1 // SPDX-License-Identifier: GPL-2.0-only
2 /* net/core/xdp.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6 #include <linux/bpf.h>
7 #include <linux/btf.h>
8 #include <linux/btf_ids.h>
9 #include <linux/filter.h>
10 #include <linux/types.h>
11 #include <linux/mm.h>
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/idr.h>
15 #include <linux/rhashtable.h>
16 #include <linux/bug.h>
17 #include <net/page_pool/helpers.h>
18
19 #include <net/hotdata.h>
20 #include <net/xdp.h>
21 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */
22 #include <trace/events/xdp.h>
23 #include <net/xdp_sock_drv.h>
24
25 #define REG_STATE_NEW 0x0
26 #define REG_STATE_REGISTERED 0x1
27 #define REG_STATE_UNREGISTERED 0x2
28 #define REG_STATE_UNUSED 0x3
29
30 static DEFINE_IDA(mem_id_pool);
31 static DEFINE_MUTEX(mem_id_lock);
32 #define MEM_ID_MAX 0xFFFE
33 #define MEM_ID_MIN 1
34 static int mem_id_next = MEM_ID_MIN;
35
36 static bool mem_id_init; /* false */
37 static struct rhashtable *mem_id_ht;
38
xdp_mem_id_hashfn(const void * data,u32 len,u32 seed)39 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed)
40 {
41 const u32 *k = data;
42 const u32 key = *k;
43
44 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id)
45 != sizeof(u32));
46
47 /* Use cyclic increasing ID as direct hash key */
48 return key;
49 }
50
xdp_mem_id_cmp(struct rhashtable_compare_arg * arg,const void * ptr)51 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg,
52 const void *ptr)
53 {
54 const struct xdp_mem_allocator *xa = ptr;
55 u32 mem_id = *(u32 *)arg->key;
56
57 return xa->mem.id != mem_id;
58 }
59
60 static const struct rhashtable_params mem_id_rht_params = {
61 .nelem_hint = 64,
62 .head_offset = offsetof(struct xdp_mem_allocator, node),
63 .key_offset = offsetof(struct xdp_mem_allocator, mem.id),
64 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id),
65 .max_size = MEM_ID_MAX,
66 .min_size = 8,
67 .automatic_shrinking = true,
68 .hashfn = xdp_mem_id_hashfn,
69 .obj_cmpfn = xdp_mem_id_cmp,
70 };
71
__xdp_mem_allocator_rcu_free(struct rcu_head * rcu)72 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu)
73 {
74 struct xdp_mem_allocator *xa;
75
76 xa = container_of(rcu, struct xdp_mem_allocator, rcu);
77
78 /* Allow this ID to be reused */
79 ida_free(&mem_id_pool, xa->mem.id);
80
81 kfree(xa);
82 }
83
mem_xa_remove(struct xdp_mem_allocator * xa)84 static void mem_xa_remove(struct xdp_mem_allocator *xa)
85 {
86 trace_mem_disconnect(xa);
87
88 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params))
89 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free);
90 }
91
mem_allocator_disconnect(void * allocator)92 static void mem_allocator_disconnect(void *allocator)
93 {
94 struct xdp_mem_allocator *xa;
95 struct rhashtable_iter iter;
96
97 mutex_lock(&mem_id_lock);
98
99 rhashtable_walk_enter(mem_id_ht, &iter);
100 do {
101 rhashtable_walk_start(&iter);
102
103 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) {
104 if (xa->allocator == allocator)
105 mem_xa_remove(xa);
106 }
107
108 rhashtable_walk_stop(&iter);
109
110 } while (xa == ERR_PTR(-EAGAIN));
111 rhashtable_walk_exit(&iter);
112
113 mutex_unlock(&mem_id_lock);
114 }
115
xdp_unreg_mem_model(struct xdp_mem_info * mem)116 void xdp_unreg_mem_model(struct xdp_mem_info *mem)
117 {
118 struct xdp_mem_allocator *xa;
119 int type = mem->type;
120 int id = mem->id;
121
122 /* Reset mem info to defaults */
123 mem->id = 0;
124 mem->type = 0;
125
126 if (id == 0)
127 return;
128
129 if (type == MEM_TYPE_PAGE_POOL) {
130 xa = rhashtable_lookup_fast(mem_id_ht, &id, mem_id_rht_params);
131 page_pool_destroy(xa->page_pool);
132 }
133 }
134 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model);
135
xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info * xdp_rxq)136 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq)
137 {
138 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
139 WARN(1, "Missing register, driver bug");
140 return;
141 }
142
143 xdp_unreg_mem_model(&xdp_rxq->mem);
