1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88
89 #include "dev.h"
90
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 if (in_compat_syscall()) {
100 struct compat_sock_fprog f32;
101
102 if (len != sizeof(f32))
103 return -EINVAL;
104 if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 return -EFAULT;
106 memset(dst, 0, sizeof(*dst));
107 dst->len = f32.len;
108 dst->filter = compat_ptr(f32.filter);
109 } else {
110 if (len != sizeof(*dst))
111 return -EINVAL;
112 if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 return -EFAULT;
114 }
115
116 return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119
120 /**
121 * sk_filter_trim_cap - run a packet through a socket filter
122 * @sk: sock associated with &sk_buff
123 * @skb: buffer to filter
124 * @cap: limit on how short the eBPF program may trim the packet
125 *
126 * Run the eBPF program and then cut skb->data to correct size returned by
127 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
128 * than pkt_len we keep whole skb->data. This is the socket level
129 * wrapper to bpf_prog_run. It returns 0 if the packet should
130 * be accepted or -EPERM if the packet should be tossed.
131 *
132 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)133 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
134 {
135 int err;
136 struct sk_filter *filter;
137
138 /*
139 * If the skb was allocated from pfmemalloc reserves, only
140 * allow SOCK_MEMALLOC sockets to use it as this socket is
141 * helping free memory
142 */
143 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
144 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
145 return -ENOMEM;
146 }
147 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
148 if (err)
149 return err;
150
151 err = security_sock_rcv_skb(sk, skb);
152 if (err)
153 return err;
154
155 rcu_read_lock();
156 filter = rcu_dereference(sk->sk_filter);
157 if (filter) {
158 struct sock *save_sk = skb->sk;
159 unsigned int pkt_len;
160
161 skb->sk = sk;
162 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
163 skb->sk = save_sk;
164 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
165 }
166 rcu_read_unlock();
167
168 return err;
169 }
170 EXPORT_SYMBOL(sk_filter_trim_cap);
171
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)172 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
173 {
174 return skb_get_poff(skb);
175 }
176
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)177 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
178 {
179 struct nlattr *nla;
180
181 if (skb_is_nonlinear(skb))
182 return 0;
183
184 if (skb->len < sizeof(struct nlattr))
185 return 0;
186
187 if (a > skb->len - sizeof(struct nlattr))
188 return 0;
189
190 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
191 if (nla)
192 return (void *) nla - (void *) skb->data;
193
194 return 0;
195 }
196
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)197 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
198 {
199 struct nlattr *nla;
200
201 if (skb_is_nonlinear(skb))
202 return 0;
203
204 if (skb->len < sizeof(struct nlattr))
205 return 0;
206
207 if (a > skb->len - sizeof(struct nlattr))
208 return 0;
209
210 nla = (struct nlattr *) &skb->data[a];
211 if (!nla_ok(nla, skb->len - a))
212 return 0;
213
214 nla = nla_find_nested(nla, x);
215 if (nla)
216 return (void *) nla - (void *) skb->data;
217
218 return 0;
219 }
220
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)221 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
222 {
223 if (likely(offset >= 0))
224 return offset;
225
226 if (offset >= SKF_NET_OFF)
227 return offset - SKF_NET_OFF + skb_network_offset(skb);
228
229 if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
230 return offset - SKF_LL_OFF + skb_mac_offset(skb);
231
232 return INT_MIN;
233 }
234
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
236 data, int, headlen, int, offset)
237 {
238 u8 tmp;
239 const int len = sizeof(tmp);
240
241 offset = bpf_skb_load_helper_convert_offset(skb, offset);
242 if (offset == INT_MIN)
243 return -EFAULT;
244
245 if (headlen - offset >= len)
246 return *(u8 *)(data + offset);
247 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
248 return tmp;
249 else
250 return -EFAULT;
251 }
252
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)253 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
254 int, offset)
255 {
256 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
257 offset);
258 }
259
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)260 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
261 data, int, headlen, int, offset)
262 {
263 __be16 tmp;
264 const int len = sizeof(tmp);
265
266 offset = bpf_skb_load_helper_convert_offset(skb, offset);
267 if (offset == INT_MIN)
268 return -EFAULT;
269
270 if (headlen - offset >= len)
271 return get_unaligned_be16(data + offset);
272 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 return be16_to_cpu(tmp);
274 else
275 return -EFAULT;
276 }
277
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)278 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
279 int, offset)
280 {
281 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
282 offset);
283 }
284
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)285 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
286 data, int, headlen, int, offset)
287 {
288 __be32 tmp;
289 const int len = sizeof(tmp);
290
291 offset = bpf_skb_load_helper_convert_offset(skb, offset);
292 if (offset == INT_MIN)
293 return -EFAULT;
294
295 if (headlen - offset >= len)
296 return get_unaligned_be32(data + offset);
297 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
298 return be32_to_cpu(tmp);
299 else
300 return -EFAULT;
301 }
302
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)303 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
304 int, offset)
305 {
306 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
307 offset);
308 }
309
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)310 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
311 struct bpf_insn *insn_buf)
312 {
313 struct bpf_insn *insn = insn_buf;
314
315 switch (skb_field) {
316 case SKF_AD_MARK:
317 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
318
319 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
320 offsetof(struct sk_buff, mark));
321 break;
322
323 case SKF_AD_PKTTYPE:
324 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
325 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
326 #ifdef __BIG_ENDIAN_BITFIELD
327 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
328 #endif
329 break;
330
331 case SKF_AD_QUEUE:
332 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
333
334 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
335 offsetof(struct sk_buff, queue_mapping));
336 break;
337
338 case SKF_AD_VLAN_TAG:
339 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
340
341 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
342 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
343 offsetof(struct sk_buff, vlan_tci));
344 break;
345 case SKF_AD_VLAN_TAG_PRESENT:
346 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
347 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
348 offsetof(struct sk_buff, vlan_all));
349 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
350 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
351 break;
352 }
353
354 return insn - insn_buf;
355 }
356
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)357 static bool convert_bpf_extensions(struct sock_filter *fp,
358 struct bpf_insn **insnp)
359 {
360 struct bpf_insn *insn = *insnp;
361 u32 cnt;
362
363 switch (fp->k) {
364 case SKF_AD_OFF + SKF_AD_PROTOCOL:
365 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
366
367 /* A = *(u16 *) (CTX + offsetof(protocol)) */
368 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
369 offsetof(struct sk_buff, protocol));
370 /* A = ntohs(A) [emitting a nop or swap16] */
371 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
372 break;
373
374 case SKF_AD_OFF + SKF_AD_PKTTYPE:
375 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
376 insn += cnt - 1;
377 break;
378
379 case SKF_AD_OFF + SKF_AD_IFINDEX:
380 case SKF_AD_OFF + SKF_AD_HATYPE:
381 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
382 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
383
384 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
385 BPF_REG_TMP, BPF_REG_CTX,
386 offsetof(struct sk_buff, dev));
387 /* if (tmp != 0) goto pc + 1 */
388 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
389 *insn++ = BPF_EXIT_INSN();
390 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
391 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
392 offsetof(struct net_device, ifindex));
393 else
394 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
395 offsetof(struct net_device, type));
396 break;
397
398 case SKF_AD_OFF + SKF_AD_MARK:
399 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
400 insn += cnt - 1;
401 break;
402
403 case SKF_AD_OFF + SKF_AD_RXHASH:
404 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
405
406 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
407 offsetof(struct sk_buff, hash));
408 break;
409
410 case SKF_AD_OFF + SKF_AD_QUEUE:
411 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
412 insn += cnt - 1;
413 break;
414
415 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
416 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
417 BPF_REG_A, BPF_REG_CTX, insn);
418 insn += cnt - 1;
419 break;
420
421 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
422 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
423 BPF_REG_A, BPF_REG_CTX, insn);
424 insn += cnt - 1;
425 break;
426
427 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
428 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
429
430 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
431 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
432 offsetof(struct sk_buff, vlan_proto));
433 /* A = ntohs(A) [emitting a nop or swap16] */
434 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
435 break;
436
437 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
438 case SKF_AD_OFF + SKF_AD_NLATTR:
439 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 case SKF_AD_OFF + SKF_AD_CPU:
441 case SKF_AD_OFF + SKF_AD_RANDOM:
442 /* arg1 = CTX */
443 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
444 /* arg2 = A */
445 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
446 /* arg3 = X */
447 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
448 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
449 switch (fp->k) {
450 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
451 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
452 break;
453 case SKF_AD_OFF + SKF_AD_NLATTR:
454 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
455 break;
456 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
457 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
458 break;
459 case SKF_AD_OFF + SKF_AD_CPU:
460 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
461 break;
462 case SKF_AD_OFF + SKF_AD_RANDOM:
463 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
464 bpf_user_rnd_init_once();
465 break;
466 }
467 break;
468
469 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
470 /* A ^= X */
471 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
472 break;
473
474 default:
475 /* This is just a dummy call to avoid letting the compiler
476 * evict __bpf_call_base() as an optimization. Placed here
477 * where no-one bothers.
478 */
479 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
480 return false;
481 }
482
483 *insnp = insn;
484 return true;
485 }
486
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)487 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
488 {
489 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
490 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
491 bool endian = BPF_SIZE(fp->code) == BPF_H ||
492 BPF_SIZE(fp->code) == BPF_W;
493 bool indirect = BPF_MODE(fp->code) == BPF_IND;
494 const int ip_align = NET_IP_ALIGN;
495 struct bpf_insn *insn = *insnp;
496 int offset = fp->k;
497
498 if (!indirect &&
499 ((unaligned_ok && offset >= 0) ||
500 (!unaligned_ok && offset >= 0 &&
501 offset + ip_align >= 0 &&
502 offset + ip_align % size == 0))) {
503 bool ldx_off_ok = offset <= S16_MAX;
504
505 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
506 if (offset)
507 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
508 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
509 size, 2 + endian + (!ldx_off_ok * 2));
510 if (ldx_off_ok) {
511 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
512 BPF_REG_D, offset);
513 } else {
514 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
515 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
516 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
517 BPF_REG_TMP, 0);
518 }
519 if (endian)
520 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
521 *insn++ = BPF_JMP_A(8);
522 }
523
524 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
525 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
526 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
527 if (!indirect) {
528 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
529 } else {
530 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
531 if (fp->k)
532 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
533 }
534
535 switch (BPF_SIZE(fp->code)) {
536 case BPF_B:
537 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
538 break;
539 case BPF_H:
540 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
541 break;
542 case BPF_W:
543 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
544 break;
545 default:
546 return false;
547 }
548
549 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
550 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
551 *insn = BPF_EXIT_INSN();
552
553 *insnp = insn;
554 return true;
555 }
556
557 /**
558 * bpf_convert_filter - convert filter program
559 * @prog: the user passed filter program
560 * @len: the length of the user passed filter program
561 * @new_prog: allocated 'struct bpf_prog' or NULL
562 * @new_len: pointer to store length of converted program
563 * @seen_ld_abs: bool whether we've seen ld_abs/ind
564 *
565 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
566 * style extended BPF (eBPF).
567 * Conversion workflow:
568 *
569 * 1) First pass for calculating the new program length:
570 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
571 *
572 * 2) 2nd pass to remap in two passes: 1st pass finds new
573 * jump offsets, 2nd pass remapping:
574 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
575 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)576 static int bpf_convert_filter(struct sock_filter *prog, int len,
577 struct bpf_prog *new_prog, int *new_len,
578 bool *seen_ld_abs)
579 {
580 int new_flen = 0, pass = 0, target, i, stack_off;
581 struct bpf_insn *new_insn, *first_insn = NULL;
582 struct sock_filter *fp;
583 int *addrs = NULL;
584 u8 bpf_src;
585
586 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
587 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
588
589 if (len <= 0 || len > BPF_MAXINSNS)
590 return -EINVAL;
591
592 if (new_prog) {
593 first_insn = new_prog->insnsi;
594 addrs = kcalloc(len, sizeof(*addrs),
595 GFP_KERNEL | __GFP_NOWARN);
596 if (!addrs)
597 return -ENOMEM;
598 }
599
600 do_pass:
601 new_insn = first_insn;
602 fp = prog;
603
604 /* Classic BPF related prologue emission. */
605 if (new_prog) {
606 /* Classic BPF expects A and X to be reset first. These need
607 * to be guaranteed to be the first two instructions.
608 */
609 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
610 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
611
612 /* All programs must keep CTX in callee saved BPF_REG_CTX.
613 * In eBPF case it's done by the compiler, here we need to
614 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
615 */
616 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
617 if (*seen_ld_abs) {
618 /* For packet access in classic BPF, cache skb->data
619 * in callee-saved BPF R8 and skb->len - skb->data_len
620 * (headlen) in BPF R9. Since classic BPF is read-only
621 * on CTX, we only need to cache it once.
622 */
623 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
624 BPF_REG_D, BPF_REG_CTX,
625 offsetof(struct sk_buff, data));
626 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
627 offsetof(struct sk_buff, len));
628 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
629 offsetof(struct sk_buff, data_len));
630 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
631 }
632 } else {
633 new_insn += 3;
634 }
635
636 for (i = 0; i < len; fp++, i++) {
637 struct bpf_insn tmp_insns[32] = { };
638 struct bpf_insn *insn = tmp_insns;
639
640 if (addrs)
641 addrs[i] = new_insn - first_insn;
642
643 switch (fp->code) {
644 /* All arithmetic insns and skb loads map as-is. */
645 case BPF_ALU | BPF_ADD | BPF_X:
646 case BPF_ALU | BPF_ADD | BPF_K:
647 case BPF_ALU | BPF_SUB | BPF_X:
648 case BPF_ALU | BPF_SUB | BPF_K:
649 case BPF_ALU | BPF_AND | BPF_X:
650 case BPF_ALU | BPF_AND | BPF_K:
651 case BPF_ALU | BPF_OR | BPF_X:
652 case BPF_ALU | BPF_OR | BPF_K:
653 case BPF_ALU | BPF_LSH | BPF_X:
654 case BPF_ALU | BPF_LSH | BPF_K:
655 case BPF_ALU | BPF_RSH | BPF_X:
656 case BPF_ALU | BPF_RSH | BPF_K:
657 case BPF_ALU | BPF_XOR | BPF_X:
658 case BPF_ALU | BPF_XOR | BPF_K:
659 case BPF_ALU | BPF_MUL | BPF_X:
660 case BPF_ALU | BPF_MUL | BPF_K:
661 case BPF_ALU | BPF_DIV | BPF_X:
662 case BPF_ALU | BPF_DIV | BPF_K:
663 case BPF_ALU | BPF_MOD | BPF_X:
664 case BPF_ALU | BPF_MOD | BPF_K:
665 case BPF_ALU | BPF_NEG:
666 case BPF_LD | BPF_ABS | BPF_W:
667 case BPF_LD | BPF_ABS | BPF_H:
668 case BPF_LD | BPF_ABS | BPF_B:
669 case BPF_LD | BPF_IND | BPF_W:
670 case BPF_LD | BPF_IND | BPF_H:
671 case BPF_LD | BPF_IND | BPF_B:
672 /* Check for overloaded BPF extension and
673 * directly convert it if found, otherwise
674 * just move on with mapping.
675 */
676 if (BPF_CLASS(fp->code) == BPF_LD &&
677 BPF_MODE(fp->code) == BPF_ABS &&
678 convert_bpf_extensions(fp, &insn))
679 break;
680 if (BPF_CLASS(fp->code) == BPF_LD &&
681 convert_bpf_ld_abs(fp, &insn)) {
682 *seen_ld_abs = true;
683 break;
684 }
685
686 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
687 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
688 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
689 /* Error with exception code on div/mod by 0.
690 * For cBPF programs, this was always return 0.
691 */
692 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
693 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
694 *insn++ = BPF_EXIT_INSN();
695 }
696
697 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
698 break;
699
700 /* Jump transformation cannot use BPF block macros
701 * everywhere as offset calculation and target updates
702 * require a bit more work than the rest, i.e. jump
703 * opcodes map as-is, but offsets need adjustment.
704 */
705
706 #define BPF_EMIT_JMP \
707 do { \
708 const s32 off_min = S16_MIN, off_max = S16_MAX; \
709 s32 off; \
710 \
711 if (target >= len || target < 0) \
712 goto err; \
713 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
714 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
715 off -= insn - tmp_insns; \
716 /* Reject anything not fitting into insn->off. */ \
717 if (off < off_min || off > off_max) \
718 goto err; \
719 insn->off = off; \
720 } while (0)
721
722 case BPF_JMP | BPF_JA:
723 target = i + fp->k + 1;
724 insn->code = fp->code;
725 BPF_EMIT_JMP;
726 break;
727
728 case BPF_JMP | BPF_JEQ | BPF_K:
729 case BPF_JMP | BPF_JEQ | BPF_X:
730 case BPF_JMP | BPF_JSET | BPF_K:
731 case BPF_JMP | BPF_JSET | BPF_X:
732 case BPF_JMP | BPF_JGT | BPF_K:
733 case BPF_JMP | BPF_JGT | BPF_X:
734 case BPF_JMP | BPF_JGE | BPF_K:
735 case BPF_JMP | BPF_JGE | BPF_X:
736 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
737 /* BPF immediates are signed, zero extend
738 * immediate into tmp register and use it
739 * in compare insn.
740 */
741 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
742
743 insn->dst_reg = BPF_REG_A;
744 insn->src_reg = BPF_REG_TMP;
745 bpf_src = BPF_X;
746 } else {
747 insn->dst_reg = BPF_REG_A;
748 insn->imm = fp->k;
749 bpf_src = BPF_SRC(fp->code);
750 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
751 }
752
753 /* Common case where 'jump_false' is next insn. */
754 if (fp->jf == 0) {
755 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
756 target = i + fp->jt + 1;
757 BPF_EMIT_JMP;
758 break;
759 }
760
761 /* Convert some jumps when 'jump_true' is next insn. */
762 if (fp->jt == 0) {
763 switch (BPF_OP(fp->code)) {
764 case BPF_JEQ:
765 insn->code = BPF_JMP | BPF_JNE | bpf_src;
766 break;
767 case BPF_JGT:
768 insn->code = BPF_JMP | BPF_JLE | bpf_src;
769 break;
770 case BPF_JGE:
771 insn->code = BPF_JMP | BPF_JLT | bpf_src;
772 break;
773 default:
774 goto jmp_rest;
775 }
776
777 target = i + fp->jf + 1;
778 BPF_EMIT_JMP;
779 break;
780 }
781 jmp_rest:
782 /* Other jumps are mapped into two insns: Jxx and JA. */
783 target = i + fp->jt + 1;
784 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
785 BPF_EMIT_JMP;
786 insn++;
787
788 insn->code = BPF_JMP | BPF_JA;
789 target = i + fp->jf + 1;
790 BPF_EMIT_JMP;
791 break;
792
793 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
794 case BPF_LDX | BPF_MSH | BPF_B: {
795 struct sock_filter tmp = {
796 .code = BPF_LD | BPF_ABS | BPF_B,
797 .k = fp->k,
798 };
799
800 *seen_ld_abs = true;
801
802 /* X = A */
803 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
804 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
805 convert_bpf_ld_abs(&tmp, &insn);
806 insn++;
807 /* A &= 0xf */
808 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
809 /* A <<= 2 */
810 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
811 /* tmp = X */
812 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
813 /* X = A */
814 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
815 /* A = tmp */
816 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
817 break;
818 }
819 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
820 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
821 */
822 case BPF_RET | BPF_A:
823 case BPF_RET | BPF_K:
824 if (BPF_RVAL(fp->code) == BPF_K)
825 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
826 0, fp->k);
827 *insn = BPF_EXIT_INSN();
828 break;
829
830 /* Store to stack. */
831 case BPF_ST:
832 case BPF_STX:
833 stack_off = fp->k * 4 + 4;
834 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
835 BPF_ST ? BPF_REG_A : BPF_REG_X,
836 -stack_off);
837 /* check_load_and_stores() verifies that classic BPF can
838 * load from stack only after write, so tracking
839 * stack_depth for ST|STX insns is enough
840 */
841 if (new_prog && new_prog->aux->stack_depth < stack_off)
842 new_prog->aux->stack_depth = stack_off;
843 break;
844
845 /* Load from stack. */
846 case BPF_LD | BPF_MEM:
847 case BPF_LDX | BPF_MEM:
848 stack_off = fp->k * 4 + 4;
849 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
850 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
851 -stack_off);
852 break;
853
854 /* A = K or X = K */
855 case BPF_LD | BPF_IMM:
856 case BPF_LDX | BPF_IMM:
857 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
858 BPF_REG_A : BPF_REG_X, fp->k);
859 break;
860
861 /* X = A */
862 case BPF_MISC | BPF_TAX:
863 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
864 break;
865
866 /* A = X */
867 case BPF_MISC | BPF_TXA:
868 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
869 break;
870
871 /* A = skb->len or X = skb->len */
872 case BPF_LD | BPF_W | BPF_LEN:
873 case BPF_LDX | BPF_W | BPF_LEN:
874 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
875 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
876 offsetof(struct sk_buff, len));
877 break;
878
879 /* Access seccomp_data fields. */
880 case BPF_LDX | BPF_ABS | BPF_W:
881 /* A = *(u32 *) (ctx + K) */
882 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
883 break;
884
885 /* Unknown instruction. */
886 default:
887 goto err;
888 }
889
890 insn++;
891 if (new_prog)
892 memcpy(new_insn, tmp_insns,
893 sizeof(*insn) * (insn - tmp_insns));
894 new_insn += insn - tmp_insns;
895 }
896
897 if (!new_prog) {
898 /* Only calculating new length. */
899 *new_len = new_insn - first_insn;
900 if (*seen_ld_abs)
901 *new_len += 4; /* Prologue bits. */
902 return 0;
903 }
904
905 pass++;
906 if (new_flen != new_insn - first_insn) {
907 new_flen = new_insn - first_insn;
908 if (pass > 2)
909 goto err;
910 goto do_pass;
911 }
912
913 kfree(addrs);
914 BUG_ON(*new_len != new_flen);
915 return 0;
916 err:
917 kfree(addrs);
918 return -EINVAL;
919 }
920
921 /* Security:
922 *
923 * As we dont want to clear mem[] array for each packet going through
924 * __bpf_prog_run(), we check that filter loaded by user never try to read
925 * a cell if not previously written, and we check all branches to be sure
926 * a malicious user doesn't try to abuse us.
927 */
check_load_and_stores(const struct sock_filter * filter,int flen)928 static int check_load_and_stores(const struct sock_filter *filter, int flen)
929 {
930 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
931 int pc, ret = 0;
932
933 BUILD_BUG_ON(BPF_MEMWORDS > 16);
934
935 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
936 if (!masks)
937 return -ENOMEM;
938
939 memset(masks, 0xff, flen * sizeof(*masks));
940
941 for (pc = 0; pc < flen; pc++) {
942 memvalid &= masks[pc];
943
944 switch (filter[pc].code) {
945 case BPF_ST:
946 case BPF_STX:
947 memvalid |= (1 << filter[pc].k);
948 break;
949 case BPF_LD | BPF_MEM:
950 case BPF_LDX | BPF_MEM:
951 if (!(memvalid & (1 << filter[pc].k))) {
952 ret = -EINVAL;
953 goto error;
954 }
955 break;
956 case BPF_JMP | BPF_JA:
957 /* A jump must set masks on target */
958 masks[pc + 1 + filter[pc].k] &= memvalid;
959 memvalid = ~0;
960 break;
961 case BPF_JMP | BPF_JEQ | BPF_K:
962 case BPF_JMP | BPF_JEQ | BPF_X:
963 case BPF_JMP | BPF_JGE | BPF_K:
964 case BPF_JMP | BPF_JGE | BPF_X:
965 case BPF_JMP | BPF_JGT | BPF_K:
966 case BPF_JMP | BPF_JGT | BPF_X:
967 case BPF_JMP | BPF_JSET | BPF_K:
968 case BPF_JMP | BPF_JSET | BPF_X:
969 /* A jump must set masks on targets */
970 masks[pc + 1 + filter[pc].jt] &= memvalid;
971 masks[pc + 1 + filter[pc].jf] &= memvalid;
972 memvalid = ~0;
973 break;
974 }
975 }
976 error:
977 kfree(masks);
978 return ret;
979 }
980
chk_code_allowed(u16 code_to_probe)981 static bool chk_code_allowed(u16 code_to_probe)
982 {
983 static const bool codes[] = {
984 /* 32 bit ALU operations */
985 [BPF_ALU | BPF_ADD | BPF_K] = true,
986 [BPF_ALU | BPF_ADD | BPF_X] = true,
987 [BPF_ALU | BPF_SUB | BPF_K] = true,
988 [BPF_ALU | BPF_SUB | BPF_X] = true,
989 [BPF_ALU | BPF_MUL | BPF_K] = true,
990 [BPF_ALU | BPF_MUL | BPF_X] = true,
991 [BPF_ALU | BPF_DIV | BPF_K] = true,
992 [BPF_ALU | BPF_DIV | BPF_X] = true,
993 [BPF_ALU | BPF_MOD | BPF_K] = true,
994 [BPF_ALU | BPF_MOD | BPF_X] = true,
995 [BPF_ALU | BPF_AND | BPF_K] = true,
996 [BPF_ALU | BPF_AND | BPF_X] = true,
997 [BPF_ALU | BPF_OR | BPF_K] = true,
998 [BPF_ALU | BPF_OR | BPF_X] = true,
999 [BPF_ALU | BPF_XOR | BPF_K] = true,
1000 [BPF_ALU | BPF_XOR | BPF_X] = true,
1001 [BPF_ALU | BPF_LSH | BPF_K] = true,
1002 [BPF_ALU | BPF_LSH | BPF_X] = true,
1003 [BPF_ALU | BPF_RSH | BPF_K] = true,
1004 [BPF_ALU | BPF_RSH | BPF_X] = true,
1005 [BPF_ALU | BPF_NEG] = true,
1006 /* Load instructions */
1007 [BPF_LD | BPF_W | BPF_ABS] = true,
1008 [BPF_LD | BPF_H | BPF_ABS] = true,
1009 [BPF_LD | BPF_B | BPF_ABS] = true,
1010 [BPF_LD | BPF_W | BPF_LEN] = true,
1011 [BPF_LD | BPF_W | BPF_IND] = true,
1012 [BPF_LD | BPF_H | BPF_IND] = true,
1013 [BPF_LD | BPF_B | BPF_IND] = true,
1014 [BPF_LD | BPF_IMM] = true,
1015 [BPF_LD | BPF_MEM] = true,
1016 [BPF_LDX | BPF_W | BPF_LEN] = true,
1017 [BPF_LDX | BPF_B | BPF_MSH] = true,
1018 [BPF_LDX | BPF_IMM] = true,
1019 [BPF_LDX | BPF_MEM] = true,
1020 /* Store instructions */
1021 [BPF_ST] = true,
1022 [BPF_STX] = true,
1023 /* Misc instructions */
1024 [BPF_MISC | BPF_TAX] = true,
1025 [BPF_MISC | BPF_TXA] = true,
1026 /* Return instructions */
1027 [BPF_RET | BPF_K] = true,
1028 [BPF_RET | BPF_A] = true,
1029 /* Jump instructions */
1030 [BPF_JMP | BPF_JA] = true,
1031 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1032 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1033 [BPF_JMP | BPF_JGE | BPF_K] = true,
1034 [BPF_JMP | BPF_JGE | BPF_X] = true,
1035 [BPF_JMP | BPF_JGT | BPF_K] = true,
1036 [BPF_JMP | BPF_JGT | BPF_X] = true,
1037 [BPF_JMP | BPF_JSET | BPF_K] = true,
1038 [BPF_JMP | BPF_JSET | BPF_X] = true,
1039 };
1040
1041 if (code_to_probe >= ARRAY_SIZE(codes))
1042 return false;
1043
1044 return codes[code_to_probe];
1045 }
1046
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1047 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1048 unsigned int flen)
1049 {
1050 if (filter == NULL)
1051 return false;
1052 if (flen == 0 || flen > BPF_MAXINSNS)
1053 return false;
1054
1055 return true;
1056 }
1057
1058 /**
1059 * bpf_check_classic - verify socket filter code
1060 * @filter: filter to verify
1061 * @flen: length of filter
1062 *
1063 * Check the user's filter code. If we let some ugly
1064 * filter code slip through kaboom! The filter must contain
1065 * no references or jumps that are out of range, no illegal
1066 * instructions, and must end with a RET instruction.
1067 *
1068 * All jumps are forward as they are not signed.
1069 *
1070 * Returns 0 if the rule set is legal or -EINVAL if not.
1071 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1072 static int bpf_check_classic(const struct sock_filter *filter,
1073 unsigned int flen)
1074 {
1075 bool anc_found;
1076 int pc;
1077
1078 /* Check the filter code now */
1079 for (pc = 0; pc < flen; pc++) {
1080 const struct sock_filter *ftest = &filter[pc];
1081
1082 /* May we actually operate on this code? */
1083 if (!chk_code_allowed(ftest->code))
1084 return -EINVAL;
1085
1086 /* Some instructions need special checks */
1087 switch (ftest->code) {
1088 case BPF_ALU | BPF_DIV | BPF_K:
1089 case BPF_ALU | BPF_MOD | BPF_K:
1090 /* Check for division by zero */
1091 if (ftest->k == 0)
1092 return -EINVAL;
1093 break;
1094 case BPF_ALU | BPF_LSH | BPF_K:
1095 case BPF_ALU | BPF_RSH | BPF_K:
1096 if (ftest->k >= 32)
1097 return -EINVAL;
1098 break;
1099 case BPF_LD | BPF_MEM:
1100 case BPF_LDX | BPF_MEM:
1101 case BPF_ST:
1102 case BPF_STX:
1103 /* Check for invalid memory addresses */
1104 if (ftest->k >= BPF_MEMWORDS)
1105 return -EINVAL;
1106 break;
1107 case BPF_JMP | BPF_JA:
1108 /* Note, the large ftest->k might cause loops.
1109 * Compare this with conditional jumps below,
1110 * where offsets are limited. --ANK (981016)
1111 */
1112 if (ftest->k >= (unsigned int)(flen - pc - 1))
1113 return -EINVAL;
1114 break;
1115 case BPF_JMP | BPF_JEQ | BPF_K:
1116 case BPF_JMP | BPF_JEQ | BPF_X:
1117 case BPF_JMP | BPF_JGE | BPF_K:
1118 case BPF_JMP | BPF_JGE | BPF_X:
1119 case BPF_JMP | BPF_JGT | BPF_K:
1120 case BPF_JMP | BPF_JGT | BPF_X:
1121 case BPF_JMP | BPF_JSET | BPF_K:
1122 case BPF_JMP | BPF_JSET | BPF_X:
1123 /* Both conditionals must be safe */
1124 if (pc + ftest->jt + 1 >= flen ||
1125 pc + ftest->jf + 1 >= flen)
1126 return -EINVAL;
1127 break;
1128 case BPF_LD | BPF_W | BPF_ABS:
1129 case BPF_LD | BPF_H | BPF_ABS:
1130 case BPF_LD | BPF_B | BPF_ABS:
1131 anc_found = false;
1132 if (bpf_anc_helper(ftest) & BPF_ANC)
1133 anc_found = true;
1134 /* Ancillary operation unknown or unsupported */
1135 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1136 return -EINVAL;
1137 }
1138 }
1139
1140 /* Last instruction must be a RET code */
1141 switch (filter[flen - 1].code) {
1142 case BPF_RET | BPF_K:
1143 case BPF_RET | BPF_A:
1144 return check_load_and_stores(filter, flen);
1145 }
1146
1147 return -EINVAL;
1148 }
1149
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1150 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1151 const struct sock_fprog *fprog)
1152 {
1153 unsigned int fsize = bpf_classic_proglen(fprog);
1154 struct sock_fprog_kern *fkprog;
1155
1156 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1157 if (!fp->orig_prog)
1158 return -ENOMEM;
1159
1160 fkprog = fp->orig_prog;
1161 fkprog->len = fprog->len;
1162
1163 fkprog->filter = kmemdup(fp->insns, fsize,
1164 GFP_KERNEL | __GFP_NOWARN);
1165 if (!fkprog->filter) {
1166 kfree(fp->orig_prog);
1167 return -ENOMEM;
1168 }
1169
1170 return 0;
1171 }
1172
bpf_release_orig_filter(struct bpf_prog * fp)1173 static void bpf_release_orig_filter(struct bpf_prog *fp)
1174 {
1175 struct sock_fprog_kern *fprog = fp->orig_prog;
1176
1177 if (fprog) {
1178 kfree(fprog->filter);
1179 kfree(fprog);
1180 }
1181 }
1182
__bpf_prog_release(struct bpf_prog * prog)1183 static void __bpf_prog_release(struct bpf_prog *prog)
1184 {
1185 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1186 bpf_prog_put(prog);
1187 } else {
1188 bpf_release_orig_filter(prog);
1189 bpf_prog_free(prog);
1190 }
1191 }
1192
__sk_filter_release(struct sk_filter * fp)1193 static void __sk_filter_release(struct sk_filter *fp)
1194 {
1195 __bpf_prog_release(fp->prog);
1196 kfree(fp);
1197 }
1198
1199 /**
1200 * sk_filter_release_rcu - Release a socket filter by rcu_head
1201 * @rcu: rcu_head that contains the sk_filter to free
1202 */
sk_filter_release_rcu(struct rcu_head * rcu)1203 static void sk_filter_release_rcu(struct rcu_head *rcu)
1204 {
1205 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1206
1207 __sk_filter_release(fp);
1208 }
1209
1210 /**
1211 * sk_filter_release - release a socket filter
1212 * @fp: filter to remove
1213 *
1214 * Remove a filter from a socket and release its resources.
1215 */
sk_filter_release(struct sk_filter * fp)1216 static void sk_filter_release(struct sk_filter *fp)
1217 {
1218 if (refcount_dec_and_test(&fp->refcnt))
1219 call_rcu(&fp->rcu, sk_filter_release_rcu);
1220 }
1221
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1222 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1223 {
1224 u32 filter_size = bpf_prog_size(fp->prog->len);
1225
1226 atomic_sub(filter_size, &sk->sk_omem_alloc);
1227 sk_filter_release(fp);
1228 }
1229
1230 /* try to charge the socket memory if there is space available
1231 * return true on success
1232 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1233 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1234 {
1235 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1236 u32 filter_size = bpf_prog_size(fp->prog->len);
1237
1238 /* same check as in sock_kmalloc() */
1239 if (filter_size <= optmem_max &&
1240 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1241 atomic_add(filter_size, &sk->sk_omem_alloc);
1242 return true;
1243 }
1244 return false;
1245 }
1246
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1247 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1248 {
1249 if (!refcount_inc_not_zero(&fp->refcnt))
1250 return false;
1251
1252 if (!__sk_filter_charge(sk, fp)) {
1253 sk_filter_release(fp);
1254 return false;
1255 }
1256 return true;
1257 }
1258
bpf_migrate_filter(struct bpf_prog * fp)1259 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1260 {
1261 struct sock_filter *old_prog;
1262 struct bpf_prog *old_fp;
1263 int err, new_len, old_len = fp->len;
1264 bool seen_ld_abs = false;
1265
1266 /* We are free to overwrite insns et al right here as it won't be used at
1267 * this point in time anymore internally after the migration to the eBPF
1268 * instruction representation.
1269 */
1270 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1271 sizeof(struct bpf_insn));
1272
1273 /* Conversion cannot happen on overlapping memory areas,
1274 * so we need to keep the user BPF around until the 2nd
1275 * pass. At this time, the user BPF is stored in fp->insns.
1276 */
1277 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1278 GFP_KERNEL | __GFP_NOWARN);
1279 if (!old_prog) {
1280 err = -ENOMEM;
1281 goto out_err;
1282 }
1283
1284 /* 1st pass: calculate the new program length. */
1285 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1286 &seen_ld_abs);
1287 if (err)
1288 goto out_err_free;
1289
1290 /* Expand fp for appending the new filter representation. */
1291 old_fp = fp;
1292 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1293 if (!fp) {
1294 /* The old_fp is still around in case we couldn't
1295 * allocate new memory, so uncharge on that one.
1296 */
1297 fp = old_fp;
1298 err = -ENOMEM;
1299 goto out_err_free;
1300 }
1301
1302 fp->len = new_len;
1303
1304 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1305 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1306 &seen_ld_abs);
1307 if (err)
1308 /* 2nd bpf_convert_filter() can fail only if it fails
1309 * to allocate memory, remapping must succeed. Note,
1310 * that at this time old_fp has already been released
1311 * by krealloc().
1312 */
1313 goto out_err_free;
1314
1315 fp = bpf_prog_select_runtime(fp, &err);
1316 if (err)
1317 goto out_err_free;
1318
1319 kfree(old_prog);
1320 return fp;
1321
1322 out_err_free:
1323 kfree(old_prog);
1324 out_err:
1325 __bpf_prog_release(fp);
1326 return ERR_PTR(err);
1327 }
1328
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1329 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1330 bpf_aux_classic_check_t trans)
1331 {
1332 int err;
1333
1334 fp->bpf_func = NULL;
1335 fp->jited = 0;
1336
1337 err = bpf_check_classic(fp->insns, fp->len);
1338 if (err) {
1339 __bpf_prog_release(fp);
1340 return ERR_PTR(err);
1341 }
1342
1343 /* There might be additional checks and transformations
1344 * needed on classic filters, f.e. in case of seccomp.
1345 */
1346 if (trans) {
1347 err = trans(fp->insns, fp->len);
1348 if (err) {
1349 __bpf_prog_release(fp);
1350 return ERR_PTR(err);
1351 }
1352 }
1353
1354 /* Probe if we can JIT compile the filter and if so, do
1355 * the compilation of the filter.
1356 */
1357 bpf_jit_compile(fp);
1358
1359 /* JIT compiler couldn't process this filter, so do the eBPF translation
1360 * for the optimized interpreter.
1361 */
1362 if (!fp->jited)
1363 fp = bpf_migrate_filter(fp);
1364
1365 return fp;
1366 }
1367
1368 /**
1369 * bpf_prog_create - create an unattached filter
1370 * @pfp: the unattached filter that is created
1371 * @fprog: the filter program
1372 *
1373 * Create a filter independent of any socket. We first run some
1374 * sanity checks on it to make sure it does not explode on us later.
1375 * If an error occurs or there is insufficient memory for the filter
1376 * a negative errno code is returned. On success the return is zero.
1377 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1378 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1379 {
1380 unsigned int fsize = bpf_classic_proglen(fprog);
1381 struct bpf_prog *fp;
1382
1383 /* Make sure new filter is there and in the right amounts. */
1384 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1385 return -EINVAL;
1386
1387 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1388 if (!fp)
1389 return -ENOMEM;
1390
1391 memcpy(fp->insns, fprog->filter, fsize);
1392
1393 fp->len = fprog->len;
1394 /* Since unattached filters are not copied back to user
1395 * space through sk_get_filter(), we do not need to hold
1396 * a copy here, and can spare us the work.
1397 */
1398 fp->orig_prog = NULL;
1399
1400 /* bpf_prepare_filter() already takes care of freeing
1401 * memory in case something goes wrong.
1402 */
1403 fp = bpf_prepare_filter(fp, NULL);
1404 if (IS_ERR(fp))
1405 return PTR_ERR(fp);
1406
1407 *pfp = fp;
1408 return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(bpf_prog_create);
1411
1412 /**
1413 * bpf_prog_create_from_user - create an unattached filter from user buffer
1414 * @pfp: the unattached filter that is created
1415 * @fprog: the filter program
1416 * @trans: post-classic verifier transformation handler
1417 * @save_orig: save classic BPF program
1418 *
1419 * This function effectively does the same as bpf_prog_create(), only
1420 * that it builds up its insns buffer from user space provided buffer.
1421 * It also allows for passing a bpf_aux_classic_check_t handler.
1422 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1423 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1424 bpf_aux_classic_check_t trans, bool save_orig)
1425 {
1426 unsigned int fsize = bpf_classic_proglen(fprog);
1427 struct bpf_prog *fp;
1428 int err;
1429
1430 /* Make sure new filter is there and in the right amounts. */
1431 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1432 return -EINVAL;
1433
1434 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1435 if (!fp)
1436 return -ENOMEM;
1437
1438 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1439 __bpf_prog_free(fp);
1440 return -EFAULT;
1441 }
1442
1443 fp->len = fprog->len;
1444 fp->orig_prog = NULL;
1445
1446 if (save_orig) {
1447 err = bpf_prog_store_orig_filter(fp, fprog);
1448 if (err) {
1449 __bpf_prog_free(fp);
1450 return -ENOMEM;
1451 }
1452 }
1453
1454 /* bpf_prepare_filter() already takes care of freeing
1455 * memory in case something goes wrong.
1456 */
1457 fp = bpf_prepare_filter(fp, trans);
1458 if (IS_ERR(fp))
1459 return PTR_ERR(fp);
1460
1461 *pfp = fp;
1462 return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1465
bpf_prog_destroy(struct bpf_prog * fp)1466 void bpf_prog_destroy(struct bpf_prog *fp)
1467 {
1468 __bpf_prog_release(fp);
1469 }
1470 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1471
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1472 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1473 {
1474 struct sk_filter *fp, *old_fp;
1475
1476 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1477 if (!fp)
1478 return -ENOMEM;
1479
1480 fp->prog = prog;
1481
1482 if (!__sk_filter_charge(sk, fp)) {
1483 kfree(fp);
1484 return -ENOMEM;
1485 }
1486 refcount_set(&fp->refcnt, 1);
1487
1488 old_fp = rcu_dereference_protected(sk->sk_filter,
1489 lockdep_sock_is_held(sk));
1490 rcu_assign_pointer(sk->sk_filter, fp);
1491
1492 if (old_fp)
1493 sk_filter_uncharge(sk, old_fp);
1494
1495 return 0;
1496 }
1497
1498 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1499 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1500 {
1501 unsigned int fsize = bpf_classic_proglen(fprog);
1502 struct bpf_prog *prog;
1503 int err;
1504
1505 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1506 return ERR_PTR(-EPERM);
1507
1508 /* Make sure new filter is there and in the right amounts. */
1509 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1510 return ERR_PTR(-EINVAL);
1511
1512 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1513 if (!prog)
1514 return ERR_PTR(-ENOMEM);
1515
1516 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1517 __bpf_prog_free(prog);
1518 return ERR_PTR(-EFAULT);
1519 }
1520
1521 prog->len = fprog->len;
1522
1523 err = bpf_prog_store_orig_filter(prog, fprog);
1524 if (err) {
1525 __bpf_prog_free(prog);
1526 return ERR_PTR(-ENOMEM);
1527 }
1528
1529 /* bpf_prepare_filter() already takes care of freeing
1530 * memory in case something goes wrong.
1531 */
1532 return bpf_prepare_filter(prog, NULL);
1533 }
1534
1535 /**
1536 * sk_attach_filter - attach a socket filter
1537 * @fprog: the filter program
1538 * @sk: the socket to use
1539 *
1540 * Attach the user's filter code. We first run some sanity checks on
1541 * it to make sure it does not explode on us later. If an error
1542 * occurs or there is insufficient memory for the filter a negative
1543 * errno code is returned. On success the return is zero.
1544 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1545 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547 struct bpf_prog *prog = __get_filter(fprog, sk);
1548 int err;
1549
1550 if (IS_ERR(prog))
1551 return PTR_ERR(prog);
1552
1553 err = __sk_attach_prog(prog, sk);
1554 if (err < 0) {
1555 __bpf_prog_release(prog);
1556 return err;
1557 }
1558
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(sk_attach_filter);
1562
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1563 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1564 {
1565 struct bpf_prog *prog = __get_filter(fprog, sk);
1566 int err, optmem_max;
1567
1568 if (IS_ERR(prog))
1569 return PTR_ERR(prog);
1570
1571 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1572 if (bpf_prog_size(prog->len) > optmem_max)
1573 err = -ENOMEM;
1574 else
1575 err = reuseport_attach_prog(sk, prog);
1576
1577 if (err)
1578 __bpf_prog_release(prog);
1579
1580 return err;
1581 }
1582
__get_bpf(u32 ufd,struct sock * sk)1583 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1584 {
1585 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1586 return ERR_PTR(-EPERM);
1587
1588 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1589 }
1590
sk_attach_bpf(u32 ufd,struct sock * sk)1591 int sk_attach_bpf(u32 ufd, struct sock *sk)
1592 {
1593 struct bpf_prog *prog = __get_bpf(ufd, sk);
1594 int err;
1595
1596 if (IS_ERR(prog))
1597 return PTR_ERR(prog);
1598
1599 err = __sk_attach_prog(prog, sk);
1600 if (err < 0) {
1601 bpf_prog_put(prog);
1602 return err;
1603 }
1604
1605 return 0;
1606 }
1607
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1608 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1609 {
1610 struct bpf_prog *prog;
1611 int err, optmem_max;
1612
1613 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1614 return -EPERM;
1615
1616 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1617 if (PTR_ERR(prog) == -EINVAL)
1618 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1619 if (IS_ERR(prog))
1620 return PTR_ERR(prog);
1621
1622 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1623 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1624 * bpf prog (e.g. sockmap). It depends on the
1625 * limitation imposed by bpf_prog_load().
1626 * Hence, sysctl_optmem_max is not checked.
