1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Tasks (threads and processes). 4 //! 5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h). 6 7 use crate::{ 8 bindings, 9 ffi::{c_int, c_long, c_uint}, 10 pid_namespace::PidNamespace, 11 types::{ARef, NotThreadSafe, Opaque}, 12 }; 13 use core::{ 14 cmp::{Eq, PartialEq}, 15 ops::Deref, 16 ptr, 17 }; 18 19 /// A sentinel value used for infinite timeouts. 20 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX; 21 22 /// Bitmask for tasks that are sleeping in an interruptible state. 23 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int; 24 /// Bitmask for tasks that are sleeping in an uninterruptible state. 25 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int; 26 /// Bitmask for tasks that are sleeping in a freezable state. 27 pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int; 28 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or 29 /// uninterruptible sleep. 30 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint; 31 32 /// Returns the currently running task. 33 #[macro_export] 34 macro_rules! current { 35 () => { 36 // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the 37 // caller. 38 unsafe { &*$crate::task::Task::current() } 39 }; 40 } 41 42 /// Returns the currently running task's pid namespace. 43 #[macro_export] 44 macro_rules! current_pid_ns { 45 () => { 46 // SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive 47 // the caller. 48 unsafe { &*$crate::task::Task::current_pid_ns() } 49 }; 50 } 51 52 /// Wraps the kernel's `struct task_struct`. 53 /// 54 /// # Invariants 55 /// 56 /// All instances are valid tasks created by the C portion of the kernel. 57 /// 58 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures 59 /// that the allocation remains valid at least until the matching call to `put_task_struct`. 60 /// 61 /// # Examples 62 /// 63 /// The following is an example of getting the PID of the current thread with zero additional cost 64 /// when compared to the C version: 65 /// 66 /// ``` 67 /// let pid = current!().pid(); 68 /// ``` 69 /// 70 /// Getting the PID of the current process, also zero additional cost: 71 /// 72 /// ``` 73 /// let pid = current!().group_leader().pid(); 74 /// ``` 75 /// 76 /// Getting the current task and storing it in some struct. The reference count is automatically 77 /// incremented when creating `State` and decremented when it is dropped: 78 /// 79 /// ``` 80 /// use kernel::{task::Task, types::ARef}; 81 /// 82 /// struct State { 83 /// creator: ARef<Task>, 84 /// index: u32, 85 /// } 86 /// 87 /// impl State { 88 /// fn new() -> Self { 89 /// Self { 90 /// creator: current!().into(), 91 /// index: 0, 92 /// } 93 /// } 94 /// } 95 /// ``` 96 #[repr(transparent)] 97 pub struct Task(pub(crate) Opaque<bindings::task_struct>); 98 99 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an 100 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in 101 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor 102 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`. 103 unsafe impl Send for Task {} 104 105 // SAFETY: It's OK to access `Task` through shared references from other threads because we're 106 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly 107 // synchronised by C code (e.g., `signal_pending`). 108 unsafe impl Sync for Task {} 109 110 /// The type of process identifiers (PIDs). 111 pub type Pid = bindings::pid_t; 112 113 /// The type of user identifiers (UIDs). 114 #[derive(Copy, Clone)] 115 pub struct Kuid { 116 kuid: bindings::kuid_t, 117 } 118 119 impl Task { 120 /// Returns a raw pointer to the current task. 121 /// 122 /// It is up to the user to use the pointer correctly. 123 #[inline] current_raw() -> *mut bindings::task_struct124 pub fn current_raw() -> *mut bindings::task_struct { 125 // SAFETY: Getting the current pointer is always safe. 126 unsafe { bindings::get_current() } 127 } 128 129 /// Returns a task reference for the currently executing task/thread. 130 /// 131 /// The recommended way to get the current task/thread is to use the 132 /// [`current`] macro because it is safe. 133 /// 134 /// # Safety 135 /// 136 /// Callers must ensure that the returned object doesn't outlive the current task/thread. current() -> impl Deref<Target = Task>137 pub unsafe fn current() -> impl Deref<Target = Task> { 138 struct TaskRef<'a> { 139 task: &'a Task, 140 _not_send: NotThreadSafe, 141 } 142 143 impl Deref for TaskRef<'_> { 144 type Target = Task; 145 146 fn deref(&self) -> &Self::Target { 147 self.task 148 } 149 } 150 151 let current = Task::current_raw(); 152 TaskRef { 153 // SAFETY: If the current thread is still running, the current task is valid. Given 154 // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread 155 // (where it could potentially outlive the caller). 