1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 #ifdef CONFIG_MEMCG
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 #endif
100 
101 	/* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 	unsigned int may_deactivate:2;
105 	unsigned int force_deactivate:1;
106 	unsigned int skipped_deactivate:1;
107 
108 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
109 	unsigned int may_writepage:1;
110 
111 	/* Can mapped folios be reclaimed? */
112 	unsigned int may_unmap:1;
113 
114 	/* Can folios be swapped as part of reclaim? */
115 	unsigned int may_swap:1;
116 
117 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 	unsigned int no_cache_trim_mode:1;
119 
120 	/* Has cache_trim_mode failed at least once? */
121 	unsigned int cache_trim_mode_failed:1;
122 
123 	/* Proactive reclaim invoked by userspace through memory.reclaim */
124 	unsigned int proactive:1;
125 
126 	/*
127 	 * Cgroup memory below memory.low is protected as long as we
128 	 * don't threaten to OOM. If any cgroup is reclaimed at
129 	 * reduced force or passed over entirely due to its memory.low
130 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 	 * result, then go back for one more cycle that reclaims the protected
132 	 * memory (memcg_low_reclaim) to avert OOM.
133 	 */
134 	unsigned int memcg_low_reclaim:1;
135 	unsigned int memcg_low_skipped:1;
136 
137 	/* Shared cgroup tree walk failed, rescan the whole tree */
138 	unsigned int memcg_full_walk:1;
139 
140 	unsigned int hibernation_mode:1;
141 
142 	/* One of the zones is ready for compaction */
143 	unsigned int compaction_ready:1;
144 
145 	/* There is easily reclaimable cold cache in the current node */
146 	unsigned int cache_trim_mode:1;
147 
148 	/* The file folios on the current node are dangerously low */
149 	unsigned int file_is_tiny:1;
150 
151 	/* Always discard instead of demoting to lower tier memory */
152 	unsigned int no_demotion:1;
153 
154 	/* Allocation order */
155 	s8 order;
156 
157 	/* Scan (total_size >> priority) pages at once */
158 	s8 priority;
159 
160 	/* The highest zone to isolate folios for reclaim from */
161 	s8 reclaim_idx;
162 
163 	/* This context's GFP mask */
164 	gfp_t gfp_mask;
165 
166 	/* Incremented by the number of inactive pages that were scanned */
167 	unsigned long nr_scanned;
168 
169 	/* Number of pages freed so far during a call to shrink_zones() */
170 	unsigned long nr_reclaimed;
171 
172 	struct {
173 		unsigned int dirty;
174 		unsigned int unqueued_dirty;
175 		unsigned int congested;
176 		unsigned int writeback;
177 		unsigned int immediate;
178 		unsigned int file_taken;
179 		unsigned int taken;
180 	} nr;
181 
182 	/* for recording the reclaimed slab by now */
183 	struct reclaim_state reclaim_state;
184 };
185 
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
188 	do {								\
189 		if ((_folio)->lru.prev != _base) {			\
190 			struct folio *prev;				\
191 									\
192 			prev = lru_to_folio(&(_folio->lru));		\
193 			prefetchw(&prev->_field);			\
194 		}							\
195 	} while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199 
200 /*
201  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
202  */
203 int vm_swappiness = 60;
204 
205 #ifdef CONFIG_MEMCG
206 
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 	return sc->target_mem_cgroup;
211 }
212 
213 /*
214  * Returns true for reclaim on the root cgroup. This is true for direct
215  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216  */
root_reclaim(struct scan_control * sc)217 static bool root_reclaim(struct scan_control *sc)
218 {
219 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221 
222 /**
223  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224  * @sc: scan_control in question
225  *
226  * The normal page dirty throttling mechanism in balance_dirty_pages() is
227  * completely broken with the legacy memcg and direct stalling in
228  * shrink_folio_list() is used for throttling instead, which lacks all the
229  * niceties such as fairness, adaptive pausing, bandwidth proportional
230  * allocation and configurability.
231  *
232  * This function tests whether the vmscan currently in progress can assume
233  * that the normal dirty throttling mechanism is operational.
234  */
writeback_throttling_sane(struct scan_control * sc)235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 	if (!cgroup_reclaim(sc))
238 		return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		return true;
242 #endif
243 	return false;
244 }
245 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 	if (sc->proactive && sc->proactive_swappiness)
249 		return *sc->proactive_swappiness;
250 	return mem_cgroup_swappiness(memcg);
251 }
252 #else
cgroup_reclaim(struct scan_control * sc)253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 	return false;
256 }
257 
root_reclaim(struct scan_control * sc)258 static bool root_reclaim(struct scan_control *sc)
259 {
260 	return true;
261 }
262 
writeback_throttling_sane(struct scan_control * sc)263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 	return true;
266 }
267 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 	return READ_ONCE(vm_swappiness);
271 }
272 #endif
273 
274 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
275  * and including the specified highidx
276  * @zone: The current zone in the iterator
277  * @pgdat: The pgdat which node_zones are being iterated
278  * @idx: The index variable
279  * @highidx: The index of the highest zone to return
280  *
281  * This macro iterates through all managed zones up to and including the specified highidx.
282  * The zone iterator enters an invalid state after macro call and must be reinitialized
283  * before it can be used again.
284  */
285 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
286 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
287 	    (idx) <= (highidx);					\
288 	    (idx)++, (zone)++)					\
289 		if (!managed_zone(zone))			\
290 			continue;				\
291 		else
292 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)293 static void set_task_reclaim_state(struct task_struct *task,
294 				   struct reclaim_state *rs)
295 {
296 	/* Check for an overwrite */
297 	WARN_ON_ONCE(rs && task->reclaim_state);
298 
299 	/* Check for the nulling of an already-nulled member */
300 	WARN_ON_ONCE(!rs && !task->reclaim_state);
301 
302 	task->reclaim_state = rs;
303 }
304 
305 /*
306  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
307  * scan_control->nr_reclaimed.
308  */
flush_reclaim_state(struct scan_control * sc)309 static void flush_reclaim_state(struct scan_control *sc)
310 {
311 	/*
312 	 * Currently, reclaim_state->reclaimed includes three types of pages
313 	 * freed outside of vmscan:
314 	 * (1) Slab pages.
315 	 * (2) Clean file pages from pruned inodes (on highmem systems).
316 	 * (3) XFS freed buffer pages.
317 	 *
318 	 * For all of these cases, we cannot universally link the pages to a
319 	 * single memcg. For example, a memcg-aware shrinker can free one object
320 	 * charged to the target memcg, causing an entire page to be freed.
321 	 * If we count the entire page as reclaimed from the memcg, we end up
322 	 * overestimating the reclaimed amount (potentially under-reclaiming).
323 	 *
324 	 * Only count such pages for global reclaim to prevent under-reclaiming
325 	 * from the target memcg; preventing unnecessary retries during memcg
326 	 * charging and false positives from proactive reclaim.
327 	 *
328 	 * For uncommon cases where the freed pages were actually mostly
329 	 * charged to the target memcg, we end up underestimating the reclaimed
330 	 * amount. This should be fine. The freed pages will be uncharged
331 	 * anyway, even if they are not counted here properly, and we will be
332 	 * able to make forward progress in charging (which is usually in a
333 	 * retry loop).
334 	 *
335 	 * We can go one step further, and report the uncharged objcg pages in
336 	 * memcg reclaim, to make reporting more accurate and reduce
337 	 * underestimation, but it's probably not worth the complexity for now.
338 	 */
339 	if (current->reclaim_state && root_reclaim(sc)) {
340 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
341 		current->reclaim_state->reclaimed = 0;
342 	}
343 }
344 
can_demote(int nid,struct scan_control * sc)345 static bool can_demote(int nid, struct scan_control *sc)
346 {
347 	if (!numa_demotion_enabled)
348 		return false;
349 	if (sc && sc->no_demotion)
350 		return false;
351 	if (next_demotion_node(nid) == NUMA_NO_NODE)
352 		return false;
353 
354 	return true;
355 }
356 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)357 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
358 					  int nid,
359 					  struct scan_control *sc)
360 {
361 	if (memcg == NULL) {
362 		/*
363 		 * For non-memcg reclaim, is there
364 		 * space in any swap device?
365 		 */
366 		if (get_nr_swap_pages() > 0)
367 			return true;
368 	} else {
369 		/* Is the memcg below its swap limit? */
370 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
371 			return true;
372 	}
373 
374 	/*
375 	 * The page can not be swapped.
376 	 *
377 	 * Can it be reclaimed from this node via demotion?
378 	 */
379 	return can_demote(nid, sc);
380 }
381 
382 /*
383  * This misses isolated folios which are not accounted for to save counters.
384  * As the data only determines if reclaim or compaction continues, it is
385  * not expected that isolated folios will be a dominating factor.
386  */
zone_reclaimable_pages(struct zone * zone)387 unsigned long zone_reclaimable_pages(struct zone *zone)
388 {
389 	unsigned long nr;
390 
391 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
392 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
393 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
394 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
395 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
396 	/*
397 	 * If there are no reclaimable file-backed or anonymous pages,
398 	 * ensure zones with sufficient free pages are not skipped.
399 	 * This prevents zones like DMA32 from being ignored in reclaim
400 	 * scenarios where they can still help alleviate memory pressure.
401 	 */
402 	if (nr == 0)
403 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
404 	return nr;
405 }
406 
407 /**
408  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
409  * @lruvec: lru vector
410  * @lru: lru to use
411  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
412  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)413 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
414 				     int zone_idx)
415 {
416 	unsigned long size = 0;
417 	int zid;
418 	struct zone *zone;
419 
420 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
421 		if (!mem_cgroup_disabled())
422 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
423 		else
424 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
425 	}
426 	return size;
427 }
428 
drop_slab_node(int nid)429 static unsigned long drop_slab_node(int nid)
430 {
431 	unsigned long freed = 0;
432 	struct mem_cgroup *memcg = NULL;
433 
434 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
435 	do {
436 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
437 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
438 
439 	return freed;
440 }
441 
drop_slab(void)442 void drop_slab(void)
443 {
444 	int nid;
445 	int shift = 0;
446 	unsigned long freed;
447 
448 	do {
449 		freed = 0;
450 		for_each_online_node(nid) {
451 			if (fatal_signal_pending(current))
452 				return;
453 
454 			freed += drop_slab_node(nid);
455 		}
456 	} while ((freed >> shift++) > 1);
457 }
458 
459 #define CHECK_RECLAIMER_OFFSET(type)					\
460 	do {								\
461 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
462 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
463 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
464 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
465 	} while (0)
466 
reclaimer_offset(struct scan_control * sc)467 static int reclaimer_offset(struct scan_control *sc)
468 {
469 	CHECK_RECLAIMER_OFFSET(DIRECT);
470 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
471 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
472 
473 	if (current_is_kswapd())
474 		return 0;
475 	if (current_is_khugepaged())
476 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
477 	if (sc->proactive)
478 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
479 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
480 }
481 
is_page_cache_freeable(struct folio * folio)482 static inline int is_page_cache_freeable(struct folio *folio)
483 {
484 	/*
485 	 * A freeable page cache folio is referenced only by the caller
486 	 * that isolated the folio, the page cache and optional filesystem
487 	 * private data at folio->private.
488 	 */
489 	return folio_ref_count(folio) - folio_test_private(folio) ==
490 		1 + folio_nr_pages(folio);
491 }
492 
493 /*
494  * We detected a synchronous write error writing a folio out.  Probably
495  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
496  * fsync(), msync() or close().
497  *
498  * The tricky part is that after writepage we cannot touch the mapping: nothing
499  * prevents it from being freed up.  But we have a ref on the folio and once
500  * that folio is locked, the mapping is pinned.
501  *
502  * We're allowed to run sleeping folio_lock() here because we know the caller has
503  * __GFP_FS.
504  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)505 static void handle_write_error(struct address_space *mapping,
506 				struct folio *folio, int error)
507 {
508 	folio_lock(folio);
509 	if (folio_mapping(folio) == mapping)
510 		mapping_set_error(mapping, error);
511 	folio_unlock(folio);
512 }
513 
skip_throttle_noprogress(pg_data_t * pgdat)514 static bool skip_throttle_noprogress(pg_data_t *pgdat)
515 {
516 	int reclaimable = 0, write_pending = 0;
517 	int i;
518 	struct zone *zone;
519 	/*
520 	 * If kswapd is disabled, reschedule if necessary but do not
521 	 * throttle as the system is likely near OOM.
522 	 */
523 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
524 		return true;
525 
526 	/*
527 	 * If there are a lot of dirty/writeback folios then do not
528 	 * throttle as throttling will occur when the folios cycle
529 	 * towards the end of the LRU if still under writeback.
