1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <net/tls.h>
33 #include <crypto/aead.h>
34 #include <crypto/scatterwalk.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/skbuff_ref.h>
37
38 #include "tls.h"
39
tls_enc_record(struct aead_request * aead_req,struct crypto_aead * aead,char * aad,char * iv,__be64 rcd_sn,struct scatter_walk * in,struct scatter_walk * out,int * in_len,struct tls_prot_info * prot)40 static int tls_enc_record(struct aead_request *aead_req,
41 struct crypto_aead *aead, char *aad,
42 char *iv, __be64 rcd_sn,
43 struct scatter_walk *in,
44 struct scatter_walk *out, int *in_len,
45 struct tls_prot_info *prot)
46 {
47 unsigned char buf[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
48 const struct tls_cipher_desc *cipher_desc;
49 struct scatterlist sg_in[3];
50 struct scatterlist sg_out[3];
51 unsigned int buf_size;
52 u16 len;
53 int rc;
54
55 cipher_desc = get_cipher_desc(prot->cipher_type);
56 DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
57
58 buf_size = TLS_HEADER_SIZE + cipher_desc->iv;
59 len = min_t(int, *in_len, buf_size);
60
61 memcpy_from_scatterwalk(buf, in, len);
62 memcpy_to_scatterwalk(out, buf, len);
63
64 *in_len -= len;
65 if (!*in_len)
66 return 0;
67
68 len = buf[4] | (buf[3] << 8);
69 len -= cipher_desc->iv;
70
71 tls_make_aad(aad, len - cipher_desc->tag, (char *)&rcd_sn, buf[0], prot);
72
73 memcpy(iv + cipher_desc->salt, buf + TLS_HEADER_SIZE, cipher_desc->iv);
74
75 sg_init_table(sg_in, ARRAY_SIZE(sg_in));
76 sg_init_table(sg_out, ARRAY_SIZE(sg_out));
77 sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE);
78 sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE);
79 scatterwalk_get_sglist(in, sg_in + 1);
80 scatterwalk_get_sglist(out, sg_out + 1);
81
82 *in_len -= len;
83 if (*in_len < 0) {
84 *in_len += cipher_desc->tag;
85 /* the input buffer doesn't contain the entire record.
86 * trim len accordingly. The resulting authentication tag
87 * will contain garbage, but we don't care, so we won't
88 * include any of it in the output skb
89 * Note that we assume the output buffer length
90 * is larger then input buffer length + tag size
91 */
92 if (*in_len < 0)
93 len += *in_len;
94
95 *in_len = 0;
96 }
97
98 if (*in_len) {
99 scatterwalk_skip(in, len);
100 scatterwalk_skip(out, len);
101 }
102
103 len -= cipher_desc->tag;
104 aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv);
105
106 rc = crypto_aead_encrypt(aead_req);
107
108 return rc;
109 }
110
tls_init_aead_request(struct aead_request * aead_req,struct crypto_aead * aead)111 static void tls_init_aead_request(struct aead_request *aead_req,
112 struct crypto_aead *aead)
113 {
114 aead_request_set_tfm(aead_req, aead);
115 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
116 }
117
tls_alloc_aead_request(struct crypto_aead * aead,gfp_t flags)118 static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead,
119 gfp_t flags)
120 {
121 unsigned int req_size = sizeof(struct aead_request) +
122 crypto_aead_reqsize(aead);
123 struct aead_request *aead_req;
124
125 aead_req = kzalloc(req_size, flags);
126 if (aead_req)
127 tls_init_aead_request(aead_req, aead);
128 return aead_req;
129 }
130
tls_enc_records(struct aead_request * aead_req,struct crypto_aead * aead,struct scatterlist * sg_in,struct scatterlist * sg_out,char * aad,char * iv,u64 rcd_sn,int len,struct tls_prot_info * prot)131 static int tls_enc_records(struct aead_request *aead_req,
132 struct crypto_aead *aead, struct scatterlist *sg_in,
133 struct scatterlist *sg_out, char *aad, char *iv,
134 u64 rcd_sn, int len, struct tls_prot_info *prot)
135 {
136 struct scatter_walk out, in;
137 int rc;
138
139 scatterwalk_start(&in, sg_in);
140 scatterwalk_start(&out, sg_out);
141
142 do {
143 rc = tls_enc_record(aead_req, aead, aad, iv,
144 cpu_to_be64(rcd_sn), &in, &out, &len, prot);
145 rcd_sn++;
146
147 } while (rc == 0 && len);
148
149 return rc;
150 }
151
152 /* Can't use icsk->icsk_af_ops->send_check here because the ip addresses
153 * might have been changed by NAT.
