1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67
68 #include "internal.h"
69 #include "swap.h"
70
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73
74 struct scan_control {
75 /* How many pages shrink_list() should reclaim */
76 unsigned long nr_to_reclaim;
77
78 /*
79 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 * are scanned.
81 */
82 nodemask_t *nodemask;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Scan pressure balancing between anon and file LRUs
92 */
93 unsigned long anon_cost;
94 unsigned long file_cost;
95
96 #ifdef CONFIG_MEMCG
97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 int *proactive_swappiness;
99 #endif
100
101 /* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 unsigned int may_deactivate:2;
105 unsigned int force_deactivate:1;
106 unsigned int skipped_deactivate:1;
107
108 /* Writepage batching in laptop mode; RECLAIM_WRITE */
109 unsigned int may_writepage:1;
110
111 /* Can mapped folios be reclaimed? */
112 unsigned int may_unmap:1;
113
114 /* Can folios be swapped as part of reclaim? */
115 unsigned int may_swap:1;
116
117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 unsigned int no_cache_trim_mode:1;
119
120 /* Has cache_trim_mode failed at least once? */
121 unsigned int cache_trim_mode_failed:1;
122
123 /* Proactive reclaim invoked by userspace through memory.reclaim */
124 unsigned int proactive:1;
125
126 /*
127 * Cgroup memory below memory.low is protected as long as we
128 * don't threaten to OOM. If any cgroup is reclaimed at
129 * reduced force or passed over entirely due to its memory.low
130 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 * result, then go back for one more cycle that reclaims the protected
132 * memory (memcg_low_reclaim) to avert OOM.
133 */
134 unsigned int memcg_low_reclaim:1;
135 unsigned int memcg_low_skipped:1;
136
137 /* Shared cgroup tree walk failed, rescan the whole tree */
138 unsigned int memcg_full_walk:1;
139
140 unsigned int hibernation_mode:1;
141
142 /* One of the zones is ready for compaction */
143 unsigned int compaction_ready:1;
144
145 /* There is easily reclaimable cold cache in the current node */
146 unsigned int cache_trim_mode:1;
147
148 /* The file folios on the current node are dangerously low */
149 unsigned int file_is_tiny:1;
150
151 /* Always discard instead of demoting to lower tier memory */
152 unsigned int no_demotion:1;
153
154 /* Allocation order */
155 s8 order;
156
157 /* Scan (total_size >> priority) pages at once */
158 s8 priority;
159
160 /* The highest zone to isolate folios for reclaim from */
161 s8 reclaim_idx;
162
163 /* This context's GFP mask */
164 gfp_t gfp_mask;
165
166 /* Incremented by the number of inactive pages that were scanned */
167 unsigned long nr_scanned;
168
169 /* Number of pages freed so far during a call to shrink_zones() */
170 unsigned long nr_reclaimed;
171
172 struct {
173 unsigned int dirty;
174 unsigned int unqueued_dirty;
175 unsigned int congested;
176 unsigned int writeback;
177 unsigned int immediate;
178 unsigned int file_taken;
179 unsigned int taken;
180 } nr;
181
182 /* for recording the reclaimed slab by now */
183 struct reclaim_state reclaim_state;
184 };
185
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
188 do { \
189 if ((_folio)->lru.prev != _base) { \
190 struct folio *prev; \
191 \
192 prev = lru_to_folio(&(_folio->lru)); \
193 prefetchw(&prev->_field); \
194 } \
195 } while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199
200 /*
201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
202 */
203 int vm_swappiness = 60;
204
205 #ifdef CONFIG_MEMCG
206
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 return sc->target_mem_cgroup;
211 }
212
213 /*
214 * Returns true for reclaim on the root cgroup. This is true for direct
215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216 */
root_reclaim(struct scan_control * sc)217 static bool root_reclaim(struct scan_control *sc)
218 {
219 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221
222 /**
223 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224 * @sc: scan_control in question
225 *
226 * The normal page dirty throttling mechanism in balance_dirty_pages() is
227 * completely broken with the legacy memcg and direct stalling in
228 * shrink_folio_list() is used for throttling instead, which lacks all the
229 * niceties such as fairness, adaptive pausing, bandwidth proportional
230 * allocation and configurability.
231 *
232 * This function tests whether the vmscan currently in progress can assume
233 * that the normal dirty throttling mechanism is operational.
234 */
writeback_throttling_sane(struct scan_control * sc)235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 if (!cgroup_reclaim(sc))
238 return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 return true;
242 #endif
243 return false;
244 }
245
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 if (sc->proactive && sc->proactive_swappiness)
249 return *sc->proactive_swappiness;
250 return mem_cgroup_swappiness(memcg);
251 }
252 #else
cgroup_reclaim(struct scan_control * sc)253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 return false;
256 }
257
root_reclaim(struct scan_control * sc)258 static bool root_reclaim(struct scan_control *sc)
259 {
260 return true;
261 }
262
writeback_throttling_sane(struct scan_control * sc)263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 return true;
266 }
267
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 return READ_ONCE(vm_swappiness);
271 }
272 #endif
273
274 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
275 * and including the specified highidx
276 * @zone: The current zone in the iterator
277 * @pgdat: The pgdat which node_zones are being iterated
278 * @idx: The index variable
279 * @highidx: The index of the highest zone to return
280 *
281 * This macro iterates through all managed zones up to and including the specified highidx.
282 * The zone iterator enters an invalid state after macro call and must be reinitialized
283 * before it can be used again.
284 */
285 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \
286 for ((idx) = 0, (zone) = (pgdat)->node_zones; \
287 (idx) <= (highidx); \
288 (idx)++, (zone)++) \
289 if (!managed_zone(zone)) \
290 continue; \
291 else
292
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)293 static void set_task_reclaim_state(struct task_struct *task,
294 struct reclaim_state *rs)
295 {
296 /* Check for an overwrite */
297 WARN_ON_ONCE(rs && task->reclaim_state);
298
299 /* Check for the nulling of an already-nulled member */
300 WARN_ON_ONCE(!rs && !task->reclaim_state);
301
302 task->reclaim_state = rs;
303 }
304
305 /*
306 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
307 * scan_control->nr_reclaimed.
308 */
flush_reclaim_state(struct scan_control * sc)309 static void flush_reclaim_state(struct scan_control *sc)
310 {
311 /*
312 * Currently, reclaim_state->reclaimed includes three types of pages
313 * freed outside of vmscan:
314 * (1) Slab pages.
315 * (2) Clean file pages from pruned inodes (on highmem systems).
316 * (3) XFS freed buffer pages.
317 *
318 * For all of these cases, we cannot universally link the pages to a
319 * single memcg. For example, a memcg-aware shrinker can free one object
320 * charged to the target memcg, causing an entire page to be freed.
321 * If we count the entire page as reclaimed from the memcg, we end up
322 * overestimating the reclaimed amount (potentially under-reclaiming).
323 *
324 * Only count such pages for global reclaim to prevent under-reclaiming
325 * from the target memcg; preventing unnecessary retries during memcg
326 * charging and false positives from proactive reclaim.
327 *
328 * For uncommon cases where the freed pages were actually mostly
329 * charged to the target memcg, we end up underestimating the reclaimed
330 * amount. This should be fine. The freed pages will be uncharged
331 * anyway, even if they are not counted here properly, and we will be
332 * able to make forward progress in charging (which is usually in a
333 * retry loop).
334 *
335 * We can go one step further, and report the uncharged objcg pages in
336 * memcg reclaim, to make reporting more accurate and reduce
337 * underestimation, but it's probably not worth the complexity for now.
338 */
339 if (current->reclaim_state && root_reclaim(sc)) {
340 sc->nr_reclaimed += current->reclaim_state->reclaimed;
341 current->reclaim_state->reclaimed = 0;
342 }
343 }
344
can_demote(int nid,struct scan_control * sc)345 static bool can_demote(int nid, struct scan_control *sc)
346 {
347 if (!numa_demotion_enabled)
348 return false;
349 if (sc && sc->no_demotion)
350 return false;
351 if (next_demotion_node(nid) == NUMA_NO_NODE)
352 return false;
353
354 return true;
355 }
356
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)357 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
358 int nid,
359 struct scan_control *sc)
360 {
361 if (memcg == NULL) {
362 /*
363 * For non-memcg reclaim, is there
364 * space in any swap device?
365 */
366 if (get_nr_swap_pages() > 0)
367 return true;
368 } else {
369 /* Is the memcg below its swap limit? */
370 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
371 return true;
372 }
373
374 /*
375 * The page can not be swapped.
376 *
377 * Can it be reclaimed from this node via demotion?
378 */
379 return can_demote(nid, sc);
380 }
381
382 /*
383 * This misses isolated folios which are not accounted for to save counters.
384 * As the data only determines if reclaim or compaction continues, it is
385 * not expected that isolated folios will be a dominating factor.
386 */
zone_reclaimable_pages(struct zone * zone)387 unsigned long zone_reclaimable_pages(struct zone *zone)
388 {
389 unsigned long nr;
390
391 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
392 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
393 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
394 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
395 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
396 /*
397 * If there are no reclaimable file-backed or anonymous pages,
398 * ensure zones with sufficient free pages are not skipped.
399 * This prevents zones like DMA32 from being ignored in reclaim
400 * scenarios where they can still help alleviate memory pressure.
401 */
402 if (nr == 0)
403 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
404 return nr;
405 }
406
407 /**
408 * lruvec_lru_size - Returns the number of pages on the given LRU list.
409 * @lruvec: lru vector
410 * @lru: lru to use
411 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
412 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)413 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
414 int zone_idx)
415 {
416 unsigned long size = 0;
417 int zid;
418 struct zone *zone;
419
420 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
421 if (!mem_cgroup_disabled())
422 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
423 else
424 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
425 }
426 return size;
427 }
428
drop_slab_node(int nid)429 static unsigned long drop_slab_node(int nid)
430 {
431 unsigned long freed = 0;
432 struct mem_cgroup *memcg = NULL;
433
434 memcg = mem_cgroup_iter(NULL, NULL, NULL);
435 do {
436 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
437 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
438
439 return freed;
440 }
441
drop_slab(void)442 void drop_slab(void)
443 {
444 int nid;
445 int shift = 0;
446 unsigned long freed;
447
448 do {
449 freed = 0;
450 for_each_online_node(nid) {
451 if (fatal_signal_pending(current))
452 return;
453
454 freed += drop_slab_node(nid);
455 }
456 } while ((freed >> shift++) > 1);
457 }
458
459 #define CHECK_RECLAIMER_OFFSET(type) \
460 do { \
461 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
462 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \
463 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
464 PGSCAN_##type - PGSCAN_KSWAPD); \
465 } while (0)
466
reclaimer_offset(struct scan_control * sc)467 static int reclaimer_offset(struct scan_control *sc)
468 {
469 CHECK_RECLAIMER_OFFSET(DIRECT);
470 CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
471 CHECK_RECLAIMER_OFFSET(PROACTIVE);
472
473 if (current_is_kswapd())
474 return 0;
475 if (current_is_khugepaged())
476 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
477 if (sc->proactive)
478 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
479 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
480 }
481
is_page_cache_freeable(struct folio * folio)482 static inline int is_page_cache_freeable(struct folio *folio)
483 {
484 /*
485 * A freeable page cache folio is referenced only by the caller
486 * that isolated the folio, the page cache and optional filesystem
487 * private data at folio->private.
488 */
489 return folio_ref_count(folio) - folio_test_private(folio) ==
490 1 + folio_nr_pages(folio);
491 }
492
493 /*
494 * We detected a synchronous write error writing a folio out. Probably
495 * -ENOSPC. We need to propagate that into the address_space for a subsequent
496 * fsync(), msync() or close().
497 *
498 * The tricky part is that after writepage we cannot touch the mapping: nothing
499 * prevents it from being freed up. But we have a ref on the folio and once
500 * that folio is locked, the mapping is pinned.
501 *
502 * We're allowed to run sleeping folio_lock() here because we know the caller has
503 * __GFP_FS.
504 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)505 static void handle_write_error(struct address_space *mapping,
506 struct folio *folio, int error)
507 {
508 folio_lock(folio);
509 if (folio_mapping(folio) == mapping)
510 mapping_set_error(mapping, error);
511 folio_unlock(folio);
512 }
513
skip_throttle_noprogress(pg_data_t * pgdat)514 static bool skip_throttle_noprogress(pg_data_t *pgdat)
515 {
516 int reclaimable = 0, write_pending = 0;
517 int i;
518 struct zone *zone;
519 /*
520 * If kswapd is disabled, reschedule if necessary but do not
521 * throttle as the system is likely near OOM.
522 */
523 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
524 return true;
525
526 /*
527 * If there are a lot of dirty/writeback folios then do not
528 * throttle as throttling will occur when the folios cycle
529 * towards the end of the LRU if still under writeback.
530 */
531 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
532 reclaimable += zone_reclaimable_pages(zone);
533 write_pending += zone_page_state_snapshot(zone,
534 NR_ZONE_WRITE_PENDING);
535 }
536 if (2 * write_pending <= reclaimable)
537 return true;
538
539 return false;
540 }
541
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)542 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
543 {
544 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
545 long timeout, ret;
546 DEFINE_WAIT(wait);
547
548 /*
549 * Do not throttle user workers, kthreads other than kswapd or
550 * workqueues. They may be required for reclaim to make
551 * forward progress (e.g. journalling workqueues or kthreads).
552 */
553 if (!current_is_kswapd() &&
554 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
555 cond_resched();
556 return;
557 }
558
559 /*
560 * These figures are pulled out of thin air.
561 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
562 * parallel reclaimers which is a short-lived event so the timeout is
563 * short. Failing to make progress or waiting on writeback are
564 * potentially long-lived events so use a longer timeout. This is shaky
565 * logic as a failure to make progress could be due to anything from
566 * writeback to a slow device to excessive referenced folios at the tail
567 * of the inactive LRU.
568 */
569 switch(reason) {
570 case VMSCAN_THROTTLE_WRITEBACK:
571 timeout = HZ/10;
572
573 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
574 WRITE_ONCE(pgdat->nr_reclaim_start,
575 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
576 }
577
578 break;
579 case VMSCAN_THROTTLE_CONGESTED:
580 fallthrough;
581 case VMSCAN_THROTTLE_NOPROGRESS:
582 if (skip_throttle_noprogress(pgdat)) {
583 cond_resched();
584 return;
585 }
586
587 timeout = 1;
588
589 break;
590 case VMSCAN_THROTTLE_ISOLATED:
591 timeout = HZ/50;
592 break;
593 default:
594 WARN_ON_ONCE(1);
595 timeout = HZ;
596 break;
597 }
598
599 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
600 ret = schedule_timeout(timeout);
601 finish_wait(wqh, &wait);
602
603 if (reason == VMSCAN_THROTTLE_WRITEBACK)
604 atomic_dec(&pgdat->nr_writeback_throttled);
605
606 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
607 jiffies_to_usecs(timeout - ret),
608 reason);
609 }
610
611 /*
612 * Account for folios written if tasks are throttled waiting on dirty
613 * folios to clean. If enough folios have been cleaned since throttling
614 * started then wakeup the throttled tasks.
615 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)616 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
617 int nr_throttled)
618 {
619 unsigned long nr_written;
620
621 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
622
623 /*
624 * This is an inaccurate read as the per-cpu deltas may not
625 * be synchronised. However, given that the system is
626 * writeback throttled, it is not worth taking the penalty
627 * of getting an accurate count. At worst, the throttle
628 * timeout guarantees forward progress.
629 */
630 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
631 READ_ONCE(pgdat->nr_reclaim_start);
632
633 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
634 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
635 }
636
637 /* possible outcome of pageout() */
638 typedef enum {
639 /* failed to write folio out, folio is locked */
640 PAGE_KEEP,
641 /* move folio to the active list, folio is locked */
642 PAGE_ACTIVATE,
643 /* folio has been sent to the disk successfully, folio is unlocked */
644 PAGE_SUCCESS,
645 /* folio is clean and locked */
646 PAGE_CLEAN,
647 } pageout_t;
648
649 /*
650 * pageout is called by shrink_folio_list() for each dirty folio.
651 * Calls ->writepage().
652 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)653 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
654 struct swap_iocb **plug, struct list_head *folio_list)
655 {
656 /*
657 * If the folio is dirty, only perform writeback if that write
658 * will be non-blocking. To prevent this allocation from being
659 * stalled by pagecache activity. But note that there may be
660 * stalls if we need to run get_block(). We could test
661 * PagePrivate for that.
662 *
663 * If this process is currently in __generic_file_write_iter() against
664 * this folio's queue, we can perform writeback even if that
665 * will block.
666 *
667 * If the folio is swapcache, write it back even if that would
668 * block, for some throttling. This happens by accident, because
669 * swap_backing_dev_info is bust: it doesn't reflect the
670 * congestion state of the swapdevs. Easy to fix, if needed.
671 */
672 if (!is_page_cache_freeable(folio))
673 return PAGE_KEEP;
674 if (!mapping) {
675 /*
676 * Some data journaling orphaned folios can have
677 * folio->mapping == NULL while being dirty with clean buffers.
678 */
679 if (folio_test_private(folio)) {
680 if (try_to_free_buffers(folio)) {
681 folio_clear_dirty(folio);
682 pr_info("%s: orphaned folio\n", __func__);
683 return PAGE_CLEAN;
684 }
685 }
686 return PAGE_KEEP;
687 }
688 if (mapping->a_ops->writepage == NULL)
689 return PAGE_ACTIVATE;
690
691 if (folio_clear_dirty_for_io(folio)) {
692 int res;
693 struct writeback_control wbc = {
694 .sync_mode = WB_SYNC_NONE,
695 .nr_to_write = SWAP_CLUSTER_MAX,
696 .range_start = 0,
697 .range_end = LLONG_MAX,
698 .for_reclaim = 1,
699 .swap_plug = plug,
700 };
701
702 /*
703 * The large shmem folio can be split if CONFIG_THP_SWAP is
704 * not enabled or contiguous swap entries are failed to
705 * allocate.
706 */
707 if (shmem_mapping(mapping) && folio_test_large(folio))
708 wbc.list = folio_list;
709
710 folio_set_reclaim(folio);
711 res = mapping->a_ops->writepage(&folio->page, &wbc);
712 if (res < 0)
713 handle_write_error(mapping, folio, res);
714 if (res == AOP_WRITEPAGE_ACTIVATE) {
715 folio_clear_reclaim(folio);
716 return PAGE_ACTIVATE;
717 }
718
719 if (!folio_test_writeback(folio)) {
720 /* synchronous write or broken a_ops? */
721 folio_clear_reclaim(folio);
722 }
723 trace_mm_vmscan_write_folio(folio);
724 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
725 return PAGE_SUCCESS;
726 }
727
728 return PAGE_CLEAN;
729 }
730
731 /*
732 * Same as remove_mapping, but if the folio is removed from the mapping, it
733 * gets returned with a refcount of 0.
734 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)735 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
736 bool reclaimed, struct mem_cgroup *target_memcg)
737 {
738 int refcount;
739 void *shadow = NULL;
740
741 BUG_ON(!folio_test_locked(folio));
742 BUG_ON(mapping != folio_mapping(folio));
743
744 if (!folio_test_swapcache(folio))
745 spin_lock(&mapping->host->i_lock);
746 xa_lock_irq(&mapping->i_pages);
747 /*
748 * The non racy check for a busy folio.
749 *
750 * Must be careful with the order of the tests. When someone has
751 * a ref to the folio, it may be possible that they dirty it then
752 * drop the reference. So if the dirty flag is tested before the
753 * refcount here, then the following race may occur:
754 *
755 * get_user_pages(&page);
756 * [user mapping goes away]
757 * write_to(page);
758 * !folio_test_dirty(folio) [good]
759 * folio_set_dirty(folio);
760 * folio_put(folio);
761 * !refcount(folio) [good, discard it]
762 *
763 * [oops, our write_to data is lost]
764 *
765 * Reversing the order of the tests ensures such a situation cannot
766 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
767 * load is not satisfied before that of folio->_refcount.
768 *
769 * Note that if the dirty flag is always set via folio_mark_dirty,
770 * and thus under the i_pages lock, then this ordering is not required.
771 */
772 refcount = 1 + folio_nr_pages(folio);
773 if (!folio_ref_freeze(folio, refcount))
774 goto cannot_free;
775 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
776 if (unlikely(folio_test_dirty(folio))) {
777 folio_ref_unfreeze(folio, refcount);
778 goto cannot_free;
779 }
780
781 if (folio_test_swapcache(folio)) {
782 swp_entry_t swap = folio->swap;
783
784 if (reclaimed && !mapping_exiting(mapping))
785 shadow = workingset_eviction(folio, target_memcg);
786 __delete_from_swap_cache(folio, swap, shadow);
787 memcg1_swapout(folio, swap);
788 xa_unlock_irq(&mapping->i_pages);
789 put_swap_folio(folio, swap);
790 } else {
791 void (*free_folio)(struct folio *);
792
793 free_folio = mapping->a_ops->free_folio;
794 /*
795 * Remember a shadow entry for reclaimed file cache in
796 * order to detect refaults, thus thrashing, later on.
797 *
798 * But don't store shadows in an address space that is
799 * already exiting. This is not just an optimization,
800 * inode reclaim needs to empty out the radix tree or
801 * the nodes are lost. Don't plant shadows behind its
802 * back.
803 *
804 * We also don't store shadows for DAX mappings because the
805 * only page cache folios found in these are zero pages
806 * covering holes, and because we don't want to mix DAX
807 * exceptional entries and shadow exceptional entries in the
808 * same address_space.
809 */
810 if (reclaimed && folio_is_file_lru(folio) &&
811 !mapping_exiting(mapping) && !dax_mapping(mapping))
812 shadow = workingset_eviction(folio, target_memcg);
813 __filemap_remove_folio(folio, shadow);
814 xa_unlock_irq(&mapping->i_pages);
815 if (mapping_shrinkable(mapping))
816 inode_add_lru(mapping->host);
817 spin_unlock(&mapping->host->i_lock);
818
819 if (free_folio)
820 free_folio(folio);
821 }
822
823 return 1;
824
825 cannot_free:
826 xa_unlock_irq(&mapping->i_pages);
827 if (!folio_test_swapcache(folio))
828 spin_unlock(&mapping->host->i_lock);
829 return 0;
830 }
831
832 /**
833 * remove_mapping() - Attempt to remove a folio from its mapping.
834 * @mapping: The address space.
835 * @folio: The folio to remove.
836 *
837 * If the folio is dirty, under writeback or if someone else has a ref
838 * on it, removal will fail.
839 * Return: The number of pages removed from the mapping. 0 if the folio
840 * could not be removed.
841 * Context: The caller should have a single refcount on the folio and
842 * hold its lock.
843 */
remove_mapping(struct address_space * mapping,struct folio * folio)844 long remove_mapping(struct address_space *mapping, struct folio *folio)
845 {
846 if (__remove_mapping(mapping, folio, false, NULL)) {
847 /*
848 * Unfreezing the refcount with 1 effectively
849 * drops the pagecache ref for us without requiring another
850 * atomic operation.
851 */
852 folio_ref_unfreeze(folio, 1);
853 return folio_nr_pages(folio);
854 }
855 return 0;
856 }
857
858 /**
859 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
860 * @folio: Folio to be returned to an LRU list.
861 *
862 * Add previously isolated @folio to appropriate LRU list.
863 * The folio may still be unevictable for other reasons.
864 *
865 * Context: lru_lock must not be held, interrupts must be enabled.
866 */
folio_putback_lru(struct folio * folio)867 void folio_putback_lru(struct folio *folio)
868 {
869 folio_add_lru(folio);
870 folio_put(folio); /* drop ref from isolate */
871 }
872
873 enum folio_references {
874 FOLIOREF_RECLAIM,
875 FOLIOREF_RECLAIM_CLEAN,
876 FOLIOREF_KEEP,
877 FOLIOREF_ACTIVATE,
878 };
879
880 #ifdef CONFIG_LRU_GEN
881 /*
882 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
883 * needs to be done by taking the folio off the LRU list and then adding it back
884 * with PG_active set. In contrast, the aging (page table walk) path uses
885 * folio_update_gen().
886 */
lru_gen_set_refs(struct folio * folio)887 static bool lru_gen_set_refs(struct folio *folio)
888 {
889 /* see the comment on LRU_REFS_FLAGS */
890 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
891 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
892 return false;
893 }
894
895 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
896 return true;
897 }
898 #else
lru_gen_set_refs(struct folio * folio)899 static bool lru_gen_set_refs(struct folio *folio)
900 {
901 return false;
902 }
903 #endif /* CONFIG_LRU_GEN */
904
folio_check_references(struct folio * folio,struct scan_control * sc)905 static enum folio_references folio_check_references(struct folio *folio,
906 struct scan_control *sc)
907 {
908 int referenced_ptes, referenced_folio;
909 unsigned long vm_flags;
910
911 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
912 &vm_flags);
913
914 /*
915 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
916 * Let the folio, now marked Mlocked, be moved to the unevictable list.
917 */
918 if (vm_flags & VM_LOCKED)
919 return FOLIOREF_ACTIVATE;
920
921 /*
922 * There are two cases to consider.
923 * 1) Rmap lock contention: rotate.
924 * 2) Skip the non-shared swapbacked folio mapped solely by
925 * the exiting or OOM-reaped process.
926 */
927 if (referenced_ptes == -1)
928 return FOLIOREF_KEEP;
929
930 if (lru_gen_enabled()) {
931 if (!referenced_ptes)
932 return FOLIOREF_RECLAIM;
933
934 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
935 }
936
937 referenced_folio = folio_test_clear_referenced(folio);
938
939 if (referenced_ptes) {
940 /*
941 * All mapped folios start out with page table
942 * references from the instantiating fault, so we need
943 * to look twice if a mapped file/anon folio is used more
944 * than once.
945 *
946 * Mark it and spare it for another trip around the
947 * inactive list. Another page table reference will
948 * lead to its activation.
949 *
950 * Note: the mark is set for activated folios as well
951 * so that recently deactivated but used folios are
952 * quickly recovered.
953 */
954 folio_set_referenced(folio);
955
956 if (referenced_folio || referenced_ptes > 1)
957 return FOLIOREF_ACTIVATE;
958
959 /*
960 * Activate file-backed executable folios after first usage.
961 */
962 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
963 return FOLIOREF_ACTIVATE;
964
965 return FOLIOREF_KEEP;
966 }
967
968 /* Reclaim if clean, defer dirty folios to writeback */
969 if (referenced_folio && folio_is_file_lru(folio))
970 return FOLIOREF_RECLAIM_CLEAN;
971
972 return FOLIOREF_RECLAIM;
973 }
974
975 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)976 static void folio_check_dirty_writeback(struct folio *folio,
977 bool *dirty, bool *writeback)
978 {
979 struct address_space *mapping;
980
981 /*
982 * Anonymous folios are not handled by flushers and must be written
983 * from reclaim context. Do not stall reclaim based on them.
984 * MADV_FREE anonymous folios are put into inactive file list too.
985 * They could be mistakenly treated as file lru. So further anon
986 * test is needed.
987 */
988 if (!folio_is_file_lru(folio) ||
989 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
990 *dirty = false;
991 *writeback = false;
992 return;
993 }
994
995 /* By default assume that the folio flags are accurate */
996 *dirty = folio_test_dirty(folio);
997 *writeback = folio_test_writeback(folio);
998
999 /* Verify dirty/writeback state if the filesystem supports it */
1000 if (!folio_test_private(folio))
1001 return;
1002
1003 mapping = folio_mapping(folio);
1004 if (mapping && mapping->a_ops->is_dirty_writeback)
1005 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1006 }
1007
alloc_migrate_folio(struct folio * src,unsigned long private)1008 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
1009 {
1010 struct folio *dst;
1011 nodemask_t *allowed_mask;
1012 struct migration_target_control *mtc;
1013
1014 mtc = (struct migration_target_control *)private;
1015
1016 allowed_mask = mtc->nmask;
1017 /*
1018 * make sure we allocate from the target node first also trying to
1019 * demote or reclaim pages from the target node via kswapd if we are
1020 * low on free memory on target node. If we don't do this and if
1021 * we have free memory on the slower(lower) memtier, we would start
1022 * allocating pages from slower(lower) memory tiers without even forcing
1023 * a demotion of cold pages from the target memtier. This can result
1024 * in the kernel placing hot pages in slower(lower) memory tiers.