530 	 */
531 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
532 		reclaimable += zone_reclaimable_pages(zone);
533 		write_pending += zone_page_state_snapshot(zone,
534 						  NR_ZONE_WRITE_PENDING);
535 	}
536 	if (2 * write_pending <= reclaimable)
537 		return true;
538 
539 	return false;
540 }
541 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)542 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
543 {
544 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
545 	long timeout, ret;
546 	DEFINE_WAIT(wait);
547 
548 	/*
549 	 * Do not throttle user workers, kthreads other than kswapd or
550 	 * workqueues. They may be required for reclaim to make
551 	 * forward progress (e.g. journalling workqueues or kthreads).
552 	 */
553 	if (!current_is_kswapd() &&
554 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
555 		cond_resched();
556 		return;
557 	}
558 
559 	/*
560 	 * These figures are pulled out of thin air.
561 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
562 	 * parallel reclaimers which is a short-lived event so the timeout is
563 	 * short. Failing to make progress or waiting on writeback are
564 	 * potentially long-lived events so use a longer timeout. This is shaky
565 	 * logic as a failure to make progress could be due to anything from
566 	 * writeback to a slow device to excessive referenced folios at the tail
567 	 * of the inactive LRU.
568 	 */
569 	switch(reason) {
570 	case VMSCAN_THROTTLE_WRITEBACK:
571 		timeout = HZ/10;
572 
573 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
574 			WRITE_ONCE(pgdat->nr_reclaim_start,
575 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
576 		}
577 
578 		break;
579 	case VMSCAN_THROTTLE_CONGESTED:
580 		fallthrough;
581 	case VMSCAN_THROTTLE_NOPROGRESS:
582 		if (skip_throttle_noprogress(pgdat)) {
583 			cond_resched();
584 			return;
585 		}
586 
587 		timeout = 1;
588 
589 		break;
590 	case VMSCAN_THROTTLE_ISOLATED:
591 		timeout = HZ/50;
592 		break;
593 	default:
594 		WARN_ON_ONCE(1);
595 		timeout = HZ;
596 		break;
597 	}
598 
599 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
600 	ret = schedule_timeout(timeout);
601 	finish_wait(wqh, &wait);
602 
603 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
604 		atomic_dec(&pgdat->nr_writeback_throttled);
605 
606 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
607 				jiffies_to_usecs(timeout - ret),
608 				reason);
609 }
610 
611 /*
612  * Account for folios written if tasks are throttled waiting on dirty
613  * folios to clean. If enough folios have been cleaned since throttling
614  * started then wakeup the throttled tasks.
615  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)616 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
617 							int nr_throttled)
618 {
619 	unsigned long nr_written;
620 
621 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
622 
623 	/*
624 	 * This is an inaccurate read as the per-cpu deltas may not
625 	 * be synchronised. However, given that the system is
626 	 * writeback throttled, it is not worth taking the penalty
627 	 * of getting an accurate count. At worst, the throttle
628 	 * timeout guarantees forward progress.
629 	 */
630 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
631 		READ_ONCE(pgdat->nr_reclaim_start);
632 
633 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
634 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
635 }
636 
637 /* possible outcome of pageout() */
638 typedef enum {
639 	/* failed to write folio out, folio is locked */
640 	PAGE_KEEP,
641 	/* move folio to the active list, folio is locked */
642 	PAGE_ACTIVATE,
643 	/* folio has been sent to the disk successfully, folio is unlocked */
644 	PAGE_SUCCESS,
645 	/* folio is clean and locked */
646 	PAGE_CLEAN,
647 } pageout_t;
648 
649 /*
650  * pageout is called by shrink_folio_list() for each dirty folio.
651  * Calls ->writepage().
652  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)653 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
654 			 struct swap_iocb **plug, struct list_head *folio_list)
655 {
656 	/*
657 	 * If the folio is dirty, only perform writeback if that write
658 	 * will be non-blocking.  To prevent this allocation from being
659 	 * stalled by pagecache activity.  But note that there may be
660 	 * stalls if we need to run get_block().  We could test
661 	 * PagePrivate for that.
662 	 *
663 	 * If this process is currently in __generic_file_write_iter() against
664 	 * this folio's queue, we can perform writeback even if that
665 	 * will block.
666 	 *
667 	 * If the folio is swapcache, write it back even if that would
668 	 * block, for some throttling. This happens by accident, because
669 	 * swap_backing_dev_info is bust: it doesn't reflect the
670 	 * congestion state of the swapdevs.  Easy to fix, if needed.
671 	 */
672 	if (!is_page_cache_freeable(folio))
673 		return PAGE_KEEP;
674 	if (!mapping) {
675 		/*
676 		 * Some data journaling orphaned folios can have
677 		 * folio->mapping == NULL while being dirty with clean buffers.
678 		 */
679 		if (folio_test_private(folio)) {
680 			if (try_to_free_buffers(folio)) {
681 				folio_clear_dirty(folio);
682 				pr_info("%s: orphaned folio\n", __func__);
683 				return PAGE_CLEAN;
684 			}
685 		}
686 		return PAGE_KEEP;
687 	}
688 	if (mapping->a_ops->writepage == NULL)
689 		return PAGE_ACTIVATE;
690 
691 	if (folio_clear_dirty_for_io(folio)) {
692 		int res;
693 		struct writeback_control wbc = {
694 			.sync_mode = WB_SYNC_NONE,
695 			.nr_to_write = SWAP_CLUSTER_MAX,
696 			.range_start = 0,
697 			.range_end = LLONG_MAX,
698 			.for_reclaim = 1,
699 			.swap_plug = plug,
700 		};
701 
702 		/*
703 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
704 		 * not enabled or contiguous swap entries are failed to
705 		 * allocate.
706 		 */
707 		if (shmem_mapping(mapping) && folio_test_large(folio))
708 			wbc.list = folio_list;
709 
710 		folio_set_reclaim(folio);
711 		res = mapping->a_ops->writepage(&folio->page, &wbc);
712 		if (res < 0)
713 			handle_write_error(mapping, folio, res);
714 		if (res == AOP_WRITEPAGE_ACTIVATE) {
715 			folio_clear_reclaim(folio);
716 			return PAGE_ACTIVATE;
717 		}
718 
719 		if (!folio_test_writeback(folio)) {
720 			/* synchronous write or broken a_ops? */
721 			folio_clear_reclaim(folio);
722 		}
723 		trace_mm_vmscan_write_folio(folio);
724 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
725 		return PAGE_SUCCESS;
726 	}
727 
728 	return PAGE_CLEAN;
729 }
730 
731 /*
732  * Same as remove_mapping, but if the folio is removed from the mapping, it
733  * gets returned with a refcount of 0.
734  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)735 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
736 			    bool reclaimed, struct mem_cgroup *target_memcg)
737 {
738 	int refcount;
739 	void *shadow = NULL;
740 
741 	BUG_ON(!folio_test_locked(folio));
742 	BUG_ON(mapping != folio_mapping(folio));
743 
744 	if (!folio_test_swapcache(folio))
745 		spin_lock(&mapping->host->i_lock);
746 	xa_lock_irq(&mapping->i_pages);
747 	/*
748 	 * The non racy check for a busy folio.
749 	 *
750 	 * Must be careful with the order of the tests. When someone has
751 	 * a ref to the folio, it may be possible that they dirty it then
752 	 * drop the reference. So if the dirty flag is tested before the
753 	 * refcount here, then the following race may occur:
754 	 *
755 	 * get_user_pages(&page);
756 	 * [user mapping goes away]
757 	 * write_to(page);
758 	 *				!folio_test_dirty(folio)    [good]
759 	 * folio_set_dirty(folio);
760 	 * folio_put(folio);
761 	 *				!refcount(folio)   [good, discard it]
762 	 *
763 	 * [oops, our write_to data is lost]
764 	 *
765 	 * Reversing the order of the tests ensures such a situation cannot
766 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
767 	 * load is not satisfied before that of folio->_refcount.
768 	 *
769 	 * Note that if the dirty flag is always set via folio_mark_dirty,
770 	 * and thus under the i_pages lock, then this ordering is not required.
771 	 */
772 	refcount = 1 + folio_nr_pages(folio);
773 	if (!folio_ref_freeze(folio, refcount))
774 		goto cannot_free;
775 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
776 	if (unlikely(folio_test_dirty(folio))) {
777 		folio_ref_unfreeze(folio, refcount);
778 		goto cannot_free;
779 	}
780 
781 	if (folio_test_swapcache(folio)) {
782 		swp_entry_t swap = folio->swap;
783 
784 		if (reclaimed && !mapping_exiting(mapping))
785 			shadow = workingset_eviction(folio, target_memcg);
786 		__delete_from_swap_cache(folio, swap, shadow);
787 		memcg1_swapout(folio, swap);
788 		xa_unlock_irq(&mapping->i_pages);
789 		put_swap_folio(folio, swap);
790 	} else {
791 		void (*free_folio)(struct folio *);
792 
793 		free_folio = mapping->a_ops->free_folio;
794 		/*
795 		 * Remember a shadow entry for reclaimed file cache in
796 		 * order to detect refaults, thus thrashing, later on.
797 		 *
798 		 * But don't store shadows in an address space that is
799 		 * already exiting.  This is not just an optimization,
800 		 * inode reclaim needs to empty out the radix tree or
801 		 * the nodes are lost.  Don't plant shadows behind its
802 		 * back.
803 		 *
804 		 * We also don't store shadows for DAX mappings because the
805 		 * only page cache folios found in these are zero pages
806 		 * covering holes, and because we don't want to mix DAX
807 		 * exceptional entries and shadow exceptional entries in the
808 		 * same address_space.
809 		 */
810 		if (reclaimed && folio_is_file_lru(folio) &&
811 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
812 			shadow = workingset_eviction(folio, target_memcg);
813 		__filemap_remove_folio(folio, shadow);
814 		xa_unlock_irq(&mapping->i_pages);
815 		if (mapping_shrinkable(mapping))
816 			inode_add_lru(mapping->host);
817 		spin_unlock(&mapping->host->i_lock);
818 
819 		if (free_folio)
820 			free_folio(folio);
821 	}
822 
823 	return 1;
824 
825 cannot_free:
826 	xa_unlock_irq(&mapping->i_pages);
827 	if (!folio_test_swapcache(folio))
828 		spin_unlock(&mapping->host->i_lock);
829 	return 0;
830 }
831 
832 /**
833  * remove_mapping() - Attempt to remove a folio from its mapping.
834  * @mapping: The address space.
835  * @folio: The folio to remove.
836  *
837  * If the folio is dirty, under writeback or if someone else has a ref
838  * on it, removal will fail.
839  * Return: The number of pages removed from the mapping.  0 if the folio
840  * could not be removed.
841  * Context: The caller should have a single refcount on the folio and
842  * hold its lock.
843  */
remove_mapping(struct address_space * mapping,struct folio * folio)844 long remove_mapping(struct address_space *mapping, struct folio *folio)
845 {
846 	if (__remove_mapping(mapping, folio, false, NULL)) {
847 		/*
848 		 * Unfreezing the refcount with 1 effectively
849 		 * drops the pagecache ref for us without requiring another
850 		 * atomic operation.
851 		 */
852 		folio_ref_unfreeze(folio, 1);
853 		return folio_nr_pages(folio);
854 	}
855 	return 0;
856 }
857 
858 /**
859  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
860  * @folio: Folio to be returned to an LRU list.
861  *
862  * Add previously isolated @folio to appropriate LRU list.
863  * The folio may still be unevictable for other reasons.
864  *
865  * Context: lru_lock must not be held, interrupts must be enabled.
866  */
folio_putback_lru(struct folio * folio)867 void folio_putback_lru(struct folio *folio)
868 {
869 	folio_add_lru(folio);
870 	folio_put(folio);		/* drop ref from isolate */
871 }
872 
873 enum folio_references {
874 	FOLIOREF_RECLAIM,
875 	FOLIOREF_RECLAIM_CLEAN,
876 	FOLIOREF_KEEP,
877 	FOLIOREF_ACTIVATE,
878 };
879 
880 #ifdef CONFIG_LRU_GEN
881 /*
882  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
883  * needs to be done by taking the folio off the LRU list and then adding it back
884  * with PG_active set. In contrast, the aging (page table walk) path uses
885  * folio_update_gen().
886  */
lru_gen_set_refs(struct folio * folio)887 static bool lru_gen_set_refs(struct folio *folio)
888 {
889 	/* see the comment on LRU_REFS_FLAGS */
890 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
891 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
892 		return false;
893 	}
894 
895 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
896 	return true;
897 }
898 #else
lru_gen_set_refs(struct folio * folio)899 static bool lru_gen_set_refs(struct folio *folio)
900 {
901 	return false;
902 }
903 #endif /* CONFIG_LRU_GEN */
904 
folio_check_references(struct folio * folio,struct scan_control * sc)905 static enum folio_references folio_check_references(struct folio *folio,
906 						  struct scan_control *sc)
907 {
908 	int referenced_ptes, referenced_folio;
909 	unsigned long vm_flags;
910 
911 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
912 					   &vm_flags);
913 
914 	/*
915 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
916 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
917 	 */
918 	if (vm_flags & VM_LOCKED)
919 		return FOLIOREF_ACTIVATE;
920 
921 	/*
922 	 * There are two cases to consider.
