1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/parser.h>
50 #include <linux/vmalloc.h>
51 #include <linux/lsm_hooks.h>
52 #include <net/netlabel.h>
53
54 #include "flask.h"
55 #include "avc.h"
56 #include "avc_ss.h"
57 #include "security.h"
58 #include "context.h"
59 #include "policydb.h"
60 #include "sidtab.h"
61 #include "services.h"
62 #include "conditional.h"
63 #include "mls.h"
64 #include "objsec.h"
65 #include "netlabel.h"
66 #include "xfrm.h"
67 #include "ebitmap.h"
68 #include "audit.h"
69 #include "policycap_names.h"
70 #include "ima.h"
71
72 struct selinux_policy_convert_data {
73 struct convert_context_args args;
74 struct sidtab_convert_params sidtab_params;
75 };
76
77 /* Forward declaration. */
78 static int context_struct_to_string(struct policydb *policydb,
79 struct context *context,
80 char **scontext,
81 u32 *scontext_len);
82
83 static int sidtab_entry_to_string(struct policydb *policydb,
84 struct sidtab *sidtab,
85 struct sidtab_entry *entry,
86 char **scontext,
87 u32 *scontext_len);
88
89 static void context_struct_compute_av(struct policydb *policydb,
90 struct context *scontext,
91 struct context *tcontext,
92 u16 tclass,
93 struct av_decision *avd,
94 struct extended_perms *xperms);
95
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)96 static int selinux_set_mapping(struct policydb *pol,
97 const struct security_class_mapping *map,
98 struct selinux_map *out_map)
99 {
100 u16 i, j;
101 bool print_unknown_handle = false;
102
103 /* Find number of classes in the input mapping */
104 if (!map)
105 return -EINVAL;
106 i = 0;
107 while (map[i].name)
108 i++;
109
110 /* Allocate space for the class records, plus one for class zero */
111 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
112 if (!out_map->mapping)
113 return -ENOMEM;
114
115 /* Store the raw class and permission values */
116 j = 0;
117 while (map[j].name) {
118 const struct security_class_mapping *p_in = map + (j++);
119 struct selinux_mapping *p_out = out_map->mapping + j;
120 u16 k;
121
122 /* An empty class string skips ahead */
123 if (!strcmp(p_in->name, "")) {
124 p_out->num_perms = 0;
125 continue;
126 }
127
128 p_out->value = string_to_security_class(pol, p_in->name);
129 if (!p_out->value) {
130 pr_info("SELinux: Class %s not defined in policy.\n",
131 p_in->name);
132 if (pol->reject_unknown)
133 goto err;
134 p_out->num_perms = 0;
135 print_unknown_handle = true;
136 continue;
137 }
138
139 k = 0;
140 while (p_in->perms[k]) {
141 /* An empty permission string skips ahead */
142 if (!*p_in->perms[k]) {
143 k++;
144 continue;
145 }
146 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
147 p_in->perms[k]);
148 if (!p_out->perms[k]) {
149 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
150 p_in->perms[k], p_in->name);
151 if (pol->reject_unknown)
152 goto err;
153 print_unknown_handle = true;
154 }
155
156 k++;
157 }
158 p_out->num_perms = k;
159 }
160
161 if (print_unknown_handle)
162 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
163 pol->allow_unknown ? "allowed" : "denied");
164
165 out_map->size = i;
166 return 0;
167 err:
168 kfree(out_map->mapping);
169 out_map->mapping = NULL;
170 return -EINVAL;
171 }
172
173 /*
174 * Get real, policy values from mapped values
175 */
176
unmap_class(struct selinux_map * map,u16 tclass)177 static u16 unmap_class(struct selinux_map *map, u16 tclass)
178 {
179 if (tclass < map->size)
180 return map->mapping[tclass].value;
181
182 return tclass;
183 }
184
185 /*
186 * Get kernel value for class from its policy value
187 */
map_class(struct selinux_map * map,u16 pol_value)188 static u16 map_class(struct selinux_map *map, u16 pol_value)
189 {
190 u16 i;
191
192 for (i = 1; i < map->size; i++) {
193 if (map->mapping[i].value == pol_value)
194 return i;
195 }
196
197 return SECCLASS_NULL;
198 }
199
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)200 static void map_decision(struct selinux_map *map,
201 u16 tclass, struct av_decision *avd,
202 int allow_unknown)
203 {
204 if (tclass < map->size) {
205 struct selinux_mapping *mapping = &map->mapping[tclass];
206 unsigned int i, n = mapping->num_perms;
207 u32 result;
208
209 for (i = 0, result = 0; i < n; i++) {
210 if (avd->allowed & mapping->perms[i])
211 result |= (u32)1<<i;
212 if (allow_unknown && !mapping->perms[i])
213 result |= (u32)1<<i;
214 }
215 avd->allowed = result;
216
217 for (i = 0, result = 0; i < n; i++)
218 if (avd->auditallow & mapping->perms[i])
219 result |= (u32)1<<i;
220 avd->auditallow = result;
221
222 for (i = 0, result = 0; i < n; i++) {
223 if (avd->auditdeny & mapping->perms[i])
224 result |= (u32)1<<i;
225 if (!allow_unknown && !mapping->perms[i])
226 result |= (u32)1<<i;
227 }
228 /*
229 * In case the kernel has a bug and requests a permission
230 * between num_perms and the maximum permission number, we
231 * should audit that denial
232 */
233 for (; i < (sizeof(u32)*8); i++)
234 result |= (u32)1<<i;
235 avd->auditdeny = result;
236 }
237 }
238
security_mls_enabled(void)239 int security_mls_enabled(void)
240 {
241 int mls_enabled;
242 struct selinux_policy *policy;
243
244 if (!selinux_initialized())
245 return 0;
246
247 rcu_read_lock();
248 policy = rcu_dereference(selinux_state.policy);
249 mls_enabled = policy->policydb.mls_enabled;
250 rcu_read_unlock();
251 return mls_enabled;
252 }
253
254 /*
255 * Return the boolean value of a constraint expression
256 * when it is applied to the specified source and target
257 * security contexts.
258 *
259 * xcontext is a special beast... It is used by the validatetrans rules
260 * only. For these rules, scontext is the context before the transition,
261 * tcontext is the context after the transition, and xcontext is the context
262 * of the process performing the transition. All other callers of
263 * constraint_expr_eval should pass in NULL for xcontext.
264 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)265 static int constraint_expr_eval(struct policydb *policydb,
266 struct context *scontext,
267 struct context *tcontext,
268 struct context *xcontext,
269 struct constraint_expr *cexpr)
270 {
271 u32 val1, val2;
272 struct context *c;
273 struct role_datum *r1, *r2;
274 struct mls_level *l1, *l2;
275 struct constraint_expr *e;
276 int s[CEXPR_MAXDEPTH];
277 int sp = -1;
278
279 for (e = cexpr; e; e = e->next) {
280 switch (e->expr_type) {
281 case CEXPR_NOT:
282 BUG_ON(sp < 0);
283 s[sp] = !s[sp];
284 break;
285 case CEXPR_AND:
286 BUG_ON(sp < 1);
287 sp--;
288 s[sp] &= s[sp + 1];
289 break;
290 case CEXPR_OR:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] |= s[sp + 1];
294 break;
295 case CEXPR_ATTR:
296 if (sp == (CEXPR_MAXDEPTH - 1))
297 return 0;
298 switch (e->attr) {
299 case CEXPR_USER:
300 val1 = scontext->user;
301 val2 = tcontext->user;
302 break;
303 case CEXPR_TYPE:
304 val1 = scontext->type;
305 val2 = tcontext->type;
306 break;
307 case CEXPR_ROLE:
308 val1 = scontext->role;
309 val2 = tcontext->role;
310 r1 = policydb->role_val_to_struct[val1 - 1];
311 r2 = policydb->role_val_to_struct[val2 - 1];
312 switch (e->op) {
313 case CEXPR_DOM:
314 s[++sp] = ebitmap_get_bit(&r1->dominates,
315 val2 - 1);
316 continue;
317 case CEXPR_DOMBY:
318 s[++sp] = ebitmap_get_bit(&r2->dominates,
319 val1 - 1);
320 continue;
321 case CEXPR_INCOMP:
322 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323 val2 - 1) &&
324 !ebitmap_get_bit(&r2->dominates,
325 val1 - 1));
326 continue;
327 default:
328 break;
329 }
330 break;
331 case CEXPR_L1L2:
332 l1 = &(scontext->range.level[0]);
333 l2 = &(tcontext->range.level[0]);
334 goto mls_ops;
335 case CEXPR_L1H2:
336 l1 = &(scontext->range.level[0]);
337 l2 = &(tcontext->range.level[1]);
338 goto mls_ops;
339 case CEXPR_H1L2:
340 l1 = &(scontext->range.level[1]);
341 l2 = &(tcontext->range.level[0]);
342 goto mls_ops;
343 case CEXPR_H1H2:
344 l1 = &(scontext->range.level[1]);
345 l2 = &(tcontext->range.level[1]);
346 goto mls_ops;
347 case CEXPR_L1H1:
348 l1 = &(scontext->range.level[0]);
349 l2 = &(scontext->range.level[1]);
350 goto mls_ops;
351 case CEXPR_L2H2:
352 l1 = &(tcontext->range.level[0]);
353 l2 = &(tcontext->range.level[1]);
354 goto mls_ops;
355 mls_ops:
356 switch (e->op) {
357 case CEXPR_EQ:
358 s[++sp] = mls_level_eq(l1, l2);
359 continue;
360 case CEXPR_NEQ:
361 s[++sp] = !mls_level_eq(l1, l2);
362 continue;
363 case CEXPR_DOM:
364 s[++sp] = mls_level_dom(l1, l2);
365 continue;
366 case CEXPR_DOMBY:
367 s[++sp] = mls_level_dom(l2, l1);
368 continue;
369 case CEXPR_INCOMP:
370 s[++sp] = mls_level_incomp(l2, l1);
371 continue;
372 default:
373 BUG();
374 return 0;
375 }
376 break;
377 default:
378 BUG();
379 return 0;
380 }
381
382 switch (e->op) {
383 case CEXPR_EQ:
384 s[++sp] = (val1 == val2);
385 break;
386 case CEXPR_NEQ:
387 s[++sp] = (val1 != val2);
388 break;
389 default:
390 BUG();
391 return 0;
392 }
393 break;
394 case CEXPR_NAMES:
395 if (sp == (CEXPR_MAXDEPTH-1))
396 return 0;
397 c = scontext;
398 if (e->attr & CEXPR_TARGET)
399 c = tcontext;
400 else if (e->attr & CEXPR_XTARGET) {
401 c = xcontext;
402 if (!c) {
403 BUG();
404 return 0;
405 }
406 }
407 if (e->attr & CEXPR_USER)
408 val1 = c->user;
409 else if (e->attr & CEXPR_ROLE)
410 val1 = c->role;
411 else if (e->attr & CEXPR_TYPE)
412 val1 = c->type;
413 else {
414 BUG();
415 return 0;
416 }
417
418 switch (e->op) {
419 case CEXPR_EQ:
420 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
421 break;
422 case CEXPR_NEQ:
423 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
424 break;
425 default:
426 BUG();
427 return 0;
428 }
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 }
435
436 BUG_ON(sp != 0);
437 return s[0];
438 }
439
440 /*
441 * security_dump_masked_av - dumps masked permissions during
442 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443 */
dump_masked_av_helper(void * k,void * d,void * args)444 static int dump_masked_av_helper(void *k, void *d, void *args)
445 {
446 struct perm_datum *pdatum = d;
447 char **permission_names = args;
448
449 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450
451 permission_names[pdatum->value - 1] = (char *)k;
452
453 return 0;
454 }
455
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)456 static void security_dump_masked_av(struct policydb *policydb,
457 struct context *scontext,
458 struct context *tcontext,
459 u16 tclass,
460 u32 permissions,
461 const char *reason)
462 {
463 struct common_datum *common_dat;
464 struct class_datum *tclass_dat;
465 struct audit_buffer *ab;
466 char *tclass_name;
467 char *scontext_name = NULL;
468 char *tcontext_name = NULL;
469 char *permission_names[32];
470 int index;
471 u32 length;
472 bool need_comma = false;
473
474 if (!permissions)
475 return;
476
477 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
478 tclass_dat = policydb->class_val_to_struct[tclass - 1];
479 common_dat = tclass_dat->comdatum;
480
481 /* init permission_names */
482 if (common_dat &&
483 hashtab_map(&common_dat->permissions.table,
484 dump_masked_av_helper, permission_names) < 0)
485 goto out;
486
487 if (hashtab_map(&tclass_dat->permissions.table,
488 dump_masked_av_helper, permission_names) < 0)
489 goto out;
490
491 /* get scontext/tcontext in text form */
492 if (context_struct_to_string(policydb, scontext,
493 &scontext_name, &length) < 0)
494 goto out;
495
496 if (context_struct_to_string(policydb, tcontext,
497 &tcontext_name, &length) < 0)
498 goto out;
499
500 /* audit a message */
501 ab = audit_log_start(audit_context(),
502 GFP_ATOMIC, AUDIT_SELINUX_ERR);
503 if (!ab)
504 goto out;
505
506 audit_log_format(ab, "op=security_compute_av reason=%s "
507 "scontext=%s tcontext=%s tclass=%s perms=",
508 reason, scontext_name, tcontext_name, tclass_name);
509
510 for (index = 0; index < 32; index++) {
511 u32 mask = (1 << index);
512
513 if ((mask & permissions) == 0)
514 continue;
515
516 audit_log_format(ab, "%s%s",
517 need_comma ? "," : "",
518 permission_names[index]
519 ? permission_names[index] : "????");
520 need_comma = true;
521 }
522 audit_log_end(ab);
523 out:
524 /* release scontext/tcontext */
525 kfree(tcontext_name);
526 kfree(scontext_name);
527 }
528
529 /*
530 * security_boundary_permission - drops violated permissions
531 * on boundary constraint.
532 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)533 static void type_attribute_bounds_av(struct policydb *policydb,
534 struct context *scontext,
535 struct context *tcontext,
536 u16 tclass,
537 struct av_decision *avd)
538 {
539 struct context lo_scontext;
540 struct context lo_tcontext, *tcontextp = tcontext;
541 struct av_decision lo_avd;
542 struct type_datum *source;
543 struct type_datum *target;
544 u32 masked = 0;
545
546 source = policydb->type_val_to_struct[scontext->type - 1];
547 BUG_ON(!source);
548
549 if (!source->bounds)
550 return;
551
552 target = policydb->type_val_to_struct[tcontext->type - 1];
553 BUG_ON(!target);
554
555 memset(&lo_avd, 0, sizeof(lo_avd));
556
557 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
558 lo_scontext.type = source->bounds;
559
560 if (target->bounds) {
561 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
562 lo_tcontext.type = target->bounds;
563 tcontextp = &lo_tcontext;
564 }
565
566 context_struct_compute_av(policydb, &lo_scontext,
567 tcontextp,
568 tclass,
569 &lo_avd,
570 NULL);
571
572 masked = ~lo_avd.allowed & avd->allowed;
573
574 if (likely(!masked))
575 return; /* no masked permission */
576
577 /* mask violated permissions */
578 avd->allowed &= ~masked;
579
580 /* audit masked permissions */
581 security_dump_masked_av(policydb, scontext, tcontext,
582 tclass, masked, "bounds");
583 }
584
585 /*
586 * Flag which drivers have permissions and which base permissions are covered.
