1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2019 Facebook */
3 
4 #ifdef __KERNEL__
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/string.h>
8 #include <linux/bpf_verifier.h>
9 #include "relo_core.h"
10 
btf_kind_str(const struct btf_type * t)11 static const char *btf_kind_str(const struct btf_type *t)
12 {
13 	return btf_type_str(t);
14 }
15 
is_ldimm64_insn(struct bpf_insn * insn)16 static bool is_ldimm64_insn(struct bpf_insn *insn)
17 {
18 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19 }
20 
21 static const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,u32 id,u32 * res_id)22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23 {
24 	return btf_type_skip_modifiers(btf, id, res_id);
25 }
26 
btf__name_by_offset(const struct btf * btf,u32 offset)27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28 {
29 	return btf_name_by_offset(btf, offset);
30 }
31 
btf__resolve_size(const struct btf * btf,u32 type_id)32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33 {
34 	const struct btf_type *t;
35 	int size;
36 
37 	t = btf_type_by_id(btf, type_id);
38 	t = btf_resolve_size(btf, t, &size);
39 	if (IS_ERR(t))
40 		return PTR_ERR(t);
41 	return size;
42 }
43 
44 enum libbpf_print_level {
45 	LIBBPF_WARN,
46 	LIBBPF_INFO,
47 	LIBBPF_DEBUG,
48 };
49 
50 #undef pr_warn
51 #undef pr_info
52 #undef pr_debug
53 #define pr_warn(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54 #define pr_info(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55 #define pr_debug(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56 #define libbpf_print(level, fmt, ...)	bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57 #else
58 #include <stdio.h>
59 #include <string.h>
60 #include <errno.h>
61 #include <ctype.h>
62 #include <linux/err.h>
63 
64 #include "libbpf.h"
65 #include "bpf.h"
66 #include "btf.h"
67 #include "str_error.h"
68 #include "libbpf_internal.h"
69 #endif
70 
is_flex_arr(const struct btf * btf,const struct bpf_core_accessor * acc,const struct btf_array * arr)71 static bool is_flex_arr(const struct btf *btf,
72 			const struct bpf_core_accessor *acc,
73 			const struct btf_array *arr)
74 {
75 	const struct btf_type *t;
76 
77 	/* not a flexible array, if not inside a struct or has non-zero size */
78 	if (!acc->name || arr->nelems > 0)
79 		return false;
80 
81 	/* has to be the last member of enclosing struct */
82 	t = btf_type_by_id(btf, acc->type_id);
83 	return acc->idx == btf_vlen(t) - 1;
84 }
85 
core_relo_kind_str(enum bpf_core_relo_kind kind)86 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
87 {
88 	switch (kind) {
89 	case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
90 	case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
91 	case BPF_CORE_FIELD_EXISTS: return "field_exists";
92 	case BPF_CORE_FIELD_SIGNED: return "signed";
93 	case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
94 	case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
95 	case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
96 	case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
97 	case BPF_CORE_TYPE_EXISTS: return "type_exists";
98 	case BPF_CORE_TYPE_MATCHES: return "type_matches";
99 	case BPF_CORE_TYPE_SIZE: return "type_size";
100 	case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
101 	case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
102 	default: return "unknown";
103 	}
104 }
105 
core_relo_is_field_based(enum bpf_core_relo_kind kind)106 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
107 {
108 	switch (kind) {
109 	case BPF_CORE_FIELD_BYTE_OFFSET:
110 	case BPF_CORE_FIELD_BYTE_SIZE:
111 	case BPF_CORE_FIELD_EXISTS:
112 	case BPF_CORE_FIELD_SIGNED:
113 	case BPF_CORE_FIELD_LSHIFT_U64:
114 	case BPF_CORE_FIELD_RSHIFT_U64:
115 		return true;
116 	default:
117 		return false;
118 	}
119 }
120 
core_relo_is_type_based(enum bpf_core_relo_kind kind)121 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
122 {
123 	switch (kind) {
124 	case BPF_CORE_TYPE_ID_LOCAL:
125 	case BPF_CORE_TYPE_ID_TARGET:
126 	case BPF_CORE_TYPE_EXISTS:
127 	case BPF_CORE_TYPE_MATCHES:
128 	case BPF_CORE_TYPE_SIZE:
129 		return true;
130 	default:
131 		return false;
132 	}
133 }
134 
core_relo_is_enumval_based(enum bpf_core_relo_kind kind)135 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
136 {
137 	switch (kind) {
138 	case BPF_CORE_ENUMVAL_EXISTS:
139 	case BPF_CORE_ENUMVAL_VALUE:
140 		return true;
141 	default:
142 		return false;
143 	}
144 }
145 
__bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id,int level)146 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
147 				const struct btf *targ_btf, __u32 targ_id, int level)
148 {
149 	const struct btf_type *local_type, *targ_type;
150 	int depth = 32; /* max recursion depth */
151 
152 	/* caller made sure that names match (ignoring flavor suffix) */
153 	local_type = btf_type_by_id(local_btf, local_id);
154 	targ_type = btf_type_by_id(targ_btf, targ_id);
155 	if (!btf_kind_core_compat(local_type, targ_type))
156 		return 0;
157 
158 recur:
159 	depth--;
160 	if (depth < 0)
161 		return -EINVAL;
162 
163 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
164 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
165 	if (!local_type || !targ_type)
166 		return -EINVAL;
167 
168 	if (!btf_kind_core_compat(local_type, targ_type))
169 		return 0;
170 
171 	switch (btf_kind(local_type)) {
172 	case BTF_KIND_UNKN:
173 	case BTF_KIND_STRUCT:
174 	case BTF_KIND_UNION:
175 	case BTF_KIND_ENUM:
176 	case BTF_KIND_FWD:
177 	case BTF_KIND_ENUM64:
178 		return 1;
179 	case BTF_KIND_INT:
180 		/* just reject deprecated bitfield-like integers; all other
181 		 * integers are by default compatible between each other
182 		 */
183 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
184 	case BTF_KIND_PTR:
185 		local_id = local_type->type;
186 		targ_id = targ_type->type;
187 		goto recur;
188 	case BTF_KIND_ARRAY:
189 		local_id = btf_array(local_type)->type;
190 		targ_id = btf_array(targ_type)->type;
191 		goto recur;
192 	case BTF_KIND_FUNC_PROTO: {
193 		struct btf_param *local_p = btf_params(local_type);
194 		struct btf_param *targ_p = btf_params(targ_type);
195 		__u16 local_vlen = btf_vlen(local_type);
196 		__u16 targ_vlen = btf_vlen(targ_type);
197 		int i, err;
198 
199 		if (local_vlen != targ_vlen)
200 			return 0;
201 
202 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
203 			if (level <= 0)
204 				return -EINVAL;
205 
206 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
207 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
208 			err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
209 							  level - 1);
210 			if (err <= 0)
211 				return err;
212 		}
213 
214 		/* tail recurse for return type check */
215 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
216 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
217 		goto recur;
218 	}
219 	default:
220 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
221 			btf_kind_str(local_type), local_id, targ_id);
222 		return 0;
223 	}
224 }
225 
226 /*
227  * Turn bpf_core_relo into a low- and high-level spec representation,
228  * validating correctness along the way, as well as calculating resulting
229  * field bit offset, specified by accessor string. Low-level spec captures
230  * every single level of nestedness, including traversing anonymous
231  * struct/union members. High-level one only captures semantically meaningful
232  * "turning points": named fields and array indicies.