144 }
145 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model);
146
xdp_rxq_info_unreg(struct xdp_rxq_info * xdp_rxq)147 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq)
148 {
149 /* Simplify driver cleanup code paths, allow unreg "unused" */
150 if (xdp_rxq->reg_state == REG_STATE_UNUSED)
151 return;
152
153 xdp_rxq_info_unreg_mem_model(xdp_rxq);
154
155 xdp_rxq->reg_state = REG_STATE_UNREGISTERED;
156 xdp_rxq->dev = NULL;
157 }
158 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg);
159
xdp_rxq_info_init(struct xdp_rxq_info * xdp_rxq)160 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq)
161 {
162 memset(xdp_rxq, 0, sizeof(*xdp_rxq));
163 }
164
165 /* Returns 0 on success, negative on failure */
__xdp_rxq_info_reg(struct xdp_rxq_info * xdp_rxq,struct net_device * dev,u32 queue_index,unsigned int napi_id,u32 frag_size)166 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
167 struct net_device *dev, u32 queue_index,
168 unsigned int napi_id, u32 frag_size)
169 {
170 if (!dev) {
171 WARN(1, "Missing net_device from driver");
172 return -ENODEV;
173 }
174
175 if (xdp_rxq->reg_state == REG_STATE_UNUSED) {
176 WARN(1, "Driver promised not to register this");
177 return -EINVAL;
178 }
179
180 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) {
181 WARN(1, "Missing unregister, handled but fix driver");
182 xdp_rxq_info_unreg(xdp_rxq);
183 }
184
185 /* State either UNREGISTERED or NEW */
186 xdp_rxq_info_init(xdp_rxq);
187 xdp_rxq->dev = dev;
188 xdp_rxq->queue_index = queue_index;
189 xdp_rxq->frag_size = frag_size;
190
191 xdp_rxq->reg_state = REG_STATE_REGISTERED;
192 return 0;
193 }
194 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg);
195
xdp_rxq_info_unused(struct xdp_rxq_info * xdp_rxq)196 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq)
197 {
198 xdp_rxq->reg_state = REG_STATE_UNUSED;
199 }
200 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused);
201
xdp_rxq_info_is_reg(struct xdp_rxq_info * xdp_rxq)202 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq)
203 {
204 return (xdp_rxq->reg_state == REG_STATE_REGISTERED);
205 }
206 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg);
207
__mem_id_init_hash_table(void)208 static int __mem_id_init_hash_table(void)
209 {
210 struct rhashtable *rht;
211 int ret;
212
213 if (unlikely(mem_id_init))
214 return 0;
215
216 rht = kzalloc(sizeof(*rht), GFP_KERNEL);
217 if (!rht)
218 return -ENOMEM;
219
220 ret = rhashtable_init(rht, &mem_id_rht_params);
221 if (ret < 0) {
222 kfree(rht);
223 return ret;
224 }
225 mem_id_ht = rht;
226 smp_mb(); /* mutex lock should provide enough pairing */
227 mem_id_init = true;
228
229 return 0;
230 }
231
232 /* Allocate a cyclic ID that maps to allocator pointer.
233 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html
234 *
235 * Caller must lock mem_id_lock.
236 */
__mem_id_cyclic_get(gfp_t gfp)237 static int __mem_id_cyclic_get(gfp_t gfp)
238 {
239 int retries = 1;
240 int id;
241
242 again:
243 id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp);
244 if (id < 0) {
245 if (id == -ENOSPC) {
246 /* Cyclic allocator, reset next id */
247 if (retries--) {
248 mem_id_next = MEM_ID_MIN;
249 goto again;
250 }
251 }
252 return id; /* errno */
253 }
254 mem_id_next = id + 1;
255
256 return id;
257 }
258
__is_supported_mem_type(enum xdp_mem_type type)259 static bool __is_supported_mem_type(enum xdp_mem_type type)
260 {
261 if (type == MEM_TYPE_PAGE_POOL)
262 return is_page_pool_compiled_in();
263
264 if (type >= MEM_TYPE_MAX)
265 return false;
266
267 return true;
268 }
269
__xdp_reg_mem_model(struct xdp_mem_info * mem,enum xdp_mem_type type,void * allocator)270 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem,
271 enum xdp_mem_type type,
272 void *allocator)
273 {
274 struct xdp_mem_allocator *xdp_alloc;
275 gfp_t gfp = GFP_KERNEL;
276 int id, errno, ret;
277 void *ptr;
278
279 if (!__is_supported_mem_type(type))
280 return ERR_PTR(-EOPNOTSUPP);
281
282 mem->type = type;