1025 */
1026 mtc->nmask = NULL;
1027 mtc->gfp_mask |= __GFP_THISNODE;
1028 dst = alloc_migration_target(src, (unsigned long)mtc);
1029 if (dst)
1030 return dst;
1031
1032 mtc->gfp_mask &= ~__GFP_THISNODE;
1033 mtc->nmask = allowed_mask;
1034
1035 return alloc_migration_target(src, (unsigned long)mtc);
1036 }
1037
1038 /*
1039 * Take folios on @demote_folios and attempt to demote them to another node.
1040 * Folios which are not demoted are left on @demote_folios.
1041 */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1042 static unsigned int demote_folio_list(struct list_head *demote_folios,
1043 struct pglist_data *pgdat)
1044 {
1045 int target_nid = next_demotion_node(pgdat->node_id);
1046 unsigned int nr_succeeded;
1047 nodemask_t allowed_mask;
1048
1049 struct migration_target_control mtc = {
1050 /*
1051 * Allocate from 'node', or fail quickly and quietly.
1052 * When this happens, 'page' will likely just be discarded
1053 * instead of migrated.
1054 */
1055 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1056 __GFP_NOMEMALLOC | GFP_NOWAIT,
1057 .nid = target_nid,
1058 .nmask = &allowed_mask,
1059 .reason = MR_DEMOTION,
1060 };
1061
1062 if (list_empty(demote_folios))
1063 return 0;
1064
1065 if (target_nid == NUMA_NO_NODE)
1066 return 0;
1067
1068 node_get_allowed_targets(pgdat, &allowed_mask);
1069
1070 /* Demotion ignores all cpuset and mempolicy settings */
1071 migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1072 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1073 &nr_succeeded);
1074
1075 return nr_succeeded;
1076 }
1077
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1078 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1079 {
1080 if (gfp_mask & __GFP_FS)
1081 return true;
1082 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1083 return false;
1084 /*
1085 * We can "enter_fs" for swap-cache with only __GFP_IO
1086 * providing this isn't SWP_FS_OPS.
1087 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1088 * but that will never affect SWP_FS_OPS, so the data_race
1089 * is safe.
1090 */
1091 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1092 }
1093
1094 /*
1095 * shrink_folio_list() returns the number of reclaimed pages
1096 */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1097 static unsigned int shrink_folio_list(struct list_head *folio_list,
1098 struct pglist_data *pgdat, struct scan_control *sc,
1099 struct reclaim_stat *stat, bool ignore_references)
1100 {
1101 struct folio_batch free_folios;
1102 LIST_HEAD(ret_folios);
1103 LIST_HEAD(demote_folios);
1104 unsigned int nr_reclaimed = 0, nr_demoted = 0;
1105 unsigned int pgactivate = 0;
1106 bool do_demote_pass;
1107 struct swap_iocb *plug = NULL;
1108
1109 folio_batch_init(&free_folios);
1110 memset(stat, 0, sizeof(*stat));
1111 cond_resched();
1112 do_demote_pass = can_demote(pgdat->node_id, sc);
1113
1114 retry:
1115 while (!list_empty(folio_list)) {
1116 struct address_space *mapping;
1117 struct folio *folio;
1118 enum folio_references references = FOLIOREF_RECLAIM;
1119 bool dirty, writeback;
1120 unsigned int nr_pages;
1121
1122 cond_resched();
1123
1124 folio = lru_to_folio(folio_list);
1125 list_del(&folio->lru);
1126
1127 if (!folio_trylock(folio))
1128 goto keep;
1129
1130 if (folio_contain_hwpoisoned_page(folio)) {
1131 unmap_poisoned_folio(folio, folio_pfn(folio), false);
1132 folio_unlock(folio);
1133 folio_put(folio);
1134 continue;
1135 }
1136
1137 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1138
1139 nr_pages = folio_nr_pages(folio);
1140
1141 /* Account the number of base pages */
1142 sc->nr_scanned += nr_pages;
1143
1144 if (unlikely(!folio_evictable(folio)))
1145 goto activate_locked;
1146
1147 if (!sc->may_unmap && folio_mapped(folio))
1148 goto keep_locked;
1149
1150 /*
1151 * The number of dirty pages determines if a node is marked
1152 * reclaim_congested. kswapd will stall and start writing
1153 * folios if the tail of the LRU is all dirty unqueued folios.
1154 */
1155 folio_check_dirty_writeback(folio, &dirty, &writeback);
1156 if (dirty || writeback)
1157 stat->nr_dirty += nr_pages;
1158
1159 if (dirty && !writeback)
1160 stat->nr_unqueued_dirty += nr_pages;
1161
1162 /*
1163 * Treat this folio as congested if folios are cycling
1164 * through the LRU so quickly that the folios marked
1165 * for immediate reclaim are making it to the end of
1166 * the LRU a second time.
1167 */
1168 if (writeback && folio_test_reclaim(folio))
1169 stat->nr_congested += nr_pages;
1170
1171 /*
1172 * If a folio at the tail of the LRU is under writeback, there
1173 * are three cases to consider.
1174 *
1175 * 1) If reclaim is encountering an excessive number
1176 * of folios under writeback and this folio has both
1177 * the writeback and reclaim flags set, then it
1178 * indicates that folios are being queued for I/O but
1179 * are being recycled through the LRU before the I/O
1180 * can complete. Waiting on the folio itself risks an
1181 * indefinite stall if it is impossible to writeback
1182 * the folio due to I/O error or disconnected storage
1183 * so instead note that the LRU is being scanned too
1184 * quickly and the caller can stall after the folio
1185 * list has been processed.
1186 *
1187 * 2) Global or new memcg reclaim encounters a folio that is
1188 * not marked for immediate reclaim, or the caller does not
1189 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1190 * not to fs). In this case mark the folio for immediate
1191 * reclaim and continue scanning.
1192 *
1193 * Require may_enter_fs() because we would wait on fs, which
1194 * may not have submitted I/O yet. And the loop driver might
1195 * enter reclaim, and deadlock if it waits on a folio for
1196 * which it is needed to do the write (loop masks off
1197 * __GFP_IO|__GFP_FS for this reason); but more thought
1198 * would probably show more reasons.
1199 *
1200 * 3) Legacy memcg encounters a folio that already has the
1201 * reclaim flag set. memcg does not have any dirty folio
1202 * throttling so we could easily OOM just because too many
1203 * folios are in writeback and there is nothing else to
1204 * reclaim. Wait for the writeback to complete.
1205 *
1206 * In cases 1) and 2) we activate the folios to get them out of
1207 * the way while we continue scanning for clean folios on the
1208 * inactive list and refilling from the active list. The
1209 * observation here is that waiting for disk writes is more
1210 * expensive than potentially causing reloads down the line.
1211 * Since they're marked for immediate reclaim, they won't put
1212 * memory pressure on the cache working set any longer than it
1213 * takes to write them to disk.
1214 */
1215 if (folio_test_writeback(folio)) {
1216 /* Case 1 above */
1217 if (current_is_kswapd() &&
1218 folio_test_reclaim(folio) &&
1219 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220 stat->nr_immediate += nr_pages;
1221 goto activate_locked;
1222
1223 /* Case 2 above */
1224 } else if (writeback_throttling_sane(sc) ||
1225 !folio_test_reclaim(folio) ||
1226 !may_enter_fs(folio, sc->gfp_mask)) {
1227 /*
1228 * This is slightly racy -
1229 * folio_end_writeback() might have
1230 * just cleared the reclaim flag, then
1231 * setting the reclaim flag here ends up
1232 * interpreted as the readahead flag - but
1233 * that does not matter enough to care.
1234 * What we do want is for this folio to
1235 * have the reclaim flag set next time
1236 * memcg reclaim reaches the tests above,
1237 * so it will then wait for writeback to
1238 * avoid OOM; and it's also appropriate
1239 * in global reclaim.
1240 */
1241 folio_set_reclaim(folio);
1242 stat->nr_writeback += nr_pages;
1243 goto activate_locked;
1244
1245 /* Case 3 above */
1246 } else {
1247 folio_unlock(folio);
1248 folio_wait_writeback(folio);
1249 /* then go back and try same folio again */
1250 list_add_tail(&folio->lru, folio_list);
1251 continue;
1252 }
1253 }
1254
1255 if (!ignore_references)
1256 references = folio_check_references(folio, sc);
1257
1258 switch (references) {
1259 case FOLIOREF_ACTIVATE:
1260 goto activate_locked;
1261 case FOLIOREF_KEEP:
1262 stat->nr_ref_keep += nr_pages;
1263 goto keep_locked;
1264 case FOLIOREF_RECLAIM:
1265 case FOLIOREF_RECLAIM_CLEAN:
1266 ; /* try to reclaim the folio below */
1267 }
1268
1269 /*
1270 * Before reclaiming the folio, try to relocate
1271 * its contents to another node.
1272 */
1273 if (do_demote_pass &&
1274 (thp_migration_supported() || !folio_test_large(folio))) {
1275 list_add(&folio->lru, &demote_folios);
1276 folio_unlock(folio);
1277 continue;
1278 }
1279
1280 /*
1281 * Anonymous process memory has backing store?
1282 * Try to allocate it some swap space here.
1283 * Lazyfree folio could be freed directly
1284 */
1285 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1286 if (!folio_test_swapcache(folio)) {
1287 if (!(sc->gfp_mask & __GFP_IO))
1288 goto keep_locked;
1289 if (folio_maybe_dma_pinned(folio))
1290 goto keep_locked;
1291 if (folio_test_large(folio)) {
1292 /* cannot split folio, skip it */
1293 if (!can_split_folio(folio, 1, NULL))
1294 goto activate_locked;
1295 /*
1296 * Split partially mapped folios right away.
1297 * We can free the unmapped pages without IO.
1298 */
1299 if (data_race(!list_empty(&folio->_deferred_list) &&
1300 folio_test_partially_mapped(folio)) &&
1301 split_folio_to_list(folio, folio_list))
1302 goto activate_locked;
1303 }
1304 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
1305 int __maybe_unused order = folio_order(folio);
1306
1307 if (!folio_test_large(folio))
1308 goto activate_locked_split;
1309 /* Fallback to swap normal pages */
1310 if (split_folio_to_list(folio, folio_list))
1311 goto activate_locked;
1312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1313 if (nr_pages >= HPAGE_PMD_NR) {
1314 count_memcg_folio_events(folio,
1315 THP_SWPOUT_FALLBACK, 1);
1316 count_vm_event(THP_SWPOUT_FALLBACK);
1317 }
1318 #endif
1319 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1320 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
1321 goto activate_locked_split;
1322 }
1323 /*
1324 * Normally the folio will be dirtied in unmap because its
1325 * pte should be dirty. A special case is MADV_FREE page. The
1326 * page's pte could have dirty bit cleared but the folio's
1327 * SwapBacked flag is still set because clearing the dirty bit
1328 * and SwapBacked flag has no lock protected. For such folio,
1329 * unmap will not set dirty bit for it, so folio reclaim will
1330 * not write the folio out. This can cause data corruption when
1331 * the folio is swapped in later. Always setting the dirty flag
1332 * for the folio solves the problem.
1333 */
1334 folio_mark_dirty(folio);
1335 }
1336 }
1337
1338 /*
1339 * If the folio was split above, the tail pages will make
1340 * their own pass through this function and be accounted
1341 * then.
1342 */
1343 if ((nr_pages > 1) && !folio_test_large(folio)) {
1344 sc->nr_scanned -= (nr_pages - 1);
1345 nr_pages = 1;
1346 }
1347
1348 /*
1349 * The folio is mapped into the page tables of one or more
1350 * processes. Try to unmap it here.
1351 */
1352 if (folio_mapped(folio)) {
1353 enum ttu_flags flags = TTU_BATCH_FLUSH;
1354 bool was_swapbacked = folio_test_swapbacked(folio);
1355
1356 if (folio_test_pmd_mappable(folio))
1357 flags |= TTU_SPLIT_HUGE_PMD;
1358 /*
1359 * Without TTU_SYNC, try_to_unmap will only begin to
1360 * hold PTL from the first present PTE within a large
1361 * folio. Some initial PTEs might be skipped due to
1362 * races with parallel PTE writes in which PTEs can be
1363 * cleared temporarily before being written new present
1364 * values. This will lead to a large folio is still
1365 * mapped while some subpages have been partially
1366 * unmapped after try_to_unmap; TTU_SYNC helps
1367 * try_to_unmap acquire PTL from the first PTE,
1368 * eliminating the influence of temporary PTE values.
1369 */
1370 if (folio_test_large(folio))
1371 flags |= TTU_SYNC;
1372
1373 try_to_unmap(folio, flags);
1374 if (folio_mapped(folio)) {
1375 stat->nr_unmap_fail += nr_pages;
1376 if (!was_swapbacked &&
1377 folio_test_swapbacked(folio))
1378 stat->nr_lazyfree_fail += nr_pages;
1379 goto activate_locked;
1380 }
1381 }
1382
1383 /*
1384 * Folio is unmapped now so it cannot be newly pinned anymore.
1385 * No point in trying to reclaim folio if it is pinned.
1386 * Furthermore we don't want to reclaim underlying fs metadata
1387 * if the folio is pinned and thus potentially modified by the
1388 * pinning process as that may upset the filesystem.
1389 */
1390 if (folio_maybe_dma_pinned(folio))
1391 goto activate_locked;
1392
1393 mapping = folio_mapping(folio);
1394 if (folio_test_dirty(folio)) {
1395 /*
1396 * Only kswapd can writeback filesystem folios
1397 * to avoid risk of stack overflow. But avoid
1398 * injecting inefficient single-folio I/O into
1399 * flusher writeback as much as possible: only
1400 * write folios when we've encountered many
1401 * dirty folios, and when we've already scanned
1402 * the rest of the LRU for clean folios and see
1403 * the same dirty folios again (with the reclaim
1404 * flag set).
1405 */
1406 if (folio_is_file_lru(folio) &&
1407 (!current_is_kswapd() ||
1408 !folio_test_reclaim(folio) ||
1409 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1410 /*
1411 * Immediately reclaim when written back.
1412 * Similar in principle to folio_deactivate()
1413 * except we already have the folio isolated
1414 * and know it's dirty
1415 */
1416 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1417 nr_pages);
1418 folio_set_reclaim(folio);
1419
1420 goto activate_locked;
1421 }
1422
1423 if (references == FOLIOREF_RECLAIM_CLEAN)
1424 goto keep_locked;
1425 if (!may_enter_fs(folio, sc->gfp_mask))
1426 goto keep_locked;
1427 if (!sc->may_writepage)
1428 goto keep_locked;
1429
1430 /*
1431 * Folio is dirty. Flush the TLB if a writable entry
1432 * potentially exists to avoid CPU writes after I/O
1433 * starts and then write it out here.
1434 */
1435 try_to_unmap_flush_dirty();
1436 switch (pageout(folio, mapping, &plug, folio_list)) {
1437 case PAGE_KEEP:
1438 goto keep_locked;
1439 case PAGE_ACTIVATE:
1440 /*
1441 * If shmem folio is split when writeback to swap,
1442 * the tail pages will make their own pass through
1443 * this function and be accounted then.
1444 */
1445 if (nr_pages > 1 && !folio_test_large(folio)) {
1446 sc->nr_scanned -= (nr_pages - 1);
1447 nr_pages = 1;
1448 }
1449 goto activate_locked;
1450 case PAGE_SUCCESS:
1451 if (nr_pages > 1 && !folio_test_large(folio)) {
1452 sc->nr_scanned -= (nr_pages - 1);
1453 nr_pages = 1;
1454 }
1455 stat->nr_pageout += nr_pages;
1456
1457 if (folio_test_writeback(folio))
1458 goto keep;
1459 if (folio_test_dirty(folio))
1460 goto keep;
1461
1462 /*
1463 * A synchronous write - probably a ramdisk. Go
1464 * ahead and try to reclaim the folio.
1465 */
1466 if (!folio_trylock(folio))
1467 goto keep;
1468 if (folio_test_dirty(folio) ||
1469 folio_test_writeback(folio))
1470 goto keep_locked;
1471 mapping = folio_mapping(folio);
1472 fallthrough;
1473 case PAGE_CLEAN:
1474 ; /* try to free the folio below */
1475 }
1476 }
1477
1478 /*
1479 * If the folio has buffers, try to free the buffer
1480 * mappings associated with this folio. If we succeed
1481 * we try to free the folio as well.
1482 *
1483 * We do this even if the folio is dirty.
1484 * filemap_release_folio() does not perform I/O, but it
1485 * is possible for a folio to have the dirty flag set,
1486 * but it is actually clean (all its buffers are clean).
1487 * This happens if the buffers were written out directly,
1488 * with submit_bh(). ext3 will do this, as well as
1489 * the blockdev mapping. filemap_release_folio() will
1490 * discover that cleanness and will drop the buffers
1491 * and mark the folio clean - it can be freed.
1492 *
1493 * Rarely, folios can have buffers and no ->mapping.
1494 * These are the folios which were not successfully
1495 * invalidated in truncate_cleanup_folio(). We try to
1496 * drop those buffers here and if that worked, and the
1497 * folio is no longer mapped into process address space
1498 * (refcount == 1) it can be freed. Otherwise, leave
1499 * the folio on the LRU so it is swappable.
1500 */
1501 if (folio_needs_release(folio)) {
1502 if (!filemap_release_folio(folio, sc->gfp_mask))
1503 goto activate_locked;
1504 if (!mapping && folio_ref_count(folio) == 1) {
1505 folio_unlock(folio);
1506 if (folio_put_testzero(folio))
1507 goto free_it;
1508 else {
1509 /*
1510 * rare race with speculative reference.
1511 * the speculative reference will free
1512 * this folio shortly, so we may
1513 * increment nr_reclaimed here (and
1514 * leave it off the LRU).
1515 */
1516 nr_reclaimed += nr_pages;
1517 continue;
1518 }
1519 }
1520 }
1521
1522 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1523 /* follow __remove_mapping for reference */
1524 if (!folio_ref_freeze(folio, 1))
1525 goto keep_locked;
1526 /*
1527 * The folio has only one reference left, which is
1528 * from the isolation. After the caller puts the
1529 * folio back on the lru and drops the reference, the
1530 * folio will be freed anyway. It doesn't matter
1531 * which lru it goes on. So we don't bother checking
1532 * the dirty flag here.
1533 */
1534 count_vm_events(PGLAZYFREED, nr_pages);
1535 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1536 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1537 sc->target_mem_cgroup))
1538 goto keep_locked;
1539
1540 folio_unlock(folio);
1541 free_it:
1542 /*
1543 * Folio may get swapped out as a whole, need to account
1544 * all pages in it.
1545 */
1546 nr_reclaimed += nr_pages;
1547
1548 folio_unqueue_deferred_split(folio);
1549 if (folio_batch_add(&free_folios, folio) == 0) {
1550 mem_cgroup_uncharge_folios(&free_folios);
1551 try_to_unmap_flush();
1552 free_unref_folios(&free_folios);
1553 }
1554 continue;
1555
1556 activate_locked_split:
1557 /*
1558 * The tail pages that are failed to add into swap cache
1559 * reach here. Fixup nr_scanned and nr_pages.
1560 */
1561 if (nr_pages > 1) {
1562 sc->nr_scanned -= (nr_pages - 1);
1563 nr_pages = 1;
1564 }
1565 activate_locked:
1566 /* Not a candidate for swapping, so reclaim swap space. */
1567 if (folio_test_swapcache(folio) &&
1568 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1569 folio_free_swap(folio);
1570 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1571 if (!folio_test_mlocked(folio)) {
1572 int type = folio_is_file_lru(folio);
1573 folio_set_active(folio);
1574 stat->nr_activate[type] += nr_pages;
1575 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1576 }
1577 keep_locked:
1578 folio_unlock(folio);
1579 keep:
1580 list_add(&folio->lru, &ret_folios);
1581 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1582 folio_test_unevictable(folio), folio);
1583 }
1584 /* 'folio_list' is always empty here */
1585
1586 /* Migrate folios selected for demotion */
1587 nr_demoted = demote_folio_list(&demote_folios, pgdat);
1588 nr_reclaimed += nr_demoted;
1589 stat->nr_demoted += nr_demoted;
1590 /* Folios that could not be demoted are still in @demote_folios */
1591 if (!list_empty(&demote_folios)) {
1592 /* Folios which weren't demoted go back on @folio_list */
1593 list_splice_init(&demote_folios, folio_list);
1594
1595 /*
1596 * goto retry to reclaim the undemoted folios in folio_list if
1597 * desired.
1598 *
1599 * Reclaiming directly from top tier nodes is not often desired
1600 * due to it breaking the LRU ordering: in general memory
1601 * should be reclaimed from lower tier nodes and demoted from
1602 * top tier nodes.
1603 *
1604 * However, disabling reclaim from top tier nodes entirely
1605 * would cause ooms in edge scenarios where lower tier memory
1606 * is unreclaimable for whatever reason, eg memory being
1607 * mlocked or too hot to reclaim. We can disable reclaim
1608 * from top tier nodes in proactive reclaim though as that is
1609 * not real memory pressure.
1610 */
1611 if (!sc->proactive) {
1612 do_demote_pass = false;
1613 goto retry;
1614 }
1615 }
1616
1617 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1618
1619 mem_cgroup_uncharge_folios(&free_folios);
1620 try_to_unmap_flush();
1621 free_unref_folios(&free_folios);
1622
1623 list_splice(&ret_folios, folio_list);
1624 count_vm_events(PGACTIVATE, pgactivate);
1625
1626 if (plug)
1627 swap_write_unplug(plug);
1628 return nr_reclaimed;
1629 }
1630
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1631 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1632 struct list_head *folio_list)
1633 {
1634 struct scan_control sc = {
1635 .gfp_mask = GFP_KERNEL,
1636 .may_unmap = 1,
1637 };
1638 struct reclaim_stat stat;
1639 unsigned int nr_reclaimed;
1640 struct folio *folio, *next;
1641 LIST_HEAD(clean_folios);
1642 unsigned int noreclaim_flag;
1643
1644 list_for_each_entry_safe(folio, next, folio_list, lru) {
1645 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1646 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1647 !folio_test_unevictable(folio)) {
1648 folio_clear_active(folio);
1649 list_move(&folio->lru, &clean_folios);
1650 }
1651 }
1652
1653 /*
1654 * We should be safe here since we are only dealing with file pages and
1655 * we are not kswapd and therefore cannot write dirty file pages. But
1656 * call memalloc_noreclaim_save() anyway, just in case these conditions
1657 * change in the future.
1658 */
1659 noreclaim_flag = memalloc_noreclaim_save();
1660 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1661 &stat, true);
1662 memalloc_noreclaim_restore(noreclaim_flag);
1663
1664 list_splice(&clean_folios, folio_list);
1665 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1666 -(long)nr_reclaimed);
1667 /*
1668 * Since lazyfree pages are isolated from file LRU from the beginning,
1669 * they will rotate back to anonymous LRU in the end if it failed to
1670 * discard so isolated count will be mismatched.
1671 * Compensate the isolated count for both LRU lists.
1672 */
1673 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1674 stat.nr_lazyfree_fail);
1675 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1676 -(long)stat.nr_lazyfree_fail);
1677 return nr_reclaimed;
1678 }
1679
1680 /*
1681 * Update LRU sizes after isolating pages. The LRU size updates must
1682 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1683 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1684 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1685 enum lru_list lru, unsigned long *nr_zone_taken)
1686 {
1687 int zid;
1688
1689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1690 if (!nr_zone_taken[zid])
1691 continue;
1692
1693 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1694 }
1695
1696 }
1697
1698 /*
1699 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1700 *
1701 * lruvec->lru_lock is heavily contended. Some of the functions that
1702 * shrink the lists perform better by taking out a batch of pages
1703 * and working on them outside the LRU lock.
1704 *
1705 * For pagecache intensive workloads, this function is the hottest
1706 * spot in the kernel (apart from copy_*_user functions).
1707 *
1708 * Lru_lock must be held before calling this function.
1709 *
1710 * @nr_to_scan: The number of eligible pages to look through on the list.
1711 * @lruvec: The LRU vector to pull pages from.
1712 * @dst: The temp list to put pages on to.
1713 * @nr_scanned: The number of pages that were scanned.
1714 * @sc: The scan_control struct for this reclaim session
1715 * @lru: LRU list id for isolating
1716 *
1717 * returns how many pages were moved onto *@dst.
1718 */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1719 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1720 struct lruvec *lruvec, struct list_head *dst,
1721 unsigned long *nr_scanned, struct scan_control *sc,
1722 enum lru_list lru)
1723 {
1724 struct list_head *src = &lruvec->lists[lru];
1725 unsigned long nr_taken = 0;
1726 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1727 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1728 unsigned long skipped = 0;
1729 unsigned long scan, total_scan, nr_pages;
1730 unsigned long max_nr_skipped = 0;
1731 LIST_HEAD(folios_skipped);
1732
1733 total_scan = 0;
1734 scan = 0;
1735 while (scan < nr_to_scan && !list_empty(src)) {
1736 struct list_head *move_to = src;
1737 struct folio *folio;
1738
1739 folio = lru_to_folio(src);
1740 prefetchw_prev_lru_folio(folio, src, flags);
1741
1742 nr_pages = folio_nr_pages(folio);
1743 total_scan += nr_pages;
1744
1745 /* Using max_nr_skipped to prevent hard LOCKUP*/
1746 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1747 (folio_zonenum(folio) > sc->reclaim_idx)) {
1748 nr_skipped[folio_zonenum(folio)] += nr_pages;
1749 move_to = &folios_skipped;
1750 max_nr_skipped++;
1751 goto move;
1752 }
1753
1754 /*
1755 * Do not count skipped folios because that makes the function
1756 * return with no isolated folios if the LRU mostly contains
1757 * ineligible folios. This causes the VM to not reclaim any
1758 * folios, triggering a premature OOM.
1759 * Account all pages in a folio.
1760 */
1761 scan += nr_pages;
1762
1763 if (!folio_test_lru(folio))
1764 goto move;
1765 if (!sc->may_unmap && folio_mapped(folio))
1766 goto move;
1767
1768 /*
1769 * Be careful not to clear the lru flag until after we're
1770 * sure the folio is not being freed elsewhere -- the
1771 * folio release code relies on it.
1772 */
1773 if (unlikely(!folio_try_get(folio)))
1774 goto move;
1775
1776 if (!folio_test_clear_lru(folio)) {
1777 /* Another thread is already isolating this folio */
1778 folio_put(folio);
1779 goto move;
1780 }
1781
1782 nr_taken += nr_pages;
1783 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1784 move_to = dst;
1785 move:
1786 list_move(&folio->lru, move_to);
1787 }
1788
1789 /*
1790 * Splice any skipped folios to the start of the LRU list. Note that
1791 * this disrupts the LRU order when reclaiming for lower zones but
1792 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1793 * scanning would soon rescan the same folios to skip and waste lots
1794 * of cpu cycles.
1795 */
1796 if (!list_empty(&folios_skipped)) {
1797 int zid;
1798
1799 list_splice(&folios_skipped, src);
1800 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1801 if (!nr_skipped[zid])
1802 continue;
1803
1804 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1805 skipped += nr_skipped[zid];
1806 }
1807 }
1808 *nr_scanned = total_scan;
1809 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1810 total_scan, skipped, nr_taken, lru);
1811 update_lru_sizes(lruvec, lru, nr_zone_taken);
1812 return nr_taken;
1813 }
1814
1815 /**
1816 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1817 * @folio: Folio to isolate from its LRU list.