233  * E.g., for this case:
234  *
235  *   struct sample {
236  *       int __unimportant;
237  *       struct {
238  *           int __1;
239  *           int __2;
240  *           int a[7];
241  *       };
242  *   };
243  *
244  *   struct sample *s = ...;
245  *
246  *   int x = &s->a[3]; // access string = '0:1:2:3'
247  *
248  * Low-level spec has 1:1 mapping with each element of access string (it's
249  * just a parsed access string representation): [0, 1, 2, 3].
250  *
251  * High-level spec will capture only 3 points:
252  *   - initial zero-index access by pointer (&s->... is the same as &s[0]...);
253  *   - field 'a' access (corresponds to '2' in low-level spec);
254  *   - array element #3 access (corresponds to '3' in low-level spec).
255  *
256  * Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE,
257  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
258  * spec and raw_spec are kept empty.
259  *
260  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
261  * string to specify enumerator's value index that need to be relocated.
262  */
bpf_core_parse_spec(const char * prog_name,const struct btf * btf,const struct bpf_core_relo * relo,struct bpf_core_spec * spec)263 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
264 			const struct bpf_core_relo *relo,
265 			struct bpf_core_spec *spec)
266 {
267 	int access_idx, parsed_len, i;
268 	struct bpf_core_accessor *acc;
269 	const struct btf_type *t;
270 	const char *name, *spec_str;
271 	__u32 id, name_off;
272 	__s64 sz;
273 
274 	spec_str = btf__name_by_offset(btf, relo->access_str_off);
275 	if (str_is_empty(spec_str) || *spec_str == ':')
276 		return -EINVAL;
277 
278 	memset(spec, 0, sizeof(*spec));
279 	spec->btf = btf;
280 	spec->root_type_id = relo->type_id;
281 	spec->relo_kind = relo->kind;
282 
283 	/* type-based relocations don't have a field access string */
284 	if (core_relo_is_type_based(relo->kind)) {
285 		if (strcmp(spec_str, "0"))
286 			return -EINVAL;
287 		return 0;
288 	}
289 
290 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
291 	while (*spec_str) {
292 		if (*spec_str == ':')
293 			++spec_str;
294 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
295 			return -EINVAL;
296 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
297 			return -E2BIG;
298 		spec_str += parsed_len;
299 		spec->raw_spec[spec->raw_len++] = access_idx;
300 	}
301 
302 	if (spec->raw_len == 0)
303 		return -EINVAL;
304 
305 	t = skip_mods_and_typedefs(btf, relo->type_id, &id);
306 	if (!t)
307 		return -EINVAL;
308 
309 	access_idx = spec->raw_spec[0];
310 	acc = &spec->spec[0];
311 	acc->type_id = id;
312 	acc->idx = access_idx;
313 	spec->len++;
314 
315 	if (core_relo_is_enumval_based(relo->kind)) {
316 		if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
317 			return -EINVAL;
318 
319 		/* record enumerator name in a first accessor */
320 		name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
321 					  : btf_enum64(t)[access_idx].name_off;
322 		acc->name = btf__name_by_offset(btf, name_off);
323 		return 0;
324 	}
325 
326 	if (!core_relo_is_field_based(relo->kind))
327 		return -EINVAL;
328 
329 	sz = btf__resolve_size(btf, id);
330 	if (sz < 0)
331 		return sz;
332 	spec->bit_offset = access_idx * sz * 8;
333 
334 	for (i = 1; i < spec->raw_len; i++) {
335 		t = skip_mods_and_typedefs(btf, id, &id);
336 		if (!t)
337 			return -EINVAL;
338 
339 		access_idx = spec->raw_spec[i];
340 		acc = &spec->spec[spec->len];
341 
342 		if (btf_is_composite(t)) {
343 			const struct btf_member *m;
344 			__u32 bit_offset;
345 
346 			if (access_idx >= btf_vlen(t))
347 				return -EINVAL;
348 
349 			bit_offset = btf_member_bit_offset(t, access_idx);
350 			spec->bit_offset += bit_offset;
351 
352 			m = btf_members(t) + access_idx;
353 			if (m->name_off) {
354 				name = btf__name_by_offset(btf, m->name_off);
355 				if (str_is_empty(name))
356 					return -EINVAL;
357 
358 				acc->type_id = id;
359 				acc->idx = access_idx;
360 				acc->name = name;
361 				spec->len++;
362 			}
363 
364 			id = m->type;
365 		} else if (btf_is_array(t)) {
366 			const struct btf_array *a = btf_array(t);
367 			bool flex;
368 
369 			t = skip_mods_and_typedefs(btf, a->type, &id);
370 			if (!t)
371 				return -EINVAL;
372 
373 			flex = is_flex_arr(btf, acc - 1, a);
374 			if (!flex && access_idx >= a->nelems)
375 				return -EINVAL;
376 
377 			spec->spec[spec->len].type_id = id;
378 			spec->spec[spec->len].idx = access_idx;
379 			spec->len++;
380 
381 			sz = btf__resolve_size(btf, id);
382 			if (sz < 0)
383 				return sz;
384 			spec->bit_offset += access_idx * sz * 8;
385 		} else {
386 			pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
387 				prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
388 			return -EINVAL;
389 		}
390 	}
391 
392 	return 0;
393 }
394 
395 /* Check two types for compatibility for the purpose of field access
396  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
397  * are relocating semantically compatible entities:
398  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
399  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
400  *   - any two PTRs are always compatible;
401  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
402  *     least one of enums should be anonymous;
403  *   - for ENUMs, check sizes, names are ignored;
404  *   - for INT, size and signedness are ignored;
405  *   - any two FLOATs are always compatible;
406  *   - for ARRAY, dimensionality is ignored, element types are checked for
407  *     compatibility recursively;
408  *   - everything else shouldn't be ever a target of relocation.
409  * These rules are not set in stone and probably will be adjusted as we get
410  * more experience with using BPF CO-RE relocations.
411  */
bpf_core_fields_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)412 static int bpf_core_fields_are_compat(const struct btf *local_btf,
413 				      __u32 local_id,
414 				      const struct btf *targ_btf,
415 				      __u32 targ_id)
416 {
417 	const struct btf_type *local_type, *targ_type;
418 
419 recur:
420 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
421 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
422 	if (!local_type || !targ_type)
423 		return -EINVAL;
424 
425 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
426 		return 1;
427 	if (!btf_kind_core_compat(local_type, targ_type))
428 		return 0;
429 
430 	switch (btf_kind(local_type)) {
431 	case BTF_KIND_PTR:
432 	case BTF_KIND_FLOAT:
433 		return 1;
434 	case BTF_KIND_FWD:
435 	case BTF_KIND_ENUM64:
436 	case BTF_KIND_ENUM: {
437 		const char *local_name, *targ_name;
438 		size_t local_len, targ_len;
439 
440 		local_name = btf__name_by_offset(local_btf,
441 						 local_type->name_off);
442 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
443 		local_len = bpf_core_essential_name_len(local_name);
444 		targ_len = bpf_core_essential_name_len(targ_name);
445 		/* one of them is anonymous or both w/ same flavor-less names */
446 		return local_len == 0 || targ_len == 0 ||
447 		       (local_len == targ_len &&
448 			strncmp(local_name, targ_name, local_len) == 0);
449 	}
450 	case BTF_KIND_INT:
451 		/* just reject deprecated bitfield-like integers; all other
452 		 * integers are by default compatible between each other
453 		 */
454 		return btf_int_offset(local_type) == 0 &&
455 		       btf_int_offset(targ_type) == 0;
456 	case BTF_KIND_ARRAY:
457 		local_id = btf_array(local_type)->type;
458 		targ_id = btf_array(targ_type)->type;
459 		goto recur;
460 	default:
461 		return 0;
462 	}
463 }
464 
465 /*
466  * Given single high-level named field accessor in local type, find
467  * corresponding high-level accessor for a target type. Along the way,
468  * maintain low-level spec for target as well. Also keep updating target
469  * bit offset.