283
284 if (!allocator) {
285 if (type == MEM_TYPE_PAGE_POOL)
286 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */
287 return NULL;
288 }
289
290 /* Delay init of rhashtable to save memory if feature isn't used */
291 if (!mem_id_init) {
292 mutex_lock(&mem_id_lock);
293 ret = __mem_id_init_hash_table();
294 mutex_unlock(&mem_id_lock);
295 if (ret < 0)
296 return ERR_PTR(ret);
297 }
298
299 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp);
300 if (!xdp_alloc)
301 return ERR_PTR(-ENOMEM);
302
303 mutex_lock(&mem_id_lock);
304 id = __mem_id_cyclic_get(gfp);
305 if (id < 0) {
306 errno = id;
307 goto err;
308 }
309 mem->id = id;
310 xdp_alloc->mem = *mem;
311 xdp_alloc->allocator = allocator;
312
313 /* Insert allocator into ID lookup table */
314 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node);
315 if (IS_ERR(ptr)) {
316 ida_free(&mem_id_pool, mem->id);
317 mem->id = 0;
318 errno = PTR_ERR(ptr);
319 goto err;
320 }
321
322 if (type == MEM_TYPE_PAGE_POOL)
323 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem);
324
325 mutex_unlock(&mem_id_lock);
326
327 return xdp_alloc;
328 err:
329 mutex_unlock(&mem_id_lock);
330 kfree(xdp_alloc);
331 return ERR_PTR(errno);
332 }
333
xdp_reg_mem_model(struct xdp_mem_info * mem,enum xdp_mem_type type,void * allocator)334 int xdp_reg_mem_model(struct xdp_mem_info *mem,
335 enum xdp_mem_type type, void *allocator)
336 {
337 struct xdp_mem_allocator *xdp_alloc;
338
339 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator);
340 if (IS_ERR(xdp_alloc))
341 return PTR_ERR(xdp_alloc);
342 return 0;
343 }
344 EXPORT_SYMBOL_GPL(xdp_reg_mem_model);
345
xdp_rxq_info_reg_mem_model(struct xdp_rxq_info * xdp_rxq,enum xdp_mem_type type,void * allocator)346 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq,
347 enum xdp_mem_type type, void *allocator)
348 {
349 struct xdp_mem_allocator *xdp_alloc;
350
351 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
352 WARN(1, "Missing register, driver bug");
353 return -EFAULT;
354 }
355
356 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator);
357 if (IS_ERR(xdp_alloc))
358 return PTR_ERR(xdp_alloc);
359
360 if (type == MEM_TYPE_XSK_BUFF_POOL && allocator)
361 xsk_pool_set_rxq_info(allocator, xdp_rxq);
362
363 if (trace_mem_connect_enabled() && xdp_alloc)
364 trace_mem_connect(xdp_alloc, xdp_rxq);
365 return 0;
366 }
367
368 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model);
369
370 /**
371 * xdp_reg_page_pool - register &page_pool as a memory provider for XDP
372 * @pool: &page_pool to register
373 *
374 * Can be used to register pools manually without connecting to any XDP RxQ
375 * info, so that the XDP layer will be aware of them. Then, they can be
376 * attached to an RxQ info manually via xdp_rxq_info_attach_page_pool().
377 *
378 * Return: %0 on success, -errno on error.
379 */
xdp_reg_page_pool(struct page_pool * pool)380 int xdp_reg_page_pool(struct page_pool *pool)
381 {
382 struct xdp_mem_info mem;
383
384 return xdp_reg_mem_model(&mem, MEM_TYPE_PAGE_POOL, pool);
385 }
386 EXPORT_SYMBOL_GPL(xdp_reg_page_pool);
387
388 /**
389 * xdp_unreg_page_pool - unregister &page_pool from the memory providers list
390 * @pool: &page_pool to unregister
391 *
392 * A shorthand for manual unregistering page pools. If the pool was previously
393 * attached to an RxQ info, it must be detached first.
394 */
xdp_unreg_page_pool(const struct page_pool * pool)395 void xdp_unreg_page_pool(const struct page_pool *pool)
396 {
397 struct xdp_mem_info mem = {
398 .type = MEM_TYPE_PAGE_POOL,
399 .id = pool->xdp_mem_id,
400 };
401
402 xdp_unreg_mem_model(&mem);
403 }
404 EXPORT_SYMBOL_GPL(xdp_unreg_page_pool);
405
406 /**
407 * xdp_rxq_info_attach_page_pool - attach registered pool to RxQ info
408 * @xdp_rxq: XDP RxQ info to attach the pool to
409 * @pool: pool to attach
410 *
411 * If the pool was registered manually, this function must be called instead
412 * of xdp_rxq_info_reg_mem_model() to connect it to the RxQ info.
