1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27
28 #if IS_ENABLED(CONFIG_PSAMPLE)
29 #include <net/psample.h>
30 #endif
31
32 #include <net/sctp/checksum.h>
33
34 #include "datapath.h"
35 #include "drop.h"
36 #include "flow.h"
37 #include "conntrack.h"
38 #include "vport.h"
39 #include "flow_netlink.h"
40 #include "openvswitch_trace.h"
41
42 struct deferred_action {
43 struct sk_buff *skb;
44 const struct nlattr *actions;
45 int actions_len;
46
47 /* Store pkt_key clone when creating deferred action. */
48 struct sw_flow_key pkt_key;
49 };
50
51 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
52 struct ovs_frag_data {
53 unsigned long dst;
54 struct vport *vport;
55 struct ovs_skb_cb cb;
56 __be16 inner_protocol;
57 u16 network_offset; /* valid only for MPLS */
58 u16 vlan_tci;
59 __be16 vlan_proto;
60 unsigned int l2_len;
61 u8 mac_proto;
62 u8 l2_data[MAX_L2_LEN];
63 };
64
65 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
66
67 #define DEFERRED_ACTION_FIFO_SIZE 10
68 #define OVS_RECURSION_LIMIT 5
69 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
70 struct action_fifo {
71 int head;
72 int tail;
73 /* Deferred action fifo queue storage. */
74 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
75 };
76
77 struct action_flow_keys {
78 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
79 };
80
81 static struct action_fifo __percpu *action_fifos;
82 static struct action_flow_keys __percpu *flow_keys;
83 static DEFINE_PER_CPU(int, exec_actions_level);
84
85 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
86 * space. Return NULL if out of key spaces.
87 */
clone_key(const struct sw_flow_key * key_)88 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
89 {
90 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
91 int level = this_cpu_read(exec_actions_level);
92 struct sw_flow_key *key = NULL;
93
94 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
95 key = &keys->key[level - 1];
96 *key = *key_;
97 }
98
99 return key;
100 }
101
action_fifo_init(struct action_fifo * fifo)102 static void action_fifo_init(struct action_fifo *fifo)
103 {
104 fifo->head = 0;
105 fifo->tail = 0;
106 }
107
action_fifo_is_empty(const struct action_fifo * fifo)108 static bool action_fifo_is_empty(const struct action_fifo *fifo)
109 {
110 return (fifo->head == fifo->tail);
111 }
112
action_fifo_get(struct action_fifo * fifo)113 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
114 {
115 if (action_fifo_is_empty(fifo))
116 return NULL;
117
118 return &fifo->fifo[fifo->tail++];
119 }
120
action_fifo_put(struct action_fifo * fifo)121 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
122 {
123 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
124 return NULL;
125
126 return &fifo->fifo[fifo->head++];
127 }
128
129 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)130 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
131 const struct sw_flow_key *key,
132 const struct nlattr *actions,
133 const int actions_len)
134 {
135 struct action_fifo *fifo;
136 struct deferred_action *da;
137
138 fifo = this_cpu_ptr(action_fifos);
139 da = action_fifo_put(fifo);
140 if (da) {
141 da->skb = skb;
142 da->actions = actions;
143 da->actions_len = actions_len;
144 da->pkt_key = *key;
145 }
146
147 return da;
148 }
149
invalidate_flow_key(struct sw_flow_key * key)150 static void invalidate_flow_key(struct sw_flow_key *key)
151 {
152 key->mac_proto |= SW_FLOW_KEY_INVALID;
153 }
154
is_flow_key_valid(const struct sw_flow_key * key)155 static bool is_flow_key_valid(const struct sw_flow_key *key)
156 {
157 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
158 }
159
160 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
161 struct sw_flow_key *key,
162 u32 recirc_id,
163 const struct nlattr *actions, int len,
164 bool last, bool clone_flow_key);
165
166 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
167 struct sw_flow_key *key,
168 const struct nlattr *attr, int len);
169
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,__be32 mpls_lse,__be16 mpls_ethertype,__u16 mac_len)170 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
171 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
172 {
173 int err;
174
175 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
176 if (err)
177 return err;
178
179 if (!mac_len)
180 key->mac_proto = MAC_PROTO_NONE;
181
182 invalidate_flow_key(key);
183 return 0;
184 }
185
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)186 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
187 const __be16 ethertype)
188 {
189 int err;
190
191 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
192 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
193 if (err)
194 return err;
195
196 if (ethertype == htons(ETH_P_TEB))
197 key->mac_proto = MAC_PROTO_ETHERNET;
198
199 invalidate_flow_key(key);
200 return 0;
201 }
202
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)203 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
204 const __be32 *mpls_lse, const __be32 *mask)
205 {
206 struct mpls_shim_hdr *stack;
207 __be32 lse;
208 int err;
209
210 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
211 return -ENOMEM;
212
213 stack = mpls_hdr(skb);
214 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
215 err = skb_mpls_update_lse(skb, lse);
216 if (err)
217 return err;
218
219 flow_key->mpls.lse[0] = lse;
220 return 0;
221 }
222
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)223 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
224 {
225 int err;
226
227 err = skb_vlan_pop(skb);
228 if (skb_vlan_tag_present(skb)) {
229 invalidate_flow_key(key);
230 } else {
231 key->eth.vlan.tci = 0;
232 key->eth.vlan.tpid = 0;
233 }
234 return err;
235 }
236
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)237 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
238 const struct ovs_action_push_vlan *vlan)
239 {
240 int err;
241
242 if (skb_vlan_tag_present(skb)) {
243 invalidate_flow_key(key);
244 } else {
245 key->eth.vlan.tci = vlan->vlan_tci;
246 key->eth.vlan.tpid = vlan->vlan_tpid;
247 }
248 err = skb_vlan_push(skb, vlan->vlan_tpid,
249 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
250 skb_reset_mac_len(skb);
251 return err;
252 }
253
254 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)255 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
256 {
257 u16 *dst = (u16 *)dst_;
258 const u16 *src = (const u16 *)src_;
259 const u16 *mask = (const u16 *)mask_;
260
261 OVS_SET_MASKED(dst[0], src[0], mask[0]);
262 OVS_SET_MASKED(dst[1], src[1], mask[1]);
263 OVS_SET_MASKED(dst[2], src[2], mask[2]);
264 }
265
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)266 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
267 const struct ovs_key_ethernet *key,
268 const struct ovs_key_ethernet *mask)
269 {
270 int err;
271
272 err = skb_ensure_writable(skb, ETH_HLEN);
273 if (unlikely(err))
274 return err;
275
276 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
277
278 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
279 mask->eth_src);
280 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
281 mask->eth_dst);
282
283 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
284
285 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
286 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
287 return 0;
288 }
289
290 /* pop_eth does not support VLAN packets as this action is never called
291 * for them.