470  *
471  * Searching is performed through recursive exhaustive enumeration of all
472  * fields of a struct/union. If there are any anonymous (embedded)
473  * structs/unions, they are recursively searched as well. If field with
474  * desired name is found, check compatibility between local and target types,
475  * before returning result.
476  *
477  * 1 is returned, if field is found.
478  * 0 is returned if no compatible field is found.
479  * <0 is returned on error.
480  */
bpf_core_match_member(const struct btf * local_btf,const struct bpf_core_accessor * local_acc,const struct btf * targ_btf,__u32 targ_id,struct bpf_core_spec * spec,__u32 * next_targ_id)481 static int bpf_core_match_member(const struct btf *local_btf,
482 				 const struct bpf_core_accessor *local_acc,
483 				 const struct btf *targ_btf,
484 				 __u32 targ_id,
485 				 struct bpf_core_spec *spec,
486 				 __u32 *next_targ_id)
487 {
488 	const struct btf_type *local_type, *targ_type;
489 	const struct btf_member *local_member, *m;
490 	const char *local_name, *targ_name;
491 	__u32 local_id;
492 	int i, n, found;
493 
494 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
495 	if (!targ_type)
496 		return -EINVAL;
497 	if (!btf_is_composite(targ_type))
498 		return 0;
499 
500 	local_id = local_acc->type_id;
501 	local_type = btf_type_by_id(local_btf, local_id);
502 	local_member = btf_members(local_type) + local_acc->idx;
503 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
504 
505 	n = btf_vlen(targ_type);
506 	m = btf_members(targ_type);
507 	for (i = 0; i < n; i++, m++) {
508 		__u32 bit_offset;
509 
510 		bit_offset = btf_member_bit_offset(targ_type, i);
511 
512 		/* too deep struct/union/array nesting */
513 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
514 			return -E2BIG;
515 
516 		/* speculate this member will be the good one */
517 		spec->bit_offset += bit_offset;
518 		spec->raw_spec[spec->raw_len++] = i;
519 
520 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
521 		if (str_is_empty(targ_name)) {
522 			/* embedded struct/union, we need to go deeper */
523 			found = bpf_core_match_member(local_btf, local_acc,
524 						      targ_btf, m->type,
525 						      spec, next_targ_id);
526 			if (found) /* either found or error */
527 				return found;
528 		} else if (strcmp(local_name, targ_name) == 0) {
529 			/* matching named field */
530 			struct bpf_core_accessor *targ_acc;
531 
532 			targ_acc = &spec->spec[spec->len++];
533 			targ_acc->type_id = targ_id;
534 			targ_acc->idx = i;
535 			targ_acc->name = targ_name;
536 
537 			*next_targ_id = m->type;
538 			found = bpf_core_fields_are_compat(local_btf,
539 							   local_member->type,
540 							   targ_btf, m->type);
541 			if (!found)
542 				spec->len--; /* pop accessor */
543 			return found;
544 		}
545 		/* member turned out not to be what we looked for */
546 		spec->bit_offset -= bit_offset;
547 		spec->raw_len--;
548 	}
549 
550 	return 0;
551 }
552 
553 /*
554  * Try to match local spec to a target type and, if successful, produce full
555  * target spec (high-level, low-level + bit offset).
556  */
bpf_core_spec_match(struct bpf_core_spec * local_spec,const struct btf * targ_btf,__u32 targ_id,struct bpf_core_spec * targ_spec)557 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
558 			       const struct btf *targ_btf, __u32 targ_id,
559 			       struct bpf_core_spec *targ_spec)
560 {
561 	const struct btf_type *targ_type;
562 	const struct bpf_core_accessor *local_acc;
563 	struct bpf_core_accessor *targ_acc;
564 	int i, sz, matched;
565 	__u32 name_off;
566 
567 	memset(targ_spec, 0, sizeof(*targ_spec));
568 	targ_spec->btf = targ_btf;
569 	targ_spec->root_type_id = targ_id;
570 	targ_spec->relo_kind = local_spec->relo_kind;
571 
572 	if (core_relo_is_type_based(local_spec->relo_kind)) {
573 		if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES)
574 			return bpf_core_types_match(local_spec->btf,
575 						    local_spec->root_type_id,
576 						    targ_btf, targ_id);
577 		else
578 			return bpf_core_types_are_compat(local_spec->btf,
579 							 local_spec->root_type_id,
580 							 targ_btf, targ_id);
581 	}
582 
583 	local_acc = &local_spec->spec[0];
584 	targ_acc = &targ_spec->spec[0];
585 
586 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
587 		size_t local_essent_len, targ_essent_len;
588 		const char *targ_name;
589 
590 		/* has to resolve to an enum */
591 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
592 		if (!btf_is_any_enum(targ_type))
593 			return 0;
594 
595 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
596 
597 		for (i = 0; i < btf_vlen(targ_type); i++) {
598 			if (btf_is_enum(targ_type))
599 				name_off = btf_enum(targ_type)[i].name_off;
600 			else
601 				name_off = btf_enum64(targ_type)[i].name_off;
602 
603 			targ_name = btf__name_by_offset(targ_spec->btf, name_off);
604 			targ_essent_len = bpf_core_essential_name_len(targ_name);
605 			if (targ_essent_len != local_essent_len)
606 				continue;
607 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
608 				targ_acc->type_id = targ_id;
609 				targ_acc->idx = i;
610 				targ_acc->name = targ_name;
611 				targ_spec->len++;
612 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
613 				targ_spec->raw_len++;
614 				return 1;
615 			}
616 		}
617 		return 0;
618 	}
619 
620 	if (!core_relo_is_field_based(local_spec->relo_kind))
621 		return -EINVAL;
622 
623 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
624 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
625 						   &targ_id);
626 		if (!targ_type)
627 			return -EINVAL;
628 
629 		if (local_acc->name) {
630 			matched = bpf_core_match_member(local_spec->btf,
631 							local_acc,
632 							targ_btf, targ_id,
633 							targ_spec, &targ_id);
634 			if (matched <= 0)
635 				return matched;
636 		} else {
637 			/* for i=0, targ_id is already treated as array element
638 			 * type (because it's the original struct), for others
639 			 * we should find array element type first
640 			 */
641 			if (i > 0) {
642 				const struct btf_array *a;
643 				bool flex;
644 
645 				if (!btf_is_array(targ_type))
646 					return 0;
647 
648 				a = btf_array(targ_type);
649 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
650 				if (!flex && local_acc->idx >= a->nelems)
651 					return 0;
652 				if (!skip_mods_and_typedefs(targ_btf, a->type,
653 							    &targ_id))
654 					return -EINVAL;
655 			}
656 
657 			/* too deep struct/union/array nesting */
658 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
659 				return -E2BIG;
660 
661 			targ_acc->type_id = targ_id;
662 			targ_acc->idx = local_acc->idx;
663 			targ_acc->name = NULL;
664 			targ_spec->len++;
665 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
666 			targ_spec->raw_len++;
667 
668 			sz = btf__resolve_size(targ_btf, targ_id);
669 			if (sz < 0)
670 				return sz;
