1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * zsmalloc memory allocator
5 *
6 * Copyright (C) 2011 Nitin Gupta
7 * Copyright (C) 2012, 2013 Minchan Kim
8 *
9 * This code is released using a dual license strategy: BSD/GPL
10 * You can choose the license that better fits your requirements.
11 *
12 * Released under the terms of 3-clause BSD License
13 * Released under the terms of GNU General Public License Version 2.0
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 /*
19 * lock ordering:
20 * page_lock
21 * pool->lock
22 * class->lock
23 * zspage->lock
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/bitops.h>
30 #include <linux/errno.h>
31 #include <linux/highmem.h>
32 #include <linux/string.h>
33 #include <linux/slab.h>
34 #include <linux/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/cpumask.h>
37 #include <linux/cpu.h>
38 #include <linux/vmalloc.h>
39 #include <linux/preempt.h>
40 #include <linux/spinlock.h>
41 #include <linux/sprintf.h>
42 #include <linux/shrinker.h>
43 #include <linux/types.h>
44 #include <linux/debugfs.h>
45 #include <linux/zsmalloc.h>
46 #include <linux/zpool.h>
47 #include <linux/migrate.h>
48 #include <linux/wait.h>
49 #include <linux/pagemap.h>
50 #include <linux/fs.h>
51 #include <linux/local_lock.h>
52 #include "zpdesc.h"
53
54 #define ZSPAGE_MAGIC 0x58
55
56 /*
57 * This must be power of 2 and greater than or equal to sizeof(link_free).
58 * These two conditions ensure that any 'struct link_free' itself doesn't
59 * span more than 1 page which avoids complex case of mapping 2 pages simply
60 * to restore link_free pointer values.
61 */
62 #define ZS_ALIGN 8
63
64 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
65
66 /*
67 * Object location (<PFN>, <obj_idx>) is encoded as
68 * a single (unsigned long) handle value.
69 *
70 * Note that object index <obj_idx> starts from 0.
71 *
72 * This is made more complicated by various memory models and PAE.
73 */
74
75 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
76 #ifdef MAX_PHYSMEM_BITS
77 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
78 #else
79 /*
80 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
81 * be PAGE_SHIFT
82 */
83 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
84 #endif
85 #endif
86
87 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
88
89 /*
90 * Head in allocated object should have OBJ_ALLOCATED_TAG
91 * to identify the object was allocated or not.
92 * It's okay to add the status bit in the least bit because
93 * header keeps handle which is 4byte-aligned address so we
94 * have room for two bit at least.
95 */
96 #define OBJ_ALLOCATED_TAG 1
97
98 #define OBJ_TAG_BITS 1
99 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
100
101 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
102 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
103
104 #define HUGE_BITS 1
105 #define FULLNESS_BITS 4
106 #define CLASS_BITS 8
107 #define MAGIC_VAL_BITS 8
108
109 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
110
111 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
112 #define ZS_MIN_ALLOC_SIZE \
113 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
114 /* each chunk includes extra space to keep handle */
115 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
116
117 /*
118 * On systems with 4K page size, this gives 255 size classes! There is a
119 * trader-off here:
120 * - Large number of size classes is potentially wasteful as free page are
121 * spread across these classes
122 * - Small number of size classes causes large internal fragmentation
123 * - Probably its better to use specific size classes (empirically
124 * determined). NOTE: all those class sizes must be set as multiple of
125 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
126 *
127 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
128 * (reason above)
129 */
130 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
131 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
132 ZS_SIZE_CLASS_DELTA) + 1)
133
134 /*
135 * Pages are distinguished by the ratio of used memory (that is the ratio
136 * of ->inuse objects to all objects that page can store). For example,
137 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
138 *
139 * The number of fullness groups is not random. It allows us to keep
140 * difference between the least busy page in the group (minimum permitted
141 * number of ->inuse objects) and the most busy page (maximum permitted
142 * number of ->inuse objects) at a reasonable value.
143 */
144 enum fullness_group {
145 ZS_INUSE_RATIO_0,
146 ZS_INUSE_RATIO_10,
147 /* NOTE: 8 more fullness groups here */
148 ZS_INUSE_RATIO_99 = 10,
149 ZS_INUSE_RATIO_100,
150 NR_FULLNESS_GROUPS,
151 };
152
153 enum class_stat_type {
154 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
155 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
156 ZS_OBJS_INUSE,
157 NR_CLASS_STAT_TYPES,
158 };
159
160 struct zs_size_stat {
161 unsigned long objs[NR_CLASS_STAT_TYPES];
162 };
163
164 #ifdef CONFIG_ZSMALLOC_STAT
165 static struct dentry *zs_stat_root;
166 #endif
167
168 static size_t huge_class_size;
169
170 struct size_class {
171 spinlock_t lock;
172 struct list_head fullness_list[NR_FULLNESS_GROUPS];
173 /*
174 * Size of objects stored in this class. Must be multiple
175 * of ZS_ALIGN.
176 */
177 int size;
178 int objs_per_zspage;
179 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
180 int pages_per_zspage;
181
182 unsigned int index;
183 struct zs_size_stat stats;
184 };
185
186 /*
187 * Placed within free objects to form a singly linked list.
188 * For every zspage, zspage->freeobj gives head of this list.
189 *
190 * This must be power of 2 and less than or equal to ZS_ALIGN
191 */
192 struct link_free {
193 union {
194 /*
195 * Free object index;
196 * It's valid for non-allocated object
197 */
198 unsigned long next;
199 /*
200 * Handle of allocated object.
201 */
202 unsigned long handle;
203 };
204 };
205
206 struct zs_pool {
207 const char *name;
208
209 struct size_class *size_class[ZS_SIZE_CLASSES];
210 struct kmem_cache *handle_cachep;
211 struct kmem_cache *zspage_cachep;
212
213 atomic_long_t pages_allocated;
214
215 struct zs_pool_stats stats;
216
217 /* Compact classes */
218 struct shrinker *shrinker;
219
220 #ifdef CONFIG_ZSMALLOC_STAT
221 struct dentry *stat_dentry;
222 #endif
223 #ifdef CONFIG_COMPACTION
224 struct work_struct free_work;
225 #endif
226 /* protect zspage migration/compaction */
227 rwlock_t lock;
228 atomic_t compaction_in_progress;
229 };
230
zpdesc_set_first(struct zpdesc * zpdesc)231 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
232 {
233 SetPagePrivate(zpdesc_page(zpdesc));
234 }
235
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)236 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
237 {
238 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
239 }
240
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)241 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
242 {
243 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
244 }
245
alloc_zpdesc(gfp_t gfp)246 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp)
247 {
248 struct page *page = alloc_page(gfp);
249
250 return page_zpdesc(page);
251 }
252
free_zpdesc(struct zpdesc * zpdesc)253 static inline void free_zpdesc(struct zpdesc *zpdesc)
254 {
255 struct page *page = zpdesc_page(zpdesc);
256
257 __free_page(page);
258 }
259
260 #define ZS_PAGE_UNLOCKED 0
261 #define ZS_PAGE_WRLOCKED -1
262
263 struct zspage_lock {
264 spinlock_t lock;
265 int cnt;
266 struct lockdep_map dep_map;
267 };
268
269 struct zspage {
270 struct {
271 unsigned int huge:HUGE_BITS;
272 unsigned int fullness:FULLNESS_BITS;
273 unsigned int class:CLASS_BITS + 1;
274 unsigned int magic:MAGIC_VAL_BITS;
275 };
276 unsigned int inuse;
277 unsigned int freeobj;
278 struct zpdesc *first_zpdesc;
279 struct list_head list; /* fullness list */
280 struct zs_pool *pool;
281 struct zspage_lock zsl;
282 };
283
zspage_lock_init(struct zspage * zspage)284 static void zspage_lock_init(struct zspage *zspage)
285 {
286 static struct lock_class_key __key;
287 struct zspage_lock *zsl = &zspage->zsl;
288
289 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
290 spin_lock_init(&zsl->lock);
291 zsl->cnt = ZS_PAGE_UNLOCKED;
292 }
293
294 /*
295 * The zspage lock can be held from atomic contexts, but it needs to remain
296 * preemptible when held for reading because it remains held outside of those
297 * atomic contexts, otherwise we unnecessarily lose preemptibility.
298 *
299 * To achieve this, the following rules are enforced on readers and writers:
300 *
301 * - Writers are blocked by both writers and readers, while readers are only
302 * blocked by writers (i.e. normal rwlock semantics).
303 *
304 * - Writers are always atomic (to allow readers to spin waiting for them).
305 *
306 * - Writers always use trylock (as the lock may be held be sleeping readers).
307 *
308 * - Readers may spin on the lock (as they can only wait for atomic writers).
309 *
310 * - Readers may sleep while holding the lock (as writes only use trylock).