1818 *
1819 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1820 * corresponding to whatever LRU list the folio was on.
1821 *
1822 * The folio will have its LRU flag cleared. If it was found on the
1823 * active list, it will have the Active flag set. If it was found on the
1824 * unevictable list, it will have the Unevictable flag set. These flags
1825 * may need to be cleared by the caller before letting the page go.
1826 *
1827 * Context:
1828 *
1829 * (1) Must be called with an elevated refcount on the folio. This is a
1830 * fundamental difference from isolate_lru_folios() (which is called
1831 * without a stable reference).
1832 * (2) The lru_lock must not be held.
1833 * (3) Interrupts must be enabled.
1834 *
1835 * Return: true if the folio was removed from an LRU list.
1836 * false if the folio was not on an LRU list.
1837 */
folio_isolate_lru(struct folio * folio)1838 bool folio_isolate_lru(struct folio *folio)
1839 {
1840 bool ret = false;
1841
1842 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1843
1844 if (folio_test_clear_lru(folio)) {
1845 struct lruvec *lruvec;
1846
1847 folio_get(folio);
1848 lruvec = folio_lruvec_lock_irq(folio);
1849 lruvec_del_folio(lruvec, folio);
1850 unlock_page_lruvec_irq(lruvec);
1851 ret = true;
1852 }
1853
1854 return ret;
1855 }
1856
1857 /*
1858 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1859 * then get rescheduled. When there are massive number of tasks doing page
1860 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1861 * the LRU list will go small and be scanned faster than necessary, leading to
1862 * unnecessary swapping, thrashing and OOM.
1863 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1864 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1865 struct scan_control *sc)
1866 {
1867 unsigned long inactive, isolated;
1868 bool too_many;
1869
1870 if (current_is_kswapd())
1871 return false;
1872
1873 if (!writeback_throttling_sane(sc))
1874 return false;
1875
1876 if (file) {
1877 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1878 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1879 } else {
1880 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1881 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1882 }
1883
1884 /*
1885 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1886 * won't get blocked by normal direct-reclaimers, forming a circular
1887 * deadlock.
1888 */
1889 if (gfp_has_io_fs(sc->gfp_mask))
1890 inactive >>= 3;
1891
1892 too_many = isolated > inactive;
1893
1894 /* Wake up tasks throttled due to too_many_isolated. */
1895 if (!too_many)
1896 wake_throttle_isolated(pgdat);
1897
1898 return too_many;
1899 }
1900
1901 /*
1902 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1903 *
1904 * Returns the number of pages moved to the given lruvec.
1905 */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1906 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1907 struct list_head *list)
1908 {
1909 int nr_pages, nr_moved = 0;
1910 struct folio_batch free_folios;
1911
1912 folio_batch_init(&free_folios);
1913 while (!list_empty(list)) {
1914 struct folio *folio = lru_to_folio(list);
1915
1916 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1917 list_del(&folio->lru);
1918 if (unlikely(!folio_evictable(folio))) {
1919 spin_unlock_irq(&lruvec->lru_lock);
1920 folio_putback_lru(folio);
1921 spin_lock_irq(&lruvec->lru_lock);
1922 continue;
1923 }
1924
1925 /*
1926 * The folio_set_lru needs to be kept here for list integrity.
1927 * Otherwise:
1928 * #0 move_folios_to_lru #1 release_pages
1929 * if (!folio_put_testzero())
1930 * if (folio_put_testzero())
1931 * !lru //skip lru_lock
1932 * folio_set_lru()
1933 * list_add(&folio->lru,)
1934 * list_add(&folio->lru,)
1935 */
1936 folio_set_lru(folio);
1937
1938 if (unlikely(folio_put_testzero(folio))) {
1939 __folio_clear_lru_flags(folio);
1940
1941 folio_unqueue_deferred_split(folio);
1942 if (folio_batch_add(&free_folios, folio) == 0) {
1943 spin_unlock_irq(&lruvec->lru_lock);
1944 mem_cgroup_uncharge_folios(&free_folios);
1945 free_unref_folios(&free_folios);
1946 spin_lock_irq(&lruvec->lru_lock);
1947 }
1948
1949 continue;
1950 }
1951
1952 /*
1953 * All pages were isolated from the same lruvec (and isolation
1954 * inhibits memcg migration).
1955 */
1956 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1957 lruvec_add_folio(lruvec, folio);
1958 nr_pages = folio_nr_pages(folio);
1959 nr_moved += nr_pages;
1960 if (folio_test_active(folio))
1961 workingset_age_nonresident(lruvec, nr_pages);
1962 }
1963
1964 if (free_folios.nr) {
1965 spin_unlock_irq(&lruvec->lru_lock);
1966 mem_cgroup_uncharge_folios(&free_folios);
1967 free_unref_folios(&free_folios);
1968 spin_lock_irq(&lruvec->lru_lock);
1969 }
1970
1971 return nr_moved;
1972 }
1973
1974 /*
1975 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1976 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1977 * we should not throttle. Otherwise it is safe to do so.
1978 */
current_may_throttle(void)1979 static int current_may_throttle(void)
1980 {
1981 return !(current->flags & PF_LOCAL_THROTTLE);
1982 }
1983
1984 /*
1985 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1986 * of reclaimed pages
1987 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1988 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1989 struct lruvec *lruvec, struct scan_control *sc,
1990 enum lru_list lru)
1991 {
1992 LIST_HEAD(folio_list);
1993 unsigned long nr_scanned;
1994 unsigned int nr_reclaimed = 0;
1995 unsigned long nr_taken;
1996 struct reclaim_stat stat;
1997 bool file = is_file_lru(lru);
1998 enum vm_event_item item;
1999 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2000 bool stalled = false;
2001
2002 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2003 if (stalled)
2004 return 0;
2005
2006 /* wait a bit for the reclaimer. */
2007 stalled = true;
2008 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2009
2010 /* We are about to die and free our memory. Return now. */
2011 if (fatal_signal_pending(current))
2012 return SWAP_CLUSTER_MAX;
2013 }
2014
2015 lru_add_drain();
2016
2017 spin_lock_irq(&lruvec->lru_lock);
2018
2019 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2020 &nr_scanned, sc, lru);
2021
2022 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2023 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2024 if (!cgroup_reclaim(sc))
2025 __count_vm_events(item, nr_scanned);
2026 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2027 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2028
2029 spin_unlock_irq(&lruvec->lru_lock);
2030
2031 if (nr_taken == 0)
2032 return 0;
2033
2034 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2035
2036 spin_lock_irq(&lruvec->lru_lock);
2037 move_folios_to_lru(lruvec, &folio_list);
2038
2039 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2040 stat.nr_demoted);
2041 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2042 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2043 if (!cgroup_reclaim(sc))
2044 __count_vm_events(item, nr_reclaimed);
2045 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2046 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2047 spin_unlock_irq(&lruvec->lru_lock);
2048
2049 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2050
2051 /*
2052 * If dirty folios are scanned that are not queued for IO, it
2053 * implies that flushers are not doing their job. This can
2054 * happen when memory pressure pushes dirty folios to the end of
2055 * the LRU before the dirty limits are breached and the dirty
2056 * data has expired. It can also happen when the proportion of
2057 * dirty folios grows not through writes but through memory
2058 * pressure reclaiming all the clean cache. And in some cases,
2059 * the flushers simply cannot keep up with the allocation
2060 * rate. Nudge the flusher threads in case they are asleep.
2061 */
2062 if (stat.nr_unqueued_dirty == nr_taken) {
2063 wakeup_flusher_threads(WB_REASON_VMSCAN);
2064 /*
2065 * For cgroupv1 dirty throttling is achieved by waking up
2066 * the kernel flusher here and later waiting on folios
2067 * which are in writeback to finish (see shrink_folio_list()).
2068 *
2069 * Flusher may not be able to issue writeback quickly
2070 * enough for cgroupv1 writeback throttling to work
2071 * on a large system.
2072 */
2073 if (!writeback_throttling_sane(sc))
2074 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2075 }
2076
2077 sc->nr.dirty += stat.nr_dirty;
2078 sc->nr.congested += stat.nr_congested;
2079 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2080 sc->nr.writeback += stat.nr_writeback;
2081 sc->nr.immediate += stat.nr_immediate;
2082 sc->nr.taken += nr_taken;
2083 if (file)
2084 sc->nr.file_taken += nr_taken;
2085
2086 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2087 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2088 return nr_reclaimed;
2089 }
2090
2091 /*
2092 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2093 *
2094 * We move them the other way if the folio is referenced by one or more
2095 * processes.
2096 *
2097 * If the folios are mostly unmapped, the processing is fast and it is
2098 * appropriate to hold lru_lock across the whole operation. But if
2099 * the folios are mapped, the processing is slow (folio_referenced()), so
2100 * we should drop lru_lock around each folio. It's impossible to balance
2101 * this, so instead we remove the folios from the LRU while processing them.
2102 * It is safe to rely on the active flag against the non-LRU folios in here
2103 * because nobody will play with that bit on a non-LRU folio.
2104 *
2105 * The downside is that we have to touch folio->_refcount against each folio.
2106 * But we had to alter folio->flags anyway.
2107 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2108 static void shrink_active_list(unsigned long nr_to_scan,
2109 struct lruvec *lruvec,
2110 struct scan_control *sc,
2111 enum lru_list lru)
2112 {
2113 unsigned long nr_taken;
2114 unsigned long nr_scanned;
2115 unsigned long vm_flags;
2116 LIST_HEAD(l_hold); /* The folios which were snipped off */
2117 LIST_HEAD(l_active);
2118 LIST_HEAD(l_inactive);
2119 unsigned nr_deactivate, nr_activate;
2120 unsigned nr_rotated = 0;
2121 bool file = is_file_lru(lru);
2122 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123
2124 lru_add_drain();
2125
2126 spin_lock_irq(&lruvec->lru_lock);
2127
2128 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2129 &nr_scanned, sc, lru);
2130
2131 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2132
2133 if (!cgroup_reclaim(sc))
2134 __count_vm_events(PGREFILL, nr_scanned);
2135 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2136
2137 spin_unlock_irq(&lruvec->lru_lock);
2138
2139 while (!list_empty(&l_hold)) {
2140 struct folio *folio;
2141
2142 cond_resched();
2143 folio = lru_to_folio(&l_hold);
2144 list_del(&folio->lru);
2145
2146 if (unlikely(!folio_evictable(folio))) {
2147 folio_putback_lru(folio);
2148 continue;
2149 }
2150
2151 if (unlikely(buffer_heads_over_limit)) {
2152 if (folio_needs_release(folio) &&
2153 folio_trylock(folio)) {
2154 filemap_release_folio(folio, 0);
2155 folio_unlock(folio);
2156 }
2157 }
2158
2159 /* Referenced or rmap lock contention: rotate */
2160 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2161 &vm_flags) != 0) {
2162 /*
2163 * Identify referenced, file-backed active folios and
2164 * give them one more trip around the active list. So
2165 * that executable code get better chances to stay in
2166 * memory under moderate memory pressure. Anon folios
2167 * are not likely to be evicted by use-once streaming
2168 * IO, plus JVM can create lots of anon VM_EXEC folios,
2169 * so we ignore them here.
2170 */
2171 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2172 nr_rotated += folio_nr_pages(folio);
2173 list_add(&folio->lru, &l_active);
2174 continue;
2175 }
2176 }
2177
2178 folio_clear_active(folio); /* we are de-activating */
2179 folio_set_workingset(folio);
2180 list_add(&folio->lru, &l_inactive);
2181 }
2182
2183 /*
2184 * Move folios back to the lru list.
2185 */
2186 spin_lock_irq(&lruvec->lru_lock);
2187
2188 nr_activate = move_folios_to_lru(lruvec, &l_active);
2189 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2190
2191 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2192 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2193
2194 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2195 spin_unlock_irq(&lruvec->lru_lock);
2196
2197 if (nr_rotated)
2198 lru_note_cost(lruvec, file, 0, nr_rotated);
2199 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2200 nr_deactivate, nr_rotated, sc->priority, file);
2201 }
2202
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2203 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2204 struct pglist_data *pgdat)
2205 {
2206 struct reclaim_stat stat;
2207 unsigned int nr_reclaimed;
2208 struct folio *folio;
2209 struct scan_control sc = {
2210 .gfp_mask = GFP_KERNEL,
2211 .may_writepage = 1,
2212 .may_unmap = 1,
2213 .may_swap = 1,
2214 .no_demotion = 1,
2215 };
2216
2217 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2218 while (!list_empty(folio_list)) {
2219 folio = lru_to_folio(folio_list);
2220 list_del(&folio->lru);
2221 folio_putback_lru(folio);
2222 }
2223 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2224
2225 return nr_reclaimed;
2226 }
2227
reclaim_pages(struct list_head * folio_list)2228 unsigned long reclaim_pages(struct list_head *folio_list)
2229 {
2230 int nid;
2231 unsigned int nr_reclaimed = 0;
2232 LIST_HEAD(node_folio_list);
2233 unsigned int noreclaim_flag;
2234
2235 if (list_empty(folio_list))
2236 return nr_reclaimed;
2237
2238 noreclaim_flag = memalloc_noreclaim_save();
2239
2240 nid = folio_nid(lru_to_folio(folio_list));
2241 do {
2242 struct folio *folio = lru_to_folio(folio_list);
2243
2244 if (nid == folio_nid(folio)) {
2245 folio_clear_active(folio);
2246 list_move(&folio->lru, &node_folio_list);
2247 continue;
2248 }
2249
2250 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2251 nid = folio_nid(lru_to_folio(folio_list));
2252 } while (!list_empty(folio_list));
2253
2254 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2255
2256 memalloc_noreclaim_restore(noreclaim_flag);
2257
2258 return nr_reclaimed;
2259 }
2260
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2261 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2262 struct lruvec *lruvec, struct scan_control *sc)
2263 {
2264 if (is_active_lru(lru)) {
2265 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2266 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2267 else
2268 sc->skipped_deactivate = 1;
2269 return 0;
2270 }
2271
2272 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2273 }
2274
2275 /*
2276 * The inactive anon list should be small enough that the VM never has
2277 * to do too much work.
2278 *
2279 * The inactive file list should be small enough to leave most memory
2280 * to the established workingset on the scan-resistant active list,
2281 * but large enough to avoid thrashing the aggregate readahead window.
2282 *
2283 * Both inactive lists should also be large enough that each inactive
2284 * folio has a chance to be referenced again before it is reclaimed.
2285 *
2286 * If that fails and refaulting is observed, the inactive list grows.
2287 *
2288 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2289 * on this LRU, maintained by the pageout code. An inactive_ratio
2290 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2291 *
2292 * total target max
2293 * memory ratio inactive
2294 * -------------------------------------
2295 * 10MB 1 5MB
2296 * 100MB 1 50MB
2297 * 1GB 3 250MB
2298 * 10GB 10 0.9GB
2299 * 100GB 31 3GB
2300 * 1TB 101 10GB
2301 * 10TB 320 32GB
2302 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2303 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2304 {
2305 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2306 unsigned long inactive, active;
2307 unsigned long inactive_ratio;
2308 unsigned long gb;
2309
2310 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2311 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2312
2313 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2314 if (gb)
2315 inactive_ratio = int_sqrt(10 * gb);
2316 else
2317 inactive_ratio = 1;
2318
2319 return inactive * inactive_ratio < active;
2320 }
2321
2322 enum scan_balance {
2323 SCAN_EQUAL,
2324 SCAN_FRACT,
2325 SCAN_ANON,
2326 SCAN_FILE,
2327 };
2328
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2329 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2330 {
2331 unsigned long file;
2332 struct lruvec *target_lruvec;
2333
2334 if (lru_gen_enabled())
2335 return;
2336
2337 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2338
2339 /*
2340 * Flush the memory cgroup stats in rate-limited way as we don't need
2341 * most accurate stats here. We may switch to regular stats flushing
2342 * in the future once it is cheap enough.
2343 */
2344 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2345
2346 /*
2347 * Determine the scan balance between anon and file LRUs.
2348 */
2349 spin_lock_irq(&target_lruvec->lru_lock);
2350 sc->anon_cost = target_lruvec->anon_cost;
2351 sc->file_cost = target_lruvec->file_cost;
2352 spin_unlock_irq(&target_lruvec->lru_lock);
2353
2354 /*
2355 * Target desirable inactive:active list ratios for the anon
2356 * and file LRU lists.
2357 */
2358 if (!sc->force_deactivate) {
2359 unsigned long refaults;
2360
2361 /*
2362 * When refaults are being observed, it means a new
2363 * workingset is being established. Deactivate to get
2364 * rid of any stale active pages quickly.
2365 */
2366 refaults = lruvec_page_state(target_lruvec,
2367 WORKINGSET_ACTIVATE_ANON);
2368 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2369 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2370 sc->may_deactivate |= DEACTIVATE_ANON;
2371 else
2372 sc->may_deactivate &= ~DEACTIVATE_ANON;
2373
2374 refaults = lruvec_page_state(target_lruvec,
2375 WORKINGSET_ACTIVATE_FILE);
2376 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2377 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2378 sc->may_deactivate |= DEACTIVATE_FILE;
2379 else
2380 sc->may_deactivate &= ~DEACTIVATE_FILE;
2381 } else
2382 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2383
2384 /*
2385 * If we have plenty of inactive file pages that aren't
2386 * thrashing, try to reclaim those first before touching
2387 * anonymous pages.
2388 */
2389 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2390 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2391 !sc->no_cache_trim_mode)
2392 sc->cache_trim_mode = 1;
2393 else
2394 sc->cache_trim_mode = 0;
2395
2396 /*
2397 * Prevent the reclaimer from falling into the cache trap: as
2398 * cache pages start out inactive, every cache fault will tip
2399 * the scan balance towards the file LRU. And as the file LRU
2400 * shrinks, so does the window for rotation from references.
2401 * This means we have a runaway feedback loop where a tiny
2402 * thrashing file LRU becomes infinitely more attractive than
2403 * anon pages. Try to detect this based on file LRU size.
2404 */
2405 if (!cgroup_reclaim(sc)) {
2406 unsigned long total_high_wmark = 0;
2407 unsigned long free, anon;
2408 int z;
2409 struct zone *zone;
2410
2411 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2412 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2413 node_page_state(pgdat, NR_INACTIVE_FILE);
2414
2415 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2416 total_high_wmark += high_wmark_pages(zone);
2417 }
2418
2419 /*
2420 * Consider anon: if that's low too, this isn't a
2421 * runaway file reclaim problem, but rather just
2422 * extreme pressure. Reclaim as per usual then.
2423 */
2424 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2425
2426 sc->file_is_tiny =
2427 file + free <= total_high_wmark &&
2428 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2429 anon >> sc->priority;
2430 }
2431 }
2432
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2433 static inline void calculate_pressure_balance(struct scan_control *sc,
2434 int swappiness, u64 *fraction, u64 *denominator)
2435 {
2436 unsigned long anon_cost, file_cost, total_cost;
2437 unsigned long ap, fp;
2438
2439 /*
2440 * Calculate the pressure balance between anon and file pages.
2441 *
2442 * The amount of pressure we put on each LRU is inversely
2443 * proportional to the cost of reclaiming each list, as
2444 * determined by the share of pages that are refaulting, times
2445 * the relative IO cost of bringing back a swapped out
2446 * anonymous page vs reloading a filesystem page (swappiness).
2447 *
2448 * Although we limit that influence to ensure no list gets
2449 * left behind completely: at least a third of the pressure is
2450 * applied, before swappiness.
2451 *
2452 * With swappiness at 100, anon and file have equal IO cost.
2453 */
2454 total_cost = sc->anon_cost + sc->file_cost;
2455 anon_cost = total_cost + sc->anon_cost;
2456 file_cost = total_cost + sc->file_cost;
2457 total_cost = anon_cost + file_cost;
2458
2459 ap = swappiness * (total_cost + 1);
2460 ap /= anon_cost + 1;
2461
2462 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2463 fp /= file_cost + 1;
2464
2465 fraction[WORKINGSET_ANON] = ap;
2466 fraction[WORKINGSET_FILE] = fp;
2467 *denominator = ap + fp;
2468 }
2469
2470 /*
2471 * Determine how aggressively the anon and file LRU lists should be
2472 * scanned.
2473 *
2474 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2475 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2476 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2477 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2478 unsigned long *nr)
2479 {
2480 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2481 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2482 int swappiness = sc_swappiness(sc, memcg);
2483 u64 fraction[ANON_AND_FILE];
2484 u64 denominator = 0; /* gcc */
2485 enum scan_balance scan_balance;
2486 enum lru_list lru;
2487
2488 /* If we have no swap space, do not bother scanning anon folios. */
2489 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2490 scan_balance = SCAN_FILE;
2491 goto out;
2492 }
2493
2494 /*
2495 * Global reclaim will swap to prevent OOM even with no
2496 * swappiness, but memcg users want to use this knob to
2497 * disable swapping for individual groups completely when
2498 * using the memory controller's swap limit feature would be
2499 * too expensive.
2500 */
2501 if (cgroup_reclaim(sc) && !swappiness) {
2502 scan_balance = SCAN_FILE;
2503 goto out;
2504 }
2505
2506 /*
2507 * Do not apply any pressure balancing cleverness when the
2508 * system is close to OOM, scan both anon and file equally
2509 * (unless the swappiness setting disagrees with swapping).
2510 */
2511 if (!sc->priority && swappiness) {
2512 scan_balance = SCAN_EQUAL;
2513 goto out;
2514 }
2515
2516 /*
2517 * If the system is almost out of file pages, force-scan anon.
2518 */
2519 if (sc->file_is_tiny) {
2520 scan_balance = SCAN_ANON;
2521 goto out;
2522 }
2523
2524 /*
2525 * If there is enough inactive page cache, we do not reclaim
2526 * anything from the anonymous working right now.
2527 */
2528 if (sc->cache_trim_mode) {
2529 scan_balance = SCAN_FILE;
2530 goto out;
2531 }
2532
2533 scan_balance = SCAN_FRACT;
2534 calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2535
2536 out:
2537 for_each_evictable_lru(lru) {
2538 bool file = is_file_lru(lru);
2539 unsigned long lruvec_size;
2540 unsigned long low, min;
2541 unsigned long scan;
2542
2543 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2544 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2545 &min, &low);
2546
2547 if (min || low) {
2548 /*
2549 * Scale a cgroup's reclaim pressure by proportioning
2550 * its current usage to its memory.low or memory.min
2551 * setting.
2552 *
2553 * This is important, as otherwise scanning aggression
2554 * becomes extremely binary -- from nothing as we
2555 * approach the memory protection threshold, to totally
2556 * nominal as we exceed it. This results in requiring
2557 * setting extremely liberal protection thresholds. It
2558 * also means we simply get no protection at all if we
2559 * set it too low, which is not ideal.
2560 *
2561 * If there is any protection in place, we reduce scan
2562 * pressure by how much of the total memory used is
2563 * within protection thresholds.
2564 *
2565 * There is one special case: in the first reclaim pass,
2566 * we skip over all groups that are within their low
2567 * protection. If that fails to reclaim enough pages to
2568 * satisfy the reclaim goal, we come back and override
2569 * the best-effort low protection. However, we still
2570 * ideally want to honor how well-behaved groups are in
2571 * that case instead of simply punishing them all
2572 * equally. As such, we reclaim them based on how much
2573 * memory they are using, reducing the scan pressure
2574 * again by how much of the total memory used is under
2575 * hard protection.
2576 */
2577 unsigned long cgroup_size = mem_cgroup_size(memcg);
2578 unsigned long protection;
2579
2580 /* memory.low scaling, make sure we retry before OOM */
2581 if (!sc->memcg_low_reclaim && low > min) {
2582 protection = low;
2583 sc->memcg_low_skipped = 1;
2584 } else {
2585 protection = min;
2586 }
2587
2588 /* Avoid TOCTOU with earlier protection check */
2589 cgroup_size = max(cgroup_size, protection);
2590
2591 scan = lruvec_size - lruvec_size * protection /
2592 (cgroup_size + 1);
2593
2594 /*
2595 * Minimally target SWAP_CLUSTER_MAX pages to keep
2596 * reclaim moving forwards, avoiding decrementing
2597 * sc->priority further than desirable.
2598 */
2599 scan = max(scan, SWAP_CLUSTER_MAX);
2600 } else {
2601 scan = lruvec_size;
2602 }
2603
2604 scan >>= sc->priority;
2605
2606 /*
2607 * If the cgroup's already been deleted, make sure to
2608 * scrape out the remaining cache.
2609 */
2610 if (!scan && !mem_cgroup_online(memcg))
2611 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2612
2613 switch (scan_balance) {
2614 case SCAN_EQUAL:
2615 /* Scan lists relative to size */
2616 break;
2617 case SCAN_FRACT:
2618 /*
2619 * Scan types proportional to swappiness and
2620 * their relative recent reclaim efficiency.
2621 * Make sure we don't miss the last page on
2622 * the offlined memory cgroups because of a
2623 * round-off error.
2624 */
2625 scan = mem_cgroup_online(memcg) ?
2626 div64_u64(scan * fraction[file], denominator) :
2627 DIV64_U64_ROUND_UP(scan * fraction[file],
2628 denominator);
2629 break;
2630 case SCAN_FILE:
2631 case SCAN_ANON:
2632 /* Scan one type exclusively */
2633 if ((scan_balance == SCAN_FILE) != file)
2634 scan = 0;
2635 break;
2636 default:
2637 /* Look ma, no brain */
2638 BUG();
2639 }
2640
2641 nr[lru] = scan;
2642 }
2643 }
2644
2645 /*
2646 * Anonymous LRU management is a waste if there is
2647 * ultimately no way to reclaim the memory.
2648 */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2649 static bool can_age_anon_pages(struct pglist_data *pgdat,
2650 struct scan_control *sc)
2651 {
2652 /* Aging the anon LRU is valuable if swap is present: */
2653 if (total_swap_pages > 0)
2654 return true;
2655
2656 /* Also valuable if anon pages can be demoted: */
2657 return can_demote(pgdat->node_id, sc);
2658 }
2659
2660 #ifdef CONFIG_LRU_GEN
2661
2662 #ifdef CONFIG_LRU_GEN_ENABLED
2663 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2664 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2665 #else
2666 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2667 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2668 #endif
2669
should_walk_mmu(void)2670 static bool should_walk_mmu(void)
2671 {
2672 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2673 }
2674
should_clear_pmd_young(void)2675 static bool should_clear_pmd_young(void)
2676 {
2677 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2678 }
2679
2680 /******************************************************************************
2681 * shorthand helpers
2682 ******************************************************************************/
2683
2684 #define DEFINE_MAX_SEQ(lruvec) \
2685 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2686
2687 #define DEFINE_MIN_SEQ(lruvec) \
2688 unsigned long min_seq[ANON_AND_FILE] = { \
2689 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2690 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2691 }
2692
2693 #define evictable_min_seq(min_seq, swappiness) \
2694 min((min_seq)[!(swappiness)], (min_seq)[(swappiness) <= MAX_SWAPPINESS])
2695
2696 #define for_each_gen_type_zone(gen, type, zone) \
2697 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2698 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2699 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2700
2701 #define for_each_evictable_type(type, swappiness) \
2702 for ((type) = !(swappiness); (type) <= ((swappiness) <= MAX_SWAPPINESS); (type)++)
2703
2704 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2705 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2706
get_lruvec(struct mem_cgroup * memcg,int nid)2707 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2708 {
2709 struct pglist_data *pgdat = NODE_DATA(nid);
2710
2711 #ifdef CONFIG_MEMCG
2712 if (memcg) {
2713 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2714
2715 /* see the comment in mem_cgroup_lruvec() */
2716 if (!lruvec->pgdat)
2717 lruvec->pgdat = pgdat;
2718
2719 return lruvec;
2720 }
2721 #endif
2722 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2723
2724 return &pgdat->__lruvec;
2725 }
2726
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2727 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2728 {
2729 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2730 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2731
2732 if (!sc->may_swap)
2733 return 0;
2734
2735 if (!can_demote(pgdat->node_id, sc) &&
2736 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2737 return 0;
2738
2739 return sc_swappiness(sc, memcg);
2740 }
2741
get_nr_gens(struct lruvec * lruvec,int type)2742 static int get_nr_gens(struct lruvec *lruvec, int type)
2743 {
2744 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2745 }
2746
seq_is_valid(struct lruvec * lruvec)2747 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2748 {
2749 int type;
2750
2751 for (type = 0; type < ANON_AND_FILE; type++) {
2752 int n = get_nr_gens(lruvec, type);
2753
2754 if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2755 return false;
2756 }
2757
2758 return true;
2759 }
2760
2761 /******************************************************************************
2762 * Bloom filters
2763 ******************************************************************************/
2764
2765 /*
2766 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2767 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2768 * bits in a bitmap, k is the number of hash functions and n is the number of
2769 * inserted items.