292 */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)293 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
294 {
295 int err;
296
297 err = skb_eth_pop(skb);
298 if (err)
299 return err;
300
301 /* safe right before invalidate_flow_key */
302 key->mac_proto = MAC_PROTO_NONE;
303 invalidate_flow_key(key);
304 return 0;
305 }
306
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)307 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
308 const struct ovs_action_push_eth *ethh)
309 {
310 int err;
311
312 err = skb_eth_push(skb, ethh->addresses.eth_dst,
313 ethh->addresses.eth_src);
314 if (err)
315 return err;
316
317 /* safe right before invalidate_flow_key */
318 key->mac_proto = MAC_PROTO_ETHERNET;
319 invalidate_flow_key(key);
320 return 0;
321 }
322
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a)323 static noinline_for_stack int push_nsh(struct sk_buff *skb,
324 struct sw_flow_key *key,
325 const struct nlattr *a)
326 {
327 u8 buffer[NSH_HDR_MAX_LEN];
328 struct nshhdr *nh = (struct nshhdr *)buffer;
329 int err;
330
331 err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
332 if (err)
333 return err;
334
335 err = nsh_push(skb, nh);
336 if (err)
337 return err;
338
339 /* safe right before invalidate_flow_key */
340 key->mac_proto = MAC_PROTO_NONE;
341 invalidate_flow_key(key);
342 return 0;
343 }
344
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)345 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
346 {
347 int err;
348
349 err = nsh_pop(skb);
350 if (err)
351 return err;
352
353 /* safe right before invalidate_flow_key */
354 if (skb->protocol == htons(ETH_P_TEB))
355 key->mac_proto = MAC_PROTO_ETHERNET;
356 else
357 key->mac_proto = MAC_PROTO_NONE;
358 invalidate_flow_key(key);
359 return 0;
360 }
361
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)362 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
363 __be32 addr, __be32 new_addr)
364 {
365 int transport_len = skb->len - skb_transport_offset(skb);
366
367 if (nh->frag_off & htons(IP_OFFSET))
368 return;
369
370 if (nh->protocol == IPPROTO_TCP) {
371 if (likely(transport_len >= sizeof(struct tcphdr)))
372 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
373 addr, new_addr, true);
374 } else if (nh->protocol == IPPROTO_UDP) {
375 if (likely(transport_len >= sizeof(struct udphdr))) {
376 struct udphdr *uh = udp_hdr(skb);
377
378 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
379 inet_proto_csum_replace4(&uh->check, skb,
380 addr, new_addr, true);
381 if (!uh->check)
382 uh->check = CSUM_MANGLED_0;
383 }
384 }
385 }
386 }
387
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)388 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
389 __be32 *addr, __be32 new_addr)
390 {
391 update_ip_l4_checksum(skb, nh, *addr, new_addr);
392 csum_replace4(&nh->check, *addr, new_addr);
393 skb_clear_hash(skb);
394 ovs_ct_clear(skb, NULL);
395 *addr = new_addr;
396 }
397
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])398 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
399 __be32 addr[4], const __be32 new_addr[4])
400 {
401 int transport_len = skb->len - skb_transport_offset(skb);
402
403 if (l4_proto == NEXTHDR_TCP) {
404 if (likely(transport_len >= sizeof(struct tcphdr)))
405 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
406 addr, new_addr, true);
407 } else if (l4_proto == NEXTHDR_UDP) {
408 if (likely(transport_len >= sizeof(struct udphdr))) {
409 struct udphdr *uh = udp_hdr(skb);
410
411 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
412 inet_proto_csum_replace16(&uh->check, skb,
413 addr, new_addr, true);
414 if (!uh->check)
415 uh->check = CSUM_MANGLED_0;
416 }
417 }
418 } else if (l4_proto == NEXTHDR_ICMP) {
419 if (likely(transport_len >= sizeof(struct icmp6hdr)))
420 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
421 skb, addr, new_addr, true);
422 }
423 }
424
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])425 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
426 const __be32 mask[4], __be32 masked[4])
427 {
428 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
429 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
430 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
431 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
432 }
433
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)434 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
435 __be32 addr[4], const __be32 new_addr[4],
436 bool recalculate_csum)
437 {
438 if (recalculate_csum)
439 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
440
441 skb_clear_hash(skb);
442 ovs_ct_clear(skb, NULL);
443 memcpy(addr, new_addr, sizeof(__be32[4]));
444 }
445
set_ipv6_dsfield(struct sk_buff * skb,struct ipv6hdr * nh,u8 ipv6_tclass,u8 mask)446 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
447 {
448 u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
449
450 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
451
452 if (skb->ip_summed == CHECKSUM_COMPLETE)
453 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
454 (__force __wsum)(ipv6_tclass << 12));
455
456 ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
457 }
458
set_ipv6_fl(struct sk_buff * skb,struct ipv6hdr * nh,u32 fl,u32 mask)459 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
460 {
461 u32 ofl;
462
463 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
464 fl = OVS_MASKED(ofl, fl, mask);
465
466 /* Bits 21-24 are always unmasked, so this retains their values. */
467 nh->flow_lbl[0] = (u8)(fl >> 16);
468 nh->flow_lbl[1] = (u8)(fl >> 8);
469 nh->flow_lbl[2] = (u8)fl;
470
471 if (skb->ip_summed == CHECKSUM_COMPLETE)
472 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
473 }
474
set_ipv6_ttl(struct sk_buff * skb,struct ipv6hdr * nh,u8 new_ttl,u8 mask)475 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
476 {
477 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
478
479 if (skb->ip_summed == CHECKSUM_COMPLETE)
480 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
481 (__force __wsum)(new_ttl << 8));
482 nh->hop_limit = new_ttl;
483 }
484
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)485 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
486 u8 mask)
487 {
488 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
489
490 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
491 nh->ttl = new_ttl;
492 }
493
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)494 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
495 const struct ovs_key_ipv4 *key,
496 const struct ovs_key_ipv4 *mask)
497 {
498 struct iphdr *nh;
499 __be32 new_addr;
500 int err;
501
502 err = skb_ensure_writable(skb, skb_network_offset(skb) +
503 sizeof(struct iphdr));
504 if (unlikely(err))
505 return err;
506
507 nh = ip_hdr(skb);
508
509 /* Setting an IP addresses is typically only a side effect of
510 * matching on them in the current userspace implementation, so it
511 * makes sense to check if the value actually changed.