1627 */
1628 if ((sk->sk_type != SOCK_STREAM &&
1629 sk->sk_type != SOCK_DGRAM) ||
1630 (sk->sk_protocol != IPPROTO_UDP &&
1631 sk->sk_protocol != IPPROTO_TCP) ||
1632 (sk->sk_family != AF_INET &&
1633 sk->sk_family != AF_INET6)) {
1634 err = -ENOTSUPP;
1635 goto err_prog_put;
1636 }
1637 } else {
1638 /* BPF_PROG_TYPE_SOCKET_FILTER */
1639 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1640 if (bpf_prog_size(prog->len) > optmem_max) {
1641 err = -ENOMEM;
1642 goto err_prog_put;
1643 }
1644 }
1645
1646 err = reuseport_attach_prog(sk, prog);
1647 err_prog_put:
1648 if (err)
1649 bpf_prog_put(prog);
1650
1651 return err;
1652 }
1653
sk_reuseport_prog_free(struct bpf_prog * prog)1654 void sk_reuseport_prog_free(struct bpf_prog *prog)
1655 {
1656 if (!prog)
1657 return;
1658
1659 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1660 bpf_prog_put(prog);
1661 else
1662 bpf_prog_destroy(prog);
1663 }
1664
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1665 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1666 unsigned int write_len)
1667 {
1668 #ifdef CONFIG_DEBUG_NET
1669 /* Avoid a splat in pskb_may_pull_reason() */
1670 if (write_len > INT_MAX)
1671 return -EINVAL;
1672 #endif
1673 return skb_ensure_writable(skb, write_len);
1674 }
1675
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1676 static inline int bpf_try_make_writable(struct sk_buff *skb,
1677 unsigned int write_len)
1678 {
1679 int err = __bpf_try_make_writable(skb, write_len);
1680
1681 bpf_compute_data_pointers(skb);
1682 return err;
1683 }
1684
bpf_try_make_head_writable(struct sk_buff * skb)1685 static int bpf_try_make_head_writable(struct sk_buff *skb)
1686 {
1687 return bpf_try_make_writable(skb, skb_headlen(skb));
1688 }
1689
bpf_push_mac_rcsum(struct sk_buff * skb)1690 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1691 {
1692 if (skb_at_tc_ingress(skb))
1693 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1694 }
1695
bpf_pull_mac_rcsum(struct sk_buff * skb)1696 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1697 {
1698 if (skb_at_tc_ingress(skb))
1699 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1700 }
1701
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1702 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1703 const void *, from, u32, len, u64, flags)
1704 {
1705 void *ptr;
1706
1707 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1708 return -EINVAL;
1709 if (unlikely(offset > INT_MAX))
1710 return -EFAULT;
1711 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1712 return -EFAULT;
1713
1714 ptr = skb->data + offset;
1715 if (flags & BPF_F_RECOMPUTE_CSUM)
1716 __skb_postpull_rcsum(skb, ptr, len, offset);
1717
1718 memcpy(ptr, from, len);
1719
1720 if (flags & BPF_F_RECOMPUTE_CSUM)
1721 __skb_postpush_rcsum(skb, ptr, len, offset);
1722 if (flags & BPF_F_INVALIDATE_HASH)
1723 skb_clear_hash(skb);
1724
1725 return 0;
1726 }
1727
1728 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1729 .func = bpf_skb_store_bytes,
1730 .gpl_only = false,
1731 .ret_type = RET_INTEGER,
1732 .arg1_type = ARG_PTR_TO_CTX,
1733 .arg2_type = ARG_ANYTHING,
1734 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1735 .arg4_type = ARG_CONST_SIZE,
1736 .arg5_type = ARG_ANYTHING,
1737 };
1738
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1739 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1740 u32 len, u64 flags)
1741 {
1742 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1743 }
1744
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1745 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1746 void *, to, u32, len)
1747 {
1748 void *ptr;
1749
1750 if (unlikely(offset > INT_MAX))
1751 goto err_clear;
1752
1753 ptr = skb_header_pointer(skb, offset, len, to);
1754 if (unlikely(!ptr))
1755 goto err_clear;
1756 if (ptr != to)
1757 memcpy(to, ptr, len);
1758
1759 return 0;
1760 err_clear:
1761 memset(to, 0, len);
1762 return -EFAULT;
1763 }
1764
1765 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1766 .func = bpf_skb_load_bytes,
1767 .gpl_only = false,
1768 .ret_type = RET_INTEGER,
1769 .arg1_type = ARG_PTR_TO_CTX,
1770 .arg2_type = ARG_ANYTHING,
1771 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1772 .arg4_type = ARG_CONST_SIZE,
1773 };
1774
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1775 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1776 {
1777 return ____bpf_skb_load_bytes(skb, offset, to, len);
1778 }
1779
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1780 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1781 const struct bpf_flow_dissector *, ctx, u32, offset,
1782 void *, to, u32, len)
1783 {
1784 void *ptr;
1785
1786 if (unlikely(offset > 0xffff))
1787 goto err_clear;
1788
1789 if (unlikely(!ctx->skb))
1790 goto err_clear;
1791
1792 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1793 if (unlikely(!ptr))
1794 goto err_clear;
1795 if (ptr != to)
1796 memcpy(to, ptr, len);
1797
1798 return 0;
1799 err_clear:
1800 memset(to, 0, len);
1801 return -EFAULT;
1802 }
1803
1804 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1805 .func = bpf_flow_dissector_load_bytes,
1806 .gpl_only = false,
1807 .ret_type = RET_INTEGER,
1808 .arg1_type = ARG_PTR_TO_CTX,
1809 .arg2_type = ARG_ANYTHING,
1810 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1811 .arg4_type = ARG_CONST_SIZE,
1812 };
1813
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1814 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1815 u32, offset, void *, to, u32, len, u32, start_header)
1816 {
1817 u8 *end = skb_tail_pointer(skb);
1818 u8 *start, *ptr;
1819
1820 if (unlikely(offset > 0xffff))
1821 goto err_clear;
1822
1823 switch (start_header) {
1824 case BPF_HDR_START_MAC:
1825 if (unlikely(!skb_mac_header_was_set(skb)))
1826 goto err_clear;
1827 start = skb_mac_header(skb);
1828 break;
1829 case BPF_HDR_START_NET:
1830 start = skb_network_header(skb);
1831 break;
1832 default:
1833 goto err_clear;
1834 }
1835
1836 ptr = start + offset;
1837
1838 if (likely(ptr + len <= end)) {
1839 memcpy(to, ptr, len);
1840 return 0;
1841 }
1842
1843 err_clear:
1844 memset(to, 0, len);
1845 return -EFAULT;
1846 }
1847
1848 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1849 .func = bpf_skb_load_bytes_relative,
1850 .gpl_only = false,
1851 .ret_type = RET_INTEGER,
1852 .arg1_type = ARG_PTR_TO_CTX,
1853 .arg2_type = ARG_ANYTHING,
1854 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1855 .arg4_type = ARG_CONST_SIZE,
1856 .arg5_type = ARG_ANYTHING,
1857 };
1858
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1859 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1860 {
1861 /* Idea is the following: should the needed direct read/write
1862 * test fail during runtime, we can pull in more data and redo
1863 * again, since implicitly, we invalidate previous checks here.
1864 *
1865 * Or, since we know how much we need to make read/writeable,
1866 * this can be done once at the program beginning for direct
1867 * access case. By this we overcome limitations of only current
1868 * headroom being accessible.
1869 */
1870 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1871 }
1872
1873 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1874 .func = bpf_skb_pull_data,
1875 .gpl_only = false,
1876 .ret_type = RET_INTEGER,
1877 .arg1_type = ARG_PTR_TO_CTX,
1878 .arg2_type = ARG_ANYTHING,
1879 };
1880
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1881 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1882 {
1883 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1884 }
1885
1886 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1887 .func = bpf_sk_fullsock,
1888 .gpl_only = false,
1889 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1890 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1891 };
1892
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1893 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1894 unsigned int write_len)
1895 {
1896 return __bpf_try_make_writable(skb, write_len);
1897 }
1898
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1899 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1900 {
1901 /* Idea is the following: should the needed direct read/write
1902 * test fail during runtime, we can pull in more data and redo
1903 * again, since implicitly, we invalidate previous checks here.
1904 *
1905 * Or, since we know how much we need to make read/writeable,
1906 * this can be done once at the program beginning for direct
1907 * access case. By this we overcome limitations of only current
1908 * headroom being accessible.
1909 */
1910 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1911 }
1912
1913 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1914 .func = sk_skb_pull_data,
1915 .gpl_only = false,
1916 .ret_type = RET_INTEGER,
1917 .arg1_type = ARG_PTR_TO_CTX,
1918 .arg2_type = ARG_ANYTHING,
1919 };
1920
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1921 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1922 u64, from, u64, to, u64, flags)
1923 {
1924 __sum16 *ptr;
1925
1926 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1927 return -EINVAL;
1928 if (unlikely(offset > 0xffff || offset & 1))
1929 return -EFAULT;
1930 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 return -EFAULT;
1932
1933 ptr = (__sum16 *)(skb->data + offset);
1934 switch (flags & BPF_F_HDR_FIELD_MASK) {
1935 case 0:
1936 if (unlikely(from != 0))
1937 return -EINVAL;
1938
1939 csum_replace_by_diff(ptr, to);
1940 break;
1941 case 2:
1942 csum_replace2(ptr, from, to);
1943 break;
1944 case 4:
1945 csum_replace4(ptr, from, to);
1946 break;
1947 default:
1948 return -EINVAL;
1949 }
1950
1951 return 0;
1952 }
1953
1954 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1955 .func = bpf_l3_csum_replace,
1956 .gpl_only = false,
1957 .ret_type = RET_INTEGER,
1958 .arg1_type = ARG_PTR_TO_CTX,
1959 .arg2_type = ARG_ANYTHING,
1960 .arg3_type = ARG_ANYTHING,
1961 .arg4_type = ARG_ANYTHING,
1962 .arg5_type = ARG_ANYTHING,
1963 };
1964
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1965 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1966 u64, from, u64, to, u64, flags)
1967 {
1968 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1969 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1970 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1971 __sum16 *ptr;
1972
1973 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1974 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1975 return -EINVAL;
1976 if (unlikely(offset > 0xffff || offset & 1))
1977 return -EFAULT;
1978 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1979 return -EFAULT;
1980
1981 ptr = (__sum16 *)(skb->data + offset);
1982 if (is_mmzero && !do_mforce && !*ptr)
1983 return 0;
1984
1985 switch (flags & BPF_F_HDR_FIELD_MASK) {
1986 case 0:
1987 if (unlikely(from != 0))
1988 return -EINVAL;
1989
1990 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1991 break;
1992 case 2:
1993 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1994 break;
1995 case 4:
1996 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1997 break;
1998 default:
1999 return -EINVAL;
2000 }
2001
2002 if (is_mmzero && !*ptr)
2003 *ptr = CSUM_MANGLED_0;
2004 return 0;
2005 }
2006
2007 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2008 .func = bpf_l4_csum_replace,
2009 .gpl_only = false,
2010 .ret_type = RET_INTEGER,
2011 .arg1_type = ARG_PTR_TO_CTX,
2012 .arg2_type = ARG_ANYTHING,
2013 .arg3_type = ARG_ANYTHING,
2014 .arg4_type = ARG_ANYTHING,
2015 .arg5_type = ARG_ANYTHING,
2016 };
2017
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2018 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2019 __be32 *, to, u32, to_size, __wsum, seed)
2020 {
2021 /* This is quite flexible, some examples:
2022 *
2023 * from_size == 0, to_size > 0, seed := csum --> pushing data
2024 * from_size > 0, to_size == 0, seed := csum --> pulling data
2025 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2026 *
2027 * Even for diffing, from_size and to_size don't need to be equal.
2028 */
2029
2030 __wsum ret = seed;
2031
2032 if (from_size && to_size)
2033 ret = csum_sub(csum_partial(to, to_size, ret),
2034 csum_partial(from, from_size, 0));
2035 else if (to_size)
2036 ret = csum_partial(to, to_size, ret);
2037
2038 else if (from_size)
2039 ret = ~csum_partial(from, from_size, ~ret);
2040
2041 return csum_from32to16((__force unsigned int)ret);
2042 }
2043
2044 static const struct bpf_func_proto bpf_csum_diff_proto = {
2045 .func = bpf_csum_diff,
2046 .gpl_only = false,
2047 .pkt_access = true,
2048 .ret_type = RET_INTEGER,
2049 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2050 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2051 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2052 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2053 .arg5_type = ARG_ANYTHING,
2054 };
2055
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2056 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2057 {
2058 /* The interface is to be used in combination with bpf_csum_diff()
2059 * for direct packet writes. csum rotation for alignment as well
2060 * as emulating csum_sub() can be done from the eBPF program.
2061 */
2062 if (skb->ip_summed == CHECKSUM_COMPLETE)
2063 return (skb->csum = csum_add(skb->csum, csum));
2064
2065 return -ENOTSUPP;
2066 }
2067
2068 static const struct bpf_func_proto bpf_csum_update_proto = {
2069 .func = bpf_csum_update,
2070 .gpl_only = false,
2071 .ret_type = RET_INTEGER,
2072 .arg1_type = ARG_PTR_TO_CTX,
2073 .arg2_type = ARG_ANYTHING,
2074 };
2075
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2076 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2077 {
2078 /* The interface is to be used in combination with bpf_skb_adjust_room()
2079 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2080 * is passed as flags, for example.
2081 */
2082 switch (level) {
2083 case BPF_CSUM_LEVEL_INC:
2084 __skb_incr_checksum_unnecessary(skb);
2085 break;
2086 case BPF_CSUM_LEVEL_DEC:
2087 __skb_decr_checksum_unnecessary(skb);
2088 break;
2089 case BPF_CSUM_LEVEL_RESET:
2090 __skb_reset_checksum_unnecessary(skb);
2091 break;
2092 case BPF_CSUM_LEVEL_QUERY:
2093 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2094 skb->csum_level : -EACCES;
2095 default:
2096 return -EINVAL;
2097 }
2098
2099 return 0;
2100 }
2101
2102 static const struct bpf_func_proto bpf_csum_level_proto = {
2103 .func = bpf_csum_level,
2104 .gpl_only = false,
2105 .ret_type = RET_INTEGER,
2106 .arg1_type = ARG_PTR_TO_CTX,
2107 .arg2_type = ARG_ANYTHING,
2108 };
2109
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2110 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2111 {
2112 return dev_forward_skb_nomtu(dev, skb);
2113 }
2114
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2115 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2116 struct sk_buff *skb)
2117 {
2118 int ret = ____dev_forward_skb(dev, skb, false);
2119
2120 if (likely(!ret)) {
2121 skb->dev = dev;
2122 ret = netif_rx(skb);
2123 }
2124
2125 return ret;
2126 }
2127
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2128 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2129 {
2130 int ret;
2131
2132 if (dev_xmit_recursion()) {
2133 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2134 kfree_skb(skb);
2135 return -ENETDOWN;
2136 }
2137
2138 skb->dev = dev;
2139 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2140 skb_clear_tstamp(skb);
2141
2142 dev_xmit_recursion_inc();
2143 ret = dev_queue_xmit(skb);
2144 dev_xmit_recursion_dec();
2145
2146 return ret;
2147 }
2148
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2149 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2150 u32 flags)
2151 {
2152 unsigned int mlen = skb_network_offset(skb);
2153
2154 if (unlikely(skb->len <= mlen)) {
2155 kfree_skb(skb);
2156 return -ERANGE;
2157 }
2158
2159 if (mlen) {
2160 __skb_pull(skb, mlen);
2161
2162 /* At ingress, the mac header has already been pulled once.
2163 * At egress, skb_pospull_rcsum has to be done in case that
2164 * the skb is originated from ingress (i.e. a forwarded skb)
2165 * to ensure that rcsum starts at net header.
2166 */
2167 if (!skb_at_tc_ingress(skb))
2168 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2169 }
2170 skb_pop_mac_header(skb);
2171 skb_reset_mac_len(skb);
2172 return flags & BPF_F_INGRESS ?
2173 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2174 }
2175
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2176 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2177 u32 flags)
2178 {
2179 /* Verify that a link layer header is carried */
2180 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2181 kfree_skb(skb);
2182 return -ERANGE;
2183 }
2184
2185 bpf_push_mac_rcsum(skb);
2186 return flags & BPF_F_INGRESS ?
2187 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2188 }
2189
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2190 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2191 u32 flags)
2192 {
2193 if (dev_is_mac_header_xmit(dev))
2194 return __bpf_redirect_common(skb, dev, flags);
2195 else
2196 return __bpf_redirect_no_mac(skb, dev, flags);
2197 }
2198
2199 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2200 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2201 struct net_device *dev, struct bpf_nh_params *nh)
2202 {
2203 u32 hh_len = LL_RESERVED_SPACE(dev);
2204 const struct in6_addr *nexthop;
2205 struct dst_entry *dst = NULL;
2206 struct neighbour *neigh;
2207
2208 if (dev_xmit_recursion()) {
2209 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2210 goto out_drop;
2211 }
2212
2213 skb->dev = dev;
2214 skb_clear_tstamp(skb);
2215
2216 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2217 skb = skb_expand_head(skb, hh_len);
2218 if (!skb)
2219 return -ENOMEM;
2220 }
2221
2222 rcu_read_lock();
2223 if (!nh) {
2224 dst = skb_dst(skb);
2225 nexthop = rt6_nexthop(dst_rt6_info(dst),
2226 &ipv6_hdr(skb)->daddr);
2227 } else {
2228 nexthop = &nh->ipv6_nh;
2229 }
2230 neigh = ip_neigh_gw6(dev, nexthop);
2231 if (likely(!IS_ERR(neigh))) {
2232 int ret;
2233
2234 sock_confirm_neigh(skb, neigh);
2235 local_bh_disable();
2236 dev_xmit_recursion_inc();
2237 ret = neigh_output(neigh, skb, false);
2238 dev_xmit_recursion_dec();
2239 local_bh_enable();
2240 rcu_read_unlock();
2241 return ret;
2242 }
2243 rcu_read_unlock();
2244 if (dst)
2245 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2246 out_drop:
2247 kfree_skb(skb);
2248 return -ENETDOWN;
2249 }
2250
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2251 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2252 struct bpf_nh_params *nh)
2253 {
2254 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2255 struct net *net = dev_net(dev);
2256 int err, ret = NET_XMIT_DROP;
2257
2258 if (!nh) {
2259 struct dst_entry *dst;
2260 struct flowi6 fl6 = {
2261 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2262 .flowi6_mark = skb->mark,
2263 .flowlabel = ip6_flowinfo(ip6h),
2264 .flowi6_oif = dev->ifindex,
2265 .flowi6_proto = ip6h->nexthdr,
2266 .daddr = ip6h->daddr,
2267 .saddr = ip6h->saddr,
2268 };
2269
2270 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2271 if (IS_ERR(dst))
2272 goto out_drop;
2273
2274 skb_dst_set(skb, dst);
2275 } else if (nh->nh_family != AF_INET6) {
2276 goto out_drop;
2277 }
2278
2279 err = bpf_out_neigh_v6(net, skb, dev, nh);
2280 if (unlikely(net_xmit_eval(err)))
2281 DEV_STATS_INC(dev, tx_errors);
2282 else
2283 ret = NET_XMIT_SUCCESS;
2284 goto out_xmit;
2285 out_drop:
2286 DEV_STATS_INC(dev, tx_errors);
2287 kfree_skb(skb);
2288 out_xmit:
2289 return ret;
2290 }
2291 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2292 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2293 struct bpf_nh_params *nh)
2294 {
2295 kfree_skb(skb);
2296 return NET_XMIT_DROP;
2297 }
2298 #endif /* CONFIG_IPV6 */
2299
2300 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2301 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2302 struct net_device *dev, struct bpf_nh_params *nh)
2303 {
2304 u32 hh_len = LL_RESERVED_SPACE(dev);
2305 struct neighbour *neigh;
2306 bool is_v6gw = false;
2307
2308 if (dev_xmit_recursion()) {
2309 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2310 goto out_drop;
2311 }
2312
2313 skb->dev = dev;
2314 skb_clear_tstamp(skb);
2315
2316 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2317 skb = skb_expand_head(skb, hh_len);
2318 if (!skb)
2319 return -ENOMEM;
2320 }
2321
2322 rcu_read_lock();
2323 if (!nh) {
2324 struct rtable *rt = skb_rtable(skb);
2325
2326 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2327 } else if (nh->nh_family == AF_INET6) {
2328 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2329 is_v6gw = true;
2330 } else if (nh->nh_family == AF_INET) {
2331 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2332 } else {
2333 rcu_read_unlock();
2334 goto out_drop;
2335 }
2336
2337 if (likely(!IS_ERR(neigh))) {
2338 int ret;
2339
2340 sock_confirm_neigh(skb, neigh);
2341 local_bh_disable();
2342 dev_xmit_recursion_inc();
2343 ret = neigh_output(neigh, skb, is_v6gw);
2344 dev_xmit_recursion_dec();
2345 local_bh_enable();
2346 rcu_read_unlock();
2347 return ret;
2348 }
2349 rcu_read_unlock();
2350 out_drop:
2351 kfree_skb(skb);
2352 return -ENETDOWN;
2353 }
2354
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2355 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2356 struct bpf_nh_params *nh)
2357 {
2358 const struct iphdr *ip4h = ip_hdr(skb);
2359 struct net *net = dev_net(dev);
2360 int err, ret = NET_XMIT_DROP;
2361
2362 if (!nh) {
2363 struct flowi4 fl4 = {
2364 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2365 .flowi4_mark = skb->mark,
2366 .flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h)),
2367 .flowi4_oif = dev->ifindex,
2368 .flowi4_proto = ip4h->protocol,
2369 .daddr = ip4h->daddr,
2370 .saddr = ip4h->saddr,
2371 };
2372 struct rtable *rt;
2373
2374 rt = ip_route_output_flow(net, &fl4, NULL);
2375 if (IS_ERR(rt))
2376 goto out_drop;
2377 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2378 ip_rt_put(rt);
2379 goto out_drop;
2380 }
2381
2382 skb_dst_set(skb, &rt->dst);
2383 }
2384
2385 err = bpf_out_neigh_v4(net, skb, dev, nh);
2386 if (unlikely(net_xmit_eval(err)))
2387 DEV_STATS_INC(dev, tx_errors);
2388 else
2389 ret = NET_XMIT_SUCCESS;
2390 goto out_xmit;
2391 out_drop:
2392 DEV_STATS_INC(dev, tx_errors);
2393 kfree_skb(skb);
2394 out_xmit:
2395 return ret;
2396 }
2397 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2398 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2399 struct bpf_nh_params *nh)
2400 {
2401 kfree_skb(skb);
2402 return NET_XMIT_DROP;
2403 }
2404 #endif /* CONFIG_INET */
2405
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2406 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2407 struct bpf_nh_params *nh)
2408 {
2409 struct ethhdr *ethh = eth_hdr(skb);
2410
2411 if (unlikely(skb->mac_header >= skb->network_header))
2412 goto out;
2413 bpf_push_mac_rcsum(skb);
2414 if (is_multicast_ether_addr(ethh->h_dest))
2415 goto out;
2416
2417 skb_pull(skb, sizeof(*ethh));
2418 skb_unset_mac_header(skb);
2419 skb_reset_network_header(skb);
2420
2421 if (skb->protocol == htons(ETH_P_IP))
2422 return __bpf_redirect_neigh_v4(skb, dev, nh);
2423 else if (skb->protocol == htons(ETH_P_IPV6))
2424 return __bpf_redirect_neigh_v6(skb, dev, nh);
2425 out:
2426 kfree_skb(skb);
2427 return -ENOTSUPP;
2428 }
2429
2430 /* Internal, non-exposed redirect flags. */
2431 enum {
2432 BPF_F_NEIGH = (1ULL << 16),
2433 BPF_F_PEER = (1ULL << 17),
2434 BPF_F_NEXTHOP = (1ULL << 18),
2435 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2436 };
2437
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2438 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2439 {
2440 struct net_device *dev;
2441 struct sk_buff *clone;
2442 int ret;
2443
2444 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2445
2446 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2447 return -EINVAL;
2448
2449 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2450 if (unlikely(!dev))
2451 return -EINVAL;
2452
2453 clone = skb_clone(skb, GFP_ATOMIC);
2454 if (unlikely(!clone))
2455 return -ENOMEM;
2456
2457 /* For direct write, we need to keep the invariant that the skbs
2458 * we're dealing with need to be uncloned. Should uncloning fail
2459 * here, we need to free the just generated clone to unclone once
2460 * again.
2461 */
2462 ret = bpf_try_make_head_writable(skb);
2463 if (unlikely(ret)) {
2464 kfree_skb(clone);
2465 return -ENOMEM;
2466 }
2467
2468 return __bpf_redirect(clone, dev, flags);
2469 }
2470
2471 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2472 .func = bpf_clone_redirect,
2473 .gpl_only = false,
2474 .ret_type = RET_INTEGER,
2475 .arg1_type = ARG_PTR_TO_CTX,
2476 .arg2_type = ARG_ANYTHING,
2477 .arg3_type = ARG_ANYTHING,
2478 };
2479
skb_get_peer_dev(struct net_device * dev)2480 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2481 {
2482 const struct net_device_ops *ops = dev->netdev_ops;
2483
2484 if (likely(ops->ndo_get_peer_dev))
2485 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2486 netkit_peer_dev, dev);
2487 return NULL;
2488 }
2489
skb_do_redirect(struct sk_buff * skb)2490 int skb_do_redirect(struct sk_buff *skb)
2491 {
2492 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2493 struct net *net = dev_net(skb->dev);
2494 struct net_device *dev;
2495 u32 flags = ri->flags;
2496
2497 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2498 ri->tgt_index = 0;
2499 ri->flags = 0;
2500 if (unlikely(!dev))
2501 goto out_drop;
2502 if (flags & BPF_F_PEER) {
2503 if (unlikely(!skb_at_tc_ingress(skb)))
2504 goto out_drop;
2505 dev = skb_get_peer_dev(dev);
2506 if (unlikely(!dev ||
2507 !(dev->flags & IFF_UP) ||
2508 net_eq(net, dev_net(dev))))
2509 goto out_drop;
2510 skb->dev = dev;
2511 dev_sw_netstats_rx_add(dev, skb->len);
2512 skb_scrub_packet(skb, false);
2513 return -EAGAIN;
2514 }
2515 return flags & BPF_F_NEIGH ?
2516 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2517 &ri->nh : NULL) :
2518 __bpf_redirect(skb, dev, flags);
2519 out_drop:
2520 kfree_skb(skb);
2521 return -EINVAL;
2522 }
2523
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2524 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2525 {
2526 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2527
2528 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2529 return TC_ACT_SHOT;
2530
2531 ri->flags = flags;
2532 ri->tgt_index = ifindex;
2533
2534 return TC_ACT_REDIRECT;
2535 }
2536
2537 static const struct bpf_func_proto bpf_redirect_proto = {
2538 .func = bpf_redirect,
2539 .gpl_only = false,
2540 .ret_type = RET_INTEGER,
2541 .arg1_type = ARG_ANYTHING,
2542 .arg2_type = ARG_ANYTHING,
2543 };
2544
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2545 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2546 {
2547 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2548
2549 if (unlikely(flags))
2550 return TC_ACT_SHOT;
2551
2552 ri->flags = BPF_F_PEER;
2553 ri->tgt_index = ifindex;
2554
2555 return TC_ACT_REDIRECT;
2556 }
2557
2558 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2559 .func = bpf_redirect_peer,
2560 .gpl_only = false,
2561 .ret_type = RET_INTEGER,
2562 .arg1_type = ARG_ANYTHING,
2563 .arg2_type = ARG_ANYTHING,
2564 };
2565
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2566 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2567 int, plen, u64, flags)
2568 {
2569 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2570
2571 if (unlikely((plen && plen < sizeof(*params)) || flags))
2572 return TC_ACT_SHOT;
2573
2574 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2575 ri->tgt_index = ifindex;
2576
2577 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2578 if (plen)
2579 memcpy(&ri->nh, params, sizeof(ri->nh));
2580
2581 return TC_ACT_REDIRECT;
2582 }
2583
2584 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2585 .func = bpf_redirect_neigh,
2586 .gpl_only = false,
2587 .ret_type = RET_INTEGER,
2588 .arg1_type = ARG_ANYTHING,
2589 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2590 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2591 .arg4_type = ARG_ANYTHING,
2592 };
2593
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2594 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2595 {
2596 msg->apply_bytes = bytes;
2597 return 0;
2598 }
2599
2600 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2601 .func = bpf_msg_apply_bytes,
2602 .gpl_only = false,
2603 .ret_type = RET_INTEGER,
2604 .arg1_type = ARG_PTR_TO_CTX,
2605 .arg2_type = ARG_ANYTHING,
2606 };
2607
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2608 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2609 {
2610 msg->cork_bytes = bytes;
2611 return 0;
2612 }
2613
sk_msg_reset_curr(struct sk_msg * msg)2614 static void sk_msg_reset_curr(struct sk_msg *msg)
2615 {
2616 if (!msg->sg.size) {
2617 msg->sg.curr = msg->sg.start;
2618 msg->sg.copybreak = 0;
2619 } else {
2620 u32 i = msg->sg.end;
2621
2622 sk_msg_iter_var_prev(i);
2623 msg->sg.curr = i;
2624 msg->sg.copybreak = msg->sg.data[i].length;
2625 }
2626 }
2627
2628 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2629 .func = bpf_msg_cork_bytes,
2630 .gpl_only = false,
2631 .ret_type = RET_INTEGER,
2632 .arg1_type = ARG_PTR_TO_CTX,
2633 .arg2_type = ARG_ANYTHING,
2634 };
2635
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2636 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2637 u32, end, u64, flags)
2638 {
2639 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2640 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2641 struct scatterlist *sge;
2642 u8 *raw, *to, *from;
2643 struct page *page;
2644
2645 if (unlikely(flags || end <= start))
2646 return -EINVAL;
2647
2648 /* First find the starting scatterlist element */
2649 i = msg->sg.start;
2650 do {
2651 offset += len;
2652 len = sk_msg_elem(msg, i)->length;
2653 if (start < offset + len)
2654 break;
2655 sk_msg_iter_var_next(i);
2656 } while (i != msg->sg.end);
2657
2658 if (unlikely(start >= offset + len))
2659 return -EINVAL;
2660
2661 first_sge = i;
2662 /* The start may point into the sg element so we need to also
2663 * account for the headroom.
2664 */
2665 bytes_sg_total = start - offset + bytes;
2666 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2667 goto out;
2668
2669 /* At this point we need to linearize multiple scatterlist
2670 * elements or a single shared page. Either way we need to
2671 * copy into a linear buffer exclusively owned by BPF. Then
2672 * place the buffer in the scatterlist and fixup the original
2673 * entries by removing the entries now in the linear buffer
2674 * and shifting the remaining entries. For now we do not try
2675 * to copy partial entries to avoid complexity of running out
2676 * of sg_entry slots. The downside is reading a single byte
2677 * will copy the entire sg entry.
2678 */
2679 do {
2680 copy += sk_msg_elem(msg, i)->length;
2681 sk_msg_iter_var_next(i);
2682 if (bytes_sg_total <= copy)
2683 break;
2684 } while (i != msg->sg.end);
2685 last_sge = i;
2686
2687 if (unlikely(bytes_sg_total > copy))
2688 return -EINVAL;
2689
2690 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2691 get_order(copy));
2692 if (unlikely(!page))
2693 return -ENOMEM;
2694
2695 raw = page_address(page);
2696 i = first_sge;
2697 do {
2698 sge = sk_msg_elem(msg, i);
2699 from = sg_virt(sge);
2700 len = sge->length;
2701 to = raw + poffset;
2702
2703 memcpy(to, from, len);
2704 poffset += len;
2705 sge->length = 0;
2706 put_page(sg_page(sge));
2707
2708 sk_msg_iter_var_next(i);
2709 } while (i != last_sge);
2710
2711 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2712
2713 /* To repair sg ring we need to shift entries. If we only
2714 * had a single entry though we can just replace it and
2715 * be done. Otherwise walk the ring and shift the entries.
2716 */
2717 WARN_ON_ONCE(last_sge == first_sge);
2718 shift = last_sge > first_sge ?
2719 last_sge - first_sge - 1 :
2720 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2721 if (!shift)
2722 goto out;
2723
2724 i = first_sge;
2725 sk_msg_iter_var_next(i);
2726 do {
2727 u32 move_from;
2728
2729 if (i + shift >= NR_MSG_FRAG_IDS)
2730 move_from = i + shift - NR_MSG_FRAG_IDS;
2731 else
2732 move_from = i + shift;
2733 if (move_from == msg->sg.end)
2734 break;
2735
2736 msg->sg.data[i] = msg->sg.data[move_from];
2737 msg->sg.data[move_from].length = 0;
2738 msg->sg.data[move_from].page_link = 0;
2739 msg->sg.data[move_from].offset = 0;
2740 sk_msg_iter_var_next(i);
2741 } while (1);
2742
2743 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2744 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2745 msg->sg.end - shift;
2746 out:
2747 sk_msg_reset_curr(msg);
2748 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2749 msg->data_end = msg->data + bytes;
2750 return 0;
2751 }
2752
2753 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2754 .func = bpf_msg_pull_data,
2755 .gpl_only = false,
2756 .ret_type = RET_INTEGER,
2757 .arg1_type = ARG_PTR_TO_CTX,
2758 .arg2_type = ARG_ANYTHING,
2759 .arg3_type = ARG_ANYTHING,
2760 .arg4_type = ARG_ANYTHING,
2761 };
2762
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2763 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2764 u32, len, u64, flags)
2765 {
2766 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2767 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2768 u8 *raw, *to, *from;
2769 struct page *page;
2770
2771 if (unlikely(flags))
2772 return -EINVAL;
2773
2774 if (unlikely(len == 0))
2775 return 0;
2776
2777 /* First find the starting scatterlist element */
2778 i = msg->sg.start;
2779 do {
2780 offset += l;
2781 l = sk_msg_elem(msg, i)->length;
2782
2783 if (start < offset + l)
2784 break;
2785 sk_msg_iter_var_next(i);
2786 } while (i != msg->sg.end);
2787
2788 if (start > offset + l)
2789 return -EINVAL;
2790
2791 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2792
2793 /* If no space available will fallback to copy, we need at
2794 * least one scatterlist elem available to push data into
2795 * when start aligns to the beginning of an element or two
2796 * when it falls inside an element. We handle the start equals
2797 * offset case because its the common case for inserting a
2798 * header.
2799 */
2800 if (!space || (space == 1 && start != offset))
2801 copy = msg->sg.data[i].length;
2802
2803 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2804 get_order(copy + len));
2805 if (unlikely(!page))
2806 return -ENOMEM;
2807
2808 if (copy) {
2809 int front, back;
2810
2811 raw = page_address(page);
2812
2813 if (i == msg->sg.end)
2814 sk_msg_iter_var_prev(i);
2815 psge = sk_msg_elem(msg, i);
2816 front = start - offset;
2817 back = psge->length - front;
2818 from = sg_virt(psge);
2819
2820 if (front)
2821 memcpy(raw, from, front);
2822
2823 if (back) {
2824 from += front;
2825 to = raw + front + len;
2826
2827 memcpy(to, from, back);
2828 }
2829
2830 put_page(sg_page(psge));
2831 new = i;
2832 goto place_new;
2833 }
2834
2835 if (start - offset) {
2836 if (i == msg->sg.end)
2837 sk_msg_iter_var_prev(i);
2838 psge = sk_msg_elem(msg, i);
2839 rsge = sk_msg_elem_cpy(msg, i);
2840
2841 psge->length = start - offset;
2842 rsge.length -= psge->length;
2843 rsge.offset += start;
2844
2845 sk_msg_iter_var_next(i);
2846 sg_unmark_end(psge);
2847 sg_unmark_end(&rsge);
2848 }
2849
2850 /* Slot(s) to place newly allocated data */
2851 sk_msg_iter_next(msg, end);
2852 new = i;
2853 sk_msg_iter_var_next(i);
2854
2855 if (i == msg->sg.end) {
2856 if (!rsge.length)
2857 goto place_new;
2858 sk_msg_iter_next(msg, end);
2859 goto place_new;
2860 }
2861
2862 /* Shift one or two slots as needed */
2863 sge = sk_msg_elem_cpy(msg, new);
2864 sg_unmark_end(&sge);
2865
2866 nsge = sk_msg_elem_cpy(msg, i);
2867 if (rsge.length) {
2868 sk_msg_iter_var_next(i);
2869 nnsge = sk_msg_elem_cpy(msg, i);
2870 sk_msg_iter_next(msg, end);
2871 }
2872
2873 while (i != msg->sg.end) {
2874 msg->sg.data[i] = sge;
2875 sge = nsge;
2876 sk_msg_iter_var_next(i);
2877 if (rsge.length) {
2878 nsge = nnsge;
2879 nnsge = sk_msg_elem_cpy(msg, i);
2880 } else {
2881 nsge = sk_msg_elem_cpy(msg, i);
2882 }
2883 }
2884
2885 place_new:
2886 /* Place newly allocated data buffer */
2887 sk_mem_charge(msg->sk, len);
2888 msg->sg.size += len;
2889 __clear_bit(new, msg->sg.copy);
2890 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2891 if (rsge.length) {
2892 get_page(sg_page(&rsge));
2893 sk_msg_iter_var_next(new);
2894 msg->sg.data[new] = rsge;
2895 }
2896
2897 sk_msg_reset_curr(msg);
2898 sk_msg_compute_data_pointers(msg);
2899 return 0;
2900 }
2901
2902 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2903 .func = bpf_msg_push_data,
2904 .gpl_only = false,
2905 .ret_type = RET_INTEGER,
2906 .arg1_type = ARG_PTR_TO_CTX,
2907 .arg2_type = ARG_ANYTHING,
2908 .arg3_type = ARG_ANYTHING,
2909 .arg4_type = ARG_ANYTHING,
2910 };
2911
sk_msg_shift_left(struct sk_msg * msg,int i)2912 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2913 {
2914 struct scatterlist *sge = sk_msg_elem(msg, i);
2915 int prev;
2916
2917 put_page(sg_page(sge));
2918 do {
2919 prev = i;
2920 sk_msg_iter_var_next(i);
2921 msg->sg.data[prev] = msg->sg.data[i];
2922 } while (i != msg->sg.end);
2923
2924 sk_msg_iter_prev(msg, end);
2925 }
2926
sk_msg_shift_right(struct sk_msg * msg,int i)2927 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2928 {
2929 struct scatterlist tmp, sge;
2930
2931 sk_msg_iter_next(msg, end);
2932 sge = sk_msg_elem_cpy(msg, i);
2933 sk_msg_iter_var_next(i);
2934 tmp = sk_msg_elem_cpy(msg, i);
2935
2936 while (i != msg->sg.end) {
2937 msg->sg.data[i] = sge;
2938 sk_msg_iter_var_next(i);
2939 sge = tmp;
2940 tmp = sk_msg_elem_cpy(msg, i);
2941 }
2942 }
2943
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2944 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2945 u32, len, u64, flags)
2946 {
2947 u32 i = 0, l = 0, space, offset = 0;
2948 u64 last = start + len;
2949 int pop;
2950
2951 if (unlikely(flags))
2952 return -EINVAL;
2953
2954 if (unlikely(len == 0))
2955 return 0;
2956
2957 /* First find the starting scatterlist element */
2958 i = msg->sg.start;
2959 do {
2960 offset += l;
2961 l = sk_msg_elem(msg, i)->length;
2962
2963 if (start < offset + l)
2964 break;
2965 sk_msg_iter_var_next(i);
2966 } while (i != msg->sg.end);
2967
2968 /* Bounds checks: start and pop must be inside message */
2969 if (start >= offset + l || last > msg->sg.size)
2970 return -EINVAL;
2971
2972 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2973
2974 pop = len;
2975 /* --------------| offset
2976 * -| start |-------- len -------|
2977 *
2978 * |----- a ----|-------- pop -------|----- b ----|
2979 * |______________________________________________| length
2980 *
2981 *
2982 * a: region at front of scatter element to save
2983 * b: region at back of scatter element to save when length > A + pop
2984 * pop: region to pop from element, same as input 'pop' here will be
2985 * decremented below per iteration.
2986 *
2987 * Two top-level cases to handle when start != offset, first B is non
2988 * zero and second B is zero corresponding to when a pop includes more
2989 * than one element.
2990 *
2991 * Then if B is non-zero AND there is no space allocate space and
2992 * compact A, B regions into page. If there is space shift ring to
2993 * the right free'ing the next element in ring to place B, leaving
2994 * A untouched except to reduce length.
2995 */
2996 if (start != offset) {
2997 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2998 int a = start - offset;
2999 int b = sge->length - pop - a;
3000
3001 sk_msg_iter_var_next(i);
3002
3003 if (b > 0) {
3004 if (space) {
3005 sge->length = a;
3006 sk_msg_shift_right(msg, i);
3007 nsge = sk_msg_elem(msg, i);
3008 get_page(sg_page(sge));
3009 sg_set_page(nsge,
3010 sg_page(sge),
3011 b, sge->offset + pop + a);
3012 } else {
3013 struct page *page, *orig;
3014 u8 *to, *from;
3015
3016 page = alloc_pages(__GFP_NOWARN |
3017 __GFP_COMP | GFP_ATOMIC,
3018 get_order(a + b));
3019 if (unlikely(!page))
3020 return -ENOMEM;
3021
3022 orig = sg_page(sge);
3023 from = sg_virt(sge);
3024 to = page_address(page);
3025 memcpy(to, from, a);
3026 memcpy(to + a, from + a + pop, b);
3027 sg_set_page(sge, page, a + b, 0);
3028 put_page(orig);
3029 }
3030 pop = 0;
3031 } else {
3032 pop -= (sge->length - a);
3033 sge->length = a;
3034 }
3035 }
3036
3037 /* From above the current layout _must_ be as follows,
3038 *
3039 * -| offset
3040 * -| start
3041 *
3042 * |---- pop ---|---------------- b ------------|
3043 * |____________________________________________| length
3044 *
3045 * Offset and start of the current msg elem are equal because in the
3046 * previous case we handled offset != start and either consumed the
3047 * entire element and advanced to the next element OR pop == 0.
3048 *
3049 * Two cases to handle here are first pop is less than the length
3050 * leaving some remainder b above. Simply adjust the element's layout
3051 * in this case. Or pop >= length of the element so that b = 0. In this
3052 * case advance to next element decrementing pop.
3053 */
3054 while (pop) {
3055 struct scatterlist *sge = sk_msg_elem(msg, i);
3056
3057 if (pop < sge->length) {
3058 sge->length -= pop;
3059 sge->offset += pop;
3060 pop = 0;
3061 } else {
3062 pop -= sge->length;
3063 sk_msg_shift_left(msg, i);
3064 }
3065 }
3066
3067 sk_mem_uncharge(msg->sk, len - pop);
3068 msg->sg.size -= (len - pop);
3069 sk_msg_reset_curr(msg);
3070 sk_msg_compute_data_pointers(msg);
3071 return 0;
3072 }
3073
3074 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3075 .func = bpf_msg_pop_data,
3076 .gpl_only = false,
3077 .ret_type = RET_INTEGER,
3078 .arg1_type = ARG_PTR_TO_CTX,
3079 .arg2_type = ARG_ANYTHING,
3080 .arg3_type = ARG_ANYTHING,
3081 .arg4_type = ARG_ANYTHING,
3082 };
3083
3084 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3085 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3086 {
3087 return __task_get_classid(current);
3088 }
3089
3090 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3091 .func = bpf_get_cgroup_classid_curr,
3092 .gpl_only = false,
3093 .ret_type = RET_INTEGER,
3094 };
3095
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3096 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3097 {
3098 struct sock *sk = skb_to_full_sk(skb);
3099
3100 if (!sk || !sk_fullsock(sk))
3101 return 0;
3102
3103 return sock_cgroup_classid(&sk->sk_cgrp_data);
3104 }
3105
3106 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3107 .func = bpf_skb_cgroup_classid,
3108 .gpl_only = false,
3109 .ret_type = RET_INTEGER,
3110 .arg1_type = ARG_PTR_TO_CTX,
3111 };
3112 #endif
3113
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3114 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3115 {
3116 return task_get_classid(skb);
3117 }
3118
3119 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3120 .func = bpf_get_cgroup_classid,
3121 .gpl_only = false,
3122 .ret_type = RET_INTEGER,
3123 .arg1_type = ARG_PTR_TO_CTX,
3124 };
3125
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3126 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3127 {
3128 return dst_tclassid(skb);
3129 }
3130
3131 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3132 .func = bpf_get_route_realm,
3133 .gpl_only = false,
3134 .ret_type = RET_INTEGER,
3135 .arg1_type = ARG_PTR_TO_CTX,
3136 };
3137
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3138 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3139 {
3140 /* If skb_clear_hash() was called due to mangling, we can
3141 * trigger SW recalculation here. Later access to hash
3142 * can then use the inline skb->hash via context directly
3143 * instead of calling this helper again.