2770 *
2771 * Page table walkers use one of the two filters to reduce their search space.
2772 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2773 * aging uses the double-buffering technique to flip to the other filter each
2774 * time it produces a new generation. For non-leaf entries that have enough
2775 * leaf entries, the aging carries them over to the next generation in
2776 * walk_pmd_range(); the eviction also report them when walking the rmap
2777 * in lru_gen_look_around().
2778 *
2779 * For future optimizations:
2780 * 1. It's not necessary to keep both filters all the time. The spare one can be
2781 * freed after the RCU grace period and reallocated if needed again.
2782 * 2. And when reallocating, it's worth scaling its size according to the number
2783 * of inserted entries in the other filter, to reduce the memory overhead on
2784 * small systems and false positives on large systems.
2785 * 3. Jenkins' hash function is an alternative to Knuth's.
2786 */
2787 #define BLOOM_FILTER_SHIFT 15
2788
filter_gen_from_seq(unsigned long seq)2789 static inline int filter_gen_from_seq(unsigned long seq)
2790 {
2791 return seq % NR_BLOOM_FILTERS;
2792 }
2793
get_item_key(void * item,int * key)2794 static void get_item_key(void *item, int *key)
2795 {
2796 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2797
2798 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2799
2800 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2801 key[1] = hash >> BLOOM_FILTER_SHIFT;
2802 }
2803
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2804 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2805 void *item)
2806 {
2807 int key[2];
2808 unsigned long *filter;
2809 int gen = filter_gen_from_seq(seq);
2810
2811 filter = READ_ONCE(mm_state->filters[gen]);
2812 if (!filter)
2813 return true;
2814
2815 get_item_key(item, key);
2816
2817 return test_bit(key[0], filter) && test_bit(key[1], filter);
2818 }
2819
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2820 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2821 void *item)
2822 {
2823 int key[2];
2824 unsigned long *filter;
2825 int gen = filter_gen_from_seq(seq);
2826
2827 filter = READ_ONCE(mm_state->filters[gen]);
2828 if (!filter)
2829 return;
2830
2831 get_item_key(item, key);
2832
2833 if (!test_bit(key[0], filter))
2834 set_bit(key[0], filter);
2835 if (!test_bit(key[1], filter))
2836 set_bit(key[1], filter);
2837 }
2838
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2839 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2840 {
2841 unsigned long *filter;
2842 int gen = filter_gen_from_seq(seq);
2843
2844 filter = mm_state->filters[gen];
2845 if (filter) {
2846 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2847 return;
2848 }
2849
2850 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2851 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2852 WRITE_ONCE(mm_state->filters[gen], filter);
2853 }
2854
2855 /******************************************************************************
2856 * mm_struct list
2857 ******************************************************************************/
2858
2859 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2860
get_mm_list(struct mem_cgroup * memcg)2861 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2862 {
2863 static struct lru_gen_mm_list mm_list = {
2864 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2865 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2866 };
2867
2868 #ifdef CONFIG_MEMCG
2869 if (memcg)
2870 return &memcg->mm_list;
2871 #endif
2872 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2873
2874 return &mm_list;
2875 }
2876
get_mm_state(struct lruvec * lruvec)2877 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2878 {
2879 return &lruvec->mm_state;
2880 }
2881
get_next_mm(struct lru_gen_mm_walk * walk)2882 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2883 {
2884 int key;
2885 struct mm_struct *mm;
2886 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2887 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2888
2889 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2890 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2891
2892 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2893 return NULL;
2894
2895 clear_bit(key, &mm->lru_gen.bitmap);
2896
2897 return mmget_not_zero(mm) ? mm : NULL;
2898 }
2899
lru_gen_add_mm(struct mm_struct * mm)2900 void lru_gen_add_mm(struct mm_struct *mm)
2901 {
2902 int nid;
2903 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2904 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2905
2906 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2907 #ifdef CONFIG_MEMCG
2908 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2909 mm->lru_gen.memcg = memcg;
2910 #endif
2911 spin_lock(&mm_list->lock);
2912
2913 for_each_node_state(nid, N_MEMORY) {
2914 struct lruvec *lruvec = get_lruvec(memcg, nid);
2915 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2916
2917 /* the first addition since the last iteration */
2918 if (mm_state->tail == &mm_list->fifo)
2919 mm_state->tail = &mm->lru_gen.list;
2920 }
2921
2922 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2923
2924 spin_unlock(&mm_list->lock);
2925 }
2926
lru_gen_del_mm(struct mm_struct * mm)2927 void lru_gen_del_mm(struct mm_struct *mm)
2928 {
2929 int nid;
2930 struct lru_gen_mm_list *mm_list;
2931 struct mem_cgroup *memcg = NULL;
2932
2933 if (list_empty(&mm->lru_gen.list))
2934 return;
2935
2936 #ifdef CONFIG_MEMCG
2937 memcg = mm->lru_gen.memcg;
2938 #endif
2939 mm_list = get_mm_list(memcg);
2940
2941 spin_lock(&mm_list->lock);
2942
2943 for_each_node(nid) {
2944 struct lruvec *lruvec = get_lruvec(memcg, nid);
2945 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2946
2947 /* where the current iteration continues after */
2948 if (mm_state->head == &mm->lru_gen.list)
2949 mm_state->head = mm_state->head->prev;
2950
2951 /* where the last iteration ended before */
2952 if (mm_state->tail == &mm->lru_gen.list)
2953 mm_state->tail = mm_state->tail->next;
2954 }
2955
2956 list_del_init(&mm->lru_gen.list);
2957
2958 spin_unlock(&mm_list->lock);
2959
2960 #ifdef CONFIG_MEMCG
2961 mem_cgroup_put(mm->lru_gen.memcg);
2962 mm->lru_gen.memcg = NULL;
2963 #endif
2964 }
2965
2966 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2967 void lru_gen_migrate_mm(struct mm_struct *mm)
2968 {
2969 struct mem_cgroup *memcg;
2970 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2971
2972 VM_WARN_ON_ONCE(task->mm != mm);
2973 lockdep_assert_held(&task->alloc_lock);
2974
2975 /* for mm_update_next_owner() */
2976 if (mem_cgroup_disabled())
2977 return;
2978
2979 /* migration can happen before addition */
2980 if (!mm->lru_gen.memcg)
2981 return;
2982
2983 rcu_read_lock();
2984 memcg = mem_cgroup_from_task(task);
2985 rcu_read_unlock();
2986 if (memcg == mm->lru_gen.memcg)
2987 return;
2988
2989 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2990
2991 lru_gen_del_mm(mm);
2992 lru_gen_add_mm(mm);
2993 }
2994 #endif
2995
2996 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2997
get_mm_list(struct mem_cgroup * memcg)2998 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2999 {
3000 return NULL;
3001 }
3002
get_mm_state(struct lruvec * lruvec)3003 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3004 {
3005 return NULL;
3006 }
3007
get_next_mm(struct lru_gen_mm_walk * walk)3008 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3009 {
3010 return NULL;
3011 }
3012
3013 #endif
3014
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3015 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3016 {
3017 int i;
3018 int hist;
3019 struct lruvec *lruvec = walk->lruvec;
3020 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3021
3022 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3023
3024 hist = lru_hist_from_seq(walk->seq);
3025
3026 for (i = 0; i < NR_MM_STATS; i++) {
3027 WRITE_ONCE(mm_state->stats[hist][i],
3028 mm_state->stats[hist][i] + walk->mm_stats[i]);
3029 walk->mm_stats[i] = 0;
3030 }
3031
3032 if (NR_HIST_GENS > 1 && last) {
3033 hist = lru_hist_from_seq(walk->seq + 1);
3034
3035 for (i = 0; i < NR_MM_STATS; i++)
3036 WRITE_ONCE(mm_state->stats[hist][i], 0);
3037 }
3038 }
3039
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3040 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3041 {
3042 bool first = false;
3043 bool last = false;
3044 struct mm_struct *mm = NULL;
3045 struct lruvec *lruvec = walk->lruvec;
3046 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3047 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3048 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3049
3050 /*
3051 * mm_state->seq is incremented after each iteration of mm_list. There
3052 * are three interesting cases for this page table walker:
3053 * 1. It tries to start a new iteration with a stale max_seq: there is
3054 * nothing left to do.
3055 * 2. It started the next iteration: it needs to reset the Bloom filter
3056 * so that a fresh set of PTE tables can be recorded.
3057 * 3. It ended the current iteration: it needs to reset the mm stats
3058 * counters and tell its caller to increment max_seq.
3059 */
3060 spin_lock(&mm_list->lock);
3061
3062 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3063
3064 if (walk->seq <= mm_state->seq)
3065 goto done;
3066
3067 if (!mm_state->head)
3068 mm_state->head = &mm_list->fifo;
3069
3070 if (mm_state->head == &mm_list->fifo)
3071 first = true;
3072
3073 do {
3074 mm_state->head = mm_state->head->next;
3075 if (mm_state->head == &mm_list->fifo) {
3076 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3077 last = true;
3078 break;
3079 }
3080
3081 /* force scan for those added after the last iteration */
3082 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3083 mm_state->tail = mm_state->head->next;
3084 walk->force_scan = true;
3085 }
3086 } while (!(mm = get_next_mm(walk)));
3087 done:
3088 if (*iter || last)
3089 reset_mm_stats(walk, last);
3090
3091 spin_unlock(&mm_list->lock);
3092
3093 if (mm && first)
3094 reset_bloom_filter(mm_state, walk->seq + 1);
3095
3096 if (*iter)
3097 mmput_async(*iter);
3098
3099 *iter = mm;
3100
3101 return last;
3102 }
3103
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3104 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3105 {
3106 bool success = false;
3107 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3108 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3109 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3110
3111 spin_lock(&mm_list->lock);
3112
3113 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3114
3115 if (seq > mm_state->seq) {
3116 mm_state->head = NULL;
3117 mm_state->tail = NULL;
3118 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3119 success = true;
3120 }
3121
3122 spin_unlock(&mm_list->lock);
3123
3124 return success;
3125 }
3126
3127 /******************************************************************************
3128 * PID controller
3129 ******************************************************************************/
3130
3131 /*
3132 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3133 *
3134 * The P term is refaulted/(evicted+protected) from a tier in the generation
3135 * currently being evicted; the I term is the exponential moving average of the
3136 * P term over the generations previously evicted, using the smoothing factor
3137 * 1/2; the D term isn't supported.
3138 *
3139 * The setpoint (SP) is always the first tier of one type; the process variable
3140 * (PV) is either any tier of the other type or any other tier of the same
3141 * type.
3142 *
3143 * The error is the difference between the SP and the PV; the correction is to
3144 * turn off protection when SP>PV or turn on protection when SP<PV.
3145 *
3146 * For future optimizations:
3147 * 1. The D term may discount the other two terms over time so that long-lived
3148 * generations can resist stale information.
3149 */
3150 struct ctrl_pos {
3151 unsigned long refaulted;
3152 unsigned long total;
3153 int gain;
3154 };
3155
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3156 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3157 struct ctrl_pos *pos)
3158 {
3159 int i;
3160 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3161 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3162
3163 pos->gain = gain;
3164 pos->refaulted = pos->total = 0;
3165
3166 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3167 pos->refaulted += lrugen->avg_refaulted[type][i] +
3168 atomic_long_read(&lrugen->refaulted[hist][type][i]);
3169 pos->total += lrugen->avg_total[type][i] +
3170 lrugen->protected[hist][type][i] +
3171 atomic_long_read(&lrugen->evicted[hist][type][i]);
3172 }
3173 }
3174
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3175 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3176 {
3177 int hist, tier;
3178 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3179 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3180 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3181
3182 lockdep_assert_held(&lruvec->lru_lock);
3183
3184 if (!carryover && !clear)
3185 return;
3186
3187 hist = lru_hist_from_seq(seq);
3188
3189 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3190 if (carryover) {
3191 unsigned long sum;
3192
3193 sum = lrugen->avg_refaulted[type][tier] +
3194 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3195 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3196
3197 sum = lrugen->avg_total[type][tier] +
3198 lrugen->protected[hist][type][tier] +
3199 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3200 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3201 }
3202
3203 if (clear) {
3204 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3205 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3206 WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3207 }
3208 }
3209 }
3210
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3211 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3212 {
3213 /*
3214 * Return true if the PV has a limited number of refaults or a lower
3215 * refaulted/total than the SP.
3216 */
3217 return pv->refaulted < MIN_LRU_BATCH ||
3218 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3219 (sp->refaulted + 1) * pv->total * pv->gain;
3220 }
3221
3222 /******************************************************************************
3223 * the aging
3224 ******************************************************************************/
3225
3226 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3227 static int folio_update_gen(struct folio *folio, int gen)
3228 {
3229 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3230
3231 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3232
3233 /* see the comment on LRU_REFS_FLAGS */
3234 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3235 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3236 return -1;
3237 }
3238
3239 do {
3240 /* lru_gen_del_folio() has isolated this page? */
3241 if (!(old_flags & LRU_GEN_MASK))
3242 return -1;
3243
3244 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3245 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3246 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3247
3248 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3249 }
3250
3251 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3252 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3253 {
3254 int type = folio_is_file_lru(folio);
3255 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3256 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3257 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3258
3259 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3260
3261 do {
3262 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3263 /* folio_update_gen() has promoted this page? */
3264 if (new_gen >= 0 && new_gen != old_gen)
3265 return new_gen;
3266
3267 new_gen = (old_gen + 1) % MAX_NR_GENS;
3268
3269 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3270 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3271 /* for folio_end_writeback() */
3272 if (reclaiming)
3273 new_flags |= BIT(PG_reclaim);
3274 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3275
3276 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3277
3278 return new_gen;
3279 }
3280
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3281 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3282 int old_gen, int new_gen)
3283 {
3284 int type = folio_is_file_lru(folio);
3285 int zone = folio_zonenum(folio);
3286 int delta = folio_nr_pages(folio);
3287
3288 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3289 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3290
3291 walk->batched++;
3292
3293 walk->nr_pages[old_gen][type][zone] -= delta;
3294 walk->nr_pages[new_gen][type][zone] += delta;
3295 }
3296
reset_batch_size(struct lru_gen_mm_walk * walk)3297 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3298 {
3299 int gen, type, zone;
3300 struct lruvec *lruvec = walk->lruvec;
3301 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3302
3303 walk->batched = 0;
3304
3305 for_each_gen_type_zone(gen, type, zone) {
3306 enum lru_list lru = type * LRU_INACTIVE_FILE;
3307 int delta = walk->nr_pages[gen][type][zone];
3308
3309 if (!delta)
3310 continue;
3311
3312 walk->nr_pages[gen][type][zone] = 0;
3313 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3314 lrugen->nr_pages[gen][type][zone] + delta);
3315
3316 if (lru_gen_is_active(lruvec, gen))
3317 lru += LRU_ACTIVE;
3318 __update_lru_size(lruvec, lru, zone, delta);
3319 }
3320 }
3321
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3322 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3323 {
3324 struct address_space *mapping;
3325 struct vm_area_struct *vma = args->vma;
3326 struct lru_gen_mm_walk *walk = args->private;
3327
3328 if (!vma_is_accessible(vma))
3329 return true;
3330
3331 if (is_vm_hugetlb_page(vma))
3332 return true;
3333
3334 if (!vma_has_recency(vma))
3335 return true;
3336
3337 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3338 return true;
3339
3340 if (vma == get_gate_vma(vma->vm_mm))
3341 return true;
3342
3343 if (vma_is_anonymous(vma))
3344 return !walk->swappiness;
3345
3346 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3347 return true;
3348
3349 mapping = vma->vm_file->f_mapping;
3350 if (mapping_unevictable(mapping))
3351 return true;
3352
3353 if (shmem_mapping(mapping))
3354 return !walk->swappiness;
3355
3356 if (walk->swappiness > MAX_SWAPPINESS)
3357 return true;
3358
3359 /* to exclude special mappings like dax, etc. */
3360 return !mapping->a_ops->read_folio;
3361 }
3362
3363 /*
3364 * Some userspace memory allocators map many single-page VMAs. Instead of
3365 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3366 * table to reduce zigzags and improve cache performance.
3367 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3368 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3369 unsigned long *vm_start, unsigned long *vm_end)
3370 {
3371 unsigned long start = round_up(*vm_end, size);
3372 unsigned long end = (start | ~mask) + 1;
3373 VMA_ITERATOR(vmi, args->mm, start);
3374
3375 VM_WARN_ON_ONCE(mask & size);
3376 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3377
3378 for_each_vma(vmi, args->vma) {
3379 if (end && end <= args->vma->vm_start)
3380 return false;
3381
3382 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3383 continue;
3384
3385 *vm_start = max(start, args->vma->vm_start);
3386 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3387
3388 return true;
3389 }
3390
3391 return false;
3392 }
3393
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3394 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3395 struct pglist_data *pgdat)
3396 {
3397 unsigned long pfn = pte_pfn(pte);
3398
3399 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3400
3401 if (!pte_present(pte) || is_zero_pfn(pfn))
3402 return -1;
3403
3404 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3405 return -1;
3406
3407 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3408 return -1;
3409
3410 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3411 return -1;
3412
3413 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3414 return -1;
3415
3416 return pfn;
3417 }
3418
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3419 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3420 struct pglist_data *pgdat)
3421 {
3422 unsigned long pfn = pmd_pfn(pmd);
3423
3424 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3425
3426 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3427 return -1;
3428
3429 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3430 return -1;
3431
3432 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3433 return -1;
3434
3435 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3436 return -1;
3437
3438 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3439 return -1;
3440
3441 return pfn;
3442 }
3443
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3444 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3445 struct pglist_data *pgdat)
3446 {
3447 struct folio *folio = pfn_folio(pfn);
3448
3449 if (folio_lru_gen(folio) < 0)
3450 return NULL;
3451
3452 if (folio_nid(folio) != pgdat->node_id)
3453 return NULL;
3454
3455 if (folio_memcg(folio) != memcg)
3456 return NULL;
3457
3458 return folio;
3459 }
3460
suitable_to_scan(int total,int young)3461 static bool suitable_to_scan(int total, int young)
3462 {
3463 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3464
3465 /* suitable if the average number of young PTEs per cacheline is >=1 */
3466 return young * n >= total;
3467 }
3468
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3469 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3470 int new_gen, bool dirty)
3471 {
3472 int old_gen;
3473
3474 if (!folio)
3475 return;
3476
3477 if (dirty && !folio_test_dirty(folio) &&
3478 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3479 !folio_test_swapcache(folio)))
3480 folio_mark_dirty(folio);
3481
3482 if (walk) {
3483 old_gen = folio_update_gen(folio, new_gen);
3484 if (old_gen >= 0 && old_gen != new_gen)
3485 update_batch_size(walk, folio, old_gen, new_gen);
3486 } else if (lru_gen_set_refs(folio)) {
3487 old_gen = folio_lru_gen(folio);
3488 if (old_gen >= 0 && old_gen != new_gen)
3489 folio_activate(folio);
3490 }
3491 }
3492
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3493 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3494 struct mm_walk *args)
3495 {
3496 int i;
3497 bool dirty;
3498 pte_t *pte;
3499 spinlock_t *ptl;
3500 unsigned long addr;
3501 int total = 0;
3502 int young = 0;
3503 struct folio *last = NULL;
3504 struct lru_gen_mm_walk *walk = args->private;
3505 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3506 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3507 DEFINE_MAX_SEQ(walk->lruvec);
3508 int gen = lru_gen_from_seq(max_seq);
3509 pmd_t pmdval;
3510
3511 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3512 if (!pte)
3513 return false;
3514
3515 if (!spin_trylock(ptl)) {
3516 pte_unmap(pte);
3517 return true;
3518 }
3519
3520 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3521 pte_unmap_unlock(pte, ptl);
3522 return false;
3523 }
3524
3525 arch_enter_lazy_mmu_mode();
3526 restart:
3527 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3528 unsigned long pfn;
3529 struct folio *folio;
3530 pte_t ptent = ptep_get(pte + i);
3531
3532 total++;
3533 walk->mm_stats[MM_LEAF_TOTAL]++;
3534
3535 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3536 if (pfn == -1)
3537 continue;
3538
3539 folio = get_pfn_folio(pfn, memcg, pgdat);
3540 if (!folio)
3541 continue;
3542
3543 if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3544 continue;
3545
3546 if (last != folio) {
3547 walk_update_folio(walk, last, gen, dirty);
3548
3549 last = folio;
3550 dirty = false;
3551 }
3552
3553 if (pte_dirty(ptent))
3554 dirty = true;
3555
3556 young++;
3557 walk->mm_stats[MM_LEAF_YOUNG]++;
3558 }
3559
3560 walk_update_folio(walk, last, gen, dirty);
3561 last = NULL;
3562
3563 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3564 goto restart;
3565
3566 arch_leave_lazy_mmu_mode();
3567 pte_unmap_unlock(pte, ptl);
3568
3569 return suitable_to_scan(total, young);
3570 }
3571
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3572 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3573 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3574 {
3575 int i;
3576 bool dirty;
3577 pmd_t *pmd;
3578 spinlock_t *ptl;
3579 struct folio *last = NULL;
3580 struct lru_gen_mm_walk *walk = args->private;
3581 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3582 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3583 DEFINE_MAX_SEQ(walk->lruvec);
3584 int gen = lru_gen_from_seq(max_seq);
3585
3586 VM_WARN_ON_ONCE(pud_leaf(*pud));
3587
3588 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3589 if (*first == -1) {
3590 *first = addr;
3591 bitmap_zero(bitmap, MIN_LRU_BATCH);
3592 return;
3593 }
3594
3595 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3596 if (i && i <= MIN_LRU_BATCH) {
3597 __set_bit(i - 1, bitmap);
3598 return;
3599 }
3600
3601 pmd = pmd_offset(pud, *first);
3602
3603 ptl = pmd_lockptr(args->mm, pmd);
3604 if (!spin_trylock(ptl))
3605 goto done;
3606
3607 arch_enter_lazy_mmu_mode();
3608
3609 do {
3610 unsigned long pfn;
3611 struct folio *folio;
3612
3613 /* don't round down the first address */
3614 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3615
3616 if (!pmd_present(pmd[i]))
3617 goto next;
3618
3619 if (!pmd_trans_huge(pmd[i])) {
3620 if (!walk->force_scan && should_clear_pmd_young() &&
3621 !mm_has_notifiers(args->mm))
3622 pmdp_test_and_clear_young(vma, addr, pmd + i);
3623 goto next;
3624 }
3625
3626 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3627 if (pfn == -1)
3628 goto next;
3629
3630 folio = get_pfn_folio(pfn, memcg, pgdat);
3631 if (!folio)
3632 goto next;
3633
3634 if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3635 goto next;
3636
3637 if (last != folio) {
3638 walk_update_folio(walk, last, gen, dirty);
3639
3640 last = folio;
3641 dirty = false;
3642 }
3643
3644 if (pmd_dirty(pmd[i]))
3645 dirty = true;
3646
3647 walk->mm_stats[MM_LEAF_YOUNG]++;
3648 next:
3649 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3650 } while (i <= MIN_LRU_BATCH);
3651
3652 walk_update_folio(walk, last, gen, dirty);
3653
3654 arch_leave_lazy_mmu_mode();
3655 spin_unlock(ptl);
3656 done:
3657 *first = -1;
3658 }
3659
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3660 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3661 struct mm_walk *args)
3662 {
3663 int i;
3664 pmd_t *pmd;
3665 unsigned long next;
3666 unsigned long addr;
3667 struct vm_area_struct *vma;
3668 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3669 unsigned long first = -1;
3670 struct lru_gen_mm_walk *walk = args->private;
3671 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3672
3673 VM_WARN_ON_ONCE(pud_leaf(*pud));
3674
3675 /*
3676 * Finish an entire PMD in two passes: the first only reaches to PTE
3677 * tables to avoid taking the PMD lock; the second, if necessary, takes
3678 * the PMD lock to clear the accessed bit in PMD entries.