671 			targ_spec->bit_offset += local_acc->idx * sz * 8;
672 		}
673 	}
674 
675 	return 1;
676 }
677 
bpf_core_calc_field_relo(const char * prog_name,const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u64 * val,__u32 * field_sz,__u32 * type_id,bool * validate)678 static int bpf_core_calc_field_relo(const char *prog_name,
679 				    const struct bpf_core_relo *relo,
680 				    const struct bpf_core_spec *spec,
681 				    __u64 *val, __u32 *field_sz, __u32 *type_id,
682 				    bool *validate)
683 {
684 	const struct bpf_core_accessor *acc;
685 	const struct btf_type *t;
686 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id, elem_id;
687 	const struct btf_member *m;
688 	const struct btf_type *mt;
689 	bool bitfield;
690 	__s64 sz;
691 
692 	*field_sz = 0;
693 
694 	if (relo->kind == BPF_CORE_FIELD_EXISTS) {
695 		*val = spec ? 1 : 0;
696 		return 0;
697 	}
698 
699 	if (!spec)
700 		return -EUCLEAN; /* request instruction poisoning */
701 
702 	acc = &spec->spec[spec->len - 1];
703 	t = btf_type_by_id(spec->btf, acc->type_id);
704 
705 	/* a[n] accessor needs special handling */
706 	if (!acc->name) {
707 		if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
708 			*val = spec->bit_offset / 8;
709 			/* remember field size for load/store mem size;
710 			 * note, for arrays we care about individual element
711 			 * sizes, not the overall array size
712 			 */
713 			t = skip_mods_and_typedefs(spec->btf, acc->type_id, &elem_id);
714 			while (btf_is_array(t))
715 				t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
716 			sz = btf__resolve_size(spec->btf, elem_id);
717 			if (sz < 0)
718 				return -EINVAL;
719 			*field_sz = sz;
720 			*type_id = acc->type_id;
721 		} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
722 			sz = btf__resolve_size(spec->btf, acc->type_id);
723 			if (sz < 0)
724 				return -EINVAL;
725 			*val = sz;
726 		} else {
727 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
728 				prog_name, relo->kind, relo->insn_off / 8);
729 			return -EINVAL;
730 		}
731 		if (validate)
732 			*validate = true;
733 		return 0;
734 	}
735 
736 	m = btf_members(t) + acc->idx;
737 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
738 	bit_off = spec->bit_offset;
739 	bit_sz = btf_member_bitfield_size(t, acc->idx);
740 
741 	bitfield = bit_sz > 0;
742 	if (bitfield) {
743 		byte_sz = mt->size;
744 		byte_off = bit_off / 8 / byte_sz * byte_sz;
745 		/* figure out smallest int size necessary for bitfield load */
746 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
747 			if (byte_sz >= 8) {
748 				/* bitfield can't be read with 64-bit read */
749 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
750 					prog_name, relo->kind, relo->insn_off / 8);
751 				return -E2BIG;
752 			}
753 			byte_sz *= 2;
754 			byte_off = bit_off / 8 / byte_sz * byte_sz;
755 		}
756 	} else {
757 		sz = btf__resolve_size(spec->btf, field_type_id);
758 		if (sz < 0)
759 			return -EINVAL;
760 		byte_sz = sz;
761 		byte_off = spec->bit_offset / 8;
762 		bit_sz = byte_sz * 8;
763 	}
764 
765 	/* for bitfields, all the relocatable aspects are ambiguous and we
766 	 * might disagree with compiler, so turn off validation of expected
767 	 * value, except for signedness
768 	 */
769 	if (validate)
770 		*validate = !bitfield;
771 
772 	switch (relo->kind) {
773 	case BPF_CORE_FIELD_BYTE_OFFSET:
774 		*val = byte_off;
775 		if (!bitfield) {
776 			/* remember field size for load/store mem size;
777 			 * note, for arrays we care about individual element
778 			 * sizes, not the overall array size
779 			 */
780 			t = skip_mods_and_typedefs(spec->btf, field_type_id, &elem_id);
781 			while (btf_is_array(t))
782 				t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
783 			sz = btf__resolve_size(spec->btf, elem_id);
784 			if (sz < 0)
785 				return -EINVAL;
786 			*field_sz = sz;
787 			*type_id = field_type_id;
788 		}
789 		break;
790 	case BPF_CORE_FIELD_BYTE_SIZE:
791 		*val = byte_sz;
792 		break;
793 	case BPF_CORE_FIELD_SIGNED:
794 		*val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
795 		       (btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED));
796 		if (validate)
797 			*validate = true; /* signedness is never ambiguous */
798 		break;
799 	case BPF_CORE_FIELD_LSHIFT_U64:
800 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
801 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
802 #else
803 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
804 #endif
805 		break;
806 	case BPF_CORE_FIELD_RSHIFT_U64:
807 		*val = 64 - bit_sz;
808 		if (validate)
809 			*validate = true; /* right shift is never ambiguous */
810 		break;
811 	case BPF_CORE_FIELD_EXISTS:
812 	default:
813 		return -EOPNOTSUPP;
814 	}
815 
816 	return 0;
817 }
818 
bpf_core_calc_type_relo(const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u64 * val,bool * validate)819 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
820 				   const struct bpf_core_spec *spec,
821 				   __u64 *val, bool *validate)
822 {
823 	__s64 sz;
824 
825 	/* by default, always check expected value in bpf_insn */
826 	if (validate)
827 		*validate = true;
828 
829 	/* type-based relos return zero when target type is not found */
830 	if (!spec) {
831 		*val = 0;
832 		return 0;
833 	}
834 
835 	switch (relo->kind) {
836 	case BPF_CORE_TYPE_ID_TARGET:
837 		*val = spec->root_type_id;
838 		/* type ID, embedded in bpf_insn, might change during linking,
839 		 * so enforcing it is pointless
840 		 */
841 		if (validate)
842 			*validate = false;
843 		break;
844 	case BPF_CORE_TYPE_EXISTS:
845 	case BPF_CORE_TYPE_MATCHES:
846 		*val = 1;
847 		break;
848 	case BPF_CORE_TYPE_SIZE:
849 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
850 		if (sz < 0)
851 			return -EINVAL;
852 		*val = sz;
853 		break;
854 	case BPF_CORE_TYPE_ID_LOCAL:
855 	/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
856 	default:
857 		return -EOPNOTSUPP;
858 	}
859 
860 	return 0;
861 }
862 
bpf_core_calc_enumval_relo(const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u64 * val)863 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
864 				      const struct bpf_core_spec *spec,
865 				      __u64 *val)
866 {
867 	const struct btf_type *t;
868 
869 	switch (relo->kind) {
870 	case BPF_CORE_ENUMVAL_EXISTS:
871 		*val = spec ? 1 : 0;
872 		break;
873 	case BPF_CORE_ENUMVAL_VALUE:
874 		if (!spec)
875 			return -EUCLEAN; /* request instruction poisoning */
876 		t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
877 		if (btf_is_enum(t))
878 			*val = btf_enum(t)[spec->spec[0].idx].val;
879 		else
880 			*val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
881 		break;
882 	default:
883 		return -EOPNOTSUPP;
884 	}
885 
886 	return 0;
887 }
888 
889 /* Calculate original and target relocation values, given local and target
890  * specs and relocation kind. These values are calculated for each candidate.