923 	 * 1) Rmap lock contention: rotate.
924 	 * 2) Skip the non-shared swapbacked folio mapped solely by
925 	 *    the exiting or OOM-reaped process.
926 	 */
927 	if (referenced_ptes == -1)
928 		return FOLIOREF_KEEP;
929 
930 	if (lru_gen_enabled()) {
931 		if (!referenced_ptes)
932 			return FOLIOREF_RECLAIM;
933 
934 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
935 	}
936 
937 	referenced_folio = folio_test_clear_referenced(folio);
938 
939 	if (referenced_ptes) {
940 		/*
941 		 * All mapped folios start out with page table
942 		 * references from the instantiating fault, so we need
943 		 * to look twice if a mapped file/anon folio is used more
944 		 * than once.
945 		 *
946 		 * Mark it and spare it for another trip around the
947 		 * inactive list.  Another page table reference will
948 		 * lead to its activation.
949 		 *
950 		 * Note: the mark is set for activated folios as well
951 		 * so that recently deactivated but used folios are
952 		 * quickly recovered.
953 		 */
954 		folio_set_referenced(folio);
955 
956 		if (referenced_folio || referenced_ptes > 1)
957 			return FOLIOREF_ACTIVATE;
958 
959 		/*
960 		 * Activate file-backed executable folios after first usage.
961 		 */
962 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
963 			return FOLIOREF_ACTIVATE;
964 
965 		return FOLIOREF_KEEP;
966 	}
967 
968 	/* Reclaim if clean, defer dirty folios to writeback */
969 	if (referenced_folio && folio_is_file_lru(folio))
970 		return FOLIOREF_RECLAIM_CLEAN;
971 
972 	return FOLIOREF_RECLAIM;
973 }
974 
975 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)976 static void folio_check_dirty_writeback(struct folio *folio,
977 				       bool *dirty, bool *writeback)
978 {
979 	struct address_space *mapping;
980 
981 	/*
982 	 * Anonymous folios are not handled by flushers and must be written
983 	 * from reclaim context. Do not stall reclaim based on them.
984 	 * MADV_FREE anonymous folios are put into inactive file list too.
985 	 * They could be mistakenly treated as file lru. So further anon
986 	 * test is needed.
987 	 */
988 	if (!folio_is_file_lru(folio) ||
989 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
990 		*dirty = false;
991 		*writeback = false;
992 		return;
993 	}
994 
995 	/* By default assume that the folio flags are accurate */
996 	*dirty = folio_test_dirty(folio);
997 	*writeback = folio_test_writeback(folio);
998 
999 	/* Verify dirty/writeback state if the filesystem supports it */
1000 	if (!folio_test_private(folio))
1001 		return;
1002 
1003 	mapping = folio_mapping(folio);
1004 	if (mapping && mapping->a_ops->is_dirty_writeback)
1005 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1006 }
1007 
alloc_migrate_folio(struct folio * src,unsigned long private)1008 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
1009 {
1010 	struct folio *dst;
1011 	nodemask_t *allowed_mask;
1012 	struct migration_target_control *mtc;
1013 
1014 	mtc = (struct migration_target_control *)private;
1015 
1016 	allowed_mask = mtc->nmask;
1017 	/*
1018 	 * make sure we allocate from the target node first also trying to
1019 	 * demote or reclaim pages from the target node via kswapd if we are
1020 	 * low on free memory on target node. If we don't do this and if
1021 	 * we have free memory on the slower(lower) memtier, we would start
1022 	 * allocating pages from slower(lower) memory tiers without even forcing
1023 	 * a demotion of cold pages from the target memtier. This can result
1024 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1025 	 */
1026 	mtc->nmask = NULL;
1027 	mtc->gfp_mask |= __GFP_THISNODE;
1028 	dst = alloc_migration_target(src, (unsigned long)mtc);
1029 	if (dst)
1030 		return dst;
1031 
1032 	mtc->gfp_mask &= ~__GFP_THISNODE;
1033 	mtc->nmask = allowed_mask;
1034 
1035 	return alloc_migration_target(src, (unsigned long)mtc);
1036 }
1037 
1038 /*
1039  * Take folios on @demote_folios and attempt to demote them to another node.
1040  * Folios which are not demoted are left on @demote_folios.
1041  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1042 static unsigned int demote_folio_list(struct list_head *demote_folios,
1043 				     struct pglist_data *pgdat)
1044 {
1045 	int target_nid = next_demotion_node(pgdat->node_id);
1046 	unsigned int nr_succeeded;
1047 	nodemask_t allowed_mask;
1048 
1049 	struct migration_target_control mtc = {
1050 		/*
1051 		 * Allocate from 'node', or fail quickly and quietly.
1052 		 * When this happens, 'page' will likely just be discarded
1053 		 * instead of migrated.
1054 		 */
1055 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1056 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1057 		.nid = target_nid,
1058 		.nmask = &allowed_mask,
1059 		.reason = MR_DEMOTION,
1060 	};
1061 
1062 	if (list_empty(demote_folios))
1063 		return 0;
1064 
1065 	if (target_nid == NUMA_NO_NODE)
1066 		return 0;
1067 
1068 	node_get_allowed_targets(pgdat, &allowed_mask);
1069 
1070 	/* Demotion ignores all cpuset and mempolicy settings */
1071 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1072 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1073 		      &nr_succeeded);
1074 
1075 	return nr_succeeded;
1076 }
1077 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1078 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1079 {
1080 	if (gfp_mask & __GFP_FS)
1081 		return true;
1082 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1083 		return false;
1084 	/*
1085 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1086 	 * providing this isn't SWP_FS_OPS.
1087 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1088 	 * but that will never affect SWP_FS_OPS, so the data_race
1089 	 * is safe.
1090 	 */
1091 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1092 }
1093 
1094 /*
1095  * shrink_folio_list() returns the number of reclaimed pages
1096  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1097 static unsigned int shrink_folio_list(struct list_head *folio_list,
1098 		struct pglist_data *pgdat, struct scan_control *sc,
1099 		struct reclaim_stat *stat, bool ignore_references)
1100 {
1101 	struct folio_batch free_folios;
1102 	LIST_HEAD(ret_folios);
1103 	LIST_HEAD(demote_folios);
1104 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1105 	unsigned int pgactivate = 0;
1106 	bool do_demote_pass;
1107 	struct swap_iocb *plug = NULL;
1108 
1109 	folio_batch_init(&free_folios);
1110 	memset(stat, 0, sizeof(*stat));
1111 	cond_resched();
1112 	do_demote_pass = can_demote(pgdat->node_id, sc);
1113 
1114 retry:
1115 	while (!list_empty(folio_list)) {
1116 		struct address_space *mapping;
1117 		struct folio *folio;
1118 		enum folio_references references = FOLIOREF_RECLAIM;
1119 		bool dirty, writeback;
1120 		unsigned int nr_pages;
1121 
1122 		cond_resched();
1123 
1124 		folio = lru_to_folio(folio_list);
1125 		list_del(&folio->lru);
1126 
1127 		if (!folio_trylock(folio))
1128 			goto keep;
1129 
1130 		if (folio_contain_hwpoisoned_page(folio)) {
1131 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1132 			folio_unlock(folio);
1133 			folio_put(folio);
1134 			continue;
1135 		}
1136 
1137 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1138 
1139 		nr_pages = folio_nr_pages(folio);
1140 
1141 		/* Account the number of base pages */
1142 		sc->nr_scanned += nr_pages;
1143 
1144 		if (unlikely(!folio_evictable(folio)))
1145 			goto activate_locked;
1146 
1147 		if (!sc->may_unmap && folio_mapped(folio))
1148 			goto keep_locked;
1149 
1150 		/*
1151 		 * The number of dirty pages determines if a node is marked
1152 		 * reclaim_congested. kswapd will stall and start writing
1153 		 * folios if the tail of the LRU is all dirty unqueued folios.
1154 		 */
1155 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1156 		if (dirty || writeback)
1157 			stat->nr_dirty += nr_pages;
1158 
1159 		if (dirty && !writeback)
1160 			stat->nr_unqueued_dirty += nr_pages;
1161 
1162 		/*
1163 		 * Treat this folio as congested if folios are cycling
1164 		 * through the LRU so quickly that the folios marked
1165 		 * for immediate reclaim are making it to the end of
1166 		 * the LRU a second time.
1167 		 */
1168 		if (writeback && folio_test_reclaim(folio))
1169 			stat->nr_congested += nr_pages;
1170 
1171 		/*
1172 		 * If a folio at the tail of the LRU is under writeback, there
1173 		 * are three cases to consider.
1174 		 *
1175 		 * 1) If reclaim is encountering an excessive number
1176 		 *    of folios under writeback and this folio has both
1177 		 *    the writeback and reclaim flags set, then it
1178 		 *    indicates that folios are being queued for I/O but
1179 		 *    are being recycled through the LRU before the I/O
1180 		 *    can complete. Waiting on the folio itself risks an
1181 		 *    indefinite stall if it is impossible to writeback
1182 		 *    the folio due to I/O error or disconnected storage
1183 		 *    so instead note that the LRU is being scanned too
1184 		 *    quickly and the caller can stall after the folio
1185 		 *    list has been processed.
1186 		 *
1187 		 * 2) Global or new memcg reclaim encounters a folio that is
1188 		 *    not marked for immediate reclaim, or the caller does not
1189 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1190 		 *    not to fs). In this case mark the folio for immediate
1191 		 *    reclaim and continue scanning.
1192 		 *
1193 		 *    Require may_enter_fs() because we would wait on fs, which
1194 		 *    may not have submitted I/O yet. And the loop driver might
1195 		 *    enter reclaim, and deadlock if it waits on a folio for
1196 		 *    which it is needed to do the write (loop masks off
1197 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1198 		 *    would probably show more reasons.
1199 		 *
1200 		 * 3) Legacy memcg encounters a folio that already has the
1201 		 *    reclaim flag set. memcg does not have any dirty folio
1202 		 *    throttling so we could easily OOM just because too many
1203 		 *    folios are in writeback and there is nothing else to
1204 		 *    reclaim. Wait for the writeback to complete.
1205 		 *
1206 		 * In cases 1) and 2) we activate the folios to get them out of
1207 		 * the way while we continue scanning for clean folios on the
1208 		 * inactive list and refilling from the active list. The
1209 		 * observation here is that waiting for disk writes is more
1210 		 * expensive than potentially causing reloads down the line.
1211 		 * Since they're marked for immediate reclaim, they won't put
1212 		 * memory pressure on the cache working set any longer than it
1213 		 * takes to write them to disk.
1214 		 */
1215 		if (folio_test_writeback(folio)) {
1216 			/* Case 1 above */
1217 			if (current_is_kswapd() &&
1218 			    folio_test_reclaim(folio) &&
1219 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220 				stat->nr_immediate += nr_pages;
1221 				goto activate_locked;
1222 
1223 			/* Case 2 above */
1224 			} else if (writeback_throttling_sane(sc) ||
1225 			    !folio_test_reclaim(folio) ||
1226 			    !may_enter_fs(folio, sc->gfp_mask)) {
1227 				/*
1228 				 * This is slightly racy -
1229 				 * folio_end_writeback() might have
1230 				 * just cleared the reclaim flag, then
1231 				 * setting the reclaim flag here ends up
1232 				 * interpreted as the readahead flag - but
1233 				 * that does not matter enough to care.
1234 				 * What we do want is for this folio to
1235 				 * have the reclaim flag set next time
1236 				 * memcg reclaim reaches the tests above,
1237 				 * so it will then wait for writeback to
1238 				 * avoid OOM; and it's also appropriate
1239 				 * in global reclaim.
1240 				 */
1241 				folio_set_reclaim(folio);
1242 				stat->nr_writeback += nr_pages;
1243 				goto activate_locked;
1244 
1245 			/* Case 3 above */
1246 			} else {
1247 				folio_unlock(folio);
1248 				folio_wait_writeback(folio);
1249 				/* then go back and try same folio again */
1250 				list_add_tail(&folio->lru, folio_list);
1251 				continue;
1252 			}
1253 		}
1254 
1255 		if (!ignore_references)
1256 			references = folio_check_references(folio, sc);
1257 
1258 		switch (references) {
1259 		case FOLIOREF_ACTIVATE:
1260 			goto activate_locked;
1261 		case FOLIOREF_KEEP:
1262 			stat->nr_ref_keep += nr_pages;
1263 			goto keep_locked;
1264 		case FOLIOREF_RECLAIM:
1265 		case FOLIOREF_RECLAIM_CLEAN:
1266 			; /* try to reclaim the folio below */
1267 		}
1268 
1269 		/*
1270 		 * Before reclaiming the folio, try to relocate
1271 		 * its contents to another node.