3679 */
3680 pmd = pmd_offset(pud, start & PUD_MASK);
3681 restart:
3682 /* walk_pte_range() may call get_next_vma() */
3683 vma = args->vma;
3684 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3685 pmd_t val = pmdp_get_lockless(pmd + i);
3686
3687 next = pmd_addr_end(addr, end);
3688
3689 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3690 walk->mm_stats[MM_LEAF_TOTAL]++;
3691 continue;
3692 }
3693
3694 if (pmd_trans_huge(val)) {
3695 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3696 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3697
3698 walk->mm_stats[MM_LEAF_TOTAL]++;
3699
3700 if (pfn != -1)
3701 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3702 continue;
3703 }
3704
3705 if (!walk->force_scan && should_clear_pmd_young() &&
3706 !mm_has_notifiers(args->mm)) {
3707 if (!pmd_young(val))
3708 continue;
3709
3710 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3711 }
3712
3713 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3714 continue;
3715
3716 walk->mm_stats[MM_NONLEAF_FOUND]++;
3717
3718 if (!walk_pte_range(&val, addr, next, args))
3719 continue;
3720
3721 walk->mm_stats[MM_NONLEAF_ADDED]++;
3722
3723 /* carry over to the next generation */
3724 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3725 }
3726
3727 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3728
3729 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3730 goto restart;
3731 }
3732
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3733 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3734 struct mm_walk *args)
3735 {
3736 int i;
3737 pud_t *pud;
3738 unsigned long addr;
3739 unsigned long next;
3740 struct lru_gen_mm_walk *walk = args->private;
3741
3742 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3743
3744 pud = pud_offset(p4d, start & P4D_MASK);
3745 restart:
3746 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3747 pud_t val = READ_ONCE(pud[i]);
3748
3749 next = pud_addr_end(addr, end);
3750
3751 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3752 continue;
3753
3754 walk_pmd_range(&val, addr, next, args);
3755
3756 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3757 end = (addr | ~PUD_MASK) + 1;
3758 goto done;
3759 }
3760 }
3761
3762 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3763 goto restart;
3764
3765 end = round_up(end, P4D_SIZE);
3766 done:
3767 if (!end || !args->vma)
3768 return 1;
3769
3770 walk->next_addr = max(end, args->vma->vm_start);
3771
3772 return -EAGAIN;
3773 }
3774
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3775 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3776 {
3777 static const struct mm_walk_ops mm_walk_ops = {
3778 .test_walk = should_skip_vma,
3779 .p4d_entry = walk_pud_range,
3780 .walk_lock = PGWALK_RDLOCK,
3781 };
3782 int err;
3783 struct lruvec *lruvec = walk->lruvec;
3784
3785 walk->next_addr = FIRST_USER_ADDRESS;
3786
3787 do {
3788 DEFINE_MAX_SEQ(lruvec);
3789
3790 err = -EBUSY;
3791
3792 /* another thread might have called inc_max_seq() */
3793 if (walk->seq != max_seq)
3794 break;
3795
3796 /* the caller might be holding the lock for write */
3797 if (mmap_read_trylock(mm)) {
3798 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3799
3800 mmap_read_unlock(mm);
3801 }
3802
3803 if (walk->batched) {
3804 spin_lock_irq(&lruvec->lru_lock);
3805 reset_batch_size(walk);
3806 spin_unlock_irq(&lruvec->lru_lock);
3807 }
3808
3809 cond_resched();
3810 } while (err == -EAGAIN);
3811 }
3812
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3813 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3814 {
3815 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3816
3817 if (pgdat && current_is_kswapd()) {
3818 VM_WARN_ON_ONCE(walk);
3819
3820 walk = &pgdat->mm_walk;
3821 } else if (!walk && force_alloc) {
3822 VM_WARN_ON_ONCE(current_is_kswapd());
3823
3824 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3825 }
3826
3827 current->reclaim_state->mm_walk = walk;
3828
3829 return walk;
3830 }
3831
clear_mm_walk(void)3832 static void clear_mm_walk(void)
3833 {
3834 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3835
3836 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3837 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3838
3839 current->reclaim_state->mm_walk = NULL;
3840
3841 if (!current_is_kswapd())
3842 kfree(walk);
3843 }
3844
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3845 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3846 {
3847 int zone;
3848 int remaining = MAX_LRU_BATCH;
3849 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3850 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3851 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3852
3853 if (type ? swappiness > MAX_SWAPPINESS : !swappiness)
3854 goto done;
3855
3856 /* prevent cold/hot inversion if the type is evictable */
3857 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3858 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3859
3860 while (!list_empty(head)) {
3861 struct folio *folio = lru_to_folio(head);
3862 int refs = folio_lru_refs(folio);
3863 bool workingset = folio_test_workingset(folio);
3864
3865 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3866 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3867 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3868 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3869
3870 new_gen = folio_inc_gen(lruvec, folio, false);
3871 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3872
3873 /* don't count the workingset being lazily promoted */
3874 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3875 int tier = lru_tier_from_refs(refs, workingset);
3876 int delta = folio_nr_pages(folio);
3877
3878 WRITE_ONCE(lrugen->protected[hist][type][tier],
3879 lrugen->protected[hist][type][tier] + delta);
3880 }
3881
3882 if (!--remaining)
3883 return false;
3884 }
3885 }
3886 done:
3887 reset_ctrl_pos(lruvec, type, true);
3888 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3889
3890 return true;
3891 }
3892
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3893 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3894 {
3895 int gen, type, zone;
3896 bool success = false;
3897 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3898 DEFINE_MIN_SEQ(lruvec);
3899
3900 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3901
3902 /* find the oldest populated generation */
3903 for_each_evictable_type(type, swappiness) {
3904 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3905 gen = lru_gen_from_seq(min_seq[type]);
3906
3907 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3908 if (!list_empty(&lrugen->folios[gen][type][zone]))
3909 goto next;
3910 }
3911
3912 min_seq[type]++;
3913 }
3914 next:
3915 ;
3916 }
3917
3918 /* see the comment on lru_gen_folio */
3919 if (swappiness && swappiness <= MAX_SWAPPINESS) {
3920 unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3921
3922 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3923 min_seq[LRU_GEN_ANON] = seq;
3924 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3925 min_seq[LRU_GEN_FILE] = seq;
3926 }
3927
3928 for_each_evictable_type(type, swappiness) {
3929 if (min_seq[type] <= lrugen->min_seq[type])
3930 continue;
3931
3932 reset_ctrl_pos(lruvec, type, true);
3933 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3934 success = true;
3935 }
3936
3937 return success;
3938 }
3939
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3940 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3941 {
3942 bool success;
3943 int prev, next;
3944 int type, zone;
3945 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3946 restart:
3947 if (seq < READ_ONCE(lrugen->max_seq))
3948 return false;
3949
3950 spin_lock_irq(&lruvec->lru_lock);
3951
3952 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3953
3954 success = seq == lrugen->max_seq;
3955 if (!success)
3956 goto unlock;
3957
3958 for (type = 0; type < ANON_AND_FILE; type++) {
3959 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3960 continue;
3961
3962 if (inc_min_seq(lruvec, type, swappiness))
3963 continue;
3964
3965 spin_unlock_irq(&lruvec->lru_lock);
3966 cond_resched();
3967 goto restart;
3968 }
3969
3970 /*
3971 * Update the active/inactive LRU sizes for compatibility. Both sides of
3972 * the current max_seq need to be covered, since max_seq+1 can overlap
3973 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3974 * overlap, cold/hot inversion happens.
3975 */
3976 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3977 next = lru_gen_from_seq(lrugen->max_seq + 1);
3978
3979 for (type = 0; type < ANON_AND_FILE; type++) {
3980 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3981 enum lru_list lru = type * LRU_INACTIVE_FILE;
3982 long delta = lrugen->nr_pages[prev][type][zone] -
3983 lrugen->nr_pages[next][type][zone];
3984
3985 if (!delta)
3986 continue;
3987
3988 __update_lru_size(lruvec, lru, zone, delta);
3989 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3990 }
3991 }
3992
3993 for (type = 0; type < ANON_AND_FILE; type++)
3994 reset_ctrl_pos(lruvec, type, false);
3995
3996 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3997 /* make sure preceding modifications appear */
3998 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3999 unlock:
4000 spin_unlock_irq(&lruvec->lru_lock);
4001
4002 return success;
4003 }
4004
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4005 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4006 int swappiness, bool force_scan)
4007 {
4008 bool success;
4009 struct lru_gen_mm_walk *walk;
4010 struct mm_struct *mm = NULL;
4011 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4012 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4013
4014 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4015
4016 if (!mm_state)
4017 return inc_max_seq(lruvec, seq, swappiness);
4018
4019 /* see the comment in iterate_mm_list() */
4020 if (seq <= READ_ONCE(mm_state->seq))
4021 return false;
4022
4023 /*
4024 * If the hardware doesn't automatically set the accessed bit, fallback
4025 * to lru_gen_look_around(), which only clears the accessed bit in a
4026 * handful of PTEs. Spreading the work out over a period of time usually
4027 * is less efficient, but it avoids bursty page faults.
4028 */
4029 if (!should_walk_mmu()) {
4030 success = iterate_mm_list_nowalk(lruvec, seq);
4031 goto done;
4032 }
4033
4034 walk = set_mm_walk(NULL, true);
4035 if (!walk) {
4036 success = iterate_mm_list_nowalk(lruvec, seq);
4037 goto done;
4038 }
4039
4040 walk->lruvec = lruvec;
4041 walk->seq = seq;
4042 walk->swappiness = swappiness;
4043 walk->force_scan = force_scan;
4044
4045 do {
4046 success = iterate_mm_list(walk, &mm);
4047 if (mm)
4048 walk_mm(mm, walk);
4049 } while (mm);
4050 done:
4051 if (success) {
4052 success = inc_max_seq(lruvec, seq, swappiness);
4053 WARN_ON_ONCE(!success);
4054 }
4055
4056 return success;
4057 }
4058
4059 /******************************************************************************
4060 * working set protection
4061 ******************************************************************************/
4062
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4063 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4064 {
4065 int priority;
4066 unsigned long reclaimable;
4067
4068 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4069 return;
4070 /*
4071 * Determine the initial priority based on
4072 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4073 * where reclaimed_to_scanned_ratio = inactive / total.
4074 */
4075 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4076 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4077 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4078
4079 /* round down reclaimable and round up sc->nr_to_reclaim */
4080 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4081
4082 /*
4083 * The estimation is based on LRU pages only, so cap it to prevent
4084 * overshoots of shrinker objects by large margins.
4085 */
4086 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4087 }
4088
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4089 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4090 {
4091 int gen, type, zone;
4092 unsigned long total = 0;
4093 int swappiness = get_swappiness(lruvec, sc);
4094 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4095 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4096 DEFINE_MAX_SEQ(lruvec);
4097 DEFINE_MIN_SEQ(lruvec);
4098
4099 for_each_evictable_type(type, swappiness) {
4100 unsigned long seq;
4101
4102 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4103 gen = lru_gen_from_seq(seq);
4104
4105 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4106 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4107 }
4108 }
4109
4110 /* whether the size is big enough to be helpful */
4111 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4112 }
4113
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4114 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4115 unsigned long min_ttl)
4116 {
4117 int gen;
4118 unsigned long birth;
4119 int swappiness = get_swappiness(lruvec, sc);
4120 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4121 DEFINE_MIN_SEQ(lruvec);
4122
4123 if (mem_cgroup_below_min(NULL, memcg))
4124 return false;
4125
4126 if (!lruvec_is_sizable(lruvec, sc))
4127 return false;
4128
4129 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4130 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4131
4132 return time_is_before_jiffies(birth + min_ttl);
4133 }
4134
4135 /* to protect the working set of the last N jiffies */
4136 static unsigned long lru_gen_min_ttl __read_mostly;
4137
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4138 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4139 {
4140 struct mem_cgroup *memcg;
4141 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4142 bool reclaimable = !min_ttl;
4143
4144 VM_WARN_ON_ONCE(!current_is_kswapd());
4145
4146 set_initial_priority(pgdat, sc);
4147
4148 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4149 do {
4150 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4151
4152 mem_cgroup_calculate_protection(NULL, memcg);
4153
4154 if (!reclaimable)
4155 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4156 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4157
4158 /*
4159 * The main goal is to OOM kill if every generation from all memcgs is
4160 * younger than min_ttl. However, another possibility is all memcgs are
4161 * either too small or below min.
4162 */
4163 if (!reclaimable && mutex_trylock(&oom_lock)) {
4164 struct oom_control oc = {
4165 .gfp_mask = sc->gfp_mask,
4166 };
4167
4168 out_of_memory(&oc);
4169
4170 mutex_unlock(&oom_lock);
4171 }
4172 }
4173
4174 /******************************************************************************
4175 * rmap/PT walk feedback
4176 ******************************************************************************/
4177
4178 /*
4179 * This function exploits spatial locality when shrink_folio_list() walks the
4180 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4181 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4182 * the PTE table to the Bloom filter. This forms a feedback loop between the
4183 * eviction and the aging.
4184 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4185 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4186 {
4187 int i;
4188 bool dirty;
4189 unsigned long start;
4190 unsigned long end;
4191 struct lru_gen_mm_walk *walk;
4192 struct folio *last = NULL;
4193 int young = 1;
4194 pte_t *pte = pvmw->pte;
4195 unsigned long addr = pvmw->address;
4196 struct vm_area_struct *vma = pvmw->vma;
4197 struct folio *folio = pfn_folio(pvmw->pfn);
4198 struct mem_cgroup *memcg = folio_memcg(folio);
4199 struct pglist_data *pgdat = folio_pgdat(folio);
4200 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4201 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4202 DEFINE_MAX_SEQ(lruvec);
4203 int gen = lru_gen_from_seq(max_seq);
4204
4205 lockdep_assert_held(pvmw->ptl);
4206 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4207
4208 if (!ptep_clear_young_notify(vma, addr, pte))
4209 return false;
4210
4211 if (spin_is_contended(pvmw->ptl))
4212 return true;
4213
4214 /* exclude special VMAs containing anon pages from COW */
4215 if (vma->vm_flags & VM_SPECIAL)
4216 return true;
4217
4218 /* avoid taking the LRU lock under the PTL when possible */
4219 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4220
4221 start = max(addr & PMD_MASK, vma->vm_start);
4222 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4223
4224 if (end - start == PAGE_SIZE)
4225 return true;
4226
4227 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4228 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4229 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4230 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4231 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4232 else {
4233 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4234 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4235 }
4236 }
4237
4238 arch_enter_lazy_mmu_mode();
4239
4240 pte -= (addr - start) / PAGE_SIZE;
4241
4242 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4243 unsigned long pfn;
4244 pte_t ptent = ptep_get(pte + i);
4245
4246 pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4247 if (pfn == -1)
4248 continue;
4249
4250 folio = get_pfn_folio(pfn, memcg, pgdat);
4251 if (!folio)
4252 continue;
4253
4254 if (!ptep_clear_young_notify(vma, addr, pte + i))
4255 continue;
4256
4257 if (last != folio) {
4258 walk_update_folio(walk, last, gen, dirty);
4259
4260 last = folio;
4261 dirty = false;
4262 }
4263
4264 if (pte_dirty(ptent))
4265 dirty = true;
4266
4267 young++;
4268 }
4269
4270 walk_update_folio(walk, last, gen, dirty);
4271
4272 arch_leave_lazy_mmu_mode();
4273
4274 /* feedback from rmap walkers to page table walkers */
4275 if (mm_state && suitable_to_scan(i, young))
4276 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4277
4278 return true;
4279 }
4280
4281 /******************************************************************************
4282 * memcg LRU
4283 ******************************************************************************/
4284
4285 /* see the comment on MEMCG_NR_GENS */
4286 enum {
4287 MEMCG_LRU_NOP,
4288 MEMCG_LRU_HEAD,
4289 MEMCG_LRU_TAIL,
4290 MEMCG_LRU_OLD,
4291 MEMCG_LRU_YOUNG,
4292 };
4293
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4294 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4295 {
4296 int seg;
4297 int old, new;
4298 unsigned long flags;
4299 int bin = get_random_u32_below(MEMCG_NR_BINS);
4300 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4301
4302 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4303
4304 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4305
4306 seg = 0;
4307 new = old = lruvec->lrugen.gen;
4308
4309 /* see the comment on MEMCG_NR_GENS */
4310 if (op == MEMCG_LRU_HEAD)
4311 seg = MEMCG_LRU_HEAD;
4312 else if (op == MEMCG_LRU_TAIL)
4313 seg = MEMCG_LRU_TAIL;
4314 else if (op == MEMCG_LRU_OLD)
4315 new = get_memcg_gen(pgdat->memcg_lru.seq);
4316 else if (op == MEMCG_LRU_YOUNG)
4317 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4318 else
4319 VM_WARN_ON_ONCE(true);
4320
4321 WRITE_ONCE(lruvec->lrugen.seg, seg);
4322 WRITE_ONCE(lruvec->lrugen.gen, new);
4323
4324 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4325
4326 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4327 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4328 else
4329 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4330
4331 pgdat->memcg_lru.nr_memcgs[old]--;
4332 pgdat->memcg_lru.nr_memcgs[new]++;
4333
4334 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4335 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4336
4337 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4338 }
4339
4340 #ifdef CONFIG_MEMCG
4341
lru_gen_online_memcg(struct mem_cgroup * memcg)4342 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4343 {
4344 int gen;
4345 int nid;
4346 int bin = get_random_u32_below(MEMCG_NR_BINS);
4347
4348 for_each_node(nid) {
4349 struct pglist_data *pgdat = NODE_DATA(nid);
4350 struct lruvec *lruvec = get_lruvec(memcg, nid);
4351
4352 spin_lock_irq(&pgdat->memcg_lru.lock);
4353
4354 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4355
4356 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4357
4358 lruvec->lrugen.gen = gen;
4359
4360 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4361 pgdat->memcg_lru.nr_memcgs[gen]++;
4362
4363 spin_unlock_irq(&pgdat->memcg_lru.lock);
4364 }
4365 }
4366
lru_gen_offline_memcg(struct mem_cgroup * memcg)4367 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4368 {
4369 int nid;
4370
4371 for_each_node(nid) {
4372 struct lruvec *lruvec = get_lruvec(memcg, nid);
4373
4374 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4375 }
4376 }
4377
lru_gen_release_memcg(struct mem_cgroup * memcg)4378 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4379 {
4380 int gen;
4381 int nid;
4382
4383 for_each_node(nid) {
4384 struct pglist_data *pgdat = NODE_DATA(nid);
4385 struct lruvec *lruvec = get_lruvec(memcg, nid);
4386
4387 spin_lock_irq(&pgdat->memcg_lru.lock);
4388
4389 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4390 goto unlock;
4391
4392 gen = lruvec->lrugen.gen;
4393
4394 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4395 pgdat->memcg_lru.nr_memcgs[gen]--;
4396
4397 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4398 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4399 unlock:
4400 spin_unlock_irq(&pgdat->memcg_lru.lock);
4401 }
4402 }
4403
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4404 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4405 {
4406 struct lruvec *lruvec = get_lruvec(memcg, nid);
4407
4408 /* see the comment on MEMCG_NR_GENS */
4409 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4410 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4411 }
4412
4413 #endif /* CONFIG_MEMCG */
4414
4415 /******************************************************************************
4416 * the eviction
4417 ******************************************************************************/
4418
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4419 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4420 int tier_idx)
4421 {
4422 bool success;
4423 bool dirty, writeback;
4424 int gen = folio_lru_gen(folio);
4425 int type = folio_is_file_lru(folio);
4426 int zone = folio_zonenum(folio);
4427 int delta = folio_nr_pages(folio);
4428 int refs = folio_lru_refs(folio);
4429 bool workingset = folio_test_workingset(folio);
4430 int tier = lru_tier_from_refs(refs, workingset);
4431 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4432
4433 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4434
4435 /* unevictable */
4436 if (!folio_evictable(folio)) {
4437 success = lru_gen_del_folio(lruvec, folio, true);
4438 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4439 folio_set_unevictable(folio);
4440 lruvec_add_folio(lruvec, folio);
4441 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4442 return true;
4443 }
4444
4445 /* promoted */
4446 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4447 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4448 return true;
4449 }
4450
4451 /* protected */
4452 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4453 gen = folio_inc_gen(lruvec, folio, false);
4454 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4455
4456 /* don't count the workingset being lazily promoted */
4457 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4458 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4459
4460 WRITE_ONCE(lrugen->protected[hist][type][tier],
4461 lrugen->protected[hist][type][tier] + delta);
4462 }
4463 return true;
4464 }
4465
4466 /* ineligible */
4467 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4468 gen = folio_inc_gen(lruvec, folio, false);
4469 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4470 return true;
4471 }
4472
4473 dirty = folio_test_dirty(folio);
4474 writeback = folio_test_writeback(folio);
4475 if (type == LRU_GEN_FILE && dirty) {
4476 sc->nr.file_taken += delta;
4477 if (!writeback)
4478 sc->nr.unqueued_dirty += delta;
4479 }
4480
4481 /* waiting for writeback */
4482 if (writeback || (type == LRU_GEN_FILE && dirty)) {
4483 gen = folio_inc_gen(lruvec, folio, true);
4484 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4485 return true;
4486 }
4487
4488 return false;
4489 }
4490
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4491 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4492 {
4493 bool success;
4494
4495 /* swap constrained */
4496 if (!(sc->gfp_mask & __GFP_IO) &&
4497 (folio_test_dirty(folio) ||
4498 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4499 return false;
4500
4501 /* raced with release_pages() */
4502 if (!folio_try_get(folio))
4503 return false;
4504
4505 /* raced with another isolation */
4506 if (!folio_test_clear_lru(folio)) {
4507 folio_put(folio);
4508 return false;
4509 }
4510
4511 /* see the comment on LRU_REFS_FLAGS */
4512 if (!folio_test_referenced(folio))
4513 set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4514
4515 /* for shrink_folio_list() */
4516 folio_clear_reclaim(folio);
4517
4518 success = lru_gen_del_folio(lruvec, folio, true);
4519 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4520
4521 return true;
4522 }
4523
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4524 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4525 int type, int tier, struct list_head *list)
4526 {
4527 int i;
4528 int gen;
4529 enum vm_event_item item;
4530 int sorted = 0;
4531 int scanned = 0;
4532 int isolated = 0;
4533 int skipped = 0;
4534 int remaining = MAX_LRU_BATCH;
4535 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4536 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4537
4538 VM_WARN_ON_ONCE(!list_empty(list));
4539
4540 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4541 return 0;
4542
4543 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4544
4545 for (i = MAX_NR_ZONES; i > 0; i--) {
4546 LIST_HEAD(moved);
4547 int skipped_zone = 0;
4548 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4549 struct list_head *head = &lrugen->folios[gen][type][zone];
4550
4551 while (!list_empty(head)) {
4552 struct folio *folio = lru_to_folio(head);
4553 int delta = folio_nr_pages(folio);
4554
4555 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4556 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4557 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4558 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4559
4560 scanned += delta;
4561
4562 if (sort_folio(lruvec, folio, sc, tier))
4563 sorted += delta;
4564 else if (isolate_folio(lruvec, folio, sc)) {
4565 list_add(&folio->lru, list);
4566 isolated += delta;
4567 } else {
4568 list_move(&folio->lru, &moved);
4569 skipped_zone += delta;
4570 }
4571
4572 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4573 break;
4574 }
4575
4576 if (skipped_zone) {
4577 list_splice(&moved, head);
4578 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4579 skipped += skipped_zone;
4580 }
4581
4582 if (!remaining || isolated >= MIN_LRU_BATCH)
4583 break;
4584 }
4585
4586 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4587 if (!cgroup_reclaim(sc)) {
4588 __count_vm_events(item, isolated);
4589 __count_vm_events(PGREFILL, sorted);
4590 }
4591 __count_memcg_events(memcg, item, isolated);
4592 __count_memcg_events(memcg, PGREFILL, sorted);
4593 __count_vm_events(PGSCAN_ANON + type, isolated);
4594 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4595 scanned, skipped, isolated,
4596 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4597 if (type == LRU_GEN_FILE)
4598 sc->nr.file_taken += isolated;
4599 /*
4600 * There might not be eligible folios due to reclaim_idx. Check the
4601 * remaining to prevent livelock if it's not making progress.
4602 */
4603 return isolated || !remaining ? scanned : 0;
4604 }
4605
get_tier_idx(struct lruvec * lruvec,int type)4606 static int get_tier_idx(struct lruvec *lruvec, int type)
4607 {
4608 int tier;
4609 struct ctrl_pos sp, pv;
4610
4611 /*
4612 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4613 * This value is chosen because any other tier would have at least twice
4614 * as many refaults as the first tier.
4615 */
4616 read_ctrl_pos(lruvec, type, 0, 2, &sp);
4617 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4618 read_ctrl_pos(lruvec, type, tier, 3, &pv);
4619 if (!positive_ctrl_err(&sp, &pv))
4620 break;
4621 }
4622
4623 return tier - 1;
4624 }
4625
get_type_to_scan(struct lruvec * lruvec,int swappiness)4626 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4627 {
4628 struct ctrl_pos sp, pv;
4629
4630 if (swappiness <= MIN_SWAPPINESS + 1)
4631 return LRU_GEN_FILE;
4632
4633 if (swappiness >= MAX_SWAPPINESS)
4634 return LRU_GEN_ANON;
4635 /*
4636 * Compare the sum of all tiers of anon with that of file to determine
4637 * which type to scan.
4638 */
4639 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4640 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4641
4642 return positive_ctrl_err(&sp, &pv);
4643 }
4644
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4645 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4646 int *type_scanned, struct list_head *list)
4647 {
4648 int i;
4649 int type = get_type_to_scan(lruvec, swappiness);
4650
4651 for_each_evictable_type(i, swappiness) {
4652 int scanned;
4653 int tier = get_tier_idx(lruvec, type);
4654
4655 *type_scanned = type;
4656
4657 scanned = scan_folios(lruvec, sc, type, tier, list);
4658 if (scanned)
4659 return scanned;
4660
4661 type = !type;
4662 }
4663
4664 return 0;
4665 }
4666
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4667 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4668 {
4669 int type;
4670 int scanned;
4671 int reclaimed;
4672 LIST_HEAD(list);
4673 LIST_HEAD(clean);
4674 struct folio *folio;
4675 struct folio *next;
4676 enum vm_event_item item;
4677 struct reclaim_stat stat;
4678 struct lru_gen_mm_walk *walk;
4679 bool skip_retry = false;
4680 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4681 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4682 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4683
4684 spin_lock_irq(&lruvec->lru_lock);
4685
4686 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4687
4688 scanned += try_to_inc_min_seq(lruvec, swappiness);
4689
4690 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4691 scanned = 0;
4692
4693 spin_unlock_irq(&lruvec->lru_lock);
4694
4695 if (list_empty(&list))
4696 return scanned;
4697 retry:
4698 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4699 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4700 sc->nr_reclaimed += reclaimed;
4701 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4702 scanned, reclaimed, &stat, sc->priority,
4703 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4704
4705 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4706 DEFINE_MIN_SEQ(lruvec);
4707
4708 if (!folio_evictable(folio)) {
4709 list_del(&folio->lru);
4710 folio_putback_lru(folio);
4711 continue;
4712 }
4713
4714 /* retry folios that may have missed folio_rotate_reclaimable() */
4715 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4716 !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4717 list_move(&folio->lru, &clean);
4718 continue;
4719 }
4720
4721 /* don't add rejected folios to the oldest generation */
4722 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4723 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4724 }
4725
4726 spin_lock_irq(&lruvec->lru_lock);
4727
4728 move_folios_to_lru(lruvec, &list);
4729
4730 walk = current->reclaim_state->mm_walk;
4731 if (walk && walk->batched) {
4732 walk->lruvec = lruvec;
4733 reset_batch_size(walk);
4734 }
4735
4736 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4737 stat.nr_demoted);
4738
4739 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4740 if (!cgroup_reclaim(sc))
4741 __count_vm_events(item, reclaimed);
4742 __count_memcg_events(memcg, item, reclaimed);
4743 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4744
4745 spin_unlock_irq(&lruvec->lru_lock);
4746
4747 list_splice_init(&clean, &list);
4748
4749 if (!list_empty(&list)) {
4750 skip_retry = true;
4751 goto retry;
4752 }
4753
4754 return scanned;
4755 }
4756
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4757 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4758 int swappiness, unsigned long *nr_to_scan)
4759 {
4760 int gen, type, zone;
4761 unsigned long size = 0;
4762 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4763 DEFINE_MIN_SEQ(lruvec);
4764
4765 *nr_to_scan = 0;
4766 /* have to run aging, since eviction is not possible anymore */
4767 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4768 return true;
4769
4770 for_each_evictable_type(type, swappiness) {
4771 unsigned long seq;
4772
4773 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4774 gen = lru_gen_from_seq(seq);
4775
4776 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4777 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4778 }
4779 }
4780
4781 *nr_to_scan = size;
4782 /* better to run aging even though eviction is still possible */
4783 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4784 }
4785
4786 /*
4787 * For future optimizations:
4788 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4789 * reclaim.
4790 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4791 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4792 {
4793 bool success;
4794 unsigned long nr_to_scan;
4795 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4796 DEFINE_MAX_SEQ(lruvec);
4797
4798 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4799 return -1;
4800
4801 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4802
4803 /* try to scrape all its memory if this memcg was deleted */
4804 if (nr_to_scan && !mem_cgroup_online(memcg))
4805 return nr_to_scan;
4806
4807 /* try to get away with not aging at the default priority */
4808 if (!success || sc->priority == DEF_PRIORITY)
4809 return nr_to_scan >> sc->priority;
4810
4811 /* stop scanning this lruvec as it's low on cold folios */
4812 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4813 }
4814
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4815 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4816 {
4817 int i;
4818 enum zone_watermarks mark;
4819
4820 /* don't abort memcg reclaim to ensure fairness */
4821 if (!root_reclaim(sc))
4822 return false;
4823
4824 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4825 return true;
4826
4827 /* check the order to exclude compaction-induced reclaim */
4828 if (!current_is_kswapd() || sc->order)
4829 return false;
4830
4831 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4832 WMARK_PROMO : WMARK_HIGH;
4833
4834 for (i = 0; i <= sc->reclaim_idx; i++) {
4835 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4836 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4837
4838 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4839 return false;
4840 }
4841
4842 /* kswapd should abort if all eligible zones are safe */
4843 return true;
4844 }
4845
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4846 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4847 {
4848 long nr_to_scan;
4849 unsigned long scanned = 0;
4850 int swappiness = get_swappiness(lruvec, sc);
4851
4852 while (true) {
4853 int delta;
4854
4855 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4856 if (nr_to_scan <= 0)
4857 break;
4858
4859 delta = evict_folios(lruvec, sc, swappiness);
4860 if (!delta)
4861 break;
4862
4863 scanned += delta;
4864 if (scanned >= nr_to_scan)
4865 break;
4866
4867 if (should_abort_scan(lruvec, sc))
4868 break;
4869
4870 cond_resched();
4871 }
4872
4873 /*
4874 * If too many file cache in the coldest generation can't be evicted
4875 * due to being dirty, wake up the flusher.