3144 */
3145 return skb_get_hash(skb);
3146 }
3147
3148 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3149 .func = bpf_get_hash_recalc,
3150 .gpl_only = false,
3151 .ret_type = RET_INTEGER,
3152 .arg1_type = ARG_PTR_TO_CTX,
3153 };
3154
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3155 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3156 {
3157 /* After all direct packet write, this can be used once for
3158 * triggering a lazy recalc on next skb_get_hash() invocation.
3159 */
3160 skb_clear_hash(skb);
3161 return 0;
3162 }
3163
3164 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3165 .func = bpf_set_hash_invalid,
3166 .gpl_only = false,
3167 .ret_type = RET_INTEGER,
3168 .arg1_type = ARG_PTR_TO_CTX,
3169 };
3170
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3171 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3172 {
3173 /* Set user specified hash as L4(+), so that it gets returned
3174 * on skb_get_hash() call unless BPF prog later on triggers a
3175 * skb_clear_hash().
3176 */
3177 __skb_set_sw_hash(skb, hash, true);
3178 return 0;
3179 }
3180
3181 static const struct bpf_func_proto bpf_set_hash_proto = {
3182 .func = bpf_set_hash,
3183 .gpl_only = false,
3184 .ret_type = RET_INTEGER,
3185 .arg1_type = ARG_PTR_TO_CTX,
3186 .arg2_type = ARG_ANYTHING,
3187 };
3188
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3189 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3190 u16, vlan_tci)
3191 {
3192 int ret;
3193
3194 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3195 vlan_proto != htons(ETH_P_8021AD)))
3196 vlan_proto = htons(ETH_P_8021Q);
3197
3198 bpf_push_mac_rcsum(skb);
3199 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3200 bpf_pull_mac_rcsum(skb);
3201 skb_reset_mac_len(skb);
3202
3203 bpf_compute_data_pointers(skb);
3204 return ret;
3205 }
3206
3207 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3208 .func = bpf_skb_vlan_push,
3209 .gpl_only = false,
3210 .ret_type = RET_INTEGER,
3211 .arg1_type = ARG_PTR_TO_CTX,
3212 .arg2_type = ARG_ANYTHING,
3213 .arg3_type = ARG_ANYTHING,
3214 };
3215
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3216 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3217 {
3218 int ret;
3219
3220 bpf_push_mac_rcsum(skb);
3221 ret = skb_vlan_pop(skb);
3222 bpf_pull_mac_rcsum(skb);
3223
3224 bpf_compute_data_pointers(skb);
3225 return ret;
3226 }
3227
3228 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3229 .func = bpf_skb_vlan_pop,
3230 .gpl_only = false,
3231 .ret_type = RET_INTEGER,
3232 .arg1_type = ARG_PTR_TO_CTX,
3233 };
3234
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3235 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3236 {
3237 /* Caller already did skb_cow() with len as headroom,
3238 * so no need to do it here.
3239 */
3240 skb_push(skb, len);
3241 memmove(skb->data, skb->data + len, off);
3242 memset(skb->data + off, 0, len);
3243
3244 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3245 * needed here as it does not change the skb->csum
3246 * result for checksum complete when summing over
3247 * zeroed blocks.
3248 */
3249 return 0;
3250 }
3251
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3252 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3253 {
3254 void *old_data;
3255
3256 /* skb_ensure_writable() is not needed here, as we're
3257 * already working on an uncloned skb.
3258 */
3259 if (unlikely(!pskb_may_pull(skb, off + len)))
3260 return -ENOMEM;
3261
3262 old_data = skb->data;
3263 __skb_pull(skb, len);
3264 skb_postpull_rcsum(skb, old_data + off, len);
3265 memmove(skb->data, old_data, off);
3266
3267 return 0;
3268 }
3269
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3270 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3271 {
3272 bool trans_same = skb->transport_header == skb->network_header;
3273 int ret;
3274
3275 /* There's no need for __skb_push()/__skb_pull() pair to
3276 * get to the start of the mac header as we're guaranteed
3277 * to always start from here under eBPF.
3278 */
3279 ret = bpf_skb_generic_push(skb, off, len);
3280 if (likely(!ret)) {
3281 skb->mac_header -= len;
3282 skb->network_header -= len;
3283 if (trans_same)
3284 skb->transport_header = skb->network_header;
3285 }
3286
3287 return ret;
3288 }
3289
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3290 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3291 {
3292 bool trans_same = skb->transport_header == skb->network_header;
3293 int ret;
3294
3295 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3296 ret = bpf_skb_generic_pop(skb, off, len);
3297 if (likely(!ret)) {
3298 skb->mac_header += len;
3299 skb->network_header += len;
3300 if (trans_same)
3301 skb->transport_header = skb->network_header;
3302 }
3303
3304 return ret;
3305 }
3306
bpf_skb_proto_4_to_6(struct sk_buff * skb)3307 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3308 {
3309 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3310 u32 off = skb_mac_header_len(skb);
3311 int ret;
3312
3313 ret = skb_cow(skb, len_diff);
3314 if (unlikely(ret < 0))
3315 return ret;
3316
3317 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3318 if (unlikely(ret < 0))
3319 return ret;
3320
3321 if (skb_is_gso(skb)) {
3322 struct skb_shared_info *shinfo = skb_shinfo(skb);
3323
3324 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3325 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3326 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3327 shinfo->gso_type |= SKB_GSO_TCPV6;
3328 }
3329 }
3330
3331 skb->protocol = htons(ETH_P_IPV6);
3332 skb_clear_hash(skb);
3333
3334 return 0;
3335 }
3336
bpf_skb_proto_6_to_4(struct sk_buff * skb)3337 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3338 {
3339 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3340 u32 off = skb_mac_header_len(skb);
3341 int ret;
3342
3343 ret = skb_unclone(skb, GFP_ATOMIC);
3344 if (unlikely(ret < 0))
3345 return ret;
3346
3347 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3348 if (unlikely(ret < 0))
3349 return ret;
3350
3351 if (skb_is_gso(skb)) {
3352 struct skb_shared_info *shinfo = skb_shinfo(skb);
3353
3354 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3355 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3356 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3357 shinfo->gso_type |= SKB_GSO_TCPV4;
3358 }
3359 }
3360
3361 skb->protocol = htons(ETH_P_IP);
3362 skb_clear_hash(skb);
3363
3364 return 0;
3365 }
3366
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3367 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3368 {
3369 __be16 from_proto = skb->protocol;
3370
3371 if (from_proto == htons(ETH_P_IP) &&
3372 to_proto == htons(ETH_P_IPV6))
3373 return bpf_skb_proto_4_to_6(skb);
3374
3375 if (from_proto == htons(ETH_P_IPV6) &&
3376 to_proto == htons(ETH_P_IP))
3377 return bpf_skb_proto_6_to_4(skb);
3378
3379 return -ENOTSUPP;
3380 }
3381
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3382 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3383 u64, flags)
3384 {
3385 int ret;
3386
3387 if (unlikely(flags))
3388 return -EINVAL;
3389
3390 /* General idea is that this helper does the basic groundwork
3391 * needed for changing the protocol, and eBPF program fills the
3392 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3393 * and other helpers, rather than passing a raw buffer here.
3394 *
3395 * The rationale is to keep this minimal and without a need to
3396 * deal with raw packet data. F.e. even if we would pass buffers
3397 * here, the program still needs to call the bpf_lX_csum_replace()
3398 * helpers anyway. Plus, this way we keep also separation of
3399 * concerns, since f.e. bpf_skb_store_bytes() should only take
3400 * care of stores.
3401 *
3402 * Currently, additional options and extension header space are
3403 * not supported, but flags register is reserved so we can adapt
3404 * that. For offloads, we mark packet as dodgy, so that headers
3405 * need to be verified first.
3406 */
3407 ret = bpf_skb_proto_xlat(skb, proto);
3408 bpf_compute_data_pointers(skb);
3409 return ret;
3410 }
3411
3412 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3413 .func = bpf_skb_change_proto,
3414 .gpl_only = false,
3415 .ret_type = RET_INTEGER,
3416 .arg1_type = ARG_PTR_TO_CTX,
3417 .arg2_type = ARG_ANYTHING,
3418 .arg3_type = ARG_ANYTHING,
3419 };
3420
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3421 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3422 {
3423 /* We only allow a restricted subset to be changed for now. */
3424 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3425 !skb_pkt_type_ok(pkt_type)))
3426 return -EINVAL;
3427
3428 skb->pkt_type = pkt_type;
3429 return 0;
3430 }
3431
3432 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3433 .func = bpf_skb_change_type,
3434 .gpl_only = false,
3435 .ret_type = RET_INTEGER,
3436 .arg1_type = ARG_PTR_TO_CTX,
3437 .arg2_type = ARG_ANYTHING,
3438 };
3439
bpf_skb_net_base_len(const struct sk_buff * skb)3440 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3441 {
3442 switch (skb->protocol) {
3443 case htons(ETH_P_IP):
3444 return sizeof(struct iphdr);
3445 case htons(ETH_P_IPV6):
3446 return sizeof(struct ipv6hdr);
3447 default:
3448 return ~0U;
3449 }
3450 }
3451
3452 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3453 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3454
3455 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3456 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3457
3458 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3459 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3460 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3461 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3462 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3463 BPF_F_ADJ_ROOM_ENCAP_L2( \
3464 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3465 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3466
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3467 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3468 u64 flags)
3469 {
3470 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3471 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3472 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3473 unsigned int gso_type = SKB_GSO_DODGY;
3474 int ret;
3475
3476 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3477 /* udp gso_size delineates datagrams, only allow if fixed */
3478 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3479 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3480 return -ENOTSUPP;
3481 }
3482
3483 ret = skb_cow_head(skb, len_diff);
3484 if (unlikely(ret < 0))
3485 return ret;
3486
3487 if (encap) {
3488 if (skb->protocol != htons(ETH_P_IP) &&
3489 skb->protocol != htons(ETH_P_IPV6))
3490 return -ENOTSUPP;
3491
3492 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3493 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3494 return -EINVAL;
3495
3496 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3497 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3498 return -EINVAL;
3499
3500 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3501 inner_mac_len < ETH_HLEN)
3502 return -EINVAL;
3503
3504 if (skb->encapsulation)
3505 return -EALREADY;
3506
3507 mac_len = skb->network_header - skb->mac_header;
3508 inner_net = skb->network_header;
3509 if (inner_mac_len > len_diff)
3510 return -EINVAL;
3511 inner_trans = skb->transport_header;
3512 }
3513
3514 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3515 if (unlikely(ret < 0))
3516 return ret;
3517
3518 if (encap) {
3519 skb->inner_mac_header = inner_net - inner_mac_len;
3520 skb->inner_network_header = inner_net;
3521 skb->inner_transport_header = inner_trans;
3522
3523 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3524 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3525 else
3526 skb_set_inner_protocol(skb, skb->protocol);
3527
3528 skb->encapsulation = 1;
3529 skb_set_network_header(skb, mac_len);
3530
3531 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3532 gso_type |= SKB_GSO_UDP_TUNNEL;
3533 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3534 gso_type |= SKB_GSO_GRE;
3535 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3536 gso_type |= SKB_GSO_IPXIP6;
3537 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3538 gso_type |= SKB_GSO_IPXIP4;
3539
3540 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3541 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3542 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3543 sizeof(struct ipv6hdr) :
3544 sizeof(struct iphdr);
3545
3546 skb_set_transport_header(skb, mac_len + nh_len);
3547 }
3548
3549 /* Match skb->protocol to new outer l3 protocol */
3550 if (skb->protocol == htons(ETH_P_IP) &&
3551 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3552 skb->protocol = htons(ETH_P_IPV6);
3553 else if (skb->protocol == htons(ETH_P_IPV6) &&
3554 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3555 skb->protocol = htons(ETH_P_IP);
3556 }
3557
3558 if (skb_is_gso(skb)) {
3559 struct skb_shared_info *shinfo = skb_shinfo(skb);
3560
3561 /* Header must be checked, and gso_segs recomputed. */
3562 shinfo->gso_type |= gso_type;
3563 shinfo->gso_segs = 0;
3564
3565 /* Due to header growth, MSS needs to be downgraded.
3566 * There is a BUG_ON() when segmenting the frag_list with
3567 * head_frag true, so linearize the skb after downgrading
3568 * the MSS.
3569 */
3570 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3571 skb_decrease_gso_size(shinfo, len_diff);
3572 if (shinfo->frag_list)
3573 return skb_linearize(skb);
3574 }
3575 }
3576
3577 return 0;
3578 }
3579
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3580 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3581 u64 flags)
3582 {
3583 int ret;
3584
3585 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3586 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3587 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3588 return -EINVAL;
3589
3590 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3591 /* udp gso_size delineates datagrams, only allow if fixed */
3592 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3593 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3594 return -ENOTSUPP;
3595 }
3596
3597 ret = skb_unclone(skb, GFP_ATOMIC);
3598 if (unlikely(ret < 0))
3599 return ret;
3600
3601 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3602 if (unlikely(ret < 0))
3603 return ret;
3604
3605 /* Match skb->protocol to new outer l3 protocol */
3606 if (skb->protocol == htons(ETH_P_IP) &&
3607 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3608 skb->protocol = htons(ETH_P_IPV6);
3609 else if (skb->protocol == htons(ETH_P_IPV6) &&
3610 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3611 skb->protocol = htons(ETH_P_IP);
3612
3613 if (skb_is_gso(skb)) {
3614 struct skb_shared_info *shinfo = skb_shinfo(skb);
3615
3616 /* Due to header shrink, MSS can be upgraded. */
3617 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3618 skb_increase_gso_size(shinfo, len_diff);
3619
3620 /* Header must be checked, and gso_segs recomputed. */
3621 shinfo->gso_type |= SKB_GSO_DODGY;
3622 shinfo->gso_segs = 0;
3623 }
3624
3625 return 0;
3626 }
3627
3628 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3629
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3630 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3631 u32, mode, u64, flags)
3632 {
3633 u32 len_diff_abs = abs(len_diff);
3634 bool shrink = len_diff < 0;
3635 int ret = 0;
3636
3637 if (unlikely(flags || mode))
3638 return -EINVAL;
3639 if (unlikely(len_diff_abs > 0xfffU))
3640 return -EFAULT;
3641
3642 if (!shrink) {
3643 ret = skb_cow(skb, len_diff);
3644 if (unlikely(ret < 0))
3645 return ret;
3646 __skb_push(skb, len_diff_abs);
3647 memset(skb->data, 0, len_diff_abs);
3648 } else {
3649 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3650 return -ENOMEM;
3651 __skb_pull(skb, len_diff_abs);
3652 }
3653 if (tls_sw_has_ctx_rx(skb->sk)) {
3654 struct strp_msg *rxm = strp_msg(skb);
3655
3656 rxm->full_len += len_diff;
3657 }
3658 return ret;
3659 }
3660
3661 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3662 .func = sk_skb_adjust_room,
3663 .gpl_only = false,
3664 .ret_type = RET_INTEGER,
3665 .arg1_type = ARG_PTR_TO_CTX,
3666 .arg2_type = ARG_ANYTHING,
3667 .arg3_type = ARG_ANYTHING,
3668 .arg4_type = ARG_ANYTHING,
3669 };
3670
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3671 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3672 u32, mode, u64, flags)
3673 {
3674 u32 len_cur, len_diff_abs = abs(len_diff);
3675 u32 len_min = bpf_skb_net_base_len(skb);
3676 u32 len_max = BPF_SKB_MAX_LEN;
3677 __be16 proto = skb->protocol;
3678 bool shrink = len_diff < 0;
3679 u32 off;
3680 int ret;
3681
3682 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3683 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3684 return -EINVAL;
3685 if (unlikely(len_diff_abs > 0xfffU))
3686 return -EFAULT;
3687 if (unlikely(proto != htons(ETH_P_IP) &&
3688 proto != htons(ETH_P_IPV6)))
3689 return -ENOTSUPP;
3690
3691 off = skb_mac_header_len(skb);
3692 switch (mode) {
3693 case BPF_ADJ_ROOM_NET:
3694 off += bpf_skb_net_base_len(skb);
3695 break;
3696 case BPF_ADJ_ROOM_MAC:
3697 break;
3698 default:
3699 return -ENOTSUPP;
3700 }
3701
3702 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3703 if (!shrink)
3704 return -EINVAL;
3705
3706 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3707 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3708 len_min = sizeof(struct iphdr);
3709 break;
3710 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3711 len_min = sizeof(struct ipv6hdr);
3712 break;
3713 default:
3714 return -EINVAL;
3715 }
3716 }
3717
3718 len_cur = skb->len - skb_network_offset(skb);
3719 if ((shrink && (len_diff_abs >= len_cur ||
3720 len_cur - len_diff_abs < len_min)) ||
3721 (!shrink && (skb->len + len_diff_abs > len_max &&
3722 !skb_is_gso(skb))))
3723 return -ENOTSUPP;
3724
3725 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3726 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3727 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3728 __skb_reset_checksum_unnecessary(skb);
3729
3730 bpf_compute_data_pointers(skb);
3731 return ret;
3732 }
3733
3734 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3735 .func = bpf_skb_adjust_room,
3736 .gpl_only = false,
3737 .ret_type = RET_INTEGER,
3738 .arg1_type = ARG_PTR_TO_CTX,
3739 .arg2_type = ARG_ANYTHING,
3740 .arg3_type = ARG_ANYTHING,
3741 .arg4_type = ARG_ANYTHING,
3742 };
3743
__bpf_skb_min_len(const struct sk_buff * skb)3744 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3745 {
3746 int offset = skb_network_offset(skb);
3747 u32 min_len = 0;
3748
3749 if (offset > 0)
3750 min_len = offset;
3751 if (skb_transport_header_was_set(skb)) {
3752 offset = skb_transport_offset(skb);
3753 if (offset > 0)
3754 min_len = offset;
3755 }
3756 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3757 offset = skb_checksum_start_offset(skb) +
3758 skb->csum_offset + sizeof(__sum16);
3759 if (offset > 0)
3760 min_len = offset;
3761 }
3762 return min_len;
3763 }
3764
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3765 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3766 {
3767 unsigned int old_len = skb->len;
3768 int ret;
3769
3770 ret = __skb_grow_rcsum(skb, new_len);
3771 if (!ret)
3772 memset(skb->data + old_len, 0, new_len - old_len);
3773 return ret;
3774 }
3775
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3776 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3777 {
3778 return __skb_trim_rcsum(skb, new_len);
3779 }
3780
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3781 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3782 u64 flags)
3783 {
3784 u32 max_len = BPF_SKB_MAX_LEN;
3785 u32 min_len = __bpf_skb_min_len(skb);
3786 int ret;
3787
3788 if (unlikely(flags || new_len > max_len || new_len < min_len))
3789 return -EINVAL;
3790 if (skb->encapsulation)
3791 return -ENOTSUPP;
3792
3793 /* The basic idea of this helper is that it's performing the
3794 * needed work to either grow or trim an skb, and eBPF program
3795 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3796 * bpf_lX_csum_replace() and others rather than passing a raw
3797 * buffer here. This one is a slow path helper and intended
3798 * for replies with control messages.
3799 *
3800 * Like in bpf_skb_change_proto(), we want to keep this rather
3801 * minimal and without protocol specifics so that we are able
3802 * to separate concerns as in bpf_skb_store_bytes() should only
3803 * be the one responsible for writing buffers.
3804 *
3805 * It's really expected to be a slow path operation here for
3806 * control message replies, so we're implicitly linearizing,
3807 * uncloning and drop offloads from the skb by this.
3808 */
3809 ret = __bpf_try_make_writable(skb, skb->len);
3810 if (!ret) {
3811 if (new_len > skb->len)
3812 ret = bpf_skb_grow_rcsum(skb, new_len);
3813 else if (new_len < skb->len)
3814 ret = bpf_skb_trim_rcsum(skb, new_len);
3815 if (!ret && skb_is_gso(skb))
3816 skb_gso_reset(skb);
3817 }
3818 return ret;
3819 }
3820
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3821 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3822 u64, flags)
3823 {
3824 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3825
3826 bpf_compute_data_pointers(skb);
3827 return ret;
3828 }
3829
3830 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3831 .func = bpf_skb_change_tail,
3832 .gpl_only = false,
3833 .ret_type = RET_INTEGER,
3834 .arg1_type = ARG_PTR_TO_CTX,
3835 .arg2_type = ARG_ANYTHING,
3836 .arg3_type = ARG_ANYTHING,
3837 };
3838
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3839 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3840 u64, flags)
3841 {
3842 return __bpf_skb_change_tail(skb, new_len, flags);
3843 }
3844
3845 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3846 .func = sk_skb_change_tail,
3847 .gpl_only = false,
3848 .ret_type = RET_INTEGER,
3849 .arg1_type = ARG_PTR_TO_CTX,
3850 .arg2_type = ARG_ANYTHING,
3851 .arg3_type = ARG_ANYTHING,
3852 };
3853
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3854 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3855 u64 flags)
3856 {
3857 u32 max_len = BPF_SKB_MAX_LEN;
3858 u32 new_len = skb->len + head_room;
3859 int ret;
3860
3861 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3862 new_len < skb->len))
3863 return -EINVAL;
3864
3865 ret = skb_cow(skb, head_room);
3866 if (likely(!ret)) {
3867 /* Idea for this helper is that we currently only
3868 * allow to expand on mac header. This means that
3869 * skb->protocol network header, etc, stay as is.
3870 * Compared to bpf_skb_change_tail(), we're more
3871 * flexible due to not needing to linearize or
3872 * reset GSO. Intention for this helper is to be
3873 * used by an L3 skb that needs to push mac header
3874 * for redirection into L2 device.
3875 */
3876 __skb_push(skb, head_room);
3877 memset(skb->data, 0, head_room);
3878 skb_reset_mac_header(skb);
3879 skb_reset_mac_len(skb);
3880 }
3881
3882 return ret;
3883 }
3884
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3885 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3886 u64, flags)
3887 {
3888 int ret = __bpf_skb_change_head(skb, head_room, flags);
3889
3890 bpf_compute_data_pointers(skb);
3891 return ret;
3892 }
3893
3894 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3895 .func = bpf_skb_change_head,
3896 .gpl_only = false,
3897 .ret_type = RET_INTEGER,
3898 .arg1_type = ARG_PTR_TO_CTX,
3899 .arg2_type = ARG_ANYTHING,
3900 .arg3_type = ARG_ANYTHING,
3901 };
3902
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3903 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3904 u64, flags)
3905 {
3906 return __bpf_skb_change_head(skb, head_room, flags);
3907 }
3908
3909 static const struct bpf_func_proto sk_skb_change_head_proto = {
3910 .func = sk_skb_change_head,
3911 .gpl_only = false,
3912 .ret_type = RET_INTEGER,
3913 .arg1_type = ARG_PTR_TO_CTX,
3914 .arg2_type = ARG_ANYTHING,
3915 .arg3_type = ARG_ANYTHING,
3916 };
3917
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3918 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3919 {
3920 return xdp_get_buff_len(xdp);
3921 }
3922
3923 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3924 .func = bpf_xdp_get_buff_len,
3925 .gpl_only = false,
3926 .ret_type = RET_INTEGER,
3927 .arg1_type = ARG_PTR_TO_CTX,
3928 };
3929
3930 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3931
3932 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3933 .func = bpf_xdp_get_buff_len,
3934 .gpl_only = false,
3935 .arg1_type = ARG_PTR_TO_BTF_ID,
3936 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3937 };
3938
xdp_get_metalen(const struct xdp_buff * xdp)3939 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3940 {
3941 return xdp_data_meta_unsupported(xdp) ? 0 :
3942 xdp->data - xdp->data_meta;
3943 }
3944
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3945 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3946 {
3947 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3948 unsigned long metalen = xdp_get_metalen(xdp);
3949 void *data_start = xdp_frame_end + metalen;
3950 void *data = xdp->data + offset;
3951
3952 if (unlikely(data < data_start ||
3953 data > xdp->data_end - ETH_HLEN))
3954 return -EINVAL;
3955
3956 if (metalen)
3957 memmove(xdp->data_meta + offset,
3958 xdp->data_meta, metalen);
3959 xdp->data_meta += offset;
3960 xdp->data = data;
3961
3962 return 0;
3963 }
3964
3965 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3966 .func = bpf_xdp_adjust_head,
3967 .gpl_only = false,
3968 .ret_type = RET_INTEGER,
3969 .arg1_type = ARG_PTR_TO_CTX,
3970 .arg2_type = ARG_ANYTHING,
3971 };
3972
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3973 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3974 void *buf, unsigned long len, bool flush)
3975 {
3976 unsigned long ptr_len, ptr_off = 0;
3977 skb_frag_t *next_frag, *end_frag;
3978 struct skb_shared_info *sinfo;
3979 void *src, *dst;
3980 u8 *ptr_buf;
3981
3982 if (likely(xdp->data_end - xdp->data >= off + len)) {
3983 src = flush ? buf : xdp->data + off;
3984 dst = flush ? xdp->data + off : buf;
3985 memcpy(dst, src, len);
3986 return;
3987 }
3988
3989 sinfo = xdp_get_shared_info_from_buff(xdp);
3990 end_frag = &sinfo->frags[sinfo->nr_frags];
3991 next_frag = &sinfo->frags[0];
3992
3993 ptr_len = xdp->data_end - xdp->data;
3994 ptr_buf = xdp->data;
3995
3996 while (true) {
3997 if (off < ptr_off + ptr_len) {
3998 unsigned long copy_off = off - ptr_off;
3999 unsigned long copy_len = min(len, ptr_len - copy_off);
4000
4001 src = flush ? buf : ptr_buf + copy_off;
4002 dst = flush ? ptr_buf + copy_off : buf;
4003 memcpy(dst, src, copy_len);
4004
4005 off += copy_len;
4006 len -= copy_len;
4007 buf += copy_len;
4008 }
4009
4010 if (!len || next_frag == end_frag)
4011 break;
4012
4013 ptr_off += ptr_len;
4014 ptr_buf = skb_frag_address(next_frag);
4015 ptr_len = skb_frag_size(next_frag);
4016 next_frag++;
4017 }
4018 }
4019
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4020 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4021 {
4022 u32 size = xdp->data_end - xdp->data;
4023 struct skb_shared_info *sinfo;
4024 void *addr = xdp->data;
4025 int i;
4026
4027 if (unlikely(offset > 0xffff || len > 0xffff))
4028 return ERR_PTR(-EFAULT);
4029
4030 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4031 return ERR_PTR(-EINVAL);
4032
4033 if (likely(offset < size)) /* linear area */
4034 goto out;
4035
4036 sinfo = xdp_get_shared_info_from_buff(xdp);
4037 offset -= size;
4038 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4039 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4040
4041 if (offset < frag_size) {
4042 addr = skb_frag_address(&sinfo->frags[i]);
4043 size = frag_size;
4044 break;
4045 }
4046 offset -= frag_size;
4047 }
4048 out:
4049 return offset + len <= size ? addr + offset : NULL;
4050 }
4051
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4052 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4053 void *, buf, u32, len)
4054 {
4055 void *ptr;
4056
4057 ptr = bpf_xdp_pointer(xdp, offset, len);
4058 if (IS_ERR(ptr))
4059 return PTR_ERR(ptr);
4060
4061 if (!ptr)
4062 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4063 else
4064 memcpy(buf, ptr, len);
4065
4066 return 0;
4067 }
4068
4069 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4070 .func = bpf_xdp_load_bytes,
4071 .gpl_only = false,
4072 .ret_type = RET_INTEGER,
4073 .arg1_type = ARG_PTR_TO_CTX,
4074 .arg2_type = ARG_ANYTHING,
4075 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4076 .arg4_type = ARG_CONST_SIZE,
4077 };
4078
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4079 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4080 {
4081 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4082 }
4083
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4084 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4085 void *, buf, u32, len)
4086 {
4087 void *ptr;
4088
4089 ptr = bpf_xdp_pointer(xdp, offset, len);
4090 if (IS_ERR(ptr))
4091 return PTR_ERR(ptr);
4092
4093 if (!ptr)
4094 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4095 else
4096 memcpy(ptr, buf, len);
4097
4098 return 0;
4099 }
4100
4101 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4102 .func = bpf_xdp_store_bytes,
4103 .gpl_only = false,
4104 .ret_type = RET_INTEGER,
4105 .arg1_type = ARG_PTR_TO_CTX,
4106 .arg2_type = ARG_ANYTHING,
4107 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4108 .arg4_type = ARG_CONST_SIZE,
4109 };
4110
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4111 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4112 {
4113 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4114 }
4115
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4116 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4117 {
4118 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4119 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4120 struct xdp_rxq_info *rxq = xdp->rxq;
4121 unsigned int tailroom;
4122
4123 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4124 return -EOPNOTSUPP;
4125
4126 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4127 if (unlikely(offset > tailroom))
4128 return -EINVAL;
4129
4130 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4131 skb_frag_size_add(frag, offset);
4132 sinfo->xdp_frags_size += offset;
4133 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4134 xsk_buff_get_tail(xdp)->data_end += offset;
4135
4136 return 0;
4137 }
4138
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,enum xdp_mem_type mem_type,bool release)4139 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4140 enum xdp_mem_type mem_type, bool release)
4141 {
4142 struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4143
4144 if (release) {
4145 xsk_buff_del_tail(zc_frag);
4146 __xdp_return(0, mem_type, false, zc_frag);
4147 } else {
4148 zc_frag->data_end -= shrink;
4149 }
4150 }
4151
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4152 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4153 int shrink)
4154 {
4155 enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4156 bool release = skb_frag_size(frag) == shrink;
4157
4158 if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4159 bpf_xdp_shrink_data_zc(xdp, shrink, mem_type, release);
4160 goto out;
4161 }
4162
4163 if (release)
4164 __xdp_return(skb_frag_netmem(frag), mem_type, false, NULL);
4165
4166 out:
4167 return release;
4168 }
4169
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4170 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4171 {
4172 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4173 int i, n_frags_free = 0, len_free = 0;
4174
4175 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4176 return -EINVAL;
4177
4178 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4179 skb_frag_t *frag = &sinfo->frags[i];
4180 int shrink = min_t(int, offset, skb_frag_size(frag));
4181
4182 len_free += shrink;
4183 offset -= shrink;
4184 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4185 n_frags_free++;
4186 } else {
4187 skb_frag_size_sub(frag, shrink);
4188 break;
4189 }
4190 }
4191 sinfo->nr_frags -= n_frags_free;
4192 sinfo->xdp_frags_size -= len_free;
4193
4194 if (unlikely(!sinfo->nr_frags)) {
4195 xdp_buff_clear_frags_flag(xdp);
4196 xdp->data_end -= offset;
4197 }
4198
4199 return 0;
4200 }
4201
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4202 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4203 {
4204 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4205 void *data_end = xdp->data_end + offset;
4206
4207 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4208 if (offset < 0)
4209 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4210
4211 return bpf_xdp_frags_increase_tail(xdp, offset);
4212 }
4213
4214 /* Notice that xdp_data_hard_end have reserved some tailroom */
4215 if (unlikely(data_end > data_hard_end))
4216 return -EINVAL;
4217
4218 if (unlikely(data_end < xdp->data + ETH_HLEN))
4219 return -EINVAL;
4220
4221 /* Clear memory area on grow, can contain uninit kernel memory */
4222 if (offset > 0)
4223 memset(xdp->data_end, 0, offset);
4224
4225 xdp->data_end = data_end;
4226
4227 return 0;
4228 }
4229
4230 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4231 .func = bpf_xdp_adjust_tail,
4232 .gpl_only = false,
4233 .ret_type = RET_INTEGER,
4234 .arg1_type = ARG_PTR_TO_CTX,
4235 .arg2_type = ARG_ANYTHING,
4236 };
4237
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4238 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4239 {
4240 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4241 void *meta = xdp->data_meta + offset;
4242 unsigned long metalen = xdp->data - meta;
4243
4244 if (xdp_data_meta_unsupported(xdp))
4245 return -ENOTSUPP;
4246 if (unlikely(meta < xdp_frame_end ||
4247 meta > xdp->data))
4248 return -EINVAL;
4249 if (unlikely(xdp_metalen_invalid(metalen)))
4250 return -EACCES;
4251
4252 xdp->data_meta = meta;
4253
4254 return 0;
4255 }
4256
4257 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4258 .func = bpf_xdp_adjust_meta,
4259 .gpl_only = false,
4260 .ret_type = RET_INTEGER,
4261 .arg1_type = ARG_PTR_TO_CTX,
4262 .arg2_type = ARG_ANYTHING,
4263 };
4264
4265 /**
4266 * DOC: xdp redirect
4267 *
4268 * XDP_REDIRECT works by a three-step process, implemented in the functions
4269 * below:
4270 *
4271 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4272 * of the redirect and store it (along with some other metadata) in a per-CPU
4273 * struct bpf_redirect_info.
4274 *
4275 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4276 * call xdp_do_redirect() which will use the information in struct
4277 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4278 * bulk queue structure.
4279 *
4280 * 3. Before exiting its NAPI poll loop, the driver will call
4281 * xdp_do_flush(), which will flush all the different bulk queues,
4282 * thus completing the redirect. Note that xdp_do_flush() must be
4283 * called before napi_complete_done() in the driver, as the
4284 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4285 * through to the xdp_do_flush() call for RCU protection of all
4286 * in-kernel data structures.
4287 */
4288 /*
4289 * Pointers to the map entries will be kept around for this whole sequence of
4290 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4291 * the core code; instead, the RCU protection relies on everything happening
4292 * inside a single NAPI poll sequence, which means it's between a pair of calls
4293 * to local_bh_disable()/local_bh_enable().
4294 *
4295 * The map entries are marked as __rcu and the map code makes sure to
4296 * dereference those pointers with rcu_dereference_check() in a way that works
4297 * for both sections that to hold an rcu_read_lock() and sections that are
4298 * called from NAPI without a separate rcu_read_lock(). The code below does not
4299 * use RCU annotations, but relies on those in the map code.
4300 */
xdp_do_flush(void)4301 void xdp_do_flush(void)
4302 {
4303 struct list_head *lh_map, *lh_dev, *lh_xsk;
4304
4305 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4306 if (lh_dev)
4307 __dev_flush(lh_dev);
4308 if (lh_map)
4309 __cpu_map_flush(lh_map);
4310 if (lh_xsk)
4311 __xsk_map_flush(lh_xsk);
4312 }
4313 EXPORT_SYMBOL_GPL(xdp_do_flush);
4314
4315 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4316 void xdp_do_check_flushed(struct napi_struct *napi)
4317 {
4318 struct list_head *lh_map, *lh_dev, *lh_xsk;
4319 bool missed = false;
4320
4321 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4322 if (lh_dev) {
4323 __dev_flush(lh_dev);
4324 missed = true;
4325 }
4326 if (lh_map) {
4327 __cpu_map_flush(lh_map);
4328 missed = true;
4329 }
4330 if (lh_xsk) {
4331 __xsk_map_flush(lh_xsk);
4332 missed = true;
4333 }
4334
4335 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4336 napi->poll);
4337 }
4338 #endif
4339
4340 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4341 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4342
xdp_master_redirect(struct xdp_buff * xdp)4343 u32 xdp_master_redirect(struct xdp_buff *xdp)
4344 {
4345 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4346 struct net_device *master, *slave;
4347
4348 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4349 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4350 if (slave && slave != xdp->rxq->dev) {
4351 /* The target device is different from the receiving device, so
4352 * redirect it to the new device.
4353 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4354 * drivers to unmap the packet from their rx ring.
4355 */
4356 ri->tgt_index = slave->ifindex;
4357 ri->map_id = INT_MAX;
4358 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4359 return XDP_REDIRECT;
4360 }
4361 return XDP_TX;
4362 }
4363 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4364
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4365 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4366 const struct net_device *dev,
4367 struct xdp_buff *xdp,
4368 const struct bpf_prog *xdp_prog)
4369 {
4370 enum bpf_map_type map_type = ri->map_type;
4371 void *fwd = ri->tgt_value;
4372 u32 map_id = ri->map_id;
4373 int err;
4374
4375 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4376 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4377
4378 err = __xsk_map_redirect(fwd, xdp);
4379 if (unlikely(err))
4380 goto err;
4381
4382 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4383 return 0;
4384 err:
4385 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4386 return err;
4387 }
4388
4389 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4390 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4391 struct xdp_frame *xdpf,
4392 const struct bpf_prog *xdp_prog)
4393 {
4394 enum bpf_map_type map_type = ri->map_type;
4395 void *fwd = ri->tgt_value;
4396 u32 map_id = ri->map_id;
4397 u32 flags = ri->flags;
4398 struct bpf_map *map;
4399 int err;
4400
4401 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4402 ri->flags = 0;
4403 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4404
4405 if (unlikely(!xdpf)) {
4406 err = -EOVERFLOW;
4407 goto err;
4408 }
4409
4410 switch (map_type) {
4411 case BPF_MAP_TYPE_DEVMAP:
4412 fallthrough;
4413 case BPF_MAP_TYPE_DEVMAP_HASH:
4414 if (unlikely(flags & BPF_F_BROADCAST)) {
4415 map = READ_ONCE(ri->map);
4416
4417 /* The map pointer is cleared when the map is being torn
4418 * down by dev_map_free()
4419 */
4420 if (unlikely(!map)) {
4421 err = -ENOENT;
4422 break;
4423 }
4424
4425 WRITE_ONCE(ri->map, NULL);
4426 err = dev_map_enqueue_multi(xdpf, dev, map,
4427 flags & BPF_F_EXCLUDE_INGRESS);
4428 } else {
4429 err = dev_map_enqueue(fwd, xdpf, dev);
4430 }
4431 break;
4432 case BPF_MAP_TYPE_CPUMAP:
4433 err = cpu_map_enqueue(fwd, xdpf, dev);
4434 break;
4435 case BPF_MAP_TYPE_UNSPEC:
4436 if (map_id == INT_MAX) {
4437 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4438 if (unlikely(!fwd)) {
4439 err = -EINVAL;
4440 break;
4441 }
4442 err = dev_xdp_enqueue(fwd, xdpf, dev);
4443 break;
4444 }
4445 fallthrough;
4446 default:
4447 err = -EBADRQC;
4448 }
4449
4450 if (unlikely(err))
4451 goto err;
4452
4453 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4454 return 0;
4455 err:
4456 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4457 return err;
4458 }
4459
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4460 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4461 const struct bpf_prog *xdp_prog)
4462 {
4463 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4464 enum bpf_map_type map_type = ri->map_type;
4465
4466 if (map_type == BPF_MAP_TYPE_XSKMAP)
4467 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4468
4469 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4470 xdp_prog);
4471 }
4472 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4473
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4474 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4475 struct xdp_frame *xdpf,
4476 const struct bpf_prog *xdp_prog)
4477 {
4478 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4479 enum bpf_map_type map_type = ri->map_type;
4480
4481 if (map_type == BPF_MAP_TYPE_XSKMAP)
4482 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4483
4484 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4485 }
4486 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4487
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4488 static int xdp_do_generic_redirect_map(struct net_device *dev,
4489 struct sk_buff *skb,
4490 struct xdp_buff *xdp,
4491 const struct bpf_prog *xdp_prog,
4492 void *fwd, enum bpf_map_type map_type,
4493 u32 map_id, u32 flags)
4494 {
4495 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4496 struct bpf_map *map;
4497 int err;
4498
4499 switch (map_type) {
4500 case BPF_MAP_TYPE_DEVMAP:
4501 fallthrough;
4502 case BPF_MAP_TYPE_DEVMAP_HASH:
4503 if (unlikely(flags & BPF_F_BROADCAST)) {
4504 map = READ_ONCE(ri->map);
4505
4506 /* The map pointer is cleared when the map is being torn
4507 * down by dev_map_free()
4508 */
4509 if (unlikely(!map)) {
4510 err = -ENOENT;
4511 break;
4512 }
4513
4514 WRITE_ONCE(ri->map, NULL);
4515 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4516 flags & BPF_F_EXCLUDE_INGRESS);
4517 } else {
4518 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4519 }
4520 if (unlikely(err))
4521 goto err;
4522 break;
4523 case BPF_MAP_TYPE_XSKMAP:
4524 err = xsk_generic_rcv(fwd, xdp);
4525 if (err)
4526 goto err;
4527 consume_skb(skb);
4528 break;
4529 case BPF_MAP_TYPE_CPUMAP:
4530 err = cpu_map_generic_redirect(fwd, skb);
4531 if (unlikely(err))
4532 goto err;
4533 break;
4534 default:
4535 err = -EBADRQC;
4536 goto err;
4537 }
4538
4539 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4540 return 0;
4541 err:
4542 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4543 return err;
4544 }
4545
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4546 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4547 struct xdp_buff *xdp,
4548 const struct bpf_prog *xdp_prog)
4549 {
4550 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4551 enum bpf_map_type map_type = ri->map_type;
4552 void *fwd = ri->tgt_value;
4553 u32 map_id = ri->map_id;
4554 u32 flags = ri->flags;
4555 int err;
4556
4557 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4558 ri->flags = 0;
4559 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4560
4561 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4562 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4563 if (unlikely(!fwd)) {
4564 err = -EINVAL;
4565 goto err;
4566 }
4567
4568 err = xdp_ok_fwd_dev(fwd, skb->len);
4569 if (unlikely(err))
4570 goto err;
4571
4572 skb->dev = fwd;
4573 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4574 generic_xdp_tx(skb, xdp_prog);
4575 return 0;
4576 }
4577
4578 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4579 err:
4580 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4581 return err;
4582 }
4583
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4584 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4585 {
4586 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4587
4588 if (unlikely(flags))
4589 return XDP_ABORTED;
4590
4591 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4592 * by map_idr) is used for ifindex based XDP redirect.
4593 */
4594 ri->tgt_index = ifindex;
4595 ri->map_id = INT_MAX;
4596 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4597
4598 return XDP_REDIRECT;
4599 }
4600
4601 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4602 .func = bpf_xdp_redirect,
4603 .gpl_only = false,
4604 .ret_type = RET_INTEGER,
4605 .arg1_type = ARG_ANYTHING,
4606 .arg2_type = ARG_ANYTHING,
4607 };
4608
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4609 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4610 u64, flags)
4611 {
4612 return map->ops->map_redirect(map, key, flags);
4613 }
4614
4615 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4616 .func = bpf_xdp_redirect_map,
4617 .gpl_only = false,
4618 .ret_type = RET_INTEGER,
4619 .arg1_type = ARG_CONST_MAP_PTR,
4620 .arg2_type = ARG_ANYTHING,
4621 .arg3_type = ARG_ANYTHING,
4622 };
4623
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4624 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4625 unsigned long off, unsigned long len)
4626 {
4627 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4628
4629 if (unlikely(!ptr))
4630 return len;
4631 if (ptr != dst_buff)
4632 memcpy(dst_buff, ptr, len);
4633
4634 return 0;
4635 }
4636
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4637 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4638 u64, flags, void *, meta, u64, meta_size)
4639 {
4640 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4641
4642 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4643 return -EINVAL;
4644 if (unlikely(!skb || skb_size > skb->len))
4645 return -EFAULT;
4646
4647 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4648 bpf_skb_copy);
4649 }
4650
4651 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4652 .func = bpf_skb_event_output,
4653 .gpl_only = true,
4654 .ret_type = RET_INTEGER,
4655 .arg1_type = ARG_PTR_TO_CTX,
4656 .arg2_type = ARG_CONST_MAP_PTR,
4657 .arg3_type = ARG_ANYTHING,
4658 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4659 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4660 };
4661
4662 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4663
4664 const struct bpf_func_proto bpf_skb_output_proto = {
4665 .func = bpf_skb_event_output,
4666 .gpl_only = true,
4667 .ret_type = RET_INTEGER,
4668 .arg1_type = ARG_PTR_TO_BTF_ID,
4669 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4670 .arg2_type = ARG_CONST_MAP_PTR,
4671 .arg3_type = ARG_ANYTHING,
4672 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4673 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4674 };
4675
bpf_tunnel_key_af(u64 flags)4676 static unsigned short bpf_tunnel_key_af(u64 flags)
4677 {
4678 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4679 }
4680
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4681 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4682 u32, size, u64, flags)
4683 {
4684 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4685 u8 compat[sizeof(struct bpf_tunnel_key)];
4686 void *to_orig = to;
4687 int err;
4688
4689 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4690 BPF_F_TUNINFO_FLAGS)))) {
4691 err = -EINVAL;
4692 goto err_clear;
4693 }
4694 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4695 err = -EPROTO;
4696 goto err_clear;
4697 }
4698 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4699 err = -EINVAL;
4700 switch (size) {
4701 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4702 case offsetof(struct bpf_tunnel_key, tunnel_label):
4703 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4704 goto set_compat;
4705 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4706 /* Fixup deprecated structure layouts here, so we have
4707 * a common path later on.