413 */
xdp_rxq_info_attach_page_pool(struct xdp_rxq_info * xdp_rxq,const struct page_pool * pool)414 void xdp_rxq_info_attach_page_pool(struct xdp_rxq_info *xdp_rxq,
415 const struct page_pool *pool)
416 {
417 struct xdp_mem_info mem = {
418 .type = MEM_TYPE_PAGE_POOL,
419 .id = pool->xdp_mem_id,
420 };
421
422 xdp_rxq_info_attach_mem_model(xdp_rxq, &mem);
423 }
424 EXPORT_SYMBOL_GPL(xdp_rxq_info_attach_page_pool);
425
426 /* XDP RX runs under NAPI protection, and in different delivery error
427 * scenarios (e.g. queue full), it is possible to return the xdp_frame
428 * while still leveraging this protection. The @napi_direct boolean
429 * is used for those calls sites. Thus, allowing for faster recycling
430 * of xdp_frames/pages in those cases.
431 */
__xdp_return(netmem_ref netmem,enum xdp_mem_type mem_type,bool napi_direct,struct xdp_buff * xdp)432 void __xdp_return(netmem_ref netmem, enum xdp_mem_type mem_type,
433 bool napi_direct, struct xdp_buff *xdp)
434 {
435 switch (mem_type) {
436 case MEM_TYPE_PAGE_POOL:
437 netmem = netmem_compound_head(netmem);
438 if (napi_direct && xdp_return_frame_no_direct())
439 napi_direct = false;
440 /* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE)
441 * as mem->type knows this a page_pool page
442 */
443 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem,
444 napi_direct);
445 break;
446 case MEM_TYPE_PAGE_SHARED:
447 page_frag_free(__netmem_address(netmem));
448 break;
449 case MEM_TYPE_PAGE_ORDER0:
450 put_page(__netmem_to_page(netmem));
451 break;
452 case MEM_TYPE_XSK_BUFF_POOL:
453 /* NB! Only valid from an xdp_buff! */
454 xsk_buff_free(xdp);
455 break;
456 default:
457 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */
458 WARN(1, "Incorrect XDP memory type (%d) usage", mem_type);
459 break;
460 }
461 }
462
xdp_return_frame(struct xdp_frame * xdpf)463 void xdp_return_frame(struct xdp_frame *xdpf)
464 {
465 struct skb_shared_info *sinfo;
466
467 if (likely(!xdp_frame_has_frags(xdpf)))
468 goto out;
469
470 sinfo = xdp_get_shared_info_from_frame(xdpf);
471 for (u32 i = 0; i < sinfo->nr_frags; i++)
472 __xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
473 false, NULL);
474
475 out:
476 __xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, false, NULL);
477 }
478 EXPORT_SYMBOL_GPL(xdp_return_frame);
479
xdp_return_frame_rx_napi(struct xdp_frame * xdpf)480 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf)
481 {
482 struct skb_shared_info *sinfo;
483
484 if (likely(!xdp_frame_has_frags(xdpf)))
485 goto out;
486
487 sinfo = xdp_get_shared_info_from_frame(xdpf);
488 for (u32 i = 0; i < sinfo->nr_frags; i++)
489 __xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
490 true, NULL);
491
492 out:
493 __xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, true, NULL);
494 }
495 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi);
496
497 /* XDP bulk APIs introduce a defer/flush mechanism to return
498 * pages belonging to the same xdp_mem_allocator object
499 * (identified via the mem.id field) in bulk to optimize
500 * I-cache and D-cache.
501 * The bulk queue size is set to 16 to be aligned to how
502 * XDP_REDIRECT bulking works. The bulk is flushed when
503 * it is full or when mem.id changes.
504 * xdp_frame_bulk is usually stored/allocated on the function
505 * call-stack to avoid locking penalties.