1272 		 */
1273 		if (do_demote_pass &&
1274 		    (thp_migration_supported() || !folio_test_large(folio))) {
1275 			list_add(&folio->lru, &demote_folios);
1276 			folio_unlock(folio);
1277 			continue;
1278 		}
1279 
1280 		/*
1281 		 * Anonymous process memory has backing store?
1282 		 * Try to allocate it some swap space here.
1283 		 * Lazyfree folio could be freed directly
1284 		 */
1285 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1286 			if (!folio_test_swapcache(folio)) {
1287 				if (!(sc->gfp_mask & __GFP_IO))
1288 					goto keep_locked;
1289 				if (folio_maybe_dma_pinned(folio))
1290 					goto keep_locked;
1291 				if (folio_test_large(folio)) {
1292 					/* cannot split folio, skip it */
1293 					if (!can_split_folio(folio, 1, NULL))
1294 						goto activate_locked;
1295 					/*
1296 					 * Split partially mapped folios right away.
1297 					 * We can free the unmapped pages without IO.
1298 					 */
1299 					if (data_race(!list_empty(&folio->_deferred_list) &&
1300 					    folio_test_partially_mapped(folio)) &&
1301 					    split_folio_to_list(folio, folio_list))
1302 						goto activate_locked;
1303 				}
1304 				if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
1305 					int __maybe_unused order = folio_order(folio);
1306 
1307 					if (!folio_test_large(folio))
1308 						goto activate_locked_split;
1309 					/* Fallback to swap normal pages */
1310 					if (split_folio_to_list(folio, folio_list))
1311 						goto activate_locked;
1312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1313 					if (nr_pages >= HPAGE_PMD_NR) {
1314 						count_memcg_folio_events(folio,
1315 							THP_SWPOUT_FALLBACK, 1);
1316 						count_vm_event(THP_SWPOUT_FALLBACK);
1317 					}
1318 #endif
1319 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1320 					if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
1321 						goto activate_locked_split;
1322 				}
1323 				/*
1324 				 * Normally the folio will be dirtied in unmap because its
1325 				 * pte should be dirty. A special case is MADV_FREE page. The
1326 				 * page's pte could have dirty bit cleared but the folio's
1327 				 * SwapBacked flag is still set because clearing the dirty bit
1328 				 * and SwapBacked flag has no lock protected. For such folio,
1329 				 * unmap will not set dirty bit for it, so folio reclaim will
1330 				 * not write the folio out. This can cause data corruption when
1331 				 * the folio is swapped in later. Always setting the dirty flag
1332 				 * for the folio solves the problem.
1333 				 */
1334 				folio_mark_dirty(folio);
1335 			}
1336 		}
1337 
1338 		/*
1339 		 * If the folio was split above, the tail pages will make
1340 		 * their own pass through this function and be accounted
1341 		 * then.
1342 		 */
1343 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1344 			sc->nr_scanned -= (nr_pages - 1);
1345 			nr_pages = 1;
1346 		}
1347 
1348 		/*
1349 		 * The folio is mapped into the page tables of one or more
1350 		 * processes. Try to unmap it here.
1351 		 */
1352 		if (folio_mapped(folio)) {
1353 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1354 			bool was_swapbacked = folio_test_swapbacked(folio);
1355 
1356 			if (folio_test_pmd_mappable(folio))
1357 				flags |= TTU_SPLIT_HUGE_PMD;
1358 			/*
1359 			 * Without TTU_SYNC, try_to_unmap will only begin to
1360 			 * hold PTL from the first present PTE within a large
1361 			 * folio. Some initial PTEs might be skipped due to
1362 			 * races with parallel PTE writes in which PTEs can be
1363 			 * cleared temporarily before being written new present
1364 			 * values. This will lead to a large folio is still
1365 			 * mapped while some subpages have been partially
1366 			 * unmapped after try_to_unmap; TTU_SYNC helps
1367 			 * try_to_unmap acquire PTL from the first PTE,
1368 			 * eliminating the influence of temporary PTE values.
1369 			 */
1370 			if (folio_test_large(folio))
1371 				flags |= TTU_SYNC;
1372 
1373 			try_to_unmap(folio, flags);
1374 			if (folio_mapped(folio)) {
1375 				stat->nr_unmap_fail += nr_pages;
1376 				if (!was_swapbacked &&
1377 				    folio_test_swapbacked(folio))
1378 					stat->nr_lazyfree_fail += nr_pages;
1379 				goto activate_locked;
1380 			}
1381 		}
1382 
1383 		/*
1384 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1385 		 * No point in trying to reclaim folio if it is pinned.
1386 		 * Furthermore we don't want to reclaim underlying fs metadata
1387 		 * if the folio is pinned and thus potentially modified by the
1388 		 * pinning process as that may upset the filesystem.
1389 		 */
1390 		if (folio_maybe_dma_pinned(folio))
1391 			goto activate_locked;
1392 
1393 		mapping = folio_mapping(folio);
1394 		if (folio_test_dirty(folio)) {
1395 			/*
1396 			 * Only kswapd can writeback filesystem folios
1397 			 * to avoid risk of stack overflow. But avoid
1398 			 * injecting inefficient single-folio I/O into
1399 			 * flusher writeback as much as possible: only
1400 			 * write folios when we've encountered many
1401 			 * dirty folios, and when we've already scanned
1402 			 * the rest of the LRU for clean folios and see
1403 			 * the same dirty folios again (with the reclaim
1404 			 * flag set).
1405 			 */
1406 			if (folio_is_file_lru(folio) &&
1407 			    (!current_is_kswapd() ||
1408 			     !folio_test_reclaim(folio) ||
1409 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1410 				/*
1411 				 * Immediately reclaim when written back.
1412 				 * Similar in principle to folio_deactivate()
1413 				 * except we already have the folio isolated
1414 				 * and know it's dirty
1415 				 */
1416 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1417 						nr_pages);
1418 				folio_set_reclaim(folio);
1419 
1420 				goto activate_locked;
1421 			}
1422 
1423 			if (references == FOLIOREF_RECLAIM_CLEAN)
1424 				goto keep_locked;
1425 			if (!may_enter_fs(folio, sc->gfp_mask))
1426 				goto keep_locked;
1427 			if (!sc->may_writepage)
1428 				goto keep_locked;
1429 
1430 			/*
1431 			 * Folio is dirty. Flush the TLB if a writable entry
1432 			 * potentially exists to avoid CPU writes after I/O
1433 			 * starts and then write it out here.
1434 			 */
1435 			try_to_unmap_flush_dirty();
1436 			switch (pageout(folio, mapping, &plug, folio_list)) {
1437 			case PAGE_KEEP:
1438 				goto keep_locked;
1439 			case PAGE_ACTIVATE:
1440 				/*
1441 				 * If shmem folio is split when writeback to swap,
1442 				 * the tail pages will make their own pass through
1443 				 * this function and be accounted then.
1444 				 */
1445 				if (nr_pages > 1 && !folio_test_large(folio)) {
1446 					sc->nr_scanned -= (nr_pages - 1);
1447 					nr_pages = 1;
1448 				}
1449 				goto activate_locked;
1450 			case PAGE_SUCCESS:
1451 				if (nr_pages > 1 && !folio_test_large(folio)) {
1452 					sc->nr_scanned -= (nr_pages - 1);
1453 					nr_pages = 1;
1454 				}
1455 				stat->nr_pageout += nr_pages;
1456 
1457 				if (folio_test_writeback(folio))
1458 					goto keep;
1459 				if (folio_test_dirty(folio))
1460 					goto keep;
1461 
1462 				/*
1463 				 * A synchronous write - probably a ramdisk.  Go
1464 				 * ahead and try to reclaim the folio.
1465 				 */
1466 				if (!folio_trylock(folio))
1467 					goto keep;
1468 				if (folio_test_dirty(folio) ||
1469 				    folio_test_writeback(folio))
1470 					goto keep_locked;
1471 				mapping = folio_mapping(folio);
1472 				fallthrough;
1473 			case PAGE_CLEAN:
1474 				; /* try to free the folio below */
1475 			}
1476 		}
1477 
1478 		/*
1479 		 * If the folio has buffers, try to free the buffer
1480 		 * mappings associated with this folio. If we succeed
1481 		 * we try to free the folio as well.
1482 		 *
1483 		 * We do this even if the folio is dirty.
1484 		 * filemap_release_folio() does not perform I/O, but it
1485 		 * is possible for a folio to have the dirty flag set,
1486 		 * but it is actually clean (all its buffers are clean).
1487 		 * This happens if the buffers were written out directly,
1488 		 * with submit_bh(). ext3 will do this, as well as
1489 		 * the blockdev mapping.  filemap_release_folio() will
1490 		 * discover that cleanness and will drop the buffers
1491 		 * and mark the folio clean - it can be freed.
1492 		 *
1493 		 * Rarely, folios can have buffers and no ->mapping.
1494 		 * These are the folios which were not successfully
1495 		 * invalidated in truncate_cleanup_folio().  We try to
1496 		 * drop those buffers here and if that worked, and the
1497 		 * folio is no longer mapped into process address space
1498 		 * (refcount == 1) it can be freed.  Otherwise, leave
1499 		 * the folio on the LRU so it is swappable.
1500 		 */
1501 		if (folio_needs_release(folio)) {
1502 			if (!filemap_release_folio(folio, sc->gfp_mask))
1503 				goto activate_locked;
1504 			if (!mapping && folio_ref_count(folio) == 1) {
1505 				folio_unlock(folio);
1506 				if (folio_put_testzero(folio))
1507 					goto free_it;
1508 				else {
1509 					/*
1510 					 * rare race with speculative reference.
1511 					 * the speculative reference will free
1512 					 * this folio shortly, so we may
1513 					 * increment nr_reclaimed here (and
1514 					 * leave it off the LRU).
1515 					 */
1516 					nr_reclaimed += nr_pages;
1517 					continue;
1518 				}
1519 			}
1520 		}
1521 
1522 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1523 			/* follow __remove_mapping for reference */
1524 			if (!folio_ref_freeze(folio, 1))
1525 				goto keep_locked;
1526 			/*
1527 			 * The folio has only one reference left, which is
1528 			 * from the isolation. After the caller puts the
1529 			 * folio back on the lru and drops the reference, the
1530 			 * folio will be freed anyway. It doesn't matter
1531 			 * which lru it goes on. So we don't bother checking
1532 			 * the dirty flag here.
1533 			 */
1534 			count_vm_events(PGLAZYFREED, nr_pages);
1535 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1536 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1537 							 sc->target_mem_cgroup))
1538 			goto keep_locked;
1539 
1540 		folio_unlock(folio);
1541 free_it:
1542 		/*
1543 		 * Folio may get swapped out as a whole, need to account
1544 		 * all pages in it.
1545 		 */
1546 		nr_reclaimed += nr_pages;
1547 
1548 		folio_unqueue_deferred_split(folio);
1549 		if (folio_batch_add(&free_folios, folio) == 0) {
1550 			mem_cgroup_uncharge_folios(&free_folios);
1551 			try_to_unmap_flush();
1552 			free_unref_folios(&free_folios);
1553 		}
1554 		continue;
1555 
1556 activate_locked_split:
1557 		/*
1558 		 * The tail pages that are failed to add into swap cache
1559 		 * reach here.  Fixup nr_scanned and nr_pages.
1560 		 */
1561 		if (nr_pages > 1) {
1562 			sc->nr_scanned -= (nr_pages - 1);
1563 			nr_pages = 1;
1564 		}
1565 activate_locked:
1566 		/* Not a candidate for swapping, so reclaim swap space. */
1567 		if (folio_test_swapcache(folio) &&
1568 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1569 			folio_free_swap(folio);
1570 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1571 		if (!folio_test_mlocked(folio)) {
1572 			int type = folio_is_file_lru(folio);
1573 			folio_set_active(folio);
1574 			stat->nr_activate[type] += nr_pages;
1575 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1576 		}
1577 keep_locked:
1578 		folio_unlock(folio);
1579 keep:
1580 		list_add(&folio->lru, &ret_folios);
1581 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1582 				folio_test_unevictable(folio), folio);
1583 	}
1584 	/* 'folio_list' is always empty here */
1585 
1586 	/* Migrate folios selected for demotion */
1587 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1588 	nr_reclaimed += nr_demoted;
1589 	stat->nr_demoted += nr_demoted;
1590 	/* Folios that could not be demoted are still in @demote_folios */
1591 	if (!list_empty(&demote_folios)) {
1592 		/* Folios which weren't demoted go back on @folio_list */
1593 		list_splice_init(&demote_folios, folio_list);
1594 
1595 		/*
1596 		 * goto retry to reclaim the undemoted folios in folio_list if
1597 		 * desired.