4708 */
4709 if (ip_tunnel_info_af(info) != AF_INET)
4710 goto err_clear;
4711 set_compat:
4712 to = (struct bpf_tunnel_key *)compat;
4713 break;
4714 default:
4715 goto err_clear;
4716 }
4717 }
4718
4719 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4720 to->tunnel_tos = info->key.tos;
4721 to->tunnel_ttl = info->key.ttl;
4722 if (flags & BPF_F_TUNINFO_FLAGS)
4723 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4724 else
4725 to->tunnel_ext = 0;
4726
4727 if (flags & BPF_F_TUNINFO_IPV6) {
4728 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4729 sizeof(to->remote_ipv6));
4730 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4731 sizeof(to->local_ipv6));
4732 to->tunnel_label = be32_to_cpu(info->key.label);
4733 } else {
4734 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4735 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4736 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4737 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4738 to->tunnel_label = 0;
4739 }
4740
4741 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4742 memcpy(to_orig, to, size);
4743
4744 return 0;
4745 err_clear:
4746 memset(to_orig, 0, size);
4747 return err;
4748 }
4749
4750 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4751 .func = bpf_skb_get_tunnel_key,
4752 .gpl_only = false,
4753 .ret_type = RET_INTEGER,
4754 .arg1_type = ARG_PTR_TO_CTX,
4755 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4756 .arg3_type = ARG_CONST_SIZE,
4757 .arg4_type = ARG_ANYTHING,
4758 };
4759
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4760 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4761 {
4762 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4763 int err;
4764
4765 if (unlikely(!info ||
4766 !ip_tunnel_is_options_present(info->key.tun_flags))) {
4767 err = -ENOENT;
4768 goto err_clear;
4769 }
4770 if (unlikely(size < info->options_len)) {
4771 err = -ENOMEM;
4772 goto err_clear;
4773 }
4774
4775 ip_tunnel_info_opts_get(to, info);
4776 if (size > info->options_len)
4777 memset(to + info->options_len, 0, size - info->options_len);
4778
4779 return info->options_len;
4780 err_clear:
4781 memset(to, 0, size);
4782 return err;
4783 }
4784
4785 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4786 .func = bpf_skb_get_tunnel_opt,
4787 .gpl_only = false,
4788 .ret_type = RET_INTEGER,
4789 .arg1_type = ARG_PTR_TO_CTX,
4790 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4791 .arg3_type = ARG_CONST_SIZE,
4792 };
4793
4794 static struct metadata_dst __percpu *md_dst;
4795
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4796 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4797 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4798 {
4799 struct metadata_dst *md = this_cpu_ptr(md_dst);
4800 u8 compat[sizeof(struct bpf_tunnel_key)];
4801 struct ip_tunnel_info *info;
4802
4803 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4804 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4805 BPF_F_NO_TUNNEL_KEY)))
4806 return -EINVAL;
4807 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4808 switch (size) {
4809 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4810 case offsetof(struct bpf_tunnel_key, tunnel_label):
4811 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4812 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4813 /* Fixup deprecated structure layouts here, so we have
4814 * a common path later on.
4815 */
4816 memcpy(compat, from, size);
4817 memset(compat + size, 0, sizeof(compat) - size);
4818 from = (const struct bpf_tunnel_key *) compat;
4819 break;
4820 default:
4821 return -EINVAL;
4822 }
4823 }
4824 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4825 from->tunnel_ext))
4826 return -EINVAL;
4827
4828 skb_dst_drop(skb);
4829 dst_hold((struct dst_entry *) md);
4830 skb_dst_set(skb, (struct dst_entry *) md);
4831
4832 info = &md->u.tun_info;
4833 memset(info, 0, sizeof(*info));
4834 info->mode = IP_TUNNEL_INFO_TX;
4835
4836 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4837 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4838 flags & BPF_F_DONT_FRAGMENT);
4839 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4840 !(flags & BPF_F_ZERO_CSUM_TX));
4841 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4842 flags & BPF_F_SEQ_NUMBER);
4843 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4844 !(flags & BPF_F_NO_TUNNEL_KEY));
4845
4846 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4847 info->key.tos = from->tunnel_tos;
4848 info->key.ttl = from->tunnel_ttl;
4849
4850 if (flags & BPF_F_TUNINFO_IPV6) {
4851 info->mode |= IP_TUNNEL_INFO_IPV6;
4852 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4853 sizeof(from->remote_ipv6));
4854 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4855 sizeof(from->local_ipv6));
4856 info->key.label = cpu_to_be32(from->tunnel_label) &
4857 IPV6_FLOWLABEL_MASK;
4858 } else {
4859 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4860 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4861 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4862 }
4863
4864 return 0;
4865 }
4866
4867 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4868 .func = bpf_skb_set_tunnel_key,
4869 .gpl_only = false,
4870 .ret_type = RET_INTEGER,
4871 .arg1_type = ARG_PTR_TO_CTX,
4872 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4873 .arg3_type = ARG_CONST_SIZE,
4874 .arg4_type = ARG_ANYTHING,
4875 };
4876
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4877 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4878 const u8 *, from, u32, size)
4879 {
4880 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4881 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4882 IP_TUNNEL_DECLARE_FLAGS(present) = { };
4883
4884 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4885 return -EINVAL;
4886 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4887 return -ENOMEM;
4888
4889 ip_tunnel_set_options_present(present);
4890 ip_tunnel_info_opts_set(info, from, size, present);
4891
4892 return 0;
4893 }
4894
4895 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4896 .func = bpf_skb_set_tunnel_opt,
4897 .gpl_only = false,
4898 .ret_type = RET_INTEGER,
4899 .arg1_type = ARG_PTR_TO_CTX,
4900 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4901 .arg3_type = ARG_CONST_SIZE,
4902 };
4903
4904 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4905 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4906 {
4907 if (!md_dst) {
4908 struct metadata_dst __percpu *tmp;
4909
4910 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4911 METADATA_IP_TUNNEL,
4912 GFP_KERNEL);
4913 if (!tmp)
4914 return NULL;
4915 if (cmpxchg(&md_dst, NULL, tmp))
4916 metadata_dst_free_percpu(tmp);
4917 }
4918
4919 switch (which) {
4920 case BPF_FUNC_skb_set_tunnel_key:
4921 return &bpf_skb_set_tunnel_key_proto;
4922 case BPF_FUNC_skb_set_tunnel_opt:
4923 return &bpf_skb_set_tunnel_opt_proto;
4924 default:
4925 return NULL;
4926 }
4927 }
4928
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4929 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4930 u32, idx)
4931 {
4932 struct bpf_array *array = container_of(map, struct bpf_array, map);
4933 struct cgroup *cgrp;
4934 struct sock *sk;
4935
4936 sk = skb_to_full_sk(skb);
4937 if (!sk || !sk_fullsock(sk))
4938 return -ENOENT;
4939 if (unlikely(idx >= array->map.max_entries))
4940 return -E2BIG;
4941
4942 cgrp = READ_ONCE(array->ptrs[idx]);
4943 if (unlikely(!cgrp))
4944 return -EAGAIN;
4945
4946 return sk_under_cgroup_hierarchy(sk, cgrp);
4947 }
4948
4949 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4950 .func = bpf_skb_under_cgroup,
4951 .gpl_only = false,
4952 .ret_type = RET_INTEGER,
4953 .arg1_type = ARG_PTR_TO_CTX,
4954 .arg2_type = ARG_CONST_MAP_PTR,
4955 .arg3_type = ARG_ANYTHING,
4956 };
4957
4958 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4959 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4960 {
4961 struct cgroup *cgrp;
4962
4963 sk = sk_to_full_sk(sk);
4964 if (!sk || !sk_fullsock(sk))
4965 return 0;
4966
4967 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4968 return cgroup_id(cgrp);
4969 }
4970
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4971 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4972 {
4973 return __bpf_sk_cgroup_id(skb->sk);
4974 }
4975
4976 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4977 .func = bpf_skb_cgroup_id,
4978 .gpl_only = false,
4979 .ret_type = RET_INTEGER,
4980 .arg1_type = ARG_PTR_TO_CTX,
4981 };
4982
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4983 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4984 int ancestor_level)
4985 {
4986 struct cgroup *ancestor;
4987 struct cgroup *cgrp;
4988
4989 sk = sk_to_full_sk(sk);
4990 if (!sk || !sk_fullsock(sk))
4991 return 0;
4992
4993 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4994 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4995 if (!ancestor)
4996 return 0;
4997
4998 return cgroup_id(ancestor);
4999 }
5000
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5001 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5002 ancestor_level)
5003 {
5004 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5005 }
5006
5007 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5008 .func = bpf_skb_ancestor_cgroup_id,
5009 .gpl_only = false,
5010 .ret_type = RET_INTEGER,
5011 .arg1_type = ARG_PTR_TO_CTX,
5012 .arg2_type = ARG_ANYTHING,
5013 };
5014
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5015 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5016 {
5017 return __bpf_sk_cgroup_id(sk);
5018 }
5019
5020 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5021 .func = bpf_sk_cgroup_id,
5022 .gpl_only = false,
5023 .ret_type = RET_INTEGER,
5024 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5025 };
5026
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5027 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5028 {
5029 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5030 }
5031
5032 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5033 .func = bpf_sk_ancestor_cgroup_id,
5034 .gpl_only = false,
5035 .ret_type = RET_INTEGER,
5036 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5037 .arg2_type = ARG_ANYTHING,
5038 };
5039 #endif
5040
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5041 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5042 unsigned long off, unsigned long len)
5043 {
5044 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5045
5046 bpf_xdp_copy_buf(xdp, off, dst, len, false);
5047 return 0;
5048 }
5049
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5050 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5051 u64, flags, void *, meta, u64, meta_size)
5052 {
5053 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5054
5055 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5056 return -EINVAL;
5057
5058 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5059 return -EFAULT;
5060
5061 return bpf_event_output(map, flags, meta, meta_size, xdp,
5062 xdp_size, bpf_xdp_copy);
5063 }
5064
5065 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5066 .func = bpf_xdp_event_output,
5067 .gpl_only = true,
5068 .ret_type = RET_INTEGER,
5069 .arg1_type = ARG_PTR_TO_CTX,
5070 .arg2_type = ARG_CONST_MAP_PTR,
5071 .arg3_type = ARG_ANYTHING,
5072 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5073 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5074 };
5075
5076 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5077
5078 const struct bpf_func_proto bpf_xdp_output_proto = {
5079 .func = bpf_xdp_event_output,
5080 .gpl_only = true,
5081 .ret_type = RET_INTEGER,
5082 .arg1_type = ARG_PTR_TO_BTF_ID,
5083 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5084 .arg2_type = ARG_CONST_MAP_PTR,
5085 .arg3_type = ARG_ANYTHING,
5086 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5087 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5088 };
5089
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5090 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5091 {
5092 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5093 }
5094
5095 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5096 .func = bpf_get_socket_cookie,
5097 .gpl_only = false,
5098 .ret_type = RET_INTEGER,
5099 .arg1_type = ARG_PTR_TO_CTX,
5100 };
5101
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5102 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5103 {
5104 return __sock_gen_cookie(ctx->sk);
5105 }
5106
5107 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5108 .func = bpf_get_socket_cookie_sock_addr,
5109 .gpl_only = false,
5110 .ret_type = RET_INTEGER,
5111 .arg1_type = ARG_PTR_TO_CTX,
5112 };
5113
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5114 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5115 {
5116 return __sock_gen_cookie(ctx);
5117 }
5118
5119 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5120 .func = bpf_get_socket_cookie_sock,
5121 .gpl_only = false,
5122 .ret_type = RET_INTEGER,
5123 .arg1_type = ARG_PTR_TO_CTX,
5124 };
5125
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5126 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5127 {
5128 return sk ? sock_gen_cookie(sk) : 0;
5129 }
5130
5131 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5132 .func = bpf_get_socket_ptr_cookie,
5133 .gpl_only = false,
5134 .ret_type = RET_INTEGER,
5135 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5136 };
5137
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5138 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5139 {
5140 return __sock_gen_cookie(ctx->sk);
5141 }
5142
5143 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5144 .func = bpf_get_socket_cookie_sock_ops,
5145 .gpl_only = false,
5146 .ret_type = RET_INTEGER,
5147 .arg1_type = ARG_PTR_TO_CTX,
5148 };
5149
__bpf_get_netns_cookie(struct sock * sk)5150 static u64 __bpf_get_netns_cookie(struct sock *sk)
5151 {
5152 const struct net *net = sk ? sock_net(sk) : &init_net;
5153
5154 return net->net_cookie;
5155 }
5156
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5157 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5158 {
5159 return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5160 }
5161
5162 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5163 .func = bpf_get_netns_cookie,
5164 .ret_type = RET_INTEGER,
5165 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5166 };
5167
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5168 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5169 {
5170 return __bpf_get_netns_cookie(ctx);
5171 }
5172
5173 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5174 .func = bpf_get_netns_cookie_sock,
5175 .gpl_only = false,
5176 .ret_type = RET_INTEGER,
5177 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5178 };
5179
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5180 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5181 {
5182 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5183 }
5184
5185 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5186 .func = bpf_get_netns_cookie_sock_addr,
5187 .gpl_only = false,
5188 .ret_type = RET_INTEGER,
5189 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5190 };
5191
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5192 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5193 {
5194 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5195 }
5196
5197 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5198 .func = bpf_get_netns_cookie_sock_ops,
5199 .gpl_only = false,
5200 .ret_type = RET_INTEGER,
5201 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5202 };
5203
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5204 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5205 {
5206 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5207 }
5208
5209 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5210 .func = bpf_get_netns_cookie_sk_msg,
5211 .gpl_only = false,
5212 .ret_type = RET_INTEGER,
5213 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5214 };
5215
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5216 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5217 {
5218 struct sock *sk = sk_to_full_sk(skb->sk);
5219 kuid_t kuid;
5220
5221 if (!sk || !sk_fullsock(sk))
5222 return overflowuid;
5223 kuid = sock_net_uid(sock_net(sk), sk);
5224 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5225 }
5226
5227 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5228 .func = bpf_get_socket_uid,
5229 .gpl_only = false,
5230 .ret_type = RET_INTEGER,
5231 .arg1_type = ARG_PTR_TO_CTX,
5232 };
5233
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5234 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5235 {
5236 u32 sk_bpf_cb_flags;
5237
5238 if (getopt) {
5239 *(u32 *)optval = sk->sk_bpf_cb_flags;
5240 return 0;
5241 }
5242
5243 sk_bpf_cb_flags = *(u32 *)optval;
5244
5245 if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5246 return -EINVAL;
5247
5248 sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5249
5250 return 0;
5251 }
5252
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5253 static int sol_socket_sockopt(struct sock *sk, int optname,
5254 char *optval, int *optlen,
5255 bool getopt)
5256 {
5257 switch (optname) {
5258 case SO_REUSEADDR:
5259 case SO_SNDBUF:
5260 case SO_RCVBUF:
5261 case SO_KEEPALIVE:
5262 case SO_PRIORITY:
5263 case SO_REUSEPORT:
5264 case SO_RCVLOWAT:
5265 case SO_MARK:
5266 case SO_MAX_PACING_RATE:
5267 case SO_BINDTOIFINDEX:
5268 case SO_TXREHASH:
5269 case SK_BPF_CB_FLAGS:
5270 if (*optlen != sizeof(int))
5271 return -EINVAL;
5272 break;
5273 case SO_BINDTODEVICE:
5274 break;
5275 default:
5276 return -EINVAL;
5277 }
5278
5279 if (optname == SK_BPF_CB_FLAGS)
5280 return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5281
5282 if (getopt) {
5283 if (optname == SO_BINDTODEVICE)
5284 return -EINVAL;
5285 return sk_getsockopt(sk, SOL_SOCKET, optname,
5286 KERNEL_SOCKPTR(optval),
5287 KERNEL_SOCKPTR(optlen));
5288 }
5289
5290 return sk_setsockopt(sk, SOL_SOCKET, optname,
5291 KERNEL_SOCKPTR(optval), *optlen);
5292 }
5293
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5294 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5295 char *optval, int optlen)
5296 {
5297 if (optlen != sizeof(int))
5298 return -EINVAL;
5299
5300 switch (optname) {
5301 case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5302 int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5303
5304 memcpy(optval, &cb_flags, optlen);
5305 break;
5306 }
5307 case TCP_BPF_RTO_MIN: {
5308 int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5309
5310 memcpy(optval, &rto_min_us, optlen);
5311 break;
5312 }
5313 case TCP_BPF_DELACK_MAX: {
5314 int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5315
5316 memcpy(optval, &delack_max_us, optlen);
5317 break;
5318 }
5319 default:
5320 return -EINVAL;
5321 }
5322
5323 return 0;
5324 }
5325
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5326 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5327 char *optval, int optlen)
5328 {
5329 struct tcp_sock *tp = tcp_sk(sk);
5330 unsigned long timeout;
5331 int val;
5332
5333 if (optlen != sizeof(int))
5334 return -EINVAL;
5335
5336 val = *(int *)optval;
5337
5338 /* Only some options are supported */
5339 switch (optname) {
5340 case TCP_BPF_IW:
5341 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5342 return -EINVAL;
5343 tcp_snd_cwnd_set(tp, val);
5344 break;
5345 case TCP_BPF_SNDCWND_CLAMP:
5346 if (val <= 0)
5347 return -EINVAL;
5348 tp->snd_cwnd_clamp = val;
5349 tp->snd_ssthresh = val;
5350 break;
5351 case TCP_BPF_DELACK_MAX:
5352 timeout = usecs_to_jiffies(val);
5353 if (timeout > TCP_DELACK_MAX ||
5354 timeout < TCP_TIMEOUT_MIN)
5355 return -EINVAL;
5356 inet_csk(sk)->icsk_delack_max = timeout;
5357 break;
5358 case TCP_BPF_RTO_MIN:
5359 timeout = usecs_to_jiffies(val);
5360 if (timeout > TCP_RTO_MIN ||
5361 timeout < TCP_TIMEOUT_MIN)
5362 return -EINVAL;
5363 inet_csk(sk)->icsk_rto_min = timeout;
5364 break;
5365 case TCP_BPF_SOCK_OPS_CB_FLAGS:
5366 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5367 return -EINVAL;
5368 tp->bpf_sock_ops_cb_flags = val;
5369 break;
5370 default:
5371 return -EINVAL;
5372 }
5373
5374 return 0;
5375 }
5376
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5377 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5378 int *optlen, bool getopt)
5379 {
5380 struct tcp_sock *tp;
5381 int ret;
5382
5383 if (*optlen < 2)
5384 return -EINVAL;
5385
5386 if (getopt) {
5387 if (!inet_csk(sk)->icsk_ca_ops)
5388 return -EINVAL;
5389 /* BPF expects NULL-terminated tcp-cc string */
5390 optval[--(*optlen)] = '\0';
5391 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5392 KERNEL_SOCKPTR(optval),
5393 KERNEL_SOCKPTR(optlen));
5394 }
5395
5396 /* "cdg" is the only cc that alloc a ptr
5397 * in inet_csk_ca area. The bpf-tcp-cc may
5398 * overwrite this ptr after switching to cdg.
5399 */
5400 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5401 return -ENOTSUPP;
5402
5403 /* It stops this looping
5404 *
5405 * .init => bpf_setsockopt(tcp_cc) => .init =>
5406 * bpf_setsockopt(tcp_cc)" => .init => ....
5407 *
5408 * The second bpf_setsockopt(tcp_cc) is not allowed
5409 * in order to break the loop when both .init
5410 * are the same bpf prog.
5411 *
5412 * This applies even the second bpf_setsockopt(tcp_cc)
5413 * does not cause a loop. This limits only the first
5414 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5415 * pick a fallback cc (eg. peer does not support ECN)
5416 * and the second '.init' cannot fallback to
5417 * another.
5418 */
5419 tp = tcp_sk(sk);
5420 if (tp->bpf_chg_cc_inprogress)
5421 return -EBUSY;
5422
5423 tp->bpf_chg_cc_inprogress = 1;
5424 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5425 KERNEL_SOCKPTR(optval), *optlen);
5426 tp->bpf_chg_cc_inprogress = 0;
5427 return ret;
5428 }
5429
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5430 static int sol_tcp_sockopt(struct sock *sk, int optname,
5431 char *optval, int *optlen,
5432 bool getopt)
5433 {
5434 if (sk->sk_protocol != IPPROTO_TCP)
5435 return -EINVAL;
5436
5437 switch (optname) {
5438 case TCP_NODELAY:
5439 case TCP_MAXSEG:
5440 case TCP_KEEPIDLE:
5441 case TCP_KEEPINTVL:
5442 case TCP_KEEPCNT:
5443 case TCP_SYNCNT:
5444 case TCP_WINDOW_CLAMP:
5445 case TCP_THIN_LINEAR_TIMEOUTS:
5446 case TCP_USER_TIMEOUT:
5447 case TCP_NOTSENT_LOWAT:
5448 case TCP_SAVE_SYN:
5449 case TCP_RTO_MAX_MS:
5450 if (*optlen != sizeof(int))
5451 return -EINVAL;
5452 break;
5453 case TCP_CONGESTION:
5454 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5455 case TCP_SAVED_SYN:
5456 if (*optlen < 1)
5457 return -EINVAL;
5458 break;
5459 default:
5460 if (getopt)
5461 return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5462 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5463 }
5464
5465 if (getopt) {
5466 if (optname == TCP_SAVED_SYN) {
5467 struct tcp_sock *tp = tcp_sk(sk);
5468
5469 if (!tp->saved_syn ||
5470 *optlen > tcp_saved_syn_len(tp->saved_syn))
5471 return -EINVAL;
5472 memcpy(optval, tp->saved_syn->data, *optlen);
5473 /* It cannot free tp->saved_syn here because it
5474 * does not know if the user space still needs it.
5475 */
5476 return 0;
5477 }
5478
5479 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5480 KERNEL_SOCKPTR(optval),
5481 KERNEL_SOCKPTR(optlen));
5482 }
5483
5484 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5485 KERNEL_SOCKPTR(optval), *optlen);
5486 }
5487
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5488 static int sol_ip_sockopt(struct sock *sk, int optname,
5489 char *optval, int *optlen,
5490 bool getopt)
5491 {
5492 if (sk->sk_family != AF_INET)
5493 return -EINVAL;
5494
5495 switch (optname) {
5496 case IP_TOS:
5497 if (*optlen != sizeof(int))
5498 return -EINVAL;
5499 break;
5500 default:
5501 return -EINVAL;
5502 }
5503
5504 if (getopt)
5505 return do_ip_getsockopt(sk, SOL_IP, optname,
5506 KERNEL_SOCKPTR(optval),
5507 KERNEL_SOCKPTR(optlen));
5508
5509 return do_ip_setsockopt(sk, SOL_IP, optname,
5510 KERNEL_SOCKPTR(optval), *optlen);
5511 }
5512
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5513 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5514 char *optval, int *optlen,
5515 bool getopt)
5516 {
5517 if (sk->sk_family != AF_INET6)
5518 return -EINVAL;
5519
5520 switch (optname) {
5521 case IPV6_TCLASS:
5522 case IPV6_AUTOFLOWLABEL:
5523 if (*optlen != sizeof(int))
5524 return -EINVAL;
5525 break;
5526 default:
5527 return -EINVAL;
5528 }
5529
5530 if (getopt)
5531 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5532 KERNEL_SOCKPTR(optval),
5533 KERNEL_SOCKPTR(optlen));
5534
5535 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5536 KERNEL_SOCKPTR(optval), *optlen);
5537 }
5538
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5539 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5540 char *optval, int optlen)
5541 {
5542 if (!sk_fullsock(sk))
5543 return -EINVAL;
5544
5545 if (level == SOL_SOCKET)
5546 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5547 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5548 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5549 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5550 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5551 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5552 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5553
5554 return -EINVAL;
5555 }
5556
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5557 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5558 {
5559 return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5560 }
5561
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5562 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5563 char *optval, int optlen)
5564 {
5565 if (sk_fullsock(sk))
5566 sock_owned_by_me(sk);
5567 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5568 }
5569
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5570 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5571 char *optval, int optlen)
5572 {
5573 int err, saved_optlen = optlen;
5574
5575 if (!sk_fullsock(sk)) {
5576 err = -EINVAL;
5577 goto done;
5578 }
5579
5580 if (level == SOL_SOCKET)
5581 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5582 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5583 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5584 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5585 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5586 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5587 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5588 else
5589 err = -EINVAL;
5590
5591 done:
5592 if (err)
5593 optlen = 0;
5594 if (optlen < saved_optlen)
5595 memset(optval + optlen, 0, saved_optlen - optlen);
5596 return err;
5597 }
5598
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5599 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5600 char *optval, int optlen)
5601 {
5602 if (sk_fullsock(sk))
5603 sock_owned_by_me(sk);
5604 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5605 }
5606
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5607 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5608 int, optname, char *, optval, int, optlen)
5609 {
5610 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5611 }
5612
5613 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5614 .func = bpf_sk_setsockopt,
5615 .gpl_only = false,
5616 .ret_type = RET_INTEGER,
5617 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5618 .arg2_type = ARG_ANYTHING,
5619 .arg3_type = ARG_ANYTHING,
5620 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5621 .arg5_type = ARG_CONST_SIZE,
5622 };
5623
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5624 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5625 int, optname, char *, optval, int, optlen)
5626 {
5627 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5628 }
5629
5630 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5631 .func = bpf_sk_getsockopt,
5632 .gpl_only = false,
5633 .ret_type = RET_INTEGER,
5634 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5635 .arg2_type = ARG_ANYTHING,
5636 .arg3_type = ARG_ANYTHING,
5637 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5638 .arg5_type = ARG_CONST_SIZE,
5639 };
5640
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5641 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5642 int, optname, char *, optval, int, optlen)
5643 {
5644 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5645 }
5646
5647 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5648 .func = bpf_unlocked_sk_setsockopt,
5649 .gpl_only = false,
5650 .ret_type = RET_INTEGER,
5651 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5652 .arg2_type = ARG_ANYTHING,
5653 .arg3_type = ARG_ANYTHING,
5654 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5655 .arg5_type = ARG_CONST_SIZE,
5656 };
5657
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5658 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5659 int, optname, char *, optval, int, optlen)
5660 {
5661 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5662 }
5663
5664 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5665 .func = bpf_unlocked_sk_getsockopt,
5666 .gpl_only = false,
5667 .ret_type = RET_INTEGER,
5668 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5669 .arg2_type = ARG_ANYTHING,
5670 .arg3_type = ARG_ANYTHING,
5671 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5672 .arg5_type = ARG_CONST_SIZE,
5673 };
5674
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5675 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5676 int, level, int, optname, char *, optval, int, optlen)
5677 {
5678 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5679 }
5680
5681 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5682 .func = bpf_sock_addr_setsockopt,
5683 .gpl_only = false,
5684 .ret_type = RET_INTEGER,
5685 .arg1_type = ARG_PTR_TO_CTX,
5686 .arg2_type = ARG_ANYTHING,
5687 .arg3_type = ARG_ANYTHING,
5688 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5689 .arg5_type = ARG_CONST_SIZE,
5690 };
5691
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5692 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5693 int, level, int, optname, char *, optval, int, optlen)
5694 {
5695 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5696 }
5697
5698 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5699 .func = bpf_sock_addr_getsockopt,
5700 .gpl_only = false,
5701 .ret_type = RET_INTEGER,
5702 .arg1_type = ARG_PTR_TO_CTX,
5703 .arg2_type = ARG_ANYTHING,
5704 .arg3_type = ARG_ANYTHING,
5705 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5706 .arg5_type = ARG_CONST_SIZE,
5707 };
5708
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5709 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5710 int, level, int, optname, char *, optval, int, optlen)
5711 {
5712 if (!is_locked_tcp_sock_ops(bpf_sock))
5713 return -EOPNOTSUPP;
5714
5715 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5716 }
5717
5718 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5719 .func = bpf_sock_ops_setsockopt,
5720 .gpl_only = false,
5721 .ret_type = RET_INTEGER,
5722 .arg1_type = ARG_PTR_TO_CTX,
5723 .arg2_type = ARG_ANYTHING,
5724 .arg3_type = ARG_ANYTHING,
5725 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5726 .arg5_type = ARG_CONST_SIZE,
5727 };
5728
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5729 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5730 int optname, const u8 **start)
5731 {
5732 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5733 const u8 *hdr_start;
5734 int ret;
5735
5736 if (syn_skb) {
5737 /* sk is a request_sock here */
5738
5739 if (optname == TCP_BPF_SYN) {
5740 hdr_start = syn_skb->data;
5741 ret = tcp_hdrlen(syn_skb);
5742 } else if (optname == TCP_BPF_SYN_IP) {
5743 hdr_start = skb_network_header(syn_skb);
5744 ret = skb_network_header_len(syn_skb) +
5745 tcp_hdrlen(syn_skb);
5746 } else {
5747 /* optname == TCP_BPF_SYN_MAC */
5748 hdr_start = skb_mac_header(syn_skb);
5749 ret = skb_mac_header_len(syn_skb) +
5750 skb_network_header_len(syn_skb) +
5751 tcp_hdrlen(syn_skb);
5752 }
5753 } else {
5754 struct sock *sk = bpf_sock->sk;
5755 struct saved_syn *saved_syn;
5756
5757 if (sk->sk_state == TCP_NEW_SYN_RECV)
5758 /* synack retransmit. bpf_sock->syn_skb will
5759 * not be available. It has to resort to
5760 * saved_syn (if it is saved).
5761 */
5762 saved_syn = inet_reqsk(sk)->saved_syn;
5763 else
5764 saved_syn = tcp_sk(sk)->saved_syn;
5765
5766 if (!saved_syn)
5767 return -ENOENT;
5768
5769 if (optname == TCP_BPF_SYN) {
5770 hdr_start = saved_syn->data +
5771 saved_syn->mac_hdrlen +
5772 saved_syn->network_hdrlen;
5773 ret = saved_syn->tcp_hdrlen;
5774 } else if (optname == TCP_BPF_SYN_IP) {
5775 hdr_start = saved_syn->data +
5776 saved_syn->mac_hdrlen;
5777 ret = saved_syn->network_hdrlen +
5778 saved_syn->tcp_hdrlen;
5779 } else {
5780 /* optname == TCP_BPF_SYN_MAC */
5781
5782 /* TCP_SAVE_SYN may not have saved the mac hdr */
5783 if (!saved_syn->mac_hdrlen)
5784 return -ENOENT;
5785
5786 hdr_start = saved_syn->data;
5787 ret = saved_syn->mac_hdrlen +
5788 saved_syn->network_hdrlen +
5789 saved_syn->tcp_hdrlen;
5790 }
5791 }
5792
5793 *start = hdr_start;
5794 return ret;
5795 }
5796
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5797 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5798 int, level, int, optname, char *, optval, int, optlen)
5799 {
5800 if (!is_locked_tcp_sock_ops(bpf_sock))
5801 return -EOPNOTSUPP;
5802
5803 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5804 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5805 int ret, copy_len = 0;
5806 const u8 *start;
5807
5808 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5809 if (ret > 0) {
5810 copy_len = ret;
5811 if (optlen < copy_len) {
5812 copy_len = optlen;
5813 ret = -ENOSPC;
5814 }
5815
5816 memcpy(optval, start, copy_len);
5817 }
5818
5819 /* Zero out unused buffer at the end */
5820 memset(optval + copy_len, 0, optlen - copy_len);
5821
5822 return ret;
5823 }
5824
5825 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5826 }
5827
5828 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5829 .func = bpf_sock_ops_getsockopt,
5830 .gpl_only = false,
5831 .ret_type = RET_INTEGER,
5832 .arg1_type = ARG_PTR_TO_CTX,
5833 .arg2_type = ARG_ANYTHING,
5834 .arg3_type = ARG_ANYTHING,
5835 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5836 .arg5_type = ARG_CONST_SIZE,
5837 };
5838
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5839 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5840 int, argval)
5841 {
5842 struct sock *sk = bpf_sock->sk;
5843 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5844
5845 if (!is_locked_tcp_sock_ops(bpf_sock))
5846 return -EOPNOTSUPP;
5847
5848 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5849 return -EINVAL;
5850
5851 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5852
5853 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5854 }
5855
5856 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5857 .func = bpf_sock_ops_cb_flags_set,
5858 .gpl_only = false,
5859 .ret_type = RET_INTEGER,
5860 .arg1_type = ARG_PTR_TO_CTX,
5861 .arg2_type = ARG_ANYTHING,
5862 };
5863
5864 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5865 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5866
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5867 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5868 int, addr_len)
5869 {
5870 #ifdef CONFIG_INET
5871 struct sock *sk = ctx->sk;
5872 u32 flags = BIND_FROM_BPF;
5873 int err;
5874
5875 err = -EINVAL;
5876 if (addr_len < offsetofend(struct sockaddr, sa_family))
5877 return err;
5878 if (addr->sa_family == AF_INET) {
5879 if (addr_len < sizeof(struct sockaddr_in))
5880 return err;
5881 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5882 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5883 return __inet_bind(sk, addr, addr_len, flags);
5884 #if IS_ENABLED(CONFIG_IPV6)
5885 } else if (addr->sa_family == AF_INET6) {
5886 if (addr_len < SIN6_LEN_RFC2133)
5887 return err;
5888 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5889 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5890 /* ipv6_bpf_stub cannot be NULL, since it's called from
5891 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5892 */
5893 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5894 #endif /* CONFIG_IPV6 */
5895 }
5896 #endif /* CONFIG_INET */
5897
5898 return -EAFNOSUPPORT;
5899 }
5900
5901 static const struct bpf_func_proto bpf_bind_proto = {
5902 .func = bpf_bind,
5903 .gpl_only = false,
5904 .ret_type = RET_INTEGER,
5905 .arg1_type = ARG_PTR_TO_CTX,
5906 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5907 .arg3_type = ARG_CONST_SIZE,
5908 };
5909
5910 #ifdef CONFIG_XFRM
5911
5912 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5913 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5914
5915 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5916 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5917
5918 #endif
5919
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5920 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5921 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5922 {
5923 const struct sec_path *sp = skb_sec_path(skb);
5924 const struct xfrm_state *x;
5925
5926 if (!sp || unlikely(index >= sp->len || flags))
5927 goto err_clear;
5928
5929 x = sp->xvec[index];
5930
5931 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5932 goto err_clear;
5933
5934 to->reqid = x->props.reqid;
5935 to->spi = x->id.spi;
5936 to->family = x->props.family;
5937 to->ext = 0;
5938
5939 if (to->family == AF_INET6) {
5940 memcpy(to->remote_ipv6, x->props.saddr.a6,
5941 sizeof(to->remote_ipv6));
5942 } else {
5943 to->remote_ipv4 = x->props.saddr.a4;
5944 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5945 }
5946
5947 return 0;
5948 err_clear:
5949 memset(to, 0, size);
5950 return -EINVAL;
5951 }
5952
5953 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5954 .func = bpf_skb_get_xfrm_state,
5955 .gpl_only = false,
5956 .ret_type = RET_INTEGER,
5957 .arg1_type = ARG_PTR_TO_CTX,
5958 .arg2_type = ARG_ANYTHING,
5959 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5960 .arg4_type = ARG_CONST_SIZE,
5961 .arg5_type = ARG_ANYTHING,
5962 };
5963 #endif
5964
5965 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5966 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5967 {
5968 params->h_vlan_TCI = 0;
5969 params->h_vlan_proto = 0;
5970 if (mtu)
5971 params->mtu_result = mtu; /* union with tot_len */
5972
5973 return 0;
5974 }
5975 #endif
5976
5977 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5978 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5979 u32 flags, bool check_mtu)
5980 {
5981 struct fib_nh_common *nhc;
5982 struct in_device *in_dev;
5983 struct neighbour *neigh;
5984 struct net_device *dev;
5985 struct fib_result res;
5986 struct flowi4 fl4;
5987 u32 mtu = 0;
5988 int err;
5989
5990 dev = dev_get_by_index_rcu(net, params->ifindex);
5991 if (unlikely(!dev))
5992 return -ENODEV;
5993
5994 /* verify forwarding is enabled on this interface */
5995 in_dev = __in_dev_get_rcu(dev);
5996 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5997 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5998
5999 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6000 fl4.flowi4_iif = 1;
6001 fl4.flowi4_oif = params->ifindex;
6002 } else {
6003 fl4.flowi4_iif = params->ifindex;
6004 fl4.flowi4_oif = 0;
6005 }
6006 fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
6007 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6008 fl4.flowi4_flags = 0;
6009
6010 fl4.flowi4_proto = params->l4_protocol;
6011 fl4.daddr = params->ipv4_dst;
6012 fl4.saddr = params->ipv4_src;
6013 fl4.fl4_sport = params->sport;
6014 fl4.fl4_dport = params->dport;
6015 fl4.flowi4_multipath_hash = 0;
6016
6017 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6018 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6019 struct fib_table *tb;
6020
6021 if (flags & BPF_FIB_LOOKUP_TBID) {
6022 tbid = params->tbid;
6023 /* zero out for vlan output */
6024 params->tbid = 0;
6025 }
6026
6027 tb = fib_get_table(net, tbid);
6028 if (unlikely(!tb))
6029 return BPF_FIB_LKUP_RET_NOT_FWDED;
6030
6031 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6032 } else {
6033 if (flags & BPF_FIB_LOOKUP_MARK)
6034 fl4.flowi4_mark = params->mark;
6035 else
6036 fl4.flowi4_mark = 0;
6037 fl4.flowi4_secid = 0;
6038 fl4.flowi4_tun_key.tun_id = 0;
6039 fl4.flowi4_uid = sock_net_uid(net, NULL);
6040
6041 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6042 }
6043
6044 if (err) {
6045 /* map fib lookup errors to RTN_ type */
6046 if (err == -EINVAL)
6047 return BPF_FIB_LKUP_RET_BLACKHOLE;
6048 if (err == -EHOSTUNREACH)
6049 return BPF_FIB_LKUP_RET_UNREACHABLE;
6050 if (err == -EACCES)
6051 return BPF_FIB_LKUP_RET_PROHIBIT;
6052
6053 return BPF_FIB_LKUP_RET_NOT_FWDED;
6054 }
6055
6056 if (res.type != RTN_UNICAST)
6057 return BPF_FIB_LKUP_RET_NOT_FWDED;
6058
6059 if (fib_info_num_path(res.fi) > 1)
6060 fib_select_path(net, &res, &fl4, NULL);
6061
6062 if (check_mtu) {
6063 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6064 if (params->tot_len > mtu) {
6065 params->mtu_result = mtu; /* union with tot_len */
6066 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6067 }
6068 }
6069
6070 nhc = res.nhc;
6071
6072 /* do not handle lwt encaps right now */
6073 if (nhc->nhc_lwtstate)
6074 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6075
6076 dev = nhc->nhc_dev;
6077
6078 params->rt_metric = res.fi->fib_priority;
6079 params->ifindex = dev->ifindex;
6080
6081 if (flags & BPF_FIB_LOOKUP_SRC)
6082 params->ipv4_src = fib_result_prefsrc(net, &res);
6083
6084 /* xdp and cls_bpf programs are run in RCU-bh so
6085 * rcu_read_lock_bh is not needed here
6086 */
6087 if (likely(nhc->nhc_gw_family != AF_INET6)) {
6088 if (nhc->nhc_gw_family)
6089 params->ipv4_dst = nhc->nhc_gw.ipv4;
6090 } else {
6091 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6092
6093 params->family = AF_INET6;
6094 *dst = nhc->nhc_gw.ipv6;
6095 }
6096
6097 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6098 goto set_fwd_params;
6099
6100 if (likely(nhc->nhc_gw_family != AF_INET6))
6101 neigh = __ipv4_neigh_lookup_noref(dev,
6102 (__force u32)params->ipv4_dst);
6103 else
6104 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6105
6106 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6107 return BPF_FIB_LKUP_RET_NO_NEIGH;
6108 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6109 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6110
6111 set_fwd_params:
6112 return bpf_fib_set_fwd_params(params, mtu);
6113 }
6114 #endif
6115
6116 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6117 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6118 u32 flags, bool check_mtu)
6119 {
6120 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6121 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6122 struct fib6_result res = {};
6123 struct neighbour *neigh;
6124 struct net_device *dev;
6125 struct inet6_dev *idev;
6126 struct flowi6 fl6;
6127 int strict = 0;
6128 int oif, err;
6129 u32 mtu = 0;
6130
6131 /* link local addresses are never forwarded */
6132 if (rt6_need_strict(dst) || rt6_need_strict(src))
6133 return BPF_FIB_LKUP_RET_NOT_FWDED;
6134
6135 dev = dev_get_by_index_rcu(net, params->ifindex);
6136 if (unlikely(!dev))
6137 return -ENODEV;
6138
6139 idev = __in6_dev_get_safely(dev);
6140 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6141 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6142
6143 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6144 fl6.flowi6_iif = 1;
6145 oif = fl6.flowi6_oif = params->ifindex;
6146 } else {
6147 oif = fl6.flowi6_iif = params->ifindex;
6148 fl6.flowi6_oif = 0;
6149 strict = RT6_LOOKUP_F_HAS_SADDR;
6150 }
6151 fl6.flowlabel = params->flowinfo;
6152 fl6.flowi6_scope = 0;
6153 fl6.flowi6_flags = 0;
6154 fl6.mp_hash = 0;
6155
6156 fl6.flowi6_proto = params->l4_protocol;
6157 fl6.daddr = *dst;
6158 fl6.saddr = *src;
6159 fl6.fl6_sport = params->sport;
6160 fl6.fl6_dport = params->dport;
6161
6162 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6163 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6164 struct fib6_table *tb;
6165
6166 if (flags & BPF_FIB_LOOKUP_TBID) {
6167 tbid = params->tbid;
6168 /* zero out for vlan output */
6169 params->tbid = 0;
6170 }
6171
6172 tb = ipv6_stub->fib6_get_table(net, tbid);
6173 if (unlikely(!tb))
6174 return BPF_FIB_LKUP_RET_NOT_FWDED;
6175
6176 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6177 strict);
6178 } else {
6179 if (flags & BPF_FIB_LOOKUP_MARK)
6180 fl6.flowi6_mark = params->mark;
6181 else
6182 fl6.flowi6_mark = 0;
6183 fl6.flowi6_secid = 0;
6184 fl6.flowi6_tun_key.tun_id = 0;
6185 fl6.flowi6_uid = sock_net_uid(net, NULL);
6186
6187 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6188 }
6189
6190 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6191 res.f6i == net->ipv6.fib6_null_entry))
6192 return BPF_FIB_LKUP_RET_NOT_FWDED;
6193
6194 switch (res.fib6_type) {
6195 /* only unicast is forwarded */
6196 case RTN_UNICAST:
6197 break;
6198 case RTN_BLACKHOLE:
6199 return BPF_FIB_LKUP_RET_BLACKHOLE;
6200 case RTN_UNREACHABLE:
6201 return BPF_FIB_LKUP_RET_UNREACHABLE;
6202 case RTN_PROHIBIT:
6203 return BPF_FIB_LKUP_RET_PROHIBIT;
6204 default:
6205 return BPF_FIB_LKUP_RET_NOT_FWDED;
6206 }
6207
6208 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6209 fl6.flowi6_oif != 0, NULL, strict);
6210
6211 if (check_mtu) {
6212 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6213 if (params->tot_len > mtu) {
6214 params->mtu_result = mtu; /* union with tot_len */
6215 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6216 }
6217 }
6218
6219 if (res.nh->fib_nh_lws)
6220 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6221
6222 if (res.nh->fib_nh_gw_family)
6223 *dst = res.nh->fib_nh_gw6;
6224
6225 dev = res.nh->fib_nh_dev;
6226 params->rt_metric = res.f6i->fib6_metric;
6227 params->ifindex = dev->ifindex;
6228
6229 if (flags & BPF_FIB_LOOKUP_SRC) {
6230 if (res.f6i->fib6_prefsrc.plen) {
6231 *src = res.f6i->fib6_prefsrc.addr;
6232 } else {
6233 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6234 &fl6.daddr, 0,
6235 src);
6236 if (err)
6237 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6238 }
6239 }
6240
6241 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6242 goto set_fwd_params;
6243
6244 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6245 * not needed here.
