1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6 
7 use crate::{
8     bindings,
9     ffi::{c_int, c_long, c_uint},
10     pid_namespace::PidNamespace,
11     types::{ARef, NotThreadSafe, Opaque},
12 };
13 use core::{
14     cmp::{Eq, PartialEq},
15     ops::Deref,
16     ptr,
17 };
18 
19 /// A sentinel value used for infinite timeouts.
20 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
21 
22 /// Bitmask for tasks that are sleeping in an interruptible state.
23 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
24 /// Bitmask for tasks that are sleeping in an uninterruptible state.
25 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
26 /// Bitmask for tasks that are sleeping in a freezable state.
27 pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int;
28 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
29 /// uninterruptible sleep.
30 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
31 
32 /// Returns the currently running task.
33 #[macro_export]
34 macro_rules! current {
35     () => {
36         // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
37         // caller.
38         unsafe { &*$crate::task::Task::current() }
39     };
40 }
41 
42 /// Returns the currently running task's pid namespace.
43 #[macro_export]
44 macro_rules! current_pid_ns {
45     () => {
46         // SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive
47         // the caller.
48         unsafe { &*$crate::task::Task::current_pid_ns() }
49     };
50 }
51 
52 /// Wraps the kernel's `struct task_struct`.
53 ///
54 /// # Invariants
55 ///
56 /// All instances are valid tasks created by the C portion of the kernel.
57 ///
58 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
59 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
60 ///
61 /// # Examples
62 ///
63 /// The following is an example of getting the PID of the current thread with zero additional cost
64 /// when compared to the C version:
65 ///
66 /// ```
67 /// let pid = current!().pid();
68 /// ```
69 ///
70 /// Getting the PID of the current process, also zero additional cost:
71 ///
72 /// ```
73 /// let pid = current!().group_leader().pid();
74 /// ```
75 ///
76 /// Getting the current task and storing it in some struct. The reference count is automatically
77 /// incremented when creating `State` and decremented when it is dropped:
78 ///
79 /// ```
80 /// use kernel::{task::Task, types::ARef};
81 ///
82 /// struct State {
83 ///     creator: ARef<Task>,
84 ///     index: u32,
85 /// }
86 ///
87 /// impl State {
88 ///     fn new() -> Self {
89 ///         Self {
90 ///             creator: current!().into(),
91 ///             index: 0,
92 ///         }
93 ///     }
94 /// }
95 /// ```
96 #[repr(transparent)]
97 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
98 
99 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
100 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
101 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
102 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
103 unsafe impl Send for Task {}
104 
105 // SAFETY: It's OK to access `Task` through shared references from other threads because we're
106 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
107 // synchronised by C code (e.g., `signal_pending`).
108 unsafe impl Sync for Task {}
109 
110 /// The type of process identifiers (PIDs).
111 pub type Pid = bindings::pid_t;
112 
113 /// The type of user identifiers (UIDs).
114 #[derive(Copy, Clone)]
115 pub struct Kuid {
116     kuid: bindings::kuid_t,
117 }
118 
119 impl Task {
120     /// Returns a raw pointer to the current task.
121     ///
122     /// It is up to the user to use the pointer correctly.
123     #[inline]
current_raw() -> *mut bindings::task_struct124     pub fn current_raw() -> *mut bindings::task_struct {
125         // SAFETY: Getting the current pointer is always safe.
126         unsafe { bindings::get_current() }
127     }
128 
129     /// Returns a task reference for the currently executing task/thread.
130     ///
131     /// The recommended way to get the current task/thread is to use the
132     /// [`current`] macro because it is safe.
133     ///
134     /// # Safety
135     ///
136     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
current() -> impl Deref<Target = Task>137     pub unsafe fn current() -> impl Deref<Target = Task> {
138         struct TaskRef<'a> {
139             task: &'a Task,
140             _not_send: NotThreadSafe,
141         }
142 
143         impl Deref for TaskRef<'_> {
144             type Target = Task;
145 
146             fn deref(&self) -> &Self::Target {
147                 self.task
148             }
149         }
150 
151         let current = Task::current_raw();
152         TaskRef {
153             // SAFETY: If the current thread is still running, the current task is valid. Given
154             // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
155             // (where it could potentially outlive the caller).