506 */
507
508 /* Must be called with rcu_read_lock held */
xdp_return_frame_bulk(struct xdp_frame * xdpf,struct xdp_frame_bulk * bq)509 void xdp_return_frame_bulk(struct xdp_frame *xdpf,
510 struct xdp_frame_bulk *bq)
511 {
512 if (xdpf->mem_type != MEM_TYPE_PAGE_POOL) {
513 xdp_return_frame(xdpf);
514 return;
515 }
516
517 if (bq->count == XDP_BULK_QUEUE_SIZE)
518 xdp_flush_frame_bulk(bq);
519
520 if (unlikely(xdp_frame_has_frags(xdpf))) {
521 struct skb_shared_info *sinfo;
522 int i;
523
524 sinfo = xdp_get_shared_info_from_frame(xdpf);
525 for (i = 0; i < sinfo->nr_frags; i++) {
526 skb_frag_t *frag = &sinfo->frags[i];
527
528 bq->q[bq->count++] = skb_frag_netmem(frag);
529 if (bq->count == XDP_BULK_QUEUE_SIZE)
530 xdp_flush_frame_bulk(bq);
531 }
532 }
533 bq->q[bq->count++] = virt_to_netmem(xdpf->data);
534 }
535 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk);
536
537 /**
538 * xdp_return_frag -- free one XDP frag or decrement its refcount
539 * @netmem: network memory reference to release
540 * @xdp: &xdp_buff to release the frag for
541 */
xdp_return_frag(netmem_ref netmem,const struct xdp_buff * xdp)542 void xdp_return_frag(netmem_ref netmem, const struct xdp_buff *xdp)
543 {
544 __xdp_return(netmem, xdp->rxq->mem.type, true, NULL);
545 }
546 EXPORT_SYMBOL_GPL(xdp_return_frag);
547
xdp_return_buff(struct xdp_buff * xdp)548 void xdp_return_buff(struct xdp_buff *xdp)
549 {
550 struct skb_shared_info *sinfo;
551
552 if (likely(!xdp_buff_has_frags(xdp)))
553 goto out;
554
555 sinfo = xdp_get_shared_info_from_buff(xdp);
556 for (u32 i = 0; i < sinfo->nr_frags; i++)
557 __xdp_return(skb_frag_netmem(&sinfo->frags[i]),
558 xdp->rxq->mem.type, true, xdp);
559
560 out:
561 __xdp_return(virt_to_netmem(xdp->data), xdp->rxq->mem.type, true, xdp);
562 }
563 EXPORT_SYMBOL_GPL(xdp_return_buff);
564
xdp_attachment_setup(struct xdp_attachment_info * info,struct netdev_bpf * bpf)565 void xdp_attachment_setup(struct xdp_attachment_info *info,
566 struct netdev_bpf *bpf)
567 {
568 if (info->prog)
569 bpf_prog_put(info->prog);
570 info->prog = bpf->prog;
571 info->flags = bpf->flags;
572 }
573 EXPORT_SYMBOL_GPL(xdp_attachment_setup);
574
xdp_convert_zc_to_xdp_frame(struct xdp_buff * xdp)575 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp)
576 {
577 unsigned int metasize, totsize;
578 void *addr, *data_to_copy;
579 struct xdp_frame *xdpf;
580 struct page *page;
581
582 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */
583 metasize = xdp_data_meta_unsupported(xdp) ? 0 :
584 xdp->data - xdp->data_meta;
585 totsize = xdp->data_end - xdp->data + metasize;
586
587 if (sizeof(*xdpf) + totsize > PAGE_SIZE)
588 return NULL;
589
590 page = dev_alloc_page();
591 if (!page)
592 return NULL;
593
594 addr = page_to_virt(page);
595 xdpf = addr;
596 memset(xdpf, 0, sizeof(*xdpf));
597
598 addr += sizeof(*xdpf);
599 data_to_copy = metasize ? xdp->data_meta : xdp->data;
600 memcpy(addr, data_to_copy, totsize);
601
602 xdpf->data = addr + metasize;
603 xdpf->len = totsize - metasize;
604 xdpf->headroom = 0;
605 xdpf->metasize = metasize;
606 xdpf->frame_sz = PAGE_SIZE;
607 xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
608
609 xsk_buff_free(xdp);
610 return xdpf;
611 }
612 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame);
613
614 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */
xdp_warn(const char * msg,const char * func,const int line)615 void xdp_warn(const char *msg, const char *func, const int line)
616 {
617 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg);
618 };
619 EXPORT_SYMBOL_GPL(xdp_warn);
620
621 /**
622 * xdp_build_skb_from_buff - create an skb from &xdp_buff
623 * @xdp: &xdp_buff to convert to an skb
624 *
625 * Perform common operations to create a new skb to pass up the stack from
626 * &xdp_buff: allocate an skb head from the NAPI percpu cache, initialize
627 * skb data pointers and offsets, set the recycle bit if the buff is
628 * PP-backed, Rx queue index, protocol and update frags info.
629 *
630 * Return: new &sk_buff on success, %NULL on error.
