1 // SPDX-License-Identifier: GPL-2.0
2 
3 // Copyright (C) 2024 Google LLC.
4 
5 //! A linked list implementation.
6 
7 // May not be needed in Rust 1.87.0 (pending beta backport).
8 #![allow(clippy::ptr_eq)]
9 
10 use crate::sync::ArcBorrow;
11 use crate::types::Opaque;
12 use core::iter::{DoubleEndedIterator, FusedIterator};
13 use core::marker::PhantomData;
14 use core::ptr;
15 use pin_init::PinInit;
16 
17 mod impl_list_item_mod;
18 pub use self::impl_list_item_mod::{
19     impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
20 };
21 
22 mod arc;
23 pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
24 
25 mod arc_field;
26 pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
27 
28 /// A linked list.
29 ///
30 /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
31 /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
32 /// prev/next pointers are not used for several linked lists.
33 ///
34 /// # Invariants
35 ///
36 /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
37 ///   field of the first element in the list.
38 /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
39 /// * For every item in the list, the list owns the associated [`ListArc`] reference and has
40 ///   exclusive access to the `ListLinks` field.
41 pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
42     first: *mut ListLinksFields,
43     _ty: PhantomData<ListArc<T, ID>>,
44 }
45 
46 // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
47 // type of access to the `ListArc<T, ID>` elements.
48 unsafe impl<T, const ID: u64> Send for List<T, ID>
49 where
50     ListArc<T, ID>: Send,
51     T: ?Sized + ListItem<ID>,
52 {
53 }
54 // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
55 // type of access to the `ListArc<T, ID>` elements.
56 unsafe impl<T, const ID: u64> Sync for List<T, ID>
57 where
58     ListArc<T, ID>: Sync,
59     T: ?Sized + ListItem<ID>,
60 {
61 }
62 
63 /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
64 ///
65 /// # Safety
66 ///
67 /// Implementers must ensure that they provide the guarantees documented on methods provided by
68 /// this trait.
69 ///
70 /// [`ListArc<Self>`]: ListArc
71 pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
72     /// Views the [`ListLinks`] for this value.
73     ///
74     /// # Guarantees
75     ///
76     /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
77     /// since the most recent such call, then this returns the same pointer as the one returned by
78     /// the most recent call to `prepare_to_insert`.
79     ///
80     /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
81     ///
82     /// # Safety
83     ///
84     /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
view_links(me: *const Self) -> *mut ListLinks<ID>85     unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
86 
87     /// View the full value given its [`ListLinks`] field.
88     ///
89     /// Can only be used when the value is in a list.
90     ///
91     /// # Guarantees
92     ///
93     /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
94     /// * The returned pointer is valid until the next call to `post_remove`.
95     ///
96     /// # Safety
97     ///
98     /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
99     ///   from a call to `view_links` that happened after the most recent call to
100     ///   `prepare_to_insert`.
101     /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
102     ///   been called.
view_value(me: *mut ListLinks<ID>) -> *const Self103     unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
104 
105     /// This is called when an item is inserted into a [`List`].
106     ///
107     /// # Guarantees
108     ///
109     /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
110     /// called.
111     ///
112     /// # Safety
113     ///
114     /// * The provided pointer must point at a valid value in an [`Arc`].
115     /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
116     /// * The caller must own the [`ListArc`] for this value.
117     /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
118     ///   called after this call to `prepare_to_insert`.
119     ///
120     /// [`Arc`]: crate::sync::Arc
prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>121     unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
122 
123     /// This undoes a previous call to `prepare_to_insert`.
124     ///
125     /// # Guarantees
126     ///
127     /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
128     ///
129     /// # Safety
130     ///
131     /// The provided pointer must be the pointer returned by the most recent call to
132     /// `prepare_to_insert`.
post_remove(me: *mut ListLinks<ID>) -> *const Self133     unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
134 }
135 
136 #[repr(C)]
137 #[derive(Copy, Clone)]
138 struct ListLinksFields {
139     next: *mut ListLinksFields,
140     prev: *mut ListLinksFields,
141 }
142 
143 /// The prev/next pointers for an item in a linked list.
