1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Implementation of [`Box`]. 4 5 #[allow(unused_imports)] // Used in doc comments. 6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; 7 use super::{AllocError, Allocator, Flags}; 8 use core::alloc::Layout; 9 use core::fmt; 10 use core::marker::PhantomData; 11 use core::mem::ManuallyDrop; 12 use core::mem::MaybeUninit; 13 use core::ops::{Deref, DerefMut}; 14 use core::pin::Pin; 15 use core::ptr::NonNull; 16 use core::result::Result; 17 18 use crate::init::InPlaceInit; 19 use crate::types::ForeignOwnable; 20 use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption}; 21 22 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. 23 /// 24 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, 25 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not 26 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] 27 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions 28 /// that may allocate memory are fallible. 29 /// 30 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. 31 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). 32 /// 33 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. 34 /// 35 /// # Examples 36 /// 37 /// ``` 38 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; 39 /// 40 /// assert_eq!(*b, 24_u64); 41 /// # Ok::<(), Error>(()) 42 /// ``` 43 /// 44 /// ``` 45 /// # use kernel::bindings; 46 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 47 /// struct Huge([u8; SIZE]); 48 /// 49 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); 50 /// ``` 51 /// 52 /// ``` 53 /// # use kernel::bindings; 54 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 55 /// struct Huge([u8; SIZE]); 56 /// 57 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); 58 /// ``` 59 /// 60 /// # Invariants 61 /// 62 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for 63 /// zero-sized types, is a dangling, well aligned pointer. 64 #[repr(transparent)] 65 pub struct Box<T: ?Sized, A: Allocator>(NonNull<T>, PhantomData<A>); 66 67 /// Type alias for [`Box`] with a [`Kmalloc`] allocator. 68 /// 69 /// # Examples 70 /// 71 /// ``` 72 /// let b = KBox::new(24_u64, GFP_KERNEL)?; 73 /// 74 /// assert_eq!(*b, 24_u64); 75 /// # Ok::<(), Error>(()) 76 /// ``` 77 pub type KBox<T> = Box<T, super::allocator::Kmalloc>; 78 79 /// Type alias for [`Box`] with a [`Vmalloc`] allocator. 80 /// 81 /// # Examples 82 /// 83 /// ``` 84 /// let b = VBox::new(24_u64, GFP_KERNEL)?; 85 /// 86 /// assert_eq!(*b, 24_u64); 87 /// # Ok::<(), Error>(()) 88 /// ``` 89 pub type VBox<T> = Box<T, super::allocator::Vmalloc>; 90 91 /// Type alias for [`Box`] with a [`KVmalloc`] allocator. 92 /// 93 /// # Examples 94 /// 95 /// ``` 96 /// let b = KVBox::new(24_u64, GFP_KERNEL)?; 97 /// 98 /// assert_eq!(*b, 24_u64); 99 /// # Ok::<(), Error>(()) 100 /// ``` 101 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; 102 103 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 104 // https://doc.rust-lang.org/stable/std/option/index.html#representation). 105 unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {} 106 107 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. 108 unsafe impl<T, A> Send for Box<T, A> 109 where 110 T: Send + ?Sized, 111 A: Allocator, 112 { 113 } 114 115 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. 116 unsafe impl<T, A> Sync for Box<T, A> 117 where 118 T: Sync + ?Sized, 119 A: Allocator, 120 { 121 } 122 123 impl<T, A> Box<T, A> 124 where 125 T: ?Sized, 126 A: Allocator, 127 { 128 /// Creates a new `Box<T, A>` from a raw pointer. 129 /// 130 /// # Safety 131 /// 132 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently 133 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the 134 /// `Box`. 135 /// 136 /// For ZSTs, `raw` must be a dangling, well aligned pointer. 137 #[inline] from_raw(raw: *mut T) -> Self138 pub const unsafe fn from_raw(raw: *mut T) -> Self { 139 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. 140 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. 141 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) 142 } 143 144 /// Consumes the `Box<T, A>` and returns a raw pointer. 145 /// 146 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive 147 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the 148 /// allocation, if any. 149 /// 150 /// # Examples 151 /// 152 /// ``` 153 /// let x = KBox::new(24, GFP_KERNEL)?; 154 /// let ptr = KBox::into_raw(x); 155 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. 156 /// let x = unsafe { KBox::from_raw(ptr) }; 157 /// 158 /// assert_eq!(*x, 24); 159 /// # Ok::<(), Error>(()) 160 /// ``` 161 #[inline] into_raw(b: Self) -> *mut T162 pub fn into_raw(b: Self) -> *mut T { 163 ManuallyDrop::new(b).0.as_ptr() 164 } 165 166 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. 167 /// 168 /// See [`Box::into_raw`] for more details. 169 #[inline] leak<'a>(b: Self) -> &'a mut T170 pub fn leak<'a>(b: Self) -> &'a mut T { 171 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer 172 // which points to an initialized instance of `T`. 173 unsafe { &mut *Box::into_raw(b) } 174 } 175 } 176 177 impl<T, A> Box<MaybeUninit<T>, A> 178 where 179 A: Allocator, 180 { 181 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. 182 /// 183 /// It is undefined behavior to call this function while the value inside of `b` is not yet 184 /// fully initialized. 