311 */
zspage_read_lock(struct zspage * zspage)312 static void zspage_read_lock(struct zspage *zspage)
313 {
314 struct zspage_lock *zsl = &zspage->zsl;
315
316 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
317
318 spin_lock(&zsl->lock);
319 zsl->cnt++;
320 spin_unlock(&zsl->lock);
321
322 lock_acquired(&zsl->dep_map, _RET_IP_);
323 }
324
zspage_read_unlock(struct zspage * zspage)325 static void zspage_read_unlock(struct zspage *zspage)
326 {
327 struct zspage_lock *zsl = &zspage->zsl;
328
329 rwsem_release(&zsl->dep_map, _RET_IP_);
330
331 spin_lock(&zsl->lock);
332 zsl->cnt--;
333 spin_unlock(&zsl->lock);
334 }
335
zspage_write_trylock(struct zspage * zspage)336 static __must_check bool zspage_write_trylock(struct zspage *zspage)
337 {
338 struct zspage_lock *zsl = &zspage->zsl;
339
340 spin_lock(&zsl->lock);
341 if (zsl->cnt == ZS_PAGE_UNLOCKED) {
342 zsl->cnt = ZS_PAGE_WRLOCKED;
343 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
344 lock_acquired(&zsl->dep_map, _RET_IP_);
345 return true;
346 }
347
348 spin_unlock(&zsl->lock);
349 return false;
350 }
351
zspage_write_unlock(struct zspage * zspage)352 static void zspage_write_unlock(struct zspage *zspage)
353 {
354 struct zspage_lock *zsl = &zspage->zsl;
355
356 rwsem_release(&zsl->dep_map, _RET_IP_);
357
358 zsl->cnt = ZS_PAGE_UNLOCKED;
359 spin_unlock(&zsl->lock);
360 }
361
362 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)363 static void SetZsHugePage(struct zspage *zspage)
364 {
365 zspage->huge = 1;
366 }
367
ZsHugePage(struct zspage * zspage)368 static bool ZsHugePage(struct zspage *zspage)
369 {
370 return zspage->huge;
371 }
372
373 #ifdef CONFIG_COMPACTION
374 static void kick_deferred_free(struct zs_pool *pool);
375 static void init_deferred_free(struct zs_pool *pool);
376 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
377 #else
kick_deferred_free(struct zs_pool * pool)378 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)379 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)380 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
381 #endif
382
create_cache(struct zs_pool * pool)383 static int create_cache(struct zs_pool *pool)
384 {
385 char *name;
386
387 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
388 if (!name)
389 return -ENOMEM;
390 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
391 0, 0, NULL);
392 kfree(name);
393 if (!pool->handle_cachep)
394 return -EINVAL;
395
396 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
397 if (!name)
398 return -ENOMEM;
399 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
400 0, 0, NULL);
401 kfree(name);
402 if (!pool->zspage_cachep) {
403 kmem_cache_destroy(pool->handle_cachep);
404 pool->handle_cachep = NULL;
405 return -EINVAL;
406 }
407
408 return 0;
409 }
410
destroy_cache(struct zs_pool * pool)411 static void destroy_cache(struct zs_pool *pool)
412 {
413 kmem_cache_destroy(pool->handle_cachep);
414 kmem_cache_destroy(pool->zspage_cachep);
415 }
416
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)417 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
418 {
419 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
420 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
421 }
422
cache_free_handle(struct zs_pool * pool,unsigned long handle)423 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
424 {
425 kmem_cache_free(pool->handle_cachep, (void *)handle);
426 }
427
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)428 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
429 {
430 return kmem_cache_zalloc(pool->zspage_cachep,
431 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
432 }
433
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)434 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
435 {
436 kmem_cache_free(pool->zspage_cachep, zspage);
437 }
438
439 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)440 static void record_obj(unsigned long handle, unsigned long obj)
441 {
442 *(unsigned long *)handle = obj;
443 }
444
445 /* zpool driver */
446
447 #ifdef CONFIG_ZPOOL
448
zs_zpool_create(const char * name,gfp_t gfp)449 static void *zs_zpool_create(const char *name, gfp_t gfp)
450 {
451 /*
452 * Ignore global gfp flags: zs_malloc() may be invoked from
453 * different contexts and its caller must provide a valid
454 * gfp mask.
455 */
456 return zs_create_pool(name);
457 }
458
zs_zpool_destroy(void * pool)459 static void zs_zpool_destroy(void *pool)
460 {
461 zs_destroy_pool(pool);
462 }
463
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)464 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
465 unsigned long *handle)
466 {
467 *handle = zs_malloc(pool, size, gfp);
468
469 if (IS_ERR_VALUE(*handle))
470 return PTR_ERR((void *)*handle);
471 return 0;
472 }
zs_zpool_free(void * pool,unsigned long handle)473 static void zs_zpool_free(void *pool, unsigned long handle)
474 {
475 zs_free(pool, handle);
476 }
477
zs_zpool_obj_read_begin(void * pool,unsigned long handle,void * local_copy)478 static void *zs_zpool_obj_read_begin(void *pool, unsigned long handle,
479 void *local_copy)
480 {
481 return zs_obj_read_begin(pool, handle, local_copy);
482 }
483
zs_zpool_obj_read_end(void * pool,unsigned long handle,void * handle_mem)484 static void zs_zpool_obj_read_end(void *pool, unsigned long handle,
485 void *handle_mem)
486 {
487 zs_obj_read_end(pool, handle, handle_mem);
488 }
489
zs_zpool_obj_write(void * pool,unsigned long handle,void * handle_mem,size_t mem_len)490 static void zs_zpool_obj_write(void *pool, unsigned long handle,
491 void *handle_mem, size_t mem_len)
492 {
493 zs_obj_write(pool, handle, handle_mem, mem_len);
494 }
495
zs_zpool_total_pages(void * pool)496 static u64 zs_zpool_total_pages(void *pool)
497 {
498 return zs_get_total_pages(pool);
499 }
500
501 static struct zpool_driver zs_zpool_driver = {
502 .type = "zsmalloc",
503 .owner = THIS_MODULE,
504 .create = zs_zpool_create,
505 .destroy = zs_zpool_destroy,
506 .malloc = zs_zpool_malloc,
507 .free = zs_zpool_free,
508 .obj_read_begin = zs_zpool_obj_read_begin,
509 .obj_read_end = zs_zpool_obj_read_end,
510 .obj_write = zs_zpool_obj_write,
511 .total_pages = zs_zpool_total_pages,
512 };
513
514 MODULE_ALIAS("zpool-zsmalloc");
515 #endif /* CONFIG_ZPOOL */
516
is_first_zpdesc(struct zpdesc * zpdesc)517 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
518 {
519 return PagePrivate(zpdesc_page(zpdesc));
520 }
521
522 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)523 static inline int get_zspage_inuse(struct zspage *zspage)
524 {
525 return zspage->inuse;
526 }
527
mod_zspage_inuse(struct zspage * zspage,int val)528 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
529 {
530 zspage->inuse += val;
531 }
532
get_first_zpdesc(struct zspage * zspage)533 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
534 {
535 struct zpdesc *first_zpdesc = zspage->first_zpdesc;
536
537 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
538 return first_zpdesc;
539 }
540
541 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
542
get_first_obj_offset(struct zpdesc * zpdesc)543 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
544 {
545 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
546 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
547 }
548
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)549 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
550 {
551 /* With 24 bits available, we can support offsets into 16 MiB pages. */
552 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
553 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
554 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
555 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
556 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
557 }
558
get_freeobj(struct zspage * zspage)559 static inline unsigned int get_freeobj(struct zspage *zspage)
560 {
561 return zspage->freeobj;
562 }
563
set_freeobj(struct zspage * zspage,unsigned int obj)564 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
565 {
566 zspage->freeobj = obj;
567 }
568
zspage_class(struct zs_pool * pool,struct zspage * zspage)569 static struct size_class *zspage_class(struct zs_pool *pool,
570 struct zspage *zspage)
571 {
572 return pool->size_class[zspage->class];
573 }
574
575 /*
576 * zsmalloc divides the pool into various size classes where each
577 * class maintains a list of zspages where each zspage is divided
578 * into equal sized chunks. Each allocation falls into one of these
579 * classes depending on its size. This function returns index of the
580 * size class which has chunk size big enough to hold the given size.