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 switch (node->datum.u.xperms->specified) {
595 case AVTAB_XPERMS_IOCTLDRIVER:
596 xperms->base_perms |= AVC_EXT_IOCTL;
597 /* if one or more driver has all permissions allowed */
598 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
599 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
600 break;
601 case AVTAB_XPERMS_IOCTLFUNCTION:
602 xperms->base_perms |= AVC_EXT_IOCTL;
603 /* if allowing permissions within a driver */
604 security_xperm_set(xperms->drivers.p,
605 node->datum.u.xperms->driver);
606 break;
607 case AVTAB_XPERMS_NLMSG:
608 xperms->base_perms |= AVC_EXT_NLMSG;
609 /* if allowing permissions within a driver */
610 security_xperm_set(xperms->drivers.p,
611 node->datum.u.xperms->driver);
612 break;
613 }
614
615 xperms->len = 1;
616 }
617
618 /*
619 * Compute access vectors and extended permissions based on a context
620 * structure pair for the permissions in a particular class.
621 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)622 static void context_struct_compute_av(struct policydb *policydb,
623 struct context *scontext,
624 struct context *tcontext,
625 u16 tclass,
626 struct av_decision *avd,
627 struct extended_perms *xperms)
628 {
629 struct constraint_node *constraint;
630 struct role_allow *ra;
631 struct avtab_key avkey;
632 struct avtab_node *node;
633 struct class_datum *tclass_datum;
634 struct ebitmap *sattr, *tattr;
635 struct ebitmap_node *snode, *tnode;
636 unsigned int i, j;
637
638 avd->allowed = 0;
639 avd->auditallow = 0;
640 avd->auditdeny = 0xffffffff;
641 if (xperms) {
642 memset(xperms, 0, sizeof(*xperms));
643 }
644
645 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 pr_warn_ratelimited("SELinux: Invalid class %u\n", tclass);
647 return;
648 }
649
650 tclass_datum = policydb->class_val_to_struct[tclass - 1];
651
652 /*
653 * If a specific type enforcement rule was defined for
654 * this permission check, then use it.
655 */
656 avkey.target_class = tclass;
657 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
658 sattr = &policydb->type_attr_map_array[scontext->type - 1];
659 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
660 ebitmap_for_each_positive_bit(sattr, snode, i) {
661 ebitmap_for_each_positive_bit(tattr, tnode, j) {
662 avkey.source_type = i + 1;
663 avkey.target_type = j + 1;
664 for (node = avtab_search_node(&policydb->te_avtab,
665 &avkey);
666 node;
667 node = avtab_search_node_next(node, avkey.specified)) {
668 if (node->key.specified == AVTAB_ALLOWED)
669 avd->allowed |= node->datum.u.data;
670 else if (node->key.specified == AVTAB_AUDITALLOW)
671 avd->auditallow |= node->datum.u.data;
672 else if (node->key.specified == AVTAB_AUDITDENY)
673 avd->auditdeny &= node->datum.u.data;
674 else if (xperms && (node->key.specified & AVTAB_XPERMS))
675 services_compute_xperms_drivers(xperms, node);
676 }
677
678 /* Check conditional av table for additional permissions */
679 cond_compute_av(&policydb->te_cond_avtab, &avkey,
680 avd, xperms);
681
682 }
683 }
684
685 /*
686 * Remove any permissions prohibited by a constraint (this includes
687 * the MLS policy).
688 */
689 constraint = tclass_datum->constraints;
690 while (constraint) {
691 if ((constraint->permissions & (avd->allowed)) &&
692 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
693 constraint->expr)) {
694 avd->allowed &= ~(constraint->permissions);
695 }
696 constraint = constraint->next;
697 }
698
699 /*
700 * If checking process transition permission and the
701 * role is changing, then check the (current_role, new_role)
702 * pair.
703 */
704 if (tclass == policydb->process_class &&
705 (avd->allowed & policydb->process_trans_perms) &&
706 scontext->role != tcontext->role) {
707 for (ra = policydb->role_allow; ra; ra = ra->next) {
708 if (scontext->role == ra->role &&
709 tcontext->role == ra->new_role)
710 break;
711 }
712 if (!ra)
713 avd->allowed &= ~policydb->process_trans_perms;
714 }
715
716 /*
717 * If the given source and target types have boundary
718 * constraint, lazy checks have to mask any violated
719 * permission and notice it to userspace via audit.
720 */
721 type_attribute_bounds_av(policydb, scontext, tcontext,
722 tclass, avd);
723 }
724
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)725 static int security_validtrans_handle_fail(struct selinux_policy *policy,
726 struct sidtab_entry *oentry,
727 struct sidtab_entry *nentry,
728 struct sidtab_entry *tentry,
729 u16 tclass)
730 {
731 struct policydb *p = &policy->policydb;
732 struct sidtab *sidtab = policy->sidtab;
733 char *o = NULL, *n = NULL, *t = NULL;
734 u32 olen, nlen, tlen;
735
736 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 goto out;
738 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 goto out;
740 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 goto out;
742 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 "op=security_validate_transition seresult=denied"
744 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 kfree(o);
748 kfree(n);
749 kfree(t);
750
751 if (!enforcing_enabled())
752 return 0;
753 return -EPERM;
754 }
755
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)756 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
757 u16 orig_tclass, bool user)
758 {
759 struct selinux_policy *policy;
760 struct policydb *policydb;
761 struct sidtab *sidtab;
762 struct sidtab_entry *oentry;
763 struct sidtab_entry *nentry;
764 struct sidtab_entry *tentry;
765 struct class_datum *tclass_datum;
766 struct constraint_node *constraint;
767 u16 tclass;
768 int rc = 0;
769
770
771 if (!selinux_initialized())
772 return 0;
773
774 rcu_read_lock();
775
776 policy = rcu_dereference(selinux_state.policy);
777 policydb = &policy->policydb;
778 sidtab = policy->sidtab;
779
780 if (!user)
781 tclass = unmap_class(&policy->map, orig_tclass);
782 else
783 tclass = orig_tclass;
784
785 if (!tclass || tclass > policydb->p_classes.nprim) {
786 rc = -EINVAL;
787 goto out;
788 }
789 tclass_datum = policydb->class_val_to_struct[tclass - 1];
790
791 oentry = sidtab_search_entry(sidtab, oldsid);
792 if (!oentry) {
793 pr_err("SELinux: %s: unrecognized SID %d\n",
794 __func__, oldsid);
795 rc = -EINVAL;
796 goto out;
797 }
798
799 nentry = sidtab_search_entry(sidtab, newsid);
800 if (!nentry) {
801 pr_err("SELinux: %s: unrecognized SID %d\n",
802 __func__, newsid);
803 rc = -EINVAL;
804 goto out;
805 }
806
807 tentry = sidtab_search_entry(sidtab, tasksid);
808 if (!tentry) {
809 pr_err("SELinux: %s: unrecognized SID %d\n",
810 __func__, tasksid);
811 rc = -EINVAL;
812 goto out;
813 }
814
815 constraint = tclass_datum->validatetrans;
816 while (constraint) {
817 if (!constraint_expr_eval(policydb, &oentry->context,
818 &nentry->context, &tentry->context,
819 constraint->expr)) {
820 if (user)
821 rc = -EPERM;
822 else
823 rc = security_validtrans_handle_fail(policy,
824 oentry,
825 nentry,
826 tentry,
827 tclass);
828 goto out;
829 }
830 constraint = constraint->next;
831 }
832
833 out:
834 rcu_read_unlock();
835 return rc;
836 }
837
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)838 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
839 u16 tclass)
840 {
841 return security_compute_validatetrans(oldsid, newsid, tasksid,
842 tclass, true);
843 }
844
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)845 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
846 u16 orig_tclass)
847 {
848 return security_compute_validatetrans(oldsid, newsid, tasksid,
849 orig_tclass, false);
850 }
851
852 /*
853 * security_bounded_transition - check whether the given
854 * transition is directed to bounded, or not.
855 * It returns 0, if @newsid is bounded by @oldsid.
856 * Otherwise, it returns error code.
857 *
858 * @oldsid : current security identifier
859 * @newsid : destinated security identifier
860 */
security_bounded_transition(u32 old_sid,u32 new_sid)861 int security_bounded_transition(u32 old_sid, u32 new_sid)
862 {
863 struct selinux_policy *policy;
864 struct policydb *policydb;
865 struct sidtab *sidtab;
866 struct sidtab_entry *old_entry, *new_entry;
867 struct type_datum *type;
868 u32 index;
869 int rc;
870
871 if (!selinux_initialized())
872 return 0;
873
874 rcu_read_lock();
875 policy = rcu_dereference(selinux_state.policy);
876 policydb = &policy->policydb;
877 sidtab = policy->sidtab;
878
879 rc = -EINVAL;
880 old_entry = sidtab_search_entry(sidtab, old_sid);
881 if (!old_entry) {
882 pr_err("SELinux: %s: unrecognized SID %u\n",
883 __func__, old_sid);
884 goto out;
885 }
886
887 rc = -EINVAL;
888 new_entry = sidtab_search_entry(sidtab, new_sid);
889 if (!new_entry) {
890 pr_err("SELinux: %s: unrecognized SID %u\n",
891 __func__, new_sid);
892 goto out;
893 }
894
895 rc = 0;
896 /* type/domain unchanged */
897 if (old_entry->context.type == new_entry->context.type)
898 goto out;
899
900 index = new_entry->context.type;
901 while (true) {
902 type = policydb->type_val_to_struct[index - 1];
903 BUG_ON(!type);
904
905 /* not bounded anymore */
906 rc = -EPERM;
907 if (!type->bounds)
908 break;
909
910 /* @newsid is bounded by @oldsid */
911 rc = 0;
912 if (type->bounds == old_entry->context.type)
913 break;
914
915 index = type->bounds;
916 }
917
918 if (rc) {
919 char *old_name = NULL;
920 char *new_name = NULL;
921 u32 length;
922
923 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
924 &old_name, &length) &&
925 !sidtab_entry_to_string(policydb, sidtab, new_entry,
926 &new_name, &length)) {
927 audit_log(audit_context(),
928 GFP_ATOMIC, AUDIT_SELINUX_ERR,
929 "op=security_bounded_transition "
930 "seresult=denied "
931 "oldcontext=%s newcontext=%s",
932 old_name, new_name);
933 }
934 kfree(new_name);
935 kfree(old_name);
936 }
937 out:
938 rcu_read_unlock();
939
940 return rc;
941 }
942
avd_init(struct selinux_policy * policy,struct av_decision * avd)943 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
944 {
945 avd->allowed = 0;
946 avd->auditallow = 0;
947 avd->auditdeny = 0xffffffff;
948 if (policy)
949 avd->seqno = policy->latest_granting;
950 else
951 avd->seqno = 0;
952 avd->flags = 0;
953 }
954
update_xperms_extended_data(u8 specified,const struct extended_perms_data * from,struct extended_perms_data * xp_data)955 static void update_xperms_extended_data(u8 specified,
956 const struct extended_perms_data *from,
957 struct extended_perms_data *xp_data)
958 {
959 unsigned int i;
960
961 switch (specified) {
962 case AVTAB_XPERMS_IOCTLDRIVER:
963 memset(xp_data->p, 0xff, sizeof(xp_data->p));
964 break;
965 case AVTAB_XPERMS_IOCTLFUNCTION:
966 case AVTAB_XPERMS_NLMSG:
967 for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
968 xp_data->p[i] |= from->p[i];
969 break;
970 }
971
972 }
973
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)974 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
975 struct avtab_node *node)
976 {
977 u16 specified;
978
979 switch (node->datum.u.xperms->specified) {
980 case AVTAB_XPERMS_IOCTLFUNCTION:
981 if (xpermd->base_perm != AVC_EXT_IOCTL ||
982 xpermd->driver != node->datum.u.xperms->driver)
983 return;
984 break;
985 case AVTAB_XPERMS_IOCTLDRIVER:
986 if (xpermd->base_perm != AVC_EXT_IOCTL ||
987 !security_xperm_test(node->datum.u.xperms->perms.p,
988 xpermd->driver))
989 return;
990 break;
991 case AVTAB_XPERMS_NLMSG:
992 if (xpermd->base_perm != AVC_EXT_NLMSG ||
993 xpermd->driver != node->datum.u.xperms->driver)
994 return;
995 break;
996 default:
997 pr_warn_once(
998 "SELinux: unknown extended permission (%u) will be ignored\n",
999 node->datum.u.xperms->specified);
1000 return;
1001 }
1002
1003 specified = node->key.specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD);
1004
1005 if (specified == AVTAB_XPERMS_ALLOWED) {
1006 xpermd->used |= XPERMS_ALLOWED;
1007 update_xperms_extended_data(node->datum.u.xperms->specified,
1008 &node->datum.u.xperms->perms,
1009 xpermd->allowed);
1010 } else if (specified == AVTAB_XPERMS_AUDITALLOW) {
1011 xpermd->used |= XPERMS_AUDITALLOW;
1012 update_xperms_extended_data(node->datum.u.xperms->specified,
1013 &node->datum.u.xperms->perms,
1014 xpermd->auditallow);
1015 } else if (specified == AVTAB_XPERMS_DONTAUDIT) {
1016 xpermd->used |= XPERMS_DONTAUDIT;
1017 update_xperms_extended_data(node->datum.u.xperms->specified,
1018 &node->datum.u.xperms->perms,
1019 xpermd->dontaudit);
1020 } else {
1021 pr_warn_once("SELinux: unknown specified key (%u)\n",
1022 node->key.specified);
1023 }
1024 }
1025
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,u8 base_perm,struct extended_perms_decision * xpermd)1026 void security_compute_xperms_decision(u32 ssid,
1027 u32 tsid,
1028 u16 orig_tclass,
1029 u8 driver,
1030 u8 base_perm,
1031 struct extended_perms_decision *xpermd)
1032 {
1033 struct selinux_policy *policy;
1034 struct policydb *policydb;
1035 struct sidtab *sidtab;
1036 u16 tclass;
1037 struct context *scontext, *tcontext;
1038 struct avtab_key avkey;
1039 struct avtab_node *node;
1040 struct ebitmap *sattr, *tattr;
1041 struct ebitmap_node *snode, *tnode;
1042 unsigned int i, j;
1043
1044 xpermd->base_perm = base_perm;
1045 xpermd->driver = driver;
1046 xpermd->used = 0;
1047 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1048 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1049 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1050
1051 rcu_read_lock();
1052 if (!selinux_initialized())
1053 goto allow;
1054
1055 policy = rcu_dereference(selinux_state.policy);
1056 policydb = &policy->policydb;
1057 sidtab = policy->sidtab;
1058
1059 scontext = sidtab_search(sidtab, ssid);
1060 if (!scontext) {
1061 pr_err("SELinux: %s: unrecognized SID %d\n",
1062 __func__, ssid);
1063 goto out;
1064 }
1065
1066 tcontext = sidtab_search(sidtab, tsid);
1067 if (!tcontext) {
1068 pr_err("SELinux: %s: unrecognized SID %d\n",
1069 __func__, tsid);
1070 goto out;
1071 }
1072
1073 tclass = unmap_class(&policy->map, orig_tclass);
1074 if (unlikely(orig_tclass && !tclass)) {
1075 if (policydb->allow_unknown)
1076 goto allow;
1077 goto out;
1078 }
1079
1080
1081 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1082 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1083 goto out;
1084 }
1085
1086 avkey.target_class = tclass;
1087 avkey.specified = AVTAB_XPERMS;
1088 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1089 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1090 ebitmap_for_each_positive_bit(sattr, snode, i) {
1091 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1092 avkey.source_type = i + 1;
1093 avkey.target_type = j + 1;
1094 for (node = avtab_search_node(&policydb->te_avtab,
1095 &avkey);
1096 node;
1097 node = avtab_search_node_next(node, avkey.specified))
1098 services_compute_xperms_decision(xpermd, node);
1099
1100 cond_compute_xperms(&policydb->te_cond_avtab,
1101 &avkey, xpermd);
1102 }
1103 }
1104 out:
1105 rcu_read_unlock();
1106 return;
1107 allow:
1108 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1109 goto out;
1110 }
1111
1112 /**
1113 * security_compute_av - Compute access vector decisions.