144 ///
145 /// # Invariants
146 ///
147 /// The fields are null if and only if this item is not in a list.
148 #[repr(transparent)]
149 pub struct ListLinks<const ID: u64 = 0> {
150     // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
151     // list.
152     inner: Opaque<ListLinksFields>,
153 }
154 
155 // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
156 // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
157 // move this an instance of this type to a different thread if the pointees are `!Send`.
158 unsafe impl<const ID: u64> Send for ListLinks<ID> {}
159 // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
160 // okay to have immutable access to a ListLinks from several threads at once.
161 unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
162 
163 impl<const ID: u64> ListLinks<ID> {
164     /// Creates a new initializer for this type.
new() -> impl PinInit<Self>165     pub fn new() -> impl PinInit<Self> {
166         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
167         // not be constructed in an `Arc` that already has a `ListArc`.
168         ListLinks {
169             inner: Opaque::new(ListLinksFields {
170                 prev: ptr::null_mut(),
171                 next: ptr::null_mut(),
172             }),
173         }
174     }
175 
176     /// # Safety
177     ///
178     /// `me` must be dereferenceable.
179     #[inline]
fields(me: *mut Self) -> *mut ListLinksFields180     unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
181         // SAFETY: The caller promises that the pointer is valid.
182         unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
183     }
184 
185     /// # Safety
186     ///
187     /// `me` must be dereferenceable.
188     #[inline]
from_fields(me: *mut ListLinksFields) -> *mut Self189     unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
190         me.cast()
191     }
192 }
193 
194 /// Similar to [`ListLinks`], but also contains a pointer to the full value.
195 ///
196 /// This type can be used instead of [`ListLinks`] to support lists with trait objects.
197 #[repr(C)]
198 pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
199     /// The `ListLinks` field inside this value.
200     ///
201     /// This is public so that it can be used with `impl_has_list_links!`.
202     pub inner: ListLinks<ID>,
203     // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
204     // `ptr::null()` doesn't work for `T: ?Sized`.
205     self_ptr: Opaque<*const T>,
206 }
207 
208 // SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
209 unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
210 // SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
211 // it's okay to have immutable access to a ListLinks from several threads at once.
212 //
213 // Note that `inner` being a public field does not prevent this type from being opaque, since
214 // `inner` is a opaque type.
215 unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
216 
217 impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
218     /// The offset from the [`ListLinks`] to the self pointer field.
219     pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
220 
221     /// Creates a new initializer for this type.
new() -> impl PinInit<Self>222     pub fn new() -> impl PinInit<Self> {
223         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
224         // not be constructed in an `Arc` that already has a `ListArc`.
225         Self {
226             inner: ListLinks {
227                 inner: Opaque::new(ListLinksFields {
228                     prev: ptr::null_mut(),
229                     next: ptr::null_mut(),
230                 }),
231             },
232             self_ptr: Opaque::uninit(),
233         }
234     }
235 }
236 
237 impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
238     /// Creates a new empty list.
new() -> Self239     pub const fn new() -> Self {
240         Self {
241             first: ptr::null_mut(),
242             _ty: PhantomData,
243         }
244     }
245 
246     /// Returns whether this list is empty.
is_empty(&self) -> bool247     pub fn is_empty(&self) -> bool {
248         self.first.is_null()
249     }
250 
251     /// Inserts `item` before `next` in the cycle.
252     ///
253     /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
254     /// is empty.
255     ///
256     /// # Safety
257     ///
258     /// * `next` must be an element in this list or null.
259     /// * if `next` is null, then the list must be empty.
insert_inner( &mut self, item: ListArc<T, ID>, next: *mut ListLinksFields, ) -> *mut ListLinksFields260     unsafe fn insert_inner(
261         &mut self,
262         item: ListArc<T, ID>,
263         next: *mut ListLinksFields,
264     ) -> *mut ListLinksFields {
265         let raw_item = ListArc::into_raw(item);
266         // SAFETY:
267         // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
268         // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
269         //   the most recent call to `prepare_to_insert`, if any.