4876 */
4877 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4878 wakeup_flusher_threads(WB_REASON_VMSCAN);
4879
4880 /* whether this lruvec should be rotated */
4881 return nr_to_scan < 0;
4882 }
4883
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4884 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4885 {
4886 bool success;
4887 unsigned long scanned = sc->nr_scanned;
4888 unsigned long reclaimed = sc->nr_reclaimed;
4889 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4890 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4891
4892 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4893 if (mem_cgroup_below_min(NULL, memcg))
4894 return MEMCG_LRU_YOUNG;
4895
4896 if (mem_cgroup_below_low(NULL, memcg)) {
4897 /* see the comment on MEMCG_NR_GENS */
4898 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4899 return MEMCG_LRU_TAIL;
4900
4901 memcg_memory_event(memcg, MEMCG_LOW);
4902 }
4903
4904 success = try_to_shrink_lruvec(lruvec, sc);
4905
4906 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4907
4908 if (!sc->proactive)
4909 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4910 sc->nr_reclaimed - reclaimed);
4911
4912 flush_reclaim_state(sc);
4913
4914 if (success && mem_cgroup_online(memcg))
4915 return MEMCG_LRU_YOUNG;
4916
4917 if (!success && lruvec_is_sizable(lruvec, sc))
4918 return 0;
4919
4920 /* one retry if offlined or too small */
4921 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4922 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4923 }
4924
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4925 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4926 {
4927 int op;
4928 int gen;
4929 int bin;
4930 int first_bin;
4931 struct lruvec *lruvec;
4932 struct lru_gen_folio *lrugen;
4933 struct mem_cgroup *memcg;
4934 struct hlist_nulls_node *pos;
4935
4936 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4937 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4938 restart:
4939 op = 0;
4940 memcg = NULL;
4941
4942 rcu_read_lock();
4943
4944 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4945 if (op) {
4946 lru_gen_rotate_memcg(lruvec, op);
4947 op = 0;
4948 }
4949
4950 mem_cgroup_put(memcg);
4951 memcg = NULL;
4952
4953 if (gen != READ_ONCE(lrugen->gen))
4954 continue;
4955
4956 lruvec = container_of(lrugen, struct lruvec, lrugen);
4957 memcg = lruvec_memcg(lruvec);
4958
4959 if (!mem_cgroup_tryget(memcg)) {
4960 lru_gen_release_memcg(memcg);
4961 memcg = NULL;
4962 continue;
4963 }
4964
4965 rcu_read_unlock();
4966
4967 op = shrink_one(lruvec, sc);
4968
4969 rcu_read_lock();
4970
4971 if (should_abort_scan(lruvec, sc))
4972 break;
4973 }
4974
4975 rcu_read_unlock();
4976
4977 if (op)
4978 lru_gen_rotate_memcg(lruvec, op);
4979
4980 mem_cgroup_put(memcg);
4981
4982 if (!is_a_nulls(pos))
4983 return;
4984
4985 /* restart if raced with lru_gen_rotate_memcg() */
4986 if (gen != get_nulls_value(pos))
4987 goto restart;
4988
4989 /* try the rest of the bins of the current generation */
4990 bin = get_memcg_bin(bin + 1);
4991 if (bin != first_bin)
4992 goto restart;
4993 }
4994
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4995 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4996 {
4997 struct blk_plug plug;
4998
4999 VM_WARN_ON_ONCE(root_reclaim(sc));
5000 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5001
5002 lru_add_drain();
5003
5004 blk_start_plug(&plug);
5005
5006 set_mm_walk(NULL, sc->proactive);
5007
5008 if (try_to_shrink_lruvec(lruvec, sc))
5009 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5010
5011 clear_mm_walk();
5012
5013 blk_finish_plug(&plug);
5014 }
5015
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5016 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5017 {
5018 struct blk_plug plug;
5019 unsigned long reclaimed = sc->nr_reclaimed;
5020
5021 VM_WARN_ON_ONCE(!root_reclaim(sc));
5022
5023 /*
5024 * Unmapped clean folios are already prioritized. Scanning for more of
5025 * them is likely futile and can cause high reclaim latency when there
5026 * is a large number of memcgs.
5027 */
5028 if (!sc->may_writepage || !sc->may_unmap)
5029 goto done;
5030
5031 lru_add_drain();
5032
5033 blk_start_plug(&plug);
5034
5035 set_mm_walk(pgdat, sc->proactive);
5036
5037 set_initial_priority(pgdat, sc);
5038
5039 if (current_is_kswapd())
5040 sc->nr_reclaimed = 0;
5041
5042 if (mem_cgroup_disabled())
5043 shrink_one(&pgdat->__lruvec, sc);
5044 else
5045 shrink_many(pgdat, sc);
5046
5047 if (current_is_kswapd())
5048 sc->nr_reclaimed += reclaimed;
5049
5050 clear_mm_walk();
5051
5052 blk_finish_plug(&plug);
5053 done:
5054 if (sc->nr_reclaimed > reclaimed)
5055 pgdat->kswapd_failures = 0;
5056 }
5057
5058 /******************************************************************************
5059 * state change
5060 ******************************************************************************/
5061
state_is_valid(struct lruvec * lruvec)5062 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5063 {
5064 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5065
5066 if (lrugen->enabled) {
5067 enum lru_list lru;
5068
5069 for_each_evictable_lru(lru) {
5070 if (!list_empty(&lruvec->lists[lru]))
5071 return false;
5072 }
5073 } else {
5074 int gen, type, zone;
5075
5076 for_each_gen_type_zone(gen, type, zone) {
5077 if (!list_empty(&lrugen->folios[gen][type][zone]))
5078 return false;
5079 }
5080 }
5081
5082 return true;
5083 }
5084
fill_evictable(struct lruvec * lruvec)5085 static bool fill_evictable(struct lruvec *lruvec)
5086 {
5087 enum lru_list lru;
5088 int remaining = MAX_LRU_BATCH;
5089
5090 for_each_evictable_lru(lru) {
5091 int type = is_file_lru(lru);
5092 bool active = is_active_lru(lru);
5093 struct list_head *head = &lruvec->lists[lru];
5094
5095 while (!list_empty(head)) {
5096 bool success;
5097 struct folio *folio = lru_to_folio(head);
5098
5099 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5100 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5101 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5102 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5103
5104 lruvec_del_folio(lruvec, folio);
5105 success = lru_gen_add_folio(lruvec, folio, false);
5106 VM_WARN_ON_ONCE(!success);
5107
5108 if (!--remaining)
5109 return false;
5110 }
5111 }
5112
5113 return true;
5114 }
5115
drain_evictable(struct lruvec * lruvec)5116 static bool drain_evictable(struct lruvec *lruvec)
5117 {
5118 int gen, type, zone;
5119 int remaining = MAX_LRU_BATCH;
5120
5121 for_each_gen_type_zone(gen, type, zone) {
5122 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5123
5124 while (!list_empty(head)) {
5125 bool success;
5126 struct folio *folio = lru_to_folio(head);
5127
5128 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5129 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5130 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5131 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5132
5133 success = lru_gen_del_folio(lruvec, folio, false);
5134 VM_WARN_ON_ONCE(!success);
5135 lruvec_add_folio(lruvec, folio);
5136
5137 if (!--remaining)
5138 return false;
5139 }
5140 }
5141
5142 return true;
5143 }
5144
lru_gen_change_state(bool enabled)5145 static void lru_gen_change_state(bool enabled)
5146 {
5147 static DEFINE_MUTEX(state_mutex);
5148
5149 struct mem_cgroup *memcg;
5150
5151 cgroup_lock();
5152 cpus_read_lock();
5153 get_online_mems();
5154 mutex_lock(&state_mutex);
5155
5156 if (enabled == lru_gen_enabled())
5157 goto unlock;
5158
5159 if (enabled)
5160 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5161 else
5162 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5163
5164 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5165 do {
5166 int nid;
5167
5168 for_each_node(nid) {
5169 struct lruvec *lruvec = get_lruvec(memcg, nid);
5170
5171 spin_lock_irq(&lruvec->lru_lock);
5172
5173 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5174 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5175
5176 lruvec->lrugen.enabled = enabled;
5177
5178 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5179 spin_unlock_irq(&lruvec->lru_lock);
5180 cond_resched();
5181 spin_lock_irq(&lruvec->lru_lock);
5182 }
5183
5184 spin_unlock_irq(&lruvec->lru_lock);
5185 }
5186
5187 cond_resched();
5188 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5189 unlock:
5190 mutex_unlock(&state_mutex);
5191 put_online_mems();
5192 cpus_read_unlock();
5193 cgroup_unlock();
5194 }
5195
5196 /******************************************************************************
5197 * sysfs interface
5198 ******************************************************************************/
5199
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5200 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5201 {
5202 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5203 }
5204
5205 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5206 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5207 const char *buf, size_t len)
5208 {
5209 unsigned int msecs;
5210
5211 if (kstrtouint(buf, 0, &msecs))
5212 return -EINVAL;
5213
5214 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5215
5216 return len;
5217 }
5218
5219 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5220
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5221 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5222 {
5223 unsigned int caps = 0;
5224
5225 if (get_cap(LRU_GEN_CORE))
5226 caps |= BIT(LRU_GEN_CORE);
5227
5228 if (should_walk_mmu())
5229 caps |= BIT(LRU_GEN_MM_WALK);
5230
5231 if (should_clear_pmd_young())
5232 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5233
5234 return sysfs_emit(buf, "0x%04x\n", caps);
5235 }
5236
5237 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5238 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5239 const char *buf, size_t len)
5240 {
5241 int i;
5242 unsigned int caps;
5243
5244 if (tolower(*buf) == 'n')
5245 caps = 0;
5246 else if (tolower(*buf) == 'y')
5247 caps = -1;
5248 else if (kstrtouint(buf, 0, &caps))
5249 return -EINVAL;
5250
5251 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5252 bool enabled = caps & BIT(i);
5253
5254 if (i == LRU_GEN_CORE)
5255 lru_gen_change_state(enabled);
5256 else if (enabled)
5257 static_branch_enable(&lru_gen_caps[i]);
5258 else
5259 static_branch_disable(&lru_gen_caps[i]);
5260 }
5261
5262 return len;
5263 }
5264
5265 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5266
5267 static struct attribute *lru_gen_attrs[] = {
5268 &lru_gen_min_ttl_attr.attr,
5269 &lru_gen_enabled_attr.attr,
5270 NULL
5271 };
5272
5273 static const struct attribute_group lru_gen_attr_group = {
5274 .name = "lru_gen",
5275 .attrs = lru_gen_attrs,
5276 };
5277
5278 /******************************************************************************
5279 * debugfs interface
5280 ******************************************************************************/
5281
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5282 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5283 {
5284 struct mem_cgroup *memcg;
5285 loff_t nr_to_skip = *pos;
5286
5287 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5288 if (!m->private)
5289 return ERR_PTR(-ENOMEM);
5290
5291 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5292 do {
5293 int nid;
5294
5295 for_each_node_state(nid, N_MEMORY) {
5296 if (!nr_to_skip--)
5297 return get_lruvec(memcg, nid);
5298 }
5299 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5300
5301 return NULL;
5302 }
5303
lru_gen_seq_stop(struct seq_file * m,void * v)5304 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5305 {
5306 if (!IS_ERR_OR_NULL(v))
5307 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5308
5309 kvfree(m->private);
5310 m->private = NULL;
5311 }
5312
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5313 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5314 {
5315 int nid = lruvec_pgdat(v)->node_id;
5316 struct mem_cgroup *memcg = lruvec_memcg(v);
5317
5318 ++*pos;
5319
5320 nid = next_memory_node(nid);
5321 if (nid == MAX_NUMNODES) {
5322 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5323 if (!memcg)
5324 return NULL;
5325
5326 nid = first_memory_node;
5327 }
5328
5329 return get_lruvec(memcg, nid);
5330 }
5331
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5332 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5333 unsigned long max_seq, unsigned long *min_seq,
5334 unsigned long seq)
5335 {
5336 int i;
5337 int type, tier;
5338 int hist = lru_hist_from_seq(seq);
5339 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5340 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5341
5342 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5343 seq_printf(m, " %10d", tier);
5344 for (type = 0; type < ANON_AND_FILE; type++) {
5345 const char *s = "xxx";
5346 unsigned long n[3] = {};
5347
5348 if (seq == max_seq) {
5349 s = "RTx";
5350 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5351 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5352 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5353 s = "rep";
5354 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5355 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5356 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5357 }
5358
5359 for (i = 0; i < 3; i++)
5360 seq_printf(m, " %10lu%c", n[i], s[i]);
5361 }
5362 seq_putc(m, '\n');
5363 }
5364
5365 if (!mm_state)
5366 return;
5367
5368 seq_puts(m, " ");
5369 for (i = 0; i < NR_MM_STATS; i++) {
5370 const char *s = "xxxx";
5371 unsigned long n = 0;
5372
5373 if (seq == max_seq && NR_HIST_GENS == 1) {
5374 s = "TYFA";
5375 n = READ_ONCE(mm_state->stats[hist][i]);
5376 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5377 s = "tyfa";
5378 n = READ_ONCE(mm_state->stats[hist][i]);
5379 }
5380
5381 seq_printf(m, " %10lu%c", n, s[i]);
5382 }
5383 seq_putc(m, '\n');
5384 }
5385
5386 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5387 static int lru_gen_seq_show(struct seq_file *m, void *v)
5388 {
5389 unsigned long seq;
5390 bool full = !debugfs_real_fops(m->file)->write;
5391 struct lruvec *lruvec = v;
5392 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5393 int nid = lruvec_pgdat(lruvec)->node_id;
5394 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5395 DEFINE_MAX_SEQ(lruvec);
5396 DEFINE_MIN_SEQ(lruvec);
5397
5398 if (nid == first_memory_node) {
5399 const char *path = memcg ? m->private : "";
5400
5401 #ifdef CONFIG_MEMCG
5402 if (memcg)
5403 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5404 #endif
5405 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5406 }
5407
5408 seq_printf(m, " node %5d\n", nid);
5409
5410 if (!full)
5411 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5412 else if (max_seq >= MAX_NR_GENS)
5413 seq = max_seq - MAX_NR_GENS + 1;
5414 else
5415 seq = 0;
5416
5417 for (; seq <= max_seq; seq++) {
5418 int type, zone;
5419 int gen = lru_gen_from_seq(seq);
5420 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5421
5422 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5423
5424 for (type = 0; type < ANON_AND_FILE; type++) {
5425 unsigned long size = 0;
5426 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5427
5428 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5429 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5430
5431 seq_printf(m, " %10lu%c", size, mark);
5432 }
5433
5434 seq_putc(m, '\n');
5435
5436 if (full)
5437 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5438 }
5439
5440 return 0;
5441 }
5442
5443 static const struct seq_operations lru_gen_seq_ops = {
5444 .start = lru_gen_seq_start,
5445 .stop = lru_gen_seq_stop,
5446 .next = lru_gen_seq_next,
5447 .show = lru_gen_seq_show,
5448 };
5449
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5450 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5451 int swappiness, bool force_scan)
5452 {
5453 DEFINE_MAX_SEQ(lruvec);
5454
5455 if (seq > max_seq)
5456 return -EINVAL;
5457
5458 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5459 }
5460
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5461 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5462 int swappiness, unsigned long nr_to_reclaim)
5463 {
5464 DEFINE_MAX_SEQ(lruvec);
5465
5466 if (seq + MIN_NR_GENS > max_seq)
5467 return -EINVAL;
5468
5469 sc->nr_reclaimed = 0;
5470
5471 while (!signal_pending(current)) {
5472 DEFINE_MIN_SEQ(lruvec);
5473
5474 if (seq < evictable_min_seq(min_seq, swappiness))
5475 return 0;
5476
5477 if (sc->nr_reclaimed >= nr_to_reclaim)
5478 return 0;
5479
5480 if (!evict_folios(lruvec, sc, swappiness))
5481 return 0;
5482
5483 cond_resched();
5484 }
5485
5486 return -EINTR;
5487 }
5488
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5489 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5490 struct scan_control *sc, int swappiness, unsigned long opt)
5491 {
5492 struct lruvec *lruvec;
5493 int err = -EINVAL;
5494 struct mem_cgroup *memcg = NULL;
5495
5496 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5497 return -EINVAL;
5498
5499 if (!mem_cgroup_disabled()) {
5500 rcu_read_lock();
5501
5502 memcg = mem_cgroup_from_id(memcg_id);
5503 if (!mem_cgroup_tryget(memcg))
5504 memcg = NULL;
5505
5506 rcu_read_unlock();
5507
5508 if (!memcg)
5509 return -EINVAL;
5510 }
5511
5512 if (memcg_id != mem_cgroup_id(memcg))
5513 goto done;
5514
5515 lruvec = get_lruvec(memcg, nid);
5516
5517 if (swappiness < MIN_SWAPPINESS)
5518 swappiness = get_swappiness(lruvec, sc);
5519 else if (swappiness > MAX_SWAPPINESS + 1)
5520 goto done;
5521
5522 switch (cmd) {
5523 case '+':
5524 err = run_aging(lruvec, seq, swappiness, opt);
5525 break;
5526 case '-':
5527 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5528 break;
5529 }
5530 done:
5531 mem_cgroup_put(memcg);
5532
5533 return err;
5534 }
5535
5536 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5537 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5538 size_t len, loff_t *pos)
5539 {
5540 void *buf;
5541 char *cur, *next;
5542 unsigned int flags;
5543 struct blk_plug plug;
5544 int err = -EINVAL;
5545 struct scan_control sc = {
5546 .may_writepage = true,
5547 .may_unmap = true,
5548 .may_swap = true,
5549 .reclaim_idx = MAX_NR_ZONES - 1,
5550 .gfp_mask = GFP_KERNEL,
5551 };
5552
5553 buf = kvmalloc(len + 1, GFP_KERNEL);
5554 if (!buf)
5555 return -ENOMEM;
5556
5557 if (copy_from_user(buf, src, len)) {
5558 kvfree(buf);
5559 return -EFAULT;
5560 }
5561
5562 set_task_reclaim_state(current, &sc.reclaim_state);
5563 flags = memalloc_noreclaim_save();
5564 blk_start_plug(&plug);
5565 if (!set_mm_walk(NULL, true)) {
5566 err = -ENOMEM;
5567 goto done;
5568 }
5569
5570 next = buf;
5571 next[len] = '\0';
5572
5573 while ((cur = strsep(&next, ",;\n"))) {
5574 int n;
5575 int end;
5576 char cmd;
5577 unsigned int memcg_id;
5578 unsigned int nid;
5579 unsigned long seq;
5580 unsigned int swappiness = -1;
5581 unsigned long opt = -1;
5582
5583 cur = skip_spaces(cur);
5584 if (!*cur)
5585 continue;
5586
5587 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5588 &seq, &end, &swappiness, &end, &opt, &end);
5589 if (n < 4 || cur[end]) {
5590 err = -EINVAL;
5591 break;
5592 }
5593
5594 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5595 if (err)
5596 break;
5597 }
5598 done:
5599 clear_mm_walk();
5600 blk_finish_plug(&plug);
5601 memalloc_noreclaim_restore(flags);
5602 set_task_reclaim_state(current, NULL);
5603
5604 kvfree(buf);
5605
5606 return err ? : len;
5607 }
5608
lru_gen_seq_open(struct inode * inode,struct file * file)5609 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5610 {
5611 return seq_open(file, &lru_gen_seq_ops);
5612 }
5613
5614 static const struct file_operations lru_gen_rw_fops = {
5615 .open = lru_gen_seq_open,
5616 .read = seq_read,
5617 .write = lru_gen_seq_write,
5618 .llseek = seq_lseek,
5619 .release = seq_release,
5620 };
5621
5622 static const struct file_operations lru_gen_ro_fops = {
5623 .open = lru_gen_seq_open,
5624 .read = seq_read,
5625 .llseek = seq_lseek,
5626 .release = seq_release,
5627 };
5628
5629 /******************************************************************************
5630 * initialization
5631 ******************************************************************************/
5632
lru_gen_init_pgdat(struct pglist_data * pgdat)5633 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5634 {
5635 int i, j;
5636
5637 spin_lock_init(&pgdat->memcg_lru.lock);
5638
5639 for (i = 0; i < MEMCG_NR_GENS; i++) {
5640 for (j = 0; j < MEMCG_NR_BINS; j++)
5641 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5642 }
5643 }
5644
lru_gen_init_lruvec(struct lruvec * lruvec)5645 void lru_gen_init_lruvec(struct lruvec *lruvec)
5646 {
5647 int i;
5648 int gen, type, zone;
5649 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5650 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5651
5652 lrugen->max_seq = MIN_NR_GENS + 1;
5653 lrugen->enabled = lru_gen_enabled();
5654
5655 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5656 lrugen->timestamps[i] = jiffies;
5657
5658 for_each_gen_type_zone(gen, type, zone)
5659 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5660
5661 if (mm_state)
5662 mm_state->seq = MIN_NR_GENS;
5663 }
5664
5665 #ifdef CONFIG_MEMCG
5666
lru_gen_init_memcg(struct mem_cgroup * memcg)5667 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5668 {
5669 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5670
5671 if (!mm_list)
5672 return;
5673
5674 INIT_LIST_HEAD(&mm_list->fifo);
5675 spin_lock_init(&mm_list->lock);
5676 }
5677
lru_gen_exit_memcg(struct mem_cgroup * memcg)5678 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5679 {
5680 int i;
5681 int nid;
5682 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5683
5684 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5685
5686 for_each_node(nid) {
5687 struct lruvec *lruvec = get_lruvec(memcg, nid);
5688 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5689
5690 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5691 sizeof(lruvec->lrugen.nr_pages)));
5692
5693 lruvec->lrugen.list.next = LIST_POISON1;
5694
5695 if (!mm_state)
5696 continue;
5697
5698 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5699 bitmap_free(mm_state->filters[i]);
5700 mm_state->filters[i] = NULL;
5701 }
5702 }
5703 }
5704
5705 #endif /* CONFIG_MEMCG */
5706
init_lru_gen(void)5707 static int __init init_lru_gen(void)
5708 {
5709 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5710 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5711
5712 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5713 pr_err("lru_gen: failed to create sysfs group\n");
5714
5715 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5716 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5717
5718 return 0;
5719 };
5720 late_initcall(init_lru_gen);
5721
5722 #else /* !CONFIG_LRU_GEN */
5723
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5724 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5725 {
5726 BUILD_BUG();
5727 }
5728
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5729 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5730 {
5731 BUILD_BUG();
5732 }
5733
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5734 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5735 {
5736 BUILD_BUG();
5737 }
5738
5739 #endif /* CONFIG_LRU_GEN */
5740
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5741 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5742 {
5743 unsigned long nr[NR_LRU_LISTS];
5744 unsigned long targets[NR_LRU_LISTS];
5745 unsigned long nr_to_scan;
5746 enum lru_list lru;
5747 unsigned long nr_reclaimed = 0;
5748 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5749 bool proportional_reclaim;
5750 struct blk_plug plug;
5751
5752 if (lru_gen_enabled() && !root_reclaim(sc)) {
5753 lru_gen_shrink_lruvec(lruvec, sc);
5754 return;
5755 }
5756
5757 get_scan_count(lruvec, sc, nr);
5758
5759 /* Record the original scan target for proportional adjustments later */
5760 memcpy(targets, nr, sizeof(nr));
5761
5762 /*
5763 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5764 * event that can occur when there is little memory pressure e.g.
5765 * multiple streaming readers/writers. Hence, we do not abort scanning
5766 * when the requested number of pages are reclaimed when scanning at
5767 * DEF_PRIORITY on the assumption that the fact we are direct
5768 * reclaiming implies that kswapd is not keeping up and it is best to
5769 * do a batch of work at once. For memcg reclaim one check is made to
5770 * abort proportional reclaim if either the file or anon lru has already
5771 * dropped to zero at the first pass.
5772 */
5773 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5774 sc->priority == DEF_PRIORITY);
5775
5776 blk_start_plug(&plug);
5777 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5778 nr[LRU_INACTIVE_FILE]) {
5779 unsigned long nr_anon, nr_file, percentage;
5780 unsigned long nr_scanned;
5781
5782 for_each_evictable_lru(lru) {
5783 if (nr[lru]) {
5784 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5785 nr[lru] -= nr_to_scan;
5786
5787 nr_reclaimed += shrink_list(lru, nr_to_scan,
5788 lruvec, sc);
5789 }
5790 }
5791
5792 cond_resched();
5793
5794 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5795 continue;
5796
5797 /*
5798 * For kswapd and memcg, reclaim at least the number of pages
5799 * requested. Ensure that the anon and file LRUs are scanned
5800 * proportionally what was requested by get_scan_count(). We
5801 * stop reclaiming one LRU and reduce the amount scanning
5802 * proportional to the original scan target.
5803 */
5804 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5805 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5806
5807 /*
5808 * It's just vindictive to attack the larger once the smaller
5809 * has gone to zero. And given the way we stop scanning the
5810 * smaller below, this makes sure that we only make one nudge
5811 * towards proportionality once we've got nr_to_reclaim.
5812 */
5813 if (!nr_file || !nr_anon)
5814 break;
5815
5816 if (nr_file > nr_anon) {
5817 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5818 targets[LRU_ACTIVE_ANON] + 1;
5819 lru = LRU_BASE;
5820 percentage = nr_anon * 100 / scan_target;
5821 } else {
5822 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5823 targets[LRU_ACTIVE_FILE] + 1;
5824 lru = LRU_FILE;
5825 percentage = nr_file * 100 / scan_target;
5826 }
5827
5828 /* Stop scanning the smaller of the LRU */
5829 nr[lru] = 0;
5830 nr[lru + LRU_ACTIVE] = 0;
5831
5832 /*
5833 * Recalculate the other LRU scan count based on its original
5834 * scan target and the percentage scanning already complete
5835 */
5836 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5837 nr_scanned = targets[lru] - nr[lru];
5838 nr[lru] = targets[lru] * (100 - percentage) / 100;
5839 nr[lru] -= min(nr[lru], nr_scanned);
5840
5841 lru += LRU_ACTIVE;
5842 nr_scanned = targets[lru] - nr[lru];
5843 nr[lru] = targets[lru] * (100 - percentage) / 100;
5844 nr[lru] -= min(nr[lru], nr_scanned);
5845 }
5846 blk_finish_plug(&plug);
5847 sc->nr_reclaimed += nr_reclaimed;
5848
5849 /*
5850 * Even if we did not try to evict anon pages at all, we want to
5851 * rebalance the anon lru active/inactive ratio.
5852 */
5853 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5854 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5855 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5856 sc, LRU_ACTIVE_ANON);
5857 }
5858
5859 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5860 static bool in_reclaim_compaction(struct scan_control *sc)
5861 {
5862 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5863 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5864 sc->priority < DEF_PRIORITY - 2))
5865 return true;
5866
5867 return false;
5868 }
5869
5870 /*
5871 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5872 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5873 * true if more pages should be reclaimed such that when the page allocator
5874 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5875 * It will give up earlier than that if there is difficulty reclaiming pages.
