2018 /**
2019 * struct auxtrace_cache - hash table to implement a cache
2020 * @hashtable: the hashtable
2021 * @sz: hashtable size (number of hlists)
2022 * @entry_size: size of an entry
2023 * @limit: limit the number of entries to this maximum, when reached the cache
2024 * is dropped and caching begins again with an empty cache
2025 * @cnt: current number of entries
2026 * @bits: hashtable size (@sz = 2^@bits)
2027 */
2028 struct auxtrace_cache {
2029 struct hlist_head *hashtable;
2030 size_t sz;
2031 size_t entry_size;
2032 size_t limit;
2033 size_t cnt;
2034 unsigned int bits;
2035 };
2036
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)2037 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
2038 unsigned int limit_percent)
2039 {
2040 struct auxtrace_cache *c;
2041 struct hlist_head *ht;
2042 size_t sz, i;
2043
2044 c = zalloc(sizeof(struct auxtrace_cache));
2045 if (!c)
2046 return NULL;
2047
2048 sz = 1UL << bits;
2049
2050 ht = calloc(sz, sizeof(struct hlist_head));
2051 if (!ht)
2052 goto out_free;
2053
2054 for (i = 0; i < sz; i++)
2055 INIT_HLIST_HEAD(&ht[i]);
2056
2057 c->hashtable = ht;
2058 c->sz = sz;
2059 c->entry_size = entry_size;
2060 c->limit = (c->sz * limit_percent) / 100;
2061 c->bits = bits;
2062
2063 return c;
2064
2065 out_free:
2066 free(c);
2067 return NULL;
2068 }
2069
auxtrace_cache__drop(struct auxtrace_cache * c)2070 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2071 {
2072 struct auxtrace_cache_entry *entry;
2073 struct hlist_node *tmp;
2074 size_t i;
2075
2076 if (!c)
2077 return;
2078
2079 for (i = 0; i < c->sz; i++) {
2080 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2081 hlist_del(&entry->hash);
2082 auxtrace_cache__free_entry(c, entry);
2083 }
2084 }
2085
2086 c->cnt = 0;
2087 }
2088
auxtrace_cache__free(struct auxtrace_cache * c)2089 void auxtrace_cache__free(struct auxtrace_cache *c)
2090 {
2091 if (!c)
2092 return;
2093
2094 auxtrace_cache__drop(c);
2095 zfree(&c->hashtable);
2096 free(c);
2097 }
2098
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)2099 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2100 {
2101 return malloc(c->entry_size);
2102 }
2103
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)2104 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2105 void *entry)
2106 {
2107 free(entry);
2108 }
2109
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)2110 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2111 struct auxtrace_cache_entry *entry)
2112 {
2113 if (c->limit && ++c->cnt > c->limit)
2114 auxtrace_cache__drop(c);
2115
2116 entry->key = key;
2117 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2118
2119 return 0;
2120 }
2121
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)2122 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2123 u32 key)
2124 {
2125 struct auxtrace_cache_entry *entry;
2126 struct hlist_head *hlist;
2127 struct hlist_node *n;
2128
2129 if (!c)
2130 return NULL;
2131
2132 hlist = &c->hashtable[hash_32(key, c->bits)];
2133 hlist_for_each_entry_safe(entry, n, hlist, hash) {
2134 if (entry->key == key) {
2135 hlist_del(&entry->hash);
2136 return entry;
2137 }
2138 }
2139
2140 return NULL;
2141 }
2142
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)2143 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2144 {
2145 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2146
2147 auxtrace_cache__free_entry(c, entry);
2148 }
2149
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)2150 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2151 {
2152 struct auxtrace_cache_entry *entry;
2153 struct hlist_head *hlist;
2154
2155 if (!c)
2156 return NULL;
2157
2158 hlist = &c->hashtable[hash_32(key, c->bits)];
2159 hlist_for_each_entry(entry, hlist, hash) {
2160 if (entry->key == key)
2161 return entry;
2162 }
2163
2164 return NULL;
2165 }
2166
addr_filter__free_str(struct addr_filter * filt)2167 static void addr_filter__free_str(struct addr_filter *filt)
2168 {
2169 zfree(&filt->str);