581 */
get_size_class_index(int size)582 static int get_size_class_index(int size)
583 {
584 int idx = 0;
585
586 if (likely(size > ZS_MIN_ALLOC_SIZE))
587 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
588 ZS_SIZE_CLASS_DELTA);
589
590 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
591 }
592
class_stat_add(struct size_class * class,int type,unsigned long cnt)593 static inline void class_stat_add(struct size_class *class, int type,
594 unsigned long cnt)
595 {
596 class->stats.objs[type] += cnt;
597 }
598
class_stat_sub(struct size_class * class,int type,unsigned long cnt)599 static inline void class_stat_sub(struct size_class *class, int type,
600 unsigned long cnt)
601 {
602 class->stats.objs[type] -= cnt;
603 }
604
class_stat_read(struct size_class * class,int type)605 static inline unsigned long class_stat_read(struct size_class *class, int type)
606 {
607 return class->stats.objs[type];
608 }
609
610 #ifdef CONFIG_ZSMALLOC_STAT
611
zs_stat_init(void)612 static void __init zs_stat_init(void)
613 {
614 if (!debugfs_initialized()) {
615 pr_warn("debugfs not available, stat dir not created\n");
616 return;
617 }
618
619 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
620 }
621
zs_stat_exit(void)622 static void __exit zs_stat_exit(void)
623 {
624 debugfs_remove_recursive(zs_stat_root);
625 }
626
627 static unsigned long zs_can_compact(struct size_class *class);
628
zs_stats_size_show(struct seq_file * s,void * v)629 static int zs_stats_size_show(struct seq_file *s, void *v)
630 {
631 int i, fg;
632 struct zs_pool *pool = s->private;
633 struct size_class *class;
634 int objs_per_zspage;
635 unsigned long obj_allocated, obj_used, pages_used, freeable;
636 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
637 unsigned long total_freeable = 0;
638 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
639
640 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
641 "class", "size", "10%", "20%", "30%", "40%",
642 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
643 "obj_allocated", "obj_used", "pages_used",
644 "pages_per_zspage", "freeable");
645
646 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
647
648 class = pool->size_class[i];
649
650 if (class->index != i)
651 continue;
652
653 spin_lock(&class->lock);
654
655 seq_printf(s, " %5u %5u ", i, class->size);
656 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
657 inuse_totals[fg] += class_stat_read(class, fg);
658 seq_printf(s, "%9lu ", class_stat_read(class, fg));
659 }
660
661 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
662 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
663 freeable = zs_can_compact(class);
664 spin_unlock(&class->lock);
665
666 objs_per_zspage = class->objs_per_zspage;
667 pages_used = obj_allocated / objs_per_zspage *
668 class->pages_per_zspage;
669
670 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
671 obj_allocated, obj_used, pages_used,
672 class->pages_per_zspage, freeable);
673
674 total_objs += obj_allocated;
675 total_used_objs += obj_used;
676 total_pages += pages_used;
677 total_freeable += freeable;
678 }
679
680 seq_puts(s, "\n");
681 seq_printf(s, " %5s %5s ", "Total", "");
682
683 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
684 seq_printf(s, "%9lu ", inuse_totals[fg]);
685
686 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
687 total_objs, total_used_objs, total_pages, "",
688 total_freeable);
689
690 return 0;
691 }
692 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
693
zs_pool_stat_create(struct zs_pool * pool,const char * name)694 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
695 {
696 if (!zs_stat_root) {
697 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
698 return;
699 }
700
701 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
702
703 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
704 &zs_stats_size_fops);
705 }
706
zs_pool_stat_destroy(struct zs_pool * pool)707 static void zs_pool_stat_destroy(struct zs_pool *pool)
708 {
709 debugfs_remove_recursive(pool->stat_dentry);
710 }
711
712 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)713 static void __init zs_stat_init(void)
714 {
715 }
716
zs_stat_exit(void)717 static void __exit zs_stat_exit(void)
718 {
719 }
720
zs_pool_stat_create(struct zs_pool * pool,const char * name)721 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
722 {
723 }
724
zs_pool_stat_destroy(struct zs_pool * pool)725 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
726 {
727 }
728 #endif
729
730
731 /*
732 * For each size class, zspages are divided into different groups
733 * depending on their usage ratio. This function returns fullness
734 * status of the given page.
735 */
get_fullness_group(struct size_class * class,struct zspage * zspage)736 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
737 {
738 int inuse, objs_per_zspage, ratio;
739
740 inuse = get_zspage_inuse(zspage);
741 objs_per_zspage = class->objs_per_zspage;
742
743 if (inuse == 0)
744 return ZS_INUSE_RATIO_0;
745 if (inuse == objs_per_zspage)
746 return ZS_INUSE_RATIO_100;
747
748 ratio = 100 * inuse / objs_per_zspage;
749 /*
750 * Take integer division into consideration: a page with one inuse
751 * object out of 127 possible, will end up having 0 usage ratio,
752 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
753 */
754 return ratio / 10 + 1;
755 }
756
757 /*
758 * Each size class maintains various freelists and zspages are assigned
759 * to one of these freelists based on the number of live objects they
760 * have. This functions inserts the given zspage into the freelist
761 * identified by <class, fullness_group>.
762 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)763 static void insert_zspage(struct size_class *class,
764 struct zspage *zspage,
765 int fullness)
766 {
767 class_stat_add(class, fullness, 1);
768 list_add(&zspage->list, &class->fullness_list[fullness]);
769 zspage->fullness = fullness;
770 }
771
772 /*
773 * This function removes the given zspage from the freelist identified
774 * by <class, fullness_group>.
775 */
remove_zspage(struct size_class * class,struct zspage * zspage)776 static void remove_zspage(struct size_class *class, struct zspage *zspage)
777 {
778 int fullness = zspage->fullness;
779
780 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
781
782 list_del_init(&zspage->list);
783 class_stat_sub(class, fullness, 1);
784 }
785
786 /*
787 * Each size class maintains zspages in different fullness groups depending
788 * on the number of live objects they contain. When allocating or freeing
789 * objects, the fullness status of the page can change, for instance, from
790 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
791 * checks if such a status change has occurred for the given page and
792 * accordingly moves the page from the list of the old fullness group to that
793 * of the new fullness group.
794 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)795 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
796 {
797 int newfg;
798
799 newfg = get_fullness_group(class, zspage);
800 if (newfg == zspage->fullness)
801 goto out;
802
803 remove_zspage(class, zspage);
804 insert_zspage(class, zspage, newfg);
805 out:
806 return newfg;
807 }
808
get_zspage(struct zpdesc * zpdesc)809 static struct zspage *get_zspage(struct zpdesc *zpdesc)
810 {
811 struct zspage *zspage = zpdesc->zspage;
812
813 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
814 return zspage;
815 }
816
get_next_zpdesc(struct zpdesc * zpdesc)817 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
818 {
819 struct zspage *zspage = get_zspage(zpdesc);
820
821 if (unlikely(ZsHugePage(zspage)))
822 return NULL;
823
824 return zpdesc->next;
825 }
826
827 /**
828 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
829 * @obj: the encoded object value
830 * @zpdesc: zpdesc object resides in zspage
831 * @obj_idx: object index
832 */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)833 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
834 unsigned int *obj_idx)
835 {
836 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
837 *obj_idx = (obj & OBJ_INDEX_MASK);
838 }
839
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)840 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
841 {
842 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
843 }
844
845 /**
846 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
847 * @zpdesc: zpdesc object resides in zspage
848 * @obj_idx: object index
849 */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)850 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
851 {
852 unsigned long obj;
853
854 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
855 obj |= obj_idx & OBJ_INDEX_MASK;
856
857 return obj;
858 }
859
handle_to_obj(unsigned long handle)860 static unsigned long handle_to_obj(unsigned long handle)
861 {
862 return *(unsigned long *)handle;
863 }
864
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)865 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
866 unsigned long *phandle)
867 {
868 unsigned long handle;
869 struct zspage *zspage = get_zspage(zpdesc);
870
871 if (unlikely(ZsHugePage(zspage))) {
872 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
873 handle = zpdesc->handle;
874 } else
875 handle = *(unsigned long *)obj;
876
877 if (!(handle & OBJ_ALLOCATED_TAG))
878 return false;
879
880 /* Clear all tags before returning the handle */
881 *phandle = handle & ~OBJ_TAG_MASK;
882 return true;
883 }
884
reset_zpdesc(struct zpdesc * zpdesc)885 static void reset_zpdesc(struct zpdesc *zpdesc)
886 {
887 struct page *page = zpdesc_page(zpdesc);
888
889 __ClearPageMovable(page);
890 ClearPagePrivate(page);
891 zpdesc->zspage = NULL;
892 zpdesc->next = NULL;
893 __ClearPageZsmalloc(page);
894 }
895
trylock_zspage(struct zspage * zspage)896 static int trylock_zspage(struct zspage *zspage)
897 {
898 struct zpdesc *cursor, *fail;
899
900 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
901 get_next_zpdesc(cursor)) {
902 if (!zpdesc_trylock(cursor)) {
903 fail = cursor;
904 goto unlock;
905 }
906 }
907
908 return 1;
909 unlock:
910 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
911 get_next_zpdesc(cursor))
912 zpdesc_unlock(cursor);
913
914 return 0;
915 }
916
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)917 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
918 struct zspage *zspage)
919 {
920 struct zpdesc *zpdesc, *next;
921
922 assert_spin_locked(&class->lock);
923
924 VM_BUG_ON(get_zspage_inuse(zspage));
925 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
926
927 next = zpdesc = get_first_zpdesc(zspage);
928 do {
929 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
930 next = get_next_zpdesc(zpdesc);
931 reset_zpdesc(zpdesc);
932 zpdesc_unlock(zpdesc);
933 zpdesc_dec_zone_page_state(zpdesc);
934 zpdesc_put(zpdesc);
935 zpdesc = next;
936 } while (zpdesc != NULL);
937
938 cache_free_zspage(pool, zspage);
939
940 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
941 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
942 }
943
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)944 static void free_zspage(struct zs_pool *pool, struct size_class *class,
945 struct zspage *zspage)
946 {
947 VM_BUG_ON(get_zspage_inuse(zspage));
948 VM_BUG_ON(list_empty(&zspage->list));
949
950 /*
951 * Since zs_free couldn't be sleepable, this function cannot call
952 * lock_page. The page locks trylock_zspage got will be released
953 * by __free_zspage.