5876 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5877 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5878 unsigned long nr_reclaimed,
5879 struct scan_control *sc)
5880 {
5881 unsigned long pages_for_compaction;
5882 unsigned long inactive_lru_pages;
5883 int z;
5884 struct zone *zone;
5885
5886 /* If not in reclaim/compaction mode, stop */
5887 if (!in_reclaim_compaction(sc))
5888 return false;
5889
5890 /*
5891 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5892 * number of pages that were scanned. This will return to the caller
5893 * with the risk reclaim/compaction and the resulting allocation attempt
5894 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5895 * allocations through requiring that the full LRU list has been scanned
5896 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5897 * scan, but that approximation was wrong, and there were corner cases
5898 * where always a non-zero amount of pages were scanned.
5899 */
5900 if (!nr_reclaimed)
5901 return false;
5902
5903 /* If compaction would go ahead or the allocation would succeed, stop */
5904 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5905 unsigned long watermark = min_wmark_pages(zone);
5906
5907 /* Allocation can already succeed, nothing to do */
5908 if (zone_watermark_ok(zone, sc->order, watermark,
5909 sc->reclaim_idx, 0))
5910 return false;
5911
5912 if (compaction_suitable(zone, sc->order, watermark,
5913 sc->reclaim_idx))
5914 return false;
5915 }
5916
5917 /*
5918 * If we have not reclaimed enough pages for compaction and the
5919 * inactive lists are large enough, continue reclaiming
5920 */
5921 pages_for_compaction = compact_gap(sc->order);
5922 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5923 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5924 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5925
5926 return inactive_lru_pages > pages_for_compaction;
5927 }
5928
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5929 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5930 {
5931 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5932 struct mem_cgroup_reclaim_cookie reclaim = {
5933 .pgdat = pgdat,
5934 };
5935 struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5936 struct mem_cgroup *memcg;
5937
5938 /*
5939 * In most cases, direct reclaimers can do partial walks
5940 * through the cgroup tree, using an iterator state that
5941 * persists across invocations. This strikes a balance between
5942 * fairness and allocation latency.
5943 *
5944 * For kswapd, reliable forward progress is more important
5945 * than a quick return to idle. Always do full walks.
5946 */
5947 if (current_is_kswapd() || sc->memcg_full_walk)
5948 partial = NULL;
5949
5950 memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5951 do {
5952 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5953 unsigned long reclaimed;
5954 unsigned long scanned;
5955
5956 /*
5957 * This loop can become CPU-bound when target memcgs
5958 * aren't eligible for reclaim - either because they
5959 * don't have any reclaimable pages, or because their
5960 * memory is explicitly protected. Avoid soft lockups.
5961 */
5962 cond_resched();
5963
5964 mem_cgroup_calculate_protection(target_memcg, memcg);
5965
5966 if (mem_cgroup_below_min(target_memcg, memcg)) {
5967 /*
5968 * Hard protection.
5969 * If there is no reclaimable memory, OOM.
5970 */
5971 continue;
5972 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5973 /*
5974 * Soft protection.
5975 * Respect the protection only as long as
5976 * there is an unprotected supply
5977 * of reclaimable memory from other cgroups.
5978 */
5979 if (!sc->memcg_low_reclaim) {
5980 sc->memcg_low_skipped = 1;
5981 continue;
5982 }
5983 memcg_memory_event(memcg, MEMCG_LOW);
5984 }
5985
5986 reclaimed = sc->nr_reclaimed;
5987 scanned = sc->nr_scanned;
5988
5989 shrink_lruvec(lruvec, sc);
5990
5991 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5992 sc->priority);
5993
5994 /* Record the group's reclaim efficiency */
5995 if (!sc->proactive)
5996 vmpressure(sc->gfp_mask, memcg, false,
5997 sc->nr_scanned - scanned,
5998 sc->nr_reclaimed - reclaimed);
5999
6000 /* If partial walks are allowed, bail once goal is reached */
6001 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6002 mem_cgroup_iter_break(target_memcg, memcg);
6003 break;
6004 }
6005 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6006 }
6007
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6008 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6009 {
6010 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6011 struct lruvec *target_lruvec;
6012 bool reclaimable = false;
6013
6014 if (lru_gen_enabled() && root_reclaim(sc)) {
6015 memset(&sc->nr, 0, sizeof(sc->nr));
6016 lru_gen_shrink_node(pgdat, sc);
6017 return;
6018 }
6019
6020 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6021
6022 again:
6023 memset(&sc->nr, 0, sizeof(sc->nr));
6024
6025 nr_reclaimed = sc->nr_reclaimed;
6026 nr_scanned = sc->nr_scanned;
6027
6028 prepare_scan_control(pgdat, sc);
6029
6030 shrink_node_memcgs(pgdat, sc);
6031
6032 flush_reclaim_state(sc);
6033
6034 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6035
6036 /* Record the subtree's reclaim efficiency */
6037 if (!sc->proactive)
6038 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6039 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6040
6041 if (nr_node_reclaimed)
6042 reclaimable = true;
6043
6044 if (current_is_kswapd()) {
6045 /*
6046 * If reclaim is isolating dirty pages under writeback,
6047 * it implies that the long-lived page allocation rate
6048 * is exceeding the page laundering rate. Either the
6049 * global limits are not being effective at throttling
6050 * processes due to the page distribution throughout
6051 * zones or there is heavy usage of a slow backing
6052 * device. The only option is to throttle from reclaim
6053 * context which is not ideal as there is no guarantee
6054 * the dirtying process is throttled in the same way
6055 * balance_dirty_pages() manages.
6056 *
6057 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6058 * count the number of pages under pages flagged for
6059 * immediate reclaim and stall if any are encountered
6060 * in the nr_immediate check below.
6061 */
6062 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6063 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6064
6065 /* Allow kswapd to start writing pages during reclaim.*/
6066 if (sc->nr.unqueued_dirty &&
6067 sc->nr.unqueued_dirty == sc->nr.file_taken)
6068 set_bit(PGDAT_DIRTY, &pgdat->flags);
6069
6070 /*
6071 * If kswapd scans pages marked for immediate
6072 * reclaim and under writeback (nr_immediate), it
6073 * implies that pages are cycling through the LRU
6074 * faster than they are written so forcibly stall
6075 * until some pages complete writeback.
6076 */
6077 if (sc->nr.immediate)
6078 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6079 }
6080
6081 /*
6082 * Tag a node/memcg as congested if all the dirty pages were marked
6083 * for writeback and immediate reclaim (counted in nr.congested).
6084 *
6085 * Legacy memcg will stall in page writeback so avoid forcibly
6086 * stalling in reclaim_throttle().
6087 */
6088 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6089 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6090 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6091
6092 if (current_is_kswapd())
6093 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6094 }
6095
6096 /*
6097 * Stall direct reclaim for IO completions if the lruvec is
6098 * node is congested. Allow kswapd to continue until it
6099 * starts encountering unqueued dirty pages or cycling through
6100 * the LRU too quickly.
6101 */
6102 if (!current_is_kswapd() && current_may_throttle() &&
6103 !sc->hibernation_mode &&
6104 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6105 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6106 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6107
6108 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6109 goto again;
6110
6111 /*
6112 * Kswapd gives up on balancing particular nodes after too
6113 * many failures to reclaim anything from them and goes to
6114 * sleep. On reclaim progress, reset the failure counter. A
6115 * successful direct reclaim run will revive a dormant kswapd.
6116 */
6117 if (reclaimable)
6118 pgdat->kswapd_failures = 0;
6119 else if (sc->cache_trim_mode)
6120 sc->cache_trim_mode_failed = 1;
6121 }
6122
6123 /*
6124 * Returns true if compaction should go ahead for a costly-order request, or
6125 * the allocation would already succeed without compaction. Return false if we
6126 * should reclaim first.
6127 */
compaction_ready(struct zone * zone,struct scan_control * sc)6128 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6129 {
6130 unsigned long watermark;
6131
6132 if (!gfp_compaction_allowed(sc->gfp_mask))
6133 return false;
6134
6135 /* Allocation can already succeed, nothing to do */
6136 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6137 sc->reclaim_idx, 0))
6138 return true;
6139
6140 /*
6141 * Direct reclaim usually targets the min watermark, but compaction
6142 * takes time to run and there are potentially other callers using the
6143 * pages just freed. So target a higher buffer to give compaction a
6144 * reasonable chance of completing and allocating the pages.
6145 *
6146 * Note that we won't actually reclaim the whole buffer in one attempt
6147 * as the target watermark in should_continue_reclaim() is lower. But if
6148 * we are already above the high+gap watermark, don't reclaim at all.
6149 */
6150 watermark = high_wmark_pages(zone);
6151 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6152 return true;
6153
6154 return false;
6155 }
6156
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6157 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6158 {
6159 /*
6160 * If reclaim is making progress greater than 12% efficiency then
6161 * wake all the NOPROGRESS throttled tasks.
6162 */
6163 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6164 wait_queue_head_t *wqh;
6165
6166 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6167 if (waitqueue_active(wqh))
6168 wake_up(wqh);
6169
6170 return;
6171 }
6172
6173 /*
6174 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6175 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6176 * under writeback and marked for immediate reclaim at the tail of the
6177 * LRU.
6178 */
6179 if (current_is_kswapd() || cgroup_reclaim(sc))
6180 return;
6181
6182 /* Throttle if making no progress at high prioities. */
6183 if (sc->priority == 1 && !sc->nr_reclaimed)
6184 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6185 }
6186
6187 /*
6188 * This is the direct reclaim path, for page-allocating processes. We only
6189 * try to reclaim pages from zones which will satisfy the caller's allocation
6190 * request.
6191 *
6192 * If a zone is deemed to be full of pinned pages then just give it a light
6193 * scan then give up on it.
6194 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6195 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6196 {
6197 struct zoneref *z;
6198 struct zone *zone;
6199 unsigned long nr_soft_reclaimed;
6200 unsigned long nr_soft_scanned;
6201 gfp_t orig_mask;
6202 pg_data_t *last_pgdat = NULL;
6203 pg_data_t *first_pgdat = NULL;
6204
6205 /*
6206 * If the number of buffer_heads in the machine exceeds the maximum
6207 * allowed level, force direct reclaim to scan the highmem zone as
6208 * highmem pages could be pinning lowmem pages storing buffer_heads
6209 */
6210 orig_mask = sc->gfp_mask;
6211 if (buffer_heads_over_limit) {
6212 sc->gfp_mask |= __GFP_HIGHMEM;
6213 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6214 }
6215
6216 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6217 sc->reclaim_idx, sc->nodemask) {
6218 /*
6219 * Take care memory controller reclaiming has small influence
6220 * to global LRU.
6221 */
6222 if (!cgroup_reclaim(sc)) {
6223 if (!cpuset_zone_allowed(zone,
6224 GFP_KERNEL | __GFP_HARDWALL))
6225 continue;
6226
6227 /*
6228 * If we already have plenty of memory free for
6229 * compaction in this zone, don't free any more.
6230 * Even though compaction is invoked for any
6231 * non-zero order, only frequent costly order
6232 * reclamation is disruptive enough to become a
6233 * noticeable problem, like transparent huge
6234 * page allocations.
6235 */
6236 if (IS_ENABLED(CONFIG_COMPACTION) &&
6237 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6238 compaction_ready(zone, sc)) {
6239 sc->compaction_ready = true;
6240 continue;
6241 }
6242
6243 /*
6244 * Shrink each node in the zonelist once. If the
6245 * zonelist is ordered by zone (not the default) then a
6246 * node may be shrunk multiple times but in that case
6247 * the user prefers lower zones being preserved.
6248 */
6249 if (zone->zone_pgdat == last_pgdat)
6250 continue;
6251
6252 /*
6253 * This steals pages from memory cgroups over softlimit
6254 * and returns the number of reclaimed pages and
6255 * scanned pages. This works for global memory pressure
6256 * and balancing, not for a memcg's limit.
6257 */
6258 nr_soft_scanned = 0;
6259 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6260 sc->order, sc->gfp_mask,
6261 &nr_soft_scanned);
6262 sc->nr_reclaimed += nr_soft_reclaimed;
6263 sc->nr_scanned += nr_soft_scanned;
6264 /* need some check for avoid more shrink_zone() */
6265 }
6266
6267 if (!first_pgdat)
6268 first_pgdat = zone->zone_pgdat;
6269
6270 /* See comment about same check for global reclaim above */
6271 if (zone->zone_pgdat == last_pgdat)
6272 continue;
6273 last_pgdat = zone->zone_pgdat;
6274 shrink_node(zone->zone_pgdat, sc);
6275 }
6276
6277 if (first_pgdat)
6278 consider_reclaim_throttle(first_pgdat, sc);
6279
6280 /*
6281 * Restore to original mask to avoid the impact on the caller if we
6282 * promoted it to __GFP_HIGHMEM.
6283 */
6284 sc->gfp_mask = orig_mask;
6285 }
6286
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6287 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6288 {
6289 struct lruvec *target_lruvec;
6290 unsigned long refaults;
6291
6292 if (lru_gen_enabled())
6293 return;
6294
6295 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6296 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6297 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6298 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6299 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6300 }
6301
6302 /*
6303 * This is the main entry point to direct page reclaim.
6304 *
6305 * If a full scan of the inactive list fails to free enough memory then we
6306 * are "out of memory" and something needs to be killed.
6307 *
6308 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6309 * high - the zone may be full of dirty or under-writeback pages, which this
6310 * caller can't do much about. We kick the writeback threads and take explicit
6311 * naps in the hope that some of these pages can be written. But if the
6312 * allocating task holds filesystem locks which prevent writeout this might not
6313 * work, and the allocation attempt will fail.
6314 *
6315 * returns: 0, if no pages reclaimed
6316 * else, the number of pages reclaimed
6317 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6318 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6319 struct scan_control *sc)
6320 {
6321 int initial_priority = sc->priority;
6322 pg_data_t *last_pgdat;
6323 struct zoneref *z;
6324 struct zone *zone;
6325 retry:
6326 delayacct_freepages_start();
6327
6328 if (!cgroup_reclaim(sc))
6329 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6330
6331 do {
6332 if (!sc->proactive)
6333 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6334 sc->priority);
6335 sc->nr_scanned = 0;
6336 shrink_zones(zonelist, sc);
6337
6338 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6339 break;
6340
6341 if (sc->compaction_ready)
6342 break;
6343
6344 /*
6345 * If we're getting trouble reclaiming, start doing
6346 * writepage even in laptop mode.
6347 */
6348 if (sc->priority < DEF_PRIORITY - 2)
6349 sc->may_writepage = 1;
6350 } while (--sc->priority >= 0);
6351
6352 last_pgdat = NULL;
6353 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6354 sc->nodemask) {
6355 if (zone->zone_pgdat == last_pgdat)
6356 continue;
6357 last_pgdat = zone->zone_pgdat;
6358
6359 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6360
6361 if (cgroup_reclaim(sc)) {
6362 struct lruvec *lruvec;
6363
6364 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6365 zone->zone_pgdat);
6366 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6367 }
6368 }
6369
6370 delayacct_freepages_end();
6371
6372 if (sc->nr_reclaimed)
6373 return sc->nr_reclaimed;
6374
6375 /* Aborted reclaim to try compaction? don't OOM, then */
6376 if (sc->compaction_ready)
6377 return 1;
6378
6379 /*
6380 * In most cases, direct reclaimers can do partial walks
6381 * through the cgroup tree to meet the reclaim goal while
6382 * keeping latency low. Since the iterator state is shared
6383 * among all direct reclaim invocations (to retain fairness
6384 * among cgroups), though, high concurrency can result in
6385 * individual threads not seeing enough cgroups to make
6386 * meaningful forward progress. Avoid false OOMs in this case.
6387 */
6388 if (!sc->memcg_full_walk) {
6389 sc->priority = initial_priority;
6390 sc->memcg_full_walk = 1;
6391 goto retry;
6392 }
6393
6394 /*
6395 * We make inactive:active ratio decisions based on the node's
6396 * composition of memory, but a restrictive reclaim_idx or a
6397 * memory.low cgroup setting can exempt large amounts of
6398 * memory from reclaim. Neither of which are very common, so
6399 * instead of doing costly eligibility calculations of the
6400 * entire cgroup subtree up front, we assume the estimates are
6401 * good, and retry with forcible deactivation if that fails.
6402 */
6403 if (sc->skipped_deactivate) {
6404 sc->priority = initial_priority;
6405 sc->force_deactivate = 1;
6406 sc->skipped_deactivate = 0;
6407 goto retry;
6408 }
6409
6410 /* Untapped cgroup reserves? Don't OOM, retry. */
6411 if (sc->memcg_low_skipped) {
6412 sc->priority = initial_priority;
6413 sc->force_deactivate = 0;
6414 sc->memcg_low_reclaim = 1;
6415 sc->memcg_low_skipped = 0;
6416 goto retry;
6417 }
6418
6419 return 0;
6420 }
6421
allow_direct_reclaim(pg_data_t * pgdat)6422 static bool allow_direct_reclaim(pg_data_t *pgdat)
6423 {
6424 struct zone *zone;
6425 unsigned long pfmemalloc_reserve = 0;
6426 unsigned long free_pages = 0;
6427 int i;
6428 bool wmark_ok;
6429
6430 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6431 return true;
6432
6433 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6434 if (!zone_reclaimable_pages(zone))
6435 continue;
6436
6437 pfmemalloc_reserve += min_wmark_pages(zone);
6438 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6439 }
6440
6441 /* If there are no reserves (unexpected config) then do not throttle */
6442 if (!pfmemalloc_reserve)
6443 return true;
6444
6445 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6446
6447 /* kswapd must be awake if processes are being throttled */
6448 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6449 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6450 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6451
6452 wake_up_interruptible(&pgdat->kswapd_wait);
6453 }
6454
6455 return wmark_ok;
6456 }
6457
6458 /*
6459 * Throttle direct reclaimers if backing storage is backed by the network
6460 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6461 * depleted. kswapd will continue to make progress and wake the processes
6462 * when the low watermark is reached.
6463 *
6464 * Returns true if a fatal signal was delivered during throttling. If this
6465 * happens, the page allocator should not consider triggering the OOM killer.
6466 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6467 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6468 nodemask_t *nodemask)
6469 {
6470 struct zoneref *z;
6471 struct zone *zone;
6472 pg_data_t *pgdat = NULL;
6473
6474 /*
6475 * Kernel threads should not be throttled as they may be indirectly
6476 * responsible for cleaning pages necessary for reclaim to make forward
6477 * progress. kjournald for example may enter direct reclaim while
6478 * committing a transaction where throttling it could forcing other
6479 * processes to block on log_wait_commit().
6480 */
6481 if (current->flags & PF_KTHREAD)
6482 goto out;
6483
6484 /*
6485 * If a fatal signal is pending, this process should not throttle.
6486 * It should return quickly so it can exit and free its memory
6487 */
6488 if (fatal_signal_pending(current))
6489 goto out;
6490
6491 /*
6492 * Check if the pfmemalloc reserves are ok by finding the first node
6493 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6494 * GFP_KERNEL will be required for allocating network buffers when
6495 * swapping over the network so ZONE_HIGHMEM is unusable.
6496 *
6497 * Throttling is based on the first usable node and throttled processes
6498 * wait on a queue until kswapd makes progress and wakes them. There
6499 * is an affinity then between processes waking up and where reclaim
6500 * progress has been made assuming the process wakes on the same node.
6501 * More importantly, processes running on remote nodes will not compete
6502 * for remote pfmemalloc reserves and processes on different nodes
6503 * should make reasonable progress.
6504 */
6505 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6506 gfp_zone(gfp_mask), nodemask) {
6507 if (zone_idx(zone) > ZONE_NORMAL)
6508 continue;
6509
6510 /* Throttle based on the first usable node */
6511 pgdat = zone->zone_pgdat;
6512 if (allow_direct_reclaim(pgdat))
6513 goto out;
6514 break;
6515 }
6516
6517 /* If no zone was usable by the allocation flags then do not throttle */
6518 if (!pgdat)
6519 goto out;
6520
6521 /* Account for the throttling */
6522 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6523
6524 /*
6525 * If the caller cannot enter the filesystem, it's possible that it
6526 * is due to the caller holding an FS lock or performing a journal
6527 * transaction in the case of a filesystem like ext[3|4]. In this case,
6528 * it is not safe to block on pfmemalloc_wait as kswapd could be
6529 * blocked waiting on the same lock. Instead, throttle for up to a
6530 * second before continuing.
6531 */
6532 if (!(gfp_mask & __GFP_FS))
6533 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6534 allow_direct_reclaim(pgdat), HZ);
6535 else
6536 /* Throttle until kswapd wakes the process */
6537 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6538 allow_direct_reclaim(pgdat));
6539
6540 if (fatal_signal_pending(current))
6541 return true;
6542
6543 out:
6544 return false;
6545 }
6546
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6547 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6548 gfp_t gfp_mask, nodemask_t *nodemask)
6549 {
6550 unsigned long nr_reclaimed;
6551 struct scan_control sc = {
6552 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6553 .gfp_mask = current_gfp_context(gfp_mask),
6554 .reclaim_idx = gfp_zone(gfp_mask),
6555 .order = order,
6556 .nodemask = nodemask,
6557 .priority = DEF_PRIORITY,
6558 .may_writepage = !laptop_mode,
6559 .may_unmap = 1,
6560 .may_swap = 1,
6561 };
6562
6563 /*
6564 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6565 * Confirm they are large enough for max values.
6566 */
6567 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6568 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6569 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6570
6571 /*
6572 * Do not enter reclaim if fatal signal was delivered while throttled.
6573 * 1 is returned so that the page allocator does not OOM kill at this
6574 * point.
6575 */
6576 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6577 return 1;
6578
6579 set_task_reclaim_state(current, &sc.reclaim_state);
6580 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6581
6582 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6583
6584 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6585 set_task_reclaim_state(current, NULL);
6586
6587 return nr_reclaimed;
6588 }
6589
6590 #ifdef CONFIG_MEMCG
6591
6592 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6593 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6594 gfp_t gfp_mask, bool noswap,
6595 pg_data_t *pgdat,
6596 unsigned long *nr_scanned)
6597 {
6598 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6599 struct scan_control sc = {
6600 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6601 .target_mem_cgroup = memcg,
6602 .may_writepage = !laptop_mode,
6603 .may_unmap = 1,
6604 .reclaim_idx = MAX_NR_ZONES - 1,
6605 .may_swap = !noswap,
6606 };
6607
6608 WARN_ON_ONCE(!current->reclaim_state);
6609
6610 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6611 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6612
6613 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6614 sc.gfp_mask);
6615
6616 /*
6617 * NOTE: Although we can get the priority field, using it
6618 * here is not a good idea, since it limits the pages we can scan.
6619 * if we don't reclaim here, the shrink_node from balance_pgdat
6620 * will pick up pages from other mem cgroup's as well. We hack
6621 * the priority and make it zero.
6622 */
6623 shrink_lruvec(lruvec, &sc);
6624
6625 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6626
6627 *nr_scanned = sc.nr_scanned;
6628
6629 return sc.nr_reclaimed;
6630 }
6631
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6632 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6633 unsigned long nr_pages,
6634 gfp_t gfp_mask,
6635 unsigned int reclaim_options,
6636 int *swappiness)
6637 {
6638 unsigned long nr_reclaimed;
6639 unsigned int noreclaim_flag;
6640 struct scan_control sc = {
6641 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6642 .proactive_swappiness = swappiness,
6643 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6644 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6645 .reclaim_idx = MAX_NR_ZONES - 1,
6646 .target_mem_cgroup = memcg,
6647 .priority = DEF_PRIORITY,
6648 .may_writepage = !laptop_mode,
6649 .may_unmap = 1,
6650 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6651 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6652 };
6653 /*
6654 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6655 * equal pressure on all the nodes. This is based on the assumption that
6656 * the reclaim does not bail out early.
6657 */
6658 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6659
6660 set_task_reclaim_state(current, &sc.reclaim_state);
6661 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6662 noreclaim_flag = memalloc_noreclaim_save();
6663
6664 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6665
6666 memalloc_noreclaim_restore(noreclaim_flag);
6667 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6668 set_task_reclaim_state(current, NULL);
6669
6670 return nr_reclaimed;
6671 }
6672 #endif
6673
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6674 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6675 {
6676 struct mem_cgroup *memcg;
6677 struct lruvec *lruvec;
6678
6679 if (lru_gen_enabled()) {
6680 lru_gen_age_node(pgdat, sc);
6681 return;
6682 }
6683
6684 if (!can_age_anon_pages(pgdat, sc))
6685 return;
6686
6687 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6688 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6689 return;
6690
6691 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6692 do {
6693 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6694 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6695 sc, LRU_ACTIVE_ANON);
6696 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6697 } while (memcg);
6698 }
6699
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6700 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6701 {
6702 int i;
6703 struct zone *zone;
6704
6705 /*
6706 * Check for watermark boosts top-down as the higher zones
6707 * are more likely to be boosted. Both watermarks and boosts
6708 * should not be checked at the same time as reclaim would
6709 * start prematurely when there is no boosting and a lower
6710 * zone is balanced.
6711 */
6712 for (i = highest_zoneidx; i >= 0; i--) {
6713 zone = pgdat->node_zones + i;
6714 if (!managed_zone(zone))
6715 continue;
6716
6717 if (zone->watermark_boost)
6718 return true;
6719 }
6720
6721 return false;
6722 }
6723
6724 /*
6725 * Returns true if there is an eligible zone balanced for the request order
6726 * and highest_zoneidx
6727 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6728 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6729 {
6730 int i;
6731 unsigned long mark = -1;
6732 struct zone *zone;
6733
6734 /*
6735 * Check watermarks bottom-up as lower zones are more likely to
6736 * meet watermarks.
6737 */
6738 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6739 enum zone_stat_item item;
6740 unsigned long free_pages;
6741
6742 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6743 mark = promo_wmark_pages(zone);
6744 else
6745 mark = high_wmark_pages(zone);
6746
6747 /*
6748 * In defrag_mode, watermarks must be met in whole
6749 * blocks to avoid polluting allocator fallbacks.
6750 *
6751 * However, kswapd usually cannot accomplish this on
6752 * its own and needs kcompactd support. Once it's
6753 * reclaimed a compaction gap, and kswapd_shrink_node
6754 * has dropped order, simply ensure there are enough
6755 * base pages for compaction, wake kcompactd & sleep.
6756 */
6757 if (defrag_mode && order)
6758 item = NR_FREE_PAGES_BLOCKS;
6759 else
6760 item = NR_FREE_PAGES;
6761
6762 /*
6763 * When there is a high number of CPUs in the system,
6764 * the cumulative error from the vmstat per-cpu cache
6765 * can blur the line between the watermarks. In that
6766 * case, be safe and get an accurate snapshot.
6767 *
6768 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6769 * pageblock_nr_pages, while the vmstat pcp threshold
6770 * is limited to 125. On many configurations that
6771 * counter won't actually be per-cpu cached. But keep
6772 * things simple for now; revisit when somebody cares.
6773 */
6774 free_pages = zone_page_state(zone, item);
6775 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6776 free_pages = zone_page_state_snapshot(zone, item);
6777
6778 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6779 0, free_pages))
6780 return true;
6781 }
6782
6783 /*
6784 * If a node has no managed zone within highest_zoneidx, it does not
6785 * need balancing by definition. This can happen if a zone-restricted
6786 * allocation tries to wake a remote kswapd.