891  * If there are multiple candidates, resulting values should all be consistent
892  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
893  * If instruction has to be poisoned, *poison will be set to true.
894  */
bpf_core_calc_relo(const char * prog_name,const struct bpf_core_relo * relo,int relo_idx,const struct bpf_core_spec * local_spec,const struct bpf_core_spec * targ_spec,struct bpf_core_relo_res * res)895 static int bpf_core_calc_relo(const char *prog_name,
896 			      const struct bpf_core_relo *relo,
897 			      int relo_idx,
898 			      const struct bpf_core_spec *local_spec,
899 			      const struct bpf_core_spec *targ_spec,
900 			      struct bpf_core_relo_res *res)
901 {
902 	int err = -EOPNOTSUPP;
903 
904 	res->orig_val = 0;
905 	res->new_val = 0;
906 	res->poison = false;
907 	res->validate = true;
908 	res->fail_memsz_adjust = false;
909 	res->orig_sz = res->new_sz = 0;
910 	res->orig_type_id = res->new_type_id = 0;
911 
912 	if (core_relo_is_field_based(relo->kind)) {
913 		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
914 					       &res->orig_val, &res->orig_sz,
915 					       &res->orig_type_id, &res->validate);
916 		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
917 						      &res->new_val, &res->new_sz,
918 						      &res->new_type_id, NULL);
919 		if (err)
920 			goto done;
921 		/* Validate if it's safe to adjust load/store memory size.
922 		 * Adjustments are performed only if original and new memory
923 		 * sizes differ.
924 		 */
925 		res->fail_memsz_adjust = false;
926 		if (res->orig_sz != res->new_sz) {
927 			const struct btf_type *orig_t, *new_t;
928 
929 			orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
930 			new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
931 
932 			/* There are two use cases in which it's safe to
933 			 * adjust load/store's mem size:
934 			 *   - reading a 32-bit kernel pointer, while on BPF
935 			 *   size pointers are always 64-bit; in this case
936 			 *   it's safe to "downsize" instruction size due to
937 			 *   pointer being treated as unsigned integer with
938 			 *   zero-extended upper 32-bits;
939 			 *   - reading unsigned integers, again due to
940 			 *   zero-extension is preserving the value correctly.
941 			 *
942 			 * In all other cases it's incorrect to attempt to
943 			 * load/store field because read value will be
944 			 * incorrect, so we poison relocated instruction.
945 			 */
946 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
947 				goto done;
948 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
949 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
950 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
951 				goto done;
952 
953 			/* mark as invalid mem size adjustment, but this will
954 			 * only be checked for LDX/STX/ST insns
955 			 */
956 			res->fail_memsz_adjust = true;
957 		}
958 	} else if (core_relo_is_type_based(relo->kind)) {
959 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
960 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
961 	} else if (core_relo_is_enumval_based(relo->kind)) {
962 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
963 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
964 	}
965 
966 done:
967 	if (err == -EUCLEAN) {
968 		/* EUCLEAN is used to signal instruction poisoning request */
969 		res->poison = true;
970 		err = 0;
971 	} else if (err == -EOPNOTSUPP) {
972 		/* EOPNOTSUPP means unknown/unsupported relocation */
973 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
974 			prog_name, relo_idx, core_relo_kind_str(relo->kind),
975 			relo->kind, relo->insn_off / 8);
976 	}
977 
978 	return err;
979 }
980 
981 /*
982  * Turn instruction for which CO_RE relocation failed into invalid one with
983  * distinct signature.
984  */
bpf_core_poison_insn(const char * prog_name,int relo_idx,int insn_idx,struct bpf_insn * insn)985 static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
986 				 int insn_idx, struct bpf_insn *insn)
987 {
988 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
989 		 prog_name, relo_idx, insn_idx);
990 	insn->code = BPF_JMP | BPF_CALL;
991 	insn->dst_reg = 0;
992 	insn->src_reg = 0;
993 	insn->off = 0;
994 	/* if this instruction is reachable (not a dead code),
995 	 * verifier will complain with the following message:
996 	 * invalid func unknown#195896080
997 	 */
998 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
999 }
1000 
insn_bpf_size_to_bytes(struct bpf_insn * insn)1001 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
1002 {
1003 	switch (BPF_SIZE(insn->code)) {
1004 	case BPF_DW: return 8;
1005 	case BPF_W: return 4;
1006 	case BPF_H: return 2;
1007 	case BPF_B: return 1;
1008 	default: return -1;
1009 	}
1010 }
1011 
insn_bytes_to_bpf_size(__u32 sz)1012 static int insn_bytes_to_bpf_size(__u32 sz)
1013 {
1014 	switch (sz) {
1015 	case 8: return BPF_DW;
1016 	case 4: return BPF_W;
1017 	case 2: return BPF_H;
1018 	case 1: return BPF_B;
1019 	default: return -1;
1020 	}
1021 }
1022 
1023 /*
1024  * Patch relocatable BPF instruction.
1025  *
1026  * Patched value is determined by relocation kind and target specification.
1027  * For existence relocations target spec will be NULL if field/type is not found.
1028  * Expected insn->imm value is determined using relocation kind and local
1029  * spec, and is checked before patching instruction. If actual insn->imm value
1030  * is wrong, bail out with error.