156             task: unsafe { &*current.cast() },
157             _not_send: NotThreadSafe,
158         }
159     }
160 
161     /// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace.
162     ///
163     /// This function can be used to create an unbounded lifetime by e.g., storing the returned
164     /// PidNamespace in a global variable which would be a bug. So the recommended way to get the
165     /// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is
166     /// safe.
167     ///
168     /// # Safety
169     ///
170     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
current_pid_ns() -> impl Deref<Target = PidNamespace>171     pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> {
172         struct PidNamespaceRef<'a> {
173             task: &'a PidNamespace,
174             _not_send: NotThreadSafe,
175         }
176 
177         impl Deref for PidNamespaceRef<'_> {
178             type Target = PidNamespace;
179 
180             fn deref(&self) -> &Self::Target {
181                 self.task
182             }
183         }
184 
185         // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
186         //
187         // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A
188         // `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect
189         // on the calling `Task`'s pid namespace. It will only effect the pid namespace of children
190         // created by the calling `Task`. This invariant guarantees that after having acquired a
191         // reference to a `Task`'s pid namespace it will remain unchanged.
192         //
193         // When a task has exited and been reaped `release_task()` will be called. This will set
194         // the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task
195         // that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a
196         // referencing count to
197         // the `Task` will prevent `release_task()` being called.
198         //
199         // In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function
200         // can be used. There are two cases to consider:
201         //
202         // (1) retrieving the `PidNamespace` of the `current` task
203         // (2) retrieving the `PidNamespace` of a non-`current` task
204         //
205         // From system call context retrieving the `PidNamespace` for case (1) is always safe and
206         // requires neither RCU locking nor a reference count to be held. Retrieving the
207         // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
208         // like that is exposed to Rust.
209         //
210         // Retrieving the `PidNamespace` from system call context for (2) requires RCU protection.
211         // Accessing `PidNamespace` outside of RCU protection requires a reference count that
212         // must've been acquired while holding the RCU lock. Note that accessing a non-`current`
213         // task means `NULL` can be returned as the non-`current` task could have already passed
214         // through `release_task()`.
215         //
216         // To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the
217         // returned `PidNamespace` cannot outlive the calling scope. The associated
218         // `current_pid_ns()` function should not be called directly as it could be abused to
219         // created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows
220         // Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU
221         // protection and without having to acquire a reference count.
222         //
223         // For (2) the `task_get_pid_ns()` method must be used. This will always acquire a
224         // reference on `PidNamespace` and will return an `Option` to force the caller to
225         // explicitly handle the case where `PidNamespace` is `None`, something that tends to be
226         // forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it
227         // difficult to perform operations that are otherwise safe without holding a reference
228         // count as long as RCU protection is guaranteed. But it is not important currently. But we
229         // do want it in the future.
230         //
231         // Note for (2) the required RCU protection around calling `task_active_pid_ns()`
232         // synchronizes against putting the last reference of the associated `struct pid` of
233         // `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the
234         // `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be
235         // `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via
236         // `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired
237         // from `task->thread_pid` to finish.
238         //
239         // SAFETY: The current task's pid namespace is valid as long as the current task is running.
240         let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) };
241         PidNamespaceRef {
242             // SAFETY: If the current thread is still running, the current task and its associated
243             // pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be
244             // transferred to another thread (where it could potentially outlive the current
245             // `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the
246             // current task/thread.
247             task: unsafe { PidNamespace::from_ptr(pidns) },
248             _not_send: NotThreadSafe,
249         }
250     }
251 
252     /// Returns a raw pointer to the task.
253     #[inline]
as_ptr(&self) -> *mut bindings::task_struct254     pub fn as_ptr(&self) -> *mut bindings::task_struct {
255         self.0.get()
256     }
257 
258     /// Returns the group leader of the given task.
group_leader(&self) -> &Task259     pub fn group_leader(&self) -> &Task {
260         // SAFETY: The group leader of a task never changes after initialization, so reading this
261         // field is not a data race.