954 */
955 if (!trylock_zspage(zspage)) {
956 kick_deferred_free(pool);
957 return;
958 }
959
960 remove_zspage(class, zspage);
961 __free_zspage(pool, class, zspage);
962 }
963
964 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)965 static void init_zspage(struct size_class *class, struct zspage *zspage)
966 {
967 unsigned int freeobj = 1;
968 unsigned long off = 0;
969 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
970
971 while (zpdesc) {
972 struct zpdesc *next_zpdesc;
973 struct link_free *link;
974 void *vaddr;
975
976 set_first_obj_offset(zpdesc, off);
977
978 vaddr = kmap_local_zpdesc(zpdesc);
979 link = (struct link_free *)vaddr + off / sizeof(*link);
980
981 while ((off += class->size) < PAGE_SIZE) {
982 link->next = freeobj++ << OBJ_TAG_BITS;
983 link += class->size / sizeof(*link);
984 }
985
986 /*
987 * We now come to the last (full or partial) object on this
988 * page, which must point to the first object on the next
989 * page (if present)
990 */
991 next_zpdesc = get_next_zpdesc(zpdesc);
992 if (next_zpdesc) {
993 link->next = freeobj++ << OBJ_TAG_BITS;
994 } else {
995 /*
996 * Reset OBJ_TAG_BITS bit to last link to tell
997 * whether it's allocated object or not.
998 */
999 link->next = -1UL << OBJ_TAG_BITS;
1000 }
1001 kunmap_local(vaddr);
1002 zpdesc = next_zpdesc;
1003 off %= PAGE_SIZE;
1004 }
1005
1006 set_freeobj(zspage, 0);
1007 }
1008
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])1009 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1010 struct zpdesc *zpdescs[])
1011 {
1012 int i;
1013 struct zpdesc *zpdesc;
1014 struct zpdesc *prev_zpdesc = NULL;
1015 int nr_zpdescs = class->pages_per_zspage;
1016
1017 /*
1018 * Allocate individual pages and link them together as:
1019 * 1. all pages are linked together using zpdesc->next
1020 * 2. each sub-page point to zspage using zpdesc->zspage
1021 *
1022 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
1023 * has this flag set).
1024 */
1025 for (i = 0; i < nr_zpdescs; i++) {
1026 zpdesc = zpdescs[i];
1027 zpdesc->zspage = zspage;
1028 zpdesc->next = NULL;
1029 if (i == 0) {
1030 zspage->first_zpdesc = zpdesc;
1031 zpdesc_set_first(zpdesc);
1032 if (unlikely(class->objs_per_zspage == 1 &&
1033 class->pages_per_zspage == 1))
1034 SetZsHugePage(zspage);
1035 } else {
1036 prev_zpdesc->next = zpdesc;
1037 }
1038 prev_zpdesc = zpdesc;
1039 }
1040 }
1041
1042 /*
1043 * Allocate a zspage for the given size class
1044 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)1045 static struct zspage *alloc_zspage(struct zs_pool *pool,
1046 struct size_class *class,
1047 gfp_t gfp)
1048 {
1049 int i;
1050 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
1051 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1052
1053 if (!zspage)
1054 return NULL;
1055
1056 zspage->magic = ZSPAGE_MAGIC;
1057 zspage->pool = pool;
1058 zspage->class = class->index;
1059 zspage_lock_init(zspage);
1060
1061 for (i = 0; i < class->pages_per_zspage; i++) {
1062 struct zpdesc *zpdesc;
1063
1064 zpdesc = alloc_zpdesc(gfp);
1065 if (!zpdesc) {
1066 while (--i >= 0) {
1067 zpdesc_dec_zone_page_state(zpdescs[i]);
1068 __zpdesc_clear_zsmalloc(zpdescs[i]);
1069 free_zpdesc(zpdescs[i]);
1070 }
1071 cache_free_zspage(pool, zspage);
1072 return NULL;
1073 }
1074 __zpdesc_set_zsmalloc(zpdesc);
1075
1076 zpdesc_inc_zone_page_state(zpdesc);
1077 zpdescs[i] = zpdesc;
1078 }
1079
1080 create_page_chain(class, zspage, zpdescs);
1081 init_zspage(class, zspage);
1082
1083 return zspage;
1084 }
1085
find_get_zspage(struct size_class * class)1086 static struct zspage *find_get_zspage(struct size_class *class)
1087 {
1088 int i;
1089 struct zspage *zspage;
1090
1091 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1092 zspage = list_first_entry_or_null(&class->fullness_list[i],
1093 struct zspage, list);
1094 if (zspage)
1095 break;
1096 }
1097
1098 return zspage;
1099 }
1100
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1101 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1102 int objs_per_zspage)
1103 {
1104 if (prev->pages_per_zspage == pages_per_zspage &&
1105 prev->objs_per_zspage == objs_per_zspage)
1106 return true;
1107
1108 return false;
1109 }
1110
zspage_full(struct size_class * class,struct zspage * zspage)1111 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1112 {
1113 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1114 }
1115
zspage_empty(struct zspage * zspage)1116 static bool zspage_empty(struct zspage *zspage)
1117 {
1118 return get_zspage_inuse(zspage) == 0;
1119 }
1120
1121 /**
1122 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1123 * that hold objects of the provided size.
1124 * @pool: zsmalloc pool to use
1125 * @size: object size
1126 *
1127 * Context: Any context.
1128 *
1129 * Return: the index of the zsmalloc &size_class that hold objects of the
1130 * provided size.