1598 		 *
1599 		 * Reclaiming directly from top tier nodes is not often desired
1600 		 * due to it breaking the LRU ordering: in general memory
1601 		 * should be reclaimed from lower tier nodes and demoted from
1602 		 * top tier nodes.
1603 		 *
1604 		 * However, disabling reclaim from top tier nodes entirely
1605 		 * would cause ooms in edge scenarios where lower tier memory
1606 		 * is unreclaimable for whatever reason, eg memory being
1607 		 * mlocked or too hot to reclaim. We can disable reclaim
1608 		 * from top tier nodes in proactive reclaim though as that is
1609 		 * not real memory pressure.
1610 		 */
1611 		if (!sc->proactive) {
1612 			do_demote_pass = false;
1613 			goto retry;
1614 		}
1615 	}
1616 
1617 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1618 
1619 	mem_cgroup_uncharge_folios(&free_folios);
1620 	try_to_unmap_flush();
1621 	free_unref_folios(&free_folios);
1622 
1623 	list_splice(&ret_folios, folio_list);
1624 	count_vm_events(PGACTIVATE, pgactivate);
1625 
1626 	if (plug)
1627 		swap_write_unplug(plug);
1628 	return nr_reclaimed;
1629 }
1630 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1631 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1632 					   struct list_head *folio_list)
1633 {
1634 	struct scan_control sc = {
1635 		.gfp_mask = GFP_KERNEL,
1636 		.may_unmap = 1,
1637 	};
1638 	struct reclaim_stat stat;
1639 	unsigned int nr_reclaimed;
1640 	struct folio *folio, *next;
1641 	LIST_HEAD(clean_folios);
1642 	unsigned int noreclaim_flag;
1643 
1644 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1645 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1646 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1647 		    !folio_test_unevictable(folio)) {
1648 			folio_clear_active(folio);
1649 			list_move(&folio->lru, &clean_folios);
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * We should be safe here since we are only dealing with file pages and
1655 	 * we are not kswapd and therefore cannot write dirty file pages. But
1656 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1657 	 * change in the future.
1658 	 */
1659 	noreclaim_flag = memalloc_noreclaim_save();
1660 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1661 					&stat, true);
1662 	memalloc_noreclaim_restore(noreclaim_flag);
1663 
1664 	list_splice(&clean_folios, folio_list);
1665 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1666 			    -(long)nr_reclaimed);
1667 	/*
1668 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1669 	 * they will rotate back to anonymous LRU in the end if it failed to
1670 	 * discard so isolated count will be mismatched.
1671 	 * Compensate the isolated count for both LRU lists.
1672 	 */
1673 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1674 			    stat.nr_lazyfree_fail);
1675 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1676 			    -(long)stat.nr_lazyfree_fail);
1677 	return nr_reclaimed;
1678 }
1679 
1680 /*
1681  * Update LRU sizes after isolating pages. The LRU size updates must
1682  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1683  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1684 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1685 			enum lru_list lru, unsigned long *nr_zone_taken)
1686 {
1687 	int zid;
1688 
1689 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1690 		if (!nr_zone_taken[zid])
1691 			continue;
1692 
1693 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1694 	}
1695 
1696 }
1697 
1698 /*
1699  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1700  *
1701  * lruvec->lru_lock is heavily contended.  Some of the functions that
1702  * shrink the lists perform better by taking out a batch of pages
1703  * and working on them outside the LRU lock.
1704  *
1705  * For pagecache intensive workloads, this function is the hottest
1706  * spot in the kernel (apart from copy_*_user functions).
1707  *
1708  * Lru_lock must be held before calling this function.
1709  *
1710  * @nr_to_scan:	The number of eligible pages to look through on the list.
1711  * @lruvec:	The LRU vector to pull pages from.
1712  * @dst:	The temp list to put pages on to.
1713  * @nr_scanned:	The number of pages that were scanned.
1714  * @sc:		The scan_control struct for this reclaim session
1715  * @lru:	LRU list id for isolating
1716  *
1717  * returns how many pages were moved onto *@dst.
1718  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1719 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1720 		struct lruvec *lruvec, struct list_head *dst,
1721 		unsigned long *nr_scanned, struct scan_control *sc,
1722 		enum lru_list lru)
1723 {
1724 	struct list_head *src = &lruvec->lists[lru];
1725 	unsigned long nr_taken = 0;
1726 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1727 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1728 	unsigned long skipped = 0;
1729 	unsigned long scan, total_scan, nr_pages;
1730 	unsigned long max_nr_skipped = 0;
1731 	LIST_HEAD(folios_skipped);
1732 
1733 	total_scan = 0;
1734 	scan = 0;
1735 	while (scan < nr_to_scan && !list_empty(src)) {
1736 		struct list_head *move_to = src;
1737 		struct folio *folio;
1738 
1739 		folio = lru_to_folio(src);
1740 		prefetchw_prev_lru_folio(folio, src, flags);
1741 
1742 		nr_pages = folio_nr_pages(folio);
1743 		total_scan += nr_pages;
1744 
1745 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1746 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1747 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1748 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1749 			move_to = &folios_skipped;
1750 			max_nr_skipped++;
1751 			goto move;
1752 		}
1753 
1754 		/*
1755 		 * Do not count skipped folios because that makes the function
1756 		 * return with no isolated folios if the LRU mostly contains
1757 		 * ineligible folios.  This causes the VM to not reclaim any
1758 		 * folios, triggering a premature OOM.
1759 		 * Account all pages in a folio.
1760 		 */
1761 		scan += nr_pages;
1762 
1763 		if (!folio_test_lru(folio))
1764 			goto move;
1765 		if (!sc->may_unmap && folio_mapped(folio))
1766 			goto move;
1767 
1768 		/*
1769 		 * Be careful not to clear the lru flag until after we're
1770 		 * sure the folio is not being freed elsewhere -- the
1771 		 * folio release code relies on it.
1772 		 */
1773 		if (unlikely(!folio_try_get(folio)))
1774 			goto move;
1775 
1776 		if (!folio_test_clear_lru(folio)) {
1777 			/* Another thread is already isolating this folio */
1778 			folio_put(folio);
1779 			goto move;
1780 		}
1781 
1782 		nr_taken += nr_pages;
1783 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1784 		move_to = dst;
1785 move:
1786 		list_move(&folio->lru, move_to);
1787 	}
1788 
1789 	/*
1790 	 * Splice any skipped folios to the start of the LRU list. Note that
1791 	 * this disrupts the LRU order when reclaiming for lower zones but
1792 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1793 	 * scanning would soon rescan the same folios to skip and waste lots
1794 	 * of cpu cycles.
1795 	 */
1796 	if (!list_empty(&folios_skipped)) {
1797 		int zid;
1798 
1799 		list_splice(&folios_skipped, src);
1800 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1801 			if (!nr_skipped[zid])
1802 				continue;
1803 
1804 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1805 			skipped += nr_skipped[zid];
1806 		}
1807 	}
1808 	*nr_scanned = total_scan;
1809 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1810 				    total_scan, skipped, nr_taken, lru);
1811 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1812 	return nr_taken;
1813 }
1814 
1815 /**
1816  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1817  * @folio: Folio to isolate from its LRU list.
1818  *
1819  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1820  * corresponding to whatever LRU list the folio was on.
1821  *
1822  * The folio will have its LRU flag cleared.  If it was found on the
1823  * active list, it will have the Active flag set.  If it was found on the
1824  * unevictable list, it will have the Unevictable flag set.  These flags
1825  * may need to be cleared by the caller before letting the page go.
1826  *
1827  * Context:
1828  *
1829  * (1) Must be called with an elevated refcount on the folio. This is a
1830  *     fundamental difference from isolate_lru_folios() (which is called
1831  *     without a stable reference).
1832  * (2) The lru_lock must not be held.
1833  * (3) Interrupts must be enabled.
1834  *
1835  * Return: true if the folio was removed from an LRU list.
1836  * false if the folio was not on an LRU list.
1837  */
folio_isolate_lru(struct folio * folio)1838 bool folio_isolate_lru(struct folio *folio)
1839 {
1840 	bool ret = false;
1841 
1842 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1843 
1844 	if (folio_test_clear_lru(folio)) {
1845 		struct lruvec *lruvec;
1846 
1847 		folio_get(folio);
1848 		lruvec = folio_lruvec_lock_irq(folio);
1849 		lruvec_del_folio(lruvec, folio);
1850 		unlock_page_lruvec_irq(lruvec);
1851 		ret = true;
1852 	}
1853 
1854 	return ret;
1855 }
1856 
1857 /*
1858  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1859  * then get rescheduled. When there are massive number of tasks doing page
1860  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1861  * the LRU list will go small and be scanned faster than necessary, leading to
1862  * unnecessary swapping, thrashing and OOM.
1863  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1864 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1865 		struct scan_control *sc)
1866 {
1867 	unsigned long inactive, isolated;
1868 	bool too_many;
1869 
1870 	if (current_is_kswapd())
1871 		return false;
1872 
1873 	if (!writeback_throttling_sane(sc))
1874 		return false;
1875 
1876 	if (file) {
1877 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1878 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1879 	} else {
1880 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1881 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1882 	}
1883 
1884 	/*
1885 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1886 	 * won't get blocked by normal direct-reclaimers, forming a circular
1887 	 * deadlock.
1888 	 */
1889 	if (gfp_has_io_fs(sc->gfp_mask))
1890 		inactive >>= 3;
1891 
1892 	too_many = isolated > inactive;
1893 
1894 	/* Wake up tasks throttled due to too_many_isolated. */
1895 	if (!too_many)
1896 		wake_throttle_isolated(pgdat);
1897 
1898 	return too_many;
1899 }
1900 
1901 /*
1902  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1903  *
1904  * Returns the number of pages moved to the given lruvec.
1905  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1906 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1907 		struct list_head *list)
1908 {
1909 	int nr_pages, nr_moved = 0;
1910 	struct folio_batch free_folios;
1911 
1912 	folio_batch_init(&free_folios);
1913 	while (!list_empty(list)) {
1914 		struct folio *folio = lru_to_folio(list);
1915 
1916 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1917 		list_del(&folio->lru);
1918 		if (unlikely(!folio_evictable(folio))) {
1919 			spin_unlock_irq(&lruvec->lru_lock);
1920 			folio_putback_lru(folio);
1921 			spin_lock_irq(&lruvec->lru_lock);
1922 			continue;
1923 		}
1924 
1925 		/*
1926 		 * The folio_set_lru needs to be kept here for list integrity.
1927 		 * Otherwise:
1928 		 *   #0 move_folios_to_lru             #1 release_pages
1929 		 *   if (!folio_put_testzero())
1930 		 *				      if (folio_put_testzero())
1931 		 *				        !lru //skip lru_lock
1932 		 *     folio_set_lru()
1933 		 *     list_add(&folio->lru,)
1934 		 *                                        list_add(&folio->lru,)
1935 		 */
1936 		folio_set_lru(folio);
1937 
1938 		if (unlikely(folio_put_testzero(folio))) {
1939 			__folio_clear_lru_flags(folio);
1940 
1941 			folio_unqueue_deferred_split(folio);
1942 			if (folio_batch_add(&free_folios, folio) == 0) {
1943 				spin_unlock_irq(&lruvec->lru_lock);
1944 				mem_cgroup_uncharge_folios(&free_folios);
1945 				free_unref_folios(&free_folios);
1946 				spin_lock_irq(&lruvec->lru_lock);
1947 			}
1948 
1949 			continue;
1950 		}
1951 
1952 		/*
1953 		 * All pages were isolated from the same lruvec (and isolation
1954 		 * inhibits memcg migration).
1955 		 */
1956 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1957 		lruvec_add_folio(lruvec, folio);
1958 		nr_pages = folio_nr_pages(folio);
1959 		nr_moved += nr_pages;
1960 		if (folio_test_active(folio))
1961 			workingset_age_nonresident(lruvec, nr_pages);
1962 	}
1963 
1964 	if (free_folios.nr) {
1965 		spin_unlock_irq(&lruvec->lru_lock);
1966 		mem_cgroup_uncharge_folios(&free_folios);
1967 		free_unref_folios(&free_folios);
1968 		spin_lock_irq(&lruvec->lru_lock);
1969 	}
1970 
1971 	return nr_moved;
1972 }
1973 
1974 /*
1975  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1976  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1977  * we should not throttle.  Otherwise it is safe to do so.