6246 */
6247 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6248 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6249 return BPF_FIB_LKUP_RET_NO_NEIGH;
6250 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6251 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6252
6253 set_fwd_params:
6254 return bpf_fib_set_fwd_params(params, mtu);
6255 }
6256 #endif
6257
6258 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6259 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6260 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6261
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6262 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6263 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6264 {
6265 if (plen < sizeof(*params))
6266 return -EINVAL;
6267
6268 if (flags & ~BPF_FIB_LOOKUP_MASK)
6269 return -EINVAL;
6270
6271 switch (params->family) {
6272 #if IS_ENABLED(CONFIG_INET)
6273 case AF_INET:
6274 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6275 flags, true);
6276 #endif
6277 #if IS_ENABLED(CONFIG_IPV6)
6278 case AF_INET6:
6279 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6280 flags, true);
6281 #endif
6282 }
6283 return -EAFNOSUPPORT;
6284 }
6285
6286 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6287 .func = bpf_xdp_fib_lookup,
6288 .gpl_only = true,
6289 .ret_type = RET_INTEGER,
6290 .arg1_type = ARG_PTR_TO_CTX,
6291 .arg2_type = ARG_PTR_TO_MEM,
6292 .arg3_type = ARG_CONST_SIZE,
6293 .arg4_type = ARG_ANYTHING,
6294 };
6295
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6296 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6297 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6298 {
6299 struct net *net = dev_net(skb->dev);
6300 int rc = -EAFNOSUPPORT;
6301 bool check_mtu = false;
6302
6303 if (plen < sizeof(*params))
6304 return -EINVAL;
6305
6306 if (flags & ~BPF_FIB_LOOKUP_MASK)
6307 return -EINVAL;
6308
6309 if (params->tot_len)
6310 check_mtu = true;
6311
6312 switch (params->family) {
6313 #if IS_ENABLED(CONFIG_INET)
6314 case AF_INET:
6315 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6316 break;
6317 #endif
6318 #if IS_ENABLED(CONFIG_IPV6)
6319 case AF_INET6:
6320 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6321 break;
6322 #endif
6323 }
6324
6325 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6326 struct net_device *dev;
6327
6328 /* When tot_len isn't provided by user, check skb
6329 * against MTU of FIB lookup resulting net_device
6330 */
6331 dev = dev_get_by_index_rcu(net, params->ifindex);
6332 if (!is_skb_forwardable(dev, skb))
6333 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6334
6335 params->mtu_result = dev->mtu; /* union with tot_len */
6336 }
6337
6338 return rc;
6339 }
6340
6341 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6342 .func = bpf_skb_fib_lookup,
6343 .gpl_only = true,
6344 .ret_type = RET_INTEGER,
6345 .arg1_type = ARG_PTR_TO_CTX,
6346 .arg2_type = ARG_PTR_TO_MEM,
6347 .arg3_type = ARG_CONST_SIZE,
6348 .arg4_type = ARG_ANYTHING,
6349 };
6350
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6351 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6352 u32 ifindex)
6353 {
6354 struct net *netns = dev_net(dev_curr);
6355
6356 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6357 if (ifindex == 0)
6358 return dev_curr;
6359
6360 return dev_get_by_index_rcu(netns, ifindex);
6361 }
6362
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6363 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6364 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6365 {
6366 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6367 struct net_device *dev = skb->dev;
6368 int mtu, dev_len, skb_len;
6369
6370 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6371 return -EINVAL;
6372 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6373 return -EINVAL;
6374
6375 dev = __dev_via_ifindex(dev, ifindex);
6376 if (unlikely(!dev))
6377 return -ENODEV;
6378
6379 mtu = READ_ONCE(dev->mtu);
6380 dev_len = mtu + dev->hard_header_len;
6381
6382 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6383 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6384
6385 skb_len += len_diff; /* minus result pass check */
6386 if (skb_len <= dev_len) {
6387 ret = BPF_MTU_CHK_RET_SUCCESS;
6388 goto out;
6389 }
6390 /* At this point, skb->len exceed MTU, but as it include length of all
6391 * segments, it can still be below MTU. The SKB can possibly get
6392 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6393 * must choose if segs are to be MTU checked.
6394 */
6395 if (skb_is_gso(skb)) {
6396 ret = BPF_MTU_CHK_RET_SUCCESS;
6397 if (flags & BPF_MTU_CHK_SEGS &&
6398 !skb_gso_validate_network_len(skb, mtu))
6399 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6400 }
6401 out:
6402 *mtu_len = mtu;
6403 return ret;
6404 }
6405
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6406 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6407 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6408 {
6409 struct net_device *dev = xdp->rxq->dev;
6410 int xdp_len = xdp->data_end - xdp->data;
6411 int ret = BPF_MTU_CHK_RET_SUCCESS;
6412 int mtu, dev_len;
6413
6414 /* XDP variant doesn't support multi-buffer segment check (yet) */
6415 if (unlikely(flags))
6416 return -EINVAL;
6417
6418 dev = __dev_via_ifindex(dev, ifindex);
6419 if (unlikely(!dev))
6420 return -ENODEV;
6421
6422 mtu = READ_ONCE(dev->mtu);
6423 dev_len = mtu + dev->hard_header_len;
6424
6425 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6426 if (*mtu_len)
6427 xdp_len = *mtu_len + dev->hard_header_len;
6428
6429 xdp_len += len_diff; /* minus result pass check */
6430 if (xdp_len > dev_len)
6431 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6432
6433 *mtu_len = mtu;
6434 return ret;
6435 }
6436
6437 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6438 .func = bpf_skb_check_mtu,
6439 .gpl_only = true,
6440 .ret_type = RET_INTEGER,
6441 .arg1_type = ARG_PTR_TO_CTX,
6442 .arg2_type = ARG_ANYTHING,
6443 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6444 .arg3_size = sizeof(u32),
6445 .arg4_type = ARG_ANYTHING,
6446 .arg5_type = ARG_ANYTHING,
6447 };
6448
6449 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6450 .func = bpf_xdp_check_mtu,
6451 .gpl_only = true,
6452 .ret_type = RET_INTEGER,
6453 .arg1_type = ARG_PTR_TO_CTX,
6454 .arg2_type = ARG_ANYTHING,
6455 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6456 .arg3_size = sizeof(u32),
6457 .arg4_type = ARG_ANYTHING,
6458 .arg5_type = ARG_ANYTHING,
6459 };
6460
6461 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6462 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6463 {
6464 int err;
6465 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6466
6467 if (!seg6_validate_srh(srh, len, false))
6468 return -EINVAL;
6469
6470 switch (type) {
6471 case BPF_LWT_ENCAP_SEG6_INLINE:
6472 if (skb->protocol != htons(ETH_P_IPV6))
6473 return -EBADMSG;
6474
6475 err = seg6_do_srh_inline(skb, srh);
6476 break;
6477 case BPF_LWT_ENCAP_SEG6:
6478 skb_reset_inner_headers(skb);
6479 skb->encapsulation = 1;
6480 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6481 break;
6482 default:
6483 return -EINVAL;
6484 }
6485
6486 bpf_compute_data_pointers(skb);
6487 if (err)
6488 return err;
6489
6490 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6491
6492 return seg6_lookup_nexthop(skb, NULL, 0);
6493 }
6494 #endif /* CONFIG_IPV6_SEG6_BPF */
6495
6496 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6497 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6498 bool ingress)
6499 {
6500 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6501 }
6502 #endif
6503
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6504 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6505 u32, len)
6506 {
6507 switch (type) {
6508 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6509 case BPF_LWT_ENCAP_SEG6:
6510 case BPF_LWT_ENCAP_SEG6_INLINE:
6511 return bpf_push_seg6_encap(skb, type, hdr, len);
6512 #endif
6513 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6514 case BPF_LWT_ENCAP_IP:
6515 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6516 #endif
6517 default:
6518 return -EINVAL;
6519 }
6520 }
6521
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6522 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6523 void *, hdr, u32, len)
6524 {
6525 switch (type) {
6526 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6527 case BPF_LWT_ENCAP_IP:
6528 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6529 #endif
6530 default:
6531 return -EINVAL;
6532 }
6533 }
6534
6535 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6536 .func = bpf_lwt_in_push_encap,
6537 .gpl_only = false,
6538 .ret_type = RET_INTEGER,
6539 .arg1_type = ARG_PTR_TO_CTX,
6540 .arg2_type = ARG_ANYTHING,
6541 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6542 .arg4_type = ARG_CONST_SIZE
6543 };
6544
6545 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6546 .func = bpf_lwt_xmit_push_encap,
6547 .gpl_only = false,
6548 .ret_type = RET_INTEGER,
6549 .arg1_type = ARG_PTR_TO_CTX,
6550 .arg2_type = ARG_ANYTHING,
6551 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6552 .arg4_type = ARG_CONST_SIZE
6553 };
6554
6555 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6556 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6557 const void *, from, u32, len)
6558 {
6559 struct seg6_bpf_srh_state *srh_state =
6560 this_cpu_ptr(&seg6_bpf_srh_states);
6561 struct ipv6_sr_hdr *srh = srh_state->srh;
6562 void *srh_tlvs, *srh_end, *ptr;
6563 int srhoff = 0;
6564
6565 lockdep_assert_held(&srh_state->bh_lock);
6566 if (srh == NULL)
6567 return -EINVAL;
6568
6569 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6570 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6571
6572 ptr = skb->data + offset;
6573 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6574 srh_state->valid = false;
6575 else if (ptr < (void *)&srh->flags ||
6576 ptr + len > (void *)&srh->segments)
6577 return -EFAULT;
6578
6579 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6580 return -EFAULT;
6581 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6582 return -EINVAL;
6583 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6584
6585 memcpy(skb->data + offset, from, len);
6586 return 0;
6587 }
6588
6589 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6590 .func = bpf_lwt_seg6_store_bytes,
6591 .gpl_only = false,
6592 .ret_type = RET_INTEGER,
6593 .arg1_type = ARG_PTR_TO_CTX,
6594 .arg2_type = ARG_ANYTHING,
6595 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6596 .arg4_type = ARG_CONST_SIZE
6597 };
6598
bpf_update_srh_state(struct sk_buff * skb)6599 static void bpf_update_srh_state(struct sk_buff *skb)
6600 {
6601 struct seg6_bpf_srh_state *srh_state =
6602 this_cpu_ptr(&seg6_bpf_srh_states);
6603 int srhoff = 0;
6604
6605 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6606 srh_state->srh = NULL;
6607 } else {
6608 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6609 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6610 srh_state->valid = true;
6611 }
6612 }
6613
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6614 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6615 u32, action, void *, param, u32, param_len)
6616 {
6617 struct seg6_bpf_srh_state *srh_state =
6618 this_cpu_ptr(&seg6_bpf_srh_states);
6619 int hdroff = 0;
6620 int err;
6621
6622 lockdep_assert_held(&srh_state->bh_lock);
6623 switch (action) {
6624 case SEG6_LOCAL_ACTION_END_X:
6625 if (!seg6_bpf_has_valid_srh(skb))
6626 return -EBADMSG;
6627 if (param_len != sizeof(struct in6_addr))
6628 return -EINVAL;
6629 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6630 case SEG6_LOCAL_ACTION_END_T:
6631 if (!seg6_bpf_has_valid_srh(skb))
6632 return -EBADMSG;
6633 if (param_len != sizeof(int))
6634 return -EINVAL;
6635 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6636 case SEG6_LOCAL_ACTION_END_DT6:
6637 if (!seg6_bpf_has_valid_srh(skb))
6638 return -EBADMSG;
6639 if (param_len != sizeof(int))
6640 return -EINVAL;
6641
6642 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6643 return -EBADMSG;
6644 if (!pskb_pull(skb, hdroff))
6645 return -EBADMSG;
6646
6647 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6648 skb_reset_network_header(skb);
6649 skb_reset_transport_header(skb);
6650 skb->encapsulation = 0;
6651
6652 bpf_compute_data_pointers(skb);
6653 bpf_update_srh_state(skb);
6654 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6655 case SEG6_LOCAL_ACTION_END_B6:
6656 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6657 return -EBADMSG;
6658 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6659 param, param_len);
6660 if (!err)
6661 bpf_update_srh_state(skb);
6662
6663 return err;
6664 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6665 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6666 return -EBADMSG;
6667 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6668 param, param_len);
6669 if (!err)
6670 bpf_update_srh_state(skb);
6671
6672 return err;
6673 default:
6674 return -EINVAL;
6675 }
6676 }
6677
6678 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6679 .func = bpf_lwt_seg6_action,
6680 .gpl_only = false,
6681 .ret_type = RET_INTEGER,
6682 .arg1_type = ARG_PTR_TO_CTX,
6683 .arg2_type = ARG_ANYTHING,
6684 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6685 .arg4_type = ARG_CONST_SIZE
6686 };
6687
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6688 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6689 s32, len)
6690 {
6691 struct seg6_bpf_srh_state *srh_state =
6692 this_cpu_ptr(&seg6_bpf_srh_states);
6693 struct ipv6_sr_hdr *srh = srh_state->srh;
6694 void *srh_end, *srh_tlvs, *ptr;
6695 struct ipv6hdr *hdr;
6696 int srhoff = 0;
6697 int ret;
6698
6699 lockdep_assert_held(&srh_state->bh_lock);
6700 if (unlikely(srh == NULL))
6701 return -EINVAL;
6702
6703 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6704 ((srh->first_segment + 1) << 4));
6705 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6706 srh_state->hdrlen);
6707 ptr = skb->data + offset;
6708
6709 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6710 return -EFAULT;
6711 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6712 return -EFAULT;
6713
6714 if (len > 0) {
6715 ret = skb_cow_head(skb, len);
6716 if (unlikely(ret < 0))
6717 return ret;
6718
6719 ret = bpf_skb_net_hdr_push(skb, offset, len);
6720 } else {
6721 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6722 }
6723
6724 bpf_compute_data_pointers(skb);
6725 if (unlikely(ret < 0))
6726 return ret;
6727
6728 hdr = (struct ipv6hdr *)skb->data;
6729 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6730
6731 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6732 return -EINVAL;
6733 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6734 srh_state->hdrlen += len;
6735 srh_state->valid = false;
6736 return 0;
6737 }
6738
6739 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6740 .func = bpf_lwt_seg6_adjust_srh,
6741 .gpl_only = false,
6742 .ret_type = RET_INTEGER,
6743 .arg1_type = ARG_PTR_TO_CTX,
6744 .arg2_type = ARG_ANYTHING,
6745 .arg3_type = ARG_ANYTHING,
6746 };
6747 #endif /* CONFIG_IPV6_SEG6_BPF */
6748
6749 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6750 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6751 int dif, int sdif, u8 family, u8 proto)
6752 {
6753 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6754 bool refcounted = false;
6755 struct sock *sk = NULL;
6756
6757 if (family == AF_INET) {
6758 __be32 src4 = tuple->ipv4.saddr;
6759 __be32 dst4 = tuple->ipv4.daddr;
6760
6761 if (proto == IPPROTO_TCP)
6762 sk = __inet_lookup(net, hinfo, NULL, 0,
6763 src4, tuple->ipv4.sport,
6764 dst4, tuple->ipv4.dport,
6765 dif, sdif, &refcounted);
6766 else
6767 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6768 dst4, tuple->ipv4.dport,
6769 dif, sdif, net->ipv4.udp_table, NULL);
6770 #if IS_ENABLED(CONFIG_IPV6)
6771 } else {
6772 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6773 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6774
6775 if (proto == IPPROTO_TCP)
6776 sk = __inet6_lookup(net, hinfo, NULL, 0,
6777 src6, tuple->ipv6.sport,
6778 dst6, ntohs(tuple->ipv6.dport),
6779 dif, sdif, &refcounted);
6780 else if (likely(ipv6_bpf_stub))
6781 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6782 src6, tuple->ipv6.sport,
6783 dst6, tuple->ipv6.dport,
6784 dif, sdif,
6785 net->ipv4.udp_table, NULL);
6786 #endif
6787 }
6788
6789 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6790 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6791 sk = NULL;
6792 }
6793 return sk;
6794 }
6795
6796 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6797 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6798 */
6799 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6800 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6801 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6802 u64 flags, int sdif)
6803 {
6804 struct sock *sk = NULL;
6805 struct net *net;
6806 u8 family;
6807
6808 if (len == sizeof(tuple->ipv4))
6809 family = AF_INET;
6810 else if (len == sizeof(tuple->ipv6))
6811 family = AF_INET6;
6812 else
6813 return NULL;
6814
6815 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6816 goto out;
6817
6818 if (sdif < 0) {
6819 if (family == AF_INET)
6820 sdif = inet_sdif(skb);
6821 else
6822 sdif = inet6_sdif(skb);
6823 }
6824
6825 if ((s32)netns_id < 0) {
6826 net = caller_net;
6827 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6828 } else {
6829 net = get_net_ns_by_id(caller_net, netns_id);
6830 if (unlikely(!net))
6831 goto out;
6832 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6833 put_net(net);
6834 }
6835
6836 out:
6837 return sk;
6838 }
6839
6840 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6841 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6842 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6843 u64 flags, int sdif)
6844 {
6845 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6846 ifindex, proto, netns_id, flags,
6847 sdif);
6848
6849 if (sk) {
6850 struct sock *sk2 = sk_to_full_sk(sk);
6851
6852 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6853 * sock refcnt is decremented to prevent a request_sock leak.
6854 */
6855 if (sk2 != sk) {
6856 sock_gen_put(sk);
6857 /* Ensure there is no need to bump sk2 refcnt */
6858 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6859 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6860 return NULL;
6861 }
6862 sk = sk2;
6863 }
6864 }
6865
6866 return sk;
6867 }
6868
6869 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6870 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6871 u8 proto, u64 netns_id, u64 flags)
6872 {
6873 struct net *caller_net;
6874 int ifindex;
6875
6876 if (skb->dev) {
6877 caller_net = dev_net(skb->dev);
6878 ifindex = skb->dev->ifindex;
6879 } else {
6880 caller_net = sock_net(skb->sk);
6881 ifindex = 0;
6882 }
6883
6884 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6885 netns_id, flags, -1);
6886 }
6887
6888 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6889 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6890 u8 proto, u64 netns_id, u64 flags)
6891 {
6892 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6893 flags);
6894
6895 if (sk) {
6896 struct sock *sk2 = sk_to_full_sk(sk);
6897
6898 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6899 * sock refcnt is decremented to prevent a request_sock leak.
6900 */
6901 if (sk2 != sk) {
6902 sock_gen_put(sk);
6903 /* Ensure there is no need to bump sk2 refcnt */
6904 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6905 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6906 return NULL;
6907 }
6908 sk = sk2;
6909 }
6910 }
6911
6912 return sk;
6913 }
6914
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6915 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6916 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6917 {
6918 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6919 netns_id, flags);
6920 }
6921
6922 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6923 .func = bpf_skc_lookup_tcp,
6924 .gpl_only = false,
6925 .pkt_access = true,
6926 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6927 .arg1_type = ARG_PTR_TO_CTX,
6928 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6929 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6930 .arg4_type = ARG_ANYTHING,
6931 .arg5_type = ARG_ANYTHING,
6932 };
6933
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6934 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6935 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6936 {
6937 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6938 netns_id, flags);
6939 }
6940
6941 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6942 .func = bpf_sk_lookup_tcp,
6943 .gpl_only = false,
6944 .pkt_access = true,
6945 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6946 .arg1_type = ARG_PTR_TO_CTX,
6947 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6948 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6949 .arg4_type = ARG_ANYTHING,
6950 .arg5_type = ARG_ANYTHING,
6951 };
6952
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6953 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6954 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6955 {
6956 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6957 netns_id, flags);
6958 }
6959
6960 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6961 .func = bpf_sk_lookup_udp,
6962 .gpl_only = false,
6963 .pkt_access = true,
6964 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6965 .arg1_type = ARG_PTR_TO_CTX,
6966 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6967 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6968 .arg4_type = ARG_ANYTHING,
6969 .arg5_type = ARG_ANYTHING,
6970 };
6971
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6972 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6973 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6974 {
6975 struct net_device *dev = skb->dev;
6976 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6977 struct net *caller_net = dev_net(dev);
6978
6979 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6980 ifindex, IPPROTO_TCP, netns_id,
6981 flags, sdif);
6982 }
6983
6984 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6985 .func = bpf_tc_skc_lookup_tcp,
6986 .gpl_only = false,
6987 .pkt_access = true,
6988 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6989 .arg1_type = ARG_PTR_TO_CTX,
6990 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6991 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6992 .arg4_type = ARG_ANYTHING,
6993 .arg5_type = ARG_ANYTHING,
6994 };
6995
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6996 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6997 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6998 {
6999 struct net_device *dev = skb->dev;
7000 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7001 struct net *caller_net = dev_net(dev);
7002
7003 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7004 ifindex, IPPROTO_TCP, netns_id,
7005 flags, sdif);
7006 }
7007
7008 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7009 .func = bpf_tc_sk_lookup_tcp,
7010 .gpl_only = false,
7011 .pkt_access = true,
7012 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7013 .arg1_type = ARG_PTR_TO_CTX,
7014 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7015 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7016 .arg4_type = ARG_ANYTHING,
7017 .arg5_type = ARG_ANYTHING,
7018 };
7019
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7020 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7021 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7022 {
7023 struct net_device *dev = skb->dev;
7024 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7025 struct net *caller_net = dev_net(dev);
7026
7027 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7028 ifindex, IPPROTO_UDP, netns_id,
7029 flags, sdif);
7030 }
7031
7032 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7033 .func = bpf_tc_sk_lookup_udp,
7034 .gpl_only = false,
7035 .pkt_access = true,
7036 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7037 .arg1_type = ARG_PTR_TO_CTX,
7038 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7039 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7040 .arg4_type = ARG_ANYTHING,
7041 .arg5_type = ARG_ANYTHING,
7042 };
7043
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7044 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7045 {
7046 if (sk && sk_is_refcounted(sk))
7047 sock_gen_put(sk);
7048 return 0;
7049 }
7050
7051 static const struct bpf_func_proto bpf_sk_release_proto = {
7052 .func = bpf_sk_release,
7053 .gpl_only = false,
7054 .ret_type = RET_INTEGER,
7055 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7056 };
7057
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7058 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7059 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7060 {
7061 struct net_device *dev = ctx->rxq->dev;
7062 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7063 struct net *caller_net = dev_net(dev);
7064
7065 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7066 ifindex, IPPROTO_UDP, netns_id,
7067 flags, sdif);
7068 }
7069
7070 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7071 .func = bpf_xdp_sk_lookup_udp,
7072 .gpl_only = false,
7073 .pkt_access = true,
7074 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7075 .arg1_type = ARG_PTR_TO_CTX,
7076 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7077 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7078 .arg4_type = ARG_ANYTHING,
7079 .arg5_type = ARG_ANYTHING,
7080 };
7081
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7082 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7083 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7084 {
7085 struct net_device *dev = ctx->rxq->dev;
7086 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7087 struct net *caller_net = dev_net(dev);
7088
7089 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7090 ifindex, IPPROTO_TCP, netns_id,
7091 flags, sdif);
7092 }
7093
7094 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7095 .func = bpf_xdp_skc_lookup_tcp,
7096 .gpl_only = false,
7097 .pkt_access = true,
7098 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7099 .arg1_type = ARG_PTR_TO_CTX,
7100 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7101 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7102 .arg4_type = ARG_ANYTHING,
7103 .arg5_type = ARG_ANYTHING,
7104 };
7105
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7106 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7107 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7108 {
7109 struct net_device *dev = ctx->rxq->dev;
7110 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7111 struct net *caller_net = dev_net(dev);
7112
7113 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7114 ifindex, IPPROTO_TCP, netns_id,
7115 flags, sdif);
7116 }
7117
7118 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7119 .func = bpf_xdp_sk_lookup_tcp,
7120 .gpl_only = false,
7121 .pkt_access = true,
7122 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7123 .arg1_type = ARG_PTR_TO_CTX,
7124 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7125 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7126 .arg4_type = ARG_ANYTHING,
7127 .arg5_type = ARG_ANYTHING,
7128 };
7129
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7130 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7131 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7132 {
7133 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7134 sock_net(ctx->sk), 0,
7135 IPPROTO_TCP, netns_id, flags,
7136 -1);
7137 }
7138
7139 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7140 .func = bpf_sock_addr_skc_lookup_tcp,
7141 .gpl_only = false,
7142 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7143 .arg1_type = ARG_PTR_TO_CTX,
7144 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7145 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7146 .arg4_type = ARG_ANYTHING,
7147 .arg5_type = ARG_ANYTHING,
7148 };
7149
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7150 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7151 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7152 {
7153 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7154 sock_net(ctx->sk), 0, IPPROTO_TCP,
7155 netns_id, flags, -1);
7156 }
7157
7158 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7159 .func = bpf_sock_addr_sk_lookup_tcp,
7160 .gpl_only = false,
7161 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7162 .arg1_type = ARG_PTR_TO_CTX,
7163 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7164 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7165 .arg4_type = ARG_ANYTHING,
7166 .arg5_type = ARG_ANYTHING,
7167 };
7168
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7169 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7170 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7171 {
7172 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7173 sock_net(ctx->sk), 0, IPPROTO_UDP,
7174 netns_id, flags, -1);
7175 }
7176
7177 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7178 .func = bpf_sock_addr_sk_lookup_udp,
7179 .gpl_only = false,
7180 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7181 .arg1_type = ARG_PTR_TO_CTX,
7182 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7183 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7184 .arg4_type = ARG_ANYTHING,
7185 .arg5_type = ARG_ANYTHING,
7186 };
7187
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7188 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7189 struct bpf_insn_access_aux *info)
7190 {
7191 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7192 icsk_retransmits))
7193 return false;
7194
7195 if (off % size != 0)
7196 return false;
7197
7198 switch (off) {
7199 case offsetof(struct bpf_tcp_sock, bytes_received):
7200 case offsetof(struct bpf_tcp_sock, bytes_acked):
7201 return size == sizeof(__u64);
7202 default:
7203 return size == sizeof(__u32);
7204 }
7205 }
7206
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7207 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7208 const struct bpf_insn *si,
7209 struct bpf_insn *insn_buf,
7210 struct bpf_prog *prog, u32 *target_size)
7211 {
7212 struct bpf_insn *insn = insn_buf;
7213
7214 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7215 do { \
7216 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7217 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7218 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7219 si->dst_reg, si->src_reg, \
7220 offsetof(struct tcp_sock, FIELD)); \
7221 } while (0)
7222
7223 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7224 do { \
7225 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7226 FIELD) > \
7227 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7228 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7229 struct inet_connection_sock, \
7230 FIELD), \
7231 si->dst_reg, si->src_reg, \
7232 offsetof( \
7233 struct inet_connection_sock, \
7234 FIELD)); \
7235 } while (0)
7236
7237 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7238
7239 switch (si->off) {
7240 case offsetof(struct bpf_tcp_sock, rtt_min):
7241 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7242 sizeof(struct minmax));
7243 BUILD_BUG_ON(sizeof(struct minmax) <
7244 sizeof(struct minmax_sample));
7245
7246 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7247 offsetof(struct tcp_sock, rtt_min) +
7248 offsetof(struct minmax_sample, v));
7249 break;
7250 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7251 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7252 break;
7253 case offsetof(struct bpf_tcp_sock, srtt_us):
7254 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7255 break;
7256 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7257 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7258 break;
7259 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7260 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7261 break;
7262 case offsetof(struct bpf_tcp_sock, snd_nxt):
7263 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7264 break;
7265 case offsetof(struct bpf_tcp_sock, snd_una):
7266 BPF_TCP_SOCK_GET_COMMON(snd_una);
7267 break;
7268 case offsetof(struct bpf_tcp_sock, mss_cache):
7269 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7270 break;
7271 case offsetof(struct bpf_tcp_sock, ecn_flags):
7272 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7273 break;
7274 case offsetof(struct bpf_tcp_sock, rate_delivered):
7275 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7276 break;
7277 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7278 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7279 break;
7280 case offsetof(struct bpf_tcp_sock, packets_out):
7281 BPF_TCP_SOCK_GET_COMMON(packets_out);
7282 break;
7283 case offsetof(struct bpf_tcp_sock, retrans_out):
7284 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7285 break;
7286 case offsetof(struct bpf_tcp_sock, total_retrans):
7287 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7288 break;
7289 case offsetof(struct bpf_tcp_sock, segs_in):
7290 BPF_TCP_SOCK_GET_COMMON(segs_in);
7291 break;
7292 case offsetof(struct bpf_tcp_sock, data_segs_in):
7293 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7294 break;
7295 case offsetof(struct bpf_tcp_sock, segs_out):
7296 BPF_TCP_SOCK_GET_COMMON(segs_out);
7297 break;
7298 case offsetof(struct bpf_tcp_sock, data_segs_out):
7299 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7300 break;
7301 case offsetof(struct bpf_tcp_sock, lost_out):
7302 BPF_TCP_SOCK_GET_COMMON(lost_out);
7303 break;
7304 case offsetof(struct bpf_tcp_sock, sacked_out):
7305 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7306 break;
7307 case offsetof(struct bpf_tcp_sock, bytes_received):
7308 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7309 break;
7310 case offsetof(struct bpf_tcp_sock, bytes_acked):
7311 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7312 break;
7313 case offsetof(struct bpf_tcp_sock, dsack_dups):
7314 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7315 break;
7316 case offsetof(struct bpf_tcp_sock, delivered):
7317 BPF_TCP_SOCK_GET_COMMON(delivered);
7318 break;
7319 case offsetof(struct bpf_tcp_sock, delivered_ce):
7320 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7321 break;
7322 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7323 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7324 break;
7325 }
7326
7327 return insn - insn_buf;
7328 }
7329
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7330 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7331 {
7332 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7333 return (unsigned long)sk;
7334
7335 return (unsigned long)NULL;
7336 }
7337
7338 const struct bpf_func_proto bpf_tcp_sock_proto = {
7339 .func = bpf_tcp_sock,
7340 .gpl_only = false,
7341 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7342 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7343 };
7344
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7345 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7346 {
7347 sk = sk_to_full_sk(sk);
7348
7349 if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7350 return (unsigned long)sk;
7351
7352 return (unsigned long)NULL;
7353 }
7354
7355 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7356 .func = bpf_get_listener_sock,
7357 .gpl_only = false,
7358 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7359 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7360 };
7361
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7362 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7363 {
7364 unsigned int iphdr_len;
7365
7366 switch (skb_protocol(skb, true)) {
7367 case cpu_to_be16(ETH_P_IP):
7368 iphdr_len = sizeof(struct iphdr);
7369 break;
7370 case cpu_to_be16(ETH_P_IPV6):
7371 iphdr_len = sizeof(struct ipv6hdr);
7372 break;
7373 default:
7374 return 0;
7375 }
7376
7377 if (skb_headlen(skb) < iphdr_len)
7378 return 0;
7379
7380 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7381 return 0;
7382
7383 return INET_ECN_set_ce(skb);
7384 }
7385
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7386 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7387 struct bpf_insn_access_aux *info)
7388 {
7389 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7390 return false;
7391
7392 if (off % size != 0)
7393 return false;
7394
7395 switch (off) {
7396 default:
7397 return size == sizeof(__u32);
7398 }
7399 }
7400
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7401 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7402 const struct bpf_insn *si,
7403 struct bpf_insn *insn_buf,
7404 struct bpf_prog *prog, u32 *target_size)
7405 {
7406 struct bpf_insn *insn = insn_buf;
7407
7408 #define BPF_XDP_SOCK_GET(FIELD) \
7409 do { \
7410 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7411 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7412 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7413 si->dst_reg, si->src_reg, \
7414 offsetof(struct xdp_sock, FIELD)); \
7415 } while (0)
7416
7417 switch (si->off) {
7418 case offsetof(struct bpf_xdp_sock, queue_id):
7419 BPF_XDP_SOCK_GET(queue_id);
7420 break;
7421 }
7422
7423 return insn - insn_buf;
7424 }
7425
7426 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7427 .func = bpf_skb_ecn_set_ce,
7428 .gpl_only = false,
7429 .ret_type = RET_INTEGER,
7430 .arg1_type = ARG_PTR_TO_CTX,
7431 };
7432
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7433 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7434 struct tcphdr *, th, u32, th_len)
7435 {
7436 #ifdef CONFIG_SYN_COOKIES
7437 int ret;
7438
7439 if (unlikely(!sk || th_len < sizeof(*th)))
7440 return -EINVAL;
7441
7442 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7443 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7444 return -EINVAL;
7445
7446 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7447 return -EINVAL;
7448
7449 if (!th->ack || th->rst || th->syn)
7450 return -ENOENT;
7451
7452 if (unlikely(iph_len < sizeof(struct iphdr)))
7453 return -EINVAL;
7454
7455 if (tcp_synq_no_recent_overflow(sk))
7456 return -ENOENT;
7457
7458 /* Both struct iphdr and struct ipv6hdr have the version field at the
7459 * same offset so we can cast to the shorter header (struct iphdr).
7460 */
7461 switch (((struct iphdr *)iph)->version) {
7462 case 4:
7463 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7464 return -EINVAL;
7465
7466 ret = __cookie_v4_check((struct iphdr *)iph, th);
7467 break;
7468
7469 #if IS_BUILTIN(CONFIG_IPV6)
7470 case 6:
7471 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7472 return -EINVAL;
7473
7474 if (sk->sk_family != AF_INET6)
7475 return -EINVAL;
7476
7477 ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7478 break;
7479 #endif /* CONFIG_IPV6 */
7480
7481 default:
7482 return -EPROTONOSUPPORT;
7483 }
7484
7485 if (ret > 0)
7486 return 0;
7487
7488 return -ENOENT;
7489 #else
7490 return -ENOTSUPP;
7491 #endif
7492 }
7493
7494 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7495 .func = bpf_tcp_check_syncookie,
7496 .gpl_only = true,
7497 .pkt_access = true,
7498 .ret_type = RET_INTEGER,
7499 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7500 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7501 .arg3_type = ARG_CONST_SIZE,
7502 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7503 .arg5_type = ARG_CONST_SIZE,
7504 };
7505
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7506 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7507 struct tcphdr *, th, u32, th_len)
7508 {
7509 #ifdef CONFIG_SYN_COOKIES
7510 u32 cookie;
7511 u16 mss;
7512
7513 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7514 return -EINVAL;
7515
7516 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7517 return -EINVAL;
7518
7519 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7520 return -ENOENT;
7521
7522 if (!th->syn || th->ack || th->fin || th->rst)
7523 return -EINVAL;
7524
7525 if (unlikely(iph_len < sizeof(struct iphdr)))
7526 return -EINVAL;
7527
7528 /* Both struct iphdr and struct ipv6hdr have the version field at the
7529 * same offset so we can cast to the shorter header (struct iphdr).
7530 */
7531 switch (((struct iphdr *)iph)->version) {
7532 case 4:
7533 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7534 return -EINVAL;
7535
7536 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7537 break;
7538
7539 #if IS_BUILTIN(CONFIG_IPV6)
7540 case 6:
7541 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7542 return -EINVAL;
7543
7544 if (sk->sk_family != AF_INET6)
7545 return -EINVAL;
7546
7547 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7548 break;
7549 #endif /* CONFIG_IPV6 */
7550
7551 default:
7552 return -EPROTONOSUPPORT;
7553 }
7554 if (mss == 0)
7555 return -ENOENT;
7556
7557 return cookie | ((u64)mss << 32);
7558 #else
7559 return -EOPNOTSUPP;
7560 #endif /* CONFIG_SYN_COOKIES */
7561 }
7562
7563 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7564 .func = bpf_tcp_gen_syncookie,
7565 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7566 .pkt_access = true,
7567 .ret_type = RET_INTEGER,
7568 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7569 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7570 .arg3_type = ARG_CONST_SIZE,
7571 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7572 .arg5_type = ARG_CONST_SIZE,
7573 };
7574
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7575 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7576 {
7577 if (!sk || flags != 0)
7578 return -EINVAL;
7579 if (!skb_at_tc_ingress(skb))
7580 return -EOPNOTSUPP;
7581 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7582 return -ENETUNREACH;
7583 if (sk_unhashed(sk))
7584 return -EOPNOTSUPP;
7585 if (sk_is_refcounted(sk) &&
7586 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7587 return -ENOENT;
7588
7589 skb_orphan(skb);
7590 skb->sk = sk;
7591 skb->destructor = sock_pfree;
7592
7593 return 0;
7594 }
7595
7596 static const struct bpf_func_proto bpf_sk_assign_proto = {
7597 .func = bpf_sk_assign,
7598 .gpl_only = false,
7599 .ret_type = RET_INTEGER,
7600 .arg1_type = ARG_PTR_TO_CTX,
7601 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7602 .arg3_type = ARG_ANYTHING,
7603 };
7604
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7605 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7606 u8 search_kind, const u8 *magic,
7607 u8 magic_len, bool *eol)
7608 {
7609 u8 kind, kind_len;
7610
7611 *eol = false;
7612
7613 while (op < opend) {
7614 kind = op[0];
7615
7616 if (kind == TCPOPT_EOL) {
7617 *eol = true;
7618 return ERR_PTR(-ENOMSG);
7619 } else if (kind == TCPOPT_NOP) {
7620 op++;
7621 continue;
7622 }
7623
7624 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7625 /* Something is wrong in the received header.
7626 * Follow the TCP stack's tcp_parse_options()
7627 * and just bail here.
7628 */
7629 return ERR_PTR(-EFAULT);
7630
7631 kind_len = op[1];
7632 if (search_kind == kind) {
7633 if (!magic_len)
7634 return op;
7635
7636 if (magic_len > kind_len - 2)
7637 return ERR_PTR(-ENOMSG);
7638
7639 if (!memcmp(&op[2], magic, magic_len))
7640 return op;
7641 }
7642
7643 op += kind_len;
7644 }
7645
7646 return ERR_PTR(-ENOMSG);
7647 }
7648
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7649 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7650 void *, search_res, u32, len, u64, flags)
7651 {
7652 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7653 const u8 *op, *opend, *magic, *search = search_res;
7654 u8 search_kind, search_len, copy_len, magic_len;
7655 int ret;
7656
7657 if (!is_locked_tcp_sock_ops(bpf_sock))
7658 return -EOPNOTSUPP;
7659
7660 /* 2 byte is the minimal option len except TCPOPT_NOP and
7661 * TCPOPT_EOL which are useless for the bpf prog to learn
7662 * and this helper disallow loading them also.
7663 */
7664 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7665 return -EINVAL;
7666
7667 search_kind = search[0];
7668 search_len = search[1];
7669
7670 if (search_len > len || search_kind == TCPOPT_NOP ||
7671 search_kind == TCPOPT_EOL)
7672 return -EINVAL;
7673
7674 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7675 /* 16 or 32 bit magic. +2 for kind and kind length */
7676 if (search_len != 4 && search_len != 6)
7677 return -EINVAL;
7678 magic = &search[2];
7679 magic_len = search_len - 2;
7680 } else {
7681 if (search_len)
7682 return -EINVAL;
7683 magic = NULL;
7684 magic_len = 0;
7685 }
7686
7687 if (load_syn) {
7688 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7689 if (ret < 0)
7690 return ret;
7691
7692 opend = op + ret;
7693 op += sizeof(struct tcphdr);
7694 } else {
7695 if (!bpf_sock->skb ||
7696 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7697 /* This bpf_sock->op cannot call this helper */
7698 return -EPERM;
7699
7700 opend = bpf_sock->skb_data_end;
7701 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7702 }
7703
7704 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7705 &eol);
7706 if (IS_ERR(op))
7707 return PTR_ERR(op);
7708
7709 copy_len = op[1];
7710 ret = copy_len;
7711 if (copy_len > len) {
7712 ret = -ENOSPC;
7713 copy_len = len;
7714 }
7715
7716 memcpy(search_res, op, copy_len);
7717 return ret;
7718 }
7719
7720 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7721 .func = bpf_sock_ops_load_hdr_opt,
7722 .gpl_only = false,
7723 .ret_type = RET_INTEGER,
7724 .arg1_type = ARG_PTR_TO_CTX,
7725 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE,
7726 .arg3_type = ARG_CONST_SIZE,
7727 .arg4_type = ARG_ANYTHING,
7728 };
7729
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7730 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7731 const void *, from, u32, len, u64, flags)
7732 {
7733 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7734 const u8 *op, *new_op, *magic = NULL;
7735 struct sk_buff *skb;
7736 bool eol;
7737
7738 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7739 return -EPERM;
7740
7741 if (len < 2 || flags)
7742 return -EINVAL;
7743
7744 new_op = from;
7745 new_kind = new_op[0];
7746 new_kind_len = new_op[1];
7747
7748 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7749 new_kind == TCPOPT_EOL)
7750 return -EINVAL;
7751
7752 if (new_kind_len > bpf_sock->remaining_opt_len)
7753 return -ENOSPC;
7754
7755 /* 253 is another experimental kind */
7756 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7757 if (new_kind_len < 4)
7758 return -EINVAL;
7759 /* Match for the 2 byte magic also.
7760 * RFC 6994: the magic could be 2 or 4 bytes.
7761 * Hence, matching by 2 byte only is on the
7762 * conservative side but it is the right
7763 * thing to do for the 'search-for-duplication'
7764 * purpose.
7765 */
7766 magic = &new_op[2];
7767 magic_len = 2;
7768 }
7769
7770 /* Check for duplication */
7771 skb = bpf_sock->skb;
7772 op = skb->data + sizeof(struct tcphdr);
7773 opend = bpf_sock->skb_data_end;
7774
7775 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7776 &eol);
7777 if (!IS_ERR(op))
7778 return -EEXIST;
7779
7780 if (PTR_ERR(op) != -ENOMSG)
7781 return PTR_ERR(op);
7782
7783 if (eol)
7784 /* The option has been ended. Treat it as no more
7785 * header option can be written.