1131 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1132 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1133 {
1134 struct size_class *class;
1135
1136 class = pool->size_class[get_size_class_index(size)];
1137
1138 return class->index;
1139 }
1140 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1141
zs_get_total_pages(struct zs_pool * pool)1142 unsigned long zs_get_total_pages(struct zs_pool *pool)
1143 {
1144 return atomic_long_read(&pool->pages_allocated);
1145 }
1146 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1147
zs_obj_read_begin(struct zs_pool * pool,unsigned long handle,void * local_copy)1148 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1149 void *local_copy)
1150 {
1151 struct zspage *zspage;
1152 struct zpdesc *zpdesc;
1153 unsigned long obj, off;
1154 unsigned int obj_idx;
1155 struct size_class *class;
1156 void *addr;
1157
1158 /* Guarantee we can get zspage from handle safely */
1159 read_lock(&pool->lock);
1160 obj = handle_to_obj(handle);
1161 obj_to_location(obj, &zpdesc, &obj_idx);
1162 zspage = get_zspage(zpdesc);
1163
1164 /* Make sure migration doesn't move any pages in this zspage */
1165 zspage_read_lock(zspage);
1166 read_unlock(&pool->lock);
1167
1168 class = zspage_class(pool, zspage);
1169 off = offset_in_page(class->size * obj_idx);
1170
1171 if (off + class->size <= PAGE_SIZE) {
1172 /* this object is contained entirely within a page */
1173 addr = kmap_local_zpdesc(zpdesc);
1174 addr += off;
1175 } else {
1176 size_t sizes[2];
1177
1178 /* this object spans two pages */
1179 sizes[0] = PAGE_SIZE - off;
1180 sizes[1] = class->size - sizes[0];
1181 addr = local_copy;
1182
1183 memcpy_from_page(addr, zpdesc_page(zpdesc),
1184 off, sizes[0]);
1185 zpdesc = get_next_zpdesc(zpdesc);
1186 memcpy_from_page(addr + sizes[0],
1187 zpdesc_page(zpdesc),
1188 0, sizes[1]);
1189 }
1190
1191 if (!ZsHugePage(zspage))
1192 addr += ZS_HANDLE_SIZE;
1193
1194 return addr;
1195 }
1196 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1197
zs_obj_read_end(struct zs_pool * pool,unsigned long handle,void * handle_mem)1198 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1199 void *handle_mem)
1200 {
1201 struct zspage *zspage;
1202 struct zpdesc *zpdesc;
1203 unsigned long obj, off;
1204 unsigned int obj_idx;
1205 struct size_class *class;
1206
1207 obj = handle_to_obj(handle);
1208 obj_to_location(obj, &zpdesc, &obj_idx);
1209 zspage = get_zspage(zpdesc);
1210 class = zspage_class(pool, zspage);
1211 off = offset_in_page(class->size * obj_idx);
1212
1213 if (off + class->size <= PAGE_SIZE) {
1214 if (!ZsHugePage(zspage))
1215 off += ZS_HANDLE_SIZE;
1216 handle_mem -= off;
1217 kunmap_local(handle_mem);
1218 }
1219
1220 zspage_read_unlock(zspage);
1221 }
1222 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1223
zs_obj_write(struct zs_pool * pool,unsigned long handle,void * handle_mem,size_t mem_len)1224 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1225 void *handle_mem, size_t mem_len)
1226 {
1227 struct zspage *zspage;
1228 struct zpdesc *zpdesc;
1229 unsigned long obj, off;
1230 unsigned int obj_idx;
1231 struct size_class *class;
1232
1233 /* Guarantee we can get zspage from handle safely */
1234 read_lock(&pool->lock);
1235 obj = handle_to_obj(handle);
1236 obj_to_location(obj, &zpdesc, &obj_idx);
1237 zspage = get_zspage(zpdesc);
1238
1239 /* Make sure migration doesn't move any pages in this zspage */
1240 zspage_read_lock(zspage);
1241 read_unlock(&pool->lock);
1242
1243 class = zspage_class(pool, zspage);
1244 off = offset_in_page(class->size * obj_idx);
1245
1246 if (!ZsHugePage(zspage))
1247 off += ZS_HANDLE_SIZE;
1248
1249 if (off + mem_len <= PAGE_SIZE) {
1250 /* this object is contained entirely within a page */
1251 void *dst = kmap_local_zpdesc(zpdesc);
1252
1253 memcpy(dst + off, handle_mem, mem_len);
1254 kunmap_local(dst);
1255 } else {
1256 /* this object spans two pages */
1257 size_t sizes[2];
1258
1259 sizes[0] = PAGE_SIZE - off;
1260 sizes[1] = mem_len - sizes[0];
1261
1262 memcpy_to_page(zpdesc_page(zpdesc), off,
1263 handle_mem, sizes[0]);
1264 zpdesc = get_next_zpdesc(zpdesc);
1265 memcpy_to_page(zpdesc_page(zpdesc), 0,
1266 handle_mem + sizes[0], sizes[1]);
1267 }
1268
1269 zspage_read_unlock(zspage);
1270 }
1271 EXPORT_SYMBOL_GPL(zs_obj_write);
1272
1273 /**
1274 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1275 * zsmalloc &size_class.
1276 * @pool: zsmalloc pool to use
1277 *
1278 * The function returns the size of the first huge class - any object of equal
1279 * or bigger size will be stored in zspage consisting of a single physical
1280 * page.
1281 *
1282 * Context: Any context.
1283 *
1284 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1285 */
zs_huge_class_size(struct zs_pool * pool)1286 size_t zs_huge_class_size(struct zs_pool *pool)
1287 {
1288 return huge_class_size;
1289 }
1290 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1291
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1292 static unsigned long obj_malloc(struct zs_pool *pool,
1293 struct zspage *zspage, unsigned long handle)
1294 {
1295 int i, nr_zpdesc, offset;
1296 unsigned long obj;
1297 struct link_free *link;
1298 struct size_class *class;
1299
1300 struct zpdesc *m_zpdesc;
1301 unsigned long m_offset;
1302 void *vaddr;
1303
1304 class = pool->size_class[zspage->class];
1305 obj = get_freeobj(zspage);
1306
1307 offset = obj * class->size;
1308 nr_zpdesc = offset >> PAGE_SHIFT;
1309 m_offset = offset_in_page(offset);
1310 m_zpdesc = get_first_zpdesc(zspage);
1311
1312 for (i = 0; i < nr_zpdesc; i++)
1313 m_zpdesc = get_next_zpdesc(m_zpdesc);
1314
1315 vaddr = kmap_local_zpdesc(m_zpdesc);
1316 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1317 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1318 if (likely(!ZsHugePage(zspage)))
1319 /* record handle in the header of allocated chunk */
1320 link->handle = handle | OBJ_ALLOCATED_TAG;
1321 else
1322 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1323
1324 kunmap_local(vaddr);
1325 mod_zspage_inuse(zspage, 1);
1326
1327 obj = location_to_obj(m_zpdesc, obj);
1328 record_obj(handle, obj);
1329
1330 return obj;
1331 }
1332
1333
1334 /**
1335 * zs_malloc - Allocate block of given size from pool.
1336 * @pool: pool to allocate from
1337 * @size: size of block to allocate
1338 * @gfp: gfp flags when allocating object
1339 *
1340 * On success, handle to the allocated object is returned,
1341 * otherwise an ERR_PTR().
1342 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1343 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1344 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1345 {
1346 unsigned long handle;
1347 struct size_class *class;
1348 int newfg;
1349 struct zspage *zspage;
1350
1351 if (unlikely(!size))
1352 return (unsigned long)ERR_PTR(-EINVAL);
1353
1354 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1355 return (unsigned long)ERR_PTR(-ENOSPC);
1356
1357 handle = cache_alloc_handle(pool, gfp);
1358 if (!handle)
1359 return (unsigned long)ERR_PTR(-ENOMEM);
1360
1361 /* extra space in chunk to keep the handle */
1362 size += ZS_HANDLE_SIZE;
1363 class = pool->size_class[get_size_class_index(size)];
1364
1365 /* class->lock effectively protects the zpage migration */
1366 spin_lock(&class->lock);
1367 zspage = find_get_zspage(class);
1368 if (likely(zspage)) {
1369 obj_malloc(pool, zspage, handle);
1370 /* Now move the zspage to another fullness group, if required */
1371 fix_fullness_group(class, zspage);
1372 class_stat_add(class, ZS_OBJS_INUSE, 1);
1373
1374 goto out;
1375 }
1376
1377 spin_unlock(&class->lock);
1378
1379 zspage = alloc_zspage(pool, class, gfp);
1380 if (!zspage) {
1381 cache_free_handle(pool, handle);
1382 return (unsigned long)ERR_PTR(-ENOMEM);
1383 }
1384
1385 spin_lock(&class->lock);
1386 obj_malloc(pool, zspage, handle);
1387 newfg = get_fullness_group(class, zspage);
1388 insert_zspage(class, zspage, newfg);
1389 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1390 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1391 class_stat_add(class, ZS_OBJS_INUSE, 1);
1392
1393 /* We completely set up zspage so mark them as movable */
1394 SetZsPageMovable(pool, zspage);
1395 out:
1396 spin_unlock(&class->lock);
1397
1398 return handle;
1399 }
1400 EXPORT_SYMBOL_GPL(zs_malloc);
1401
obj_free(int class_size,unsigned long obj)1402 static void obj_free(int class_size, unsigned long obj)
1403 {
1404 struct link_free *link;
1405 struct zspage *zspage;
1406 struct zpdesc *f_zpdesc;
1407 unsigned long f_offset;
1408 unsigned int f_objidx;
1409 void *vaddr;
1410
1411
1412 obj_to_location(obj, &f_zpdesc, &f_objidx);
1413 f_offset = offset_in_page(class_size * f_objidx);
1414 zspage = get_zspage(f_zpdesc);
1415
1416 vaddr = kmap_local_zpdesc(f_zpdesc);
1417 link = (struct link_free *)(vaddr + f_offset);
1418
1419 /* Insert this object in containing zspage's freelist */
1420 if (likely(!ZsHugePage(zspage)))
1421 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1422 else
1423 f_zpdesc->handle = 0;
1424 set_freeobj(zspage, f_objidx);
1425
1426 kunmap_local(vaddr);
1427 mod_zspage_inuse(zspage, -1);
1428 }
1429
zs_free(struct zs_pool * pool,unsigned long handle)1430 void zs_free(struct zs_pool *pool, unsigned long handle)
1431 {
1432 struct zspage *zspage;
1433 struct zpdesc *f_zpdesc;
1434 unsigned long obj;
1435 struct size_class *class;
1436 int fullness;
1437
1438 if (IS_ERR_OR_NULL((void *)handle))
1439 return;
1440
1441 /*
1442 * The pool->lock protects the race with zpage's migration
1443 * so it's safe to get the page from handle.