1114 * @ssid: source security identifier
1115 * @tsid: target security identifier
1116 * @orig_tclass: target security class
1117 * @avd: access vector decisions
1118 * @xperms: extended permissions
1119 *
1120 * Compute a set of access vector decisions based on the
1121 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1122 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1123 void security_compute_av(u32 ssid,
1124 u32 tsid,
1125 u16 orig_tclass,
1126 struct av_decision *avd,
1127 struct extended_perms *xperms)
1128 {
1129 struct selinux_policy *policy;
1130 struct policydb *policydb;
1131 struct sidtab *sidtab;
1132 u16 tclass;
1133 struct context *scontext = NULL, *tcontext = NULL;
1134
1135 rcu_read_lock();
1136 policy = rcu_dereference(selinux_state.policy);
1137 avd_init(policy, avd);
1138 xperms->len = 0;
1139 if (!selinux_initialized())
1140 goto allow;
1141
1142 policydb = &policy->policydb;
1143 sidtab = policy->sidtab;
1144
1145 scontext = sidtab_search(sidtab, ssid);
1146 if (!scontext) {
1147 pr_err("SELinux: %s: unrecognized SID %d\n",
1148 __func__, ssid);
1149 goto out;
1150 }
1151
1152 /* permissive domain? */
1153 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1154 avd->flags |= AVD_FLAGS_PERMISSIVE;
1155
1156 tcontext = sidtab_search(sidtab, tsid);
1157 if (!tcontext) {
1158 pr_err("SELinux: %s: unrecognized SID %d\n",
1159 __func__, tsid);
1160 goto out;
1161 }
1162
1163 tclass = unmap_class(&policy->map, orig_tclass);
1164 if (unlikely(orig_tclass && !tclass)) {
1165 if (policydb->allow_unknown)
1166 goto allow;
1167 goto out;
1168 }
1169 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1170 xperms);
1171 map_decision(&policy->map, orig_tclass, avd,
1172 policydb->allow_unknown);
1173 out:
1174 rcu_read_unlock();
1175 return;
1176 allow:
1177 avd->allowed = 0xffffffff;
1178 goto out;
1179 }
1180
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1181 void security_compute_av_user(u32 ssid,
1182 u32 tsid,
1183 u16 tclass,
1184 struct av_decision *avd)
1185 {
1186 struct selinux_policy *policy;
1187 struct policydb *policydb;
1188 struct sidtab *sidtab;
1189 struct context *scontext = NULL, *tcontext = NULL;
1190
1191 rcu_read_lock();
1192 policy = rcu_dereference(selinux_state.policy);
1193 avd_init(policy, avd);
1194 if (!selinux_initialized())
1195 goto allow;
1196
1197 policydb = &policy->policydb;
1198 sidtab = policy->sidtab;
1199
1200 scontext = sidtab_search(sidtab, ssid);
1201 if (!scontext) {
1202 pr_err("SELinux: %s: unrecognized SID %d\n",
1203 __func__, ssid);
1204 goto out;
1205 }
1206
1207 /* permissive domain? */
1208 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1209 avd->flags |= AVD_FLAGS_PERMISSIVE;
1210
1211 tcontext = sidtab_search(sidtab, tsid);
1212 if (!tcontext) {
1213 pr_err("SELinux: %s: unrecognized SID %d\n",
1214 __func__, tsid);
1215 goto out;
1216 }
1217
1218 if (unlikely(!tclass)) {
1219 if (policydb->allow_unknown)
1220 goto allow;
1221 goto out;
1222 }
1223
1224 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1225 NULL);
1226 out:
1227 rcu_read_unlock();
1228 return;
1229 allow:
1230 avd->allowed = 0xffffffff;
1231 goto out;
1232 }
1233
1234 /*
1235 * Write the security context string representation of
1236 * the context structure `context' into a dynamically
1237 * allocated string of the correct size. Set `*scontext'
1238 * to point to this string and set `*scontext_len' to
1239 * the length of the string.
1240 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1241 static int context_struct_to_string(struct policydb *p,
1242 struct context *context,
1243 char **scontext, u32 *scontext_len)
1244 {
1245 char *scontextp;
1246
1247 if (scontext)
1248 *scontext = NULL;
1249 *scontext_len = 0;
1250
1251 if (context->len) {
1252 *scontext_len = context->len;
1253 if (scontext) {
1254 *scontext = kstrdup(context->str, GFP_ATOMIC);
1255 if (!(*scontext))
1256 return -ENOMEM;
1257 }
1258 return 0;
1259 }
1260
1261 /* Compute the size of the context. */
1262 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1263 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1264 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1265 *scontext_len += mls_compute_context_len(p, context);
1266
1267 if (!scontext)
1268 return 0;
1269
1270 /* Allocate space for the context; caller must free this space. */
1271 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1272 if (!scontextp)
1273 return -ENOMEM;
1274 *scontext = scontextp;
1275
1276 /*
1277 * Copy the user name, role name and type name into the context.
1278 */
1279 scontextp += sprintf(scontextp, "%s:%s:%s",
1280 sym_name(p, SYM_USERS, context->user - 1),
1281 sym_name(p, SYM_ROLES, context->role - 1),
1282 sym_name(p, SYM_TYPES, context->type - 1));
1283
1284 mls_sid_to_context(p, context, &scontextp);
1285
1286 *scontextp = 0;
1287
1288 return 0;
1289 }
1290
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1291 static int sidtab_entry_to_string(struct policydb *p,
1292 struct sidtab *sidtab,
1293 struct sidtab_entry *entry,
1294 char **scontext, u32 *scontext_len)
1295 {
1296 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1297
1298 if (rc != -ENOENT)
1299 return rc;
1300
1301 rc = context_struct_to_string(p, &entry->context, scontext,
1302 scontext_len);
1303 if (!rc && scontext)
1304 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1305 return rc;
1306 }
1307
1308 #include "initial_sid_to_string.h"
1309
security_sidtab_hash_stats(char * page)1310 int security_sidtab_hash_stats(char *page)
1311 {
1312 struct selinux_policy *policy;
1313 int rc;
1314
1315 if (!selinux_initialized()) {
1316 pr_err("SELinux: %s: called before initial load_policy\n",
1317 __func__);
1318 return -EINVAL;
1319 }
1320
1321 rcu_read_lock();
1322 policy = rcu_dereference(selinux_state.policy);
1323 rc = sidtab_hash_stats(policy->sidtab, page);
1324 rcu_read_unlock();
1325
1326 return rc;
1327 }
1328
security_get_initial_sid_context(u32 sid)1329 const char *security_get_initial_sid_context(u32 sid)
1330 {
1331 if (unlikely(sid > SECINITSID_NUM))
1332 return NULL;
1333 return initial_sid_to_string[sid];
1334 }
1335
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1336 static int security_sid_to_context_core(u32 sid, char **scontext,
1337 u32 *scontext_len, int force,
1338 int only_invalid)
1339 {
1340 struct selinux_policy *policy;
1341 struct policydb *policydb;
1342 struct sidtab *sidtab;
1343 struct sidtab_entry *entry;
1344 int rc = 0;
1345
1346 if (scontext)
1347 *scontext = NULL;
1348 *scontext_len = 0;
1349
1350 if (!selinux_initialized()) {
1351 if (sid <= SECINITSID_NUM) {
1352 char *scontextp;
1353 const char *s;
1354
1355 /*
1356 * Before the policy is loaded, translate
1357 * SECINITSID_INIT to "kernel", because systemd and
1358 * libselinux < 2.6 take a getcon_raw() result that is
1359 * both non-null and not "kernel" to mean that a policy
1360 * is already loaded.
1361 */
1362 if (sid == SECINITSID_INIT)
1363 sid = SECINITSID_KERNEL;
1364
1365 s = initial_sid_to_string[sid];
1366 if (!s)
1367 return -EINVAL;
1368 *scontext_len = strlen(s) + 1;
1369 if (!scontext)
1370 return 0;
1371 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1372 if (!scontextp)
1373 return -ENOMEM;
1374 *scontext = scontextp;
1375 return 0;
1376 }
1377 pr_err("SELinux: %s: called before initial "
1378 "load_policy on unknown SID %d\n", __func__, sid);
1379 return -EINVAL;
1380 }
1381 rcu_read_lock();
1382 policy = rcu_dereference(selinux_state.policy);
1383 policydb = &policy->policydb;
1384 sidtab = policy->sidtab;
1385
1386 if (force)
1387 entry = sidtab_search_entry_force(sidtab, sid);
1388 else
1389 entry = sidtab_search_entry(sidtab, sid);
1390 if (!entry) {
1391 pr_err("SELinux: %s: unrecognized SID %d\n",
1392 __func__, sid);
1393 rc = -EINVAL;
1394 goto out_unlock;
1395 }
1396 if (only_invalid && !entry->context.len)
1397 goto out_unlock;
1398
1399 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1400 scontext_len);
1401
1402 out_unlock:
1403 rcu_read_unlock();
1404 return rc;
1405
1406 }
1407
1408 /**
1409 * security_sid_to_context - Obtain a context for a given SID.
1410 * @sid: security identifier, SID
1411 * @scontext: security context
1412 * @scontext_len: length in bytes
1413 *
1414 * Write the string representation of the context associated with @sid
1415 * into a dynamically allocated string of the correct size. Set @scontext
1416 * to point to this string and set @scontext_len to the length of the string.
1417 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1418 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1419 {
1420 return security_sid_to_context_core(sid, scontext,
1421 scontext_len, 0, 0);
1422 }
1423
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1424 int security_sid_to_context_force(u32 sid,
1425 char **scontext, u32 *scontext_len)
1426 {
1427 return security_sid_to_context_core(sid, scontext,
1428 scontext_len, 1, 0);
1429 }
1430
1431 /**
1432 * security_sid_to_context_inval - Obtain a context for a given SID if it
1433 * is invalid.
1434 * @sid: security identifier, SID
1435 * @scontext: security context
1436 * @scontext_len: length in bytes
1437 *
1438 * Write the string representation of the context associated with @sid
1439 * into a dynamically allocated string of the correct size, but only if the
1440 * context is invalid in the current policy. Set @scontext to point to
1441 * this string (or NULL if the context is valid) and set @scontext_len to
1442 * the length of the string (or 0 if the context is valid).
1443 */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1444 int security_sid_to_context_inval(u32 sid,
1445 char **scontext, u32 *scontext_len)
1446 {
1447 return security_sid_to_context_core(sid, scontext,
1448 scontext_len, 1, 1);
1449 }
1450
1451 /*
1452 * Caveat: Mutates scontext.
1453 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1454 static int string_to_context_struct(struct policydb *pol,
1455 struct sidtab *sidtabp,
1456 char *scontext,
1457 struct context *ctx,
1458 u32 def_sid)
1459 {
1460 struct role_datum *role;
1461 struct type_datum *typdatum;
1462 struct user_datum *usrdatum;
1463 char *scontextp, *p, oldc;
1464 int rc = 0;
1465
1466 context_init(ctx);
1467
1468 /* Parse the security context. */
1469
1470 rc = -EINVAL;
1471 scontextp = scontext;
1472
1473 /* Extract the user. */
1474 p = scontextp;
1475 while (*p && *p != ':')
1476 p++;
1477
1478 if (*p == 0)
1479 goto out;
1480
1481 *p++ = 0;
1482
1483 usrdatum = symtab_search(&pol->p_users, scontextp);
1484 if (!usrdatum)
1485 goto out;
1486
1487 ctx->user = usrdatum->value;
1488
1489 /* Extract role. */
1490 scontextp = p;
1491 while (*p && *p != ':')
1492 p++;
1493
1494 if (*p == 0)
1495 goto out;
1496
1497 *p++ = 0;
1498
1499 role = symtab_search(&pol->p_roles, scontextp);
1500 if (!role)
1501 goto out;
1502 ctx->role = role->value;
1503
1504 /* Extract type. */
1505 scontextp = p;
1506 while (*p && *p != ':')
1507 p++;
1508 oldc = *p;
1509 *p++ = 0;
1510
1511 typdatum = symtab_search(&pol->p_types, scontextp);
1512 if (!typdatum || typdatum->attribute)
1513 goto out;
1514
1515 ctx->type = typdatum->value;
1516
1517 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1518 if (rc)
1519 goto out;
1520
1521 /* Check the validity of the new context. */
1522 rc = -EINVAL;
1523 if (!policydb_context_isvalid(pol, ctx))
1524 goto out;
1525 rc = 0;
1526 out:
1527 if (rc)
1528 context_destroy(ctx);
1529 return rc;
1530 }
1531
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1532 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1533 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1534 int force)
1535 {
1536 struct selinux_policy *policy;
1537 struct policydb *policydb;
1538 struct sidtab *sidtab;
1539 char *scontext2, *str = NULL;
1540 struct context context;
1541 int rc = 0;
1542
1543 /* An empty security context is never valid. */
1544 if (!scontext_len)
1545 return -EINVAL;
1546
1547 /* Copy the string to allow changes and ensure a NUL terminator */
1548 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1549 if (!scontext2)
1550 return -ENOMEM;
1551
1552 if (!selinux_initialized()) {
1553 u32 i;
1554
1555 for (i = 1; i < SECINITSID_NUM; i++) {
1556 const char *s = initial_sid_to_string[i];
1557
1558 if (s && !strcmp(s, scontext2)) {
1559 *sid = i;
1560 goto out;
1561 }
1562 }
1563 *sid = SECINITSID_KERNEL;
1564 goto out;
1565 }
1566 *sid = SECSID_NULL;
1567
1568 if (force) {
1569 /* Save another copy for storing in uninterpreted form */
1570 rc = -ENOMEM;
1571 str = kstrdup(scontext2, gfp_flags);
1572 if (!str)
1573 goto out;
1574 }
1575 retry:
1576 rcu_read_lock();
1577 policy = rcu_dereference(selinux_state.policy);
1578 policydb = &policy->policydb;
1579 sidtab = policy->sidtab;
1580 rc = string_to_context_struct(policydb, sidtab, scontext2,
1581 &context, def_sid);
1582 if (rc == -EINVAL && force) {
1583 context.str = str;
1584 context.len = strlen(str) + 1;
1585 str = NULL;
1586 } else if (rc)
1587 goto out_unlock;
1588 rc = sidtab_context_to_sid(sidtab, &context, sid);
1589 if (rc == -ESTALE) {
1590 rcu_read_unlock();
1591 if (context.str) {
1592 str = context.str;
1593 context.str = NULL;
1594 }
1595 context_destroy(&context);
1596 goto retry;
1597 }
1598 context_destroy(&context);
1599 out_unlock:
1600 rcu_read_unlock();
1601 out:
1602 kfree(scontext2);
1603 kfree(str);
1604 return rc;
1605 }
1606
1607 /**
1608 * security_context_to_sid - Obtain a SID for a given security context.