262         let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
263 
264         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
265         // and given that a task has a reference to its group leader, we know it must be valid for
266         // the lifetime of the returned task reference.
267         unsafe { &*ptr.cast() }
268     }
269 
270     /// Returns the PID of the given task.
pid(&self) -> Pid271     pub fn pid(&self) -> Pid {
272         // SAFETY: The pid of a task never changes after initialization, so reading this field is
273         // not a data race.
274         unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
275     }
276 
277     /// Returns the UID of the given task.
uid(&self) -> Kuid278     pub fn uid(&self) -> Kuid {
279         // SAFETY: It's always safe to call `task_uid` on a valid task.
280         Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
281     }
282 
283     /// Returns the effective UID of the given task.
euid(&self) -> Kuid284     pub fn euid(&self) -> Kuid {
285         // SAFETY: It's always safe to call `task_euid` on a valid task.
286         Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
287     }
288 
289     /// Determines whether the given task has pending signals.
signal_pending(&self) -> bool290     pub fn signal_pending(&self) -> bool {
291         // SAFETY: It's always safe to call `signal_pending` on a valid task.
292         unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
293     }
294 
295     /// Returns task's pid namespace with elevated reference count
get_pid_ns(&self) -> Option<ARef<PidNamespace>>296     pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
297         // SAFETY: By the type invariant, we know that `self.0` is valid.
298         let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
299         if ptr.is_null() {
300             None
301         } else {
302             // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
303             // reference count via `task_get_pid_ns()`.
304             // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
305             Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
306         }
307     }
308 
309     /// Returns the given task's pid in the provided pid namespace.
310     #[doc(alias = "task_tgid_nr_ns")]
tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid311     pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
312         let pidns = match pidns {
313             Some(pidns) => pidns.as_ptr(),
314             None => core::ptr::null_mut(),
315         };
316         // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
317         // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
318         // thus pass a null pointer. The underlying C function is safe to be used with NULL
319         // pointers.
320         unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
321     }
322 
323     /// Wakes up the task.
wake_up(&self)324     pub fn wake_up(&self) {
325         // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task
326         // running.
327         unsafe { bindings::wake_up_process(self.as_ptr()) };
328     }
329 }
330 
331 // SAFETY: The type invariants guarantee that `Task` is always refcounted.
332 unsafe impl crate::types::AlwaysRefCounted for Task {
inc_ref(&self)333     fn inc_ref(&self) {
334         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
335         unsafe { bindings::get_task_struct(self.as_ptr()) };
336     }
337 
dec_ref(obj: ptr::NonNull<Self>)338     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
339         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
340         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
341     }
342 }
343 
344 impl Kuid {
345     /// Get the current euid.
346     #[inline]
current_euid() -> Kuid347     pub fn current_euid() -> Kuid {
348         // SAFETY: Just an FFI call.
349         Self::from_raw(unsafe { bindings::current_euid() })
350     }
351 
352     /// Create a `Kuid` given the raw C type.
353     #[inline]
from_raw(kuid: bindings::kuid_t) -> Self354     pub fn from_raw(kuid: bindings::kuid_t) -> Self {
355         Self { kuid }
356     }
357 
358     /// Turn this kuid into the raw C type.
359     #[inline]
into_raw(self) -> bindings::kuid_t360     pub fn into_raw(self) -> bindings::kuid_t {
361         self.kuid
362     }
363 
364     /// Converts this kernel UID into a userspace UID.
365     ///
366     /// Uses the namespace of the current task.
367     #[inline]
into_uid_in_current_ns(self) -> bindings::uid_t368     pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
369         // SAFETY: Just an FFI call.
370         unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
371     }
372 }
373 
374 impl PartialEq for Kuid {
375     #[inline]
eq(&self, other: &Kuid) -> bool376     fn eq(&self, other: &Kuid) -> bool {
377         // SAFETY: Just an FFI call.
378         unsafe { bindings::uid_eq(self.kuid, other.kuid) }
379     }
380 }
381 
382 impl Eq for Kuid {}
383