1444 */
1445 read_lock(&pool->lock);
1446 obj = handle_to_obj(handle);
1447 obj_to_zpdesc(obj, &f_zpdesc);
1448 zspage = get_zspage(f_zpdesc);
1449 class = zspage_class(pool, zspage);
1450 spin_lock(&class->lock);
1451 read_unlock(&pool->lock);
1452
1453 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1454 obj_free(class->size, obj);
1455
1456 fullness = fix_fullness_group(class, zspage);
1457 if (fullness == ZS_INUSE_RATIO_0)
1458 free_zspage(pool, class, zspage);
1459
1460 spin_unlock(&class->lock);
1461 cache_free_handle(pool, handle);
1462 }
1463 EXPORT_SYMBOL_GPL(zs_free);
1464
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1465 static void zs_object_copy(struct size_class *class, unsigned long dst,
1466 unsigned long src)
1467 {
1468 struct zpdesc *s_zpdesc, *d_zpdesc;
1469 unsigned int s_objidx, d_objidx;
1470 unsigned long s_off, d_off;
1471 void *s_addr, *d_addr;
1472 int s_size, d_size, size;
1473 int written = 0;
1474
1475 s_size = d_size = class->size;
1476
1477 obj_to_location(src, &s_zpdesc, &s_objidx);
1478 obj_to_location(dst, &d_zpdesc, &d_objidx);
1479
1480 s_off = offset_in_page(class->size * s_objidx);
1481 d_off = offset_in_page(class->size * d_objidx);
1482
1483 if (s_off + class->size > PAGE_SIZE)
1484 s_size = PAGE_SIZE - s_off;
1485
1486 if (d_off + class->size > PAGE_SIZE)
1487 d_size = PAGE_SIZE - d_off;
1488
1489 s_addr = kmap_local_zpdesc(s_zpdesc);
1490 d_addr = kmap_local_zpdesc(d_zpdesc);
1491
1492 while (1) {
1493 size = min(s_size, d_size);
1494 memcpy(d_addr + d_off, s_addr + s_off, size);
1495 written += size;
1496
1497 if (written == class->size)
1498 break;
1499
1500 s_off += size;
1501 s_size -= size;
1502 d_off += size;
1503 d_size -= size;
1504
1505 /*
1506 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1507 * calls must occurs in reverse order of calls to kmap_local_page().
1508 * So, to call kunmap_local(s_addr) we should first call
1509 * kunmap_local(d_addr). For more details see
1510 * Documentation/mm/highmem.rst.
1511 */
1512 if (s_off >= PAGE_SIZE) {
1513 kunmap_local(d_addr);
1514 kunmap_local(s_addr);
1515 s_zpdesc = get_next_zpdesc(s_zpdesc);
1516 s_addr = kmap_local_zpdesc(s_zpdesc);
1517 d_addr = kmap_local_zpdesc(d_zpdesc);
1518 s_size = class->size - written;
1519 s_off = 0;
1520 }
1521
1522 if (d_off >= PAGE_SIZE) {
1523 kunmap_local(d_addr);
1524 d_zpdesc = get_next_zpdesc(d_zpdesc);
1525 d_addr = kmap_local_zpdesc(d_zpdesc);
1526 d_size = class->size - written;
1527 d_off = 0;
1528 }
1529 }
1530
1531 kunmap_local(d_addr);
1532 kunmap_local(s_addr);
1533 }
1534
1535 /*
1536 * Find alloced object in zspage from index object and
1537 * return handle.
1538 */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1539 static unsigned long find_alloced_obj(struct size_class *class,
1540 struct zpdesc *zpdesc, int *obj_idx)
1541 {
1542 unsigned int offset;
1543 int index = *obj_idx;
1544 unsigned long handle = 0;
1545 void *addr = kmap_local_zpdesc(zpdesc);
1546
1547 offset = get_first_obj_offset(zpdesc);
1548 offset += class->size * index;
1549
1550 while (offset < PAGE_SIZE) {
1551 if (obj_allocated(zpdesc, addr + offset, &handle))
1552 break;
1553
1554 offset += class->size;
1555 index++;
1556 }
1557
1558 kunmap_local(addr);
1559
1560 *obj_idx = index;
1561
1562 return handle;
1563 }
1564
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1565 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1566 struct zspage *dst_zspage)
1567 {
1568 unsigned long used_obj, free_obj;
1569 unsigned long handle;
1570 int obj_idx = 0;
1571 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1572 struct size_class *class = pool->size_class[src_zspage->class];
1573
1574 while (1) {
1575 handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1576 if (!handle) {
1577 s_zpdesc = get_next_zpdesc(s_zpdesc);
1578 if (!s_zpdesc)
1579 break;
1580 obj_idx = 0;
1581 continue;
1582 }
1583
1584 used_obj = handle_to_obj(handle);
1585 free_obj = obj_malloc(pool, dst_zspage, handle);
1586 zs_object_copy(class, free_obj, used_obj);
1587 obj_idx++;
1588 obj_free(class->size, used_obj);
1589
1590 /* Stop if there is no more space */
1591 if (zspage_full(class, dst_zspage))
1592 break;
1593
1594 /* Stop if there are no more objects to migrate */
1595 if (zspage_empty(src_zspage))
1596 break;
1597 }
1598 }
1599
isolate_src_zspage(struct size_class * class)1600 static struct zspage *isolate_src_zspage(struct size_class *class)
1601 {
1602 struct zspage *zspage;
1603 int fg;
1604
1605 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1606 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1607 struct zspage, list);
1608 if (zspage) {
1609 remove_zspage(class, zspage);
1610 return zspage;
1611 }
1612 }
1613
1614 return zspage;
1615 }
1616
isolate_dst_zspage(struct size_class * class)1617 static struct zspage *isolate_dst_zspage(struct size_class *class)
1618 {
1619 struct zspage *zspage;
1620 int fg;
1621
1622 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1623 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1624 struct zspage, list);
1625 if (zspage) {
1626 remove_zspage(class, zspage);
1627 return zspage;
1628 }
1629 }
1630
1631 return zspage;
1632 }
1633
1634 /*
1635 * putback_zspage - add @zspage into right class's fullness list
1636 * @class: destination class
1637 * @zspage: target page
1638 *
1639 * Return @zspage's fullness status
1640 */
putback_zspage(struct size_class * class,struct zspage * zspage)1641 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1642 {
1643 int fullness;
1644
1645 fullness = get_fullness_group(class, zspage);
1646 insert_zspage(class, zspage, fullness);
1647
1648 return fullness;
1649 }
1650
1651 #ifdef CONFIG_COMPACTION
1652 /*
1653 * To prevent zspage destroy during migration, zspage freeing should
1654 * hold locks of all pages in the zspage.
1655 */
lock_zspage(struct zspage * zspage)1656 static void lock_zspage(struct zspage *zspage)
1657 {
1658 struct zpdesc *curr_zpdesc, *zpdesc;
1659
1660 /*
1661 * Pages we haven't locked yet can be migrated off the list while we're
1662 * trying to lock them, so we need to be careful and only attempt to
1663 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1664 * may no longer belong to the zspage. This means that we may wait for
1665 * the wrong page to unlock, so we must take a reference to the page
1666 * prior to waiting for it to unlock outside zspage_read_lock().
1667 */
1668 while (1) {
1669 zspage_read_lock(zspage);
1670 zpdesc = get_first_zpdesc(zspage);
1671 if (zpdesc_trylock(zpdesc))
1672 break;
1673 zpdesc_get(zpdesc);
1674 zspage_read_unlock(zspage);
1675 zpdesc_wait_locked(zpdesc);
1676 zpdesc_put(zpdesc);
1677 }
1678
1679 curr_zpdesc = zpdesc;
1680 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1681 if (zpdesc_trylock(zpdesc)) {
1682 curr_zpdesc = zpdesc;
1683 } else {
1684 zpdesc_get(zpdesc);
1685 zspage_read_unlock(zspage);
1686 zpdesc_wait_locked(zpdesc);
1687 zpdesc_put(zpdesc);
1688 zspage_read_lock(zspage);
1689 }
1690 }
1691 zspage_read_unlock(zspage);
1692 }
1693 #endif /* CONFIG_COMPACTION */
1694
1695 #ifdef CONFIG_COMPACTION
1696
1697 static const struct movable_operations zsmalloc_mops;
1698
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1699 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1700 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1701 {
1702 struct zpdesc *zpdesc;
1703 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1704 unsigned int first_obj_offset;
1705 int idx = 0;
1706
1707 zpdesc = get_first_zpdesc(zspage);
1708 do {
1709 if (zpdesc == oldzpdesc)
1710 zpdescs[idx] = newzpdesc;
1711 else
1712 zpdescs[idx] = zpdesc;
1713 idx++;
1714 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1715
1716 create_page_chain(class, zspage, zpdescs);
1717 first_obj_offset = get_first_obj_offset(oldzpdesc);
1718 set_first_obj_offset(newzpdesc, first_obj_offset);
1719 if (unlikely(ZsHugePage(zspage)))
1720 newzpdesc->handle = oldzpdesc->handle;
1721 __zpdesc_set_movable(newzpdesc, &zsmalloc_mops);
1722 }
1723
zs_page_isolate(struct page * page,isolate_mode_t mode)1724 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1725 {
1726 /*
1727 * Page is locked so zspage couldn't be destroyed. For detail, look at
1728 * lock_zspage in free_zspage.