154 */
update_chksum(struct sk_buff * skb,int headln)155 static void update_chksum(struct sk_buff *skb, int headln)
156 {
157 struct tcphdr *th = tcp_hdr(skb);
158 int datalen = skb->len - headln;
159 const struct ipv6hdr *ipv6h;
160 const struct iphdr *iph;
161
162 /* We only changed the payload so if we are using partial we don't
163 * need to update anything.
164 */
165 if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
166 return;
167
168 skb->ip_summed = CHECKSUM_PARTIAL;
169 skb->csum_start = skb_transport_header(skb) - skb->head;
170 skb->csum_offset = offsetof(struct tcphdr, check);
171
172 if (skb->sk->sk_family == AF_INET6) {
173 ipv6h = ipv6_hdr(skb);
174 th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
175 datalen, IPPROTO_TCP, 0);
176 } else {
177 iph = ip_hdr(skb);
178 th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen,
179 IPPROTO_TCP, 0);
180 }
181 }
182
complete_skb(struct sk_buff * nskb,struct sk_buff * skb,int headln)183 static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln)
184 {
185 struct sock *sk = skb->sk;
186 int delta;
187
188 skb_copy_header(nskb, skb);
189
190 skb_put(nskb, skb->len);
191 memcpy(nskb->data, skb->data, headln);
192
193 nskb->destructor = skb->destructor;
194 nskb->sk = sk;
195 skb->destructor = NULL;
196 skb->sk = NULL;
197
198 update_chksum(nskb, headln);
199
200 /* sock_efree means skb must gone through skb_orphan_partial() */
201 if (nskb->destructor == sock_efree)
202 return;
203
204 delta = nskb->truesize - skb->truesize;
205 if (likely(delta < 0))
206 WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc));
207 else if (delta)
208 refcount_add(delta, &sk->sk_wmem_alloc);
209 }
210
211 /* This function may be called after the user socket is already
212 * closed so make sure we don't use anything freed during
213 * tls_sk_proto_close here
214 */
215
fill_sg_in(struct scatterlist * sg_in,struct sk_buff * skb,struct tls_offload_context_tx * ctx,u64 * rcd_sn,s32 * sync_size,int * resync_sgs)216 static int fill_sg_in(struct scatterlist *sg_in,
217 struct sk_buff *skb,
218 struct tls_offload_context_tx *ctx,
219 u64 *rcd_sn,
220 s32 *sync_size,
221 int *resync_sgs)
222 {
223 int tcp_payload_offset = skb_tcp_all_headers(skb);
224 int payload_len = skb->len - tcp_payload_offset;
225 u32 tcp_seq = ntohl(tcp_hdr(skb)->seq);
226 struct tls_record_info *record;
227 unsigned long flags;
228 int remaining;
229 int i;
230
231 spin_lock_irqsave(&ctx->lock, flags);
232 record = tls_get_record(ctx, tcp_seq, rcd_sn);
233 if (!record) {
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 return -EINVAL;
236 }
237
238 *sync_size = tcp_seq - tls_record_start_seq(record);
239 if (*sync_size < 0) {
240 int is_start_marker = tls_record_is_start_marker(record);
241
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 /* This should only occur if the relevant record was
244 * already acked. In that case it should be ok
245 * to drop the packet and avoid retransmission.
246 *
247 * There is a corner case where the packet contains
248 * both an acked and a non-acked record.
249 * We currently don't handle that case and rely
250 * on TCP to retransmit a packet that doesn't contain
251 * already acked payload.