2170 filt->action = NULL;
2171 filt->sym_from = NULL;
2172 filt->sym_to = NULL;
2173 filt->filename = NULL;
2174 }
2175
addr_filter__new(void)2176 static struct addr_filter *addr_filter__new(void)
2177 {
2178 struct addr_filter *filt = zalloc(sizeof(*filt));
2179
2180 if (filt)
2181 INIT_LIST_HEAD(&filt->list);
2182
2183 return filt;
2184 }
2185
addr_filter__free(struct addr_filter * filt)2186 static void addr_filter__free(struct addr_filter *filt)
2187 {
2188 if (filt)
2189 addr_filter__free_str(filt);
2190 free(filt);
2191 }
2192
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)2193 static void addr_filters__add(struct addr_filters *filts,
2194 struct addr_filter *filt)
2195 {
2196 list_add_tail(&filt->list, &filts->head);
2197 filts->cnt += 1;
2198 }
2199
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)2200 static void addr_filters__del(struct addr_filters *filts,
2201 struct addr_filter *filt)
2202 {
2203 list_del_init(&filt->list);
2204 filts->cnt -= 1;
2205 }
2206
addr_filters__init(struct addr_filters * filts)2207 void addr_filters__init(struct addr_filters *filts)
2208 {
2209 INIT_LIST_HEAD(&filts->head);
2210 filts->cnt = 0;
2211 }
2212
addr_filters__exit(struct addr_filters * filts)2213 void addr_filters__exit(struct addr_filters *filts)
2214 {
2215 struct addr_filter *filt, *n;
2216
2217 list_for_each_entry_safe(filt, n, &filts->head, list) {
2218 addr_filters__del(filts, filt);
2219 addr_filter__free(filt);
2220 }
2221 }
2222
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)2223 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2224 const char *str_delim)
2225 {
2226 *inp += strspn(*inp, " ");
2227
2228 if (isdigit(**inp)) {
2229 char *endptr;
2230
2231 if (!num)
2232 return -EINVAL;
2233 errno = 0;
2234 *num = strtoull(*inp, &endptr, 0);
2235 if (errno)
2236 return -errno;
2237 if (endptr == *inp)
2238 return -EINVAL;
2239 *inp = endptr;
2240 } else {
2241 size_t n;
2242
2243 if (!str)
2244 return -EINVAL;
2245 *inp += strspn(*inp, " ");
2246 *str = *inp;
2247 n = strcspn(*inp, str_delim);
2248 if (!n)
2249 return -EINVAL;
2250 *inp += n;
2251 if (**inp) {
2252 **inp = '\0';
2253 *inp += 1;
2254 }
2255 }
2256 return 0;
2257 }
2258
parse_action(struct addr_filter * filt)2259 static int parse_action(struct addr_filter *filt)
2260 {
2261 if (!strcmp(filt->action, "filter")) {
2262 filt->start = true;
2263 filt->range = true;
2264 } else if (!strcmp(filt->action, "start")) {
2265 filt->start = true;
2266 } else if (!strcmp(filt->action, "stop")) {
2267 filt->start = false;
2268 } else if (!strcmp(filt->action, "tracestop")) {
2269 filt->start = false;
2270 filt->range = true;
2271 filt->action += 5; /* Change 'tracestop' to 'stop' */
2272 } else {
2273 return -EINVAL;
2274 }
2275 return 0;
2276 }
2277
parse_sym_idx(char ** inp,int * idx)2278 static int parse_sym_idx(char **inp, int *idx)
2279 {
2280 *idx = -1;
2281
2282 *inp += strspn(*inp, " ");
2283
2284 if (**inp != '#')
2285 return 0;
2286
2287 *inp += 1;
2288
2289 if (**inp == 'g' || **inp == 'G') {
2290 *inp += 1;
2291 *idx = 0;
2292 } else {
2293 unsigned long num;
2294 char *endptr;
2295
2296 errno = 0;
2297 num = strtoul(*inp, &endptr, 0);
2298 if (errno)
2299 return -errno;
2300 if (endptr == *inp || num > INT_MAX)
2301 return -EINVAL;
2302 *inp = endptr;
2303 *idx = num;
2304 }
2305
2306 return 0;
2307 }
2308
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2309 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2310 {
2311 int err = parse_num_or_str(inp, num, str, " ");
2312
2313 if (!err && *str)
2314 err = parse_sym_idx(inp, idx);
2315
2316 return err;
2317 }
2318
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2319 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2320 {
2321 char *fstr;
2322 int err;
2323
2324 filt->str = fstr = strdup(*filter_inp);
2325 if (!fstr)
2326 return -ENOMEM;
2327
2328 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2329 if (err)
2330 goto out_err;
2331
2332 err = parse_action(filt);