1729 */
1730 VM_BUG_ON_PAGE(PageIsolated(page), page);
1731
1732 return true;
1733 }
1734
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1735 static int zs_page_migrate(struct page *newpage, struct page *page,
1736 enum migrate_mode mode)
1737 {
1738 struct zs_pool *pool;
1739 struct size_class *class;
1740 struct zspage *zspage;
1741 struct zpdesc *dummy;
1742 struct zpdesc *newzpdesc = page_zpdesc(newpage);
1743 struct zpdesc *zpdesc = page_zpdesc(page);
1744 void *s_addr, *d_addr, *addr;
1745 unsigned int offset;
1746 unsigned long handle;
1747 unsigned long old_obj, new_obj;
1748 unsigned int obj_idx;
1749
1750 VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc));
1751
1752 /* The page is locked, so this pointer must remain valid */
1753 zspage = get_zspage(zpdesc);
1754 pool = zspage->pool;
1755
1756 /*
1757 * The pool migrate_lock protects the race between zpage migration
1758 * and zs_free.
1759 */
1760 write_lock(&pool->lock);
1761 class = zspage_class(pool, zspage);
1762
1763 /*
1764 * the class lock protects zpage alloc/free in the zspage.
1765 */
1766 spin_lock(&class->lock);
1767 /* the zspage write_lock protects zpage access via zs_obj_read/write() */
1768 if (!zspage_write_trylock(zspage)) {
1769 spin_unlock(&class->lock);
1770 write_unlock(&pool->lock);
1771 return -EINVAL;
1772 }
1773
1774 /* We're committed, tell the world that this is a Zsmalloc page. */
1775 __zpdesc_set_zsmalloc(newzpdesc);
1776
1777 offset = get_first_obj_offset(zpdesc);
1778 s_addr = kmap_local_zpdesc(zpdesc);
1779
1780 /*
1781 * Here, any user cannot access all objects in the zspage so let's move.
1782 */
1783 d_addr = kmap_local_zpdesc(newzpdesc);
1784 copy_page(d_addr, s_addr);
1785 kunmap_local(d_addr);
1786
1787 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1788 addr += class->size) {
1789 if (obj_allocated(zpdesc, addr, &handle)) {
1790
1791 old_obj = handle_to_obj(handle);
1792 obj_to_location(old_obj, &dummy, &obj_idx);
1793 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1794 record_obj(handle, new_obj);
1795 }
1796 }
1797 kunmap_local(s_addr);
1798
1799 replace_sub_page(class, zspage, newzpdesc, zpdesc);
1800 /*
1801 * Since we complete the data copy and set up new zspage structure,
1802 * it's okay to release migration_lock.
1803 */
1804 write_unlock(&pool->lock);
1805 spin_unlock(&class->lock);
1806 zspage_write_unlock(zspage);
1807
1808 zpdesc_get(newzpdesc);
1809 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1810 zpdesc_dec_zone_page_state(zpdesc);
1811 zpdesc_inc_zone_page_state(newzpdesc);
1812 }
1813
1814 reset_zpdesc(zpdesc);
1815 zpdesc_put(zpdesc);
1816
1817 return MIGRATEPAGE_SUCCESS;
1818 }
1819
zs_page_putback(struct page * page)1820 static void zs_page_putback(struct page *page)
1821 {
1822 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1823 }
1824
1825 static const struct movable_operations zsmalloc_mops = {
1826 .isolate_page = zs_page_isolate,
1827 .migrate_page = zs_page_migrate,
1828 .putback_page = zs_page_putback,
1829 };
1830
1831 /*
1832 * Caller should hold page_lock of all pages in the zspage
1833 * In here, we cannot use zspage meta data.
1834 */
async_free_zspage(struct work_struct * work)1835 static void async_free_zspage(struct work_struct *work)
1836 {
1837 int i;
1838 struct size_class *class;
1839 struct zspage *zspage, *tmp;
1840 LIST_HEAD(free_pages);
1841 struct zs_pool *pool = container_of(work, struct zs_pool,
1842 free_work);
1843
1844 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1845 class = pool->size_class[i];
1846 if (class->index != i)
1847 continue;
1848
1849 spin_lock(&class->lock);
1850 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1851 &free_pages);
1852 spin_unlock(&class->lock);
1853 }
1854
1855 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1856 list_del(&zspage->list);
1857 lock_zspage(zspage);
1858
1859 class = zspage_class(pool, zspage);
1860 spin_lock(&class->lock);
1861 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1862 __free_zspage(pool, class, zspage);
1863 spin_unlock(&class->lock);
1864 }
1865 };
1866
kick_deferred_free(struct zs_pool * pool)1867 static void kick_deferred_free(struct zs_pool *pool)
1868 {
1869 schedule_work(&pool->free_work);
1870 }
1871
zs_flush_migration(struct zs_pool * pool)1872 static void zs_flush_migration(struct zs_pool *pool)
1873 {
1874 flush_work(&pool->free_work);
1875 }
1876
init_deferred_free(struct zs_pool * pool)1877 static void init_deferred_free(struct zs_pool *pool)
1878 {
1879 INIT_WORK(&pool->free_work, async_free_zspage);
1880 }
1881
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1882 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1883 {
1884 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1885
1886 do {
1887 WARN_ON(!zpdesc_trylock(zpdesc));
1888 __zpdesc_set_movable(zpdesc, &zsmalloc_mops);
1889 zpdesc_unlock(zpdesc);
1890 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1891 }
1892 #else
zs_flush_migration(struct zs_pool * pool)1893 static inline void zs_flush_migration(struct zs_pool *pool) { }
1894 #endif
1895
1896 /*
1897 *
1898 * Based on the number of unused allocated objects calculate
1899 * and return the number of pages that we can free.
1900 */
zs_can_compact(struct size_class * class)1901 static unsigned long zs_can_compact(struct size_class *class)
1902 {
1903 unsigned long obj_wasted;
1904 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1905 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1906
1907 if (obj_allocated <= obj_used)
1908 return 0;
1909
1910 obj_wasted = obj_allocated - obj_used;
1911 obj_wasted /= class->objs_per_zspage;
1912
1913 return obj_wasted * class->pages_per_zspage;
1914 }
1915
__zs_compact(struct zs_pool * pool,struct size_class * class)1916 static unsigned long __zs_compact(struct zs_pool *pool,
1917 struct size_class *class)
1918 {
1919 struct zspage *src_zspage = NULL;
1920 struct zspage *dst_zspage = NULL;
1921 unsigned long pages_freed = 0;
1922
1923 /*
1924 * protect the race between zpage migration and zs_free
1925 * as well as zpage allocation/free
1926 */
1927 write_lock(&pool->lock);
1928 spin_lock(&class->lock);
1929 while (zs_can_compact(class)) {
1930 int fg;
1931
1932 if (!dst_zspage) {
1933 dst_zspage = isolate_dst_zspage(class);
1934 if (!dst_zspage)
1935 break;
1936 }
1937
1938 src_zspage = isolate_src_zspage(class);
1939 if (!src_zspage)
1940 break;
1941
1942 if (!zspage_write_trylock(src_zspage))
1943 break;
1944
1945 migrate_zspage(pool, src_zspage, dst_zspage);
1946 zspage_write_unlock(src_zspage);
1947
1948 fg = putback_zspage(class, src_zspage);
1949 if (fg == ZS_INUSE_RATIO_0) {
1950 free_zspage(pool, class, src_zspage);
1951 pages_freed += class->pages_per_zspage;
1952 }
1953 src_zspage = NULL;
1954
1955 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1956 || rwlock_is_contended(&pool->lock)) {
1957 putback_zspage(class, dst_zspage);
1958 dst_zspage = NULL;
1959
1960 spin_unlock(&class->lock);
1961 write_unlock(&pool->lock);
1962 cond_resched();
1963 write_lock(&pool->lock);
1964 spin_lock(&class->lock);
1965 }
1966 }
1967
1968 if (src_zspage)
1969 putback_zspage(class, src_zspage);
1970
1971 if (dst_zspage)
1972 putback_zspage(class, dst_zspage);
1973
1974 spin_unlock(&class->lock);
1975 write_unlock(&pool->lock);
1976
1977 return pages_freed;
1978 }
1979
zs_compact(struct zs_pool * pool)1980 unsigned long zs_compact(struct zs_pool *pool)
1981 {
1982 int i;
1983 struct size_class *class;
1984 unsigned long pages_freed = 0;
1985
1986 /*
1987 * Pool compaction is performed under pool->lock so it is basically
1988 * single-threaded. Having more than one thread in __zs_compact()
1989 * will increase pool->lock contention, which will impact other
1990 * zsmalloc operations that need pool->lock.