1609 * @scontext: security context
1610 * @scontext_len: length in bytes
1611 * @sid: security identifier, SID
1612 * @gfp: context for the allocation
1613 *
1614 * Obtains a SID associated with the security context that
1615 * has the string representation specified by @scontext.
1616 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1617 * memory is available, or 0 on success.
1618 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1619 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1620 gfp_t gfp)
1621 {
1622 return security_context_to_sid_core(scontext, scontext_len,
1623 sid, SECSID_NULL, gfp, 0);
1624 }
1625
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1626 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1627 {
1628 return security_context_to_sid(scontext, strlen(scontext),
1629 sid, gfp);
1630 }
1631
1632 /**
1633 * security_context_to_sid_default - Obtain a SID for a given security context,
1634 * falling back to specified default if needed.
1635 *
1636 * @scontext: security context
1637 * @scontext_len: length in bytes
1638 * @sid: security identifier, SID
1639 * @def_sid: default SID to assign on error
1640 * @gfp_flags: the allocator get-free-page (GFP) flags
1641 *
1642 * Obtains a SID associated with the security context that
1643 * has the string representation specified by @scontext.
1644 * The default SID is passed to the MLS layer to be used to allow
1645 * kernel labeling of the MLS field if the MLS field is not present
1646 * (for upgrading to MLS without full relabel).
1647 * Implicitly forces adding of the context even if it cannot be mapped yet.
1648 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1649 * memory is available, or 0 on success.
1650 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1651 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1652 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1653 {
1654 return security_context_to_sid_core(scontext, scontext_len,
1655 sid, def_sid, gfp_flags, 1);
1656 }
1657
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1658 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1659 u32 *sid)
1660 {
1661 return security_context_to_sid_core(scontext, scontext_len,
1662 sid, SECSID_NULL, GFP_KERNEL, 1);
1663 }
1664
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1665 static int compute_sid_handle_invalid_context(
1666 struct selinux_policy *policy,
1667 struct sidtab_entry *sentry,
1668 struct sidtab_entry *tentry,
1669 u16 tclass,
1670 struct context *newcontext)
1671 {
1672 struct policydb *policydb = &policy->policydb;
1673 struct sidtab *sidtab = policy->sidtab;
1674 char *s = NULL, *t = NULL, *n = NULL;
1675 u32 slen, tlen, nlen;
1676 struct audit_buffer *ab;
1677
1678 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1679 goto out;
1680 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1681 goto out;
1682 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1683 goto out;
1684 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1685 if (!ab)
1686 goto out;
1687 audit_log_format(ab,
1688 "op=security_compute_sid invalid_context=");
1689 /* no need to record the NUL with untrusted strings */
1690 audit_log_n_untrustedstring(ab, n, nlen - 1);
1691 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1692 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1693 audit_log_end(ab);
1694 out:
1695 kfree(s);
1696 kfree(t);
1697 kfree(n);
1698 if (!enforcing_enabled())
1699 return 0;
1700 return -EACCES;
1701 }
1702
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1703 static void filename_compute_type(struct policydb *policydb,
1704 struct context *newcontext,
1705 u32 stype, u32 ttype, u16 tclass,
1706 const char *objname)
1707 {
1708 struct filename_trans_key ft;
1709 struct filename_trans_datum *datum;
1710
1711 /*
1712 * Most filename trans rules are going to live in specific directories
1713 * like /dev or /var/run. This bitmap will quickly skip rule searches
1714 * if the ttype does not contain any rules.
1715 */
1716 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1717 return;
1718
1719 ft.ttype = ttype;
1720 ft.tclass = tclass;
1721 ft.name = objname;
1722
1723 datum = policydb_filenametr_search(policydb, &ft);
1724 while (datum) {
1725 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1726 newcontext->type = datum->otype;
1727 return;
1728 }
1729 datum = datum->next;
1730 }
1731 }
1732
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1733 static int security_compute_sid(u32 ssid,
1734 u32 tsid,
1735 u16 orig_tclass,
1736 u16 specified,
1737 const char *objname,
1738 u32 *out_sid,
1739 bool kern)
1740 {
1741 struct selinux_policy *policy;
1742 struct policydb *policydb;
1743 struct sidtab *sidtab;
1744 struct class_datum *cladatum;
1745 struct context *scontext, *tcontext, newcontext;
1746 struct sidtab_entry *sentry, *tentry;
1747 struct avtab_key avkey;
1748 struct avtab_node *avnode, *node;
1749 u16 tclass;
1750 int rc = 0;
1751 bool sock;
1752
1753 if (!selinux_initialized()) {
1754 switch (orig_tclass) {
1755 case SECCLASS_PROCESS: /* kernel value */
1756 *out_sid = ssid;
1757 break;
1758 default:
1759 *out_sid = tsid;
1760 break;
1761 }
1762 goto out;
1763 }
1764
1765 retry:
1766 cladatum = NULL;
1767 context_init(&newcontext);
1768
1769 rcu_read_lock();
1770
1771 policy = rcu_dereference(selinux_state.policy);
1772
1773 if (kern) {
1774 tclass = unmap_class(&policy->map, orig_tclass);
1775 sock = security_is_socket_class(orig_tclass);
1776 } else {
1777 tclass = orig_tclass;
1778 sock = security_is_socket_class(map_class(&policy->map,
1779 tclass));
1780 }
1781
1782 policydb = &policy->policydb;
1783 sidtab = policy->sidtab;
1784
1785 sentry = sidtab_search_entry(sidtab, ssid);
1786 if (!sentry) {
1787 pr_err("SELinux: %s: unrecognized SID %d\n",
1788 __func__, ssid);
1789 rc = -EINVAL;
1790 goto out_unlock;
1791 }
1792 tentry = sidtab_search_entry(sidtab, tsid);
1793 if (!tentry) {
1794 pr_err("SELinux: %s: unrecognized SID %d\n",
1795 __func__, tsid);
1796 rc = -EINVAL;
1797 goto out_unlock;
1798 }
1799
1800 scontext = &sentry->context;
1801 tcontext = &tentry->context;
1802
1803 if (tclass && tclass <= policydb->p_classes.nprim)
1804 cladatum = policydb->class_val_to_struct[tclass - 1];
1805
1806 /* Set the user identity. */
1807 switch (specified) {
1808 case AVTAB_TRANSITION:
1809 case AVTAB_CHANGE:
1810 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1811 newcontext.user = tcontext->user;
1812 } else {
1813 /* notice this gets both DEFAULT_SOURCE and unset */
1814 /* Use the process user identity. */
1815 newcontext.user = scontext->user;
1816 }
1817 break;
1818 case AVTAB_MEMBER:
1819 /* Use the related object owner. */
1820 newcontext.user = tcontext->user;
1821 break;
1822 }
1823
1824 /* Set the role to default values. */
1825 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1826 newcontext.role = scontext->role;
1827 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1828 newcontext.role = tcontext->role;
1829 } else {
1830 if ((tclass == policydb->process_class) || sock)
1831 newcontext.role = scontext->role;
1832 else
1833 newcontext.role = OBJECT_R_VAL;
1834 }
1835
1836 /* Set the type.
1837 * Look for a type transition/member/change rule.
1838 */
1839 avkey.source_type = scontext->type;
1840 avkey.target_type = tcontext->type;
1841 avkey.target_class = tclass;
1842 avkey.specified = specified;
1843 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1844
1845 /* If no permanent rule, also check for enabled conditional rules */
1846 if (!avnode) {
1847 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1848 for (; node; node = avtab_search_node_next(node, specified)) {
1849 if (node->key.specified & AVTAB_ENABLED) {
1850 avnode = node;
1851 break;
1852 }
1853 }
1854 }
1855
1856 /* If a permanent rule is found, use the type from
1857 * the type transition/member/change rule. Otherwise,
1858 * set the type to its default values.
1859 */
1860 if (avnode) {
1861 newcontext.type = avnode->datum.u.data;
1862 } else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1863 newcontext.type = scontext->type;
1864 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1865 newcontext.type = tcontext->type;
1866 } else {
1867 if ((tclass == policydb->process_class) || sock) {
1868 /* Use the type of process. */
1869 newcontext.type = scontext->type;
1870 } else {
1871 /* Use the type of the related object. */
1872 newcontext.type = tcontext->type;
1873 }
1874 }
1875
1876 /* if we have a objname this is a file trans check so check those rules */
1877 if (objname)
1878 filename_compute_type(policydb, &newcontext, scontext->type,
1879 tcontext->type, tclass, objname);
1880
1881 /* Check for class-specific changes. */
1882 if (specified & AVTAB_TRANSITION) {
1883 /* Look for a role transition rule. */
1884 struct role_trans_datum *rtd;
1885 struct role_trans_key rtk = {
1886 .role = scontext->role,
1887 .type = tcontext->type,
1888 .tclass = tclass,
1889 };
1890
1891 rtd = policydb_roletr_search(policydb, &rtk);
1892 if (rtd)
1893 newcontext.role = rtd->new_role;
1894 }
1895
1896 /* Set the MLS attributes.
1897 This is done last because it may allocate memory. */
1898 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1899 &newcontext, sock);
1900 if (rc)
1901 goto out_unlock;
1902
1903 /* Check the validity of the context. */
1904 if (!policydb_context_isvalid(policydb, &newcontext)) {
1905 rc = compute_sid_handle_invalid_context(policy, sentry,
1906 tentry, tclass,
1907 &newcontext);
1908 if (rc)
1909 goto out_unlock;
1910 }
1911 /* Obtain the sid for the context. */
1912 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1913 if (rc == -ESTALE) {
1914 rcu_read_unlock();
1915 context_destroy(&newcontext);
1916 goto retry;
1917 }
1918 out_unlock:
1919 rcu_read_unlock();
1920 context_destroy(&newcontext);
1921 out:
1922 return rc;
1923 }
1924
1925 /**
1926 * security_transition_sid - Compute the SID for a new subject/object.
1927 * @ssid: source security identifier
1928 * @tsid: target security identifier
1929 * @tclass: target security class
1930 * @qstr: object name
1931 * @out_sid: security identifier for new subject/object
1932 *
1933 * Compute a SID to use for labeling a new subject or object in the
1934 * class @tclass based on a SID pair (@ssid, @tsid).
1935 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1936 * if insufficient memory is available, or %0 if the new SID was
1937 * computed successfully.
1938 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1939 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1940 const struct qstr *qstr, u32 *out_sid)
1941 {
1942 return security_compute_sid(ssid, tsid, tclass,
1943 AVTAB_TRANSITION,
1944 qstr ? qstr->name : NULL, out_sid, true);
1945 }
1946
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1947 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1948 const char *objname, u32 *out_sid)
1949 {
1950 return security_compute_sid(ssid, tsid, tclass,
1951 AVTAB_TRANSITION,
1952 objname, out_sid, false);
1953 }
1954
1955 /**
1956 * security_member_sid - Compute the SID for member selection.
1957 * @ssid: source security identifier
1958 * @tsid: target security identifier
1959 * @tclass: target security class
1960 * @out_sid: security identifier for selected member
1961 *
1962 * Compute a SID to use when selecting a member of a polyinstantiated
1963 * object of class @tclass based on a SID pair (@ssid, @tsid).
1964 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1965 * if insufficient memory is available, or %0 if the SID was
1966 * computed successfully.
1967 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1968 int security_member_sid(u32 ssid,
1969 u32 tsid,
1970 u16 tclass,
1971 u32 *out_sid)
1972 {
1973 return security_compute_sid(ssid, tsid, tclass,
1974 AVTAB_MEMBER, NULL,
1975 out_sid, false);
1976 }
1977
1978 /**
1979 * security_change_sid - Compute the SID for object relabeling.
1980 * @ssid: source security identifier
1981 * @tsid: target security identifier
1982 * @tclass: target security class
1983 * @out_sid: security identifier for selected member
1984 *
1985 * Compute a SID to use for relabeling an object of class @tclass
1986 * based on a SID pair (@ssid, @tsid).
1987 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1988 * if insufficient memory is available, or %0 if the SID was
1989 * computed successfully.
1990 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1991 int security_change_sid(u32 ssid,
1992 u32 tsid,
1993 u16 tclass,
1994 u32 *out_sid)
1995 {
1996 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1997 out_sid, false);
1998 }
1999
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)2000 static inline int convert_context_handle_invalid_context(
2001 struct policydb *policydb,
2002 struct context *context)
2003 {
2004 char *s;
2005 u32 len;
2006
2007 if (enforcing_enabled())
2008 return -EINVAL;
2009
2010 if (!context_struct_to_string(policydb, context, &s, &len)) {
2011 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2012 s);
2013 kfree(s);
2014 }
2015 return 0;
2016 }
2017
2018 /**
2019 * services_convert_context - Convert a security context across policies.
2020 * @args: populated convert_context_args struct
2021 * @oldc: original context
2022 * @newc: converted context
2023 * @gfp_flags: allocation flags
2024 *
2025 * Convert the values in the security context structure @oldc from the values
2026 * specified in the policy @args->oldp to the values specified in the policy
2027 * @args->newp, storing the new context in @newc, and verifying that the
2028 * context is valid under the new policy.