512 */
513 if (mask->ipv4_src) {
514 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
515
516 if (unlikely(new_addr != nh->saddr)) {
517 set_ip_addr(skb, nh, &nh->saddr, new_addr);
518 flow_key->ipv4.addr.src = new_addr;
519 }
520 }
521 if (mask->ipv4_dst) {
522 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
523
524 if (unlikely(new_addr != nh->daddr)) {
525 set_ip_addr(skb, nh, &nh->daddr, new_addr);
526 flow_key->ipv4.addr.dst = new_addr;
527 }
528 }
529 if (mask->ipv4_tos) {
530 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
531 flow_key->ip.tos = nh->tos;
532 }
533 if (mask->ipv4_ttl) {
534 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
535 flow_key->ip.ttl = nh->ttl;
536 }
537
538 return 0;
539 }
540
is_ipv6_mask_nonzero(const __be32 addr[4])541 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
542 {
543 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
544 }
545
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)546 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
547 const struct ovs_key_ipv6 *key,
548 const struct ovs_key_ipv6 *mask)
549 {
550 struct ipv6hdr *nh;
551 int err;
552
553 err = skb_ensure_writable(skb, skb_network_offset(skb) +
554 sizeof(struct ipv6hdr));
555 if (unlikely(err))
556 return err;
557
558 nh = ipv6_hdr(skb);
559
560 /* Setting an IP addresses is typically only a side effect of
561 * matching on them in the current userspace implementation, so it
562 * makes sense to check if the value actually changed.
563 */
564 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
565 __be32 *saddr = (__be32 *)&nh->saddr;
566 __be32 masked[4];
567
568 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
569
570 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
571 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
572 true);
573 memcpy(&flow_key->ipv6.addr.src, masked,
574 sizeof(flow_key->ipv6.addr.src));
575 }
576 }
577 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
578 unsigned int offset = 0;
579 int flags = IP6_FH_F_SKIP_RH;
580 bool recalc_csum = true;
581 __be32 *daddr = (__be32 *)&nh->daddr;
582 __be32 masked[4];
583
584 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
585
586 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
587 if (ipv6_ext_hdr(nh->nexthdr))
588 recalc_csum = (ipv6_find_hdr(skb, &offset,
589 NEXTHDR_ROUTING,
590 NULL, &flags)
591 != NEXTHDR_ROUTING);
592
593 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
594 recalc_csum);
595 memcpy(&flow_key->ipv6.addr.dst, masked,
596 sizeof(flow_key->ipv6.addr.dst));
597 }
598 }
599 if (mask->ipv6_tclass) {
600 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
601 flow_key->ip.tos = ipv6_get_dsfield(nh);
602 }
603 if (mask->ipv6_label) {
604 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
605 ntohl(mask->ipv6_label));
606 flow_key->ipv6.label =
607 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
608 }
609 if (mask->ipv6_hlimit) {
610 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
611 flow_key->ip.ttl = nh->hop_limit;
612 }
613 return 0;
614 }
615
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)616 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
617 const struct nlattr *a)
618 {
619 struct nshhdr *nh;
620 size_t length;
621 int err;
622 u8 flags;
623 u8 ttl;
624 int i;
625
626 struct ovs_key_nsh key;
627 struct ovs_key_nsh mask;
628
629 err = nsh_key_from_nlattr(a, &key, &mask);
630 if (err)
631 return err;
632
633 /* Make sure the NSH base header is there */
634 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
635 return -ENOMEM;
636
637 nh = nsh_hdr(skb);
638 length = nsh_hdr_len(nh);
639
640 /* Make sure the whole NSH header is there */
641 err = skb_ensure_writable(skb, skb_network_offset(skb) +
642 length);
643 if (unlikely(err))
644 return err;
645
646 nh = nsh_hdr(skb);
647 skb_postpull_rcsum(skb, nh, length);
648 flags = nsh_get_flags(nh);
649 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
650 flow_key->nsh.base.flags = flags;
651 ttl = nsh_get_ttl(nh);
652 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
653 flow_key->nsh.base.ttl = ttl;
654 nsh_set_flags_and_ttl(nh, flags, ttl);
655 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
656 mask.base.path_hdr);
657 flow_key->nsh.base.path_hdr = nh->path_hdr;
658 switch (nh->mdtype) {
659 case NSH_M_TYPE1:
660 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
661 nh->md1.context[i] =
662 OVS_MASKED(nh->md1.context[i], key.context[i],
663 mask.context[i]);
664 }
665 memcpy(flow_key->nsh.context, nh->md1.context,
666 sizeof(nh->md1.context));
667 break;
668 case NSH_M_TYPE2:
669 memset(flow_key->nsh.context, 0,
670 sizeof(flow_key->nsh.context));
671 break;
672 default:
673 return -EINVAL;
674 }
675 skb_postpush_rcsum(skb, nh, length);
676 return 0;
677 }
678
679 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)680 static void set_tp_port(struct sk_buff *skb, __be16 *port,
681 __be16 new_port, __sum16 *check)
682 {
683 ovs_ct_clear(skb, NULL);
684 inet_proto_csum_replace2(check, skb, *port, new_port, false);
685 *port = new_port;
686 }
687
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)688 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
689 const struct ovs_key_udp *key,
690 const struct ovs_key_udp *mask)
691 {
692 struct udphdr *uh;
693 __be16 src, dst;
694 int err;
695
696 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
697 sizeof(struct udphdr));
698 if (unlikely(err))
699 return err;
700
701 uh = udp_hdr(skb);
702 /* Either of the masks is non-zero, so do not bother checking them. */
703 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
704 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
705
706 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
707 if (likely(src != uh->source)) {
708 set_tp_port(skb, &uh->source, src, &uh->check);
709 flow_key->tp.src = src;
710 }
711 if (likely(dst != uh->dest)) {
712 set_tp_port(skb, &uh->dest, dst, &uh->check);
713 flow_key->tp.dst = dst;