270         // * We own the `ListArc`.
271         // * Removing items from this list is always done using `remove_internal_inner`, which
272         //   calls `post_remove` before giving up ownership.
273         let list_links = unsafe { T::prepare_to_insert(raw_item) };
274         // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
275         let item = unsafe { ListLinks::fields(list_links) };
276 
277         // Check if the list is empty.
278         if next.is_null() {
279             // SAFETY: The caller just gave us ownership of these fields.
280             // INVARIANT: A linked list with one item should be cyclic.
281             unsafe {
282                 (*item).next = item;
283                 (*item).prev = item;
284             }
285             self.first = item;
286         } else {
287             // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
288             // it's not null, so it must be valid.
289             let prev = unsafe { (*next).prev };
290             // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
291             // ownership of the fields on `item`.
292             // INVARIANT: This correctly inserts `item` between `prev` and `next`.
293             unsafe {
294                 (*item).next = next;
295                 (*item).prev = prev;
296                 (*prev).next = item;
297                 (*next).prev = item;
298             }
299         }
300 
301         item
302     }
303 
304     /// Add the provided item to the back of the list.
push_back(&mut self, item: ListArc<T, ID>)305     pub fn push_back(&mut self, item: ListArc<T, ID>) {
306         // SAFETY:
307         // * `self.first` is null or in the list.
308         // * `self.first` is only null if the list is empty.
309         unsafe { self.insert_inner(item, self.first) };
310     }
311 
312     /// Add the provided item to the front of the list.
push_front(&mut self, item: ListArc<T, ID>)313     pub fn push_front(&mut self, item: ListArc<T, ID>) {
314         // SAFETY:
315         // * `self.first` is null or in the list.
316         // * `self.first` is only null if the list is empty.
317         let new_elem = unsafe { self.insert_inner(item, self.first) };
318 
319         // INVARIANT: `new_elem` is in the list because we just inserted it.
320         self.first = new_elem;
321     }
322 
323     /// Removes the last item from this list.
pop_back(&mut self) -> Option<ListArc<T, ID>>324     pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
325         if self.first.is_null() {
326             return None;
327         }
328 
329         // SAFETY: We just checked that the list is not empty.
330         let last = unsafe { (*self.first).prev };
331         // SAFETY: The last item of this list is in this list.
332         Some(unsafe { self.remove_internal(last) })
333     }
334 
335     /// Removes the first item from this list.
pop_front(&mut self) -> Option<ListArc<T, ID>>336     pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
337         if self.first.is_null() {
338             return None;
339         }
340 
341         // SAFETY: The first item of this list is in this list.
342         Some(unsafe { self.remove_internal(self.first) })
343     }
344 
345     /// Removes the provided item from this list and returns it.
346     ///
347     /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
348     /// this means that the item is not in any list.)
349     ///
350     /// # Safety
351     ///
352     /// `item` must not be in a different linked list (with the same id).
remove(&mut self, item: &T) -> Option<ListArc<T, ID>>353     pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
354         // SAFETY: TODO.
355         let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
356         // SAFETY: The user provided a reference, and reference are never dangling.
357         //
358         // As for why this is not a data race, there are two cases:
359         //
360         //  * If `item` is not in any list, then these fields are read-only and null.
361         //  * If `item` is in this list, then we have exclusive access to these fields since we
362         //    have a mutable reference to the list.
363         //
364         // In either case, there's no race.
365         let ListLinksFields { next, prev } = unsafe { *item };
366 
367         debug_assert_eq!(next.is_null(), prev.is_null());
368         if !next.is_null() {
369             // This is really a no-op, but this ensures that `item` is a raw pointer that was
370             // obtained without going through a pointer->reference->pointer conversion roundtrip.
371             // This ensures that the list is valid under the more restrictive strict provenance
372             // ruleset.
373             //
374             // SAFETY: We just checked that `next` is not null, and it's not dangling by the
375             // list invariants.