2333 if (err)
2334 goto out_err;
2335
2336 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2337 &filt->sym_from_idx);
2338 if (err)
2339 goto out_err;
2340
2341 fstr += strspn(fstr, " ");
2342
2343 if (*fstr == '/') {
2344 fstr += 1;
2345 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2346 &filt->sym_to_idx);
2347 if (err)
2348 goto out_err;
2349 filt->range = true;
2350 }
2351
2352 fstr += strspn(fstr, " ");
2353
2354 if (*fstr == '@') {
2355 fstr += 1;
2356 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2357 if (err)
2358 goto out_err;
2359 }
2360
2361 fstr += strspn(fstr, " ,");
2362
2363 *filter_inp += fstr - filt->str;
2364
2365 return 0;
2366
2367 out_err:
2368 addr_filter__free_str(filt);
2369
2370 return err;
2371 }
2372
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2373 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2374 const char *filter)
2375 {
2376 struct addr_filter *filt;
2377 const char *fstr = filter;
2378 int err;
2379
2380 while (*fstr) {
2381 filt = addr_filter__new();
2382 err = parse_one_filter(filt, &fstr);
2383 if (err) {
2384 addr_filter__free(filt);
2385 addr_filters__exit(filts);
2386 return err;
2387 }
2388 addr_filters__add(filts, filt);
2389 }
2390
2391 return 0;
2392 }
2393
2394 struct sym_args {
2395 const char *name;
2396 u64 start;
2397 u64 size;
2398 int idx;
2399 int cnt;
2400 bool started;
2401 bool global;
2402 bool selected;
2403 bool duplicate;
2404 bool near;
2405 };
2406
kern_sym_name_match(const char * kname,const char * name)2407 static bool kern_sym_name_match(const char *kname, const char *name)
2408 {
2409 size_t n = strlen(name);
2410
2411 return !strcmp(kname, name) ||
2412 (!strncmp(kname, name, n) && kname[n] == '\t');
2413 }
2414
kern_sym_match(struct sym_args * args,const char * name,char type)2415 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2416 {
2417 /* A function with the same name, and global or the n'th found or any */
2418 return kallsyms__is_function(type) &&
2419 kern_sym_name_match(name, args->name) &&
2420 ((args->global && isupper(type)) ||
2421 (args->selected && ++(args->cnt) == args->idx) ||
2422 (!args->global && !args->selected));
2423 }
2424
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2425 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2426 {
2427 struct sym_args *args = arg;
2428
2429 if (args->started) {
2430 if (!args->size)
2431 args->size = start - args->start;
2432 if (args->selected) {
2433 if (args->size)
2434 return 1;
2435 } else if (kern_sym_match(args, name, type)) {
2436 args->duplicate = true;
2437 return 1;
2438 }
2439 } else if (kern_sym_match(args, name, type)) {
2440 args->started = true;
2441 args->start = start;
2442 }
2443
2444 return 0;
2445 }
2446
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2447 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2448 {
2449 struct sym_args *args = arg;
2450
2451 if (kern_sym_match(args, name, type)) {
2452 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2453 ++args->cnt, start, type, name);
2454 args->near = true;
2455 } else if (args->near) {
2456 args->near = false;
2457 pr_err("\t\twhich is near\t\t%s\n", name);
2458 }
2459
2460 return 0;
2461 }
2462
sym_not_found_error(const char * sym_name,int idx)2463 static int sym_not_found_error(const char *sym_name, int idx)
2464 {
2465 if (idx > 0) {
2466 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2467 idx, sym_name);
2468 } else if (!idx) {
2469 pr_err("Global symbol '%s' not found.\n", sym_name);
2470 } else {
2471 pr_err("Symbol '%s' not found.\n", sym_name);
2472 }
2473 pr_err("Note that symbols must be functions.\n");
2474
2475 return -EINVAL;
2476 }
2477
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2478 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2479 {
2480 struct sym_args args = {
2481 .name = sym_name,
2482 .idx = idx,
2483 .global = !idx,
2484 .selected = idx > 0,
2485 };
2486 int err;
2487
2488 *start = 0;
2489 *size = 0;
2490