631 */
xdp_build_skb_from_buff(const struct xdp_buff * xdp)632 struct sk_buff *xdp_build_skb_from_buff(const struct xdp_buff *xdp)
633 {
634 const struct xdp_rxq_info *rxq = xdp->rxq;
635 const struct skb_shared_info *sinfo;
636 struct sk_buff *skb;
637 u32 nr_frags = 0;
638 int metalen;
639
640 if (unlikely(xdp_buff_has_frags(xdp))) {
641 sinfo = xdp_get_shared_info_from_buff(xdp);
642 nr_frags = sinfo->nr_frags;
643 }
644
645 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
646 if (unlikely(!skb))
647 return NULL;
648
649 skb_reserve(skb, xdp->data - xdp->data_hard_start);
650 __skb_put(skb, xdp->data_end - xdp->data);
651
652 metalen = xdp->data - xdp->data_meta;
653 if (metalen > 0)
654 skb_metadata_set(skb, metalen);
655
656 if (rxq->mem.type == MEM_TYPE_PAGE_POOL)
657 skb_mark_for_recycle(skb);
658
659 skb_record_rx_queue(skb, rxq->queue_index);
660
661 if (unlikely(nr_frags)) {
662 u32 tsize;
663
664 tsize = sinfo->xdp_frags_truesize ? : nr_frags * xdp->frame_sz;
665 xdp_update_skb_shared_info(skb, nr_frags,
666 sinfo->xdp_frags_size, tsize,
667 xdp_buff_is_frag_pfmemalloc(xdp));
668 }
669
670 skb->protocol = eth_type_trans(skb, rxq->dev);
671
672 return skb;
673 }
674 EXPORT_SYMBOL_GPL(xdp_build_skb_from_buff);
675
676 /**
677 * xdp_copy_frags_from_zc - copy frags from XSk buff to skb
678 * @skb: skb to copy frags to
679 * @xdp: XSk &xdp_buff from which the frags will be copied
680 * @pp: &page_pool backing page allocation, if available
681 *
682 * Copy all frags from XSk &xdp_buff to the skb to pass it up the stack.
683 * Allocate a new buffer for each frag, copy it and attach to the skb.
684 *
685 * Return: true on success, false on netmem allocation fail.
686 */
xdp_copy_frags_from_zc(struct sk_buff * skb,const struct xdp_buff * xdp,struct page_pool * pp)687 static noinline bool xdp_copy_frags_from_zc(struct sk_buff *skb,
688 const struct xdp_buff *xdp,
689 struct page_pool *pp)
690 {
691 struct skb_shared_info *sinfo = skb_shinfo(skb);
692 const struct skb_shared_info *xinfo;
693 u32 nr_frags, tsize = 0;
694 bool pfmemalloc = false;
695
696 xinfo = xdp_get_shared_info_from_buff(xdp);
697 nr_frags = xinfo->nr_frags;
698
699 for (u32 i = 0; i < nr_frags; i++) {
700 u32 len = skb_frag_size(&xinfo->frags[i]);
701 u32 offset, truesize = len;
702 netmem_ref netmem;
703
704 netmem = page_pool_dev_alloc_netmem(pp, &offset, &truesize);
705 if (unlikely(!netmem)) {
706 sinfo->nr_frags = i;
707 return false;
708 }
709
710 memcpy(__netmem_address(netmem),
711 __netmem_address(xinfo->frags[i].netmem),
712 LARGEST_ALIGN(len));
713 __skb_fill_netmem_desc_noacc(sinfo, i, netmem, offset, len);
714
715 tsize += truesize;
716 pfmemalloc |= netmem_is_pfmemalloc(netmem);
717 }
718
719 xdp_update_skb_shared_info(skb, nr_frags, xinfo->xdp_frags_size,
720 tsize, pfmemalloc);
721
722 return true;
723 }
724
725 /**
726 * xdp_build_skb_from_zc - create an skb from XSk &xdp_buff
727 * @xdp: source XSk buff
728 *
729 * Similar to xdp_build_skb_from_buff(), but for XSk frames. Allocate an skb
730 * head, new buffer for the head, copy the data and initialize the skb fields.
731 * If there are frags, allocate new buffers for them and copy.
732 * Buffers are allocated from the system percpu pools to try recycling them.
733 * If new skb was built successfully, @xdp is returned to XSk pool's freelist.
734 * On error, it remains untouched and the caller must take care of this.
735 *
736 * Return: new &sk_buff on success, %NULL on error.