376             unsafe {
377                 debug_assert_eq!(item, (*next).prev);
378                 item = (*next).prev;
379             }
380 
381             // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
382             // is in this list. The pointers are in the right order.
383             Some(unsafe { self.remove_internal_inner(item, next, prev) })
384         } else {
385             None
386         }
387     }
388 
389     /// Removes the provided item from the list.
390     ///
391     /// # Safety
392     ///
393     /// `item` must point at an item in this list.
remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID>394     unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
395         // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
396         // since we have a mutable reference to the list containing `item`.
397         let ListLinksFields { next, prev } = unsafe { *item };
398         // SAFETY: The pointers are ok and in the right order.
399         unsafe { self.remove_internal_inner(item, next, prev) }
400     }
401 
402     /// Removes the provided item from the list.
403     ///
404     /// # Safety
405     ///
406     /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
407     /// next` and `(*item).prev == prev`.
remove_internal_inner( &mut self, item: *mut ListLinksFields, next: *mut ListLinksFields, prev: *mut ListLinksFields, ) -> ListArc<T, ID>408     unsafe fn remove_internal_inner(
409         &mut self,
410         item: *mut ListLinksFields,
411         next: *mut ListLinksFields,
412         prev: *mut ListLinksFields,
413     ) -> ListArc<T, ID> {
414         // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
415         // pointers are always valid for items in a list.
416         //
417         // INVARIANT: There are three cases:
418         //  * If the list has at least three items, then after removing the item, `prev` and `next`
419         //    will be next to each other.
420         //  * If the list has two items, then the remaining item will point at itself.
421         //  * If the list has one item, then `next == prev == item`, so these writes have no
422         //    effect. The list remains unchanged and `item` is still in the list for now.
423         unsafe {
424             (*next).prev = prev;
425             (*prev).next = next;
426         }
427         // SAFETY: We have exclusive access to items in the list.
428         // INVARIANT: `item` is being removed, so the pointers should be null.
429         unsafe {
430             (*item).prev = ptr::null_mut();
431             (*item).next = ptr::null_mut();
432         }
433         // INVARIANT: There are three cases:
434         //  * If `item` was not the first item, then `self.first` should remain unchanged.
435         //  * If `item` was the first item and there is another item, then we just updated
436         //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
437         //    did not modify `prev->next`.
438         //  * If `item` was the only item in the list, then `prev == item`, and we just set
439         //    `item->next` to null, so this correctly sets `first` to null now that the list is
440         //    empty.
441         if self.first == item {
442             // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
443             // list, so it must be valid. There is no race since `prev` is still in the list and we
444             // still have exclusive access to the list.
445             self.first = unsafe { (*prev).next };
446         }
447 
448         // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
449         // of `List`.
450         let list_links = unsafe { ListLinks::from_fields(item) };
451         // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
452         let raw_item = unsafe { T::post_remove(list_links) };
453         // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
454         unsafe { ListArc::from_raw(raw_item) }
455     }
456 
457     /// Moves all items from `other` into `self`.
458     ///
459     /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
460     /// the last item of `self`.
push_all_back(&mut self, other: &mut List<T, ID>)461     pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
462         // First, we insert the elements into `self`. At the end, we make `other` empty.
463         if self.is_empty() {
464             // INVARIANT: All of the elements in `other` become elements of `self`.
465             self.first = other.first;
466         } else if !other.is_empty() {
467             let other_first = other.first;
468             // SAFETY: The other list is not empty, so this pointer is valid.
469             let other_last = unsafe { (*other_first).prev };
470             let self_first = self.first;
471             // SAFETY: The self list is not empty, so this pointer is valid.
472             let self_last = unsafe { (*self_first).prev };
473 
474             // SAFETY: We have exclusive access to both lists, so we can update the pointers.
475             // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
476             // update `self.first` because the first element of `self` does not change.
477             unsafe {
478                 (*self_first).prev = other_last;
479                 (*other_last).next = self_first;
480                 (*self_last).next = other_first;
481                 (*other_first).prev = self_last;
482             }
483         }
484 
485         // INVARIANT: The other list is now empty, so update its pointer.