7786 */
7787 return -ENOSPC;
7788
7789 /* No duplication found. Store the header option. */
7790 memcpy(opend, from, new_kind_len);
7791
7792 bpf_sock->remaining_opt_len -= new_kind_len;
7793 bpf_sock->skb_data_end += new_kind_len;
7794
7795 return 0;
7796 }
7797
7798 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7799 .func = bpf_sock_ops_store_hdr_opt,
7800 .gpl_only = false,
7801 .ret_type = RET_INTEGER,
7802 .arg1_type = ARG_PTR_TO_CTX,
7803 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7804 .arg3_type = ARG_CONST_SIZE,
7805 .arg4_type = ARG_ANYTHING,
7806 };
7807
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7808 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7809 u32, len, u64, flags)
7810 {
7811 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7812 return -EPERM;
7813
7814 if (flags || len < 2)
7815 return -EINVAL;
7816
7817 if (len > bpf_sock->remaining_opt_len)
7818 return -ENOSPC;
7819
7820 bpf_sock->remaining_opt_len -= len;
7821
7822 return 0;
7823 }
7824
7825 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7826 .func = bpf_sock_ops_reserve_hdr_opt,
7827 .gpl_only = false,
7828 .ret_type = RET_INTEGER,
7829 .arg1_type = ARG_PTR_TO_CTX,
7830 .arg2_type = ARG_ANYTHING,
7831 .arg3_type = ARG_ANYTHING,
7832 };
7833
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7834 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7835 u64, tstamp, u32, tstamp_type)
7836 {
7837 /* skb_clear_delivery_time() is done for inet protocol */
7838 if (skb->protocol != htons(ETH_P_IP) &&
7839 skb->protocol != htons(ETH_P_IPV6))
7840 return -EOPNOTSUPP;
7841
7842 switch (tstamp_type) {
7843 case BPF_SKB_CLOCK_REALTIME:
7844 skb->tstamp = tstamp;
7845 skb->tstamp_type = SKB_CLOCK_REALTIME;
7846 break;
7847 case BPF_SKB_CLOCK_MONOTONIC:
7848 if (!tstamp)
7849 return -EINVAL;
7850 skb->tstamp = tstamp;
7851 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7852 break;
7853 case BPF_SKB_CLOCK_TAI:
7854 if (!tstamp)
7855 return -EINVAL;
7856 skb->tstamp = tstamp;
7857 skb->tstamp_type = SKB_CLOCK_TAI;
7858 break;
7859 default:
7860 return -EINVAL;
7861 }
7862
7863 return 0;
7864 }
7865
7866 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7867 .func = bpf_skb_set_tstamp,
7868 .gpl_only = false,
7869 .ret_type = RET_INTEGER,
7870 .arg1_type = ARG_PTR_TO_CTX,
7871 .arg2_type = ARG_ANYTHING,
7872 .arg3_type = ARG_ANYTHING,
7873 };
7874
7875 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7876 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7877 struct tcphdr *, th, u32, th_len)
7878 {
7879 u32 cookie;
7880 u16 mss;
7881
7882 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7883 return -EINVAL;
7884
7885 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7886 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7887
7888 return cookie | ((u64)mss << 32);
7889 }
7890
7891 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7892 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7893 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7894 .pkt_access = true,
7895 .ret_type = RET_INTEGER,
7896 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7897 .arg1_size = sizeof(struct iphdr),
7898 .arg2_type = ARG_PTR_TO_MEM,
7899 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7900 };
7901
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7902 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7903 struct tcphdr *, th, u32, th_len)
7904 {
7905 #if IS_BUILTIN(CONFIG_IPV6)
7906 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7907 sizeof(struct ipv6hdr);
7908 u32 cookie;
7909 u16 mss;
7910
7911 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7912 return -EINVAL;
7913
7914 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7915 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7916
7917 return cookie | ((u64)mss << 32);
7918 #else
7919 return -EPROTONOSUPPORT;
7920 #endif
7921 }
7922
7923 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7924 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7925 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7926 .pkt_access = true,
7927 .ret_type = RET_INTEGER,
7928 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7929 .arg1_size = sizeof(struct ipv6hdr),
7930 .arg2_type = ARG_PTR_TO_MEM,
7931 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7932 };
7933
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7934 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7935 struct tcphdr *, th)
7936 {
7937 if (__cookie_v4_check(iph, th) > 0)
7938 return 0;
7939
7940 return -EACCES;
7941 }
7942
7943 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7944 .func = bpf_tcp_raw_check_syncookie_ipv4,
7945 .gpl_only = true, /* __cookie_v4_check is GPL */
7946 .pkt_access = true,
7947 .ret_type = RET_INTEGER,
7948 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7949 .arg1_size = sizeof(struct iphdr),
7950 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7951 .arg2_size = sizeof(struct tcphdr),
7952 };
7953
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7954 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7955 struct tcphdr *, th)
7956 {
7957 #if IS_BUILTIN(CONFIG_IPV6)
7958 if (__cookie_v6_check(iph, th) > 0)
7959 return 0;
7960
7961 return -EACCES;
7962 #else
7963 return -EPROTONOSUPPORT;
7964 #endif
7965 }
7966
7967 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7968 .func = bpf_tcp_raw_check_syncookie_ipv6,
7969 .gpl_only = true, /* __cookie_v6_check is GPL */
7970 .pkt_access = true,
7971 .ret_type = RET_INTEGER,
7972 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7973 .arg1_size = sizeof(struct ipv6hdr),
7974 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7975 .arg2_size = sizeof(struct tcphdr),
7976 };
7977 #endif /* CONFIG_SYN_COOKIES */
7978
7979 #endif /* CONFIG_INET */
7980
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7981 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7982 {
7983 switch (func_id) {
7984 case BPF_FUNC_clone_redirect:
7985 case BPF_FUNC_l3_csum_replace:
7986 case BPF_FUNC_l4_csum_replace:
7987 case BPF_FUNC_lwt_push_encap:
7988 case BPF_FUNC_lwt_seg6_action:
7989 case BPF_FUNC_lwt_seg6_adjust_srh:
7990 case BPF_FUNC_lwt_seg6_store_bytes:
7991 case BPF_FUNC_msg_pop_data:
7992 case BPF_FUNC_msg_pull_data:
7993 case BPF_FUNC_msg_push_data:
7994 case BPF_FUNC_skb_adjust_room:
7995 case BPF_FUNC_skb_change_head:
7996 case BPF_FUNC_skb_change_proto:
7997 case BPF_FUNC_skb_change_tail:
7998 case BPF_FUNC_skb_pull_data:
7999 case BPF_FUNC_skb_store_bytes:
8000 case BPF_FUNC_skb_vlan_pop:
8001 case BPF_FUNC_skb_vlan_push:
8002 case BPF_FUNC_store_hdr_opt:
8003 case BPF_FUNC_xdp_adjust_head:
8004 case BPF_FUNC_xdp_adjust_meta:
8005 case BPF_FUNC_xdp_adjust_tail:
8006 /* tail-called program could call any of the above */
8007 case BPF_FUNC_tail_call:
8008 return true;
8009 default:
8010 return false;
8011 }
8012 }
8013
8014 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8015 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8016
8017 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8018 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8019 {
8020 const struct bpf_func_proto *func_proto;
8021
8022 func_proto = cgroup_common_func_proto(func_id, prog);
8023 if (func_proto)
8024 return func_proto;
8025
8026 func_proto = cgroup_current_func_proto(func_id, prog);
8027 if (func_proto)
8028 return func_proto;
8029
8030 switch (func_id) {
8031 case BPF_FUNC_get_socket_cookie:
8032 return &bpf_get_socket_cookie_sock_proto;
8033 case BPF_FUNC_get_netns_cookie:
8034 return &bpf_get_netns_cookie_sock_proto;
8035 case BPF_FUNC_perf_event_output:
8036 return &bpf_event_output_data_proto;
8037 case BPF_FUNC_sk_storage_get:
8038 return &bpf_sk_storage_get_cg_sock_proto;
8039 case BPF_FUNC_ktime_get_coarse_ns:
8040 return &bpf_ktime_get_coarse_ns_proto;
8041 default:
8042 return bpf_base_func_proto(func_id, prog);
8043 }
8044 }
8045
8046 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8047 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8048 {
8049 const struct bpf_func_proto *func_proto;
8050
8051 func_proto = cgroup_common_func_proto(func_id, prog);
8052 if (func_proto)
8053 return func_proto;
8054
8055 func_proto = cgroup_current_func_proto(func_id, prog);
8056 if (func_proto)
8057 return func_proto;
8058
8059 switch (func_id) {
8060 case BPF_FUNC_bind:
8061 switch (prog->expected_attach_type) {
8062 case BPF_CGROUP_INET4_CONNECT:
8063 case BPF_CGROUP_INET6_CONNECT:
8064 return &bpf_bind_proto;
8065 default:
8066 return NULL;
8067 }
8068 case BPF_FUNC_get_socket_cookie:
8069 return &bpf_get_socket_cookie_sock_addr_proto;
8070 case BPF_FUNC_get_netns_cookie:
8071 return &bpf_get_netns_cookie_sock_addr_proto;
8072 case BPF_FUNC_perf_event_output:
8073 return &bpf_event_output_data_proto;
8074 #ifdef CONFIG_INET
8075 case BPF_FUNC_sk_lookup_tcp:
8076 return &bpf_sock_addr_sk_lookup_tcp_proto;
8077 case BPF_FUNC_sk_lookup_udp:
8078 return &bpf_sock_addr_sk_lookup_udp_proto;
8079 case BPF_FUNC_sk_release:
8080 return &bpf_sk_release_proto;
8081 case BPF_FUNC_skc_lookup_tcp:
8082 return &bpf_sock_addr_skc_lookup_tcp_proto;
8083 #endif /* CONFIG_INET */
8084 case BPF_FUNC_sk_storage_get:
8085 return &bpf_sk_storage_get_proto;
8086 case BPF_FUNC_sk_storage_delete:
8087 return &bpf_sk_storage_delete_proto;
8088 case BPF_FUNC_setsockopt:
8089 switch (prog->expected_attach_type) {
8090 case BPF_CGROUP_INET4_BIND:
8091 case BPF_CGROUP_INET6_BIND:
8092 case BPF_CGROUP_INET4_CONNECT:
8093 case BPF_CGROUP_INET6_CONNECT:
8094 case BPF_CGROUP_UNIX_CONNECT:
8095 case BPF_CGROUP_UDP4_RECVMSG:
8096 case BPF_CGROUP_UDP6_RECVMSG:
8097 case BPF_CGROUP_UNIX_RECVMSG:
8098 case BPF_CGROUP_UDP4_SENDMSG:
8099 case BPF_CGROUP_UDP6_SENDMSG:
8100 case BPF_CGROUP_UNIX_SENDMSG:
8101 case BPF_CGROUP_INET4_GETPEERNAME:
8102 case BPF_CGROUP_INET6_GETPEERNAME:
8103 case BPF_CGROUP_UNIX_GETPEERNAME:
8104 case BPF_CGROUP_INET4_GETSOCKNAME:
8105 case BPF_CGROUP_INET6_GETSOCKNAME:
8106 case BPF_CGROUP_UNIX_GETSOCKNAME:
8107 return &bpf_sock_addr_setsockopt_proto;
8108 default:
8109 return NULL;
8110 }
8111 case BPF_FUNC_getsockopt:
8112 switch (prog->expected_attach_type) {
8113 case BPF_CGROUP_INET4_BIND:
8114 case BPF_CGROUP_INET6_BIND:
8115 case BPF_CGROUP_INET4_CONNECT:
8116 case BPF_CGROUP_INET6_CONNECT:
8117 case BPF_CGROUP_UNIX_CONNECT:
8118 case BPF_CGROUP_UDP4_RECVMSG:
8119 case BPF_CGROUP_UDP6_RECVMSG:
8120 case BPF_CGROUP_UNIX_RECVMSG:
8121 case BPF_CGROUP_UDP4_SENDMSG:
8122 case BPF_CGROUP_UDP6_SENDMSG:
8123 case BPF_CGROUP_UNIX_SENDMSG:
8124 case BPF_CGROUP_INET4_GETPEERNAME:
8125 case BPF_CGROUP_INET6_GETPEERNAME:
8126 case BPF_CGROUP_UNIX_GETPEERNAME:
8127 case BPF_CGROUP_INET4_GETSOCKNAME:
8128 case BPF_CGROUP_INET6_GETSOCKNAME:
8129 case BPF_CGROUP_UNIX_GETSOCKNAME:
8130 return &bpf_sock_addr_getsockopt_proto;
8131 default:
8132 return NULL;
8133 }
8134 default:
8135 return bpf_sk_base_func_proto(func_id, prog);
8136 }
8137 }
8138
8139 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8140 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8141 {
8142 switch (func_id) {
8143 case BPF_FUNC_skb_load_bytes:
8144 return &bpf_skb_load_bytes_proto;
8145 case BPF_FUNC_skb_load_bytes_relative:
8146 return &bpf_skb_load_bytes_relative_proto;
8147 case BPF_FUNC_get_socket_cookie:
8148 return &bpf_get_socket_cookie_proto;
8149 case BPF_FUNC_get_netns_cookie:
8150 return &bpf_get_netns_cookie_proto;
8151 case BPF_FUNC_get_socket_uid:
8152 return &bpf_get_socket_uid_proto;
8153 case BPF_FUNC_perf_event_output:
8154 return &bpf_skb_event_output_proto;
8155 default:
8156 return bpf_sk_base_func_proto(func_id, prog);
8157 }
8158 }
8159
8160 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8161 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8162
8163 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8164 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8165 {
8166 const struct bpf_func_proto *func_proto;
8167
8168 func_proto = cgroup_common_func_proto(func_id, prog);
8169 if (func_proto)
8170 return func_proto;
8171
8172 switch (func_id) {
8173 case BPF_FUNC_sk_fullsock:
8174 return &bpf_sk_fullsock_proto;
8175 case BPF_FUNC_sk_storage_get:
8176 return &bpf_sk_storage_get_proto;
8177 case BPF_FUNC_sk_storage_delete:
8178 return &bpf_sk_storage_delete_proto;
8179 case BPF_FUNC_perf_event_output:
8180 return &bpf_skb_event_output_proto;
8181 #ifdef CONFIG_SOCK_CGROUP_DATA
8182 case BPF_FUNC_skb_cgroup_id:
8183 return &bpf_skb_cgroup_id_proto;
8184 case BPF_FUNC_skb_ancestor_cgroup_id:
8185 return &bpf_skb_ancestor_cgroup_id_proto;
8186 case BPF_FUNC_sk_cgroup_id:
8187 return &bpf_sk_cgroup_id_proto;
8188 case BPF_FUNC_sk_ancestor_cgroup_id:
8189 return &bpf_sk_ancestor_cgroup_id_proto;
8190 #endif
8191 #ifdef CONFIG_INET
8192 case BPF_FUNC_sk_lookup_tcp:
8193 return &bpf_sk_lookup_tcp_proto;
8194 case BPF_FUNC_sk_lookup_udp:
8195 return &bpf_sk_lookup_udp_proto;
8196 case BPF_FUNC_sk_release:
8197 return &bpf_sk_release_proto;
8198 case BPF_FUNC_skc_lookup_tcp:
8199 return &bpf_skc_lookup_tcp_proto;
8200 case BPF_FUNC_tcp_sock:
8201 return &bpf_tcp_sock_proto;
8202 case BPF_FUNC_get_listener_sock:
8203 return &bpf_get_listener_sock_proto;
8204 case BPF_FUNC_skb_ecn_set_ce:
8205 return &bpf_skb_ecn_set_ce_proto;
8206 #endif
8207 default:
8208 return sk_filter_func_proto(func_id, prog);
8209 }
8210 }
8211
8212 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8213 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8214 {
8215 switch (func_id) {
8216 case BPF_FUNC_skb_store_bytes:
8217 return &bpf_skb_store_bytes_proto;
8218 case BPF_FUNC_skb_load_bytes:
8219 return &bpf_skb_load_bytes_proto;
8220 case BPF_FUNC_skb_load_bytes_relative:
8221 return &bpf_skb_load_bytes_relative_proto;
8222 case BPF_FUNC_skb_pull_data:
8223 return &bpf_skb_pull_data_proto;
8224 case BPF_FUNC_csum_diff:
8225 return &bpf_csum_diff_proto;
8226 case BPF_FUNC_csum_update:
8227 return &bpf_csum_update_proto;
8228 case BPF_FUNC_csum_level:
8229 return &bpf_csum_level_proto;
8230 case BPF_FUNC_l3_csum_replace:
8231 return &bpf_l3_csum_replace_proto;
8232 case BPF_FUNC_l4_csum_replace:
8233 return &bpf_l4_csum_replace_proto;
8234 case BPF_FUNC_clone_redirect:
8235 return &bpf_clone_redirect_proto;
8236 case BPF_FUNC_get_cgroup_classid:
8237 return &bpf_get_cgroup_classid_proto;
8238 case BPF_FUNC_skb_vlan_push:
8239 return &bpf_skb_vlan_push_proto;
8240 case BPF_FUNC_skb_vlan_pop:
8241 return &bpf_skb_vlan_pop_proto;
8242 case BPF_FUNC_skb_change_proto:
8243 return &bpf_skb_change_proto_proto;
8244 case BPF_FUNC_skb_change_type:
8245 return &bpf_skb_change_type_proto;
8246 case BPF_FUNC_skb_adjust_room:
8247 return &bpf_skb_adjust_room_proto;
8248 case BPF_FUNC_skb_change_tail:
8249 return &bpf_skb_change_tail_proto;
8250 case BPF_FUNC_skb_change_head:
8251 return &bpf_skb_change_head_proto;
8252 case BPF_FUNC_skb_get_tunnel_key:
8253 return &bpf_skb_get_tunnel_key_proto;
8254 case BPF_FUNC_skb_set_tunnel_key:
8255 return bpf_get_skb_set_tunnel_proto(func_id);
8256 case BPF_FUNC_skb_get_tunnel_opt:
8257 return &bpf_skb_get_tunnel_opt_proto;
8258 case BPF_FUNC_skb_set_tunnel_opt:
8259 return bpf_get_skb_set_tunnel_proto(func_id);
8260 case BPF_FUNC_redirect:
8261 return &bpf_redirect_proto;
8262 case BPF_FUNC_redirect_neigh:
8263 return &bpf_redirect_neigh_proto;
8264 case BPF_FUNC_redirect_peer:
8265 return &bpf_redirect_peer_proto;
8266 case BPF_FUNC_get_route_realm:
8267 return &bpf_get_route_realm_proto;
8268 case BPF_FUNC_get_hash_recalc:
8269 return &bpf_get_hash_recalc_proto;
8270 case BPF_FUNC_set_hash_invalid:
8271 return &bpf_set_hash_invalid_proto;
8272 case BPF_FUNC_set_hash:
8273 return &bpf_set_hash_proto;
8274 case BPF_FUNC_perf_event_output:
8275 return &bpf_skb_event_output_proto;
8276 case BPF_FUNC_get_smp_processor_id:
8277 return &bpf_get_smp_processor_id_proto;
8278 case BPF_FUNC_skb_under_cgroup:
8279 return &bpf_skb_under_cgroup_proto;
8280 case BPF_FUNC_get_socket_cookie:
8281 return &bpf_get_socket_cookie_proto;
8282 case BPF_FUNC_get_netns_cookie:
8283 return &bpf_get_netns_cookie_proto;
8284 case BPF_FUNC_get_socket_uid:
8285 return &bpf_get_socket_uid_proto;
8286 case BPF_FUNC_fib_lookup:
8287 return &bpf_skb_fib_lookup_proto;
8288 case BPF_FUNC_check_mtu:
8289 return &bpf_skb_check_mtu_proto;
8290 case BPF_FUNC_sk_fullsock:
8291 return &bpf_sk_fullsock_proto;
8292 case BPF_FUNC_sk_storage_get:
8293 return &bpf_sk_storage_get_proto;
8294 case BPF_FUNC_sk_storage_delete:
8295 return &bpf_sk_storage_delete_proto;
8296 #ifdef CONFIG_XFRM
8297 case BPF_FUNC_skb_get_xfrm_state:
8298 return &bpf_skb_get_xfrm_state_proto;
8299 #endif
8300 #ifdef CONFIG_CGROUP_NET_CLASSID
8301 case BPF_FUNC_skb_cgroup_classid:
8302 return &bpf_skb_cgroup_classid_proto;
8303 #endif
8304 #ifdef CONFIG_SOCK_CGROUP_DATA
8305 case BPF_FUNC_skb_cgroup_id:
8306 return &bpf_skb_cgroup_id_proto;
8307 case BPF_FUNC_skb_ancestor_cgroup_id:
8308 return &bpf_skb_ancestor_cgroup_id_proto;
8309 #endif
8310 #ifdef CONFIG_INET
8311 case BPF_FUNC_sk_lookup_tcp:
8312 return &bpf_tc_sk_lookup_tcp_proto;
8313 case BPF_FUNC_sk_lookup_udp:
8314 return &bpf_tc_sk_lookup_udp_proto;
8315 case BPF_FUNC_sk_release:
8316 return &bpf_sk_release_proto;
8317 case BPF_FUNC_tcp_sock:
8318 return &bpf_tcp_sock_proto;
8319 case BPF_FUNC_get_listener_sock:
8320 return &bpf_get_listener_sock_proto;
8321 case BPF_FUNC_skc_lookup_tcp:
8322 return &bpf_tc_skc_lookup_tcp_proto;
8323 case BPF_FUNC_tcp_check_syncookie:
8324 return &bpf_tcp_check_syncookie_proto;
8325 case BPF_FUNC_skb_ecn_set_ce:
8326 return &bpf_skb_ecn_set_ce_proto;
8327 case BPF_FUNC_tcp_gen_syncookie:
8328 return &bpf_tcp_gen_syncookie_proto;
8329 case BPF_FUNC_sk_assign:
8330 return &bpf_sk_assign_proto;
8331 case BPF_FUNC_skb_set_tstamp:
8332 return &bpf_skb_set_tstamp_proto;
8333 #ifdef CONFIG_SYN_COOKIES
8334 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8335 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8336 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8337 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8338 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8339 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8340 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8341 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8342 #endif
8343 #endif
8344 default:
8345 return bpf_sk_base_func_proto(func_id, prog);
8346 }
8347 }
8348
8349 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8350 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8351 {
8352 switch (func_id) {
8353 case BPF_FUNC_perf_event_output:
8354 return &bpf_xdp_event_output_proto;
8355 case BPF_FUNC_get_smp_processor_id:
8356 return &bpf_get_smp_processor_id_proto;
8357 case BPF_FUNC_csum_diff:
8358 return &bpf_csum_diff_proto;
8359 case BPF_FUNC_xdp_adjust_head:
8360 return &bpf_xdp_adjust_head_proto;
8361 case BPF_FUNC_xdp_adjust_meta:
8362 return &bpf_xdp_adjust_meta_proto;
8363 case BPF_FUNC_redirect:
8364 return &bpf_xdp_redirect_proto;
8365 case BPF_FUNC_redirect_map:
8366 return &bpf_xdp_redirect_map_proto;
8367 case BPF_FUNC_xdp_adjust_tail:
8368 return &bpf_xdp_adjust_tail_proto;
8369 case BPF_FUNC_xdp_get_buff_len:
8370 return &bpf_xdp_get_buff_len_proto;
8371 case BPF_FUNC_xdp_load_bytes:
8372 return &bpf_xdp_load_bytes_proto;
8373 case BPF_FUNC_xdp_store_bytes:
8374 return &bpf_xdp_store_bytes_proto;
8375 case BPF_FUNC_fib_lookup:
8376 return &bpf_xdp_fib_lookup_proto;
8377 case BPF_FUNC_check_mtu:
8378 return &bpf_xdp_check_mtu_proto;
8379 #ifdef CONFIG_INET
8380 case BPF_FUNC_sk_lookup_udp:
8381 return &bpf_xdp_sk_lookup_udp_proto;
8382 case BPF_FUNC_sk_lookup_tcp:
8383 return &bpf_xdp_sk_lookup_tcp_proto;
8384 case BPF_FUNC_sk_release:
8385 return &bpf_sk_release_proto;
8386 case BPF_FUNC_skc_lookup_tcp:
8387 return &bpf_xdp_skc_lookup_tcp_proto;
8388 case BPF_FUNC_tcp_check_syncookie:
8389 return &bpf_tcp_check_syncookie_proto;
8390 case BPF_FUNC_tcp_gen_syncookie:
8391 return &bpf_tcp_gen_syncookie_proto;
8392 #ifdef CONFIG_SYN_COOKIES
8393 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8394 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8395 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8396 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8397 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8398 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8399 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8400 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8401 #endif
8402 #endif
8403 default:
8404 return bpf_sk_base_func_proto(func_id, prog);
8405 }
8406
8407 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8408 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8409 * kfuncs are defined in two different modules, and we want to be able
8410 * to use them interchangeably with the same BTF type ID. Because modules
8411 * can't de-duplicate BTF IDs between each other, we need the type to be
8412 * referenced in the vmlinux BTF or the verifier will get confused about
8413 * the different types. So we add this dummy type reference which will
8414 * be included in vmlinux BTF, allowing both modules to refer to the
8415 * same type ID.
8416 */
8417 BTF_TYPE_EMIT(struct nf_conn___init);
8418 #endif
8419 }
8420
8421 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8422 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8423
8424 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8425 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8426 {
8427 const struct bpf_func_proto *func_proto;
8428
8429 func_proto = cgroup_common_func_proto(func_id, prog);
8430 if (func_proto)
8431 return func_proto;
8432
8433 switch (func_id) {
8434 case BPF_FUNC_setsockopt:
8435 return &bpf_sock_ops_setsockopt_proto;
8436 case BPF_FUNC_getsockopt:
8437 return &bpf_sock_ops_getsockopt_proto;
8438 case BPF_FUNC_sock_ops_cb_flags_set:
8439 return &bpf_sock_ops_cb_flags_set_proto;
8440 case BPF_FUNC_sock_map_update:
8441 return &bpf_sock_map_update_proto;
8442 case BPF_FUNC_sock_hash_update:
8443 return &bpf_sock_hash_update_proto;
8444 case BPF_FUNC_get_socket_cookie:
8445 return &bpf_get_socket_cookie_sock_ops_proto;
8446 case BPF_FUNC_perf_event_output:
8447 return &bpf_event_output_data_proto;
8448 case BPF_FUNC_sk_storage_get:
8449 return &bpf_sk_storage_get_proto;
8450 case BPF_FUNC_sk_storage_delete:
8451 return &bpf_sk_storage_delete_proto;
8452 case BPF_FUNC_get_netns_cookie:
8453 return &bpf_get_netns_cookie_sock_ops_proto;
8454 #ifdef CONFIG_INET
8455 case BPF_FUNC_load_hdr_opt:
8456 return &bpf_sock_ops_load_hdr_opt_proto;
8457 case BPF_FUNC_store_hdr_opt:
8458 return &bpf_sock_ops_store_hdr_opt_proto;
8459 case BPF_FUNC_reserve_hdr_opt:
8460 return &bpf_sock_ops_reserve_hdr_opt_proto;
8461 case BPF_FUNC_tcp_sock:
8462 return &bpf_tcp_sock_proto;
8463 #endif /* CONFIG_INET */
8464 default:
8465 return bpf_sk_base_func_proto(func_id, prog);
8466 }
8467 }
8468
8469 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8470 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8471
8472 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8473 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8474 {
8475 switch (func_id) {
8476 case BPF_FUNC_msg_redirect_map:
8477 return &bpf_msg_redirect_map_proto;
8478 case BPF_FUNC_msg_redirect_hash:
8479 return &bpf_msg_redirect_hash_proto;
8480 case BPF_FUNC_msg_apply_bytes:
8481 return &bpf_msg_apply_bytes_proto;
8482 case BPF_FUNC_msg_cork_bytes:
8483 return &bpf_msg_cork_bytes_proto;
8484 case BPF_FUNC_msg_pull_data:
8485 return &bpf_msg_pull_data_proto;
8486 case BPF_FUNC_msg_push_data:
8487 return &bpf_msg_push_data_proto;
8488 case BPF_FUNC_msg_pop_data:
8489 return &bpf_msg_pop_data_proto;
8490 case BPF_FUNC_perf_event_output:
8491 return &bpf_event_output_data_proto;
8492 case BPF_FUNC_get_current_uid_gid:
8493 return &bpf_get_current_uid_gid_proto;
8494 case BPF_FUNC_sk_storage_get:
8495 return &bpf_sk_storage_get_proto;
8496 case BPF_FUNC_sk_storage_delete:
8497 return &bpf_sk_storage_delete_proto;
8498 case BPF_FUNC_get_netns_cookie:
8499 return &bpf_get_netns_cookie_sk_msg_proto;
8500 #ifdef CONFIG_CGROUP_NET_CLASSID
8501 case BPF_FUNC_get_cgroup_classid:
8502 return &bpf_get_cgroup_classid_curr_proto;
8503 #endif
8504 default:
8505 return bpf_sk_base_func_proto(func_id, prog);
8506 }
8507 }
8508
8509 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8510 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8511
8512 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8513 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8514 {
8515 switch (func_id) {
8516 case BPF_FUNC_skb_store_bytes:
8517 return &bpf_skb_store_bytes_proto;
8518 case BPF_FUNC_skb_load_bytes:
8519 return &bpf_skb_load_bytes_proto;
8520 case BPF_FUNC_skb_pull_data:
8521 return &sk_skb_pull_data_proto;
8522 case BPF_FUNC_skb_change_tail:
8523 return &sk_skb_change_tail_proto;
8524 case BPF_FUNC_skb_change_head:
8525 return &sk_skb_change_head_proto;
8526 case BPF_FUNC_skb_adjust_room:
8527 return &sk_skb_adjust_room_proto;
8528 case BPF_FUNC_get_socket_cookie:
8529 return &bpf_get_socket_cookie_proto;
8530 case BPF_FUNC_get_socket_uid:
8531 return &bpf_get_socket_uid_proto;
8532 case BPF_FUNC_sk_redirect_map:
8533 return &bpf_sk_redirect_map_proto;
8534 case BPF_FUNC_sk_redirect_hash:
8535 return &bpf_sk_redirect_hash_proto;
8536 case BPF_FUNC_perf_event_output:
8537 return &bpf_skb_event_output_proto;
8538 #ifdef CONFIG_INET
8539 case BPF_FUNC_sk_lookup_tcp:
8540 return &bpf_sk_lookup_tcp_proto;
8541 case BPF_FUNC_sk_lookup_udp:
8542 return &bpf_sk_lookup_udp_proto;
8543 case BPF_FUNC_sk_release:
8544 return &bpf_sk_release_proto;
8545 case BPF_FUNC_skc_lookup_tcp:
8546 return &bpf_skc_lookup_tcp_proto;
8547 #endif
8548 default:
8549 return bpf_sk_base_func_proto(func_id, prog);
8550 }
8551 }
8552
8553 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8554 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8555 {
8556 switch (func_id) {
8557 case BPF_FUNC_skb_load_bytes:
8558 return &bpf_flow_dissector_load_bytes_proto;
8559 default:
8560 return bpf_sk_base_func_proto(func_id, prog);
8561 }
8562 }
8563
8564 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8565 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8566 {
8567 switch (func_id) {
8568 case BPF_FUNC_skb_load_bytes:
8569 return &bpf_skb_load_bytes_proto;
8570 case BPF_FUNC_skb_pull_data:
8571 return &bpf_skb_pull_data_proto;
8572 case BPF_FUNC_csum_diff:
8573 return &bpf_csum_diff_proto;
8574 case BPF_FUNC_get_cgroup_classid:
8575 return &bpf_get_cgroup_classid_proto;
8576 case BPF_FUNC_get_route_realm:
8577 return &bpf_get_route_realm_proto;
8578 case BPF_FUNC_get_hash_recalc:
8579 return &bpf_get_hash_recalc_proto;
8580 case BPF_FUNC_perf_event_output:
8581 return &bpf_skb_event_output_proto;
8582 case BPF_FUNC_get_smp_processor_id:
8583 return &bpf_get_smp_processor_id_proto;
8584 case BPF_FUNC_skb_under_cgroup:
8585 return &bpf_skb_under_cgroup_proto;
8586 default:
8587 return bpf_sk_base_func_proto(func_id, prog);
8588 }
8589 }
8590
8591 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8592 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8593 {
8594 switch (func_id) {
8595 case BPF_FUNC_lwt_push_encap:
8596 return &bpf_lwt_in_push_encap_proto;
8597 default:
8598 return lwt_out_func_proto(func_id, prog);
8599 }
8600 }
8601
8602 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8603 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8604 {
8605 switch (func_id) {
8606 case BPF_FUNC_skb_get_tunnel_key:
8607 return &bpf_skb_get_tunnel_key_proto;
8608 case BPF_FUNC_skb_set_tunnel_key:
8609 return bpf_get_skb_set_tunnel_proto(func_id);
8610 case BPF_FUNC_skb_get_tunnel_opt:
8611 return &bpf_skb_get_tunnel_opt_proto;
8612 case BPF_FUNC_skb_set_tunnel_opt:
8613 return bpf_get_skb_set_tunnel_proto(func_id);
8614 case BPF_FUNC_redirect:
8615 return &bpf_redirect_proto;
8616 case BPF_FUNC_clone_redirect:
8617 return &bpf_clone_redirect_proto;
8618 case BPF_FUNC_skb_change_tail:
8619 return &bpf_skb_change_tail_proto;
8620 case BPF_FUNC_skb_change_head:
8621 return &bpf_skb_change_head_proto;
8622 case BPF_FUNC_skb_store_bytes:
8623 return &bpf_skb_store_bytes_proto;
8624 case BPF_FUNC_csum_update:
8625 return &bpf_csum_update_proto;
8626 case BPF_FUNC_csum_level:
8627 return &bpf_csum_level_proto;
8628 case BPF_FUNC_l3_csum_replace:
8629 return &bpf_l3_csum_replace_proto;
8630 case BPF_FUNC_l4_csum_replace:
8631 return &bpf_l4_csum_replace_proto;
8632 case BPF_FUNC_set_hash_invalid:
8633 return &bpf_set_hash_invalid_proto;
8634 case BPF_FUNC_lwt_push_encap:
8635 return &bpf_lwt_xmit_push_encap_proto;
8636 default:
8637 return lwt_out_func_proto(func_id, prog);
8638 }
8639 }
8640
8641 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8642 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8643 {
8644 switch (func_id) {
8645 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8646 case BPF_FUNC_lwt_seg6_store_bytes:
8647 return &bpf_lwt_seg6_store_bytes_proto;
8648 case BPF_FUNC_lwt_seg6_action:
8649 return &bpf_lwt_seg6_action_proto;
8650 case BPF_FUNC_lwt_seg6_adjust_srh:
8651 return &bpf_lwt_seg6_adjust_srh_proto;
8652 #endif
8653 default:
8654 return lwt_out_func_proto(func_id, prog);
8655 }
8656 }
8657
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8658 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8659 const struct bpf_prog *prog,
8660 struct bpf_insn_access_aux *info)
8661 {
8662 const int size_default = sizeof(__u32);
8663
8664 if (off < 0 || off >= sizeof(struct __sk_buff))
8665 return false;
8666
8667 /* The verifier guarantees that size > 0. */
8668 if (off % size != 0)
8669 return false;
8670
8671 switch (off) {
8672 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8673 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8674 return false;
8675 break;
8676 case bpf_ctx_range(struct __sk_buff, data):
8677 case bpf_ctx_range(struct __sk_buff, data_meta):
8678 case bpf_ctx_range(struct __sk_buff, data_end):
8679 if (info->is_ldsx || size != size_default)
8680 return false;
8681 break;
8682 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8683 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8684 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8685 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8686 if (size != size_default)
8687 return false;
8688 break;
8689 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8690 return false;
8691 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8692 if (type == BPF_WRITE || size != sizeof(__u64))
8693 return false;
8694 break;
8695 case bpf_ctx_range(struct __sk_buff, tstamp):
8696 if (size != sizeof(__u64))
8697 return false;
8698 break;
8699 case offsetof(struct __sk_buff, sk):
8700 if (type == BPF_WRITE || size != sizeof(__u64))
8701 return false;
8702 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8703 break;
8704 case offsetof(struct __sk_buff, tstamp_type):
8705 return false;
8706 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8707 /* Explicitly prohibit access to padding in __sk_buff. */
8708 return false;
8709 default:
8710 /* Only narrow read access allowed for now. */
8711 if (type == BPF_WRITE) {
8712 if (size != size_default)
8713 return false;
8714 } else {
8715 bpf_ctx_record_field_size(info, size_default);
8716 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8717 return false;
8718 }
8719 }
8720
8721 return true;
8722 }
8723
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8724 static bool sk_filter_is_valid_access(int off, int size,
8725 enum bpf_access_type type,
8726 const struct bpf_prog *prog,
8727 struct bpf_insn_access_aux *info)
8728 {
8729 switch (off) {
8730 case bpf_ctx_range(struct __sk_buff, tc_classid):
8731 case bpf_ctx_range(struct __sk_buff, data):
8732 case bpf_ctx_range(struct __sk_buff, data_meta):
8733 case bpf_ctx_range(struct __sk_buff, data_end):
8734 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8735 case bpf_ctx_range(struct __sk_buff, tstamp):
8736 case bpf_ctx_range(struct __sk_buff, wire_len):
8737 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8738 return false;
8739 }
8740
8741 if (type == BPF_WRITE) {
8742 switch (off) {
8743 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8744 break;
8745 default:
8746 return false;
8747 }
8748 }
8749
8750 return bpf_skb_is_valid_access(off, size, type, prog, info);
8751 }
8752
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8753 static bool cg_skb_is_valid_access(int off, int size,
8754 enum bpf_access_type type,
8755 const struct bpf_prog *prog,
8756 struct bpf_insn_access_aux *info)
8757 {
8758 switch (off) {
8759 case bpf_ctx_range(struct __sk_buff, tc_classid):
8760 case bpf_ctx_range(struct __sk_buff, data_meta):
8761 case bpf_ctx_range(struct __sk_buff, wire_len):
8762 return false;
8763 case bpf_ctx_range(struct __sk_buff, data):
8764 case bpf_ctx_range(struct __sk_buff, data_end):
8765 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8766 return false;
8767 break;
8768 }
8769
8770 if (type == BPF_WRITE) {
8771 switch (off) {
8772 case bpf_ctx_range(struct __sk_buff, mark):
8773 case bpf_ctx_range(struct __sk_buff, priority):
8774 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8775 break;
8776 case bpf_ctx_range(struct __sk_buff, tstamp):
8777 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8778 return false;
8779 break;
8780 default:
8781 return false;
8782 }
8783 }
8784
8785 switch (off) {
8786 case bpf_ctx_range(struct __sk_buff, data):
8787 info->reg_type = PTR_TO_PACKET;
8788 break;
8789 case bpf_ctx_range(struct __sk_buff, data_end):
8790 info->reg_type = PTR_TO_PACKET_END;
8791 break;
8792 }
8793
8794 return bpf_skb_is_valid_access(off, size, type, prog, info);
8795 }
8796
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8797 static bool lwt_is_valid_access(int off, int size,
8798 enum bpf_access_type type,
8799 const struct bpf_prog *prog,
8800 struct bpf_insn_access_aux *info)
8801 {
8802 switch (off) {
8803 case bpf_ctx_range(struct __sk_buff, tc_classid):
8804 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8805 case bpf_ctx_range(struct __sk_buff, data_meta):
8806 case bpf_ctx_range(struct __sk_buff, tstamp):
8807 case bpf_ctx_range(struct __sk_buff, wire_len):
8808 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8809 return false;
8810 }
8811
8812 if (type == BPF_WRITE) {
8813 switch (off) {
8814 case bpf_ctx_range(struct __sk_buff, mark):
8815 case bpf_ctx_range(struct __sk_buff, priority):
8816 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8817 break;
8818 default:
8819 return false;
8820 }
8821 }
8822
8823 switch (off) {
8824 case bpf_ctx_range(struct __sk_buff, data):
8825 info->reg_type = PTR_TO_PACKET;
8826 break;
8827 case bpf_ctx_range(struct __sk_buff, data_end):
8828 info->reg_type = PTR_TO_PACKET_END;
8829 break;
8830 }
8831
8832 return bpf_skb_is_valid_access(off, size, type, prog, info);
8833 }
8834
8835 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8836 static bool __sock_filter_check_attach_type(int off,
8837 enum bpf_access_type access_type,
8838 enum bpf_attach_type attach_type)
8839 {
8840 switch (off) {
8841 case offsetof(struct bpf_sock, bound_dev_if):
8842 case offsetof(struct bpf_sock, mark):
8843 case offsetof(struct bpf_sock, priority):
8844 switch (attach_type) {
8845 case BPF_CGROUP_INET_SOCK_CREATE:
8846 case BPF_CGROUP_INET_SOCK_RELEASE:
8847 goto full_access;
8848 default:
8849 return false;
8850 }
8851 case bpf_ctx_range(struct bpf_sock, src_ip4):
8852 switch (attach_type) {
8853 case BPF_CGROUP_INET4_POST_BIND:
8854 goto read_only;
8855 default:
8856 return false;
8857 }
8858 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8859 switch (attach_type) {
8860 case BPF_CGROUP_INET6_POST_BIND:
8861 goto read_only;
8862 default:
8863 return false;
8864 }
8865 case bpf_ctx_range(struct bpf_sock, src_port):
8866 switch (attach_type) {
8867 case BPF_CGROUP_INET4_POST_BIND:
8868 case BPF_CGROUP_INET6_POST_BIND:
8869 goto read_only;
8870 default:
8871 return false;
8872 }
8873 }
8874 read_only:
8875 return access_type == BPF_READ;
8876 full_access:
8877 return true;
8878 }
8879
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8880 bool bpf_sock_common_is_valid_access(int off, int size,
8881 enum bpf_access_type type,
8882 struct bpf_insn_access_aux *info)
8883 {
8884 switch (off) {
8885 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8886 return false;
8887 default:
8888 return bpf_sock_is_valid_access(off, size, type, info);
8889 }
8890 }
8891
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8892 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8893 struct bpf_insn_access_aux *info)
8894 {
8895 const int size_default = sizeof(__u32);
8896 int field_size;
8897
8898 if (off < 0 || off >= sizeof(struct bpf_sock))
8899 return false;
8900 if (off % size != 0)
8901 return false;
8902
8903 switch (off) {
8904 case offsetof(struct bpf_sock, state):
8905 case offsetof(struct bpf_sock, family):
8906 case offsetof(struct bpf_sock, type):
8907 case offsetof(struct bpf_sock, protocol):
8908 case offsetof(struct bpf_sock, src_port):
8909 case offsetof(struct bpf_sock, rx_queue_mapping):
8910 case bpf_ctx_range(struct bpf_sock, src_ip4):
8911 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8912 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8913 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8914 bpf_ctx_record_field_size(info, size_default);
8915 return bpf_ctx_narrow_access_ok(off, size, size_default);
8916 case bpf_ctx_range(struct bpf_sock, dst_port):
8917 field_size = size == size_default ?
8918 size_default : sizeof_field(struct bpf_sock, dst_port);
8919 bpf_ctx_record_field_size(info, field_size);
8920 return bpf_ctx_narrow_access_ok(off, size, field_size);
8921 case offsetofend(struct bpf_sock, dst_port) ...
8922 offsetof(struct bpf_sock, dst_ip4) - 1:
8923 return false;
8924 }
8925
8926 return size == size_default;
8927 }
8928
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8929 static bool sock_filter_is_valid_access(int off, int size,
8930 enum bpf_access_type type,
8931 const struct bpf_prog *prog,
8932 struct bpf_insn_access_aux *info)
8933 {
8934 if (!bpf_sock_is_valid_access(off, size, type, info))
8935 return false;
8936 return __sock_filter_check_attach_type(off, type,
8937 prog->expected_attach_type);
8938 }
8939
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8940 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8941 const struct bpf_prog *prog)
8942 {
8943 /* Neither direct read nor direct write requires any preliminary
8944 * action.
8945 */
8946 return 0;
8947 }
8948
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8949 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8950 const struct bpf_prog *prog, int drop_verdict)
8951 {
8952 struct bpf_insn *insn = insn_buf;
8953
8954 if (!direct_write)
8955 return 0;
8956
8957 /* if (!skb->cloned)
8958 * goto start;
8959 *
8960 * (Fast-path, otherwise approximation that we might be
8961 * a clone, do the rest in helper.)
8962 */
8963 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8964 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8965 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8966
8967 /* ret = bpf_skb_pull_data(skb, 0); */
8968 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8969 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8970 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8971 BPF_FUNC_skb_pull_data);
8972 /* if (!ret)
8973 * goto restore;
8974 * return TC_ACT_SHOT;
8975 */
8976 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8977 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8978 *insn++ = BPF_EXIT_INSN();
8979
8980 /* restore: */
8981 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8982 /* start: */
8983 *insn++ = prog->insnsi[0];
8984
8985 return insn - insn_buf;
8986 }
8987
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8988 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8989 struct bpf_insn *insn_buf)
8990 {
8991 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8992 struct bpf_insn *insn = insn_buf;
8993
8994 if (!indirect) {
8995 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8996 } else {
8997 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8998 if (orig->imm)
8999 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9000 }
9001 /* We're guaranteed here that CTX is in R6. */
9002 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9003
9004 switch (BPF_SIZE(orig->code)) {
9005 case BPF_B:
9006 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9007 break;
9008 case BPF_H:
9009 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9010 break;
9011 case BPF_W:
9012 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9013 break;
9014 }
9015
9016 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9017 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9018 *insn++ = BPF_EXIT_INSN();
9019
9020 return insn - insn_buf;
9021 }
9022
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9023 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9024 const struct bpf_prog *prog)
9025 {
9026 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9027 }
9028
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9029 static bool tc_cls_act_is_valid_access(int off, int size,
9030 enum bpf_access_type type,
9031 const struct bpf_prog *prog,
9032 struct bpf_insn_access_aux *info)
9033 {
9034 if (type == BPF_WRITE) {
9035 switch (off) {
9036 case bpf_ctx_range(struct __sk_buff, mark):
9037 case bpf_ctx_range(struct __sk_buff, tc_index):
9038 case bpf_ctx_range(struct __sk_buff, priority):
9039 case bpf_ctx_range(struct __sk_buff, tc_classid):
9040 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9041 case bpf_ctx_range(struct __sk_buff, tstamp):
9042 case bpf_ctx_range(struct __sk_buff, queue_mapping):
9043 break;
9044 default:
9045 return false;
9046 }
9047 }
9048
9049 switch (off) {
9050 case bpf_ctx_range(struct __sk_buff, data):
9051 info->reg_type = PTR_TO_PACKET;
9052 break;
9053 case bpf_ctx_range(struct __sk_buff, data_meta):
9054 info->reg_type = PTR_TO_PACKET_META;
9055 break;
9056 case bpf_ctx_range(struct __sk_buff, data_end):
9057 info->reg_type = PTR_TO_PACKET_END;
9058 break;
9059 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9060 return false;
9061 case offsetof(struct __sk_buff, tstamp_type):
9062 /* The convert_ctx_access() on reading and writing
9063 * __sk_buff->tstamp depends on whether the bpf prog
9064 * has used __sk_buff->tstamp_type or not.
9065 * Thus, we need to set prog->tstamp_type_access
9066 * earlier during is_valid_access() here.
9067 */
9068 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
9069 return size == sizeof(__u8);
9070 }
9071
9072 return bpf_skb_is_valid_access(off, size, type, prog, info);
9073 }
9074
9075 DEFINE_MUTEX(nf_conn_btf_access_lock);
9076 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9077
9078 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9079 const struct bpf_reg_state *reg,
9080 int off, int size);
9081 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9082
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9083 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9084 const struct bpf_reg_state *reg,
9085 int off, int size)
9086 {
9087 int ret = -EACCES;
9088
9089 mutex_lock(&nf_conn_btf_access_lock);
9090 if (nfct_btf_struct_access)
9091 ret = nfct_btf_struct_access(log, reg, off, size);
9092 mutex_unlock(&nf_conn_btf_access_lock);
9093
9094 return ret;
9095 }
9096
__is_valid_xdp_access(int off,int size)9097 static bool __is_valid_xdp_access(int off, int size)
9098 {
9099 if (off < 0 || off >= sizeof(struct xdp_md))
9100 return false;
9101 if (off % size != 0)
9102 return false;
9103 if (size != sizeof(__u32))
9104 return false;
9105
9106 return true;
9107 }
9108
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9109 static bool xdp_is_valid_access(int off, int size,
9110 enum bpf_access_type type,
9111 const struct bpf_prog *prog,
9112 struct bpf_insn_access_aux *info)
9113 {
9114 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9115 switch (off) {
9116 case offsetof(struct xdp_md, egress_ifindex):
9117 return false;
9118 }
9119 }
9120
9121 if (type == BPF_WRITE) {
9122 if (bpf_prog_is_offloaded(prog->aux)) {
9123 switch (off) {
9124 case offsetof(struct xdp_md, rx_queue_index):
9125 return __is_valid_xdp_access(off, size);
9126 }
9127 }
9128 return false;
9129 } else {
9130 switch (off) {
9131 case offsetof(struct xdp_md, data_meta):
9132 case offsetof(struct xdp_md, data):
9133 case offsetof(struct xdp_md, data_end):
9134 if (info->is_ldsx)
9135 return false;
9136 }
9137 }
9138
9139 switch (off) {
9140 case offsetof(struct xdp_md, data):
9141 info->reg_type = PTR_TO_PACKET;
9142 break;
9143 case offsetof(struct xdp_md, data_meta):
9144 info->reg_type = PTR_TO_PACKET_META;
9145 break;
9146 case offsetof(struct xdp_md, data_end):
9147 info->reg_type = PTR_TO_PACKET_END;
9148 break;
9149 }
9150
9151 return __is_valid_xdp_access(off, size);
9152 }
9153
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9154 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9155 const struct bpf_prog *prog, u32 act)
9156 {
9157 const u32 act_max = XDP_REDIRECT;
9158
9159 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9160 act > act_max ? "Illegal" : "Driver unsupported",
9161 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9162 }
9163 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9164
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9165 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9166 const struct bpf_reg_state *reg,
9167 int off, int size)
9168 {
9169 int ret = -EACCES;
9170
9171 mutex_lock(&nf_conn_btf_access_lock);
9172 if (nfct_btf_struct_access)
9173 ret = nfct_btf_struct_access(log, reg, off, size);
9174 mutex_unlock(&nf_conn_btf_access_lock);
9175
9176 return ret;
9177 }
9178
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9179 static bool sock_addr_is_valid_access(int off, int size,
9180 enum bpf_access_type type,
9181 const struct bpf_prog *prog,
9182 struct bpf_insn_access_aux *info)
9183 {
9184 const int size_default = sizeof(__u32);
9185
9186 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9187 return false;
9188 if (off % size != 0)
9189 return false;
9190
9191 /* Disallow access to fields not belonging to the attach type's address
9192 * family.