156 task: unsafe { &*current.cast() }, 157 _not_send: NotThreadSafe, 158 } 159 } 160 161 /// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace. 162 /// 163 /// This function can be used to create an unbounded lifetime by e.g., storing the returned 164 /// PidNamespace in a global variable which would be a bug. So the recommended way to get the 165 /// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is 166 /// safe. 167 /// 168 /// # Safety 169 /// 170 /// Callers must ensure that the returned object doesn't outlive the current task/thread. current_pid_ns() -> impl Deref<Target = PidNamespace>171 pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> { 172 struct PidNamespaceRef<'a> { 173 task: &'a PidNamespace, 174 _not_send: NotThreadSafe, 175 } 176 177 impl Deref for PidNamespaceRef<'_> { 178 type Target = PidNamespace; 179 180 fn deref(&self) -> &Self::Target { 181 self.task 182 } 183 } 184 185 // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`. 186 // 187 // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A 188 // `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect 189 // on the calling `Task`'s pid namespace. It will only effect the pid namespace of children 190 // created by the calling `Task`. This invariant guarantees that after having acquired a 191 // reference to a `Task`'s pid namespace it will remain unchanged. 192 // 193 // When a task has exited and been reaped `release_task()` will be called. This will set 194 // the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task 195 // that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a 196 // referencing count to 197 // the `Task` will prevent `release_task()` being called. 198 // 199 // In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function 200 // can be used. There are two cases to consider: 201 // 202 // (1) retrieving the `PidNamespace` of the `current` task 203 // (2) retrieving the `PidNamespace` of a non-`current` task 204 // 205 // From system call context retrieving the `PidNamespace` for case (1) is always safe and 206 // requires neither RCU locking nor a reference count to be held. Retrieving the 207 // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath 208 // like that is exposed to Rust. 209 // 210 // Retrieving the `PidNamespace` from system call context for (2) requires RCU protection. 211 // Accessing `PidNamespace` outside of RCU protection requires a reference count that 212 // must've been acquired while holding the RCU lock. Note that accessing a non-`current` 213 // task means `NULL` can be returned as the non-`current` task could have already passed 214 // through `release_task()`. 215 // 216 // To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the 217 // returned `PidNamespace` cannot outlive the calling scope. The associated 218 // `current_pid_ns()` function should not be called directly as it could be abused to 219 // created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows 220 // Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU 221 // protection and without having to acquire a reference count. 222 // 223 // For (2) the `task_get_pid_ns()` method must be used. This will always acquire a 224 // reference on `PidNamespace` and will return an `Option` to force the caller to 225 // explicitly handle the case where `PidNamespace` is `None`, something that tends to be 226 // forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it 227 // difficult to perform operations that are otherwise safe without holding a reference 228 // count as long as RCU protection is guaranteed. But it is not important currently. But we 229 // do want it in the future. 230 // 231 // Note for (2) the required RCU protection around calling `task_active_pid_ns()` 232 // synchronizes against putting the last reference of the associated `struct pid` of 233 // `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the 234 // `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be 235 // `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via 236 // `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired 237 // from `task->thread_pid` to finish. 238 // 239 // SAFETY: The current task's pid namespace is valid as long as the current task is running. 240 let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) }; 241 PidNamespaceRef { 242 // SAFETY: If the current thread is still running, the current task and its associated 243 // pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be 244 // transferred to another thread (where it could potentially outlive the current 245 // `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the 246 // current task/thread. 