486         other.first = ptr::null_mut();
487     }
488 
489     /// Returns a cursor that points before the first element of the list.
cursor_front(&mut self) -> Cursor<'_, T, ID>490     pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
491         // INVARIANT: `self.first` is in this list.
492         Cursor {
493             next: self.first,
494             list: self,
495         }
496     }
497 
498     /// Returns a cursor that points after the last element in the list.
cursor_back(&mut self) -> Cursor<'_, T, ID>499     pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
500         // INVARIANT: `next` is allowed to be null.
501         Cursor {
502             next: core::ptr::null_mut(),
503             list: self,
504         }
505     }
506 
507     /// Creates an iterator over the list.
iter(&self) -> Iter<'_, T, ID>508     pub fn iter(&self) -> Iter<'_, T, ID> {
509         // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
510         // at the first element of the same list.
511         Iter {
512             current: self.first,
513             stop: self.first,
514             _ty: PhantomData,
515         }
516     }
517 }
518 
519 impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
default() -> Self520     fn default() -> Self {
521         List::new()
522     }
523 }
524 
525 impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
drop(&mut self)526     fn drop(&mut self) {
527         while let Some(item) = self.pop_front() {
528             drop(item);
529         }
530     }
531 }
532 
533 /// An iterator over a [`List`].
534 ///
535 /// # Invariants
536 ///
537 /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
538 /// * The `current` pointer is null or points at a value in that [`List`].
539 /// * The `stop` pointer is equal to the `first` field of that [`List`].
540 #[derive(Clone)]
541 pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
542     current: *mut ListLinksFields,
543     stop: *mut ListLinksFields,
544     _ty: PhantomData<&'a ListArc<T, ID>>,
545 }
546 
547 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
548     type Item = ArcBorrow<'a, T>;
549 
next(&mut self) -> Option<ArcBorrow<'a, T>>550     fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
551         if self.current.is_null() {
552             return None;
553         }
554 
555         let current = self.current;
556 
557         // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
558         // dangling. There's no race because the iterator holds an immutable borrow to the list.
559         let next = unsafe { (*current).next };
560         // INVARIANT: If `current` was the last element of the list, then this updates it to null.
561         // Otherwise, we update it to the next element.
562         self.current = if next != self.stop {
563             next
564         } else {
565             ptr::null_mut()
566         };
567 
568         // SAFETY: The `current` pointer points at a value in the list.
569         let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
570         // SAFETY:
571         // * All values in a list are stored in an `Arc`.
572         // * The value cannot be removed from the list for the duration of the lifetime annotated
573         //   on the returned `ArcBorrow`, because removing it from the list would require mutable
574         //   access to the list. However, the `ArcBorrow` is annotated with the iterator's
575         //   lifetime, and the list is immutably borrowed for that lifetime.
576         // * Values in a list never have a `UniqueArc` reference.
577         Some(unsafe { ArcBorrow::from_raw(item) })
578     }
579 }
580 
581 /// A cursor into a [`List`].
582 ///
583 /// A cursor always rests between two elements in the list. This means that a cursor has a previous
584 /// and next element, but no current element. It also means that it's possible to have a cursor
585 /// into an empty list.
586 ///
587 /// # Examples
588 ///
589 /// ```
590 /// use kernel::prelude::*;
591 /// use kernel::list::{List, ListArc, ListLinks};
592 ///
593 /// #[pin_data]
594 /// struct ListItem {
595 ///     value: u32,
596 ///     #[pin]
597 ///     links: ListLinks,
598 /// }
599 ///
600 /// impl ListItem {
601 ///     fn new(value: u32) -> Result<ListArc<Self>> {
602 ///         ListArc::pin_init(try_pin_init!(Self {
603 ///             value,
604 ///             links <- ListLinks::new(),
605 ///         }), GFP_KERNEL)
606 ///     }
607 /// }
608 ///
609 /// kernel::list::impl_has_list_links! {
610 ///     impl HasListLinks<0> for ListItem { self.links }
611 /// }
612 /// kernel::list::impl_list_arc_safe! {
613 ///     impl ListArcSafe<0> for ListItem { untracked; }
614 /// }
615 /// kernel::list::impl_list_item! {
616 ///     impl ListItem<0> for ListItem { using ListLinks; }
617 /// }
618 ///
619 /// // Use a cursor to remove the first element with the given value.