2029 */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2030 int services_convert_context(struct convert_context_args *args,
2031 struct context *oldc, struct context *newc,
2032 gfp_t gfp_flags)
2033 {
2034 struct ocontext *oc;
2035 struct role_datum *role;
2036 struct type_datum *typdatum;
2037 struct user_datum *usrdatum;
2038 char *s;
2039 u32 len;
2040 int rc;
2041
2042 if (oldc->str) {
2043 s = kstrdup(oldc->str, gfp_flags);
2044 if (!s)
2045 return -ENOMEM;
2046
2047 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2048 if (rc == -EINVAL) {
2049 /*
2050 * Retain string representation for later mapping.
2051 *
2052 * IMPORTANT: We need to copy the contents of oldc->str
2053 * back into s again because string_to_context_struct()
2054 * may have garbled it.
2055 */
2056 memcpy(s, oldc->str, oldc->len);
2057 context_init(newc);
2058 newc->str = s;
2059 newc->len = oldc->len;
2060 return 0;
2061 }
2062 kfree(s);
2063 if (rc) {
2064 /* Other error condition, e.g. ENOMEM. */
2065 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2066 oldc->str, -rc);
2067 return rc;
2068 }
2069 pr_info("SELinux: Context %s became valid (mapped).\n",
2070 oldc->str);
2071 return 0;
2072 }
2073
2074 context_init(newc);
2075
2076 /* Convert the user. */
2077 usrdatum = symtab_search(&args->newp->p_users,
2078 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2079 if (!usrdatum)
2080 goto bad;
2081 newc->user = usrdatum->value;
2082
2083 /* Convert the role. */
2084 role = symtab_search(&args->newp->p_roles,
2085 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2086 if (!role)
2087 goto bad;
2088 newc->role = role->value;
2089
2090 /* Convert the type. */
2091 typdatum = symtab_search(&args->newp->p_types,
2092 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2093 if (!typdatum)
2094 goto bad;
2095 newc->type = typdatum->value;
2096
2097 /* Convert the MLS fields if dealing with MLS policies */
2098 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2099 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2100 if (rc)
2101 goto bad;
2102 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2103 /*
2104 * Switching between non-MLS and MLS policy:
2105 * ensure that the MLS fields of the context for all
2106 * existing entries in the sidtab are filled in with a
2107 * suitable default value, likely taken from one of the
2108 * initial SIDs.
2109 */
2110 oc = args->newp->ocontexts[OCON_ISID];
2111 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2112 oc = oc->next;
2113 if (!oc) {
2114 pr_err("SELinux: unable to look up"
2115 " the initial SIDs list\n");
2116 goto bad;
2117 }
2118 rc = mls_range_set(newc, &oc->context[0].range);
2119 if (rc)
2120 goto bad;
2121 }
2122
2123 /* Check the validity of the new context. */
2124 if (!policydb_context_isvalid(args->newp, newc)) {
2125 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2126 if (rc)
2127 goto bad;
2128 }
2129
2130 return 0;
2131 bad:
2132 /* Map old representation to string and save it. */
2133 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2134 if (rc)
2135 return rc;
2136 context_destroy(newc);
2137 newc->str = s;
2138 newc->len = len;
2139 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2140 newc->str);
2141 return 0;
2142 }
2143
security_load_policycaps(struct selinux_policy * policy)2144 static void security_load_policycaps(struct selinux_policy *policy)
2145 {
2146 struct policydb *p;
2147 unsigned int i;
2148 struct ebitmap_node *node;
2149
2150 p = &policy->policydb;
2151
2152 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2153 WRITE_ONCE(selinux_state.policycap[i],
2154 ebitmap_get_bit(&p->policycaps, i));
2155
2156 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2157 pr_info("SELinux: policy capability %s=%d\n",
2158 selinux_policycap_names[i],
2159 ebitmap_get_bit(&p->policycaps, i));
2160
2161 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2162 if (i >= ARRAY_SIZE(selinux_policycap_names))
2163 pr_info("SELinux: unknown policy capability %u\n",
2164 i);
2165 }
2166 }
2167
2168 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2169 struct selinux_policy *newpolicy);
2170
selinux_policy_free(struct selinux_policy * policy)2171 static void selinux_policy_free(struct selinux_policy *policy)
2172 {
2173 if (!policy)
2174 return;
2175
2176 sidtab_destroy(policy->sidtab);
2177 kfree(policy->map.mapping);
2178 policydb_destroy(&policy->policydb);
2179 kfree(policy->sidtab);
2180 kfree(policy);
2181 }
2182
selinux_policy_cond_free(struct selinux_policy * policy)2183 static void selinux_policy_cond_free(struct selinux_policy *policy)
2184 {
2185 cond_policydb_destroy_dup(&policy->policydb);
2186 kfree(policy);
2187 }
2188
selinux_policy_cancel(struct selinux_load_state * load_state)2189 void selinux_policy_cancel(struct selinux_load_state *load_state)
2190 {
2191 struct selinux_state *state = &selinux_state;
2192 struct selinux_policy *oldpolicy;
2193
2194 oldpolicy = rcu_dereference_protected(state->policy,
2195 lockdep_is_held(&state->policy_mutex));
2196
2197 sidtab_cancel_convert(oldpolicy->sidtab);
2198 selinux_policy_free(load_state->policy);
2199 kfree(load_state->convert_data);
2200 }
2201
selinux_notify_policy_change(u32 seqno)2202 static void selinux_notify_policy_change(u32 seqno)
2203 {
2204 /* Flush external caches and notify userspace of policy load */
2205 avc_ss_reset(seqno);
2206 selnl_notify_policyload(seqno);
2207 selinux_status_update_policyload(seqno);
2208 selinux_netlbl_cache_invalidate();
2209 selinux_xfrm_notify_policyload();
2210 selinux_ima_measure_state_locked();
2211 }
2212
selinux_policy_commit(struct selinux_load_state * load_state)2213 void selinux_policy_commit(struct selinux_load_state *load_state)
2214 {
2215 struct selinux_state *state = &selinux_state;
2216 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217 unsigned long flags;
2218 u32 seqno;
2219
2220 oldpolicy = rcu_dereference_protected(state->policy,
2221 lockdep_is_held(&state->policy_mutex));
2222
2223 /* If switching between different policy types, log MLS status */
2224 if (oldpolicy) {
2225 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226 pr_info("SELinux: Disabling MLS support...\n");
2227 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228 pr_info("SELinux: Enabling MLS support...\n");
2229 }
2230
2231 /* Set latest granting seqno for new policy. */
2232 if (oldpolicy)
2233 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234 else
2235 newpolicy->latest_granting = 1;
2236 seqno = newpolicy->latest_granting;
2237
2238 /* Install the new policy. */
2239 if (oldpolicy) {
2240 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241 rcu_assign_pointer(state->policy, newpolicy);
2242 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243 } else {
2244 rcu_assign_pointer(state->policy, newpolicy);
2245 }
2246
2247 /* Load the policycaps from the new policy */
2248 security_load_policycaps(newpolicy);
2249
2250 if (!selinux_initialized()) {
2251 /*
2252 * After first policy load, the security server is
2253 * marked as initialized and ready to handle requests and
2254 * any objects created prior to policy load are then labeled.
2255 */
2256 selinux_mark_initialized();
2257 selinux_complete_init();
2258 }
2259
2260 /* Free the old policy */
2261 synchronize_rcu();
2262 selinux_policy_free(oldpolicy);
2263 kfree(load_state->convert_data);
2264
2265 /* Notify others of the policy change */
2266 selinux_notify_policy_change(seqno);
2267 }
2268
2269 /**
2270 * security_load_policy - Load a security policy configuration.
2271 * @data: binary policy data
2272 * @len: length of data in bytes
2273 * @load_state: policy load state
2274 *
2275 * Load a new set of security policy configuration data,
2276 * validate it and convert the SID table as necessary.
2277 * This function will flush the access vector cache after
2278 * loading the new policy.
2279 */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2280 int security_load_policy(void *data, size_t len,
2281 struct selinux_load_state *load_state)
2282 {
2283 struct selinux_state *state = &selinux_state;
2284 struct selinux_policy *newpolicy, *oldpolicy;
2285 struct selinux_policy_convert_data *convert_data;
2286 int rc = 0;
2287 struct policy_file file = { data, len }, *fp = &file;
2288
2289 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2290 if (!newpolicy)
2291 return -ENOMEM;
2292
2293 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2294 if (!newpolicy->sidtab) {
2295 rc = -ENOMEM;
2296 goto err_policy;
2297 }
2298
2299 rc = policydb_read(&newpolicy->policydb, fp);
2300 if (rc)
2301 goto err_sidtab;
2302
2303 newpolicy->policydb.len = len;
2304 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2305 &newpolicy->map);
2306 if (rc)
2307 goto err_policydb;
2308
2309 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2310 if (rc) {
2311 pr_err("SELinux: unable to load the initial SIDs\n");
2312 goto err_mapping;
2313 }
2314
2315 if (!selinux_initialized()) {
2316 /* First policy load, so no need to preserve state from old policy */
2317 load_state->policy = newpolicy;
2318 load_state->convert_data = NULL;
2319 return 0;
2320 }
2321
2322 oldpolicy = rcu_dereference_protected(state->policy,
2323 lockdep_is_held(&state->policy_mutex));
2324
2325 /* Preserve active boolean values from the old policy */
2326 rc = security_preserve_bools(oldpolicy, newpolicy);
2327 if (rc) {
2328 pr_err("SELinux: unable to preserve booleans\n");
2329 goto err_free_isids;
2330 }
2331
2332 /*
2333 * Convert the internal representations of contexts
2334 * in the new SID table.
2335 */
2336
2337 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2338 if (!convert_data) {
2339 rc = -ENOMEM;
2340 goto err_free_isids;
2341 }
2342
2343 convert_data->args.oldp = &oldpolicy->policydb;
2344 convert_data->args.newp = &newpolicy->policydb;
2345
2346 convert_data->sidtab_params.args = &convert_data->args;
2347 convert_data->sidtab_params.target = newpolicy->sidtab;
2348
2349 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2350 if (rc) {
2351 pr_err("SELinux: unable to convert the internal"
2352 " representation of contexts in the new SID"
2353 " table\n");
2354 goto err_free_convert_data;
2355 }
2356
2357 load_state->policy = newpolicy;
2358 load_state->convert_data = convert_data;
2359 return 0;
2360
2361 err_free_convert_data:
2362 kfree(convert_data);
2363 err_free_isids:
2364 sidtab_destroy(newpolicy->sidtab);
2365 err_mapping:
2366 kfree(newpolicy->map.mapping);
2367 err_policydb:
2368 policydb_destroy(&newpolicy->policydb);
2369 err_sidtab:
2370 kfree(newpolicy->sidtab);
2371 err_policy:
2372 kfree(newpolicy);
2373
2374 return rc;
2375 }
2376
2377 /**
2378 * ocontext_to_sid - Helper to safely get sid for an ocontext
2379 * @sidtab: SID table
2380 * @c: ocontext structure
2381 * @index: index of the context entry (0 or 1)
2382 * @out_sid: pointer to the resulting SID value
2383 *
2384 * For all ocontexts except OCON_ISID the SID fields are populated
2385 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2386 * operation, this helper must be used to do that safely.
2387 *
2388 * WARNING: This function may return -ESTALE, indicating that the caller
2389 * must retry the operation after re-acquiring the policy pointer!
2390 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2391 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2392 size_t index, u32 *out_sid)
2393 {
2394 int rc;
2395 u32 sid;
2396
2397 /* Ensure the associated sidtab entry is visible to this thread. */
2398 sid = smp_load_acquire(&c->sid[index]);
2399 if (!sid) {
2400 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2401 if (rc)
2402 return rc;
2403
2404 /*
2405 * Ensure the new sidtab entry is visible to other threads
2406 * when they see the SID.
2407 */
2408 smp_store_release(&c->sid[index], sid);
2409 }
2410 *out_sid = sid;
2411 return 0;
2412 }
2413
2414 /**
2415 * security_port_sid - Obtain the SID for a port.
2416 * @protocol: protocol number
2417 * @port: port number
2418 * @out_sid: security identifier
2419 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2420 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2421 {
2422 struct selinux_policy *policy;
2423 struct policydb *policydb;
2424 struct sidtab *sidtab;
2425 struct ocontext *c;
2426 int rc;
2427
2428 if (!selinux_initialized()) {
2429 *out_sid = SECINITSID_PORT;
2430 return 0;
2431 }
2432
2433 retry:
2434 rc = 0;
2435 rcu_read_lock();
2436 policy = rcu_dereference(selinux_state.policy);
2437 policydb = &policy->policydb;
2438 sidtab = policy->sidtab;
2439
2440 c = policydb->ocontexts[OCON_PORT];
2441 while (c) {
2442 if (c->u.port.protocol == protocol &&
2443 c->u.port.low_port <= port &&
2444 c->u.port.high_port >= port)
2445 break;
2446 c = c->next;
2447 }
2448
2449 if (c) {
2450 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2451 if (rc == -ESTALE) {
2452 rcu_read_unlock();
2453 goto retry;
2454 }
2455 if (rc)
2456 goto out;
2457 } else {
2458 *out_sid = SECINITSID_PORT;
2459 }
2460
2461 out:
2462 rcu_read_unlock();
2463 return rc;
2464 }
2465
2466 /**
2467 * security_ib_pkey_sid - Obtain the SID for a pkey.