714 }
715
716 if (unlikely(!uh->check))
717 uh->check = CSUM_MANGLED_0;
718 } else {
719 uh->source = src;
720 uh->dest = dst;
721 flow_key->tp.src = src;
722 flow_key->tp.dst = dst;
723 ovs_ct_clear(skb, NULL);
724 }
725
726 skb_clear_hash(skb);
727
728 return 0;
729 }
730
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)731 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
732 const struct ovs_key_tcp *key,
733 const struct ovs_key_tcp *mask)
734 {
735 struct tcphdr *th;
736 __be16 src, dst;
737 int err;
738
739 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
740 sizeof(struct tcphdr));
741 if (unlikely(err))
742 return err;
743
744 th = tcp_hdr(skb);
745 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
746 if (likely(src != th->source)) {
747 set_tp_port(skb, &th->source, src, &th->check);
748 flow_key->tp.src = src;
749 }
750 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
751 if (likely(dst != th->dest)) {
752 set_tp_port(skb, &th->dest, dst, &th->check);
753 flow_key->tp.dst = dst;
754 }
755 skb_clear_hash(skb);
756
757 return 0;
758 }
759
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)760 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
761 const struct ovs_key_sctp *key,
762 const struct ovs_key_sctp *mask)
763 {
764 unsigned int sctphoff = skb_transport_offset(skb);
765 struct sctphdr *sh;
766 __le32 old_correct_csum, new_csum, old_csum;
767 int err;
768
769 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
770 if (unlikely(err))
771 return err;
772
773 sh = sctp_hdr(skb);
774 old_csum = sh->checksum;
775 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
776
777 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
778 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
779
780 new_csum = sctp_compute_cksum(skb, sctphoff);
781
782 /* Carry any checksum errors through. */
783 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
784
785 skb_clear_hash(skb);
786 ovs_ct_clear(skb, NULL);
787
788 flow_key->tp.src = sh->source;
789 flow_key->tp.dst = sh->dest;
790
791 return 0;
792 }
793
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)794 static int ovs_vport_output(struct net *net, struct sock *sk,
795 struct sk_buff *skb)
796 {
797 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
798 struct vport *vport = data->vport;
799
800 if (skb_cow_head(skb, data->l2_len) < 0) {
801 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
802 return -ENOMEM;
803 }
804
805 __skb_dst_copy(skb, data->dst);
806 *OVS_CB(skb) = data->cb;
807 skb->inner_protocol = data->inner_protocol;
808 if (data->vlan_tci & VLAN_CFI_MASK)
809 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
810 else
811 __vlan_hwaccel_clear_tag(skb);
812
813 /* Reconstruct the MAC header. */
814 skb_push(skb, data->l2_len);
815 memcpy(skb->data, &data->l2_data, data->l2_len);
816 skb_postpush_rcsum(skb, skb->data, data->l2_len);
817 skb_reset_mac_header(skb);
818
819 if (eth_p_mpls(skb->protocol)) {
820 skb->inner_network_header = skb->network_header;
821 skb_set_network_header(skb, data->network_offset);
822 skb_reset_mac_len(skb);
823 }
824
825 ovs_vport_send(vport, skb, data->mac_proto);
826 return 0;
827 }
828
829 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)830 ovs_dst_get_mtu(const struct dst_entry *dst)
831 {
832 return dst->dev->mtu;
833 }
834
835 static struct dst_ops ovs_dst_ops = {
836 .family = AF_UNSPEC,
837 .mtu = ovs_dst_get_mtu,
838 };
839
840 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
841 * ovs_vport_output(), which is called once per fragmented packet.
842 */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)843 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
844 u16 orig_network_offset, u8 mac_proto)
845 {
846 unsigned int hlen = skb_network_offset(skb);
847 struct ovs_frag_data *data;
848
849 data = this_cpu_ptr(&ovs_frag_data_storage);
850 data->dst = skb->_skb_refdst;
851 data->vport = vport;
852 data->cb = *OVS_CB(skb);
853 data->inner_protocol = skb->inner_protocol;
854 data->network_offset = orig_network_offset;
855 if (skb_vlan_tag_present(skb))
856 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
857 else
858 data->vlan_tci = 0;
859 data->vlan_proto = skb->vlan_proto;
860 data->mac_proto = mac_proto;
861 data->l2_len = hlen;
862 memcpy(&data->l2_data, skb->data, hlen);
863
864 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
865 skb_pull(skb, hlen);
866 }
867
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)868 static void ovs_fragment(struct net *net, struct vport *vport,
869 struct sk_buff *skb, u16 mru,
870 struct sw_flow_key *key)
871 {
872 enum ovs_drop_reason reason;
873 u16 orig_network_offset = 0;
874
875 if (eth_p_mpls(skb->protocol)) {
876 orig_network_offset = skb_network_offset(skb);
877 skb->network_header = skb->inner_network_header;
878 }
879
880 if (skb_network_offset(skb) > MAX_L2_LEN) {
881 OVS_NLERR(1, "L2 header too long to fragment");
882 reason = OVS_DROP_FRAG_L2_TOO_LONG;
883 goto err;
884 }
885
886 if (key->eth.type == htons(ETH_P_IP)) {
887 struct rtable ovs_rt = { 0 };
888 unsigned long orig_dst;
889
890 prepare_frag(vport, skb, orig_network_offset,
891 ovs_key_mac_proto(key));
892 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
893 DST_OBSOLETE_NONE, DST_NOCOUNT);
894 ovs_rt.dst.dev = vport->dev;
895
896 orig_dst = skb->_skb_refdst;
897 skb_dst_set_noref(skb, &ovs_rt.dst);
898 IPCB(skb)->frag_max_size = mru;
899
900 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
901 refdst_drop(orig_dst);
902 } else if (key->eth.type == htons(ETH_P_IPV6)) {
903 unsigned long orig_dst;
904 struct rt6_info ovs_rt;
905
906 prepare_frag(vport, skb, orig_network_offset,
907 ovs_key_mac_proto(key));
908 memset(&ovs_rt, 0, sizeof(ovs_rt));
909 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
910 DST_OBSOLETE_NONE, DST_NOCOUNT);
911 ovs_rt.dst.dev = vport->dev;
912
913 orig_dst = skb->_skb_refdst;
914 skb_dst_set_noref(skb, &ovs_rt.dst);
915 IP6CB(skb)->frag_max_size = mru;
916