185 /// 186 /// # Safety 187 /// 188 /// Callers must ensure that the value inside of `b` is in an initialized state. assume_init(self) -> Box<T, A>189 pub unsafe fn assume_init(self) -> Box<T, A> { 190 let raw = Self::into_raw(self); 191 192 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements 193 // of this function, the value inside the `Box` is in an initialized state. Hence, it is 194 // safe to reconstruct the `Box` as `Box<T, A>`. 195 unsafe { Box::from_raw(raw.cast()) } 196 } 197 198 /// Writes the value and converts to `Box<T, A>`. write(mut self, value: T) -> Box<T, A>199 pub fn write(mut self, value: T) -> Box<T, A> { 200 (*self).write(value); 201 202 // SAFETY: We've just initialized `b`'s value. 203 unsafe { self.assume_init() } 204 } 205 } 206 207 impl<T, A> Box<T, A> 208 where 209 A: Allocator, 210 { 211 /// Creates a new `Box<T, A>` and initializes its contents with `x`. 212 /// 213 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 214 /// returned. For ZSTs no memory is allocated. new(x: T, flags: Flags) -> Result<Self, AllocError>215 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { 216 let b = Self::new_uninit(flags)?; 217 Ok(Box::write(b, x)) 218 } 219 220 /// Creates a new `Box<T, A>` with uninitialized contents. 221 /// 222 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 223 /// returned. For ZSTs no memory is allocated. 224 /// 225 /// # Examples 226 /// 227 /// ``` 228 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; 229 /// let b = KBox::write(b, 24); 230 /// 231 /// assert_eq!(*b, 24_u64); 232 /// # Ok::<(), Error>(()) 233 /// ``` new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError>234 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { 235 let layout = Layout::new::<MaybeUninit<T>>(); 236 let ptr = A::alloc(layout, flags)?; 237 238 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, 239 // which is sufficient in size and alignment for storing a `T`. 240 Ok(Box(ptr.cast(), PhantomData)) 241 } 242 243 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be 244 /// pinned in memory and can't be moved. 245 #[inline] pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> where A: 'static,246 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> 247 where 248 A: 'static, 249 { 250 Ok(Self::new(x, flags)?.into()) 251 } 252 253 /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement 254 /// [`Unpin`], then `x` will be pinned in memory and can't be moved. into_pin(this: Self) -> Pin<Self>255 pub fn into_pin(this: Self) -> Pin<Self> { 256 this.into() 257 } 258 259 /// Forgets the contents (does not run the destructor), but keeps the allocation. forget_contents(this: Self) -> Box<MaybeUninit<T>, A>260 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { 261 let ptr = Self::into_raw(this); 262 263 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. 264 unsafe { Box::from_raw(ptr.cast()) } 265 } 266 267 /// Drops the contents, but keeps the allocation. 268 /// 269 /// # Examples 270 /// 271 /// ``` 272 /// let value = KBox::new([0; 32], GFP_KERNEL)?; 273 /// assert_eq!(*value, [0; 32]); 274 /// let value = KBox::drop_contents(value); 275 /// // Now we can re-use `value`: 276 /// let value = KBox::write(value, [1; 32]); 277 /// assert_eq!(*value, [1; 32]); 278 /// # Ok::<(), Error>(()) 279 /// ``` drop_contents(this: Self) -> Box<MaybeUninit<T>, A>280 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { 281 let ptr = this.0.as_ptr(); 282 283 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the 284 // value stored in `this` again. 285 unsafe { core::ptr::drop_in_place(ptr) }; 286 287 Self::forget_contents(this) 288 } 289 290 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. into_inner(b: Self) -> T291 pub fn into_inner(b: Self) -> T { 292 // SAFETY: By the type invariant `&*b` is valid for `read`. 293 let value = unsafe { core::ptr::read(&*b) }; 294 let _ = Self::forget_contents(b); 295 value 296 } 297 } 298 299 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> 300 where 301 T: ?Sized, 302 A: Allocator, 303 { 304 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 305 /// `*b` will be pinned in memory and can't be moved. 306 /// 307 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. from(b: Box<T, A>) -> Self308 fn from(b: Box<T, A>) -> Self { 309 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long 310 // as `T` does not implement `Unpin`. 311 unsafe { Pin::new_unchecked(b) } 312 } 313 } 314 315 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> 316 where 317 A: Allocator + 'static, 318 { 319 type Initialized = Box<T, A>; 320 write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E>321 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 322 let slot = self.as_mut_ptr(); 323 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 324 // slot is valid. 325 unsafe { init.__init(slot)? }; 326 // SAFETY: All fields have been initialized. 327 Ok(unsafe { Box::assume_init(self) }) 328 } 329 write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>330 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 331 let slot = self.as_mut_ptr(); 332 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 333 // slot is valid and will not be moved, because we pin it later. 334 unsafe { init.__pinned_init(slot)? }; 335 // SAFETY: All fields have been initialized. 