2491 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2492 if (err < 0) {
2493 pr_err("Failed to parse /proc/kallsyms\n");
2494 return err;
2495 }
2496
2497 if (args.duplicate) {
2498 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2499 args.cnt = 0;
2500 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2501 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2502 sym_name);
2503 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2504 return -EINVAL;
2505 }
2506
2507 if (!args.started) {
2508 pr_err("Kernel symbol lookup: ");
2509 return sym_not_found_error(sym_name, idx);
2510 }
2511
2512 *start = args.start;
2513 *size = args.size;
2514
2515 return 0;
2516 }
2517
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2518 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2519 char type, u64 start)
2520 {
2521 struct sym_args *args = arg;
2522 u64 size;
2523
2524 if (!kallsyms__is_function(type))
2525 return 0;
2526
2527 if (!args->started) {
2528 args->started = true;
2529 args->start = start;
2530 }
2531 /* Don't know exactly where the kernel ends, so we add a page */
2532 size = round_up(start, page_size) + page_size - args->start;
2533 if (size > args->size)
2534 args->size = size;
2535
2536 return 0;
2537 }
2538
addr_filter__entire_kernel(struct addr_filter * filt)2539 static int addr_filter__entire_kernel(struct addr_filter *filt)
2540 {
2541 struct sym_args args = { .started = false };
2542 int err;
2543
2544 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2545 if (err < 0 || !args.started) {
2546 pr_err("Failed to parse /proc/kallsyms\n");
2547 return err;
2548 }
2549
2550 filt->addr = args.start;
2551 filt->size = args.size;
2552
2553 return 0;
2554 }
2555
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2556 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2557 {
2558 if (start + size >= filt->addr)
2559 return 0;
2560
2561 if (filt->sym_from) {
2562 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2563 filt->sym_to, start, filt->sym_from, filt->addr);
2564 } else {
2565 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2566 filt->sym_to, start, filt->addr);
2567 }
2568
2569 return -EINVAL;
2570 }
2571
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2572 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2573 {
2574 bool no_size = false;
2575 u64 start, size;
2576 int err;
2577
2578 if (symbol_conf.kptr_restrict) {
2579 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2580 return -EINVAL;
2581 }
2582
2583 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2584 return addr_filter__entire_kernel(filt);
2585
2586 if (filt->sym_from) {
2587 err = find_kern_sym(filt->sym_from, &start, &size,
2588 filt->sym_from_idx);
2589 if (err)
2590 return err;
2591 filt->addr = start;
2592 if (filt->range && !filt->size && !filt->sym_to) {
2593 filt->size = size;
2594 no_size = !size;
2595 }
2596 }
2597
2598 if (filt->sym_to) {
2599 err = find_kern_sym(filt->sym_to, &start, &size,
2600 filt->sym_to_idx);
2601 if (err)
2602 return err;
2603
2604 err = check_end_after_start(filt, start, size);
2605 if (err)
2606 return err;
2607 filt->size = start + size - filt->addr;
2608 no_size = !size;
2609 }
2610
2611 /* The very last symbol in kallsyms does not imply a particular size */
2612 if (no_size) {
2613 pr_err("Cannot determine size of symbol '%s'\n",
2614 filt->sym_to ? filt->sym_to : filt->sym_from);
2615 return -EINVAL;
2616 }
2617
2618 return 0;
2619 }
2620
load_dso(const char * name)2621 static struct dso *load_dso(const char *name)
2622 {
2623 struct map *map;
2624 struct dso *dso;
2625
2626 map = dso__new_map(name);
2627 if (!map)
2628 return NULL;
2629
2630 if (map__load(map) < 0)
2631 pr_err("File '%s' not found or has no symbols.\n", name);
2632
2633 dso = dso__get(map__dso(map));
2634
2635 map__put(map);
2636
2637 return dso;
2638 }
2639
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2640 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2641 int idx)
2642 {
2643 /* Same name, and global or the n'th found or any */