917 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
918 refdst_drop(orig_dst);
919 } else {
920 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
921 ovs_vport_name(vport), ntohs(key->eth.type), mru,
922 vport->dev->mtu);
923 reason = OVS_DROP_FRAG_INVALID_PROTO;
924 goto err;
925 }
926
927 return;
928 err:
929 ovs_kfree_skb_reason(skb, reason);
930 }
931
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)932 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
933 struct sw_flow_key *key)
934 {
935 struct vport *vport = ovs_vport_rcu(dp, out_port);
936
937 if (likely(vport &&
938 netif_running(vport->dev) &&
939 netif_carrier_ok(vport->dev))) {
940 u16 mru = OVS_CB(skb)->mru;
941 u32 cutlen = OVS_CB(skb)->cutlen;
942
943 if (unlikely(cutlen > 0)) {
944 if (skb->len - cutlen > ovs_mac_header_len(key))
945 pskb_trim(skb, skb->len - cutlen);
946 else
947 pskb_trim(skb, ovs_mac_header_len(key));
948 }
949
950 if (likely(!mru ||
951 (skb->len <= mru + vport->dev->hard_header_len))) {
952 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
953 } else if (mru <= vport->dev->mtu) {
954 struct net *net = read_pnet(&dp->net);
955
956 ovs_fragment(net, vport, skb, mru, key);
957 } else {
958 kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
959 }
960 } else {
961 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
962 }
963 }
964
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)965 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
966 struct sw_flow_key *key, const struct nlattr *attr,
967 const struct nlattr *actions, int actions_len,
968 uint32_t cutlen)
969 {
970 struct dp_upcall_info upcall;
971 const struct nlattr *a;
972 int rem;
973
974 memset(&upcall, 0, sizeof(upcall));
975 upcall.cmd = OVS_PACKET_CMD_ACTION;
976 upcall.mru = OVS_CB(skb)->mru;
977
978 nla_for_each_nested(a, attr, rem) {
979 switch (nla_type(a)) {
980 case OVS_USERSPACE_ATTR_USERDATA:
981 upcall.userdata = a;
982 break;
983
984 case OVS_USERSPACE_ATTR_PID:
985 if (dp->user_features &
986 OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
987 upcall.portid =
988 ovs_dp_get_upcall_portid(dp,
989 smp_processor_id());
990 else
991 upcall.portid = nla_get_u32(a);
992 break;
993
994 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
995 /* Get out tunnel info. */
996 struct vport *vport;
997
998 vport = ovs_vport_rcu(dp, nla_get_u32(a));
999 if (vport) {
1000 int err;
1001
1002 err = dev_fill_metadata_dst(vport->dev, skb);
1003 if (!err)
1004 upcall.egress_tun_info = skb_tunnel_info(skb);
1005 }
1006
1007 break;
1008 }
1009
1010 case OVS_USERSPACE_ATTR_ACTIONS: {
1011 /* Include actions. */
1012 upcall.actions = actions;
1013 upcall.actions_len = actions_len;
1014 break;
1015 }
1016
1017 } /* End of switch. */
1018 }
1019
1020 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1021 }
1022
dec_ttl_exception_handler(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1023 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1024 struct sw_flow_key *key,
1025 const struct nlattr *attr)
1026 {
1027 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1028 struct nlattr *actions = nla_data(attr);
1029
1030 if (nla_len(actions))
1031 return clone_execute(dp, skb, key, 0, nla_data(actions),
1032 nla_len(actions), true, false);
1033
1034 ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1035 return 0;
1036 }
1037
1038 /* When 'last' is true, sample() should always consume the 'skb'.
1039 * Otherwise, sample() should keep 'skb' intact regardless what
1040 * actions are executed within sample().
1041 */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1042 static int sample(struct datapath *dp, struct sk_buff *skb,
1043 struct sw_flow_key *key, const struct nlattr *attr,
1044 bool last)
1045 {
1046 struct nlattr *actions;
1047 struct nlattr *sample_arg;
1048 int rem = nla_len(attr);
1049 const struct sample_arg *arg;
1050 u32 init_probability;
1051 bool clone_flow_key;
1052 int err;
1053
1054 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1055 sample_arg = nla_data(attr);
1056 arg = nla_data(sample_arg);
1057 actions = nla_next(sample_arg, &rem);
1058 init_probability = OVS_CB(skb)->probability;
1059
1060 if ((arg->probability != U32_MAX) &&
1061 (!arg->probability || get_random_u32() > arg->probability)) {
1062 if (last)
1063 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1064 return 0;
1065 }
1066
1067 OVS_CB(skb)->probability = arg->probability;
1068
1069 clone_flow_key = !arg->exec;
1070 err = clone_execute(dp, skb, key, 0, actions, rem, last,
1071 clone_flow_key);
1072
1073 if (!last)
1074 OVS_CB(skb)->probability = init_probability;
1075
1076 return err;
1077 }
1078
1079 /* When 'last' is true, clone() should always consume the 'skb'.
1080 * Otherwise, clone() should keep 'skb' intact regardless what
1081 * actions are executed within clone().
1082 */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1083 static int clone(struct datapath *dp, struct sk_buff *skb,
1084 struct sw_flow_key *key, const struct nlattr *attr,
1085 bool last)
1086 {
1087 struct nlattr *actions;
1088 struct nlattr *clone_arg;
1089 int rem = nla_len(attr);
1090 bool dont_clone_flow_key;
1091
1092 /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1093 clone_arg = nla_data(attr);
1094 dont_clone_flow_key = nla_get_u32(clone_arg);
1095 actions = nla_next(clone_arg, &rem);
1096
1097 return clone_execute(dp, skb, key, 0, actions, rem, last,
1098 !dont_clone_flow_key);
1099 }
1100
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1101 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1102 const struct nlattr *attr)
1103 {
1104 struct ovs_action_hash *hash_act = nla_data(attr);
1105 u32 hash = 0;
1106
1107 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1108 /* OVS_HASH_ALG_L4 hasing type. */
1109 hash = skb_get_hash(skb);
1110 } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1111 /* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't
1112 * extend past an encapsulated header.