737 */
xdp_build_skb_from_zc(struct xdp_buff * xdp)738 struct sk_buff *xdp_build_skb_from_zc(struct xdp_buff *xdp)
739 {
740 struct page_pool *pp = this_cpu_read(system_page_pool);
741 const struct xdp_rxq_info *rxq = xdp->rxq;
742 u32 len = xdp->data_end - xdp->data_meta;
743 u32 truesize = xdp->frame_sz;
744 struct sk_buff *skb;
745 int metalen;
746 void *data;
747
748 if (!IS_ENABLED(CONFIG_PAGE_POOL))
749 return NULL;
750
751 data = page_pool_dev_alloc_va(pp, &truesize);
752 if (unlikely(!data))
753 return NULL;
754
755 skb = napi_build_skb(data, truesize);
756 if (unlikely(!skb)) {
757 page_pool_free_va(pp, data, true);
758 return NULL;
759 }
760
761 skb_mark_for_recycle(skb);
762 skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
763
764 memcpy(__skb_put(skb, len), xdp->data_meta, LARGEST_ALIGN(len));
765
766 metalen = xdp->data - xdp->data_meta;
767 if (metalen > 0) {
768 skb_metadata_set(skb, metalen);
769 __skb_pull(skb, metalen);
770 }
771
772 skb_record_rx_queue(skb, rxq->queue_index);
773
774 if (unlikely(xdp_buff_has_frags(xdp)) &&
775 unlikely(!xdp_copy_frags_from_zc(skb, xdp, pp))) {
776 napi_consume_skb(skb, true);
777 return NULL;
778 }
779
780 xsk_buff_free(xdp);
781
782 skb->protocol = eth_type_trans(skb, rxq->dev);
783
784 return skb;
785 }
786 EXPORT_SYMBOL_GPL(xdp_build_skb_from_zc);
787
__xdp_build_skb_from_frame(struct xdp_frame * xdpf,struct sk_buff * skb,struct net_device * dev)788 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf,
789 struct sk_buff *skb,
790 struct net_device *dev)
791 {
792 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
793 unsigned int headroom, frame_size;
794 void *hard_start;
795 u8 nr_frags;
796
797 /* xdp frags frame */
798 if (unlikely(xdp_frame_has_frags(xdpf)))
799 nr_frags = sinfo->nr_frags;
800
801 /* Part of headroom was reserved to xdpf */
802 headroom = sizeof(*xdpf) + xdpf->headroom;
803
804 /* Memory size backing xdp_frame data already have reserved
805 * room for build_skb to place skb_shared_info in tailroom.
806 */
807 frame_size = xdpf->frame_sz;
808
809 hard_start = xdpf->data - headroom;
810 skb = build_skb_around(skb, hard_start, frame_size);
811 if (unlikely(!skb))
812 return NULL;
813
814 skb_reserve(skb, headroom);
815 __skb_put(skb, xdpf->len);
816 if (xdpf->metasize)
817 skb_metadata_set(skb, xdpf->metasize);
818
819 if (unlikely(xdp_frame_has_frags(xdpf)))
820 xdp_update_skb_shared_info(skb, nr_frags,
821 sinfo->xdp_frags_size,
822 nr_frags * xdpf->frame_sz,
823 xdp_frame_is_frag_pfmemalloc(xdpf));
824
825 /* Essential SKB info: protocol and skb->dev */
826 skb->protocol = eth_type_trans(skb, dev);
827
828 /* Optional SKB info, currently missing:
829 * - HW checksum info (skb->ip_summed)
830 * - HW RX hash (skb_set_hash)
831 * - RX ring dev queue index (skb_record_rx_queue)
832 */
833
834 if (xdpf->mem_type == MEM_TYPE_PAGE_POOL)
835 skb_mark_for_recycle(skb);
836
837 /* Allow SKB to reuse area used by xdp_frame */
838 xdp_scrub_frame(xdpf);
839
840 return skb;
841 }
842 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame);
843
xdp_build_skb_from_frame(struct xdp_frame * xdpf,struct net_device * dev)844 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf,
845 struct net_device *dev)
846 {
847 struct sk_buff *skb;
848
849 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
850 if (unlikely(!skb))
851 return NULL;
852
853 memset(skb, 0, offsetof(struct sk_buff, tail));
854
855 return __xdp_build_skb_from_frame(xdpf, skb, dev);
856 }
857 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame);
858
xdpf_clone(struct xdp_frame * xdpf)859 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf)
860 {
861 unsigned int headroom, totalsize;
862 struct xdp_frame *nxdpf;
863 struct page *page;
864 void *addr;
865
866 headroom = xdpf->headroom + sizeof(*xdpf);
867 totalsize = headroom + xdpf->len;
868
869 if (unlikely(totalsize > PAGE_SIZE))
870 return NULL;
871 page = dev_alloc_page();
872 if (!page)
873 return NULL;
874 addr = page_to_virt(page);
875
876 memcpy(addr, xdpf, totalsize);
877
878 nxdpf = addr;
879 nxdpf->data = addr + headroom;
880 nxdpf->frame_sz = PAGE_SIZE;
881 nxdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
882
883 return nxdpf;
884 }
885
886 __bpf_kfunc_start_defs();
887
888 /**
889 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp.