9193 */
9194 switch (off) {
9195 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9196 switch (prog->expected_attach_type) {
9197 case BPF_CGROUP_INET4_BIND:
9198 case BPF_CGROUP_INET4_CONNECT:
9199 case BPF_CGROUP_INET4_GETPEERNAME:
9200 case BPF_CGROUP_INET4_GETSOCKNAME:
9201 case BPF_CGROUP_UDP4_SENDMSG:
9202 case BPF_CGROUP_UDP4_RECVMSG:
9203 break;
9204 default:
9205 return false;
9206 }
9207 break;
9208 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9209 switch (prog->expected_attach_type) {
9210 case BPF_CGROUP_INET6_BIND:
9211 case BPF_CGROUP_INET6_CONNECT:
9212 case BPF_CGROUP_INET6_GETPEERNAME:
9213 case BPF_CGROUP_INET6_GETSOCKNAME:
9214 case BPF_CGROUP_UDP6_SENDMSG:
9215 case BPF_CGROUP_UDP6_RECVMSG:
9216 break;
9217 default:
9218 return false;
9219 }
9220 break;
9221 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9222 switch (prog->expected_attach_type) {
9223 case BPF_CGROUP_UDP4_SENDMSG:
9224 break;
9225 default:
9226 return false;
9227 }
9228 break;
9229 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9230 msg_src_ip6[3]):
9231 switch (prog->expected_attach_type) {
9232 case BPF_CGROUP_UDP6_SENDMSG:
9233 break;
9234 default:
9235 return false;
9236 }
9237 break;
9238 }
9239
9240 switch (off) {
9241 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9242 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9243 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9244 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9245 msg_src_ip6[3]):
9246 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9247 if (type == BPF_READ) {
9248 bpf_ctx_record_field_size(info, size_default);
9249
9250 if (bpf_ctx_wide_access_ok(off, size,
9251 struct bpf_sock_addr,
9252 user_ip6))
9253 return true;
9254
9255 if (bpf_ctx_wide_access_ok(off, size,
9256 struct bpf_sock_addr,
9257 msg_src_ip6))
9258 return true;
9259
9260 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9261 return false;
9262 } else {
9263 if (bpf_ctx_wide_access_ok(off, size,
9264 struct bpf_sock_addr,
9265 user_ip6))
9266 return true;
9267
9268 if (bpf_ctx_wide_access_ok(off, size,
9269 struct bpf_sock_addr,
9270 msg_src_ip6))
9271 return true;
9272
9273 if (size != size_default)
9274 return false;
9275 }
9276 break;
9277 case offsetof(struct bpf_sock_addr, sk):
9278 if (type != BPF_READ)
9279 return false;
9280 if (size != sizeof(__u64))
9281 return false;
9282 info->reg_type = PTR_TO_SOCKET;
9283 break;
9284 default:
9285 if (type == BPF_READ) {
9286 if (size != size_default)
9287 return false;
9288 } else {
9289 return false;
9290 }
9291 }
9292
9293 return true;
9294 }
9295
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9296 static bool sock_ops_is_valid_access(int off, int size,
9297 enum bpf_access_type type,
9298 const struct bpf_prog *prog,
9299 struct bpf_insn_access_aux *info)
9300 {
9301 const int size_default = sizeof(__u32);
9302
9303 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9304 return false;
9305
9306 /* The verifier guarantees that size > 0. */
9307 if (off % size != 0)
9308 return false;
9309
9310 if (type == BPF_WRITE) {
9311 switch (off) {
9312 case offsetof(struct bpf_sock_ops, reply):
9313 case offsetof(struct bpf_sock_ops, sk_txhash):
9314 if (size != size_default)
9315 return false;
9316 break;
9317 default:
9318 return false;
9319 }
9320 } else {
9321 switch (off) {
9322 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9323 bytes_acked):
9324 if (size != sizeof(__u64))
9325 return false;
9326 break;
9327 case offsetof(struct bpf_sock_ops, sk):
9328 if (size != sizeof(__u64))
9329 return false;
9330 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9331 break;
9332 case offsetof(struct bpf_sock_ops, skb_data):
9333 if (size != sizeof(__u64))
9334 return false;
9335 info->reg_type = PTR_TO_PACKET;
9336 break;
9337 case offsetof(struct bpf_sock_ops, skb_data_end):
9338 if (size != sizeof(__u64))
9339 return false;
9340 info->reg_type = PTR_TO_PACKET_END;
9341 break;
9342 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9343 bpf_ctx_record_field_size(info, size_default);
9344 return bpf_ctx_narrow_access_ok(off, size,
9345 size_default);
9346 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9347 if (size != sizeof(__u64))
9348 return false;
9349 break;
9350 default:
9351 if (size != size_default)
9352 return false;
9353 break;
9354 }
9355 }
9356
9357 return true;
9358 }
9359
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9360 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9361 const struct bpf_prog *prog)
9362 {
9363 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9364 }
9365
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9366 static bool sk_skb_is_valid_access(int off, int size,
9367 enum bpf_access_type type,
9368 const struct bpf_prog *prog,
9369 struct bpf_insn_access_aux *info)
9370 {
9371 switch (off) {
9372 case bpf_ctx_range(struct __sk_buff, tc_classid):
9373 case bpf_ctx_range(struct __sk_buff, data_meta):
9374 case bpf_ctx_range(struct __sk_buff, tstamp):
9375 case bpf_ctx_range(struct __sk_buff, wire_len):
9376 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9377 return false;
9378 }
9379
9380 if (type == BPF_WRITE) {
9381 switch (off) {
9382 case bpf_ctx_range(struct __sk_buff, tc_index):
9383 case bpf_ctx_range(struct __sk_buff, priority):
9384 break;
9385 default:
9386 return false;
9387 }
9388 }
9389
9390 switch (off) {
9391 case bpf_ctx_range(struct __sk_buff, mark):
9392 return false;
9393 case bpf_ctx_range(struct __sk_buff, data):
9394 info->reg_type = PTR_TO_PACKET;
9395 break;
9396 case bpf_ctx_range(struct __sk_buff, data_end):
9397 info->reg_type = PTR_TO_PACKET_END;
9398 break;
9399 }
9400
9401 return bpf_skb_is_valid_access(off, size, type, prog, info);
9402 }
9403
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9404 static bool sk_msg_is_valid_access(int off, int size,
9405 enum bpf_access_type type,
9406 const struct bpf_prog *prog,
9407 struct bpf_insn_access_aux *info)
9408 {
9409 if (type == BPF_WRITE)
9410 return false;
9411
9412 if (off % size != 0)
9413 return false;
9414
9415 switch (off) {
9416 case offsetof(struct sk_msg_md, data):
9417 info->reg_type = PTR_TO_PACKET;
9418 if (size != sizeof(__u64))
9419 return false;
9420 break;
9421 case offsetof(struct sk_msg_md, data_end):
9422 info->reg_type = PTR_TO_PACKET_END;
9423 if (size != sizeof(__u64))
9424 return false;
9425 break;
9426 case offsetof(struct sk_msg_md, sk):
9427 if (size != sizeof(__u64))
9428 return false;
9429 info->reg_type = PTR_TO_SOCKET;
9430 break;
9431 case bpf_ctx_range(struct sk_msg_md, family):
9432 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9433 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9434 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9435 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9436 case bpf_ctx_range(struct sk_msg_md, remote_port):
9437 case bpf_ctx_range(struct sk_msg_md, local_port):
9438 case bpf_ctx_range(struct sk_msg_md, size):
9439 if (size != sizeof(__u32))
9440 return false;
9441 break;
9442 default:
9443 return false;
9444 }
9445 return true;
9446 }
9447
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9448 static bool flow_dissector_is_valid_access(int off, int size,
9449 enum bpf_access_type type,
9450 const struct bpf_prog *prog,
9451 struct bpf_insn_access_aux *info)
9452 {
9453 const int size_default = sizeof(__u32);
9454
9455 if (off < 0 || off >= sizeof(struct __sk_buff))
9456 return false;
9457
9458 if (type == BPF_WRITE)
9459 return false;
9460
9461 switch (off) {
9462 case bpf_ctx_range(struct __sk_buff, data):
9463 if (info->is_ldsx || size != size_default)
9464 return false;
9465 info->reg_type = PTR_TO_PACKET;
9466 return true;
9467 case bpf_ctx_range(struct __sk_buff, data_end):
9468 if (info->is_ldsx || size != size_default)
9469 return false;
9470 info->reg_type = PTR_TO_PACKET_END;
9471 return true;
9472 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9473 if (size != sizeof(__u64))
9474 return false;
9475 info->reg_type = PTR_TO_FLOW_KEYS;
9476 return true;
9477 default:
9478 return false;
9479 }
9480 }
9481
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9482 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9483 const struct bpf_insn *si,
9484 struct bpf_insn *insn_buf,
9485 struct bpf_prog *prog,
9486 u32 *target_size)
9487
9488 {
9489 struct bpf_insn *insn = insn_buf;
9490
9491 switch (si->off) {
9492 case offsetof(struct __sk_buff, data):
9493 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9494 si->dst_reg, si->src_reg,
9495 offsetof(struct bpf_flow_dissector, data));
9496 break;
9497
9498 case offsetof(struct __sk_buff, data_end):
9499 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9500 si->dst_reg, si->src_reg,
9501 offsetof(struct bpf_flow_dissector, data_end));
9502 break;
9503
9504 case offsetof(struct __sk_buff, flow_keys):
9505 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9506 si->dst_reg, si->src_reg,
9507 offsetof(struct bpf_flow_dissector, flow_keys));
9508 break;
9509 }
9510
9511 return insn - insn_buf;
9512 }
9513
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9514 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9515 struct bpf_insn *insn)
9516 {
9517 __u8 value_reg = si->dst_reg;
9518 __u8 skb_reg = si->src_reg;
9519 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9520 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9521 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9522 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9523 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9524 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9525 #ifdef __BIG_ENDIAN_BITFIELD
9526 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9527 #else
9528 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9529 #endif
9530
9531 return insn;
9532 }
9533
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9534 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9535 struct bpf_insn *insn)
9536 {
9537 /* si->dst_reg = skb_shinfo(SKB); */
9538 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9539 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9540 BPF_REG_AX, skb_reg,
9541 offsetof(struct sk_buff, end));
9542 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9543 dst_reg, skb_reg,
9544 offsetof(struct sk_buff, head));
9545 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9546 #else
9547 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9548 dst_reg, skb_reg,
9549 offsetof(struct sk_buff, end));
9550 #endif
9551
9552 return insn;
9553 }
9554
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9555 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9556 const struct bpf_insn *si,
9557 struct bpf_insn *insn)
9558 {
9559 __u8 value_reg = si->dst_reg;
9560 __u8 skb_reg = si->src_reg;
9561
9562 #ifdef CONFIG_NET_XGRESS
9563 /* If the tstamp_type is read,
9564 * the bpf prog is aware the tstamp could have delivery time.
9565 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9566 */
9567 if (!prog->tstamp_type_access) {
9568 /* AX is needed because src_reg and dst_reg could be the same */
9569 __u8 tmp_reg = BPF_REG_AX;
9570
9571 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9572 /* check if ingress mask bits is set */
9573 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9574 *insn++ = BPF_JMP_A(4);
9575 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9576 *insn++ = BPF_JMP_A(2);
9577 /* skb->tc_at_ingress && skb->tstamp_type,
9578 * read 0 as the (rcv) timestamp.
9579 */
9580 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9581 *insn++ = BPF_JMP_A(1);
9582 }
9583 #endif
9584
9585 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9586 offsetof(struct sk_buff, tstamp));
9587 return insn;
9588 }
9589
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9590 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9591 const struct bpf_insn *si,
9592 struct bpf_insn *insn)
9593 {
9594 __u8 value_reg = si->src_reg;
9595 __u8 skb_reg = si->dst_reg;
9596
9597 #ifdef CONFIG_NET_XGRESS
9598 /* If the tstamp_type is read,
9599 * the bpf prog is aware the tstamp could have delivery time.
9600 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9601 * Otherwise, writing at ingress will have to clear the
9602 * skb->tstamp_type bit also.
9603 */
9604 if (!prog->tstamp_type_access) {
9605 __u8 tmp_reg = BPF_REG_AX;
9606
9607 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9608 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9609 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9610 /* goto <store> */
9611 *insn++ = BPF_JMP_A(2);
9612 /* <clear>: skb->tstamp_type */
9613 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9614 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9615 }
9616 #endif
9617
9618 /* <store>: skb->tstamp = tstamp */
9619 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9620 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9621 return insn;
9622 }
9623
9624 #define BPF_EMIT_STORE(size, si, off) \
9625 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9626 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9627
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9628 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9629 const struct bpf_insn *si,
9630 struct bpf_insn *insn_buf,
9631 struct bpf_prog *prog, u32 *target_size)
9632 {
9633 struct bpf_insn *insn = insn_buf;
9634 int off;
9635
9636 switch (si->off) {
9637 case offsetof(struct __sk_buff, len):
9638 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9639 bpf_target_off(struct sk_buff, len, 4,
9640 target_size));
9641 break;
9642
9643 case offsetof(struct __sk_buff, protocol):
9644 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9645 bpf_target_off(struct sk_buff, protocol, 2,
9646 target_size));
9647 break;
9648
9649 case offsetof(struct __sk_buff, vlan_proto):
9650 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9651 bpf_target_off(struct sk_buff, vlan_proto, 2,
9652 target_size));
9653 break;
9654
9655 case offsetof(struct __sk_buff, priority):
9656 if (type == BPF_WRITE)
9657 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9658 bpf_target_off(struct sk_buff, priority, 4,
9659 target_size));
9660 else
9661 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9662 bpf_target_off(struct sk_buff, priority, 4,
9663 target_size));
9664 break;
9665
9666 case offsetof(struct __sk_buff, ingress_ifindex):
9667 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9668 bpf_target_off(struct sk_buff, skb_iif, 4,
9669 target_size));
9670 break;
9671
9672 case offsetof(struct __sk_buff, ifindex):
9673 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9674 si->dst_reg, si->src_reg,
9675 offsetof(struct sk_buff, dev));
9676 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9677 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9678 bpf_target_off(struct net_device, ifindex, 4,
9679 target_size));
9680 break;
9681
9682 case offsetof(struct __sk_buff, hash):
9683 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9684 bpf_target_off(struct sk_buff, hash, 4,
9685 target_size));
9686 break;
9687
9688 case offsetof(struct __sk_buff, mark):
9689 if (type == BPF_WRITE)
9690 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9691 bpf_target_off(struct sk_buff, mark, 4,
9692 target_size));
9693 else
9694 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9695 bpf_target_off(struct sk_buff, mark, 4,
9696 target_size));
9697 break;
9698
9699 case offsetof(struct __sk_buff, pkt_type):
9700 *target_size = 1;
9701 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9702 PKT_TYPE_OFFSET);
9703 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9704 #ifdef __BIG_ENDIAN_BITFIELD
9705 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9706 #endif
9707 break;
9708
9709 case offsetof(struct __sk_buff, queue_mapping):
9710 if (type == BPF_WRITE) {
9711 u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9712
9713 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9714 *insn++ = BPF_JMP_A(0); /* noop */
9715 break;
9716 }
9717
9718 if (BPF_CLASS(si->code) == BPF_STX)
9719 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9720 *insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9721 } else {
9722 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9723 bpf_target_off(struct sk_buff,
9724 queue_mapping,
9725 2, target_size));
9726 }
9727 break;
9728
9729 case offsetof(struct __sk_buff, vlan_present):
9730 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9731 bpf_target_off(struct sk_buff,
9732 vlan_all, 4, target_size));
9733 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9734 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9735 break;
9736
9737 case offsetof(struct __sk_buff, vlan_tci):
9738 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9739 bpf_target_off(struct sk_buff, vlan_tci, 2,
9740 target_size));
9741 break;
9742
9743 case offsetof(struct __sk_buff, cb[0]) ...
9744 offsetofend(struct __sk_buff, cb[4]) - 1:
9745 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9746 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9747 offsetof(struct qdisc_skb_cb, data)) %
9748 sizeof(__u64));
9749
9750 prog->cb_access = 1;
9751 off = si->off;
9752 off -= offsetof(struct __sk_buff, cb[0]);
9753 off += offsetof(struct sk_buff, cb);
9754 off += offsetof(struct qdisc_skb_cb, data);
9755 if (type == BPF_WRITE)
9756 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9757 else
9758 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9759 si->src_reg, off);
9760 break;
9761
9762 case offsetof(struct __sk_buff, tc_classid):
9763 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9764
9765 off = si->off;
9766 off -= offsetof(struct __sk_buff, tc_classid);
9767 off += offsetof(struct sk_buff, cb);
9768 off += offsetof(struct qdisc_skb_cb, tc_classid);
9769 *target_size = 2;
9770 if (type == BPF_WRITE)
9771 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9772 else
9773 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9774 si->src_reg, off);
9775 break;
9776
9777 case offsetof(struct __sk_buff, data):
9778 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9779 si->dst_reg, si->src_reg,
9780 offsetof(struct sk_buff, data));
9781 break;
9782
9783 case offsetof(struct __sk_buff, data_meta):
9784 off = si->off;
9785 off -= offsetof(struct __sk_buff, data_meta);
9786 off += offsetof(struct sk_buff, cb);
9787 off += offsetof(struct bpf_skb_data_end, data_meta);
9788 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9789 si->src_reg, off);
9790 break;
9791
9792 case offsetof(struct __sk_buff, data_end):
9793 off = si->off;
9794 off -= offsetof(struct __sk_buff, data_end);
9795 off += offsetof(struct sk_buff, cb);
9796 off += offsetof(struct bpf_skb_data_end, data_end);
9797 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9798 si->src_reg, off);
9799 break;
9800
9801 case offsetof(struct __sk_buff, tc_index):
9802 #ifdef CONFIG_NET_SCHED
9803 if (type == BPF_WRITE)
9804 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9805 bpf_target_off(struct sk_buff, tc_index, 2,
9806 target_size));
9807 else
9808 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9809 bpf_target_off(struct sk_buff, tc_index, 2,
9810 target_size));
9811 #else
9812 *target_size = 2;
9813 if (type == BPF_WRITE)
9814 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9815 else
9816 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9817 #endif
9818 break;
9819
9820 case offsetof(struct __sk_buff, napi_id):
9821 #if defined(CONFIG_NET_RX_BUSY_POLL)
9822 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9823 bpf_target_off(struct sk_buff, napi_id, 4,
9824 target_size));
9825 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9826 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9827 #else
9828 *target_size = 4;
9829 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9830 #endif
9831 break;
9832 case offsetof(struct __sk_buff, family):
9833 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9834
9835 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9836 si->dst_reg, si->src_reg,
9837 offsetof(struct sk_buff, sk));
9838 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9839 bpf_target_off(struct sock_common,
9840 skc_family,
9841 2, target_size));
9842 break;
9843 case offsetof(struct __sk_buff, remote_ip4):
9844 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9845
9846 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9847 si->dst_reg, si->src_reg,
9848 offsetof(struct sk_buff, sk));
9849 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9850 bpf_target_off(struct sock_common,
9851 skc_daddr,
9852 4, target_size));
9853 break;
9854 case offsetof(struct __sk_buff, local_ip4):
9855 BUILD_BUG_ON(sizeof_field(struct sock_common,
9856 skc_rcv_saddr) != 4);
9857
9858 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9859 si->dst_reg, si->src_reg,
9860 offsetof(struct sk_buff, sk));
9861 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9862 bpf_target_off(struct sock_common,
9863 skc_rcv_saddr,
9864 4, target_size));
9865 break;
9866 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9867 offsetof(struct __sk_buff, remote_ip6[3]):
9868 #if IS_ENABLED(CONFIG_IPV6)
9869 BUILD_BUG_ON(sizeof_field(struct sock_common,
9870 skc_v6_daddr.s6_addr32[0]) != 4);
9871
9872 off = si->off;
9873 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9874
9875 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9876 si->dst_reg, si->src_reg,
9877 offsetof(struct sk_buff, sk));
9878 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9879 offsetof(struct sock_common,
9880 skc_v6_daddr.s6_addr32[0]) +
9881 off);
9882 #else
9883 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9884 #endif
9885 break;
9886 case offsetof(struct __sk_buff, local_ip6[0]) ...
9887 offsetof(struct __sk_buff, local_ip6[3]):
9888 #if IS_ENABLED(CONFIG_IPV6)
9889 BUILD_BUG_ON(sizeof_field(struct sock_common,
9890 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9891
9892 off = si->off;
9893 off -= offsetof(struct __sk_buff, local_ip6[0]);
9894
9895 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9896 si->dst_reg, si->src_reg,
9897 offsetof(struct sk_buff, sk));
9898 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9899 offsetof(struct sock_common,
9900 skc_v6_rcv_saddr.s6_addr32[0]) +
9901 off);
9902 #else
9903 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9904 #endif
9905 break;
9906
9907 case offsetof(struct __sk_buff, remote_port):
9908 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9909
9910 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9911 si->dst_reg, si->src_reg,
9912 offsetof(struct sk_buff, sk));
9913 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9914 bpf_target_off(struct sock_common,
9915 skc_dport,
9916 2, target_size));
9917 #ifndef __BIG_ENDIAN_BITFIELD
9918 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9919 #endif
9920 break;
9921
9922 case offsetof(struct __sk_buff, local_port):
9923 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9924
9925 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9926 si->dst_reg, si->src_reg,
9927 offsetof(struct sk_buff, sk));
9928 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9929 bpf_target_off(struct sock_common,
9930 skc_num, 2, target_size));
9931 break;
9932
9933 case offsetof(struct __sk_buff, tstamp):
9934 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9935
9936 if (type == BPF_WRITE)
9937 insn = bpf_convert_tstamp_write(prog, si, insn);
9938 else
9939 insn = bpf_convert_tstamp_read(prog, si, insn);
9940 break;
9941
9942 case offsetof(struct __sk_buff, tstamp_type):
9943 insn = bpf_convert_tstamp_type_read(si, insn);
9944 break;
9945
9946 case offsetof(struct __sk_buff, gso_segs):
9947 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9948 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9949 si->dst_reg, si->dst_reg,
9950 bpf_target_off(struct skb_shared_info,
9951 gso_segs, 2,
9952 target_size));
9953 break;
9954 case offsetof(struct __sk_buff, gso_size):
9955 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9956 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9957 si->dst_reg, si->dst_reg,
9958 bpf_target_off(struct skb_shared_info,
9959 gso_size, 2,
9960 target_size));
9961 break;
9962 case offsetof(struct __sk_buff, wire_len):
9963 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9964
9965 off = si->off;
9966 off -= offsetof(struct __sk_buff, wire_len);
9967 off += offsetof(struct sk_buff, cb);
9968 off += offsetof(struct qdisc_skb_cb, pkt_len);
9969 *target_size = 4;
9970 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9971 break;
9972
9973 case offsetof(struct __sk_buff, sk):
9974 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9975 si->dst_reg, si->src_reg,
9976 offsetof(struct sk_buff, sk));
9977 break;
9978 case offsetof(struct __sk_buff, hwtstamp):
9979 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9980 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9981
9982 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9983 *insn++ = BPF_LDX_MEM(BPF_DW,
9984 si->dst_reg, si->dst_reg,
9985 bpf_target_off(struct skb_shared_info,
9986 hwtstamps, 8,
9987 target_size));
9988 break;
9989 }
9990
9991 return insn - insn_buf;
9992 }
9993
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9994 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9995 const struct bpf_insn *si,
9996 struct bpf_insn *insn_buf,
9997 struct bpf_prog *prog, u32 *target_size)
9998 {
9999 struct bpf_insn *insn = insn_buf;
10000 int off;
10001
10002 switch (si->off) {
10003 case offsetof(struct bpf_sock, bound_dev_if):
10004 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10005
10006 if (type == BPF_WRITE)
10007 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10008 offsetof(struct sock, sk_bound_dev_if));
10009 else
10010 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10011 offsetof(struct sock, sk_bound_dev_if));
10012 break;
10013
10014 case offsetof(struct bpf_sock, mark):
10015 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10016
10017 if (type == BPF_WRITE)
10018 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10019 offsetof(struct sock, sk_mark));
10020 else
10021 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10022 offsetof(struct sock, sk_mark));
10023 break;
10024
10025 case offsetof(struct bpf_sock, priority):
10026 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10027
10028 if (type == BPF_WRITE)
10029 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10030 offsetof(struct sock, sk_priority));
10031 else
10032 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10033 offsetof(struct sock, sk_priority));
10034 break;
10035
10036 case offsetof(struct bpf_sock, family):
10037 *insn++ = BPF_LDX_MEM(
10038 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10039 si->dst_reg, si->src_reg,
10040 bpf_target_off(struct sock_common,
10041 skc_family,
10042 sizeof_field(struct sock_common,
10043 skc_family),
10044 target_size));
10045 break;
10046
10047 case offsetof(struct bpf_sock, type):
10048 *insn++ = BPF_LDX_MEM(
10049 BPF_FIELD_SIZEOF(struct sock, sk_type),
10050 si->dst_reg, si->src_reg,
10051 bpf_target_off(struct sock, sk_type,
10052 sizeof_field(struct sock, sk_type),
10053 target_size));
10054 break;
10055
10056 case offsetof(struct bpf_sock, protocol):
10057 *insn++ = BPF_LDX_MEM(
10058 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10059 si->dst_reg, si->src_reg,
10060 bpf_target_off(struct sock, sk_protocol,
10061 sizeof_field(struct sock, sk_protocol),
10062 target_size));
10063 break;
10064
10065 case offsetof(struct bpf_sock, src_ip4):
10066 *insn++ = BPF_LDX_MEM(
10067 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10068 bpf_target_off(struct sock_common, skc_rcv_saddr,
10069 sizeof_field(struct sock_common,
10070 skc_rcv_saddr),
10071 target_size));
10072 break;
10073
10074 case offsetof(struct bpf_sock, dst_ip4):
10075 *insn++ = BPF_LDX_MEM(
10076 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10077 bpf_target_off(struct sock_common, skc_daddr,
10078 sizeof_field(struct sock_common,
10079 skc_daddr),
10080 target_size));
10081 break;
10082
10083 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10084 #if IS_ENABLED(CONFIG_IPV6)
10085 off = si->off;
10086 off -= offsetof(struct bpf_sock, src_ip6[0]);
10087 *insn++ = BPF_LDX_MEM(
10088 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10089 bpf_target_off(
10090 struct sock_common,
10091 skc_v6_rcv_saddr.s6_addr32[0],
10092 sizeof_field(struct sock_common,
10093 skc_v6_rcv_saddr.s6_addr32[0]),
10094 target_size) + off);
10095 #else
10096 (void)off;
10097 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10098 #endif
10099 break;
10100
10101 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10102 #if IS_ENABLED(CONFIG_IPV6)
10103 off = si->off;
10104 off -= offsetof(struct bpf_sock, dst_ip6[0]);
10105 *insn++ = BPF_LDX_MEM(
10106 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10107 bpf_target_off(struct sock_common,
10108 skc_v6_daddr.s6_addr32[0],
10109 sizeof_field(struct sock_common,
10110 skc_v6_daddr.s6_addr32[0]),
10111 target_size) + off);
10112 #else
10113 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10114 *target_size = 4;
10115 #endif
10116 break;
10117
10118 case offsetof(struct bpf_sock, src_port):
10119 *insn++ = BPF_LDX_MEM(
10120 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10121 si->dst_reg, si->src_reg,
10122 bpf_target_off(struct sock_common, skc_num,
10123 sizeof_field(struct sock_common,
10124 skc_num),
10125 target_size));
10126 break;
10127
10128 case offsetof(struct bpf_sock, dst_port):
10129 *insn++ = BPF_LDX_MEM(
10130 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10131 si->dst_reg, si->src_reg,
10132 bpf_target_off(struct sock_common, skc_dport,
10133 sizeof_field(struct sock_common,
10134 skc_dport),
10135 target_size));
10136 break;
10137
10138 case offsetof(struct bpf_sock, state):
10139 *insn++ = BPF_LDX_MEM(
10140 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10141 si->dst_reg, si->src_reg,
10142 bpf_target_off(struct sock_common, skc_state,
10143 sizeof_field(struct sock_common,
10144 skc_state),
10145 target_size));
10146 break;
10147 case offsetof(struct bpf_sock, rx_queue_mapping):
10148 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10149 *insn++ = BPF_LDX_MEM(
10150 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10151 si->dst_reg, si->src_reg,
10152 bpf_target_off(struct sock, sk_rx_queue_mapping,
10153 sizeof_field(struct sock,
10154 sk_rx_queue_mapping),
10155 target_size));
10156 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10157 1);
10158 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10159 #else
10160 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10161 *target_size = 2;
10162 #endif
10163 break;
10164 }
10165
10166 return insn - insn_buf;
10167 }
10168
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10169 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10170 const struct bpf_insn *si,
10171 struct bpf_insn *insn_buf,
10172 struct bpf_prog *prog, u32 *target_size)
10173 {
10174 struct bpf_insn *insn = insn_buf;
10175
10176 switch (si->off) {
10177 case offsetof(struct __sk_buff, ifindex):
10178 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10179 si->dst_reg, si->src_reg,
10180 offsetof(struct sk_buff, dev));
10181 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10182 bpf_target_off(struct net_device, ifindex, 4,
10183 target_size));
10184 break;
10185 default:
10186 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10187 target_size);
10188 }
10189
10190 return insn - insn_buf;
10191 }
10192
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10193 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10194 const struct bpf_insn *si,
10195 struct bpf_insn *insn_buf,
10196 struct bpf_prog *prog, u32 *target_size)
10197 {
10198 struct bpf_insn *insn = insn_buf;
10199
10200 switch (si->off) {
10201 case offsetof(struct xdp_md, data):
10202 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10203 si->dst_reg, si->src_reg,
10204 offsetof(struct xdp_buff, data));
10205 break;
10206 case offsetof(struct xdp_md, data_meta):
10207 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10208 si->dst_reg, si->src_reg,
10209 offsetof(struct xdp_buff, data_meta));
10210 break;
10211 case offsetof(struct xdp_md, data_end):
10212 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10213 si->dst_reg, si->src_reg,
10214 offsetof(struct xdp_buff, data_end));
10215 break;
10216 case offsetof(struct xdp_md, ingress_ifindex):
10217 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10218 si->dst_reg, si->src_reg,
10219 offsetof(struct xdp_buff, rxq));
10220 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10221 si->dst_reg, si->dst_reg,
10222 offsetof(struct xdp_rxq_info, dev));
10223 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10224 offsetof(struct net_device, ifindex));
10225 break;
10226 case offsetof(struct xdp_md, rx_queue_index):
10227 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10228 si->dst_reg, si->src_reg,
10229 offsetof(struct xdp_buff, rxq));
10230 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10231 offsetof(struct xdp_rxq_info,
10232 queue_index));
10233 break;
10234 case offsetof(struct xdp_md, egress_ifindex):
10235 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10236 si->dst_reg, si->src_reg,
10237 offsetof(struct xdp_buff, txq));
10238 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10239 si->dst_reg, si->dst_reg,
10240 offsetof(struct xdp_txq_info, dev));
10241 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10242 offsetof(struct net_device, ifindex));
10243 break;
10244 }
10245
10246 return insn - insn_buf;
10247 }
10248
10249 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10250 * context Structure, F is Field in context structure that contains a pointer
10251 * to Nested Structure of type NS that has the field NF.
10252 *
10253 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10254 * sure that SIZE is not greater than actual size of S.F.NF.
10255 *
10256 * If offset OFF is provided, the load happens from that offset relative to
10257 * offset of NF.
10258 */
10259 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10260 do { \
10261 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10262 si->src_reg, offsetof(S, F)); \
10263 *insn++ = BPF_LDX_MEM( \
10264 SIZE, si->dst_reg, si->dst_reg, \
10265 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10266 target_size) \
10267 + OFF); \
10268 } while (0)
10269
10270 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10271 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10272 BPF_FIELD_SIZEOF(NS, NF), 0)
10273
10274 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10275 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10276 *
10277 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10278 * "register" since two registers available in convert_ctx_access are not
10279 * enough: we can't override neither SRC, since it contains value to store, nor
10280 * DST since it contains pointer to context that may be used by later
10281 * instructions. But we need a temporary place to save pointer to nested
10282 * structure whose field we want to store to.
10283 */
10284 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10285 do { \
10286 int tmp_reg = BPF_REG_9; \
10287 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10288 --tmp_reg; \
10289 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10290 --tmp_reg; \
10291 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10292 offsetof(S, TF)); \
10293 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10294 si->dst_reg, offsetof(S, F)); \
10295 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10296 tmp_reg, si->src_reg, \
10297 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10298 target_size) \
10299 + OFF, \
10300 si->imm); \
10301 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10302 offsetof(S, TF)); \
10303 } while (0)
10304
10305 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10306 TF) \
10307 do { \
10308 if (type == BPF_WRITE) { \
10309 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10310 OFF, TF); \
10311 } else { \
10312 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10313 S, NS, F, NF, SIZE, OFF); \
10314 } \
10315 } while (0)
10316
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10317 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10318 const struct bpf_insn *si,
10319 struct bpf_insn *insn_buf,
10320 struct bpf_prog *prog, u32 *target_size)
10321 {
10322 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10323 struct bpf_insn *insn = insn_buf;
10324
10325 switch (si->off) {
10326 case offsetof(struct bpf_sock_addr, user_family):
10327 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10328 struct sockaddr, uaddr, sa_family);
10329 break;
10330
10331 case offsetof(struct bpf_sock_addr, user_ip4):
10332 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10333 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10334 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10335 break;
10336
10337 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10338 off = si->off;
10339 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10340 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10341 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10342 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10343 tmp_reg);
10344 break;
10345
10346 case offsetof(struct bpf_sock_addr, user_port):
10347 /* To get port we need to know sa_family first and then treat
10348 * sockaddr as either sockaddr_in or sockaddr_in6.
10349 * Though we can simplify since port field has same offset and
10350 * size in both structures.
10351 * Here we check this invariant and use just one of the
10352 * structures if it's true.
10353 */
10354 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10355 offsetof(struct sockaddr_in6, sin6_port));
10356 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10357 sizeof_field(struct sockaddr_in6, sin6_port));
10358 /* Account for sin6_port being smaller than user_port. */
10359 port_size = min(port_size, BPF_LDST_BYTES(si));
10360 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10361 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10362 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10363 break;
10364
10365 case offsetof(struct bpf_sock_addr, family):
10366 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10367 struct sock, sk, sk_family);
10368 break;
10369
10370 case offsetof(struct bpf_sock_addr, type):
10371 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10372 struct sock, sk, sk_type);
10373 break;
10374
10375 case offsetof(struct bpf_sock_addr, protocol):
10376 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10377 struct sock, sk, sk_protocol);
10378 break;
10379
10380 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10381 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10382 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10383 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10384 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10385 break;
10386
10387 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10388 msg_src_ip6[3]):
10389 off = si->off;
10390 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10391 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10392 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10393 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10394 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10395 break;
10396 case offsetof(struct bpf_sock_addr, sk):
10397 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10398 si->dst_reg, si->src_reg,
10399 offsetof(struct bpf_sock_addr_kern, sk));
10400 break;
10401 }
10402
10403 return insn - insn_buf;
10404 }
10405
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10406 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10407 const struct bpf_insn *si,
10408 struct bpf_insn *insn_buf,
10409 struct bpf_prog *prog,
10410 u32 *target_size)
10411 {
10412 struct bpf_insn *insn = insn_buf;
10413 int off;
10414
10415 /* Helper macro for adding read access to tcp_sock or sock fields. */
10416 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10417 do { \
10418 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10419 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10420 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10421 if (si->dst_reg == reg || si->src_reg == reg) \
10422 reg--; \
10423 if (si->dst_reg == reg || si->src_reg == reg) \
10424 reg--; \
10425 if (si->dst_reg == si->src_reg) { \
10426 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10427 offsetof(struct bpf_sock_ops_kern, \
10428 temp)); \
10429 fullsock_reg = reg; \
10430 jmp += 2; \
10431 } \
10432 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10433 struct bpf_sock_ops_kern, \
10434 is_locked_tcp_sock), \
10435 fullsock_reg, si->src_reg, \
10436 offsetof(struct bpf_sock_ops_kern, \
10437 is_locked_tcp_sock)); \
10438 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10439 if (si->dst_reg == si->src_reg) \
10440 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10441 offsetof(struct bpf_sock_ops_kern, \
10442 temp)); \
10443 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10444 struct bpf_sock_ops_kern, sk),\
10445 si->dst_reg, si->src_reg, \
10446 offsetof(struct bpf_sock_ops_kern, sk));\
10447 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10448 OBJ_FIELD), \
10449 si->dst_reg, si->dst_reg, \
10450 offsetof(OBJ, OBJ_FIELD)); \
10451 if (si->dst_reg == si->src_reg) { \
10452 *insn++ = BPF_JMP_A(1); \
10453 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10454 offsetof(struct bpf_sock_ops_kern, \
10455 temp)); \
10456 } \
10457 } while (0)
10458
10459 #define SOCK_OPS_GET_SK() \
10460 do { \
10461 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10462 if (si->dst_reg == reg || si->src_reg == reg) \
10463 reg--; \
10464 if (si->dst_reg == reg || si->src_reg == reg) \
10465 reg--; \
10466 if (si->dst_reg == si->src_reg) { \
10467 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10468 offsetof(struct bpf_sock_ops_kern, \
10469 temp)); \
10470 fullsock_reg = reg; \
10471 jmp += 2; \
10472 } \
10473 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10474 struct bpf_sock_ops_kern, \
10475 is_fullsock), \
10476 fullsock_reg, si->src_reg, \
10477 offsetof(struct bpf_sock_ops_kern, \
10478 is_fullsock)); \
10479 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10480 if (si->dst_reg == si->src_reg) \
10481 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10482 offsetof(struct bpf_sock_ops_kern, \
10483 temp)); \
10484 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10485 struct bpf_sock_ops_kern, sk),\
10486 si->dst_reg, si->src_reg, \
10487 offsetof(struct bpf_sock_ops_kern, sk));\
10488 if (si->dst_reg == si->src_reg) { \
10489 *insn++ = BPF_JMP_A(1); \
10490 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10491 offsetof(struct bpf_sock_ops_kern, \
10492 temp)); \
10493 } \
10494 } while (0)
10495
10496 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10497 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10498
10499 /* Helper macro for adding write access to tcp_sock or sock fields.
10500 * The macro is called with two registers, dst_reg which contains a pointer
10501 * to ctx (context) and src_reg which contains the value that should be
10502 * stored. However, we need an additional register since we cannot overwrite
10503 * dst_reg because it may be used later in the program.
10504 * Instead we "borrow" one of the other register. We first save its value
10505 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10506 * it at the end of the macro.