1113 */
1114 hash = __skb_get_hash_symmetric(skb);
1115 }
1116
1117 hash = jhash_1word(hash, hash_act->hash_basis);
1118 if (!hash)
1119 hash = 0x1;
1120
1121 key->ovs_flow_hash = hash;
1122 }
1123
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1124 static int execute_set_action(struct sk_buff *skb,
1125 struct sw_flow_key *flow_key,
1126 const struct nlattr *a)
1127 {
1128 /* Only tunnel set execution is supported without a mask. */
1129 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1130 struct ovs_tunnel_info *tun = nla_data(a);
1131
1132 skb_dst_drop(skb);
1133 dst_hold((struct dst_entry *)tun->tun_dst);
1134 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1135 return 0;
1136 }
1137
1138 return -EINVAL;
1139 }
1140
1141 /* Mask is at the midpoint of the data. */
1142 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1143
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1144 static int execute_masked_set_action(struct sk_buff *skb,
1145 struct sw_flow_key *flow_key,
1146 const struct nlattr *a)
1147 {
1148 int err = 0;
1149
1150 switch (nla_type(a)) {
1151 case OVS_KEY_ATTR_PRIORITY:
1152 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1153 *get_mask(a, u32 *));
1154 flow_key->phy.priority = skb->priority;
1155 break;
1156
1157 case OVS_KEY_ATTR_SKB_MARK:
1158 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1159 flow_key->phy.skb_mark = skb->mark;
1160 break;
1161
1162 case OVS_KEY_ATTR_TUNNEL_INFO:
1163 /* Masked data not supported for tunnel. */
1164 err = -EINVAL;
1165 break;
1166
1167 case OVS_KEY_ATTR_ETHERNET:
1168 err = set_eth_addr(skb, flow_key, nla_data(a),
1169 get_mask(a, struct ovs_key_ethernet *));
1170 break;
1171
1172 case OVS_KEY_ATTR_NSH:
1173 err = set_nsh(skb, flow_key, a);
1174 break;
1175
1176 case OVS_KEY_ATTR_IPV4:
1177 err = set_ipv4(skb, flow_key, nla_data(a),
1178 get_mask(a, struct ovs_key_ipv4 *));
1179 break;
1180
1181 case OVS_KEY_ATTR_IPV6:
1182 err = set_ipv6(skb, flow_key, nla_data(a),
1183 get_mask(a, struct ovs_key_ipv6 *));
1184 break;
1185
1186 case OVS_KEY_ATTR_TCP:
1187 err = set_tcp(skb, flow_key, nla_data(a),
1188 get_mask(a, struct ovs_key_tcp *));
1189 break;
1190
1191 case OVS_KEY_ATTR_UDP:
1192 err = set_udp(skb, flow_key, nla_data(a),
1193 get_mask(a, struct ovs_key_udp *));
1194 break;
1195
1196 case OVS_KEY_ATTR_SCTP:
1197 err = set_sctp(skb, flow_key, nla_data(a),
1198 get_mask(a, struct ovs_key_sctp *));
1199 break;
1200
1201 case OVS_KEY_ATTR_MPLS:
1202 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1203 __be32 *));
1204 break;
1205
1206 case OVS_KEY_ATTR_CT_STATE:
1207 case OVS_KEY_ATTR_CT_ZONE:
1208 case OVS_KEY_ATTR_CT_MARK:
1209 case OVS_KEY_ATTR_CT_LABELS:
1210 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1211 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1212 err = -EINVAL;
1213 break;
1214 }
1215
1216 return err;
1217 }
1218
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1219 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1220 struct sw_flow_key *key,
1221 const struct nlattr *a, bool last)
1222 {
1223 u32 recirc_id;
1224
1225 if (!is_flow_key_valid(key)) {
1226 int err;
1227
1228 err = ovs_flow_key_update(skb, key);
1229 if (err)
1230 return err;
1231 }
1232 BUG_ON(!is_flow_key_valid(key));
1233
1234 recirc_id = nla_get_u32(a);
1235 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1236 }
1237
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1238 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1239 struct sw_flow_key *key,
1240 const struct nlattr *attr, bool last)
1241 {
1242 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1243 const struct nlattr *actions, *cpl_arg;
1244 int len, max_len, rem = nla_len(attr);
1245 const struct check_pkt_len_arg *arg;
1246 bool clone_flow_key;
1247
1248 /* The first netlink attribute in 'attr' is always
1249 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1250 */
1251 cpl_arg = nla_data(attr);
1252 arg = nla_data(cpl_arg);
1253
1254 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1255 max_len = arg->pkt_len;
1256
1257 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1258 len <= max_len) {
1259 /* Second netlink attribute in 'attr' is always
1260 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1261 */
1262 actions = nla_next(cpl_arg, &rem);
1263 clone_flow_key = !arg->exec_for_lesser_equal;
1264 } else {
1265 /* Third netlink attribute in 'attr' is always
1266 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1267 */
1268 actions = nla_next(cpl_arg, &rem);
1269 actions = nla_next(actions, &rem);
1270 clone_flow_key = !arg->exec_for_greater;
1271 }
1272
1273 return clone_execute(dp, skb, key, 0, nla_data(actions),
1274 nla_len(actions), last, clone_flow_key);
1275 }
1276
execute_dec_ttl(struct sk_buff * skb,struct sw_flow_key * key)1277 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1278 {
1279 int err;
1280
1281 if (skb->protocol == htons(ETH_P_IPV6)) {
1282 struct ipv6hdr *nh;
1283
1284 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1285 sizeof(*nh));
1286 if (unlikely(err))
1287 return err;
1288
1289 nh = ipv6_hdr(skb);
1290
1291 if (nh->hop_limit <= 1)
1292 return -EHOSTUNREACH;
1293
1294 key->ip.ttl = --nh->hop_limit;
1295 } else if (skb->protocol == htons(ETH_P_IP)) {
1296 struct iphdr *nh;
1297 u8 old_ttl;
1298
1299 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1300 sizeof(*nh));
1301 if (unlikely(err))
1302 return err;
1303
1304 nh = ip_hdr(skb);
1305 if (nh->ttl <= 1)
1306 return -EHOSTUNREACH;
1307
1308 old_ttl = nh->ttl--;
1309 csum_replace2(&nh->check, htons(old_ttl << 8),
1310 htons(nh->ttl << 8));
1311 key->ip.ttl = nh->ttl;
1312 }
1313 return 0;
1314 }
1315
1316 #if IS_ENABLED(CONFIG_PSAMPLE)
execute_psample(struct datapath * dp,struct sk_buff * skb,const struct nlattr * attr)1317 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1318 const struct nlattr *attr)
1319 {
1320 struct psample_group psample_group = {};
1321 struct psample_metadata md = {};
1322 const struct nlattr *a;
1323 u32 rate;
1324 int rem;
1325
1326 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
1327 switch (nla_type(a)) {
1328 case OVS_PSAMPLE_ATTR_GROUP:
1329 psample_group.group_num = nla_get_u32(a);
1330 break;
1331
1332 case OVS_PSAMPLE_ATTR_COOKIE:
1333 md.user_cookie = nla_data(a);
1334 md.user_cookie_len = nla_len(a);
1335 break;
1336 }
1337 }
1338
1339 psample_group.net = ovs_dp_get_net(dp);
1340 md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex;
1341 md.trunc_size = skb->len - OVS_CB(skb)->cutlen;
1342 md.rate_as_probability = 1;
1343
1344 rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX;
1345
1346 psample_sample_packet(&psample_group, skb, rate, &md);
1347 }
1348 #else
execute_psample(struct datapath * dp,struct sk_buff * skb,const struct nlattr * attr)1349 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1350 const struct nlattr *attr)
1351 {}
1352 #endif
1353
1354 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1355 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1356 struct sw_flow_key *key,
1357 const struct nlattr *attr, int len)
1358 {
1359 const struct nlattr *a;
1360 int rem;
1361
1362 for (a = attr, rem = len; rem > 0;
1363 a = nla_next(a, &rem)) {
1364 int err = 0;
1365
1366 if (trace_ovs_do_execute_action_enabled())
1367 trace_ovs_do_execute_action(dp, skb, key, a, rem);
1368
1369 /* Actions that rightfully have to consume the skb should do it
1370 * and return directly.