252 */
253 if (!is_start_marker)
254 *sync_size = 0;
255 return -EINVAL;
256 }
257
258 remaining = *sync_size;
259 for (i = 0; remaining > 0; i++) {
260 skb_frag_t *frag = &record->frags[i];
261
262 __skb_frag_ref(frag);
263 sg_set_page(sg_in + i, skb_frag_page(frag),
264 skb_frag_size(frag), skb_frag_off(frag));
265
266 remaining -= skb_frag_size(frag);
267
268 if (remaining < 0)
269 sg_in[i].length += remaining;
270 }
271 *resync_sgs = i;
272
273 spin_unlock_irqrestore(&ctx->lock, flags);
274 if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0)
275 return -EINVAL;
276
277 return 0;
278 }
279
fill_sg_out(struct scatterlist sg_out[3],void * buf,struct tls_context * tls_ctx,struct sk_buff * nskb,int tcp_payload_offset,int payload_len,int sync_size,void * dummy_buf)280 static void fill_sg_out(struct scatterlist sg_out[3], void *buf,
281 struct tls_context *tls_ctx,
282 struct sk_buff *nskb,
283 int tcp_payload_offset,
284 int payload_len,
285 int sync_size,
286 void *dummy_buf)
287 {
288 const struct tls_cipher_desc *cipher_desc =
289 get_cipher_desc(tls_ctx->crypto_send.info.cipher_type);
290
291 sg_set_buf(&sg_out[0], dummy_buf, sync_size);
292 sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len);
293 /* Add room for authentication tag produced by crypto */
294 dummy_buf += sync_size;
295 sg_set_buf(&sg_out[2], dummy_buf, cipher_desc->tag);
296 }
297
tls_enc_skb(struct tls_context * tls_ctx,struct scatterlist sg_out[3],struct scatterlist * sg_in,struct sk_buff * skb,s32 sync_size,u64 rcd_sn)298 static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx,
299 struct scatterlist sg_out[3],
300 struct scatterlist *sg_in,
301 struct sk_buff *skb,
302 s32 sync_size, u64 rcd_sn)
303 {
304 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
305 int tcp_payload_offset = skb_tcp_all_headers(skb);
306 int payload_len = skb->len - tcp_payload_offset;
307 const struct tls_cipher_desc *cipher_desc;
308 void *buf, *iv, *aad, *dummy_buf, *salt;
309 struct aead_request *aead_req;
310 struct sk_buff *nskb = NULL;
311 int buf_len;
312
313 aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC);
314 if (!aead_req)
315 return NULL;
316
317 cipher_desc = get_cipher_desc(tls_ctx->crypto_send.info.cipher_type);
318 DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
319
320 buf_len = cipher_desc->salt + cipher_desc->iv + TLS_AAD_SPACE_SIZE +
321 sync_size + cipher_desc->tag;
322 buf = kmalloc(buf_len, GFP_ATOMIC);
323 if (!buf)
324 goto free_req;
325
326 iv = buf;
327 salt = crypto_info_salt(&tls_ctx->crypto_send.info, cipher_desc);
328 memcpy(iv, salt, cipher_desc->salt);
329 aad = buf + cipher_desc->salt + cipher_desc->iv;
330 dummy_buf = aad + TLS_AAD_SPACE_SIZE;
331
332 nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC);
333 if (!nskb)
334 goto free_buf;
335
336 skb_reserve(nskb, skb_headroom(skb));
337
338 fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset,
339 payload_len, sync_size, dummy_buf);
340
341 if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv,
342 rcd_sn, sync_size + payload_len,
343 &tls_ctx->prot_info) < 0)
344 goto free_nskb;
345
346 complete_skb(nskb, skb, tcp_payload_offset);
347
348 /* validate_xmit_skb_list assumes that if the skb wasn't segmented
349 * nskb->prev will point to the skb itself
350 */
351 nskb->prev = nskb;
352
353 free_buf:
354 kfree(buf);
355 free_req:
356 kfree(aead_req);
357 return nskb;
358 free_nskb:
359 kfree_skb(nskb);
360 nskb = NULL;
361 goto free_buf;
362 }
363
tls_sw_fallback(struct sock * sk,struct sk_buff * skb)364 static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb)
365 {
366 int tcp_payload_offset = skb_tcp_all_headers(skb);
367 struct tls_context *tls_ctx = tls_get_ctx(sk);
368 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
369 int payload_len = skb->len - tcp_payload_offset;
370 struct scatterlist *sg_in, sg_out[3];
371 struct sk_buff *nskb = NULL;
372 int sg_in_max_elements;
373 int resync_sgs = 0;
374 s32 sync_size = 0;
375 u64 rcd_sn;
376
377 /* worst case is:
378 * MAX_SKB_FRAGS in tls_record_info
379 * MAX_SKB_FRAGS + 1 in SKB head and frags.