2468 * @subnet_prefix: Subnet Prefix
2469 * @pkey_num: pkey number
2470 * @out_sid: security identifier
2471 */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2472 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2473 {
2474 struct selinux_policy *policy;
2475 struct policydb *policydb;
2476 struct sidtab *sidtab;
2477 struct ocontext *c;
2478 int rc;
2479
2480 if (!selinux_initialized()) {
2481 *out_sid = SECINITSID_UNLABELED;
2482 return 0;
2483 }
2484
2485 retry:
2486 rc = 0;
2487 rcu_read_lock();
2488 policy = rcu_dereference(selinux_state.policy);
2489 policydb = &policy->policydb;
2490 sidtab = policy->sidtab;
2491
2492 c = policydb->ocontexts[OCON_IBPKEY];
2493 while (c) {
2494 if (c->u.ibpkey.low_pkey <= pkey_num &&
2495 c->u.ibpkey.high_pkey >= pkey_num &&
2496 c->u.ibpkey.subnet_prefix == subnet_prefix)
2497 break;
2498
2499 c = c->next;
2500 }
2501
2502 if (c) {
2503 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2504 if (rc == -ESTALE) {
2505 rcu_read_unlock();
2506 goto retry;
2507 }
2508 if (rc)
2509 goto out;
2510 } else
2511 *out_sid = SECINITSID_UNLABELED;
2512
2513 out:
2514 rcu_read_unlock();
2515 return rc;
2516 }
2517
2518 /**
2519 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2520 * @dev_name: device name
2521 * @port_num: port number
2522 * @out_sid: security identifier
2523 */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2524 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2525 {
2526 struct selinux_policy *policy;
2527 struct policydb *policydb;
2528 struct sidtab *sidtab;
2529 struct ocontext *c;
2530 int rc;
2531
2532 if (!selinux_initialized()) {
2533 *out_sid = SECINITSID_UNLABELED;
2534 return 0;
2535 }
2536
2537 retry:
2538 rc = 0;
2539 rcu_read_lock();
2540 policy = rcu_dereference(selinux_state.policy);
2541 policydb = &policy->policydb;
2542 sidtab = policy->sidtab;
2543
2544 c = policydb->ocontexts[OCON_IBENDPORT];
2545 while (c) {
2546 if (c->u.ibendport.port == port_num &&
2547 !strncmp(c->u.ibendport.dev_name,
2548 dev_name,
2549 IB_DEVICE_NAME_MAX))
2550 break;
2551
2552 c = c->next;
2553 }
2554
2555 if (c) {
2556 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2557 if (rc == -ESTALE) {
2558 rcu_read_unlock();
2559 goto retry;
2560 }
2561 if (rc)
2562 goto out;
2563 } else
2564 *out_sid = SECINITSID_UNLABELED;
2565
2566 out:
2567 rcu_read_unlock();
2568 return rc;
2569 }
2570
2571 /**
2572 * security_netif_sid - Obtain the SID for a network interface.
2573 * @name: interface name
2574 * @if_sid: interface SID
2575 */
security_netif_sid(const char * name,u32 * if_sid)2576 int security_netif_sid(const char *name, u32 *if_sid)
2577 {
2578 struct selinux_policy *policy;
2579 struct policydb *policydb;
2580 struct sidtab *sidtab;
2581 int rc;
2582 struct ocontext *c;
2583 bool wildcard_support;
2584
2585 if (!selinux_initialized()) {
2586 *if_sid = SECINITSID_NETIF;
2587 return 0;
2588 }
2589
2590 retry:
2591 rc = 0;
2592 rcu_read_lock();
2593 policy = rcu_dereference(selinux_state.policy);
2594 policydb = &policy->policydb;
2595 sidtab = policy->sidtab;
2596 wildcard_support = ebitmap_get_bit(&policydb->policycaps, POLICYDB_CAP_NETIF_WILDCARD);
2597
2598 c = policydb->ocontexts[OCON_NETIF];
2599 while (c) {
2600 if (wildcard_support) {
2601 if (match_wildcard(c->u.name, name))
2602 break;
2603 } else {
2604 if (strcmp(c->u.name, name) == 0)
2605 break;
2606 }
2607
2608 c = c->next;
2609 }
2610
2611 if (c) {
2612 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2613 if (rc == -ESTALE) {
2614 rcu_read_unlock();
2615 goto retry;
2616 }
2617 if (rc)
2618 goto out;
2619 } else
2620 *if_sid = SECINITSID_NETIF;
2621
2622 out:
2623 rcu_read_unlock();
2624 return rc;
2625 }
2626
match_ipv6_addrmask(const u32 input[4],const u32 addr[4],const u32 mask[4])2627 static bool match_ipv6_addrmask(const u32 input[4], const u32 addr[4], const u32 mask[4])
2628 {
2629 int i;
2630
2631 for (i = 0; i < 4; i++)
2632 if (addr[i] != (input[i] & mask[i]))
2633 return false;
2634
2635 return true;
2636 }
2637
2638 /**
2639 * security_node_sid - Obtain the SID for a node (host).
2640 * @domain: communication domain aka address family
2641 * @addrp: address
2642 * @addrlen: address length in bytes
2643 * @out_sid: security identifier
2644 */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2645 int security_node_sid(u16 domain,
2646 void *addrp,
2647 u32 addrlen,
2648 u32 *out_sid)
2649 {
2650 struct selinux_policy *policy;
2651 struct policydb *policydb;
2652 struct sidtab *sidtab;
2653 int rc;
2654 struct ocontext *c;
2655
2656 if (!selinux_initialized()) {
2657 *out_sid = SECINITSID_NODE;
2658 return 0;
2659 }
2660
2661 retry:
2662 rcu_read_lock();
2663 policy = rcu_dereference(selinux_state.policy);
2664 policydb = &policy->policydb;
2665 sidtab = policy->sidtab;
2666
2667 switch (domain) {
2668 case AF_INET: {
2669 u32 addr;
2670
2671 rc = -EINVAL;
2672 if (addrlen != sizeof(u32))
2673 goto out;
2674
2675 addr = *((u32 *)addrp);
2676
2677 c = policydb->ocontexts[OCON_NODE];
2678 while (c) {
2679 if (c->u.node.addr == (addr & c->u.node.mask))
2680 break;
2681 c = c->next;
2682 }
2683 break;
2684 }
2685
2686 case AF_INET6:
2687 rc = -EINVAL;
2688 if (addrlen != sizeof(u64) * 2)
2689 goto out;
2690 c = policydb->ocontexts[OCON_NODE6];
2691 while (c) {
2692 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2693 c->u.node6.mask))
2694 break;
2695 c = c->next;
2696 }
2697 break;
2698
2699 default:
2700 rc = 0;
2701 *out_sid = SECINITSID_NODE;
2702 goto out;
2703 }
2704
2705 if (c) {
2706 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2707 if (rc == -ESTALE) {
2708 rcu_read_unlock();
2709 goto retry;
2710 }
2711 if (rc)
2712 goto out;
2713 } else {
2714 *out_sid = SECINITSID_NODE;
2715 }
2716
2717 rc = 0;
2718 out:
2719 rcu_read_unlock();
2720 return rc;
2721 }
2722
2723 #define SIDS_NEL 25
2724
2725 /**
2726 * security_get_user_sids - Obtain reachable SIDs for a user.
2727 * @fromsid: starting SID
2728 * @username: username
2729 * @sids: array of reachable SIDs for user
2730 * @nel: number of elements in @sids
2731 *
2732 * Generate the set of SIDs for legal security contexts
2733 * for a given user that can be reached by @fromsid.
2734 * Set *@sids to point to a dynamically allocated
2735 * array containing the set of SIDs. Set *@nel to the
2736 * number of elements in the array.
2737 */
2738
security_get_user_sids(u32 fromsid,const char * username,u32 ** sids,u32 * nel)2739 int security_get_user_sids(u32 fromsid,
2740 const char *username,
2741 u32 **sids,
2742 u32 *nel)
2743 {
2744 struct selinux_policy *policy;
2745 struct policydb *policydb;
2746 struct sidtab *sidtab;
2747 struct context *fromcon, usercon;
2748 u32 *mysids = NULL, *mysids2, sid;
2749 u32 i, j, mynel, maxnel = SIDS_NEL;
2750 struct user_datum *user;
2751 struct role_datum *role;
2752 struct ebitmap_node *rnode, *tnode;
2753 int rc;
2754
2755 *sids = NULL;
2756 *nel = 0;
2757
2758 if (!selinux_initialized())
2759 return 0;
2760
2761 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2762 if (!mysids)
2763 return -ENOMEM;
2764
2765 retry:
2766 mynel = 0;
2767 rcu_read_lock();
2768 policy = rcu_dereference(selinux_state.policy);
2769 policydb = &policy->policydb;
2770 sidtab = policy->sidtab;
2771
2772 context_init(&usercon);
2773
2774 rc = -EINVAL;
2775 fromcon = sidtab_search(sidtab, fromsid);
2776 if (!fromcon)
2777 goto out_unlock;
2778
2779 rc = -EINVAL;
2780 user = symtab_search(&policydb->p_users, username);
2781 if (!user)
2782 goto out_unlock;
2783
2784 usercon.user = user->value;
2785
2786 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2787 role = policydb->role_val_to_struct[i];
2788 usercon.role = i + 1;
2789 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2790 usercon.type = j + 1;
2791
2792 if (mls_setup_user_range(policydb, fromcon, user,
2793 &usercon))
2794 continue;
2795
2796 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2797 if (rc == -ESTALE) {
2798 rcu_read_unlock();
2799 goto retry;
2800 }
2801 if (rc)
2802 goto out_unlock;
2803 if (mynel < maxnel) {
2804 mysids[mynel++] = sid;
2805 } else {
2806 rc = -ENOMEM;
2807 maxnel += SIDS_NEL;
2808 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2809 if (!mysids2)
2810 goto out_unlock;
2811 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2812 kfree(mysids);
2813 mysids = mysids2;
2814 mysids[mynel++] = sid;
2815 }
2816 }
2817 }
2818 rc = 0;
2819 out_unlock:
2820 rcu_read_unlock();
2821 if (rc || !mynel) {
2822 kfree(mysids);
2823 return rc;
2824 }
2825
2826 rc = -ENOMEM;
2827 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2828 if (!mysids2) {
2829 kfree(mysids);
2830 return rc;
2831 }
2832 for (i = 0, j = 0; i < mynel; i++) {
2833 struct av_decision dummy_avd;
2834 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2835 SECCLASS_PROCESS, /* kernel value */
2836 PROCESS__TRANSITION, AVC_STRICT,
2837 &dummy_avd);
2838 if (!rc)
2839 mysids2[j++] = mysids[i];
2840 cond_resched();
2841 }
2842 kfree(mysids);
2843 *sids = mysids2;
2844 *nel = j;
2845 return 0;
2846 }
2847
2848 /**
2849 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2850 * @policy: policy
2851 * @fstype: filesystem type
2852 * @path: path from root of mount
2853 * @orig_sclass: file security class
2854 * @sid: SID for path
2855 *
2856 * Obtain a SID to use for a file in a filesystem that
2857 * cannot support xattr or use a fixed labeling behavior like
2858 * transition SIDs or task SIDs.
2859 *
2860 * WARNING: This function may return -ESTALE, indicating that the caller
2861 * must retry the operation after re-acquiring the policy pointer!
2862 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2863 static inline int __security_genfs_sid(struct selinux_policy *policy,
2864 const char *fstype,
2865 const char *path,
2866 u16 orig_sclass,
2867 u32 *sid)
2868 {
2869 struct policydb *policydb = &policy->policydb;
2870 struct sidtab *sidtab = policy->sidtab;
2871 u16 sclass;
2872 struct genfs *genfs;
2873 struct ocontext *c;
2874 int cmp = 0;
2875
2876 while (path[0] == '/' && path[1] == '/')
2877 path++;
2878
2879 sclass = unmap_class(&policy->map, orig_sclass);
2880 *sid = SECINITSID_UNLABELED;
2881
2882 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883 cmp = strcmp(fstype, genfs->fstype);
2884 if (cmp <= 0)
2885 break;
2886 }
2887
2888 if (!genfs || cmp)
2889 return -ENOENT;
2890
2891 for (c = genfs->head; c; c = c->next) {
2892 size_t len = strlen(c->u.name);
2893 if ((!c->v.sclass || sclass == c->v.sclass) &&
2894 (strncmp(c->u.name, path, len) == 0))
2895 break;
2896 }
2897
2898 if (!c)
2899 return -ENOENT;
2900
2901 return ocontext_to_sid(sidtab, c, 0, sid);
2902 }
2903
2904 /**
2905 * security_genfs_sid - Obtain a SID for a file in a filesystem
2906 * @fstype: filesystem type
2907 * @path: path from root of mount
2908 * @orig_sclass: file security class
2909 * @sid: SID for path
2910 *
2911 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2912 * it afterward.
2913 */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2914 int security_genfs_sid(const char *fstype,
2915 const char *path,
2916 u16 orig_sclass,
2917 u32 *sid)
2918 {
2919 struct selinux_policy *policy;
2920 int retval;
2921
2922 if (!selinux_initialized()) {
2923 *sid = SECINITSID_UNLABELED;
2924 return 0;
2925 }
2926
2927 do {
2928 rcu_read_lock();
2929 policy = rcu_dereference(selinux_state.policy);
2930 retval = __security_genfs_sid(policy, fstype, path,
2931 orig_sclass, sid);
2932 rcu_read_unlock();
2933 } while (retval == -ESTALE);
2934 return retval;
2935 }
2936
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2937 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2938 const char *fstype,
2939 const char *path,
2940 u16 orig_sclass,
2941 u32 *sid)
2942 {
2943 /* no lock required, policy is not yet accessible by other threads */
2944 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2945 }
2946
2947 /**
2948 * security_fs_use - Determine how to handle labeling for a filesystem.
2949 * @sb: superblock in question
2950 */
security_fs_use(struct super_block * sb)2951 int security_fs_use(struct super_block *sb)
2952 {
2953 struct selinux_policy *policy;
2954 struct policydb *policydb;
2955 struct sidtab *sidtab;
2956 int rc;
2957 struct ocontext *c;
2958 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2959 const char *fstype = sb->s_type->name;
2960
2961 if (!selinux_initialized()) {
2962 sbsec->behavior = SECURITY_FS_USE_NONE;
2963 sbsec->sid = SECINITSID_UNLABELED;
2964 return 0;
2965 }
2966
2967 retry:
2968 rcu_read_lock();
2969 policy = rcu_dereference(selinux_state.policy);
2970 policydb = &policy->policydb;
2971 sidtab = policy->sidtab;
2972
2973 c = policydb->ocontexts[OCON_FSUSE];
2974 while (c) {
2975 if (strcmp(fstype, c->u.name) == 0)
2976 break;
2977 c = c->next;
2978 }
2979
2980 if (c) {
2981 sbsec->behavior = c->v.behavior;
2982 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2983 if (rc == -ESTALE) {
2984 rcu_read_unlock();
2985 goto retry;
2986 }
2987 if (rc)
2988 goto out;
2989 } else {
2990 rc = __security_genfs_sid(policy, fstype, "/",
2991 SECCLASS_DIR, &sbsec->sid);
2992 if (rc == -ESTALE) {
2993 rcu_read_unlock();
2994 goto retry;
2995 }
2996 if (rc) {
2997 sbsec->behavior = SECURITY_FS_USE_NONE;
2998 rc = 0;
2999 } else {
3000 sbsec->behavior = SECURITY_FS_USE_GENFS;
3001 }
3002 }
3003
3004 out:
3005 rcu_read_unlock();
3006 return rc;
3007 }
3008
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3009 int security_get_bools(struct selinux_policy *policy,
3010 u32 *len, char ***names, int **values)
3011 {
3012 struct policydb *policydb;
3013 u32 i;
3014 int rc;
3015
3016 policydb = &policy->policydb;
3017
3018 *names = NULL;
3019 *values = NULL;
3020
3021 rc = 0;
3022 *len = policydb->p_bools.nprim;
3023 if (!*len)
3024 goto out;
3025
3026 rc = -ENOMEM;
3027 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3028 if (!*names)
3029 goto err;
3030
3031 rc = -ENOMEM;
3032 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3033 if (!*values)
3034 goto err;
3035
3036 for (i = 0; i < *len; i++) {
3037 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3038
3039 rc = -ENOMEM;
3040 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3041 GFP_ATOMIC);
3042 if (!(*names)[i])
3043 goto err;
3044 }
3045 rc = 0;
3046 out:
3047 return rc;
3048 err:
3049 if (*names) {
3050 for (i = 0; i < *len; i++)
3051 kfree((*names)[i]);
3052 kfree(*names);
3053 }
3054 kfree(*values);
3055 *len = 0;
3056 *names = NULL;
3057 *values = NULL;
3058 goto out;
3059 }
3060
3061
security_set_bools(u32 len,const int * values)3062 int security_set_bools(u32 len, const int *values)
3063 {
3064 struct selinux_state *state = &selinux_state;
3065 struct selinux_policy *newpolicy, *oldpolicy;
3066 int rc;
3067 u32 i, seqno = 0;
3068
3069 if (!selinux_initialized())
3070 return -EINVAL;
3071
3072 oldpolicy = rcu_dereference_protected(state->policy,
3073 lockdep_is_held(&state->policy_mutex));
3074
3075 /* Consistency check on number of booleans, should never fail */
3076 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3077 return -EINVAL;
3078
3079 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3080 if (!newpolicy)
3081 return -ENOMEM;
3082
3083 /*
3084 * Deep copy only the parts of the policydb that might be
3085 * modified as a result of changing booleans.