10507 */
10508 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10509 do { \
10510 int reg = BPF_REG_9; \
10511 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10512 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10513 if (si->dst_reg == reg || si->src_reg == reg) \
10514 reg--; \
10515 if (si->dst_reg == reg || si->src_reg == reg) \
10516 reg--; \
10517 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10518 offsetof(struct bpf_sock_ops_kern, \
10519 temp)); \
10520 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10521 struct bpf_sock_ops_kern, \
10522 is_locked_tcp_sock), \
10523 reg, si->dst_reg, \
10524 offsetof(struct bpf_sock_ops_kern, \
10525 is_locked_tcp_sock)); \
10526 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10527 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10528 struct bpf_sock_ops_kern, sk),\
10529 reg, si->dst_reg, \
10530 offsetof(struct bpf_sock_ops_kern, sk));\
10531 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10532 BPF_MEM | BPF_CLASS(si->code), \
10533 reg, si->src_reg, \
10534 offsetof(OBJ, OBJ_FIELD), \
10535 si->imm); \
10536 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10537 offsetof(struct bpf_sock_ops_kern, \
10538 temp)); \
10539 } while (0)
10540
10541 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10542 do { \
10543 if (TYPE == BPF_WRITE) \
10544 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10545 else \
10546 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10547 } while (0)
10548
10549 switch (si->off) {
10550 case offsetof(struct bpf_sock_ops, op):
10551 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10552 op),
10553 si->dst_reg, si->src_reg,
10554 offsetof(struct bpf_sock_ops_kern, op));
10555 break;
10556
10557 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10558 offsetof(struct bpf_sock_ops, replylong[3]):
10559 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10560 sizeof_field(struct bpf_sock_ops_kern, reply));
10561 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10562 sizeof_field(struct bpf_sock_ops_kern, replylong));
10563 off = si->off;
10564 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10565 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10566 if (type == BPF_WRITE)
10567 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10568 else
10569 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10570 off);
10571 break;
10572
10573 case offsetof(struct bpf_sock_ops, family):
10574 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10575
10576 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10577 struct bpf_sock_ops_kern, sk),
10578 si->dst_reg, si->src_reg,
10579 offsetof(struct bpf_sock_ops_kern, sk));
10580 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10581 offsetof(struct sock_common, skc_family));
10582 break;
10583
10584 case offsetof(struct bpf_sock_ops, remote_ip4):
10585 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10586
10587 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10588 struct bpf_sock_ops_kern, sk),
10589 si->dst_reg, si->src_reg,
10590 offsetof(struct bpf_sock_ops_kern, sk));
10591 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10592 offsetof(struct sock_common, skc_daddr));
10593 break;
10594
10595 case offsetof(struct bpf_sock_ops, local_ip4):
10596 BUILD_BUG_ON(sizeof_field(struct sock_common,
10597 skc_rcv_saddr) != 4);
10598
10599 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10600 struct bpf_sock_ops_kern, sk),
10601 si->dst_reg, si->src_reg,
10602 offsetof(struct bpf_sock_ops_kern, sk));
10603 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10604 offsetof(struct sock_common,
10605 skc_rcv_saddr));
10606 break;
10607
10608 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10609 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10610 #if IS_ENABLED(CONFIG_IPV6)
10611 BUILD_BUG_ON(sizeof_field(struct sock_common,
10612 skc_v6_daddr.s6_addr32[0]) != 4);
10613
10614 off = si->off;
10615 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10616 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10617 struct bpf_sock_ops_kern, sk),
10618 si->dst_reg, si->src_reg,
10619 offsetof(struct bpf_sock_ops_kern, sk));
10620 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10621 offsetof(struct sock_common,
10622 skc_v6_daddr.s6_addr32[0]) +
10623 off);
10624 #else
10625 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10626 #endif
10627 break;
10628
10629 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10630 offsetof(struct bpf_sock_ops, local_ip6[3]):
10631 #if IS_ENABLED(CONFIG_IPV6)
10632 BUILD_BUG_ON(sizeof_field(struct sock_common,
10633 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10634
10635 off = si->off;
10636 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10637 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10638 struct bpf_sock_ops_kern, sk),
10639 si->dst_reg, si->src_reg,
10640 offsetof(struct bpf_sock_ops_kern, sk));
10641 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10642 offsetof(struct sock_common,
10643 skc_v6_rcv_saddr.s6_addr32[0]) +
10644 off);
10645 #else
10646 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10647 #endif
10648 break;
10649
10650 case offsetof(struct bpf_sock_ops, remote_port):
10651 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10652
10653 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10654 struct bpf_sock_ops_kern, sk),
10655 si->dst_reg, si->src_reg,
10656 offsetof(struct bpf_sock_ops_kern, sk));
10657 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10658 offsetof(struct sock_common, skc_dport));
10659 #ifndef __BIG_ENDIAN_BITFIELD
10660 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10661 #endif
10662 break;
10663
10664 case offsetof(struct bpf_sock_ops, local_port):
10665 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10666
10667 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10668 struct bpf_sock_ops_kern, sk),
10669 si->dst_reg, si->src_reg,
10670 offsetof(struct bpf_sock_ops_kern, sk));
10671 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10672 offsetof(struct sock_common, skc_num));
10673 break;
10674
10675 case offsetof(struct bpf_sock_ops, is_fullsock):
10676 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10677 struct bpf_sock_ops_kern,
10678 is_fullsock),
10679 si->dst_reg, si->src_reg,
10680 offsetof(struct bpf_sock_ops_kern,
10681 is_fullsock));
10682 break;
10683
10684 case offsetof(struct bpf_sock_ops, state):
10685 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10686
10687 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10688 struct bpf_sock_ops_kern, sk),
10689 si->dst_reg, si->src_reg,
10690 offsetof(struct bpf_sock_ops_kern, sk));
10691 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10692 offsetof(struct sock_common, skc_state));
10693 break;
10694
10695 case offsetof(struct bpf_sock_ops, rtt_min):
10696 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10697 sizeof(struct minmax));
10698 BUILD_BUG_ON(sizeof(struct minmax) <
10699 sizeof(struct minmax_sample));
10700
10701 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10702 struct bpf_sock_ops_kern, sk),
10703 si->dst_reg, si->src_reg,
10704 offsetof(struct bpf_sock_ops_kern, sk));
10705 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10706 offsetof(struct tcp_sock, rtt_min) +
10707 sizeof_field(struct minmax_sample, t));
10708 break;
10709
10710 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10711 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10712 struct tcp_sock);
10713 break;
10714
10715 case offsetof(struct bpf_sock_ops, sk_txhash):
10716 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10717 struct sock, type);
10718 break;
10719 case offsetof(struct bpf_sock_ops, snd_cwnd):
10720 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10721 break;
10722 case offsetof(struct bpf_sock_ops, srtt_us):
10723 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10724 break;
10725 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10726 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10727 break;
10728 case offsetof(struct bpf_sock_ops, rcv_nxt):
10729 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10730 break;
10731 case offsetof(struct bpf_sock_ops, snd_nxt):
10732 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10733 break;
10734 case offsetof(struct bpf_sock_ops, snd_una):
10735 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10736 break;
10737 case offsetof(struct bpf_sock_ops, mss_cache):
10738 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10739 break;
10740 case offsetof(struct bpf_sock_ops, ecn_flags):
10741 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10742 break;
10743 case offsetof(struct bpf_sock_ops, rate_delivered):
10744 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10745 break;
10746 case offsetof(struct bpf_sock_ops, rate_interval_us):
10747 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10748 break;
10749 case offsetof(struct bpf_sock_ops, packets_out):
10750 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10751 break;
10752 case offsetof(struct bpf_sock_ops, retrans_out):
10753 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10754 break;
10755 case offsetof(struct bpf_sock_ops, total_retrans):
10756 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10757 break;
10758 case offsetof(struct bpf_sock_ops, segs_in):
10759 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10760 break;
10761 case offsetof(struct bpf_sock_ops, data_segs_in):
10762 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10763 break;
10764 case offsetof(struct bpf_sock_ops, segs_out):
10765 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10766 break;
10767 case offsetof(struct bpf_sock_ops, data_segs_out):
10768 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10769 break;
10770 case offsetof(struct bpf_sock_ops, lost_out):
10771 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10772 break;
10773 case offsetof(struct bpf_sock_ops, sacked_out):
10774 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10775 break;
10776 case offsetof(struct bpf_sock_ops, bytes_received):
10777 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10778 break;
10779 case offsetof(struct bpf_sock_ops, bytes_acked):
10780 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10781 break;
10782 case offsetof(struct bpf_sock_ops, sk):
10783 SOCK_OPS_GET_SK();
10784 break;
10785 case offsetof(struct bpf_sock_ops, skb_data_end):
10786 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10787 skb_data_end),
10788 si->dst_reg, si->src_reg,
10789 offsetof(struct bpf_sock_ops_kern,
10790 skb_data_end));
10791 break;
10792 case offsetof(struct bpf_sock_ops, skb_data):
10793 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10794 skb),
10795 si->dst_reg, si->src_reg,
10796 offsetof(struct bpf_sock_ops_kern,
10797 skb));
10798 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10799 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10800 si->dst_reg, si->dst_reg,
10801 offsetof(struct sk_buff, data));
10802 break;
10803 case offsetof(struct bpf_sock_ops, skb_len):
10804 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10805 skb),
10806 si->dst_reg, si->src_reg,
10807 offsetof(struct bpf_sock_ops_kern,
10808 skb));
10809 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10810 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10811 si->dst_reg, si->dst_reg,
10812 offsetof(struct sk_buff, len));
10813 break;
10814 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10815 off = offsetof(struct sk_buff, cb);
10816 off += offsetof(struct tcp_skb_cb, tcp_flags);
10817 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10818 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10819 skb),
10820 si->dst_reg, si->src_reg,
10821 offsetof(struct bpf_sock_ops_kern,
10822 skb));
10823 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10824 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10825 tcp_flags),
10826 si->dst_reg, si->dst_reg, off);
10827 break;
10828 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10829 struct bpf_insn *jmp_on_null_skb;
10830
10831 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10832 skb),
10833 si->dst_reg, si->src_reg,
10834 offsetof(struct bpf_sock_ops_kern,
10835 skb));
10836 /* Reserve one insn to test skb == NULL */
10837 jmp_on_null_skb = insn++;
10838 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10839 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10840 bpf_target_off(struct skb_shared_info,
10841 hwtstamps, 8,
10842 target_size));
10843 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10844 insn - jmp_on_null_skb - 1);
10845 break;
10846 }
10847 }
10848 return insn - insn_buf;
10849 }
10850
10851 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10852 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10853 struct bpf_insn *insn)
10854 {
10855 int reg;
10856 int temp_reg_off = offsetof(struct sk_buff, cb) +
10857 offsetof(struct sk_skb_cb, temp_reg);
10858
10859 if (si->src_reg == si->dst_reg) {
10860 /* We need an extra register, choose and save a register. */
10861 reg = BPF_REG_9;
10862 if (si->src_reg == reg || si->dst_reg == reg)
10863 reg--;
10864 if (si->src_reg == reg || si->dst_reg == reg)
10865 reg--;
10866 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10867 } else {
10868 reg = si->dst_reg;
10869 }
10870
10871 /* reg = skb->data */
10872 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10873 reg, si->src_reg,
10874 offsetof(struct sk_buff, data));
10875 /* AX = skb->len */
10876 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10877 BPF_REG_AX, si->src_reg,
10878 offsetof(struct sk_buff, len));
10879 /* reg = skb->data + skb->len */
10880 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10881 /* AX = skb->data_len */
10882 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10883 BPF_REG_AX, si->src_reg,
10884 offsetof(struct sk_buff, data_len));
10885
10886 /* reg = skb->data + skb->len - skb->data_len */
10887 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10888
10889 if (si->src_reg == si->dst_reg) {
10890 /* Restore the saved register */
10891 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10892 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10893 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10894 }
10895
10896 return insn;
10897 }
10898
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10899 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10900 const struct bpf_insn *si,
10901 struct bpf_insn *insn_buf,
10902 struct bpf_prog *prog, u32 *target_size)
10903 {
10904 struct bpf_insn *insn = insn_buf;
10905 int off;
10906
10907 switch (si->off) {
10908 case offsetof(struct __sk_buff, data_end):
10909 insn = bpf_convert_data_end_access(si, insn);
10910 break;
10911 case offsetof(struct __sk_buff, cb[0]) ...
10912 offsetofend(struct __sk_buff, cb[4]) - 1:
10913 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10914 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10915 offsetof(struct sk_skb_cb, data)) %
10916 sizeof(__u64));
10917
10918 prog->cb_access = 1;
10919 off = si->off;
10920 off -= offsetof(struct __sk_buff, cb[0]);
10921 off += offsetof(struct sk_buff, cb);
10922 off += offsetof(struct sk_skb_cb, data);
10923 if (type == BPF_WRITE)
10924 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10925 else
10926 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10927 si->src_reg, off);
10928 break;
10929
10930
10931 default:
10932 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10933 target_size);
10934 }
10935
10936 return insn - insn_buf;
10937 }
10938
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10939 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10940 const struct bpf_insn *si,
10941 struct bpf_insn *insn_buf,
10942 struct bpf_prog *prog, u32 *target_size)
10943 {
10944 struct bpf_insn *insn = insn_buf;
10945 #if IS_ENABLED(CONFIG_IPV6)
10946 int off;
10947 #endif
10948
10949 /* convert ctx uses the fact sg element is first in struct */
10950 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10951
10952 switch (si->off) {
10953 case offsetof(struct sk_msg_md, data):
10954 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10955 si->dst_reg, si->src_reg,
10956 offsetof(struct sk_msg, data));
10957 break;
10958 case offsetof(struct sk_msg_md, data_end):
10959 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10960 si->dst_reg, si->src_reg,
10961 offsetof(struct sk_msg, data_end));
10962 break;
10963 case offsetof(struct sk_msg_md, family):
10964 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10965
10966 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10967 struct sk_msg, sk),
10968 si->dst_reg, si->src_reg,
10969 offsetof(struct sk_msg, sk));
10970 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10971 offsetof(struct sock_common, skc_family));
10972 break;
10973
10974 case offsetof(struct sk_msg_md, remote_ip4):
10975 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10976
10977 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10978 struct sk_msg, sk),
10979 si->dst_reg, si->src_reg,
10980 offsetof(struct sk_msg, sk));
10981 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10982 offsetof(struct sock_common, skc_daddr));
10983 break;
10984
10985 case offsetof(struct sk_msg_md, local_ip4):
10986 BUILD_BUG_ON(sizeof_field(struct sock_common,
10987 skc_rcv_saddr) != 4);
10988
10989 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10990 struct sk_msg, sk),
10991 si->dst_reg, si->src_reg,
10992 offsetof(struct sk_msg, sk));
10993 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10994 offsetof(struct sock_common,
10995 skc_rcv_saddr));
10996 break;
10997
10998 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10999 offsetof(struct sk_msg_md, remote_ip6[3]):
11000 #if IS_ENABLED(CONFIG_IPV6)
11001 BUILD_BUG_ON(sizeof_field(struct sock_common,
11002 skc_v6_daddr.s6_addr32[0]) != 4);
11003
11004 off = si->off;
11005 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11006 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11007 struct sk_msg, sk),
11008 si->dst_reg, si->src_reg,
11009 offsetof(struct sk_msg, sk));
11010 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11011 offsetof(struct sock_common,
11012 skc_v6_daddr.s6_addr32[0]) +
11013 off);
11014 #else
11015 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11016 #endif
11017 break;
11018
11019 case offsetof(struct sk_msg_md, local_ip6[0]) ...
11020 offsetof(struct sk_msg_md, local_ip6[3]):
11021 #if IS_ENABLED(CONFIG_IPV6)
11022 BUILD_BUG_ON(sizeof_field(struct sock_common,
11023 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11024
11025 off = si->off;
11026 off -= offsetof(struct sk_msg_md, local_ip6[0]);
11027 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11028 struct sk_msg, sk),
11029 si->dst_reg, si->src_reg,
11030 offsetof(struct sk_msg, sk));
11031 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11032 offsetof(struct sock_common,
11033 skc_v6_rcv_saddr.s6_addr32[0]) +
11034 off);
11035 #else
11036 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11037 #endif
11038 break;
11039
11040 case offsetof(struct sk_msg_md, remote_port):
11041 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11042
11043 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11044 struct sk_msg, sk),
11045 si->dst_reg, si->src_reg,
11046 offsetof(struct sk_msg, sk));
11047 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11048 offsetof(struct sock_common, skc_dport));
11049 #ifndef __BIG_ENDIAN_BITFIELD
11050 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11051 #endif
11052 break;
11053
11054 case offsetof(struct sk_msg_md, local_port):
11055 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11056
11057 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11058 struct sk_msg, sk),
11059 si->dst_reg, si->src_reg,
11060 offsetof(struct sk_msg, sk));
11061 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11062 offsetof(struct sock_common, skc_num));
11063 break;
11064
11065 case offsetof(struct sk_msg_md, size):
11066 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11067 si->dst_reg, si->src_reg,
11068 offsetof(struct sk_msg_sg, size));
11069 break;
11070
11071 case offsetof(struct sk_msg_md, sk):
11072 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11073 si->dst_reg, si->src_reg,
11074 offsetof(struct sk_msg, sk));
11075 break;
11076 }
11077
11078 return insn - insn_buf;
11079 }
11080
11081 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11082 .get_func_proto = sk_filter_func_proto,
11083 .is_valid_access = sk_filter_is_valid_access,
11084 .convert_ctx_access = bpf_convert_ctx_access,
11085 .gen_ld_abs = bpf_gen_ld_abs,
11086 };
11087
11088 const struct bpf_prog_ops sk_filter_prog_ops = {
11089 .test_run = bpf_prog_test_run_skb,
11090 };
11091
11092 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11093 .get_func_proto = tc_cls_act_func_proto,
11094 .is_valid_access = tc_cls_act_is_valid_access,
11095 .convert_ctx_access = tc_cls_act_convert_ctx_access,
11096 .gen_prologue = tc_cls_act_prologue,
11097 .gen_ld_abs = bpf_gen_ld_abs,
11098 .btf_struct_access = tc_cls_act_btf_struct_access,
11099 };
11100
11101 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11102 .test_run = bpf_prog_test_run_skb,
11103 };
11104
11105 const struct bpf_verifier_ops xdp_verifier_ops = {
11106 .get_func_proto = xdp_func_proto,
11107 .is_valid_access = xdp_is_valid_access,
11108 .convert_ctx_access = xdp_convert_ctx_access,
11109 .gen_prologue = bpf_noop_prologue,
11110 .btf_struct_access = xdp_btf_struct_access,
11111 };
11112
11113 const struct bpf_prog_ops xdp_prog_ops = {
11114 .test_run = bpf_prog_test_run_xdp,
11115 };
11116
11117 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11118 .get_func_proto = cg_skb_func_proto,
11119 .is_valid_access = cg_skb_is_valid_access,
11120 .convert_ctx_access = bpf_convert_ctx_access,
11121 };
11122
11123 const struct bpf_prog_ops cg_skb_prog_ops = {
11124 .test_run = bpf_prog_test_run_skb,
11125 };
11126
11127 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11128 .get_func_proto = lwt_in_func_proto,
11129 .is_valid_access = lwt_is_valid_access,
11130 .convert_ctx_access = bpf_convert_ctx_access,
11131 };
11132
11133 const struct bpf_prog_ops lwt_in_prog_ops = {
11134 .test_run = bpf_prog_test_run_skb,
11135 };
11136
11137 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11138 .get_func_proto = lwt_out_func_proto,
11139 .is_valid_access = lwt_is_valid_access,
11140 .convert_ctx_access = bpf_convert_ctx_access,
11141 };
11142
11143 const struct bpf_prog_ops lwt_out_prog_ops = {
11144 .test_run = bpf_prog_test_run_skb,
11145 };
11146
11147 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11148 .get_func_proto = lwt_xmit_func_proto,
11149 .is_valid_access = lwt_is_valid_access,
11150 .convert_ctx_access = bpf_convert_ctx_access,
11151 .gen_prologue = tc_cls_act_prologue,
11152 };
11153
11154 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11155 .test_run = bpf_prog_test_run_skb,
11156 };
11157
11158 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11159 .get_func_proto = lwt_seg6local_func_proto,
11160 .is_valid_access = lwt_is_valid_access,
11161 .convert_ctx_access = bpf_convert_ctx_access,
11162 };
11163
11164 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11165 };
11166
11167 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11168 .get_func_proto = sock_filter_func_proto,
11169 .is_valid_access = sock_filter_is_valid_access,
11170 .convert_ctx_access = bpf_sock_convert_ctx_access,
11171 };
11172
11173 const struct bpf_prog_ops cg_sock_prog_ops = {
11174 };
11175
11176 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11177 .get_func_proto = sock_addr_func_proto,
11178 .is_valid_access = sock_addr_is_valid_access,
11179 .convert_ctx_access = sock_addr_convert_ctx_access,
11180 };
11181
11182 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11183 };
11184
11185 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11186 .get_func_proto = sock_ops_func_proto,
11187 .is_valid_access = sock_ops_is_valid_access,
11188 .convert_ctx_access = sock_ops_convert_ctx_access,
11189 };
11190
11191 const struct bpf_prog_ops sock_ops_prog_ops = {
11192 };
11193
11194 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11195 .get_func_proto = sk_skb_func_proto,
11196 .is_valid_access = sk_skb_is_valid_access,
11197 .convert_ctx_access = sk_skb_convert_ctx_access,
11198 .gen_prologue = sk_skb_prologue,
11199 };
11200
11201 const struct bpf_prog_ops sk_skb_prog_ops = {
11202 };
11203
11204 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11205 .get_func_proto = sk_msg_func_proto,
11206 .is_valid_access = sk_msg_is_valid_access,
11207 .convert_ctx_access = sk_msg_convert_ctx_access,
11208 .gen_prologue = bpf_noop_prologue,
11209 };
11210
11211 const struct bpf_prog_ops sk_msg_prog_ops = {
11212 };
11213
11214 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11215 .get_func_proto = flow_dissector_func_proto,
11216 .is_valid_access = flow_dissector_is_valid_access,
11217 .convert_ctx_access = flow_dissector_convert_ctx_access,
11218 };
11219
11220 const struct bpf_prog_ops flow_dissector_prog_ops = {
11221 .test_run = bpf_prog_test_run_flow_dissector,
11222 };
11223
sk_detach_filter(struct sock * sk)11224 int sk_detach_filter(struct sock *sk)
11225 {
11226 int ret = -ENOENT;
11227 struct sk_filter *filter;
11228
11229 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11230 return -EPERM;
11231
11232 filter = rcu_dereference_protected(sk->sk_filter,
11233 lockdep_sock_is_held(sk));
11234 if (filter) {
11235 RCU_INIT_POINTER(sk->sk_filter, NULL);
11236 sk_filter_uncharge(sk, filter);
11237 ret = 0;
11238 }
11239
11240 return ret;
11241 }
11242 EXPORT_SYMBOL_GPL(sk_detach_filter);
11243
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11244 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11245 {
11246 struct sock_fprog_kern *fprog;
11247 struct sk_filter *filter;
11248 int ret = 0;
11249
11250 sockopt_lock_sock(sk);
11251 filter = rcu_dereference_protected(sk->sk_filter,
11252 lockdep_sock_is_held(sk));
11253 if (!filter)
11254 goto out;
11255
11256 /* We're copying the filter that has been originally attached,
11257 * so no conversion/decode needed anymore. eBPF programs that
11258 * have no original program cannot be dumped through this.
11259 */
11260 ret = -EACCES;
11261 fprog = filter->prog->orig_prog;
11262 if (!fprog)
11263 goto out;
11264
11265 ret = fprog->len;
11266 if (!len)
11267 /* User space only enquires number of filter blocks. */
11268 goto out;
11269
11270 ret = -EINVAL;
11271 if (len < fprog->len)
11272 goto out;
11273
11274 ret = -EFAULT;
11275 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11276 goto out;
11277
11278 /* Instead of bytes, the API requests to return the number
11279 * of filter blocks.
11280 */
11281 ret = fprog->len;
11282 out:
11283 sockopt_release_sock(sk);
11284 return ret;
11285 }
11286
11287 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11288 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11289 struct sock_reuseport *reuse,
11290 struct sock *sk, struct sk_buff *skb,
11291 struct sock *migrating_sk,
11292 u32 hash)
11293 {
11294 reuse_kern->skb = skb;
11295 reuse_kern->sk = sk;
11296 reuse_kern->selected_sk = NULL;
11297 reuse_kern->migrating_sk = migrating_sk;
11298 reuse_kern->data_end = skb->data + skb_headlen(skb);
11299 reuse_kern->hash = hash;
11300 reuse_kern->reuseport_id = reuse->reuseport_id;
11301 reuse_kern->bind_inany = reuse->bind_inany;
11302 }
11303
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11304 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11305 struct bpf_prog *prog, struct sk_buff *skb,
11306 struct sock *migrating_sk,
11307 u32 hash)
11308 {
11309 struct sk_reuseport_kern reuse_kern;
11310 enum sk_action action;
11311
11312 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11313 action = bpf_prog_run(prog, &reuse_kern);
11314
11315 if (action == SK_PASS)
11316 return reuse_kern.selected_sk;
11317 else
11318 return ERR_PTR(-ECONNREFUSED);
11319 }
11320
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11321 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11322 struct bpf_map *, map, void *, key, u32, flags)
11323 {
11324 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11325 struct sock_reuseport *reuse;
11326 struct sock *selected_sk;
11327 int err;
11328
11329 selected_sk = map->ops->map_lookup_elem(map, key);
11330 if (!selected_sk)
11331 return -ENOENT;
11332
11333 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11334 if (!reuse) {
11335 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11336 * The only (!reuse) case here is - the sk has already been
11337 * unhashed (e.g. by close()), so treat it as -ENOENT.
11338 *
11339 * Other maps (e.g. sock_map) do not provide this guarantee and
11340 * the sk may never be in the reuseport group to begin with.
11341 */
11342 err = is_sockarray ? -ENOENT : -EINVAL;
11343 goto error;
11344 }
11345
11346 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11347 struct sock *sk = reuse_kern->sk;
11348
11349 if (sk->sk_protocol != selected_sk->sk_protocol) {
11350 err = -EPROTOTYPE;
11351 } else if (sk->sk_family != selected_sk->sk_family) {
11352 err = -EAFNOSUPPORT;
11353 } else {
11354 /* Catch all. Likely bound to a different sockaddr. */
11355 err = -EBADFD;
11356 }
11357 goto error;
11358 }
11359
11360 reuse_kern->selected_sk = selected_sk;
11361
11362 return 0;
11363 error:
11364 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11365 if (sk_is_refcounted(selected_sk))
11366 sock_put(selected_sk);
11367
11368 return err;
11369 }
11370
11371 static const struct bpf_func_proto sk_select_reuseport_proto = {
11372 .func = sk_select_reuseport,
11373 .gpl_only = false,
11374 .ret_type = RET_INTEGER,
11375 .arg1_type = ARG_PTR_TO_CTX,
11376 .arg2_type = ARG_CONST_MAP_PTR,
11377 .arg3_type = ARG_PTR_TO_MAP_KEY,
11378 .arg4_type = ARG_ANYTHING,
11379 };
11380
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11381 BPF_CALL_4(sk_reuseport_load_bytes,
11382 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11383 void *, to, u32, len)
11384 {
11385 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11386 }
11387
11388 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11389 .func = sk_reuseport_load_bytes,
11390 .gpl_only = false,
11391 .ret_type = RET_INTEGER,
11392 .arg1_type = ARG_PTR_TO_CTX,
11393 .arg2_type = ARG_ANYTHING,
11394 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11395 .arg4_type = ARG_CONST_SIZE,
11396 };
11397
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11398 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11399 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11400 void *, to, u32, len, u32, start_header)
11401 {
11402 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11403 len, start_header);
11404 }
11405
11406 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11407 .func = sk_reuseport_load_bytes_relative,
11408 .gpl_only = false,
11409 .ret_type = RET_INTEGER,
11410 .arg1_type = ARG_PTR_TO_CTX,
11411 .arg2_type = ARG_ANYTHING,
11412 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11413 .arg4_type = ARG_CONST_SIZE,
11414 .arg5_type = ARG_ANYTHING,
11415 };
11416
11417 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11418 sk_reuseport_func_proto(enum bpf_func_id func_id,
11419 const struct bpf_prog *prog)
11420 {
11421 switch (func_id) {
11422 case BPF_FUNC_sk_select_reuseport:
11423 return &sk_select_reuseport_proto;
11424 case BPF_FUNC_skb_load_bytes:
11425 return &sk_reuseport_load_bytes_proto;
11426 case BPF_FUNC_skb_load_bytes_relative:
11427 return &sk_reuseport_load_bytes_relative_proto;
11428 case BPF_FUNC_get_socket_cookie:
11429 return &bpf_get_socket_ptr_cookie_proto;
11430 case BPF_FUNC_ktime_get_coarse_ns:
11431 return &bpf_ktime_get_coarse_ns_proto;
11432 default:
11433 return bpf_base_func_proto(func_id, prog);
11434 }
11435 }
11436
11437 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11438 sk_reuseport_is_valid_access(int off, int size,
11439 enum bpf_access_type type,
11440 const struct bpf_prog *prog,
11441 struct bpf_insn_access_aux *info)
11442 {
11443 const u32 size_default = sizeof(__u32);
11444
11445 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11446 off % size || type != BPF_READ)
11447 return false;
11448
11449 switch (off) {
11450 case offsetof(struct sk_reuseport_md, data):
11451 info->reg_type = PTR_TO_PACKET;
11452 return size == sizeof(__u64);
11453
11454 case offsetof(struct sk_reuseport_md, data_end):
11455 info->reg_type = PTR_TO_PACKET_END;
11456 return size == sizeof(__u64);
11457
11458 case offsetof(struct sk_reuseport_md, hash):
11459 return size == size_default;
11460
11461 case offsetof(struct sk_reuseport_md, sk):
11462 info->reg_type = PTR_TO_SOCKET;
11463 return size == sizeof(__u64);
11464
11465 case offsetof(struct sk_reuseport_md, migrating_sk):
11466 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11467 return size == sizeof(__u64);
11468
11469 /* Fields that allow narrowing */
11470 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11471 if (size < sizeof_field(struct sk_buff, protocol))
11472 return false;
11473 fallthrough;
11474 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11475 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11476 case bpf_ctx_range(struct sk_reuseport_md, len):
11477 bpf_ctx_record_field_size(info, size_default);
11478 return bpf_ctx_narrow_access_ok(off, size, size_default);
11479
11480 default:
11481 return false;
11482 }
11483 }
11484
11485 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11486 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11487 si->dst_reg, si->src_reg, \
11488 bpf_target_off(struct sk_reuseport_kern, F, \
11489 sizeof_field(struct sk_reuseport_kern, F), \
11490 target_size)); \
11491 })
11492
11493 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11494 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11495 struct sk_buff, \
11496 skb, \
11497 SKB_FIELD)
11498
11499 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11500 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11501 struct sock, \
11502 sk, \
11503 SK_FIELD)
11504
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11505 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11506 const struct bpf_insn *si,
11507 struct bpf_insn *insn_buf,
11508 struct bpf_prog *prog,
11509 u32 *target_size)
11510 {
11511 struct bpf_insn *insn = insn_buf;
11512
11513 switch (si->off) {
11514 case offsetof(struct sk_reuseport_md, data):
11515 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11516 break;
11517
11518 case offsetof(struct sk_reuseport_md, len):
11519 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11520 break;
11521
11522 case offsetof(struct sk_reuseport_md, eth_protocol):
11523 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11524 break;
11525
11526 case offsetof(struct sk_reuseport_md, ip_protocol):
11527 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11528 break;
11529
11530 case offsetof(struct sk_reuseport_md, data_end):
11531 SK_REUSEPORT_LOAD_FIELD(data_end);
11532 break;
11533
11534 case offsetof(struct sk_reuseport_md, hash):
11535 SK_REUSEPORT_LOAD_FIELD(hash);
11536 break;
11537
11538 case offsetof(struct sk_reuseport_md, bind_inany):
11539 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11540 break;
11541
11542 case offsetof(struct sk_reuseport_md, sk):
11543 SK_REUSEPORT_LOAD_FIELD(sk);
11544 break;
11545
11546 case offsetof(struct sk_reuseport_md, migrating_sk):
11547 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11548 break;
11549 }
11550
11551 return insn - insn_buf;
11552 }
11553
11554 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11555 .get_func_proto = sk_reuseport_func_proto,
11556 .is_valid_access = sk_reuseport_is_valid_access,
11557 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11558 };
11559
11560 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11561 };
11562
11563 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11564 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11565
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11566 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11567 struct sock *, sk, u64, flags)
11568 {
11569 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11570 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11571 return -EINVAL;
11572 if (unlikely(sk && sk_is_refcounted(sk)))
11573 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11574 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11575 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11576 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11577 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11578
11579 /* Check if socket is suitable for packet L3/L4 protocol */
11580 if (sk && sk->sk_protocol != ctx->protocol)
11581 return -EPROTOTYPE;
11582 if (sk && sk->sk_family != ctx->family &&
11583 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11584 return -EAFNOSUPPORT;
11585
11586 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11587 return -EEXIST;
11588
11589 /* Select socket as lookup result */
11590 ctx->selected_sk = sk;
11591 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11592 return 0;
11593 }
11594
11595 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11596 .func = bpf_sk_lookup_assign,
11597 .gpl_only = false,
11598 .ret_type = RET_INTEGER,
11599 .arg1_type = ARG_PTR_TO_CTX,
11600 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11601 .arg3_type = ARG_ANYTHING,
11602 };
11603
11604 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11605 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11606 {
11607 switch (func_id) {
11608 case BPF_FUNC_perf_event_output:
11609 return &bpf_event_output_data_proto;
11610 case BPF_FUNC_sk_assign:
11611 return &bpf_sk_lookup_assign_proto;
11612 case BPF_FUNC_sk_release:
11613 return &bpf_sk_release_proto;
11614 default:
11615 return bpf_sk_base_func_proto(func_id, prog);
11616 }
11617 }
11618
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11619 static bool sk_lookup_is_valid_access(int off, int size,
11620 enum bpf_access_type type,
11621 const struct bpf_prog *prog,
11622 struct bpf_insn_access_aux *info)
11623 {
11624 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11625 return false;
11626 if (off % size != 0)
11627 return false;
11628 if (type != BPF_READ)
11629 return false;
11630
11631 switch (off) {
11632 case offsetof(struct bpf_sk_lookup, sk):
11633 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11634 return size == sizeof(__u64);
11635
11636 case bpf_ctx_range(struct bpf_sk_lookup, family):
11637 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11638 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11639 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11640 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11641 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11642 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11643 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11644 bpf_ctx_record_field_size(info, sizeof(__u32));
11645 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11646
11647 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11648 /* Allow 4-byte access to 2-byte field for backward compatibility */
11649 if (size == sizeof(__u32))
11650 return true;
11651 bpf_ctx_record_field_size(info, sizeof(__be16));
11652 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11653
11654 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11655 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11656 /* Allow access to zero padding for backward compatibility */
11657 bpf_ctx_record_field_size(info, sizeof(__u16));
11658 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11659
11660 default:
11661 return false;
11662 }
11663 }
11664
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11665 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11666 const struct bpf_insn *si,
11667 struct bpf_insn *insn_buf,
11668 struct bpf_prog *prog,
11669 u32 *target_size)
11670 {
11671 struct bpf_insn *insn = insn_buf;
11672
11673 switch (si->off) {
11674 case offsetof(struct bpf_sk_lookup, sk):
11675 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11676 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11677 break;
11678
11679 case offsetof(struct bpf_sk_lookup, family):
11680 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11681 bpf_target_off(struct bpf_sk_lookup_kern,
11682 family, 2, target_size));
11683 break;
11684
11685 case offsetof(struct bpf_sk_lookup, protocol):
11686 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11687 bpf_target_off(struct bpf_sk_lookup_kern,
11688 protocol, 2, target_size));
11689 break;
11690
11691 case offsetof(struct bpf_sk_lookup, remote_ip4):
11692 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11693 bpf_target_off(struct bpf_sk_lookup_kern,
11694 v4.saddr, 4, target_size));
11695 break;
11696
11697 case offsetof(struct bpf_sk_lookup, local_ip4):
11698 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11699 bpf_target_off(struct bpf_sk_lookup_kern,
11700 v4.daddr, 4, target_size));
11701 break;
11702
11703 case bpf_ctx_range_till(struct bpf_sk_lookup,
11704 remote_ip6[0], remote_ip6[3]): {
11705 #if IS_ENABLED(CONFIG_IPV6)
11706 int off = si->off;
11707
11708 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11709 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11710 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11711 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11712 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11713 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11714 #else
11715 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11716 #endif
11717 break;
11718 }
11719 case bpf_ctx_range_till(struct bpf_sk_lookup,
11720 local_ip6[0], local_ip6[3]): {
11721 #if IS_ENABLED(CONFIG_IPV6)
11722 int off = si->off;
11723
11724 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11725 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11726 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11727 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11728 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11729 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11730 #else
11731 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11732 #endif
11733 break;
11734 }
11735 case offsetof(struct bpf_sk_lookup, remote_port):
11736 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11737 bpf_target_off(struct bpf_sk_lookup_kern,
11738 sport, 2, target_size));
11739 break;
11740
11741 case offsetofend(struct bpf_sk_lookup, remote_port):
11742 *target_size = 2;
11743 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11744 break;
11745
11746 case offsetof(struct bpf_sk_lookup, local_port):
11747 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11748 bpf_target_off(struct bpf_sk_lookup_kern,
11749 dport, 2, target_size));
11750 break;
11751
11752 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11753 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11754 bpf_target_off(struct bpf_sk_lookup_kern,
11755 ingress_ifindex, 4, target_size));
11756 break;
11757 }
11758
11759 return insn - insn_buf;
11760 }
11761
11762 const struct bpf_prog_ops sk_lookup_prog_ops = {
11763 .test_run = bpf_prog_test_run_sk_lookup,
11764 };
11765
11766 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11767 .get_func_proto = sk_lookup_func_proto,
11768 .is_valid_access = sk_lookup_is_valid_access,
11769 .convert_ctx_access = sk_lookup_convert_ctx_access,
11770 };
11771
11772 #endif /* CONFIG_INET */
11773
DEFINE_BPF_DISPATCHER(xdp)11774 DEFINE_BPF_DISPATCHER(xdp)
11775
11776 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11777 {
11778 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11779 }
11780
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11781 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11782 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11783 BTF_SOCK_TYPE_xxx
11784 #undef BTF_SOCK_TYPE
11785
11786 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11787 {
11788 /* tcp6_sock type is not generated in dwarf and hence btf,
11789 * trigger an explicit type generation here.
11790 */
11791 BTF_TYPE_EMIT(struct tcp6_sock);
11792 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11793 sk->sk_family == AF_INET6)
11794 return (unsigned long)sk;
11795
11796 return (unsigned long)NULL;
11797 }
11798
11799 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11800 .func = bpf_skc_to_tcp6_sock,
11801 .gpl_only = false,
11802 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11803 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11804 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11805 };
11806
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11807 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11808 {
11809 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11810 return (unsigned long)sk;
11811
11812 return (unsigned long)NULL;
11813 }
11814
11815 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11816 .func = bpf_skc_to_tcp_sock,
11817 .gpl_only = false,
11818 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11819 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11820 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11821 };
11822
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11823 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11824 {
11825 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11826 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11827 */
11828 BTF_TYPE_EMIT(struct inet_timewait_sock);
11829 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11830
11831 #ifdef CONFIG_INET
11832 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11833 return (unsigned long)sk;
11834 #endif
11835
11836 #if IS_BUILTIN(CONFIG_IPV6)
11837 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11838 return (unsigned long)sk;
11839 #endif
11840
11841 return (unsigned long)NULL;
11842 }
11843
11844 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11845 .func = bpf_skc_to_tcp_timewait_sock,
11846 .gpl_only = false,
11847 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11848 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11849 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11850 };
11851
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11852 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11853 {
11854 #ifdef CONFIG_INET
11855 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11856 return (unsigned long)sk;
11857 #endif
11858
11859 #if IS_BUILTIN(CONFIG_IPV6)
11860 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11861 return (unsigned long)sk;
11862 #endif
11863
11864 return (unsigned long)NULL;
11865 }
11866
11867 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11868 .func = bpf_skc_to_tcp_request_sock,
11869 .gpl_only = false,
11870 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11871 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11872 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11873 };
11874
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11875 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11876 {
11877 /* udp6_sock type is not generated in dwarf and hence btf,
11878 * trigger an explicit type generation here.
11879 */
11880 BTF_TYPE_EMIT(struct udp6_sock);
11881 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11882 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11883 return (unsigned long)sk;
11884
11885 return (unsigned long)NULL;
11886 }
11887
11888 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11889 .func = bpf_skc_to_udp6_sock,
11890 .gpl_only = false,
11891 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11892 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11893 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11894 };
11895
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11896 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11897 {
11898 /* unix_sock type is not generated in dwarf and hence btf,
11899 * trigger an explicit type generation here.
11900 */
11901 BTF_TYPE_EMIT(struct unix_sock);
11902 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11903 return (unsigned long)sk;
11904
11905 return (unsigned long)NULL;
11906 }
11907
11908 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11909 .func = bpf_skc_to_unix_sock,
11910 .gpl_only = false,
11911 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11912 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11913 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11914 };
11915
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11916 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11917 {
11918 BTF_TYPE_EMIT(struct mptcp_sock);
11919 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11920 }
11921
11922 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11923 .func = bpf_skc_to_mptcp_sock,
11924 .gpl_only = false,
11925 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11926 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11927 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11928 };
11929
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11930 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11931 {
11932 return (unsigned long)sock_from_file(file);
11933 }
11934
11935 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11936 BTF_ID(struct, socket)
11937 BTF_ID(struct, file)
11938
11939 const struct bpf_func_proto bpf_sock_from_file_proto = {
11940 .func = bpf_sock_from_file,
11941 .gpl_only = false,
11942 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11943 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11944 .arg1_type = ARG_PTR_TO_BTF_ID,
11945 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11946 };
11947
11948 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11949 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11950 {
11951 const struct bpf_func_proto *func;
11952
11953 switch (func_id) {
11954 case BPF_FUNC_skc_to_tcp6_sock:
11955 func = &bpf_skc_to_tcp6_sock_proto;
11956 break;
11957 case BPF_FUNC_skc_to_tcp_sock:
11958 func = &bpf_skc_to_tcp_sock_proto;
11959 break;
11960 case BPF_FUNC_skc_to_tcp_timewait_sock:
11961 func = &bpf_skc_to_tcp_timewait_sock_proto;
11962 break;
11963 case BPF_FUNC_skc_to_tcp_request_sock:
11964 func = &bpf_skc_to_tcp_request_sock_proto;
11965 break;
11966 case BPF_FUNC_skc_to_udp6_sock:
11967 func = &bpf_skc_to_udp6_sock_proto;
11968 break;
11969 case BPF_FUNC_skc_to_unix_sock:
11970 func = &bpf_skc_to_unix_sock_proto;
11971 break;
11972 case BPF_FUNC_skc_to_mptcp_sock:
11973 func = &bpf_skc_to_mptcp_sock_proto;
11974 break;
11975 case BPF_FUNC_ktime_get_coarse_ns:
11976 return &bpf_ktime_get_coarse_ns_proto;
11977 default:
11978 return bpf_base_func_proto(func_id, prog);
11979 }
11980
11981 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11982 return NULL;
11983
11984 return func;
11985 }
11986
11987 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11988 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11989 struct bpf_dynptr *ptr__uninit)
11990 {
11991 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11992 struct sk_buff *skb = (struct sk_buff *)s;
11993
11994 if (flags) {
11995 bpf_dynptr_set_null(ptr);
11996 return -EINVAL;
11997 }
11998
11999 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12000
12001 return 0;
12002 }
12003
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12004 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12005 struct bpf_dynptr *ptr__uninit)
12006 {
12007 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12008 struct xdp_buff *xdp = (struct xdp_buff *)x;
12009
12010 if (flags) {
12011 bpf_dynptr_set_null(ptr);
12012 return -EINVAL;
12013 }
12014
12015 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12016
12017 return 0;
12018 }
12019
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12020 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12021 const u8 *sun_path, u32 sun_path__sz)
12022 {
12023 struct sockaddr_un *un;
12024
12025 if (sa_kern->sk->sk_family != AF_UNIX)
12026 return -EINVAL;
12027
12028 /* We do not allow changing the address to unnamed or larger than the
12029 * maximum allowed address size for a unix sockaddr.
12030 */
12031 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12032 return -EINVAL;
12033
12034 un = (struct sockaddr_un *)sa_kern->uaddr;
12035 memcpy(un->sun_path, sun_path, sun_path__sz);
12036 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12037
12038 return 0;
12039 }
12040
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12041 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12042 struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12043 {
12044 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12045 struct sk_buff *skb = (struct sk_buff *)s;
12046 const struct request_sock_ops *ops;
12047 struct inet_request_sock *ireq;
12048 struct tcp_request_sock *treq;
12049 struct request_sock *req;
12050 struct net *net;
12051 __u16 min_mss;
12052 u32 tsoff = 0;
12053
12054 if (attrs__sz != sizeof(*attrs) ||
12055 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12056 return -EINVAL;
12057
12058 if (!skb_at_tc_ingress(skb))
12059 return -EINVAL;
12060
12061 net = dev_net(skb->dev);
12062 if (net != sock_net(sk))
12063 return -ENETUNREACH;
12064
12065 switch (skb->protocol) {
12066 case htons(ETH_P_IP):
12067 ops = &tcp_request_sock_ops;
12068 min_mss = 536;
12069 break;
12070 #if IS_BUILTIN(CONFIG_IPV6)
12071 case htons(ETH_P_IPV6):
12072 ops = &tcp6_request_sock_ops;
12073 min_mss = IPV6_MIN_MTU - 60;
12074 break;
12075 #endif
12076 default:
12077 return -EINVAL;
12078 }
12079
12080 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12081 sk_is_mptcp(sk))
12082 return -EINVAL;
12083
12084 if (attrs->mss < min_mss)
12085 return -EINVAL;
12086
12087 if (attrs->wscale_ok) {
12088 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12089 return -EINVAL;
12090
12091 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12092 attrs->rcv_wscale > TCP_MAX_WSCALE)
12093 return -EINVAL;
12094 }
12095
12096 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12097 return -EINVAL;
12098
12099 if (attrs->tstamp_ok) {
12100 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12101 return -EINVAL;
12102
12103 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12104 }
12105
12106 req = inet_reqsk_alloc(ops, sk, false);
12107 if (!req)
12108 return -ENOMEM;
12109
12110 ireq = inet_rsk(req);
12111 treq = tcp_rsk(req);
12112
12113 req->rsk_listener = sk;
12114 req->syncookie = 1;
12115 req->mss = attrs->mss;
12116 req->ts_recent = attrs->rcv_tsval;
12117
12118 ireq->snd_wscale = attrs->snd_wscale;
12119 ireq->rcv_wscale = attrs->rcv_wscale;
12120 ireq->tstamp_ok = !!attrs->tstamp_ok;
12121 ireq->sack_ok = !!attrs->sack_ok;
12122 ireq->wscale_ok = !!attrs->wscale_ok;
12123 ireq->ecn_ok = !!attrs->ecn_ok;
12124
12125 treq->req_usec_ts = !!attrs->usec_ts_ok;
12126 treq->ts_off = tsoff;
12127
12128 skb_orphan(skb);
12129 skb->sk = req_to_sk(req);
12130 skb->destructor = sock_pfree;
12131
12132 return 0;
12133 #else
12134 return -EOPNOTSUPP;
12135 #endif
12136 }
12137
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12138 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12139 u64 flags)
12140 {
12141 struct sk_buff *skb;
12142
12143 if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12144 return -EOPNOTSUPP;
12145
12146 if (flags)
12147 return -EINVAL;
12148
12149 skb = skops->skb;
12150 skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12151 TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12152 skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12153
12154 return 0;
12155 }
12156
12157 __bpf_kfunc_end_defs();
12158
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12159 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12160 struct bpf_dynptr *ptr__uninit)
12161 {
12162 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12163 int err;
12164
12165 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12166 if (err)
12167 return err;
12168
12169 bpf_dynptr_set_rdonly(ptr);
12170
12171 return 0;
12172 }
12173
12174 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12175 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12176 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12177
12178 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12179 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12180 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12181
12182 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12183 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12184 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12185
12186 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12187 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12188 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12189
12190 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12191 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12192 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12193
12194 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12195 .owner = THIS_MODULE,
12196 .set = &bpf_kfunc_check_set_skb,
12197 };
12198
12199 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12200 .owner = THIS_MODULE,
12201 .set = &bpf_kfunc_check_set_xdp,
12202 };
12203
12204 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12205 .owner = THIS_MODULE,
12206 .set = &bpf_kfunc_check_set_sock_addr,
12207 };
12208
12209 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12210 .owner = THIS_MODULE,
12211 .set = &bpf_kfunc_check_set_tcp_reqsk,
12212 };
12213
12214 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12215 .owner = THIS_MODULE,
12216 .set = &bpf_kfunc_check_set_sock_ops,
12217 };
12218
bpf_kfunc_init(void)12219 static int __init bpf_kfunc_init(void)
12220 {
12221 int ret;
12222
12223 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12224 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12225 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12226 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12227 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12228 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12229 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12230 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12231 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12232 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12233 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12234 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12235 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12236 &bpf_kfunc_set_sock_addr);
12237 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12238 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12239 }
12240 late_initcall(bpf_kfunc_init);
12241
12242 __bpf_kfunc_start_defs();
12243
12244 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12245 *
12246 * The function expects a non-NULL pointer to a socket, and invokes the
12247 * protocol specific socket destroy handlers.
12248 *
12249 * The helper can only be called from BPF contexts that have acquired the socket
12250 * locks.
12251 *
12252 * Parameters:
12253 * @sock: Pointer to socket to be destroyed
12254 *
12255 * Return:
12256 * On error, may return EPROTONOSUPPORT, EINVAL.
12257 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12258 * 0 otherwise
12259 */
bpf_sock_destroy(struct sock_common * sock)12260 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12261 {
12262 struct sock *sk = (struct sock *)sock;
12263
12264 /* The locking semantics that allow for synchronous execution of the
12265 * destroy handlers are only supported for TCP and UDP.
12266 * Supporting protocols will need to acquire sock lock in the BPF context
12267 * prior to invoking this kfunc.
12268 */
12269 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12270 sk->sk_protocol != IPPROTO_UDP))
12271 return -EOPNOTSUPP;
12272
12273 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12274 }
12275
12276 __bpf_kfunc_end_defs();
12277
12278 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12279 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12280 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12281
12282 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12283 {
12284 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12285 prog->expected_attach_type != BPF_TRACE_ITER)
12286 return -EACCES;
12287 return 0;
12288 }
12289
12290 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12291 .owner = THIS_MODULE,
12292 .set = &bpf_sk_iter_kfunc_ids,
12293 .filter = tracing_iter_filter,
12294 };
12295
init_subsystem(void)12296 static int init_subsystem(void)
12297 {
12298 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12299 }
12300 late_initcall(init_subsystem);
12301