6787 */
6788 if (mark == -1)
6789 return true;
6790
6791 return false;
6792 }
6793
6794 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6795 static void clear_pgdat_congested(pg_data_t *pgdat)
6796 {
6797 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6798
6799 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6800 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6801 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6802 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6803 }
6804
6805 /*
6806 * Prepare kswapd for sleeping. This verifies that there are no processes
6807 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6808 *
6809 * Returns true if kswapd is ready to sleep
6810 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6811 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6812 int highest_zoneidx)
6813 {
6814 /*
6815 * The throttled processes are normally woken up in balance_pgdat() as
6816 * soon as allow_direct_reclaim() is true. But there is a potential
6817 * race between when kswapd checks the watermarks and a process gets
6818 * throttled. There is also a potential race if processes get
6819 * throttled, kswapd wakes, a large process exits thereby balancing the
6820 * zones, which causes kswapd to exit balance_pgdat() before reaching
6821 * the wake up checks. If kswapd is going to sleep, no process should
6822 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6823 * the wake up is premature, processes will wake kswapd and get
6824 * throttled again. The difference from wake ups in balance_pgdat() is
6825 * that here we are under prepare_to_wait().
6826 */
6827 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6828 wake_up_all(&pgdat->pfmemalloc_wait);
6829
6830 /* Hopeless node, leave it to direct reclaim */
6831 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6832 return true;
6833
6834 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6835 clear_pgdat_congested(pgdat);
6836 return true;
6837 }
6838
6839 return false;
6840 }
6841
6842 /*
6843 * kswapd shrinks a node of pages that are at or below the highest usable
6844 * zone that is currently unbalanced.
6845 *
6846 * Returns true if kswapd scanned at least the requested number of pages to
6847 * reclaim or if the lack of progress was due to pages under writeback.
6848 * This is used to determine if the scanning priority needs to be raised.
6849 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6850 static bool kswapd_shrink_node(pg_data_t *pgdat,
6851 struct scan_control *sc)
6852 {
6853 struct zone *zone;
6854 int z;
6855 unsigned long nr_reclaimed = sc->nr_reclaimed;
6856
6857 /* Reclaim a number of pages proportional to the number of zones */
6858 sc->nr_to_reclaim = 0;
6859 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6860 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6861 }
6862
6863 /*
6864 * Historically care was taken to put equal pressure on all zones but
6865 * now pressure is applied based on node LRU order.
6866 */
6867 shrink_node(pgdat, sc);
6868
6869 /*
6870 * Fragmentation may mean that the system cannot be rebalanced for
6871 * high-order allocations. If twice the allocation size has been
6872 * reclaimed then recheck watermarks only at order-0 to prevent
6873 * excessive reclaim. Assume that a process requested a high-order
6874 * can direct reclaim/compact.
6875 */
6876 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6877 sc->order = 0;
6878
6879 /* account for progress from mm_account_reclaimed_pages() */
6880 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6881 }
6882
6883 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6884 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6885 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6886 {
6887 int i;
6888 struct zone *zone;
6889
6890 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6891 if (active)
6892 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6893 else
6894 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6895 }
6896 }
6897
6898 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6899 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6900 {
6901 update_reclaim_active(pgdat, highest_zoneidx, true);
6902 }
6903
6904 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6905 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6906 {
6907 update_reclaim_active(pgdat, highest_zoneidx, false);
6908 }
6909
6910 /*
6911 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6912 * that are eligible for use by the caller until at least one zone is
6913 * balanced.
6914 *
6915 * Returns the order kswapd finished reclaiming at.
6916 *
6917 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6918 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6919 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6920 * or lower is eligible for reclaim until at least one usable zone is
6921 * balanced.
6922 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6923 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6924 {
6925 int i;
6926 unsigned long nr_soft_reclaimed;
6927 unsigned long nr_soft_scanned;
6928 unsigned long pflags;
6929 unsigned long nr_boost_reclaim;
6930 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6931 bool boosted;
6932 struct zone *zone;
6933 struct scan_control sc = {
6934 .gfp_mask = GFP_KERNEL,
6935 .order = order,
6936 .may_unmap = 1,
6937 };
6938
6939 set_task_reclaim_state(current, &sc.reclaim_state);
6940 psi_memstall_enter(&pflags);
6941 __fs_reclaim_acquire(_THIS_IP_);
6942
6943 count_vm_event(PAGEOUTRUN);
6944
6945 /*
6946 * Account for the reclaim boost. Note that the zone boost is left in
6947 * place so that parallel allocations that are near the watermark will
6948 * stall or direct reclaim until kswapd is finished.
6949 */
6950 nr_boost_reclaim = 0;
6951 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6952 nr_boost_reclaim += zone->watermark_boost;
6953 zone_boosts[i] = zone->watermark_boost;
6954 }
6955 boosted = nr_boost_reclaim;
6956
6957 restart:
6958 set_reclaim_active(pgdat, highest_zoneidx);
6959 sc.priority = DEF_PRIORITY;
6960 do {
6961 unsigned long nr_reclaimed = sc.nr_reclaimed;
6962 bool raise_priority = true;
6963 bool balanced;
6964 bool ret;
6965 bool was_frozen;
6966
6967 sc.reclaim_idx = highest_zoneidx;
6968
6969 /*
6970 * If the number of buffer_heads exceeds the maximum allowed
6971 * then consider reclaiming from all zones. This has a dual
6972 * purpose -- on 64-bit systems it is expected that
6973 * buffer_heads are stripped during active rotation. On 32-bit
6974 * systems, highmem pages can pin lowmem memory and shrinking
6975 * buffers can relieve lowmem pressure. Reclaim may still not
6976 * go ahead if all eligible zones for the original allocation
6977 * request are balanced to avoid excessive reclaim from kswapd.
6978 */
6979 if (buffer_heads_over_limit) {
6980 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6981 zone = pgdat->node_zones + i;
6982 if (!managed_zone(zone))
6983 continue;
6984
6985 sc.reclaim_idx = i;
6986 break;
6987 }
6988 }
6989
6990 /*
6991 * If the pgdat is imbalanced then ignore boosting and preserve
6992 * the watermarks for a later time and restart. Note that the
6993 * zone watermarks will be still reset at the end of balancing
6994 * on the grounds that the normal reclaim should be enough to
6995 * re-evaluate if boosting is required when kswapd next wakes.
6996 */
6997 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6998 if (!balanced && nr_boost_reclaim) {
6999 nr_boost_reclaim = 0;
7000 goto restart;
7001 }
7002
7003 /*
7004 * If boosting is not active then only reclaim if there are no
7005 * eligible zones. Note that sc.reclaim_idx is not used as
7006 * buffer_heads_over_limit may have adjusted it.
7007 */
7008 if (!nr_boost_reclaim && balanced)
7009 goto out;
7010
7011 /* Limit the priority of boosting to avoid reclaim writeback */
7012 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7013 raise_priority = false;
7014
7015 /*
7016 * Do not writeback or swap pages for boosted reclaim. The
7017 * intent is to relieve pressure not issue sub-optimal IO
7018 * from reclaim context. If no pages are reclaimed, the
7019 * reclaim will be aborted.
7020 */
7021 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7022 sc.may_swap = !nr_boost_reclaim;
7023
7024 /*
7025 * Do some background aging, to give pages a chance to be
7026 * referenced before reclaiming. All pages are rotated
7027 * regardless of classzone as this is about consistent aging.
7028 */
7029 kswapd_age_node(pgdat, &sc);
7030
7031 /*
7032 * If we're getting trouble reclaiming, start doing writepage
7033 * even in laptop mode.
7034 */
7035 if (sc.priority < DEF_PRIORITY - 2)
7036 sc.may_writepage = 1;
7037
7038 /* Call soft limit reclaim before calling shrink_node. */
7039 sc.nr_scanned = 0;
7040 nr_soft_scanned = 0;
7041 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7042 sc.gfp_mask, &nr_soft_scanned);
7043 sc.nr_reclaimed += nr_soft_reclaimed;
7044
7045 /*
7046 * There should be no need to raise the scanning priority if
7047 * enough pages are already being scanned that that high
7048 * watermark would be met at 100% efficiency.
7049 */
7050 if (kswapd_shrink_node(pgdat, &sc))
7051 raise_priority = false;
7052
7053 /*
7054 * If the low watermark is met there is no need for processes
7055 * to be throttled on pfmemalloc_wait as they should not be
7056 * able to safely make forward progress. Wake them
7057 */
7058 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7059 allow_direct_reclaim(pgdat))
7060 wake_up_all(&pgdat->pfmemalloc_wait);
7061
7062 /* Check if kswapd should be suspending */
7063 __fs_reclaim_release(_THIS_IP_);
7064 ret = kthread_freezable_should_stop(&was_frozen);
7065 __fs_reclaim_acquire(_THIS_IP_);
7066 if (was_frozen || ret)
7067 break;
7068
7069 /*
7070 * Raise priority if scanning rate is too low or there was no
7071 * progress in reclaiming pages
7072 */
7073 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7074 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7075
7076 /*
7077 * If reclaim made no progress for a boost, stop reclaim as
7078 * IO cannot be queued and it could be an infinite loop in
7079 * extreme circumstances.
7080 */
7081 if (nr_boost_reclaim && !nr_reclaimed)
7082 break;
7083
7084 if (raise_priority || !nr_reclaimed)
7085 sc.priority--;
7086 } while (sc.priority >= 1);
7087
7088 /*
7089 * Restart only if it went through the priority loop all the way,
7090 * but cache_trim_mode didn't work.
7091 */
7092 if (!sc.nr_reclaimed && sc.priority < 1 &&
7093 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7094 sc.no_cache_trim_mode = 1;
7095 goto restart;
7096 }
7097
7098 if (!sc.nr_reclaimed)
7099 pgdat->kswapd_failures++;
7100
7101 out:
7102 clear_reclaim_active(pgdat, highest_zoneidx);
7103
7104 /* If reclaim was boosted, account for the reclaim done in this pass */
7105 if (boosted) {
7106 unsigned long flags;
7107
7108 for (i = 0; i <= highest_zoneidx; i++) {
7109 if (!zone_boosts[i])
7110 continue;
7111
7112 /* Increments are under the zone lock */
7113 zone = pgdat->node_zones + i;
7114 spin_lock_irqsave(&zone->lock, flags);
7115 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7116 spin_unlock_irqrestore(&zone->lock, flags);
7117 }
7118
7119 /*
7120 * As there is now likely space, wakeup kcompact to defragment
7121 * pageblocks.
7122 */
7123 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7124 }
7125
7126 snapshot_refaults(NULL, pgdat);
7127 __fs_reclaim_release(_THIS_IP_);
7128 psi_memstall_leave(&pflags);
7129 set_task_reclaim_state(current, NULL);
7130
7131 /*
7132 * Return the order kswapd stopped reclaiming at as
7133 * prepare_kswapd_sleep() takes it into account. If another caller
7134 * entered the allocator slow path while kswapd was awake, order will
7135 * remain at the higher level.
7136 */
7137 return sc.order;
7138 }
7139
7140 /*
7141 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7142 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7143 * not a valid index then either kswapd runs for first time or kswapd couldn't
7144 * sleep after previous reclaim attempt (node is still unbalanced). In that
7145 * case return the zone index of the previous kswapd reclaim cycle.
7146 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7147 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7148 enum zone_type prev_highest_zoneidx)
7149 {
7150 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7151
7152 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7153 }
7154
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7155 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7156 unsigned int highest_zoneidx)
7157 {
7158 long remaining = 0;
7159 DEFINE_WAIT(wait);
7160
7161 if (freezing(current) || kthread_should_stop())
7162 return;
7163
7164 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7165
7166 /*
7167 * Try to sleep for a short interval. Note that kcompactd will only be
7168 * woken if it is possible to sleep for a short interval. This is
7169 * deliberate on the assumption that if reclaim cannot keep an
7170 * eligible zone balanced that it's also unlikely that compaction will
7171 * succeed.
7172 */
7173 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7174 /*
7175 * Compaction records what page blocks it recently failed to
7176 * isolate pages from and skips them in the future scanning.
7177 * When kswapd is going to sleep, it is reasonable to assume
7178 * that pages and compaction may succeed so reset the cache.
7179 */
7180 reset_isolation_suitable(pgdat);
7181
7182 /*
7183 * We have freed the memory, now we should compact it to make
7184 * allocation of the requested order possible.
7185 */
7186 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7187
7188 remaining = schedule_timeout(HZ/10);
7189
7190 /*
7191 * If woken prematurely then reset kswapd_highest_zoneidx and
7192 * order. The values will either be from a wakeup request or
7193 * the previous request that slept prematurely.
7194 */
7195 if (remaining) {
7196 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7197 kswapd_highest_zoneidx(pgdat,
7198 highest_zoneidx));
7199
7200 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7201 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7202 }
7203
7204 finish_wait(&pgdat->kswapd_wait, &wait);
7205 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7206 }
7207
7208 /*
7209 * After a short sleep, check if it was a premature sleep. If not, then
7210 * go fully to sleep until explicitly woken up.
7211 */
7212 if (!remaining &&
7213 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7214 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7215
7216 /*
7217 * vmstat counters are not perfectly accurate and the estimated
7218 * value for counters such as NR_FREE_PAGES can deviate from the
7219 * true value by nr_online_cpus * threshold. To avoid the zone
7220 * watermarks being breached while under pressure, we reduce the
7221 * per-cpu vmstat threshold while kswapd is awake and restore
7222 * them before going back to sleep.
7223 */
7224 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7225
7226 if (!kthread_should_stop())
7227 schedule();
7228
7229 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7230 } else {
7231 if (remaining)
7232 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7233 else
7234 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7235 }
7236 finish_wait(&pgdat->kswapd_wait, &wait);
7237 }
7238
7239 /*
7240 * The background pageout daemon, started as a kernel thread
7241 * from the init process.
7242 *
7243 * This basically trickles out pages so that we have _some_
7244 * free memory available even if there is no other activity
7245 * that frees anything up. This is needed for things like routing
7246 * etc, where we otherwise might have all activity going on in
7247 * asynchronous contexts that cannot page things out.
7248 *
7249 * If there are applications that are active memory-allocators
7250 * (most normal use), this basically shouldn't matter.
7251 */
kswapd(void * p)7252 static int kswapd(void *p)
7253 {
7254 unsigned int alloc_order, reclaim_order;
7255 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7256 pg_data_t *pgdat = (pg_data_t *)p;
7257 struct task_struct *tsk = current;
7258
7259 /*
7260 * Tell the memory management that we're a "memory allocator",
7261 * and that if we need more memory we should get access to it
7262 * regardless (see "__alloc_pages()"). "kswapd" should
7263 * never get caught in the normal page freeing logic.
7264 *
7265 * (Kswapd normally doesn't need memory anyway, but sometimes
7266 * you need a small amount of memory in order to be able to
7267 * page out something else, and this flag essentially protects
7268 * us from recursively trying to free more memory as we're
7269 * trying to free the first piece of memory in the first place).
7270 */
7271 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7272 set_freezable();
7273
7274 WRITE_ONCE(pgdat->kswapd_order, 0);
7275 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7276 atomic_set(&pgdat->nr_writeback_throttled, 0);
7277 for ( ; ; ) {
7278 bool was_frozen;
7279
7280 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7281 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7282 highest_zoneidx);
7283
7284 kswapd_try_sleep:
7285 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7286 highest_zoneidx);
7287
7288 /* Read the new order and highest_zoneidx */
7289 alloc_order = READ_ONCE(pgdat->kswapd_order);
7290 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7291 highest_zoneidx);
7292 WRITE_ONCE(pgdat->kswapd_order, 0);
7293 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7294
7295 if (kthread_freezable_should_stop(&was_frozen))
7296 break;
7297
7298 /*
7299 * We can speed up thawing tasks if we don't call balance_pgdat
7300 * after returning from the refrigerator
7301 */
7302 if (was_frozen)
7303 continue;
7304
7305 /*
7306 * Reclaim begins at the requested order but if a high-order
7307 * reclaim fails then kswapd falls back to reclaiming for
7308 * order-0. If that happens, kswapd will consider sleeping
7309 * for the order it finished reclaiming at (reclaim_order)
7310 * but kcompactd is woken to compact for the original
7311 * request (alloc_order).
7312 */
7313 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7314 alloc_order);
7315 reclaim_order = balance_pgdat(pgdat, alloc_order,
7316 highest_zoneidx);
7317 if (reclaim_order < alloc_order)
7318 goto kswapd_try_sleep;
7319 }
7320
7321 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7322
7323 return 0;
7324 }
7325
7326 /*
7327 * A zone is low on free memory or too fragmented for high-order memory. If
7328 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7329 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7330 * has failed or is not needed, still wake up kcompactd if only compaction is
7331 * needed.
7332 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7333 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7334 enum zone_type highest_zoneidx)
7335 {
7336 pg_data_t *pgdat;
7337 enum zone_type curr_idx;
7338
7339 if (!managed_zone(zone))
7340 return;
7341
7342 if (!cpuset_zone_allowed(zone, gfp_flags))
7343 return;
7344
7345 pgdat = zone->zone_pgdat;
7346 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7347
7348 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7349 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7350
7351 if (READ_ONCE(pgdat->kswapd_order) < order)
7352 WRITE_ONCE(pgdat->kswapd_order, order);
7353
7354 if (!waitqueue_active(&pgdat->kswapd_wait))
7355 return;
7356
7357 /* Hopeless node, leave it to direct reclaim if possible */
7358 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7359 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7360 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7361 /*
7362 * There may be plenty of free memory available, but it's too
7363 * fragmented for high-order allocations. Wake up kcompactd
7364 * and rely on compaction_suitable() to determine if it's
7365 * needed. If it fails, it will defer subsequent attempts to
7366 * ratelimit its work.
7367 */
7368 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7369 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7370 return;
7371 }
7372
7373 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7374 gfp_flags);
7375 wake_up_interruptible(&pgdat->kswapd_wait);
7376 }
7377
7378 #ifdef CONFIG_HIBERNATION
7379 /*
7380 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7381 * freed pages.
7382 *
7383 * Rather than trying to age LRUs the aim is to preserve the overall
7384 * LRU order by reclaiming preferentially
7385 * inactive > active > active referenced > active mapped
7386 */
shrink_all_memory(unsigned long nr_to_reclaim)7387 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7388 {
7389 struct scan_control sc = {
7390 .nr_to_reclaim = nr_to_reclaim,
7391 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7392 .reclaim_idx = MAX_NR_ZONES - 1,
7393 .priority = DEF_PRIORITY,
7394 .may_writepage = 1,
7395 .may_unmap = 1,
7396 .may_swap = 1,
7397 .hibernation_mode = 1,
7398 };
7399 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7400 unsigned long nr_reclaimed;
7401 unsigned int noreclaim_flag;
7402
7403 fs_reclaim_acquire(sc.gfp_mask);
7404 noreclaim_flag = memalloc_noreclaim_save();
7405 set_task_reclaim_state(current, &sc.reclaim_state);
7406
7407 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7408
7409 set_task_reclaim_state(current, NULL);
7410 memalloc_noreclaim_restore(noreclaim_flag);
7411 fs_reclaim_release(sc.gfp_mask);
7412
7413 return nr_reclaimed;
7414 }
7415 #endif /* CONFIG_HIBERNATION */
7416
7417 /*
7418 * This kswapd start function will be called by init and node-hot-add.
7419 */
kswapd_run(int nid)7420 void __meminit kswapd_run(int nid)
7421 {
7422 pg_data_t *pgdat = NODE_DATA(nid);
7423
7424 pgdat_kswapd_lock(pgdat);
7425 if (!pgdat->kswapd) {
7426 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7427 if (IS_ERR(pgdat->kswapd)) {
7428 /* failure at boot is fatal */
7429 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7430 nid, PTR_ERR(pgdat->kswapd));
7431 BUG_ON(system_state < SYSTEM_RUNNING);
7432 pgdat->kswapd = NULL;
7433 } else {
7434 wake_up_process(pgdat->kswapd);
7435 }
7436 }
7437 pgdat_kswapd_unlock(pgdat);
7438 }
7439
7440 /*
7441 * Called by memory hotplug when all memory in a node is offlined. Caller must
7442 * be holding mem_hotplug_begin/done().
7443 */
kswapd_stop(int nid)7444 void __meminit kswapd_stop(int nid)
7445 {
7446 pg_data_t *pgdat = NODE_DATA(nid);
7447 struct task_struct *kswapd;
7448
7449 pgdat_kswapd_lock(pgdat);
7450 kswapd = pgdat->kswapd;
7451 if (kswapd) {
7452 kthread_stop(kswapd);
7453 pgdat->kswapd = NULL;
7454 }
7455 pgdat_kswapd_unlock(pgdat);
7456 }
7457
7458 static const struct ctl_table vmscan_sysctl_table[] = {
7459 {
7460 .procname = "swappiness",
7461 .data = &vm_swappiness,
7462 .maxlen = sizeof(vm_swappiness),
7463 .mode = 0644,
7464 .proc_handler = proc_dointvec_minmax,
7465 .extra1 = SYSCTL_ZERO,
7466 .extra2 = SYSCTL_TWO_HUNDRED,
7467 },
7468 #ifdef CONFIG_NUMA
7469 {
7470 .procname = "zone_reclaim_mode",
7471 .data = &node_reclaim_mode,
7472 .maxlen = sizeof(node_reclaim_mode),
7473 .mode = 0644,
7474 .proc_handler = proc_dointvec_minmax,
7475 .extra1 = SYSCTL_ZERO,
7476 }
7477 #endif
7478 };
7479
kswapd_init(void)7480 static int __init kswapd_init(void)
7481 {
7482 int nid;
7483
7484 swap_setup();
7485 for_each_node_state(nid, N_MEMORY)
7486 kswapd_run(nid);
7487 register_sysctl_init("vm", vmscan_sysctl_table);
7488 return 0;
7489 }
7490
7491 module_init(kswapd_init)
7492
7493 #ifdef CONFIG_NUMA
7494 /*
7495 * Node reclaim mode
7496 *
7497 * If non-zero call node_reclaim when the number of free pages falls below
7498 * the watermarks.
7499 */
7500 int node_reclaim_mode __read_mostly;
7501
7502 /*
7503 * Priority for NODE_RECLAIM. This determines the fraction of pages
7504 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7505 * a zone.
7506 */
7507 #define NODE_RECLAIM_PRIORITY 4
7508
7509 /*
7510 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7511 * occur.
7512 */
7513 int sysctl_min_unmapped_ratio = 1;
7514
7515 /*
7516 * If the number of slab pages in a zone grows beyond this percentage then
7517 * slab reclaim needs to occur.
7518 */
7519 int sysctl_min_slab_ratio = 5;
7520
node_unmapped_file_pages(struct pglist_data * pgdat)7521 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7522 {
7523 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7524 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7525 node_page_state(pgdat, NR_ACTIVE_FILE);
7526
7527 /*
7528 * It's possible for there to be more file mapped pages than
7529 * accounted for by the pages on the file LRU lists because
7530 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7531 */
7532 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7533 }
7534
7535 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7536 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7537 {
7538 unsigned long nr_pagecache_reclaimable;
7539 unsigned long delta = 0;
7540
7541 /*
7542 * If RECLAIM_UNMAP is set, then all file pages are considered
7543 * potentially reclaimable. Otherwise, we have to worry about
7544 * pages like swapcache and node_unmapped_file_pages() provides
7545 * a better estimate
7546 */
7547 if (node_reclaim_mode & RECLAIM_UNMAP)
7548 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7549 else
7550 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7551
7552 /* If we can't clean pages, remove dirty pages from consideration */
7553 if (!(node_reclaim_mode & RECLAIM_WRITE))
7554 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7555
7556 /* Watch for any possible underflows due to delta */
7557 if (unlikely(delta > nr_pagecache_reclaimable))
7558 delta = nr_pagecache_reclaimable;
7559
7560 return nr_pagecache_reclaimable - delta;
7561 }
7562
7563 /*
7564 * Try to free up some pages from this node through reclaim.
7565 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7566 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7567 {
7568 /* Minimum pages needed in order to stay on node */
7569 const unsigned long nr_pages = 1 << order;
7570 struct task_struct *p = current;
7571 unsigned int noreclaim_flag;
7572 struct scan_control sc = {
7573 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7574 .gfp_mask = current_gfp_context(gfp_mask),
7575 .order = order,
7576 .priority = NODE_RECLAIM_PRIORITY,
7577 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7578 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7579 .may_swap = 1,
7580 .reclaim_idx = gfp_zone(gfp_mask),
7581 };
7582 unsigned long pflags;
7583
7584 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7585 sc.gfp_mask);
7586
7587 cond_resched();
7588 psi_memstall_enter(&pflags);
7589 delayacct_freepages_start();
7590 fs_reclaim_acquire(sc.gfp_mask);
7591 /*
7592 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7593 */
7594 noreclaim_flag = memalloc_noreclaim_save();
7595 set_task_reclaim_state(p, &sc.reclaim_state);
7596
7597 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7598 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7599 /*
7600 * Free memory by calling shrink node with increasing
7601 * priorities until we have enough memory freed.
7602 */
7603 do {
7604 shrink_node(pgdat, &sc);
7605 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7606 }
7607
7608 set_task_reclaim_state(p, NULL);
7609 memalloc_noreclaim_restore(noreclaim_flag);
7610 fs_reclaim_release(sc.gfp_mask);
7611 psi_memstall_leave(&pflags);
7612 delayacct_freepages_end();
7613
7614 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7615
7616 return sc.nr_reclaimed >= nr_pages;
7617 }
7618
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7619 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7620 {
7621 int ret;
7622
7623 /*
7624 * Node reclaim reclaims unmapped file backed pages and
7625 * slab pages if we are over the defined limits.
7626 *
7627 * A small portion of unmapped file backed pages is needed for
7628 * file I/O otherwise pages read by file I/O will be immediately
7629 * thrown out if the node is overallocated. So we do not reclaim
7630 * if less than a specified percentage of the node is used by
7631 * unmapped file backed pages.
7632 */
7633 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7634 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7635 pgdat->min_slab_pages)
7636 return NODE_RECLAIM_FULL;
7637
7638 /*
7639 * Do not scan if the allocation should not be delayed.
7640 */
7641 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7642 return NODE_RECLAIM_NOSCAN;
7643
7644 /*
7645 * Only run node reclaim on the local node or on nodes that do not
7646 * have associated processors. This will favor the local processor
7647 * over remote processors and spread off node memory allocations
7648 * as wide as possible.
7649 */
7650 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7651 return NODE_RECLAIM_NOSCAN;
7652
7653 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7654 return NODE_RECLAIM_NOSCAN;
7655
7656 ret = __node_reclaim(pgdat, gfp_mask, order);
7657 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7658
7659 if (ret)
7660 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7661 else
7662 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7663
7664 return ret;
7665 }
7666 #endif
7667
7668 /**
7669 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7670 * lru list
7671 * @fbatch: Batch of lru folios to check.
7672 *
7673 * Checks folios for evictability, if an evictable folio is in the unevictable
7674 * lru list, moves it to the appropriate evictable lru list. This function
7675 * should be only used for lru folios.
7676 */
check_move_unevictable_folios(struct folio_batch * fbatch)7677 void check_move_unevictable_folios(struct folio_batch *fbatch)
7678 {
7679 struct lruvec *lruvec = NULL;
7680 int pgscanned = 0;
7681 int pgrescued = 0;
7682 int i;
7683
7684 for (i = 0; i < fbatch->nr; i++) {
7685 struct folio *folio = fbatch->folios[i];
7686 int nr_pages = folio_nr_pages(folio);
7687
7688 pgscanned += nr_pages;
7689
7690 /* block memcg migration while the folio moves between lrus */
7691 if (!folio_test_clear_lru(folio))
7692 continue;
7693
7694 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7695 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7696 lruvec_del_folio(lruvec, folio);
7697 folio_clear_unevictable(folio);
7698 lruvec_add_folio(lruvec, folio);
7699 pgrescued += nr_pages;
7700 }
7701 folio_set_lru(folio);
7702 }
7703
7704 if (lruvec) {
7705 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7706 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7707 unlock_page_lruvec_irq(lruvec);
7708 } else if (pgscanned) {
7709 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7710 }
7711 }
7712 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7713