1371 */
1372 switch (nla_type(a)) {
1373 case OVS_ACTION_ATTR_OUTPUT: {
1374 int port = nla_get_u32(a);
1375 struct sk_buff *clone;
1376
1377 /* Every output action needs a separate clone
1378 * of 'skb', In case the output action is the
1379 * last action, cloning can be avoided.
1380 */
1381 if (nla_is_last(a, rem)) {
1382 do_output(dp, skb, port, key);
1383 /* 'skb' has been used for output.
1384 */
1385 return 0;
1386 }
1387
1388 clone = skb_clone(skb, GFP_ATOMIC);
1389 if (clone)
1390 do_output(dp, clone, port, key);
1391 OVS_CB(skb)->cutlen = 0;
1392 break;
1393 }
1394
1395 case OVS_ACTION_ATTR_TRUNC: {
1396 struct ovs_action_trunc *trunc = nla_data(a);
1397
1398 if (skb->len > trunc->max_len)
1399 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1400 break;
1401 }
1402
1403 case OVS_ACTION_ATTR_USERSPACE:
1404 output_userspace(dp, skb, key, a, attr,
1405 len, OVS_CB(skb)->cutlen);
1406 OVS_CB(skb)->cutlen = 0;
1407 if (nla_is_last(a, rem)) {
1408 consume_skb(skb);
1409 return 0;
1410 }
1411 break;
1412
1413 case OVS_ACTION_ATTR_HASH:
1414 execute_hash(skb, key, a);
1415 break;
1416
1417 case OVS_ACTION_ATTR_PUSH_MPLS: {
1418 struct ovs_action_push_mpls *mpls = nla_data(a);
1419
1420 err = push_mpls(skb, key, mpls->mpls_lse,
1421 mpls->mpls_ethertype, skb->mac_len);
1422 break;
1423 }
1424 case OVS_ACTION_ATTR_ADD_MPLS: {
1425 struct ovs_action_add_mpls *mpls = nla_data(a);
1426 __u16 mac_len = 0;
1427
1428 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1429 mac_len = skb->mac_len;
1430
1431 err = push_mpls(skb, key, mpls->mpls_lse,
1432 mpls->mpls_ethertype, mac_len);
1433 break;
1434 }
1435 case OVS_ACTION_ATTR_POP_MPLS:
1436 err = pop_mpls(skb, key, nla_get_be16(a));
1437 break;
1438
1439 case OVS_ACTION_ATTR_PUSH_VLAN:
1440 err = push_vlan(skb, key, nla_data(a));
1441 break;
1442
1443 case OVS_ACTION_ATTR_POP_VLAN:
1444 err = pop_vlan(skb, key);
1445 break;
1446
1447 case OVS_ACTION_ATTR_RECIRC: {
1448 bool last = nla_is_last(a, rem);
1449
1450 err = execute_recirc(dp, skb, key, a, last);
1451 if (last) {
1452 /* If this is the last action, the skb has
1453 * been consumed or freed.
1454 * Return immediately.