1031  *
1032  * Currently supported classes of BPF instruction are:
1033  * 1. rX = <imm> (assignment with immediate operand);
1034  * 2. rX += <imm> (arithmetic operations with immediate operand);
1035  * 3. rX = <imm64> (load with 64-bit immediate value);
1036  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
1037  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
1038  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
1039  */
bpf_core_patch_insn(const char * prog_name,struct bpf_insn * insn,int insn_idx,const struct bpf_core_relo * relo,int relo_idx,const struct bpf_core_relo_res * res)1040 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
1041 			int insn_idx, const struct bpf_core_relo *relo,
1042 			int relo_idx, const struct bpf_core_relo_res *res)
1043 {
1044 	__u64 orig_val, new_val;
1045 	__u8 class;
1046 
1047 	class = BPF_CLASS(insn->code);
1048 
1049 	if (res->poison) {
1050 poison:
1051 		/* poison second part of ldimm64 to avoid confusing error from
1052 		 * verifier about "unknown opcode 00"
1053 		 */
1054 		if (is_ldimm64_insn(insn))
1055 			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
1056 		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
1057 		return 0;
1058 	}
1059 
1060 	orig_val = res->orig_val;
1061 	new_val = res->new_val;
1062 
1063 	switch (class) {
1064 	case BPF_ALU:
1065 	case BPF_ALU64:
1066 		if (BPF_SRC(insn->code) != BPF_K)
1067 			return -EINVAL;
1068 		if (res->validate && insn->imm != orig_val) {
1069 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
1070 				prog_name, relo_idx,
1071 				insn_idx, insn->imm, (unsigned long long)orig_val,
1072 				(unsigned long long)new_val);
1073 			return -EINVAL;
1074 		}
1075 		orig_val = insn->imm;
1076 		insn->imm = new_val;
1077 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
1078 			 prog_name, relo_idx, insn_idx,
1079 			 (unsigned long long)orig_val, (unsigned long long)new_val);
1080 		break;
1081 	case BPF_LDX:
1082 	case BPF_ST:
1083 	case BPF_STX:
1084 		if (res->validate && insn->off != orig_val) {
1085 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
1086 				prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
1087 				(unsigned long long)new_val);
1088 			return -EINVAL;
1089 		}
1090 		if (new_val > SHRT_MAX) {
1091 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
1092 				prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
1093 			return -ERANGE;
1094 		}
1095 		if (res->fail_memsz_adjust) {
1096 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
1097 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
1098 				prog_name, relo_idx, insn_idx);
1099 			goto poison;
1100 		}
1101 
1102 		orig_val = insn->off;
1103 		insn->off = new_val;
1104 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
1105 			 prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
1106 			 (unsigned long long)new_val);
1107 
1108 		if (res->new_sz != res->orig_sz) {
1109 			int insn_bytes_sz, insn_bpf_sz;
1110 
1111 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
1112 			if (insn_bytes_sz != res->orig_sz) {
1113 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
1114 					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1115 				return -EINVAL;
1116 			}
1117 
1118 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1119 			if (insn_bpf_sz < 0) {
1120 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1121 					prog_name, relo_idx, insn_idx, res->new_sz);
1122 				return -EINVAL;
1123 			}
1124 
1125 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1126 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1127 				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1128 		}
1129 		break;
1130 	case BPF_LD: {
1131 		__u64 imm;
1132 
1133 		if (!is_ldimm64_insn(insn) ||
1134 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
1135 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
1136 		    insn[1].src_reg != 0 || insn[1].off != 0) {
1137 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1138 				prog_name, relo_idx, insn_idx);
1139 			return -EINVAL;
1140 		}
1141 
1142 		imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
1143 		if (res->validate && imm != orig_val) {
1144 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
1145 				prog_name, relo_idx,
1146 				insn_idx, (unsigned long long)imm,
1147 				(unsigned long long)orig_val, (unsigned long long)new_val);
1148 			return -EINVAL;
1149 		}
1150 
1151 		insn[0].imm = new_val;
1152 		insn[1].imm = new_val >> 32;
1153 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
1154 			 prog_name, relo_idx, insn_idx,
1155 			 (unsigned long long)imm, (unsigned long long)new_val);
1156 		break;
1157 	}
1158 	default:
1159 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1160 			prog_name, relo_idx, insn_idx, insn->code,
1161 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1162 		return -EINVAL;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 /* Output spec definition in the format:
1169  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1170  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1171  */
bpf_core_format_spec(char * buf,size_t buf_sz,const struct bpf_core_spec * spec)1172 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1173 {
1174 	const struct btf_type *t;
1175 	const char *s;
1176 	__u32 type_id;
1177 	int i, len = 0;
1178 
1179 #define append_buf(fmt, args...)				\
1180 	({							\
1181 		int r;						\
1182 		r = snprintf(buf, buf_sz, fmt, ##args);		\
1183 		len += r;					\
1184 		if (r >= buf_sz)				\
1185 			r = buf_sz;				\
1186 		buf += r;					\
1187 		buf_sz -= r;					\
1188 	})
1189 
1190 	type_id = spec->root_type_id;
1191 	t = btf_type_by_id(spec->btf, type_id);
1192 	s = btf__name_by_offset(spec->btf, t->name_off);
1193 
1194 	append_buf("<%s> [%u] %s %s",
1195 		   core_relo_kind_str(spec->relo_kind),
1196 		   type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1197 
1198 	if (core_relo_is_type_based(spec->relo_kind))
1199 		return len;
1200 
1201 	if (core_relo_is_enumval_based(spec->relo_kind)) {
1202 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1203 		if (btf_is_enum(t)) {
1204 			const struct btf_enum *e;
1205 			const char *fmt_str;
1206 
1207 			e = btf_enum(t) + spec->raw_spec[0];
1208 			s = btf__name_by_offset(spec->btf, e->name_off);
1209 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
1210 			append_buf(fmt_str, s, e->val);
1211 		} else {
1212 			const struct btf_enum64 *e;
1213 			const char *fmt_str;
1214 
1215 			e = btf_enum64(t) + spec->raw_spec[0];
1216 			s = btf__name_by_offset(spec->btf, e->name_off);
1217 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
1218 			append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
1219 		}
1220 		return len;
1221 	}
1222 
1223 	if (core_relo_is_field_based(spec->relo_kind)) {
1224 		for (i = 0; i < spec->len; i++) {
1225 			if (spec->spec[i].name)
1226 				append_buf(".%s", spec->spec[i].name);
1227 			else if (i > 0 || spec->spec[i].idx > 0)
1228 				append_buf("[%u]", spec->spec[i].idx);
1229 		}
1230 
1231 		append_buf(" (");
1232 		for (i = 0; i < spec->raw_len; i++)
1233 			append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1234 
1235 		if (spec->bit_offset % 8)
1236 			append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1237 		else
1238 			append_buf(" @ offset %u)", spec->bit_offset / 8);
1239 		return len;
1240 	}
1241 
1242 	return len;
1243 #undef append_buf
1244 }
1245 
1246 /*
1247  * Calculate CO-RE relocation target result.
1248  *
1249  * The outline and important points of the algorithm:
1250  * 1. For given local type, find corresponding candidate target types.
1251  *    Candidate type is a type with the same "essential" name, ignoring
1252  *    everything after last triple underscore (___). E.g., `sample`,
1253  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1254  *    for each other. Names with triple underscore are referred to as
1255  *    "flavors" and are useful, among other things, to allow to
1256  *    specify/support incompatible variations of the same kernel struct, which
1257  *    might differ between different kernel versions and/or build
1258  *    configurations.
1259  *
1260  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1261  *    converter, when deduplicated BTF of a kernel still contains more than
1262  *    one different types with the same name. In that case, ___2, ___3, etc
1263  *    are appended starting from second name conflict. But start flavors are
1264  *    also useful to be defined "locally", in BPF program, to extract same
1265  *    data from incompatible changes between different kernel
1266  *    versions/configurations. For instance, to handle field renames between
1267  *    kernel versions, one can use two flavors of the struct name with the
1268  *    same common name and use conditional relocations to extract that field,
1269  *    depending on target kernel version.
1270  * 2. For each candidate type, try to match local specification to this
1271  *    candidate target type. Matching involves finding corresponding
1272  *    high-level spec accessors, meaning that all named fields should match,
1273  *    as well as all array accesses should be within the actual bounds. Also,
1274  *    types should be compatible (see bpf_core_fields_are_compat for details).
1275  * 3. It is supported and expected that there might be multiple flavors
1276  *    matching the spec. As long as all the specs resolve to the same set of
1277  *    offsets across all candidates, there is no error. If there is any
1278  *    ambiguity, CO-RE relocation will fail. This is necessary to accommodate
1279  *    imperfection of BTF deduplication, which can cause slight duplication of
1280  *    the same BTF type, if some directly or indirectly referenced (by
1281  *    pointer) type gets resolved to different actual types in different
1282  *    object files. If such a situation occurs, deduplicated BTF will end up
1283  *    with two (or more) structurally identical types, which differ only in
1284  *    types they refer to through pointer. This should be OK in most cases and
1285  *    is not an error.
1286  * 4. Candidate types search is performed by linearly scanning through all
1287  *    types in target BTF. It is anticipated that this is overall more
1288  *    efficient memory-wise and not significantly worse (if not better)
1289  *    CPU-wise compared to prebuilding a map from all local type names to
1290  *    a list of candidate type names. It's also sped up by caching resolved
1291  *    list of matching candidates per each local "root" type ID, that has at
1292  *    least one bpf_core_relo associated with it. This list is shared
1293  *    between multiple relocations for the same type ID and is updated as some
1294  *    of the candidates are pruned due to structural incompatibility.