3086 */
3087 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3088 if (rc) {
3089 kfree(newpolicy);
3090 return -ENOMEM;
3091 }
3092
3093 /* Update the boolean states in the copy */
3094 for (i = 0; i < len; i++) {
3095 int new_state = !!values[i];
3096 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3097
3098 if (new_state != old_state) {
3099 audit_log(audit_context(), GFP_ATOMIC,
3100 AUDIT_MAC_CONFIG_CHANGE,
3101 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3102 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3103 new_state,
3104 old_state,
3105 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3106 audit_get_sessionid(current));
3107 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3108 }
3109 }
3110
3111 /* Re-evaluate the conditional rules in the copy */
3112 evaluate_cond_nodes(&newpolicy->policydb);
3113
3114 /* Set latest granting seqno for new policy */
3115 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3116 seqno = newpolicy->latest_granting;
3117
3118 /* Install the new policy */
3119 rcu_assign_pointer(state->policy, newpolicy);
3120
3121 /*
3122 * Free the conditional portions of the old policydb
3123 * that were copied for the new policy, and the oldpolicy
3124 * structure itself but not what it references.
3125 */
3126 synchronize_rcu();
3127 selinux_policy_cond_free(oldpolicy);
3128
3129 /* Notify others of the policy change */
3130 selinux_notify_policy_change(seqno);
3131 return 0;
3132 }
3133
security_get_bool_value(u32 index)3134 int security_get_bool_value(u32 index)
3135 {
3136 struct selinux_policy *policy;
3137 struct policydb *policydb;
3138 int rc;
3139 u32 len;
3140
3141 if (!selinux_initialized())
3142 return 0;
3143
3144 rcu_read_lock();
3145 policy = rcu_dereference(selinux_state.policy);
3146 policydb = &policy->policydb;
3147
3148 rc = -EFAULT;
3149 len = policydb->p_bools.nprim;
3150 if (index >= len)
3151 goto out;
3152
3153 rc = policydb->bool_val_to_struct[index]->state;
3154 out:
3155 rcu_read_unlock();
3156 return rc;
3157 }
3158
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3159 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3160 struct selinux_policy *newpolicy)
3161 {
3162 int rc, *bvalues = NULL;
3163 char **bnames = NULL;
3164 struct cond_bool_datum *booldatum;
3165 u32 i, nbools = 0;
3166
3167 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3168 if (rc)
3169 goto out;
3170 for (i = 0; i < nbools; i++) {
3171 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3172 bnames[i]);
3173 if (booldatum)
3174 booldatum->state = bvalues[i];
3175 }
3176 evaluate_cond_nodes(&newpolicy->policydb);
3177
3178 out:
3179 if (bnames) {
3180 for (i = 0; i < nbools; i++)
3181 kfree(bnames[i]);
3182 }
3183 kfree(bnames);
3184 kfree(bvalues);
3185 return rc;
3186 }
3187
3188 /*
3189 * security_sid_mls_copy() - computes a new sid based on the given
3190 * sid and the mls portion of mls_sid.
3191 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3192 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3193 {
3194 struct selinux_policy *policy;
3195 struct policydb *policydb;
3196 struct sidtab *sidtab;
3197 struct context *context1;
3198 struct context *context2;
3199 struct context newcon;
3200 char *s;
3201 u32 len;
3202 int rc;
3203
3204 if (!selinux_initialized()) {
3205 *new_sid = sid;
3206 return 0;
3207 }
3208
3209 retry:
3210 rc = 0;
3211 context_init(&newcon);
3212
3213 rcu_read_lock();
3214 policy = rcu_dereference(selinux_state.policy);
3215 policydb = &policy->policydb;
3216 sidtab = policy->sidtab;
3217
3218 if (!policydb->mls_enabled) {
3219 *new_sid = sid;
3220 goto out_unlock;
3221 }
3222
3223 rc = -EINVAL;
3224 context1 = sidtab_search(sidtab, sid);
3225 if (!context1) {
3226 pr_err("SELinux: %s: unrecognized SID %d\n",
3227 __func__, sid);
3228 goto out_unlock;
3229 }
3230
3231 rc = -EINVAL;
3232 context2 = sidtab_search(sidtab, mls_sid);
3233 if (!context2) {
3234 pr_err("SELinux: %s: unrecognized SID %d\n",
3235 __func__, mls_sid);
3236 goto out_unlock;
3237 }
3238
3239 newcon.user = context1->user;
3240 newcon.role = context1->role;
3241 newcon.type = context1->type;
3242 rc = mls_context_cpy(&newcon, context2);
3243 if (rc)
3244 goto out_unlock;
3245
3246 /* Check the validity of the new context. */
3247 if (!policydb_context_isvalid(policydb, &newcon)) {
3248 rc = convert_context_handle_invalid_context(policydb,
3249 &newcon);
3250 if (rc) {
3251 if (!context_struct_to_string(policydb, &newcon, &s,
3252 &len)) {
3253 struct audit_buffer *ab;
3254
3255 ab = audit_log_start(audit_context(),
3256 GFP_ATOMIC,
3257 AUDIT_SELINUX_ERR);
3258 audit_log_format(ab,
3259 "op=security_sid_mls_copy invalid_context=");
3260 /* don't record NUL with untrusted strings */
3261 audit_log_n_untrustedstring(ab, s, len - 1);
3262 audit_log_end(ab);
3263 kfree(s);
3264 }
3265 goto out_unlock;
3266 }
3267 }
3268 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3269 if (rc == -ESTALE) {
3270 rcu_read_unlock();
3271 context_destroy(&newcon);
3272 goto retry;
3273 }
3274 out_unlock:
3275 rcu_read_unlock();
3276 context_destroy(&newcon);
3277 return rc;
3278 }
3279
3280 /**
3281 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3282 * @nlbl_sid: NetLabel SID
3283 * @nlbl_type: NetLabel labeling protocol type
3284 * @xfrm_sid: XFRM SID
3285 * @peer_sid: network peer sid
3286 *
3287 * Description:
3288 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3289 * resolved into a single SID it is returned via @peer_sid and the function
3290 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3291 * returns a negative value. A table summarizing the behavior is below:
3292 *
3293 * | function return | @sid
3294 * ------------------------------+-----------------+-----------------
3295 * no peer labels | 0 | SECSID_NULL
3296 * single peer label | 0 | <peer_label>
3297 * multiple, consistent labels | 0 | <peer_label>
3298 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3299 *
3300 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3301 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3302 u32 xfrm_sid,
3303 u32 *peer_sid)
3304 {
3305 struct selinux_policy *policy;
3306 struct policydb *policydb;
3307 struct sidtab *sidtab;
3308 int rc;
3309 struct context *nlbl_ctx;
3310 struct context *xfrm_ctx;
3311
3312 *peer_sid = SECSID_NULL;
3313
3314 /* handle the common (which also happens to be the set of easy) cases
3315 * right away, these two if statements catch everything involving a
3316 * single or absent peer SID/label */
3317 if (xfrm_sid == SECSID_NULL) {
3318 *peer_sid = nlbl_sid;
3319 return 0;
3320 }
3321 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3322 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3323 * is present */
3324 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3325 *peer_sid = xfrm_sid;
3326 return 0;
3327 }
3328
3329 if (!selinux_initialized())
3330 return 0;
3331
3332 rcu_read_lock();
3333 policy = rcu_dereference(selinux_state.policy);
3334 policydb = &policy->policydb;
3335 sidtab = policy->sidtab;
3336
3337 /*
3338 * We don't need to check initialized here since the only way both
3339 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3340 * security server was initialized and state->initialized was true.
3341 */
3342 if (!policydb->mls_enabled) {
3343 rc = 0;
3344 goto out;
3345 }
3346
3347 rc = -EINVAL;
3348 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3349 if (!nlbl_ctx) {
3350 pr_err("SELinux: %s: unrecognized SID %d\n",
3351 __func__, nlbl_sid);
3352 goto out;
3353 }
3354 rc = -EINVAL;
3355 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3356 if (!xfrm_ctx) {
3357 pr_err("SELinux: %s: unrecognized SID %d\n",
3358 __func__, xfrm_sid);
3359 goto out;
3360 }
3361 rc = (mls_context_equal(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3362 if (rc)
3363 goto out;
3364
3365 /* at present NetLabel SIDs/labels really only carry MLS
3366 * information so if the MLS portion of the NetLabel SID
3367 * matches the MLS portion of the labeled XFRM SID/label
3368 * then pass along the XFRM SID as it is the most
3369 * expressive */
3370 *peer_sid = xfrm_sid;
3371 out:
3372 rcu_read_unlock();
3373 return rc;
3374 }
3375
get_classes_callback(void * k,void * d,void * args)3376 static int get_classes_callback(void *k, void *d, void *args)
3377 {
3378 struct class_datum *datum = d;
3379 char *name = k, **classes = args;
3380 u32 value = datum->value - 1;
3381
3382 classes[value] = kstrdup(name, GFP_ATOMIC);
3383 if (!classes[value])
3384 return -ENOMEM;
3385
3386 return 0;
3387 }
3388
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3389 int security_get_classes(struct selinux_policy *policy,
3390 char ***classes, u32 *nclasses)
3391 {
3392 struct policydb *policydb;
3393 int rc;
3394
3395 policydb = &policy->policydb;
3396
3397 rc = -ENOMEM;
3398 *nclasses = policydb->p_classes.nprim;
3399 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3400 if (!*classes)
3401 goto out;
3402
3403 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3404 *classes);
3405 if (rc) {
3406 u32 i;
3407
3408 for (i = 0; i < *nclasses; i++)
3409 kfree((*classes)[i]);
3410 kfree(*classes);
3411 }
3412
3413 out:
3414 return rc;
3415 }
3416
get_permissions_callback(void * k,void * d,void * args)3417 static int get_permissions_callback(void *k, void *d, void *args)
3418 {
3419 struct perm_datum *datum = d;
3420 char *name = k, **perms = args;
3421 u32 value = datum->value - 1;
3422
3423 perms[value] = kstrdup(name, GFP_ATOMIC);
3424 if (!perms[value])
3425 return -ENOMEM;
3426
3427 return 0;
3428 }
3429
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3430 int security_get_permissions(struct selinux_policy *policy,
3431 const char *class, char ***perms, u32 *nperms)
3432 {
3433 struct policydb *policydb;
3434 u32 i;
3435 int rc;
3436 struct class_datum *match;
3437
3438 policydb = &policy->policydb;
3439
3440 rc = -EINVAL;
3441 match = symtab_search(&policydb->p_classes, class);
3442 if (!match) {
3443 pr_err("SELinux: %s: unrecognized class %s\n",
3444 __func__, class);
3445 goto out;
3446 }
3447
3448 rc = -ENOMEM;
3449 *nperms = match->permissions.nprim;
3450 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3451 if (!*perms)
3452 goto out;
3453
3454 if (match->comdatum) {
3455 rc = hashtab_map(&match->comdatum->permissions.table,
3456 get_permissions_callback, *perms);
3457 if (rc)
3458 goto err;
3459 }
3460
3461 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3462 *perms);
3463 if (rc)
3464 goto err;
3465
3466 out:
3467 return rc;
3468
3469 err:
3470 for (i = 0; i < *nperms; i++)
3471 kfree((*perms)[i]);
3472 kfree(*perms);
3473 return rc;
3474 }
3475
security_get_reject_unknown(void)3476 int security_get_reject_unknown(void)
3477 {
3478 struct selinux_policy *policy;
3479 int value;
3480
3481 if (!selinux_initialized())
3482 return 0;
3483
3484 rcu_read_lock();
3485 policy = rcu_dereference(selinux_state.policy);
3486 value = policy->policydb.reject_unknown;
3487 rcu_read_unlock();
3488 return value;
3489 }
3490
security_get_allow_unknown(void)3491 int security_get_allow_unknown(void)
3492 {
3493 struct selinux_policy *policy;
3494 int value;
3495
3496 if (!selinux_initialized())
3497 return 0;
3498
3499 rcu_read_lock();
3500 policy = rcu_dereference(selinux_state.policy);
3501 value = policy->policydb.allow_unknown;
3502 rcu_read_unlock();
3503 return value;
3504 }
3505
3506 /**
3507 * security_policycap_supported - Check for a specific policy capability
3508 * @req_cap: capability
3509 *
3510 * Description:
3511 * This function queries the currently loaded policy to see if it supports the
3512 * capability specified by @req_cap. Returns true (1) if the capability is
3513 * supported, false (0) if it isn't supported.