1978  */
current_may_throttle(void)1979 static int current_may_throttle(void)
1980 {
1981 	return !(current->flags & PF_LOCAL_THROTTLE);
1982 }
1983 
1984 /*
1985  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1986  * of reclaimed pages
1987  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1988 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1989 		struct lruvec *lruvec, struct scan_control *sc,
1990 		enum lru_list lru)
1991 {
1992 	LIST_HEAD(folio_list);
1993 	unsigned long nr_scanned;
1994 	unsigned int nr_reclaimed = 0;
1995 	unsigned long nr_taken;
1996 	struct reclaim_stat stat;
1997 	bool file = is_file_lru(lru);
1998 	enum vm_event_item item;
1999 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2000 	bool stalled = false;
2001 
2002 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2003 		if (stalled)
2004 			return 0;
2005 
2006 		/* wait a bit for the reclaimer. */
2007 		stalled = true;
2008 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2009 
2010 		/* We are about to die and free our memory. Return now. */
2011 		if (fatal_signal_pending(current))
2012 			return SWAP_CLUSTER_MAX;
2013 	}
2014 
2015 	lru_add_drain();
2016 
2017 	spin_lock_irq(&lruvec->lru_lock);
2018 
2019 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2020 				     &nr_scanned, sc, lru);
2021 
2022 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2023 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2024 	if (!cgroup_reclaim(sc))
2025 		__count_vm_events(item, nr_scanned);
2026 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2027 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2028 
2029 	spin_unlock_irq(&lruvec->lru_lock);
2030 
2031 	if (nr_taken == 0)
2032 		return 0;
2033 
2034 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2035 
2036 	spin_lock_irq(&lruvec->lru_lock);
2037 	move_folios_to_lru(lruvec, &folio_list);
2038 
2039 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2040 					stat.nr_demoted);
2041 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2042 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2043 	if (!cgroup_reclaim(sc))
2044 		__count_vm_events(item, nr_reclaimed);
2045 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2046 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2047 	spin_unlock_irq(&lruvec->lru_lock);
2048 
2049 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2050 
2051 	/*
2052 	 * If dirty folios are scanned that are not queued for IO, it
2053 	 * implies that flushers are not doing their job. This can
2054 	 * happen when memory pressure pushes dirty folios to the end of
2055 	 * the LRU before the dirty limits are breached and the dirty
2056 	 * data has expired. It can also happen when the proportion of
2057 	 * dirty folios grows not through writes but through memory
2058 	 * pressure reclaiming all the clean cache. And in some cases,
2059 	 * the flushers simply cannot keep up with the allocation
2060 	 * rate. Nudge the flusher threads in case they are asleep.
2061 	 */
2062 	if (stat.nr_unqueued_dirty == nr_taken) {
2063 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2064 		/*
2065 		 * For cgroupv1 dirty throttling is achieved by waking up
2066 		 * the kernel flusher here and later waiting on folios
2067 		 * which are in writeback to finish (see shrink_folio_list()).
2068 		 *
2069 		 * Flusher may not be able to issue writeback quickly
2070 		 * enough for cgroupv1 writeback throttling to work
2071 		 * on a large system.
2072 		 */
2073 		if (!writeback_throttling_sane(sc))
2074 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2075 	}
2076 
2077 	sc->nr.dirty += stat.nr_dirty;
2078 	sc->nr.congested += stat.nr_congested;
2079 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2080 	sc->nr.writeback += stat.nr_writeback;
2081 	sc->nr.immediate += stat.nr_immediate;
2082 	sc->nr.taken += nr_taken;
2083 	if (file)
2084 		sc->nr.file_taken += nr_taken;
2085 
2086 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2087 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2088 	return nr_reclaimed;
2089 }
2090 
2091 /*
2092  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2093  *
2094  * We move them the other way if the folio is referenced by one or more
2095  * processes.
2096  *
2097  * If the folios are mostly unmapped, the processing is fast and it is
2098  * appropriate to hold lru_lock across the whole operation.  But if
2099  * the folios are mapped, the processing is slow (folio_referenced()), so
2100  * we should drop lru_lock around each folio.  It's impossible to balance
2101  * this, so instead we remove the folios from the LRU while processing them.
2102  * It is safe to rely on the active flag against the non-LRU folios in here
2103  * because nobody will play with that bit on a non-LRU folio.
2104  *
2105  * The downside is that we have to touch folio->_refcount against each folio.
2106  * But we had to alter folio->flags anyway.
2107  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2108 static void shrink_active_list(unsigned long nr_to_scan,
2109 			       struct lruvec *lruvec,
2110 			       struct scan_control *sc,
2111 			       enum lru_list lru)
2112 {
2113 	unsigned long nr_taken;
2114 	unsigned long nr_scanned;
2115 	unsigned long vm_flags;
2116 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2117 	LIST_HEAD(l_active);
2118 	LIST_HEAD(l_inactive);
2119 	unsigned nr_deactivate, nr_activate;
2120 	unsigned nr_rotated = 0;
2121 	bool file = is_file_lru(lru);
2122 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123 
2124 	lru_add_drain();
2125 
2126 	spin_lock_irq(&lruvec->lru_lock);
2127 
2128 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2129 				     &nr_scanned, sc, lru);
2130 
2131 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2132 
2133 	if (!cgroup_reclaim(sc))
2134 		__count_vm_events(PGREFILL, nr_scanned);
2135 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2136 
2137 	spin_unlock_irq(&lruvec->lru_lock);
2138 
2139 	while (!list_empty(&l_hold)) {
2140 		struct folio *folio;
2141 
2142 		cond_resched();
2143 		folio = lru_to_folio(&l_hold);
2144 		list_del(&folio->lru);
2145 
2146 		if (unlikely(!folio_evictable(folio))) {
2147 			folio_putback_lru(folio);
2148 			continue;
2149 		}
2150 
2151 		if (unlikely(buffer_heads_over_limit)) {
2152 			if (folio_needs_release(folio) &&
2153 			    folio_trylock(folio)) {
2154 				filemap_release_folio(folio, 0);
2155 				folio_unlock(folio);
2156 			}
2157 		}
2158 
2159 		/* Referenced or rmap lock contention: rotate */
2160 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2161 				     &vm_flags) != 0) {
2162 			/*
2163 			 * Identify referenced, file-backed active folios and
2164 			 * give them one more trip around the active list. So
2165 			 * that executable code get better chances to stay in
2166 			 * memory under moderate memory pressure.  Anon folios
2167 			 * are not likely to be evicted by use-once streaming
2168 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2169 			 * so we ignore them here.
2170 			 */
2171 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2172 				nr_rotated += folio_nr_pages(folio);
2173 				list_add(&folio->lru, &l_active);
2174 				continue;
2175 			}
2176 		}
2177 
2178 		folio_clear_active(folio);	/* we are de-activating */
2179 		folio_set_workingset(folio);
2180 		list_add(&folio->lru, &l_inactive);
2181 	}
2182 
2183 	/*
2184 	 * Move folios back to the lru list.
2185 	 */
2186 	spin_lock_irq(&lruvec->lru_lock);
2187 
2188 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2189 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2190 
2191 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2192 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2193 
2194 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2195 	spin_unlock_irq(&lruvec->lru_lock);
2196 
2197 	if (nr_rotated)
2198 		lru_note_cost(lruvec, file, 0, nr_rotated);
2199 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2200 			nr_deactivate, nr_rotated, sc->priority, file);
2201 }
2202 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2203 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2204 				      struct pglist_data *pgdat)
2205 {
2206 	struct reclaim_stat stat;
2207 	unsigned int nr_reclaimed;
2208 	struct folio *folio;
2209 	struct scan_control sc = {
2210 		.gfp_mask = GFP_KERNEL,
2211 		.may_writepage = 1,
2212 		.may_unmap = 1,
2213 		.may_swap = 1,
2214 		.no_demotion = 1,
2215 	};
2216 
2217 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2218 	while (!list_empty(folio_list)) {
2219 		folio = lru_to_folio(folio_list);
2220 		list_del(&folio->lru);
2221 		folio_putback_lru(folio);
2222 	}
2223 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2224 
2225 	return nr_reclaimed;
2226 }
2227 
reclaim_pages(struct list_head * folio_list)2228 unsigned long reclaim_pages(struct list_head *folio_list)
2229 {
2230 	int nid;
2231 	unsigned int nr_reclaimed = 0;
2232 	LIST_HEAD(node_folio_list);
2233 	unsigned int noreclaim_flag;
2234 
2235 	if (list_empty(folio_list))
2236 		return nr_reclaimed;
2237 
2238 	noreclaim_flag = memalloc_noreclaim_save();
2239 
2240 	nid = folio_nid(lru_to_folio(folio_list));
2241 	do {
2242 		struct folio *folio = lru_to_folio(folio_list);
2243 
2244 		if (nid == folio_nid(folio)) {
2245 			folio_clear_active(folio);
2246 			list_move(&folio->lru, &node_folio_list);
2247 			continue;
2248 		}
2249 
2250 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2251 		nid = folio_nid(lru_to_folio(folio_list));
2252 	} while (!list_empty(folio_list));
2253 
2254 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2255 
2256 	memalloc_noreclaim_restore(noreclaim_flag);
2257 
2258 	return nr_reclaimed;
2259 }
2260 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2261 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2262 				 struct lruvec *lruvec, struct scan_control *sc)
2263 {
2264 	if (is_active_lru(lru)) {
2265 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2266 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2267 		else
2268 			sc->skipped_deactivate = 1;
2269 		return 0;
2270 	}
2271 
2272 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2273 }
2274 
2275 /*
2276  * The inactive anon list should be small enough that the VM never has
2277  * to do too much work.
2278  *
2279  * The inactive file list should be small enough to leave most memory
2280  * to the established workingset on the scan-resistant active list,
2281  * but large enough to avoid thrashing the aggregate readahead window.
2282  *
2283  * Both inactive lists should also be large enough that each inactive
2284  * folio has a chance to be referenced again before it is reclaimed.
2285  *
2286  * If that fails and refaulting is observed, the inactive list grows.
2287  *
2288  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2289  * on this LRU, maintained by the pageout code. An inactive_ratio
2290  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2291  *
2292  * total     target    max
2293  * memory    ratio     inactive
2294  * -------------------------------------
2295  *   10MB       1         5MB
2296  *  100MB       1        50MB
2297  *    1GB       3       250MB
2298  *   10GB      10       0.9GB
2299  *  100GB      31         3GB
2300  *    1TB     101        10GB
2301  *   10TB     320        32GB
2302  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2303 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2304 {
2305 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2306 	unsigned long inactive, active;
2307 	unsigned long inactive_ratio;
2308 	unsigned long gb;
2309 
2310 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2311 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2312 
2313 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2314 	if (gb)
2315 		inactive_ratio = int_sqrt(10 * gb);
2316 	else
2317 		inactive_ratio = 1;
2318 
2319 	return inactive * inactive_ratio < active;
2320 }
2321 
2322 enum scan_balance {
2323 	SCAN_EQUAL,
2324 	SCAN_FRACT,
2325 	SCAN_ANON,
2326 	SCAN_FILE,
2327 };
2328 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2329 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2330 {
2331 	unsigned long file;
2332 	struct lruvec *target_lruvec;
2333 
2334 	if (lru_gen_enabled())
2335 		return;
2336 
2337 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2338 
2339 	/*
2340 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2341 	 * most accurate stats here. We may switch to regular stats flushing
2342 	 * in the future once it is cheap enough.
2343 	 */
2344 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2345 
2346 	/*
2347 	 * Determine the scan balance between anon and file LRUs.
2348 	 */
2349 	spin_lock_irq(&target_lruvec->lru_lock);
2350 	sc->anon_cost = target_lruvec->anon_cost;
2351 	sc->file_cost = target_lruvec->file_cost;
2352 	spin_unlock_irq(&target_lruvec->lru_lock);
2353 
2354 	/*
2355 	 * Target desirable inactive:active list ratios for the anon
2356 	 * and file LRU lists.
2357 	 */
2358 	if (!sc->force_deactivate) {
2359 		unsigned long refaults;
2360 
2361 		/*
2362 		 * When refaults are being observed, it means a new
2363 		 * workingset is being established. Deactivate to get
2364 		 * rid of any stale active pages quickly.
2365 		 */
2366 		refaults = lruvec_page_state(target_lruvec,
2367 				WORKINGSET_ACTIVATE_ANON);
2368 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2369 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2370 			sc->may_deactivate |= DEACTIVATE_ANON;
2371 		else
2372 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2373 
2374 		refaults = lruvec_page_state(target_lruvec,
2375 				WORKINGSET_ACTIVATE_FILE);
2376 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2377 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2378 			sc->may_deactivate |= DEACTIVATE_FILE;
2379 		else
2380 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2381 	} else
2382 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2383 
2384 	/*
2385 	 * If we have plenty of inactive file pages that aren't
2386 	 * thrashing, try to reclaim those first before touching
2387 	 * anonymous pages.