247 task: unsafe { PidNamespace::from_ptr(pidns) }, 248 _not_send: NotThreadSafe, 249 } 250 } 251 252 /// Returns a raw pointer to the task. 253 #[inline] as_ptr(&self) -> *mut bindings::task_struct254 pub fn as_ptr(&self) -> *mut bindings::task_struct { 255 self.0.get() 256 } 257 258 /// Returns the group leader of the given task. group_leader(&self) -> &Task259 pub fn group_leader(&self) -> &Task { 260 // SAFETY: The group leader of a task never changes after initialization, so reading this 261 // field is not a data race. 262 let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) }; 263 264 // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`, 265 // and given that a task has a reference to its group leader, we know it must be valid for 266 // the lifetime of the returned task reference. 267 unsafe { &*ptr.cast() } 268 } 269 270 /// Returns the PID of the given task. pid(&self) -> Pid271 pub fn pid(&self) -> Pid { 272 // SAFETY: The pid of a task never changes after initialization, so reading this field is 273 // not a data race. 274 unsafe { *ptr::addr_of!((*self.as_ptr()).pid) } 275 } 276 277 /// Returns the UID of the given task. uid(&self) -> Kuid278 pub fn uid(&self) -> Kuid { 279 // SAFETY: It's always safe to call `task_uid` on a valid task. 280 Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) }) 281 } 282 283 /// Returns the effective UID of the given task. euid(&self) -> Kuid284 pub fn euid(&self) -> Kuid { 285 // SAFETY: It's always safe to call `task_euid` on a valid task. 286 Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) }) 287 } 288 289 /// Determines whether the given task has pending signals. signal_pending(&self) -> bool290 pub fn signal_pending(&self) -> bool { 291 // SAFETY: It's always safe to call `signal_pending` on a valid task. 292 unsafe { bindings::signal_pending(self.as_ptr()) != 0 } 293 } 294 295 /// Returns task's pid namespace with elevated reference count get_pid_ns(&self) -> Option<ARef<PidNamespace>>296 pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> { 297 // SAFETY: By the type invariant, we know that `self.0` is valid. 298 let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) }; 299 if ptr.is_null() { 300 None 301 } else { 302 // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a 303 // reference count via `task_get_pid_ns()`. 304 // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`. 305 Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) }) 306 } 307 } 308 309 /// Returns the given task's pid in the provided pid namespace. 310 #[doc(alias = "task_tgid_nr_ns")] tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid311 pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid { 312 let pidns = match pidns { 313 Some(pidns) => pidns.as_ptr(), 314 None => core::ptr::null_mut(), 315 }; 316 // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid 317 // PidNamespace that we can use as a pointer or we received an empty PidNamespace and 318 // thus pass a null pointer. The underlying C function is safe to be used with NULL 319 // pointers. 320 unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) } 321 } 322 323 /// Wakes up the task. wake_up(&self)324 pub fn wake_up(&self) { 325 // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task 326 // running. 327 unsafe { bindings::wake_up_process(self.as_ptr()) }; 328 } 329 } 330 331 // SAFETY: The type invariants guarantee that `Task` is always refcounted. 332 unsafe impl crate::types::AlwaysRefCounted for Task { inc_ref(&self)333 fn inc_ref(&self) { 334 // SAFETY: The existence of a shared reference means that the refcount is nonzero. 335 unsafe { bindings::get_task_struct(self.as_ptr()) }; 336 } 337 dec_ref(obj: ptr::NonNull<Self>)338 unsafe fn dec_ref(obj: ptr::NonNull<Self>) { 339 // SAFETY: The safety requirements guarantee that the refcount is nonzero. 340 unsafe { bindings::put_task_struct(obj.cast().as_ptr()) } 341 } 342 } 343 344 impl Kuid { 345 /// Get the current euid. 346 #[inline] current_euid() -> Kuid347 pub fn current_euid() -> Kuid { 348 // SAFETY: Just an FFI call. 349 Self::from_raw(unsafe { bindings::current_euid() }) 350 } 351 352 /// Create a `Kuid` given the raw C type. 353 #[inline] from_raw(kuid: bindings::kuid_t) -> Self354 pub fn from_raw(kuid: bindings::kuid_t) -> Self { 355 Self { kuid } 356 } 357 358 /// Turn this kuid into the raw C type. 359 #[inline] into_raw(self) -> bindings::kuid_t360 pub fn into_raw(self) -> bindings::kuid_t { 361 self.kuid 362 } 363 364 /// Converts this kernel UID into a userspace UID. 365 /// 366 /// Uses the namespace of the current task. 367 #[inline] into_uid_in_current_ns(self) -> bindings::uid_t368 pub fn into_uid_in_current_ns(self) -> bindings::uid_t { 369 // SAFETY: Just an FFI call. 370 unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) } 371 } 372 } 373 374 impl PartialEq for Kuid { 375 #[inline] eq(&self, other: &Kuid) -> bool376 fn eq(&self, other: &Kuid) -> bool { 377 // SAFETY: Just an FFI call. 378 unsafe { bindings::uid_eq(self.kuid, other.kuid) } 379 } 380 } 381 382 impl Eq for Kuid {} 383