620 /// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
621 ///     let mut cursor = list.cursor_front();
622 ///     while let Some(next) = cursor.peek_next() {
623 ///         if next.value == value {
624 ///             return Some(next.remove());
625 ///         }
626 ///         cursor.move_next();
627 ///     }
628 ///     None
629 /// }
630 ///
631 /// // Use a cursor to remove the last element with the given value.
632 /// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
633 ///     let mut cursor = list.cursor_back();
634 ///     while let Some(prev) = cursor.peek_prev() {
635 ///         if prev.value == value {
636 ///             return Some(prev.remove());
637 ///         }
638 ///         cursor.move_prev();
639 ///     }
640 ///     None
641 /// }
642 ///
643 /// // Use a cursor to remove all elements with the given value. The removed elements are moved to
644 /// // a new list.
645 /// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
646 ///     let mut out = List::new();
647 ///     let mut cursor = list.cursor_front();
648 ///     while let Some(next) = cursor.peek_next() {
649 ///         if next.value == value {
650 ///             out.push_back(next.remove());
651 ///         } else {
652 ///             cursor.move_next();
653 ///         }
654 ///     }
655 ///     out
656 /// }
657 ///
658 /// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
659 /// // bounds.
660 /// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
661 ///     let mut cursor = list.cursor_front();
662 ///     for _ in 0..idx {
663 ///         if !cursor.move_next() {
664 ///             return Err(EINVAL);
665 ///         }
666 ///     }
667 ///     cursor.insert_next(new);
668 ///     Ok(())
669 /// }
670 ///
671 /// // Merge two sorted lists into a single sorted list.
672 /// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
673 ///     let mut cursor = list.cursor_front();
674 ///     for to_insert in merge {
675 ///         while let Some(next) = cursor.peek_next() {
676 ///             if to_insert.value < next.value {
677 ///                 break;
678 ///             }
679 ///             cursor.move_next();
680 ///         }
681 ///         cursor.insert_prev(to_insert);
682 ///     }
683 /// }
684 ///
685 /// let mut list = List::new();
686 /// list.push_back(ListItem::new(14)?);
687 /// list.push_back(ListItem::new(12)?);
688 /// list.push_back(ListItem::new(10)?);
689 /// list.push_back(ListItem::new(12)?);
690 /// list.push_back(ListItem::new(15)?);
691 /// list.push_back(ListItem::new(14)?);
692 /// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
693 /// // [14, 10, 15, 14]
694 /// assert!(remove_first(&mut list, 14).is_some());
695 /// // [10, 15, 14]
696 /// insert_at(&mut list, ListItem::new(12)?, 2)?;
697 /// // [10, 15, 12, 14]
698 /// assert!(remove_last(&mut list, 15).is_some());
699 /// // [10, 12, 14]
700 ///
701 /// let mut list2 = List::new();
702 /// list2.push_back(ListItem::new(11)?);
703 /// list2.push_back(ListItem::new(13)?);
704 /// merge_sorted(&mut list, list2);
705 ///
706 /// let mut items = list.into_iter();
707 /// assert_eq!(items.next().unwrap().value, 10);
708 /// assert_eq!(items.next().unwrap().value, 11);
709 /// assert_eq!(items.next().unwrap().value, 12);
710 /// assert_eq!(items.next().unwrap().value, 13);
711 /// assert_eq!(items.next().unwrap().value, 14);
712 /// assert!(items.next().is_none());
713 /// # Result::<(), Error>::Ok(())
714 /// ```
715 ///
716 /// # Invariants
717 ///
718 /// The `next` pointer is null or points a value in `list`.
719 pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
720     list: &'a mut List<T, ID>,
721     /// Points at the element after this cursor, or null if the cursor is after the last element.