2388 	 */
2389 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2390 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2391 	    !sc->no_cache_trim_mode)
2392 		sc->cache_trim_mode = 1;
2393 	else
2394 		sc->cache_trim_mode = 0;
2395 
2396 	/*
2397 	 * Prevent the reclaimer from falling into the cache trap: as
2398 	 * cache pages start out inactive, every cache fault will tip
2399 	 * the scan balance towards the file LRU.  And as the file LRU
2400 	 * shrinks, so does the window for rotation from references.
2401 	 * This means we have a runaway feedback loop where a tiny
2402 	 * thrashing file LRU becomes infinitely more attractive than
2403 	 * anon pages.  Try to detect this based on file LRU size.
2404 	 */
2405 	if (!cgroup_reclaim(sc)) {
2406 		unsigned long total_high_wmark = 0;
2407 		unsigned long free, anon;
2408 		int z;
2409 		struct zone *zone;
2410 
2411 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2412 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2413 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2414 
2415 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2416 			total_high_wmark += high_wmark_pages(zone);
2417 		}
2418 
2419 		/*
2420 		 * Consider anon: if that's low too, this isn't a
2421 		 * runaway file reclaim problem, but rather just
2422 		 * extreme pressure. Reclaim as per usual then.
2423 		 */
2424 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2425 
2426 		sc->file_is_tiny =
2427 			file + free <= total_high_wmark &&
2428 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2429 			anon >> sc->priority;
2430 	}
2431 }
2432 
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2433 static inline void calculate_pressure_balance(struct scan_control *sc,
2434 			int swappiness, u64 *fraction, u64 *denominator)
2435 {
2436 	unsigned long anon_cost, file_cost, total_cost;
2437 	unsigned long ap, fp;
2438 
2439 	/*
2440 	 * Calculate the pressure balance between anon and file pages.
2441 	 *
2442 	 * The amount of pressure we put on each LRU is inversely
2443 	 * proportional to the cost of reclaiming each list, as
2444 	 * determined by the share of pages that are refaulting, times
2445 	 * the relative IO cost of bringing back a swapped out
2446 	 * anonymous page vs reloading a filesystem page (swappiness).
2447 	 *
2448 	 * Although we limit that influence to ensure no list gets
2449 	 * left behind completely: at least a third of the pressure is
2450 	 * applied, before swappiness.
2451 	 *
2452 	 * With swappiness at 100, anon and file have equal IO cost.
2453 	 */
2454 	total_cost = sc->anon_cost + sc->file_cost;
2455 	anon_cost = total_cost + sc->anon_cost;
2456 	file_cost = total_cost + sc->file_cost;
2457 	total_cost = anon_cost + file_cost;
2458 
2459 	ap = swappiness * (total_cost + 1);
2460 	ap /= anon_cost + 1;
2461 
2462 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2463 	fp /= file_cost + 1;
2464 
2465 	fraction[WORKINGSET_ANON] = ap;
2466 	fraction[WORKINGSET_FILE] = fp;
2467 	*denominator = ap + fp;
2468 }
2469 
2470 /*
2471  * Determine how aggressively the anon and file LRU lists should be
2472  * scanned.
2473  *
2474  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2475  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2476  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2477 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2478 			   unsigned long *nr)
2479 {
2480 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2481 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2482 	int swappiness = sc_swappiness(sc, memcg);
2483 	u64 fraction[ANON_AND_FILE];
2484 	u64 denominator = 0;	/* gcc */
2485 	enum scan_balance scan_balance;
2486 	enum lru_list lru;
2487 
2488 	/* If we have no swap space, do not bother scanning anon folios. */
2489 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2490 		scan_balance = SCAN_FILE;
2491 		goto out;
2492 	}
2493 
2494 	/*
2495 	 * Global reclaim will swap to prevent OOM even with no
2496 	 * swappiness, but memcg users want to use this knob to
2497 	 * disable swapping for individual groups completely when
2498 	 * using the memory controller's swap limit feature would be
2499 	 * too expensive.
2500 	 */
2501 	if (cgroup_reclaim(sc) && !swappiness) {
2502 		scan_balance = SCAN_FILE;
2503 		goto out;
2504 	}
2505 
2506 	/*
2507 	 * Do not apply any pressure balancing cleverness when the
2508 	 * system is close to OOM, scan both anon and file equally
2509 	 * (unless the swappiness setting disagrees with swapping).
2510 	 */
2511 	if (!sc->priority && swappiness) {
2512 		scan_balance = SCAN_EQUAL;
2513 		goto out;
2514 	}
2515 
2516 	/*
2517 	 * If the system is almost out of file pages, force-scan anon.
2518 	 */
2519 	if (sc->file_is_tiny) {
2520 		scan_balance = SCAN_ANON;
2521 		goto out;
2522 	}
2523 
2524 	/*
2525 	 * If there is enough inactive page cache, we do not reclaim
2526 	 * anything from the anonymous working right now.
2527 	 */
2528 	if (sc->cache_trim_mode) {
2529 		scan_balance = SCAN_FILE;
2530 		goto out;
2531 	}
2532 
2533 	scan_balance = SCAN_FRACT;
2534 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2535 
2536 out:
2537 	for_each_evictable_lru(lru) {
2538 		bool file = is_file_lru(lru);
2539 		unsigned long lruvec_size;
2540 		unsigned long low, min;
2541 		unsigned long scan;
2542 
2543 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2544 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2545 				      &min, &low);
2546 
2547 		if (min || low) {
2548 			/*
2549 			 * Scale a cgroup's reclaim pressure by proportioning
2550 			 * its current usage to its memory.low or memory.min
2551 			 * setting.
2552 			 *
2553 			 * This is important, as otherwise scanning aggression
2554 			 * becomes extremely binary -- from nothing as we
2555 			 * approach the memory protection threshold, to totally
2556 			 * nominal as we exceed it.  This results in requiring
2557 			 * setting extremely liberal protection thresholds. It
2558 			 * also means we simply get no protection at all if we
2559 			 * set it too low, which is not ideal.
2560 			 *
2561 			 * If there is any protection in place, we reduce scan
2562 			 * pressure by how much of the total memory used is
2563 			 * within protection thresholds.
2564 			 *
2565 			 * There is one special case: in the first reclaim pass,
2566 			 * we skip over all groups that are within their low
2567 			 * protection. If that fails to reclaim enough pages to
2568 			 * satisfy the reclaim goal, we come back and override
2569 			 * the best-effort low protection. However, we still
2570 			 * ideally want to honor how well-behaved groups are in
2571 			 * that case instead of simply punishing them all
2572 			 * equally. As such, we reclaim them based on how much
2573 			 * memory they are using, reducing the scan pressure
2574 			 * again by how much of the total memory used is under
2575 			 * hard protection.
2576 			 */
2577 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2578 			unsigned long protection;
2579 
2580 			/* memory.low scaling, make sure we retry before OOM */
2581 			if (!sc->memcg_low_reclaim && low > min) {
2582 				protection = low;
2583 				sc->memcg_low_skipped = 1;
2584 			} else {
2585 				protection = min;
2586 			}
2587 
2588 			/* Avoid TOCTOU with earlier protection check */
2589 			cgroup_size = max(cgroup_size, protection);
2590 
2591 			scan = lruvec_size - lruvec_size * protection /
2592 				(cgroup_size + 1);
2593 
2594 			/*
2595 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2596 			 * reclaim moving forwards, avoiding decrementing
2597 			 * sc->priority further than desirable.
2598 			 */
2599 			scan = max(scan, SWAP_CLUSTER_MAX);
2600 		} else {
2601 			scan = lruvec_size;
2602 		}
2603 
2604 		scan >>= sc->priority;
2605 
2606 		/*
2607 		 * If the cgroup's already been deleted, make sure to
2608 		 * scrape out the remaining cache.
2609 		 */
2610 		if (!scan && !mem_cgroup_online(memcg))
2611 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2612 
2613 		switch (scan_balance) {
2614 		case SCAN_EQUAL:
2615 			/* Scan lists relative to size */
2616 			break;
2617 		case SCAN_FRACT:
2618 			/*
2619 			 * Scan types proportional to swappiness and
2620 			 * their relative recent reclaim efficiency.
2621 			 * Make sure we don't miss the last page on
2622 			 * the offlined memory cgroups because of a
2623 			 * round-off error.
2624 			 */
2625 			scan = mem_cgroup_online(memcg) ?
2626 			       div64_u64(scan * fraction[file], denominator) :
2627 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2628 						  denominator);
2629 			break;
2630 		case SCAN_FILE:
2631 		case SCAN_ANON:
2632 			/* Scan one type exclusively */
2633 			if ((scan_balance == SCAN_FILE) != file)
2634 				scan = 0;
2635 			break;
2636 		default:
2637 			/* Look ma, no brain */
2638 			BUG();
2639 		}
2640 
2641 		nr[lru] = scan;
2642 	}
2643 }
2644 
2645 /*
2646  * Anonymous LRU management is a waste if there is
2647  * ultimately no way to reclaim the memory.
2648  */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2649 static bool can_age_anon_pages(struct pglist_data *pgdat,
2650 			       struct scan_control *sc)
2651 {
2652 	/* Aging the anon LRU is valuable if swap is present: */
2653 	if (total_swap_pages > 0)
2654 		return true;
2655 
2656 	/* Also valuable if anon pages can be demoted: */
2657 	return can_demote(pgdat->node_id, sc);
2658 }
2659 
2660 #ifdef CONFIG_LRU_GEN
2661 
2662 #ifdef CONFIG_LRU_GEN_ENABLED
2663 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2664 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2665 #else
2666 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2667 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2668 #endif
2669 
should_walk_mmu(void)2670 static bool should_walk_mmu(void)
2671 {
2672 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2673 }
2674 
should_clear_pmd_young(void)2675 static bool should_clear_pmd_young(void)
2676 {
2677 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2678 }
2679 
2680 /******************************************************************************
2681  *                          shorthand helpers
2682  ******************************************************************************/
2683 
2684 #define DEFINE_MAX_SEQ(lruvec)						\
2685 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2686 
2687 #define DEFINE_MIN_SEQ(lruvec)						\
2688 	unsigned long min_seq[ANON_AND_FILE] = {			\
2689 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2690 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2691 	}
2692 
2693 #define evictable_min_seq(min_seq, swappiness)				\
2694 	min((min_seq)[!(swappiness)], (min_seq)[(swappiness) <= MAX_SWAPPINESS])
2695 
2696 #define for_each_gen_type_zone(gen, type, zone)				\
2697 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2698 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2699 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2700 
2701 #define for_each_evictable_type(type, swappiness)			\
2702 	for ((type) = !(swappiness); (type) <= ((swappiness) <= MAX_SWAPPINESS); (type)++)
2703 
2704 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2705 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2706 
get_lruvec(struct mem_cgroup * memcg,int nid)2707 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2708 {
2709 	struct pglist_data *pgdat = NODE_DATA(nid);
2710 
2711 #ifdef CONFIG_MEMCG
2712 	if (memcg) {
2713 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2714 
2715 		/* see the comment in mem_cgroup_lruvec() */
2716 		if (!lruvec->pgdat)
2717 			lruvec->pgdat = pgdat;
2718 
2719 		return lruvec;
2720 	}
2721 #endif
2722 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2723 
2724 	return &pgdat->__lruvec;
2725 }
2726 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2727 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2728 {
2729 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2730 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2731 
2732 	if (!sc->may_swap)
2733 		return 0;
2734 
2735 	if (!can_demote(pgdat->node_id, sc) &&
2736 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2737 		return 0;
2738 
2739 	return sc_swappiness(sc, memcg);
2740 }
2741 
get_nr_gens(struct lruvec * lruvec,int type)2742 static int get_nr_gens(struct lruvec *lruvec, int type)
2743 {
2744 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2745 }
2746 
seq_is_valid(struct lruvec * lruvec)2747 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2748 {
2749 	int type;
2750 
2751 	for (type = 0; type < ANON_AND_FILE; type++) {
2752 		int n = get_nr_gens(lruvec, type);
2753 
2754 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2755 			return false;
2756 	}
2757 
2758 	return true;
2759 }
2760 
2761 /******************************************************************************
2762  *                          Bloom filters
2763  ******************************************************************************/
2764 
2765 /*
2766  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2767  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2768  * bits in a bitmap, k is the number of hash functions and n is the number of
2769  * inserted items.
2770  *
2771  * Page table walkers use one of the two filters to reduce their search space.
2772  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2773  * aging uses the double-buffering technique to flip to the other filter each
2774  * time it produces a new generation. For non-leaf entries that have enough
2775  * leaf entries, the aging carries them over to the next generation in
2776  * walk_pmd_range(); the eviction also report them when walking the rmap
2777  * in lru_gen_look_around().