2644 return !arch__compare_symbol_names(name, sym->name) &&
2645 ((!idx && sym->binding == STB_GLOBAL) ||
2646 (idx > 0 && ++*cnt == idx) ||
2647 idx < 0);
2648 }
2649
print_duplicate_syms(struct dso * dso,const char * sym_name)2650 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2651 {
2652 struct symbol *sym;
2653 bool near = false;
2654 int cnt = 0;
2655
2656 pr_err("Multiple symbols with name '%s'\n", sym_name);
2657
2658 sym = dso__first_symbol(dso);
2659 while (sym) {
2660 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2661 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2662 ++cnt, sym->start,
2663 sym->binding == STB_GLOBAL ? 'g' :
2664 sym->binding == STB_LOCAL ? 'l' : 'w',
2665 sym->name);
2666 near = true;
2667 } else if (near) {
2668 near = false;
2669 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2670 }
2671 sym = dso__next_symbol(sym);
2672 }
2673
2674 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2675 sym_name);
2676 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2677 }
2678
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2679 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2680 u64 *size, int idx)
2681 {
2682 struct symbol *sym;
2683 int cnt = 0;
2684
2685 *start = 0;
2686 *size = 0;
2687
2688 sym = dso__first_symbol(dso);
2689 while (sym) {
2690 if (*start) {
2691 if (!*size)
2692 *size = sym->start - *start;
2693 if (idx > 0) {
2694 if (*size)
2695 return 0;
2696 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2697 print_duplicate_syms(dso, sym_name);
2698 return -EINVAL;
2699 }
2700 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2701 *start = sym->start;
2702 *size = sym->end - sym->start;
2703 }
2704 sym = dso__next_symbol(sym);
2705 }
2706
2707 if (!*start)
2708 return sym_not_found_error(sym_name, idx);
2709
2710 return 0;
2711 }
2712
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2713 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2714 {
2715 if (dso__data_file_size(dso, NULL)) {
2716 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2717 filt->filename);
2718 return -EINVAL;
2719 }
2720
2721 filt->addr = 0;
2722 filt->size = dso__data(dso)->file_size;
2723
2724 return 0;
2725 }
2726
addr_filter__resolve_syms(struct addr_filter * filt)2727 static int addr_filter__resolve_syms(struct addr_filter *filt)
2728 {
2729 u64 start, size;
2730 struct dso *dso;
2731 int err = 0;
2732
2733 if (!filt->sym_from && !filt->sym_to)
2734 return 0;
2735
2736 if (!filt->filename)
2737 return addr_filter__resolve_kernel_syms(filt);
2738
2739 dso = load_dso(filt->filename);
2740 if (!dso) {
2741 pr_err("Failed to load symbols from: %s\n", filt->filename);
2742 return -EINVAL;
2743 }
2744
2745 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2746 err = addr_filter__entire_dso(filt, dso);
2747 goto put_dso;
2748 }
2749
2750 if (filt->sym_from) {
2751 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2752 filt->sym_from_idx);
2753 if (err)
2754 goto put_dso;
2755 filt->addr = start;
2756 if (filt->range && !filt->size && !filt->sym_to)
2757 filt->size = size;
2758 }
2759
2760 if (filt->sym_to) {
2761 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2762 filt->sym_to_idx);
2763 if (err)
2764 goto put_dso;
2765
2766 err = check_end_after_start(filt, start, size);
2767 if (err)
2768 return err;
2769
2770 filt->size = start + size - filt->addr;
2771 }
2772
2773 put_dso:
2774 dso__put(dso);
2775
2776 return err;
2777 }
2778
addr_filter__to_str(struct addr_filter * filt)2779 static char *addr_filter__to_str(struct addr_filter *filt)
2780 {
2781 char filename_buf[PATH_MAX];
2782 const char *at = "";
2783 const char *fn = "";
2784 char *filter;
2785 int err;
2786
2787 if (filt->filename) {
2788 at = "@";
2789 fn = realpath(filt->filename, filename_buf);
2790 if (!fn)
2791 return NULL;
2792 }
2793
2794 if (filt->range) {
2795 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2796 filt->action, filt->addr, filt->size, at, fn);