1295  */
bpf_core_calc_relo_insn(const char * prog_name,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct bpf_core_cand_list * cands,struct bpf_core_spec * specs_scratch,struct bpf_core_relo_res * targ_res)1296 int bpf_core_calc_relo_insn(const char *prog_name,
1297 			    const struct bpf_core_relo *relo,
1298 			    int relo_idx,
1299 			    const struct btf *local_btf,
1300 			    struct bpf_core_cand_list *cands,
1301 			    struct bpf_core_spec *specs_scratch,
1302 			    struct bpf_core_relo_res *targ_res)
1303 {
1304 	struct bpf_core_spec *local_spec = &specs_scratch[0];
1305 	struct bpf_core_spec *cand_spec = &specs_scratch[1];
1306 	struct bpf_core_spec *targ_spec = &specs_scratch[2];
1307 	struct bpf_core_relo_res cand_res;
1308 	const struct btf_type *local_type;
1309 	const char *local_name;
1310 	__u32 local_id;
1311 	char spec_buf[256];
1312 	int i, j, err;
1313 
1314 	local_id = relo->type_id;
1315 	local_type = btf_type_by_id(local_btf, local_id);
1316 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
1317 	if (!local_name)
1318 		return -EINVAL;
1319 
1320 	err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1321 	if (err) {
1322 		const char *spec_str;
1323 
1324 		spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1325 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1326 			prog_name, relo_idx, local_id, btf_kind_str(local_type),
1327 			str_is_empty(local_name) ? "<anon>" : local_name,
1328 			spec_str ?: "<?>", err);
1329 		return -EINVAL;
1330 	}
1331 
1332 	bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1333 	pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1334 
1335 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1336 	if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1337 		/* bpf_insn's imm value could get out of sync during linking */
1338 		memset(targ_res, 0, sizeof(*targ_res));
1339 		targ_res->validate = false;
1340 		targ_res->poison = false;
1341 		targ_res->orig_val = local_spec->root_type_id;
1342 		targ_res->new_val = local_spec->root_type_id;
1343 		return 0;
1344 	}
1345 
1346 	/* libbpf doesn't support candidate search for anonymous types */
1347 	if (str_is_empty(local_name)) {
1348 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1349 			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1350 		return -EOPNOTSUPP;
1351 	}
1352 
1353 	for (i = 0, j = 0; i < cands->len; i++) {
1354 		err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1355 					  cands->cands[i].id, cand_spec);
1356 		if (err < 0) {
1357 			bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1358 			pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n",
1359 				prog_name, relo_idx, i, spec_buf, err);
1360 			return err;
1361 		}
1362 
1363 		bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1364 		pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1365 			 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1366 
1367 		if (err == 0)
1368 			continue;
1369 
1370 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1371 		if (err)
1372 			return err;
1373 
1374 		if (j == 0) {
1375 			*targ_res = cand_res;
1376 			*targ_spec = *cand_spec;
1377 		} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1378 			/* if there are many field relo candidates, they
1379 			 * should all resolve to the same bit offset
1380 			 */
1381 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1382 				prog_name, relo_idx, cand_spec->bit_offset,
1383 				targ_spec->bit_offset);
1384 			return -EINVAL;
1385 		} else if (cand_res.poison != targ_res->poison ||
1386 			   cand_res.new_val != targ_res->new_val) {
1387 			/* all candidates should result in the same relocation
1388 			 * decision and value, otherwise it's dangerous to
1389 			 * proceed due to ambiguity
1390 			 */
1391 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
1392 				prog_name, relo_idx,
1393 				cand_res.poison ? "failure" : "success",
1394 				(unsigned long long)cand_res.new_val,
1395 				targ_res->poison ? "failure" : "success",
1396 				(unsigned long long)targ_res->new_val);
1397 			return -EINVAL;
1398 		}
1399 
1400 		cands->cands[j++] = cands->cands[i];
1401 	}
1402 
1403 	/*
1404 	 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1405 	 * existence checks or kernel version/config checks, it's expected
1406 	 * that we might not find any candidates. In this case, if field
1407 	 * wasn't found in any candidate, the list of candidates shouldn't
1408 	 * change at all, we'll just handle relocating appropriately,
1409 	 * depending on relo's kind.
1410 	 */
1411 	if (j > 0)
1412 		cands->len = j;
1413 
1414 	/*
1415 	 * If no candidates were found, it might be both a programmer error,
1416 	 * as well as expected case, depending whether instruction w/
1417 	 * relocation is guarded in some way that makes it unreachable (dead
1418 	 * code) if relocation can't be resolved. This is handled in
1419 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
1420 	 * BPF helper call insn (using invalid helper ID). If that instruction
1421 	 * is indeed unreachable, then it will be ignored and eliminated by
1422 	 * verifier. If it was an error, then verifier will complain and point
1423 	 * to a specific instruction number in its log.
1424 	 */
1425 	if (j == 0) {
1426 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
1427 			 prog_name, relo_idx);
1428 
1429 		/* calculate single target relo result explicitly */
1430 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1431 		if (err)
1432 			return err;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
bpf_core_names_match(const struct btf * local_btf,size_t local_name_off,const struct btf * targ_btf,size_t targ_name_off)1438 static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off,
1439 				 const struct btf *targ_btf, size_t targ_name_off)
1440 {
1441 	const char *local_n, *targ_n;
1442 	size_t local_len, targ_len;
1443 
1444 	local_n = btf__name_by_offset(local_btf, local_name_off);
1445 	targ_n = btf__name_by_offset(targ_btf, targ_name_off);
1446 
1447 	if (str_is_empty(targ_n))
1448 		return str_is_empty(local_n);
1449 
1450 	targ_len = bpf_core_essential_name_len(targ_n);
1451 	local_len = bpf_core_essential_name_len(local_n);
1452 
1453 	return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0;
1454 }
1455 
bpf_core_enums_match(const struct btf * local_btf,const struct btf_type * local_t,const struct btf * targ_btf,const struct btf_type * targ_t)1456 static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t,
1457 				const struct btf *targ_btf, const struct btf_type *targ_t)
1458 {
1459 	__u16 local_vlen = btf_vlen(local_t);
1460 	__u16 targ_vlen = btf_vlen(targ_t);
1461 	int i, j;
1462 
1463 	if (local_t->size != targ_t->size)
1464 		return 0;
1465 
1466 	if (local_vlen > targ_vlen)
1467 		return 0;
1468 
1469 	/* iterate over the local enum's variants and make sure each has
1470 	 * a symbolic name correspondent in the target
1471 	 */
1472 	for (i = 0; i < local_vlen; i++) {
1473 		bool matched = false;
1474 		__u32 local_n_off, targ_n_off;
1475 
1476 		local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off :
1477 						     btf_enum64(local_t)[i].name_off;
1478 
1479 		for (j = 0; j < targ_vlen; j++) {
1480 			targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off :
1481 							   btf_enum64(targ_t)[j].name_off;
1482 
1483 			if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) {
1484 				matched = true;
1485 				break;
1486 			}
1487 		}
1488 
1489 		if (!matched)
1490 			return 0;
1491 	}
1492 	return 1;
1493 }
1494 
bpf_core_composites_match(const struct btf * local_btf,const struct btf_type * local_t,const struct btf * targ_btf,const struct btf_type * targ_t,bool behind_ptr,int level)1495 static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t,
1496 				     const struct btf *targ_btf, const struct btf_type *targ_t,
1497 				     bool behind_ptr, int level)
1498 {
1499 	const struct btf_member *local_m = btf_members(local_t);
1500 	__u16 local_vlen = btf_vlen(local_t);
1501 	__u16 targ_vlen = btf_vlen(targ_t);
1502 	int i, j, err;
1503 
1504 	if (local_vlen > targ_vlen)
1505 		return 0;
1506 
1507 	/* check that all local members have a match in the target */
1508 	for (i = 0; i < local_vlen; i++, local_m++) {
1509 		const struct btf_member *targ_m = btf_members(targ_t);
1510 		bool matched = false;
1511 
1512 		for (j = 0; j < targ_vlen; j++, targ_m++) {
1513 			if (!bpf_core_names_match(local_btf, local_m->name_off,
1514 						  targ_btf, targ_m->name_off))
1515 				continue;
1516 
1517 			err = __bpf_core_types_match(local_btf, local_m->type, targ_btf,
1518 						     targ_m->type, behind_ptr, level - 1);
1519 			if (err < 0)
1520 				return err;
1521 			if (err > 0) {
1522 				matched = true;
1523 				break;
1524 			}
1525 		}
1526 
1527 		if (!matched)
1528 			return 0;
1529 	}
1530 	return 1;
1531 }
1532 
1533 /* Check that two types "match". This function assumes that root types were
1534  * already checked for name match.