3514 *
3515 */
security_policycap_supported(unsigned int req_cap)3516 int security_policycap_supported(unsigned int req_cap)
3517 {
3518 struct selinux_policy *policy;
3519 int rc;
3520
3521 if (!selinux_initialized())
3522 return 0;
3523
3524 rcu_read_lock();
3525 policy = rcu_dereference(selinux_state.policy);
3526 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3527 rcu_read_unlock();
3528
3529 return rc;
3530 }
3531
3532 struct selinux_audit_rule {
3533 u32 au_seqno;
3534 struct context au_ctxt;
3535 };
3536
selinux_audit_rule_free(void * vrule)3537 void selinux_audit_rule_free(void *vrule)
3538 {
3539 struct selinux_audit_rule *rule = vrule;
3540
3541 if (rule) {
3542 context_destroy(&rule->au_ctxt);
3543 kfree(rule);
3544 }
3545 }
3546
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3547 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3548 gfp_t gfp)
3549 {
3550 struct selinux_state *state = &selinux_state;
3551 struct selinux_policy *policy;
3552 struct policydb *policydb;
3553 struct selinux_audit_rule *tmprule;
3554 struct role_datum *roledatum;
3555 struct type_datum *typedatum;
3556 struct user_datum *userdatum;
3557 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3558 int rc = 0;
3559
3560 *rule = NULL;
3561
3562 if (!selinux_initialized())
3563 return -EOPNOTSUPP;
3564
3565 switch (field) {
3566 case AUDIT_SUBJ_USER:
3567 case AUDIT_SUBJ_ROLE:
3568 case AUDIT_SUBJ_TYPE:
3569 case AUDIT_OBJ_USER:
3570 case AUDIT_OBJ_ROLE:
3571 case AUDIT_OBJ_TYPE:
3572 /* only 'equals' and 'not equals' fit user, role, and type */
3573 if (op != Audit_equal && op != Audit_not_equal)
3574 return -EINVAL;
3575 break;
3576 case AUDIT_SUBJ_SEN:
3577 case AUDIT_SUBJ_CLR:
3578 case AUDIT_OBJ_LEV_LOW:
3579 case AUDIT_OBJ_LEV_HIGH:
3580 /* we do not allow a range, indicated by the presence of '-' */
3581 if (strchr(rulestr, '-'))
3582 return -EINVAL;
3583 break;
3584 default:
3585 /* only the above fields are valid */
3586 return -EINVAL;
3587 }
3588
3589 tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3590 if (!tmprule)
3591 return -ENOMEM;
3592 context_init(&tmprule->au_ctxt);
3593
3594 rcu_read_lock();
3595 policy = rcu_dereference(state->policy);
3596 policydb = &policy->policydb;
3597 tmprule->au_seqno = policy->latest_granting;
3598 switch (field) {
3599 case AUDIT_SUBJ_USER:
3600 case AUDIT_OBJ_USER:
3601 userdatum = symtab_search(&policydb->p_users, rulestr);
3602 if (!userdatum) {
3603 rc = -EINVAL;
3604 goto err;
3605 }
3606 tmprule->au_ctxt.user = userdatum->value;
3607 break;
3608 case AUDIT_SUBJ_ROLE:
3609 case AUDIT_OBJ_ROLE:
3610 roledatum = symtab_search(&policydb->p_roles, rulestr);
3611 if (!roledatum) {
3612 rc = -EINVAL;
3613 goto err;
3614 }
3615 tmprule->au_ctxt.role = roledatum->value;
3616 break;
3617 case AUDIT_SUBJ_TYPE:
3618 case AUDIT_OBJ_TYPE:
3619 typedatum = symtab_search(&policydb->p_types, rulestr);
3620 if (!typedatum) {
3621 rc = -EINVAL;
3622 goto err;
3623 }
3624 tmprule->au_ctxt.type = typedatum->value;
3625 break;
3626 case AUDIT_SUBJ_SEN:
3627 case AUDIT_SUBJ_CLR:
3628 case AUDIT_OBJ_LEV_LOW:
3629 case AUDIT_OBJ_LEV_HIGH:
3630 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3631 GFP_ATOMIC);
3632 if (rc)
3633 goto err;
3634 break;
3635 }
3636 rcu_read_unlock();
3637
3638 *rule = tmprule;
3639 return 0;
3640
3641 err:
3642 rcu_read_unlock();
3643 selinux_audit_rule_free(tmprule);
3644 *rule = NULL;
3645 return rc;
3646 }
3647
3648 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3649 int selinux_audit_rule_known(struct audit_krule *rule)
3650 {
3651 u32 i;
3652
3653 for (i = 0; i < rule->field_count; i++) {
3654 struct audit_field *f = &rule->fields[i];
3655 switch (f->type) {
3656 case AUDIT_SUBJ_USER:
3657 case AUDIT_SUBJ_ROLE:
3658 case AUDIT_SUBJ_TYPE:
3659 case AUDIT_SUBJ_SEN:
3660 case AUDIT_SUBJ_CLR:
3661 case AUDIT_OBJ_USER:
3662 case AUDIT_OBJ_ROLE:
3663 case AUDIT_OBJ_TYPE:
3664 case AUDIT_OBJ_LEV_LOW:
3665 case AUDIT_OBJ_LEV_HIGH:
3666 return 1;
3667 }
3668 }
3669
3670 return 0;
3671 }
3672
selinux_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * vrule)3673 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3674 {
3675 struct selinux_state *state = &selinux_state;
3676 struct selinux_policy *policy;
3677 struct context *ctxt;
3678 struct mls_level *level;
3679 struct selinux_audit_rule *rule = vrule;
3680 int match = 0;
3681
3682 if (unlikely(!rule)) {
3683 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3684 return -ENOENT;
3685 }
3686
3687 if (!selinux_initialized())
3688 return 0;
3689
3690 rcu_read_lock();
3691
3692 policy = rcu_dereference(state->policy);
3693
3694 if (rule->au_seqno < policy->latest_granting) {
3695 match = -ESTALE;
3696 goto out;
3697 }
3698
3699 ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3700 if (unlikely(!ctxt)) {
3701 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3702 prop->selinux.secid);
3703 match = -ENOENT;
3704 goto out;
3705 }
3706
3707 /* a field/op pair that is not caught here will simply fall through
3708 without a match */
3709 switch (field) {
3710 case AUDIT_SUBJ_USER:
3711 case AUDIT_OBJ_USER:
3712 switch (op) {
3713 case Audit_equal:
3714 match = (ctxt->user == rule->au_ctxt.user);
3715 break;
3716 case Audit_not_equal:
3717 match = (ctxt->user != rule->au_ctxt.user);
3718 break;
3719 }
3720 break;
3721 case AUDIT_SUBJ_ROLE:
3722 case AUDIT_OBJ_ROLE:
3723 switch (op) {
3724 case Audit_equal:
3725 match = (ctxt->role == rule->au_ctxt.role);
3726 break;
3727 case Audit_not_equal:
3728 match = (ctxt->role != rule->au_ctxt.role);
3729 break;
3730 }
3731 break;
3732 case AUDIT_SUBJ_TYPE:
3733 case AUDIT_OBJ_TYPE:
3734 switch (op) {
3735 case Audit_equal:
3736 match = (ctxt->type == rule->au_ctxt.type);
3737 break;
3738 case Audit_not_equal:
3739 match = (ctxt->type != rule->au_ctxt.type);
3740 break;
3741 }
3742 break;
3743 case AUDIT_SUBJ_SEN:
3744 case AUDIT_SUBJ_CLR:
3745 case AUDIT_OBJ_LEV_LOW:
3746 case AUDIT_OBJ_LEV_HIGH:
3747 level = ((field == AUDIT_SUBJ_SEN ||
3748 field == AUDIT_OBJ_LEV_LOW) ?
3749 &ctxt->range.level[0] : &ctxt->range.level[1]);
3750 switch (op) {
3751 case Audit_equal:
3752 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3753 level);
3754 break;
3755 case Audit_not_equal:
3756 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3757 level);
3758 break;
3759 case Audit_lt:
3760 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3761 level) &&
3762 !mls_level_eq(&rule->au_ctxt.range.level[0],
3763 level));
3764 break;
3765 case Audit_le:
3766 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3767 level);
3768 break;
3769 case Audit_gt:
3770 match = (mls_level_dom(level,
3771 &rule->au_ctxt.range.level[0]) &&
3772 !mls_level_eq(level,
3773 &rule->au_ctxt.range.level[0]));
3774 break;
3775 case Audit_ge:
3776 match = mls_level_dom(level,
3777 &rule->au_ctxt.range.level[0]);
3778 break;
3779 }
3780 }
3781
3782 out:
3783 rcu_read_unlock();
3784 return match;
3785 }
3786
aurule_avc_callback(u32 event)3787 static int aurule_avc_callback(u32 event)
3788 {
3789 if (event == AVC_CALLBACK_RESET)
3790 return audit_update_lsm_rules();
3791 return 0;
3792 }
3793
aurule_init(void)3794 static int __init aurule_init(void)
3795 {
3796 int err;
3797
3798 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3799 if (err)
3800 panic("avc_add_callback() failed, error %d\n", err);
3801
3802 return err;
3803 }
3804 __initcall(aurule_init);
3805
3806 #ifdef CONFIG_NETLABEL
3807 /**
3808 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3809 * @secattr: the NetLabel packet security attributes
3810 * @sid: the SELinux SID
3811 *
3812 * Description:
3813 * Attempt to cache the context in @ctx, which was derived from the packet in
3814 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3815 * already been initialized.
3816 *
3817 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3818 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3819 u32 sid)
3820 {
3821 u32 *sid_cache;
3822
3823 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3824 if (sid_cache == NULL)
3825 return;
3826 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3827 if (secattr->cache == NULL) {
3828 kfree(sid_cache);
3829 return;
3830 }
3831
3832 *sid_cache = sid;
3833 secattr->cache->free = kfree;
3834 secattr->cache->data = sid_cache;
3835 secattr->flags |= NETLBL_SECATTR_CACHE;
3836 }
3837
3838 /**
3839 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3840 * @secattr: the NetLabel packet security attributes
3841 * @sid: the SELinux SID
3842 *
3843 * Description:
3844 * Convert the given NetLabel security attributes in @secattr into a
3845 * SELinux SID. If the @secattr field does not contain a full SELinux
3846 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3847 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3848 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3849 * conversion for future lookups. Returns zero on success, negative values on
3850 * failure.
3851 *
3852 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3853 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3854 u32 *sid)
3855 {
3856 struct selinux_policy *policy;
3857 struct policydb *policydb;
3858 struct sidtab *sidtab;
3859 int rc;
3860 struct context *ctx;
3861 struct context ctx_new;
3862
3863 if (!selinux_initialized()) {
3864 *sid = SECSID_NULL;
3865 return 0;
3866 }
3867
3868 retry:
3869 rc = 0;
3870 rcu_read_lock();
3871 policy = rcu_dereference(selinux_state.policy);
3872 policydb = &policy->policydb;
3873 sidtab = policy->sidtab;
3874
3875 if (secattr->flags & NETLBL_SECATTR_CACHE)
3876 *sid = *(u32 *)secattr->cache->data;
3877 else if (secattr->flags & NETLBL_SECATTR_SECID)
3878 *sid = secattr->attr.secid;
3879 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3880 rc = -EIDRM;
3881 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3882 if (ctx == NULL)
3883 goto out;
3884
3885 context_init(&ctx_new);
3886 ctx_new.user = ctx->user;
3887 ctx_new.role = ctx->role;
3888 ctx_new.type = ctx->type;
3889 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3890 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3891 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3892 if (rc)
3893 goto out;
3894 }
3895 rc = -EIDRM;
3896 if (!mls_context_isvalid(policydb, &ctx_new)) {
3897 ebitmap_destroy(&ctx_new.range.level[0].cat);
3898 goto out;
3899 }
3900
3901 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3902 ebitmap_destroy(&ctx_new.range.level[0].cat);
3903 if (rc == -ESTALE) {
3904 rcu_read_unlock();
3905 goto retry;
3906 }
3907 if (rc)
3908 goto out;
3909
3910 security_netlbl_cache_add(secattr, *sid);
3911 } else
3912 *sid = SECSID_NULL;
3913
3914 out:
3915 rcu_read_unlock();
3916 return rc;
3917 }
3918
3919 /**
3920 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3921 * @sid: the SELinux SID
3922 * @secattr: the NetLabel packet security attributes
3923 *
3924 * Description:
3925 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3926 * Returns zero on success, negative values on failure.
3927 *
3928 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3929 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3930 {
3931 struct selinux_policy *policy;
3932 struct policydb *policydb;
3933 int rc;
3934 struct context *ctx;
3935
3936 if (!selinux_initialized())
3937 return 0;
3938
3939 rcu_read_lock();
3940 policy = rcu_dereference(selinux_state.policy);
3941 policydb = &policy->policydb;
3942
3943 rc = -ENOENT;
3944 ctx = sidtab_search(policy->sidtab, sid);
3945 if (ctx == NULL)
3946 goto out;
3947
3948 rc = -ENOMEM;
3949 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3950 GFP_ATOMIC);
3951 if (secattr->domain == NULL)
3952 goto out;
3953
3954 secattr->attr.secid = sid;
3955 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3956 mls_export_netlbl_lvl(policydb, ctx, secattr);
3957 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3958 out:
3959 rcu_read_unlock();
3960 return rc;
3961 }
3962 #endif /* CONFIG_NETLABEL */
3963
3964 /**
3965 * __security_read_policy - read the policy.
3966 * @policy: SELinux policy
3967 * @data: binary policy data
3968 * @len: length of data in bytes
3969 *
3970 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3971 static int __security_read_policy(struct selinux_policy *policy,
3972 void *data, size_t *len)
3973 {
3974 int rc;
3975 struct policy_file fp;
3976
3977 fp.data = data;
3978 fp.len = *len;
3979
3980 rc = policydb_write(&policy->policydb, &fp);
3981 if (rc)
3982 return rc;
3983
3984 *len = (unsigned long)fp.data - (unsigned long)data;
3985 return 0;
3986 }
3987
3988 /**
3989 * security_read_policy - read the policy.
3990 * @data: binary policy data
3991 * @len: length of data in bytes
3992 *
3993 */
security_read_policy(void ** data,size_t * len)3994 int security_read_policy(void **data, size_t *len)
3995 {
3996 struct selinux_state *state = &selinux_state;
3997 struct selinux_policy *policy;
3998
3999 policy = rcu_dereference_protected(
4000 state->policy, lockdep_is_held(&state->policy_mutex));
4001 if (!policy)
4002 return -EINVAL;
4003
4004 *len = policy->policydb.len;
4005 *data = vmalloc_user(*len);
4006 if (!*data)
4007 return -ENOMEM;
4008
4009 return __security_read_policy(policy, *data, len);
4010 }
4011
4012 /**
4013 * security_read_state_kernel - read the policy.
4014 * @data: binary policy data
4015 * @len: length of data in bytes
4016 *
4017 * Allocates kernel memory for reading SELinux policy.
4018 * This function is for internal use only and should not
4019 * be used for returning data to user space.
4020 *
4021 * This function must be called with policy_mutex held.
4022 */
security_read_state_kernel(void ** data,size_t * len)4023 int security_read_state_kernel(void **data, size_t *len)
4024 {
4025 int err;
4026 struct selinux_state *state = &selinux_state;
4027 struct selinux_policy *policy;
4028
4029 policy = rcu_dereference_protected(
4030 state->policy, lockdep_is_held(&state->policy_mutex));
4031 if (!policy)
4032 return -EINVAL;
4033
4034 *len = policy->policydb.len;
4035 *data = vmalloc(*len);
4036 if (!*data)
4037 return -ENOMEM;
4038
4039 err = __security_read_policy(policy, *data, len);
4040 if (err) {
4041 vfree(*data);
4042 *data = NULL;
4043 *len = 0;
4044 }
4045 return err;
4046 }
4047