380 */
381 sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1;
382
383 if (!payload_len)
384 return skb;
385
386 sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC);
387 if (!sg_in)
388 goto free_orig;
389
390 sg_init_table(sg_in, sg_in_max_elements);
391 sg_init_table(sg_out, ARRAY_SIZE(sg_out));
392
393 if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) {
394 /* bypass packets before kernel TLS socket option was set */
395 if (sync_size < 0 && payload_len <= -sync_size)
396 nskb = skb_get(skb);
397 goto put_sg;
398 }
399
400 nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn);
401
402 put_sg:
403 while (resync_sgs)
404 put_page(sg_page(&sg_in[--resync_sgs]));
405 kfree(sg_in);
406 free_orig:
407 if (nskb)
408 consume_skb(skb);
409 else
410 kfree_skb(skb);
411 return nskb;
412 }
413
tls_validate_xmit_skb(struct sock * sk,struct net_device * dev,struct sk_buff * skb)414 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
415 struct net_device *dev,
416 struct sk_buff *skb)
417 {
418 if (dev == rcu_dereference_bh(tls_get_ctx(sk)->netdev) ||
419 netif_is_bond_master(dev))
420 return skb;
421
422 return tls_sw_fallback(sk, skb);
423 }
424 EXPORT_SYMBOL_GPL(tls_validate_xmit_skb);
425
tls_validate_xmit_skb_sw(struct sock * sk,struct net_device * dev,struct sk_buff * skb)426 struct sk_buff *tls_validate_xmit_skb_sw(struct sock *sk,
427 struct net_device *dev,
428 struct sk_buff *skb)
429 {
430 return tls_sw_fallback(sk, skb);
431 }
432
tls_encrypt_skb(struct sk_buff * skb)433 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb)
434 {
435 return tls_sw_fallback(skb->sk, skb);
436 }
437 EXPORT_SYMBOL_GPL(tls_encrypt_skb);
438
tls_sw_fallback_init(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct tls_crypto_info * crypto_info)439 int tls_sw_fallback_init(struct sock *sk,
440 struct tls_offload_context_tx *offload_ctx,
441 struct tls_crypto_info *crypto_info)
442 {
443 const struct tls_cipher_desc *cipher_desc;
444 int rc;
445
446 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
447 if (!cipher_desc || !cipher_desc->offloadable)
448 return -EINVAL;
449
450 offload_ctx->aead_send =
451 crypto_alloc_aead(cipher_desc->cipher_name, 0, CRYPTO_ALG_ASYNC);
452 if (IS_ERR(offload_ctx->aead_send)) {
453 rc = PTR_ERR(offload_ctx->aead_send);
454 pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc);
455 offload_ctx->aead_send = NULL;
456 goto err_out;
457 }
458
459 rc = crypto_aead_setkey(offload_ctx->aead_send,
460 crypto_info_key(crypto_info, cipher_desc),
461 cipher_desc->key);
462 if (rc)
463 goto free_aead;
464
465 rc = crypto_aead_setauthsize(offload_ctx->aead_send, cipher_desc->tag);
466 if (rc)
467 goto free_aead;
468
469 return 0;
470 free_aead:
471 crypto_free_aead(offload_ctx->aead_send);
472 err_out:
473 return rc;
474 }
475