1991 */
1992 if (atomic_xchg(&pool->compaction_in_progress, 1))
1993 return 0;
1994
1995 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1996 class = pool->size_class[i];
1997 if (class->index != i)
1998 continue;
1999 pages_freed += __zs_compact(pool, class);
2000 }
2001 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2002 atomic_set(&pool->compaction_in_progress, 0);
2003
2004 return pages_freed;
2005 }
2006 EXPORT_SYMBOL_GPL(zs_compact);
2007
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2008 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2009 {
2010 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2011 }
2012 EXPORT_SYMBOL_GPL(zs_pool_stats);
2013
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2014 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2015 struct shrink_control *sc)
2016 {
2017 unsigned long pages_freed;
2018 struct zs_pool *pool = shrinker->private_data;
2019
2020 /*
2021 * Compact classes and calculate compaction delta.
2022 * Can run concurrently with a manually triggered
2023 * (by user) compaction.
2024 */
2025 pages_freed = zs_compact(pool);
2026
2027 return pages_freed ? pages_freed : SHRINK_STOP;
2028 }
2029
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2030 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2031 struct shrink_control *sc)
2032 {
2033 int i;
2034 struct size_class *class;
2035 unsigned long pages_to_free = 0;
2036 struct zs_pool *pool = shrinker->private_data;
2037
2038 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2039 class = pool->size_class[i];
2040 if (class->index != i)
2041 continue;
2042
2043 pages_to_free += zs_can_compact(class);
2044 }
2045
2046 return pages_to_free;
2047 }
2048
zs_unregister_shrinker(struct zs_pool * pool)2049 static void zs_unregister_shrinker(struct zs_pool *pool)
2050 {
2051 shrinker_free(pool->shrinker);
2052 }
2053
zs_register_shrinker(struct zs_pool * pool)2054 static int zs_register_shrinker(struct zs_pool *pool)
2055 {
2056 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2057 if (!pool->shrinker)
2058 return -ENOMEM;
2059
2060 pool->shrinker->scan_objects = zs_shrinker_scan;
2061 pool->shrinker->count_objects = zs_shrinker_count;
2062 pool->shrinker->batch = 0;
2063 pool->shrinker->private_data = pool;
2064
2065 shrinker_register(pool->shrinker);
2066
2067 return 0;
2068 }
2069
calculate_zspage_chain_size(int class_size)2070 static int calculate_zspage_chain_size(int class_size)
2071 {
2072 int i, min_waste = INT_MAX;
2073 int chain_size = 1;
2074
2075 if (is_power_of_2(class_size))
2076 return chain_size;
2077
2078 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2079 int waste;
2080
2081 waste = (i * PAGE_SIZE) % class_size;
2082 if (waste < min_waste) {
2083 min_waste = waste;
2084 chain_size = i;
2085 }
2086 }
2087
2088 return chain_size;
2089 }
2090
2091 /**
2092 * zs_create_pool - Creates an allocation pool to work from.
2093 * @name: pool name to be created
2094 *
2095 * This function must be called before anything when using
2096 * the zsmalloc allocator.
2097 *
2098 * On success, a pointer to the newly created pool is returned,
2099 * otherwise NULL.
2100 */
zs_create_pool(const char * name)2101 struct zs_pool *zs_create_pool(const char *name)
2102 {
2103 int i;
2104 struct zs_pool *pool;
2105 struct size_class *prev_class = NULL;
2106
2107 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2108 if (!pool)
2109 return NULL;
2110
2111 init_deferred_free(pool);
2112 rwlock_init(&pool->lock);
2113 atomic_set(&pool->compaction_in_progress, 0);
2114
2115 pool->name = kstrdup(name, GFP_KERNEL);
2116 if (!pool->name)
2117 goto err;
2118
2119 if (create_cache(pool))
2120 goto err;
2121
2122 /*
2123 * Iterate reversely, because, size of size_class that we want to use
2124 * for merging should be larger or equal to current size.
2125 */
2126 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2127 int size;
2128 int pages_per_zspage;
2129 int objs_per_zspage;
2130 struct size_class *class;
2131 int fullness;
2132
2133 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2134 if (size > ZS_MAX_ALLOC_SIZE)
2135 size = ZS_MAX_ALLOC_SIZE;
2136 pages_per_zspage = calculate_zspage_chain_size(size);
2137 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2138
2139 /*
2140 * We iterate from biggest down to smallest classes,
2141 * so huge_class_size holds the size of the first huge
2142 * class. Any object bigger than or equal to that will
2143 * endup in the huge class.
2144 */
2145 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2146 !huge_class_size) {
2147 huge_class_size = size;
2148 /*
2149 * The object uses ZS_HANDLE_SIZE bytes to store the
2150 * handle. We need to subtract it, because zs_malloc()
2151 * unconditionally adds handle size before it performs
2152 * size class search - so object may be smaller than
2153 * huge class size, yet it still can end up in the huge
2154 * class because it grows by ZS_HANDLE_SIZE extra bytes
2155 * right before class lookup.
2156 */
2157 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2158 }
2159
2160 /*
2161 * size_class is used for normal zsmalloc operation such
2162 * as alloc/free for that size. Although it is natural that we
2163 * have one size_class for each size, there is a chance that we
2164 * can get more memory utilization if we use one size_class for
2165 * many different sizes whose size_class have same
2166 * characteristics. So, we makes size_class point to
2167 * previous size_class if possible.
2168 */
2169 if (prev_class) {
2170 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2171 pool->size_class[i] = prev_class;
2172 continue;
2173 }
2174 }
2175
2176 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2177 if (!class)
2178 goto err;
2179
2180 class->size = size;
2181 class->index = i;
2182 class->pages_per_zspage = pages_per_zspage;
2183 class->objs_per_zspage = objs_per_zspage;
2184 spin_lock_init(&class->lock);
2185 pool->size_class[i] = class;
2186
2187 fullness = ZS_INUSE_RATIO_0;
2188 while (fullness < NR_FULLNESS_GROUPS) {
2189 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2190 fullness++;
2191 }
2192
2193 prev_class = class;
2194 }
2195
2196 /* debug only, don't abort if it fails */
2197 zs_pool_stat_create(pool, name);
2198
2199 /*
2200 * Not critical since shrinker is only used to trigger internal
2201 * defragmentation of the pool which is pretty optional thing. If
2202 * registration fails we still can use the pool normally and user can
2203 * trigger compaction manually. Thus, ignore return code.
2204 */
2205 zs_register_shrinker(pool);
2206
2207 return pool;
2208
2209 err:
2210 zs_destroy_pool(pool);
2211 return NULL;
2212 }
2213 EXPORT_SYMBOL_GPL(zs_create_pool);
2214
zs_destroy_pool(struct zs_pool * pool)2215 void zs_destroy_pool(struct zs_pool *pool)
2216 {
2217 int i;
2218
2219 zs_unregister_shrinker(pool);
2220 zs_flush_migration(pool);
2221 zs_pool_stat_destroy(pool);
2222
2223 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2224 int fg;
2225 struct size_class *class = pool->size_class[i];
2226
2227 if (!class)
2228 continue;
2229
2230 if (class->index != i)
2231 continue;
2232
2233 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2234 if (list_empty(&class->fullness_list[fg]))
2235 continue;
2236
2237 pr_err("Class-%d fullness group %d is not empty\n",
2238 class->size, fg);
2239 }
2240 kfree(class);
2241 }
2242
2243 destroy_cache(pool);
2244 kfree(pool->name);
2245 kfree(pool);
2246 }
2247 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2248
zs_init(void)2249 static int __init zs_init(void)
2250 {
2251 #ifdef CONFIG_ZPOOL
2252 zpool_register_driver(&zs_zpool_driver);
2253 #endif
2254 zs_stat_init();
2255 return 0;
2256 }
2257
zs_exit(void)2258 static void __exit zs_exit(void)
2259 {
2260 #ifdef CONFIG_ZPOOL
2261 zpool_unregister_driver(&zs_zpool_driver);
2262 #endif
2263 zs_stat_exit();
2264 }
2265
2266 module_init(zs_init);
2267 module_exit(zs_exit);
2268
2269 MODULE_LICENSE("Dual BSD/GPL");
2270 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2271 MODULE_DESCRIPTION("zsmalloc memory allocator");
2272