722     next: *mut ListLinksFields,
723 }
724 
725 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
726     /// Returns a pointer to the element before the cursor.
727     ///
728     /// Returns null if there is no element before the cursor.
prev_ptr(&self) -> *mut ListLinksFields729     fn prev_ptr(&self) -> *mut ListLinksFields {
730         let mut next = self.next;
731         let first = self.list.first;
732         if next == first {
733             // We are before the first element.
734             return core::ptr::null_mut();
735         }
736 
737         if next.is_null() {
738             // We are after the last element, so we need a pointer to the last element, which is
739             // the same as `(*first).prev`.
740             next = first;
741         }
742 
743         // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
744         // we would have exited at the `next == first` check. Thus, `next` is an element in the
745         // list, so we can access its `prev` pointer.
746         unsafe { (*next).prev }
747     }
748 
749     /// Access the element after this cursor.
peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>>750     pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
751         if self.next.is_null() {
752             return None;
753         }
754 
755         // INVARIANT:
756         // * We just checked that `self.next` is non-null, so it must be in `self.list`.
757         // * `ptr` is equal to `self.next`.
758         Some(CursorPeek {
759             ptr: self.next,
760             cursor: self,
761         })
762     }
763 
764     /// Access the element before this cursor.
peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>>765     pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
766         let prev = self.prev_ptr();
767 
768         if prev.is_null() {
769             return None;
770         }
771 
772         // INVARIANT:
773         // * We just checked that `prev` is non-null, so it must be in `self.list`.
774         // * `self.prev_ptr()` never returns `self.next`.
775         Some(CursorPeek {
776             ptr: prev,
777             cursor: self,
778         })
779     }
780 
781     /// Move the cursor one element forward.
782     ///
783     /// If the cursor is after the last element, then this call does nothing. This call returns
784     /// `true` if the cursor's position was changed.
move_next(&mut self) -> bool785     pub fn move_next(&mut self) -> bool {
786         if self.next.is_null() {
787             return false;
788         }
789 
790         // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
791         // access the `next` field.
792         let mut next = unsafe { (*self.next).next };
793 
794         if next == self.list.first {
795             next = core::ptr::null_mut();
796         }
797 
798         // INVARIANT: `next` is either null or the next element after an element in the list.
799         self.next = next;
800         true
801     }
802 
803     /// Move the cursor one element backwards.
804     ///
805     /// If the cursor is before the first element, then this call does nothing. This call returns
806     /// `true` if the cursor's position was changed.
move_prev(&mut self) -> bool807     pub fn move_prev(&mut self) -> bool {
808         if self.next == self.list.first {
809             return false;
810         }
811 
812         // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
813         self.next = self.prev_ptr();
814         true
815     }
816 
817     /// Inserts an element where the cursor is pointing and get a pointer to the new element.
insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields818     fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
819         let ptr = if self.next.is_null() {
820             self.list.first
821         } else {
822             self.next
823         };
824         // SAFETY:
825         // * `ptr` is an element in the list or null.
826         // * if `ptr` is null, then `self.list.first` is null so the list is empty.
827         let item = unsafe { self.list.insert_inner(item, ptr) };
828         if self.next == self.list.first {
829             // INVARIANT: We just inserted `item`, so it's a member of list.
830             self.list.first = item;
831         }
832         item
833     }
834 
835     /// Insert an element at this cursor's location.
insert(mut self, item: ListArc<T, ID>)836     pub fn insert(mut self, item: ListArc<T, ID>) {
837         // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
838         // reduces confusion when the last operation on the cursor is an insertion; in that case,
839         // you just want to insert the element at the cursor, and it is confusing that the call
840         // involves the word prev or next.
841         self.insert_inner(item);
842     }
843 
844     /// Inserts an element after this cursor.
845     ///
846     /// After insertion, the new element will be after the cursor.
insert_next(&mut self, item: ListArc<T, ID>)847     pub fn insert_next(&mut self, item: ListArc<T, ID>) {
848         self.next = self.insert_inner(item);
849     }
850 
851     /// Inserts an element before this cursor.