1455 */
1456 return err;
1457 }
1458 break;
1459 }
1460
1461 case OVS_ACTION_ATTR_SET:
1462 err = execute_set_action(skb, key, nla_data(a));
1463 break;
1464
1465 case OVS_ACTION_ATTR_SET_MASKED:
1466 case OVS_ACTION_ATTR_SET_TO_MASKED:
1467 err = execute_masked_set_action(skb, key, nla_data(a));
1468 break;
1469
1470 case OVS_ACTION_ATTR_SAMPLE: {
1471 bool last = nla_is_last(a, rem);
1472
1473 err = sample(dp, skb, key, a, last);
1474 if (last)
1475 return err;
1476
1477 break;
1478 }
1479
1480 case OVS_ACTION_ATTR_CT:
1481 if (!is_flow_key_valid(key)) {
1482 err = ovs_flow_key_update(skb, key);
1483 if (err)
1484 return err;
1485 }
1486
1487 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1488 nla_data(a));
1489
1490 /* Hide stolen IP fragments from user space. */
1491 if (err)
1492 return err == -EINPROGRESS ? 0 : err;
1493 break;
1494
1495 case OVS_ACTION_ATTR_CT_CLEAR:
1496 err = ovs_ct_clear(skb, key);
1497 break;
1498
1499 case OVS_ACTION_ATTR_PUSH_ETH:
1500 err = push_eth(skb, key, nla_data(a));
1501 break;
1502
1503 case OVS_ACTION_ATTR_POP_ETH:
1504 err = pop_eth(skb, key);
1505 break;
1506
1507 case OVS_ACTION_ATTR_PUSH_NSH:
1508 err = push_nsh(skb, key, nla_data(a));
1509 break;
1510
1511 case OVS_ACTION_ATTR_POP_NSH:
1512 err = pop_nsh(skb, key);
1513 break;
1514
1515 case OVS_ACTION_ATTR_METER:
1516 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1517 ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1518 return 0;
1519 }
1520 break;
1521
1522 case OVS_ACTION_ATTR_CLONE: {
1523 bool last = nla_is_last(a, rem);
1524
1525 err = clone(dp, skb, key, a, last);
1526 if (last)
1527 return err;
1528
1529 break;
1530 }
1531
1532 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1533 bool last = nla_is_last(a, rem);
1534
1535 err = execute_check_pkt_len(dp, skb, key, a, last);
1536 if (last)
1537 return err;
1538
1539 break;
1540 }
1541
1542 case OVS_ACTION_ATTR_DEC_TTL:
1543 err = execute_dec_ttl(skb, key);
1544 if (err == -EHOSTUNREACH)
1545 return dec_ttl_exception_handler(dp, skb,
1546 key, a);
1547 break;
1548
1549 case OVS_ACTION_ATTR_DROP: {
1550 enum ovs_drop_reason reason = nla_get_u32(a)
1551 ? OVS_DROP_EXPLICIT_WITH_ERROR
1552 : OVS_DROP_EXPLICIT;
1553
1554 ovs_kfree_skb_reason(skb, reason);
1555 return 0;
1556 }
1557
1558 case OVS_ACTION_ATTR_PSAMPLE:
1559 execute_psample(dp, skb, a);
1560 OVS_CB(skb)->cutlen = 0;
1561 if (nla_is_last(a, rem)) {
1562 consume_skb(skb);
1563 return 0;
1564 }
1565 break;
1566 }
1567
1568 if (unlikely(err)) {
1569 ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1570 return err;
1571 }
1572 }
1573
1574 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1575 return 0;
1576 }
1577
1578 /* Execute the actions on the clone of the packet. The effect of the
1579 * execution does not affect the original 'skb' nor the original 'key'.
1580 *
1581 * The execution may be deferred in case the actions can not be executed
1582 * immediately.
1583 */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1584 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1585 struct sw_flow_key *key, u32 recirc_id,
1586 const struct nlattr *actions, int len,
1587 bool last, bool clone_flow_key)
1588 {
1589 struct deferred_action *da;
1590 struct sw_flow_key *clone;
1591
1592 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1593 if (!skb) {
1594 /* Out of memory, skip this action.
1595 */
1596 return 0;
1597 }
1598
1599 /* When clone_flow_key is false, the 'key' will not be change
1600 * by the actions, then the 'key' can be used directly.
1601 * Otherwise, try to clone key from the next recursion level of
1602 * 'flow_keys'. If clone is successful, execute the actions
1603 * without deferring.
1604 */
1605 clone = clone_flow_key ? clone_key(key) : key;
1606 if (clone) {
1607 int err = 0;
1608
1609 if (actions) { /* Sample action */
1610 if (clone_flow_key)
1611 __this_cpu_inc(exec_actions_level);
1612
1613 err = do_execute_actions(dp, skb, clone,
1614 actions, len);
1615
1616 if (clone_flow_key)
1617 __this_cpu_dec(exec_actions_level);
1618 } else { /* Recirc action */
1619 clone->recirc_id = recirc_id;
1620 ovs_dp_process_packet(skb, clone);
1621 }
1622 return err;
1623 }
1624
1625 /* Out of 'flow_keys' space. Defer actions */
1626 da = add_deferred_actions(skb, key, actions, len);
1627 if (da) {
1628 if (!actions) { /* Recirc action */
1629 key = &da->pkt_key;
1630 key->recirc_id = recirc_id;
1631 }
1632 } else {
1633 /* Out of per CPU action FIFO space. Drop the 'skb' and
1634 * log an error.
1635 */
1636 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1637
1638 if (net_ratelimit()) {
1639 if (actions) { /* Sample action */
1640 pr_warn("%s: deferred action limit reached, drop sample action\n",
1641 ovs_dp_name(dp));
1642 } else { /* Recirc action */
1643 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1644 ovs_dp_name(dp), recirc_id);
1645 }
1646 }
1647 }
1648 return 0;
1649 }
1650
process_deferred_actions(struct datapath * dp)1651 static void process_deferred_actions(struct datapath *dp)
1652 {
1653 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1654
1655 /* Do not touch the FIFO in case there is no deferred actions. */
1656 if (action_fifo_is_empty(fifo))
1657 return;
1658
1659 /* Finishing executing all deferred actions. */
1660 do {
1661 struct deferred_action *da = action_fifo_get(fifo);
1662 struct sk_buff *skb = da->skb;
1663 struct sw_flow_key *key = &da->pkt_key;
1664 const struct nlattr *actions = da->actions;
1665 int actions_len = da->actions_len;
1666
1667 if (actions)
1668 do_execute_actions(dp, skb, key, actions, actions_len);
1669 else
1670 ovs_dp_process_packet(skb, key);
1671 } while (!action_fifo_is_empty(fifo));
1672
1673 /* Reset FIFO for the next packet. */
1674 action_fifo_init(fifo);
1675 }
1676
1677 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1678 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1679 const struct sw_flow_actions *acts,
1680 struct sw_flow_key *key)
1681 {
1682 int err, level;
1683
1684 level = __this_cpu_inc_return(exec_actions_level);
1685 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1686 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1687 ovs_dp_name(dp));
1688 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1689 err = -ENETDOWN;
1690 goto out;
1691 }
1692
1693 OVS_CB(skb)->acts_origlen = acts->orig_len;
1694 err = do_execute_actions(dp, skb, key,
1695 acts->actions, acts->actions_len);
1696
1697 if (level == 1)
1698 process_deferred_actions(dp);
1699
1700 out:
1701 __this_cpu_dec(exec_actions_level);
1702 return err;
1703 }
1704
action_fifos_init(void)1705 int action_fifos_init(void)
1706 {
1707 action_fifos = alloc_percpu(struct action_fifo);
1708 if (!action_fifos)
1709 return -ENOMEM;
1710
1711 flow_keys = alloc_percpu(struct action_flow_keys);
1712 if (!flow_keys) {
1713 free_percpu(action_fifos);
1714 return -ENOMEM;
1715 }
1716
1717 return 0;
1718 }
1719
action_fifos_exit(void)1720 void action_fifos_exit(void)
1721 {
1722 free_percpu(action_fifos);
1723 free_percpu(flow_keys);
1724 }
1725