890 * @ctx: XDP context pointer.
891 * @timestamp: Return value pointer.
892 *
893 * Return:
894 * * Returns 0 on success or ``-errno`` on error.
895 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc
896 * * ``-ENODATA`` : means no RX-timestamp available for this frame
897 */
bpf_xdp_metadata_rx_timestamp(const struct xdp_md * ctx,u64 * timestamp)898 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp)
899 {
900 return -EOPNOTSUPP;
901 }
902
903 /**
904 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash.
905 * @ctx: XDP context pointer.
906 * @hash: Return value pointer.
907 * @rss_type: Return value pointer for RSS type.
908 *
909 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC
910 * hardware used when calculating RSS hash value. The RSS type can be decoded
911 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits
912 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types*
913 * ``XDP_RSS_TYPE_L*``.
914 *
915 * Return:
916 * * Returns 0 on success or ``-errno`` on error.
917 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc
918 * * ``-ENODATA`` : means no RX-hash available for this frame
919 */
bpf_xdp_metadata_rx_hash(const struct xdp_md * ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)920 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash,
921 enum xdp_rss_hash_type *rss_type)
922 {
923 return -EOPNOTSUPP;
924 }
925
926 /**
927 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag
928 * @ctx: XDP context pointer.
929 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID).
930 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP)
931 *
932 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*,
933 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use
934 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)**
935 * and should be used as follows:
936 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();``
937 *
938 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag.
939 * Driver is expected to provide those in **host byte order (usually LE)**,
940 * so the bpf program should not perform byte conversion.
941 * According to 802.1Q standard, *VLAN TCI (Tag control information)*
942 * is a bit field that contains:
943 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``,
944 * *Drop eligible indicator (DEI)* - 1 bit,
945 * *Priority code point (PCP)* - 3 bits.
946 * For detailed meaning of DEI and PCP, please refer to other sources.
947 *
948 * Return:
949 * * Returns 0 on success or ``-errno`` on error.
950 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc
951 * * ``-ENODATA`` : VLAN tag was not stripped or is not available
952 */
bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md * ctx,__be16 * vlan_proto,u16 * vlan_tci)953 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx,
954 __be16 *vlan_proto, u16 *vlan_tci)
955 {
956 return -EOPNOTSUPP;
957 }
958
959 __bpf_kfunc_end_defs();
960
961 BTF_KFUNCS_START(xdp_metadata_kfunc_ids)
962 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS)
963 XDP_METADATA_KFUNC_xxx
964 #undef XDP_METADATA_KFUNC
965 BTF_KFUNCS_END(xdp_metadata_kfunc_ids)
966
967 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = {
968 .owner = THIS_MODULE,
969 .set = &xdp_metadata_kfunc_ids,
970 };
971
BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted)972 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted)
973 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str)
974 XDP_METADATA_KFUNC_xxx
975 #undef XDP_METADATA_KFUNC
976
977 u32 bpf_xdp_metadata_kfunc_id(int id)
978 {
979 /* xdp_metadata_kfunc_ids is sorted and can't be used */
980 return xdp_metadata_kfunc_ids_unsorted[id];
981 }
982
bpf_dev_bound_kfunc_id(u32 btf_id)983 bool bpf_dev_bound_kfunc_id(u32 btf_id)
984 {
985 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id);
986 }
987
xdp_metadata_init(void)988 static int __init xdp_metadata_init(void)
989 {
990 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set);
991 }
992 late_initcall(xdp_metadata_init);
993
xdp_set_features_flag(struct net_device * dev,xdp_features_t val)994 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val)
995 {
996 val &= NETDEV_XDP_ACT_MASK;
997 if (dev->xdp_features == val)
998 return;
999
1000 dev->xdp_features = val;
1001
1002 if (dev->reg_state == NETREG_REGISTERED)
1003 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev);
1004 }
1005 EXPORT_SYMBOL_GPL(xdp_set_features_flag);
1006
xdp_features_set_redirect_target(struct net_device * dev,bool support_sg)1007 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg)
1008 {
1009 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT);
1010
1011 if (support_sg)
1012 val |= NETDEV_XDP_ACT_NDO_XMIT_SG;
1013 xdp_set_features_flag(dev, val);
1014 }
1015 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target);
1016
xdp_features_clear_redirect_target(struct net_device * dev)1017 void xdp_features_clear_redirect_target(struct net_device *dev)
1018 {
1019 xdp_features_t val = dev->xdp_features;
1020
1021 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG);
1022 xdp_set_features_flag(dev, val);
1023 }
1024 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target);
1025