336 Ok(unsafe { Box::assume_init(self) }.into()) 337 } 338 } 339 340 impl<T, A> InPlaceInit<T> for Box<T, A> 341 where 342 A: Allocator + 'static, 343 { 344 type PinnedSelf = Pin<Self>; 345 346 #[inline] try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> where E: From<AllocError>,347 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 348 where 349 E: From<AllocError>, 350 { 351 Box::<_, A>::new_uninit(flags)?.write_pin_init(init) 352 } 353 354 #[inline] try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,355 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 356 where 357 E: From<AllocError>, 358 { 359 Box::<_, A>::new_uninit(flags)?.write_init(init) 360 } 361 } 362 363 impl<T: 'static, A> ForeignOwnable for Box<T, A> 364 where 365 A: Allocator, 366 { 367 type Borrowed<'a> = &'a T; 368 type BorrowedMut<'a> = &'a mut T; 369 into_foreign(self) -> *mut crate::ffi::c_void370 fn into_foreign(self) -> *mut crate::ffi::c_void { 371 Box::into_raw(self).cast() 372 } 373 from_foreign(ptr: *mut crate::ffi::c_void) -> Self374 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 375 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 376 // call to `Self::into_foreign`. 377 unsafe { Box::from_raw(ptr.cast()) } 378 } 379 borrow<'a>(ptr: *mut crate::ffi::c_void) -> &'a T380 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> &'a T { 381 // SAFETY: The safety requirements of this method ensure that the object remains alive and 382 // immutable for the duration of 'a. 383 unsafe { &*ptr.cast() } 384 } 385 borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> &'a mut T386 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> &'a mut T { 387 let ptr = ptr.cast(); 388 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that 389 // nothing else will access the value for the duration of 'a. 390 unsafe { &mut *ptr } 391 } 392 } 393 394 impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> 395 where 396 A: Allocator, 397 { 398 type Borrowed<'a> = Pin<&'a T>; 399 type BorrowedMut<'a> = Pin<&'a mut T>; 400 into_foreign(self) -> *mut crate::ffi::c_void401 fn into_foreign(self) -> *mut crate::ffi::c_void { 402 // SAFETY: We are still treating the box as pinned. 403 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast() 404 } 405 from_foreign(ptr: *mut crate::ffi::c_void) -> Self406 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 407 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 408 // call to `Self::into_foreign`. 409 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) } 410 } 411 borrow<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a T>412 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a T> { 413 // SAFETY: The safety requirements for this function ensure that the object is still alive, 414 // so it is safe to dereference the raw pointer. 415 // The safety requirements of `from_foreign` also ensure that the object remains alive for 416 // the lifetime of the returned value. 417 let r = unsafe { &*ptr.cast() }; 418 419 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 420 unsafe { Pin::new_unchecked(r) } 421 } 422 borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a mut T>423 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a mut T> { 424 let ptr = ptr.cast(); 425 // SAFETY: The safety requirements for this function ensure that the object is still alive, 426 // so it is safe to dereference the raw pointer. 427 // The safety requirements of `from_foreign` also ensure that the object remains alive for 428 // the lifetime of the returned value. 429 let r = unsafe { &mut *ptr }; 430 431 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 432 unsafe { Pin::new_unchecked(r) } 433 } 434 } 435 436 impl<T, A> Deref for Box<T, A> 437 where 438 T: ?Sized, 439 A: Allocator, 440 { 441 type Target = T; 442 deref(&self) -> &T443 fn deref(&self) -> &T { 444 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 445 // instance of `T`. 446 unsafe { self.0.as_ref() } 447 } 448 } 449 450 impl<T, A> DerefMut for Box<T, A> 451 where 452 T: ?Sized, 453 A: Allocator, 454 { deref_mut(&mut self) -> &mut T455 fn deref_mut(&mut self) -> &mut T { 456 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 457 // instance of `T`. 458 unsafe { self.0.as_mut() } 459 } 460 } 461 462 impl<T, A> fmt::Display for Box<T, A> 463 where 464 T: ?Sized + fmt::Display, 465 A: Allocator, 466 { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result467 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 468 <T as fmt::Display>::fmt(&**self, f) 469 } 470 } 471 472 impl<T, A> fmt::Debug for Box<T, A> 473 where 474 T: ?Sized + fmt::Debug, 475 A: Allocator, 476 { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result477 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 478 <T as fmt::Debug>::fmt(&**self, f) 479 } 480 } 481 482 impl<T, A> Drop for Box<T, A> 483 where 484 T: ?Sized, 485 A: Allocator, 486 { drop(&mut self)487 fn drop(&mut self) { 488 let layout = Layout::for_value::<T>(self); 489 490 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. 491 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; 492 493 // SAFETY: 494 // - `self.0` was previously allocated with `A`. 495 // - `layout` is equal to the `Layout´ `self.0` was allocated with. 496 unsafe { A::free(self.0.cast(), layout) }; 497 } 498 } 499