1535  *
1536  * The matching relation is defined as follows:
1537  * - modifiers and typedefs are stripped (and, hence, effectively ignored)
1538  * - generally speaking types need to be of same kind (struct vs. struct, union
1539  *   vs. union, etc.)
1540  *   - exceptions are struct/union behind a pointer which could also match a
1541  *     forward declaration of a struct or union, respectively, and enum vs.
1542  *     enum64 (see below)
1543  * Then, depending on type:
1544  * - integers:
1545  *   - match if size and signedness match
1546  * - arrays & pointers:
1547  *   - target types are recursively matched
1548  * - structs & unions:
1549  *   - local members need to exist in target with the same name
1550  *   - for each member we recursively check match unless it is already behind a
1551  *     pointer, in which case we only check matching names and compatible kind
1552  * - enums:
1553  *   - local variants have to have a match in target by symbolic name (but not
1554  *     numeric value)
1555  *   - size has to match (but enum may match enum64 and vice versa)
1556  * - function pointers:
1557  *   - number and position of arguments in local type has to match target
1558  *   - for each argument and the return value we recursively check match
1559  */
__bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id,bool behind_ptr,int level)1560 int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf,
1561 			   __u32 targ_id, bool behind_ptr, int level)
1562 {
1563 	const struct btf_type *local_t, *targ_t;
1564 	int depth = 32; /* max recursion depth */
1565 	__u16 local_k, targ_k;
1566 
1567 	if (level <= 0)
1568 		return -EINVAL;
1569 
1570 recur:
1571 	depth--;
1572 	if (depth < 0)
1573 		return -EINVAL;
1574 
1575 	local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id);
1576 	targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
1577 	if (!local_t || !targ_t)
1578 		return -EINVAL;
1579 
1580 	/* While the name check happens after typedefs are skipped, root-level
1581 	 * typedefs would still be name-matched as that's the contract with
1582 	 * callers.
1583 	 */
1584 	if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off))
1585 		return 0;
1586 
1587 	local_k = btf_kind(local_t);
1588 	targ_k = btf_kind(targ_t);
1589 
1590 	switch (local_k) {
1591 	case BTF_KIND_UNKN:
1592 		return local_k == targ_k;
1593 	case BTF_KIND_FWD: {
1594 		bool local_f = BTF_INFO_KFLAG(local_t->info);
1595 
1596 		if (behind_ptr) {
1597 			if (local_k == targ_k)
1598 				return local_f == BTF_INFO_KFLAG(targ_t->info);
1599 
1600 			/* for forward declarations kflag dictates whether the
1601 			 * target is a struct (0) or union (1)
1602 			 */
1603 			return (targ_k == BTF_KIND_STRUCT && !local_f) ||
1604 			       (targ_k == BTF_KIND_UNION && local_f);
1605 		} else {
1606 			if (local_k != targ_k)
1607 				return 0;
1608 
1609 			/* match if the forward declaration is for the same kind */
1610 			return local_f == BTF_INFO_KFLAG(targ_t->info);
1611 		}
1612 	}
1613 	case BTF_KIND_ENUM:
1614 	case BTF_KIND_ENUM64:
1615 		if (!btf_is_any_enum(targ_t))
1616 			return 0;
1617 
1618 		return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t);
1619 	case BTF_KIND_STRUCT:
1620 	case BTF_KIND_UNION:
1621 		if (behind_ptr) {
1622 			bool targ_f = BTF_INFO_KFLAG(targ_t->info);
1623 
1624 			if (local_k == targ_k)
1625 				return 1;
1626 
1627 			if (targ_k != BTF_KIND_FWD)
1628 				return 0;
1629 
1630 			return (local_k == BTF_KIND_UNION) == targ_f;
1631 		} else {
1632 			if (local_k != targ_k)
1633 				return 0;
1634 
1635 			return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t,
1636 							 behind_ptr, level);
1637 		}
1638 	case BTF_KIND_INT: {
1639 		__u8 local_sgn;
1640 		__u8 targ_sgn;
1641 
1642 		if (local_k != targ_k)
1643 			return 0;
1644 
1645 		local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED;
1646 		targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED;
1647 
1648 		return local_t->size == targ_t->size && local_sgn == targ_sgn;
1649 	}
1650 	case BTF_KIND_PTR:
1651 		if (local_k != targ_k)
1652 			return 0;
1653 
1654 		behind_ptr = true;
1655 
1656 		local_id = local_t->type;
1657 		targ_id = targ_t->type;
1658 		goto recur;
1659 	case BTF_KIND_ARRAY: {
1660 		const struct btf_array *local_array = btf_array(local_t);
1661 		const struct btf_array *targ_array = btf_array(targ_t);
1662 
1663 		if (local_k != targ_k)
1664 			return 0;
1665 
1666 		if (local_array->nelems != targ_array->nelems)
1667 			return 0;
1668 
1669 		local_id = local_array->type;
1670 		targ_id = targ_array->type;
1671 		goto recur;
1672 	}
1673 	case BTF_KIND_FUNC_PROTO: {
1674 		struct btf_param *local_p = btf_params(local_t);
1675 		struct btf_param *targ_p = btf_params(targ_t);
1676 		__u16 local_vlen = btf_vlen(local_t);
1677 		__u16 targ_vlen = btf_vlen(targ_t);
1678 		int i, err;
1679 
1680 		if (local_k != targ_k)
1681 			return 0;
1682 
1683 		if (local_vlen != targ_vlen)
1684 			return 0;
1685 
1686 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
1687 			err = __bpf_core_types_match(local_btf, local_p->type, targ_btf,
1688 						     targ_p->type, behind_ptr, level - 1);
1689 			if (err <= 0)
1690 				return err;
1691 		}
1692 
1693 		/* tail recurse for return type check */
1694 		local_id = local_t->type;
1695 		targ_id = targ_t->type;
1696 		goto recur;
1697 	}
1698 	default:
1699 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
1700 			btf_kind_str(local_t), local_id, targ_id);
1701 		return 0;
1702 	}
1703 }
1704