2797 } else {
2798 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2799 filt->action, filt->addr, at, fn);
2800 }
2801
2802 return err < 0 ? NULL : filter;
2803 }
2804
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2805 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2806 int max_nr)
2807 {
2808 struct addr_filters filts;
2809 struct addr_filter *filt;
2810 int err;
2811
2812 addr_filters__init(&filts);
2813
2814 err = addr_filters__parse_bare_filter(&filts, filter);
2815 if (err)
2816 goto out_exit;
2817
2818 if (filts.cnt > max_nr) {
2819 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2820 filts.cnt, max_nr);
2821 err = -EINVAL;
2822 goto out_exit;
2823 }
2824
2825 list_for_each_entry(filt, &filts.head, list) {
2826 char *new_filter;
2827
2828 err = addr_filter__resolve_syms(filt);
2829 if (err)
2830 goto out_exit;
2831
2832 new_filter = addr_filter__to_str(filt);
2833 if (!new_filter) {
2834 err = -ENOMEM;
2835 goto out_exit;
2836 }
2837
2838 if (evsel__append_addr_filter(evsel, new_filter)) {
2839 err = -ENOMEM;
2840 goto out_exit;
2841 }
2842 }
2843
2844 out_exit:
2845 addr_filters__exit(&filts);
2846
2847 if (err) {
2848 pr_err("Failed to parse address filter: '%s'\n", filter);
2849 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2850 pr_err("Where multiple filters are separated by space or comma.\n");
2851 }
2852
2853 return err;
2854 }
2855
evsel__nr_addr_filter(struct evsel * evsel)2856 static int evsel__nr_addr_filter(struct evsel *evsel)
2857 {
2858 struct perf_pmu *pmu = evsel__find_pmu(evsel);
2859 int nr_addr_filters = 0;
2860
2861 if (!pmu)
2862 return 0;
2863
2864 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2865
2866 return nr_addr_filters;
2867 }
2868
auxtrace_parse_filters(struct evlist * evlist)2869 int auxtrace_parse_filters(struct evlist *evlist)
2870 {
2871 struct evsel *evsel;
2872 char *filter;
2873 int err, max_nr;
2874
2875 evlist__for_each_entry(evlist, evsel) {
2876 filter = evsel->filter;
2877 max_nr = evsel__nr_addr_filter(evsel);
2878 if (!filter || !max_nr)
2879 continue;
2880 evsel->filter = NULL;
2881 err = parse_addr_filter(evsel, filter, max_nr);
2882 free(filter);
2883 if (err)
2884 return err;
2885 pr_debug("Address filter: %s\n", evsel->filter);
2886 }
2887
2888 return 0;
2889 }
2890
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,const struct perf_tool * tool)2891 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2892 struct perf_sample *sample, const struct perf_tool *tool)
2893 {
2894 if (!session->auxtrace)
2895 return 0;
2896
2897 return session->auxtrace->process_event(session, event, sample, tool);
2898 }
2899
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2900 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2901 struct perf_sample *sample)
2902 {
2903 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2904 auxtrace__dont_decode(session))
2905 return;
2906
2907 session->auxtrace->dump_auxtrace_sample(session, sample);
2908 }
2909
auxtrace__flush_events(struct perf_session * session,const struct perf_tool * tool)2910 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2911 {
2912 if (!session->auxtrace)
2913 return 0;
2914
2915 return session->auxtrace->flush_events(session, tool);
2916 }
2917
auxtrace__free_events(struct perf_session * session)2918 void auxtrace__free_events(struct perf_session *session)
2919 {
2920 if (!session->auxtrace)
2921 return;
2922
2923 return session->auxtrace->free_events(session);
2924 }
2925
auxtrace__free(struct perf_session * session)2926 void auxtrace__free(struct perf_session *session)
2927 {
2928 if (!session->auxtrace)
2929 return;
2930
2931 return session->auxtrace->free(session);
2932 }
2933
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2934 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2935 struct evsel *evsel)
2936 {
2937 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2938 return false;
2939
2940 return session->auxtrace->evsel_is_auxtrace(session, evsel);
2941 }
2942