852     ///
853     /// After insertion, the new element will be before the cursor.
insert_prev(&mut self, item: ListArc<T, ID>)854     pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
855         self.insert_inner(item);
856     }
857 
858     /// Remove the next element from the list.
remove_next(&mut self) -> Option<ListArc<T, ID>>859     pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
860         self.peek_next().map(|v| v.remove())
861     }
862 
863     /// Remove the previous element from the list.
remove_prev(&mut self) -> Option<ListArc<T, ID>>864     pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
865         self.peek_prev().map(|v| v.remove())
866     }
867 }
868 
869 /// References the element in the list next to the cursor.
870 ///
871 /// # Invariants
872 ///
873 /// * `ptr` is an element in `self.cursor.list`.
874 /// * `ISNEXT == (self.ptr == self.cursor.next)`.
875 pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
876     cursor: &'a mut Cursor<'b, T, ID>,
877     ptr: *mut ListLinksFields,
878 }
879 
880 impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
881     CursorPeek<'a, 'b, T, ISNEXT, ID>
882 {
883     /// Remove the element from the list.
remove(self) -> ListArc<T, ID>884     pub fn remove(self) -> ListArc<T, ID> {
885         if ISNEXT {
886             self.cursor.move_next();
887         }
888 
889         // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
890         // call.
891         // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
892         // `self.cursor.list` by the type invariants of `Cursor`.
893         unsafe { self.cursor.list.remove_internal(self.ptr) }
894     }
895 
896     /// Access this value as an [`ArcBorrow`].
arc(&self) -> ArcBorrow<'_, T>897     pub fn arc(&self) -> ArcBorrow<'_, T> {
898         // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
899         let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
900         // SAFETY:
901         // * All values in a list are stored in an `Arc`.
902         // * The value cannot be removed from the list for the duration of the lifetime annotated
903         //   on the returned `ArcBorrow`, because removing it from the list would require mutable
904         //   access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
905         //   an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
906         //   `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
907         //   access requires first releasing the immutable borrow on the `CursorPeek`.
908         // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
909         //   reference, and `UniqueArc` references must be unique.
910         unsafe { ArcBorrow::from_raw(me) }
911     }
912 }
913 
914 impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
915     for CursorPeek<'a, 'b, T, ISNEXT, ID>
916 {
917     // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
918     // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
919     // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
920     // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
921     // unsound.
922     type Target = T;
923 
deref(&self) -> &T924     fn deref(&self) -> &T {
925         // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
926         let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
927 
928         // SAFETY: The value cannot be removed from the list for the duration of the lifetime
929         // annotated on the returned `&T`, because removing it from the list would require mutable
930         // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
931         // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
932         // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
933         // requires first releasing the immutable borrow on the `CursorPeek`.
934         unsafe { &*me }
935     }
936 }
937 
938 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
939 
940 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
941     type IntoIter = Iter<'a, T, ID>;
942     type Item = ArcBorrow<'a, T>;
943 
into_iter(self) -> Iter<'a, T, ID>944     fn into_iter(self) -> Iter<'a, T, ID> {
945         self.iter()
946     }
947 }
948 
949 /// An owning iterator into a [`List`].
950 pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
951     list: List<T, ID>,
952 }
953 
954 impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
955     type Item = ListArc<T, ID>;
956 
next(&mut self) -> Option<ListArc<T, ID>>957     fn next(&mut self) -> Option<ListArc<T, ID>> {
958         self.list.pop_front()
959     }
960 }
961 
962 impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
963 
964 impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
next_back(&mut self) -> Option<ListArc<T, ID>>965     fn next_back(&mut self) -> Option<ListArc<T, ID>> {
966         self.list.pop_back()
967     }
968 }
969 
970 impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
971     type IntoIter = IntoIter<T, ID>;
972     type Item = ListArc<T, ID>;
973 
into_iter(self) -> IntoIter<T, ID>974     fn into_iter(self) -> IntoIter<T, ID> {
975         IntoIter { list: self }
976     }
977 }
978