2778  *
2779  * For future optimizations:
2780  * 1. It's not necessary to keep both filters all the time. The spare one can be
2781  *    freed after the RCU grace period and reallocated if needed again.
2782  * 2. And when reallocating, it's worth scaling its size according to the number
2783  *    of inserted entries in the other filter, to reduce the memory overhead on
2784  *    small systems and false positives on large systems.
2785  * 3. Jenkins' hash function is an alternative to Knuth's.
2786  */
2787 #define BLOOM_FILTER_SHIFT	15
2788 
filter_gen_from_seq(unsigned long seq)2789 static inline int filter_gen_from_seq(unsigned long seq)
2790 {
2791 	return seq % NR_BLOOM_FILTERS;
2792 }
2793 
get_item_key(void * item,int * key)2794 static void get_item_key(void *item, int *key)
2795 {
2796 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2797 
2798 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2799 
2800 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2801 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2802 }
2803 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2804 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2805 			      void *item)
2806 {
2807 	int key[2];
2808 	unsigned long *filter;
2809 	int gen = filter_gen_from_seq(seq);
2810 
2811 	filter = READ_ONCE(mm_state->filters[gen]);
2812 	if (!filter)
2813 		return true;
2814 
2815 	get_item_key(item, key);
2816 
2817 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2818 }
2819 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2820 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2821 				void *item)
2822 {
2823 	int key[2];
2824 	unsigned long *filter;
2825 	int gen = filter_gen_from_seq(seq);
2826 
2827 	filter = READ_ONCE(mm_state->filters[gen]);
2828 	if (!filter)
2829 		return;
2830 
2831 	get_item_key(item, key);
2832 
2833 	if (!test_bit(key[0], filter))
2834 		set_bit(key[0], filter);
2835 	if (!test_bit(key[1], filter))
2836 		set_bit(key[1], filter);
2837 }
2838 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2839 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2840 {
2841 	unsigned long *filter;
2842 	int gen = filter_gen_from_seq(seq);
2843 
2844 	filter = mm_state->filters[gen];
2845 	if (filter) {
2846 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2847 		return;
2848 	}
2849 
2850 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2851 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2852 	WRITE_ONCE(mm_state->filters[gen], filter);
2853 }
2854 
2855 /******************************************************************************
2856  *                          mm_struct list
2857  ******************************************************************************/
2858 
2859 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2860 
get_mm_list(struct mem_cgroup * memcg)2861 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2862 {
2863 	static struct lru_gen_mm_list mm_list = {
2864 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2865 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2866 	};
2867 
2868 #ifdef CONFIG_MEMCG
2869 	if (memcg)
2870 		return &memcg->mm_list;
2871 #endif
2872 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2873 
2874 	return &mm_list;
2875 }
2876 
get_mm_state(struct lruvec * lruvec)2877 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2878 {
2879 	return &lruvec->mm_state;
2880 }
2881 
get_next_mm(struct lru_gen_mm_walk * walk)2882 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2883 {
2884 	int key;
2885 	struct mm_struct *mm;
2886 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2887 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2888 
2889 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2890 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2891 
2892 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2893 		return NULL;
2894 
2895 	clear_bit(key, &mm->lru_gen.bitmap);
2896 
2897 	return mmget_not_zero(mm) ? mm : NULL;
2898 }
2899 
lru_gen_add_mm(struct mm_struct * mm)2900 void lru_gen_add_mm(struct mm_struct *mm)
2901 {
2902 	int nid;
2903 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2904 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2905 
2906 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2907 #ifdef CONFIG_MEMCG
2908 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2909 	mm->lru_gen.memcg = memcg;
2910 #endif
2911 	spin_lock(&mm_list->lock);
2912 
2913 	for_each_node_state(nid, N_MEMORY) {
2914 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2915 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2916 
2917 		/* the first addition since the last iteration */
2918 		if (mm_state->tail == &mm_list->fifo)
2919 			mm_state->tail = &mm->lru_gen.list;
2920 	}
2921 
2922 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2923 
2924 	spin_unlock(&mm_list->lock);
2925 }
2926 
lru_gen_del_mm(struct mm_struct * mm)2927 void lru_gen_del_mm(struct mm_struct *mm)
2928 {
2929 	int nid;
2930 	struct lru_gen_mm_list *mm_list;
2931 	struct mem_cgroup *memcg = NULL;
2932 
2933 	if (list_empty(&mm->lru_gen.list))
2934 		return;
2935 
2936 #ifdef CONFIG_MEMCG
2937 	memcg = mm->lru_gen.memcg;
2938 #endif
2939 	mm_list = get_mm_list(memcg);
2940 
2941 	spin_lock(&mm_list->lock);
2942 
2943 	for_each_node(nid) {
2944 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2945 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2946 
2947 		/* where the current iteration continues after */
2948 		if (mm_state->head == &mm->lru_gen.list)
2949 			mm_state->head = mm_state->head->prev;
2950 
2951 		/* where the last iteration ended before */
2952 		if (mm_state->tail == &mm->lru_gen.list)
2953 			mm_state->tail = mm_state->tail->next;
2954 	}
2955 
2956 	list_del_init(&mm->lru_gen.list);
2957 
2958 	spin_unlock(&mm_list->lock);
2959 
2960 #ifdef CONFIG_MEMCG
2961 	mem_cgroup_put(mm->lru_gen.memcg);
2962 	mm->lru_gen.memcg = NULL;
2963 #endif
2964 }
2965 
2966 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2967 void lru_gen_migrate_mm(struct mm_struct *mm)
2968 {
2969 	struct mem_cgroup *memcg;
2970 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2971 
2972 	VM_WARN_ON_ONCE(task->mm != mm);
2973 	lockdep_assert_held(&task->alloc_lock);
2974 
2975 	/* for mm_update_next_owner() */
2976 	if (mem_cgroup_disabled())
2977 		return;
2978 
2979 	/* migration can happen before addition */
2980 	if (!mm->lru_gen.memcg)
2981 		return;
2982 
2983 	rcu_read_lock();
2984 	memcg = mem_cgroup_from_task(task);
2985 	rcu_read_unlock();
2986 	if (memcg == mm->lru_gen.memcg)
2987 		return;
2988 
2989 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2990 
2991 	lru_gen_del_mm(mm);
2992 	lru_gen_add_mm(mm);
2993 }
2994 #endif
2995 
2996 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2997 
get_mm_list(struct mem_cgroup * memcg)2998 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2999 {
3000 	return NULL;
3001 }
3002 
get_mm_state(struct lruvec * lruvec)3003 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3004 {
3005 	return NULL;
3006 }
3007 
get_next_mm(struct lru_gen_mm_walk * walk)3008 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3009 {
3010 	return NULL;
3011 }
3012 
3013 #endif
3014 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3015 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3016 {
3017 	int i;
3018 	int hist;
3019 	struct lruvec *lruvec = walk->lruvec;
3020 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3021 
3022 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3023 
3024 	hist = lru_hist_from_seq(walk->seq);
3025 
3026 	for (i = 0; i < NR_MM_STATS; i++) {
3027 		WRITE_ONCE(mm_state->stats[hist][i],
3028 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3029 		walk->mm_stats[i] = 0;
3030 	}
3031 
3032 	if (NR_HIST_GENS > 1 && last) {
3033 		hist = lru_hist_from_seq(walk->seq + 1);
3034 
3035 		for (i = 0; i < NR_MM_STATS; i++)
3036 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3037 	}
3038 }
3039 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3040 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3041 {
3042 	bool first = false;
3043 	bool last = false;
3044 	struct mm_struct *mm = NULL;
3045 	struct lruvec *lruvec = walk->lruvec;
3046 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3047 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3048 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3049 
3050 	/*
3051 	 * mm_state->seq is incremented after each iteration of mm_list. There
3052 	 * are three interesting cases for this page table walker:
3053 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3054 	 *    nothing left to do.
3055 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3056 	 *    so that a fresh set of PTE tables can be recorded.
3057 	 * 3. It ended the current iteration: it needs to reset the mm stats
3058 	 *    counters and tell its caller to increment max_seq.
3059 	 */
3060 	spin_lock(&mm_list->lock);
3061 
3062 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3063 
3064 	if (walk->seq <= mm_state->seq)
3065 		goto done;
3066 
3067 	if (!mm_state->head)
3068 		mm_state->head = &mm_list->fifo;
3069 
3070 	if (mm_state->head == &mm_list->fifo)
3071 		first = true;
3072 
3073 	do {
3074 		mm_state->head = mm_state->head->next;
3075 		if (mm_state->head == &mm_list->fifo) {
3076 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3077 			last = true;
3078 			break;
3079 		}
3080 
3081 		/* force scan for those added after the last iteration */
3082 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3083 			mm_state->tail = mm_state->head->next;
3084 			walk->force_scan = true;
3085 		}
3086 	} while (!(mm = get_next_mm(walk)));
3087 done:
3088 	if (*iter || last)
3089 		reset_mm_stats(walk, last);
3090 
3091 	spin_unlock(&mm_list->lock);
3092 
3093 	if (mm && first)
3094 		reset_bloom_filter(mm_state, walk->seq + 1);
3095 
3096 	if (*iter)
3097 		mmput_async(*iter);
3098 
3099 	*iter = mm;
3100 
3101 	return last;
3102 }
3103 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3104 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3105 {
3106 	bool success = false;
3107 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3108 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3109 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3110 
3111 	spin_lock(&mm_list->lock);
3112 
3113 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3114 
3115 	if (seq > mm_state->seq) {
3116 		mm_state->head = NULL;
3117 		mm_state->tail = NULL;
3118 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3119 		success = true;
3120 	}
3121 
3122 	spin_unlock(&mm_list->lock);
3123 
3124 	return success;
3125 }
3126 
3127 /******************************************************************************
3128  *                          PID controller
3129  ******************************************************************************/
3130 
3131 /*
3132  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3133  *
3134  * The P term is refaulted/(evicted+protected) from a tier in the generation
3135  * currently being evicted; the I term is the exponential moving average of the
3136  * P term over the generations previously evicted, using the smoothing factor
3137  * 1/2; the D term isn't supported.
3138  *
3139  * The setpoint (SP) is always the first tier of one type; the process variable
3140  * (PV) is either any tier of the other type or any other tier of the same
3141  * type.
3142  *
3143  * The error is the difference between the SP and the PV; the correction is to
3144  * turn off protection when SP>PV or turn on protection when SP<PV.
3145  *
3146  * For future optimizations:
3147  * 1. The D term may discount the other two terms over time so that long-lived
3148  *    generations can resist stale information.
3149  */
3150 struct ctrl_pos {
3151 	unsigned long refaulted;
3152 	unsigned long total;
3153 	int gain;
3154 };
3155 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3156 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3157 			  struct ctrl_pos *pos)
3158 {
3159 	int i;
3160 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3161 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3162 
3163 	pos->gain = gain;
3164 	pos->refaulted = pos->total = 0;
3165 
3166 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3167 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3168 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3169 		pos->total += lrugen->avg_total[type][i] +
3170 			      lrugen->protected[hist][type][i] +
3171 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3172 	}
3173 }
3174 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3175 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3176 {
3177 	int hist, tier;
3178 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3179 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3180 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3181 
3182 	lockdep_assert_held(&lruvec->lru_lock);
3183 
3184 	if (!carryover && !clear)
3185 		return;
3186 
3187 	hist = lru_hist_from_seq(seq);
3188 
3189 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3190 		if (carryover) {
3191 			unsigned long sum;
3192 
3193 			sum = lrugen->avg_refaulted[type][tier] +
3194 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3195 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3196 
3197 			sum = lrugen->avg_total[type][tier] +
3198 			      lrugen->protected[hist][type][tier] +
3199 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3200 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3201 		}
3202 
3203 		if (clear) {
3204 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3205 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3206 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3207 		}
3208 	}
3209 }
3210 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3211 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3212 {
3213 	/*
3214 	 * Return true if the PV has a limited number of refaults or a lower
3215 	 * refaulted/total than the SP.
3216 	 */
3217 	return pv->refaulted < MIN_LRU_BATCH ||
3218 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3219 	       (sp->refaulted + 1) * pv->total * pv->gain;
3220 }
3221 
3222 /******************************************************************************
3223  *                          the aging
3224  ******************************************************************************/
3225 
3226 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3227 static int folio_update_gen(struct folio *folio, int gen)
3228 {
3229 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3230 
3231 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3232 
3233 	/* see the comment on LRU_REFS_FLAGS */
3234 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3235 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3236 		return -1;
3237 	}
3238 
3239 	do {
3240 		/* lru_gen_del_folio() has isolated this page? */
3241 		if (!(old_flags & LRU_GEN_MASK))
3242 			return -1;
3243 
3244 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3245 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3246 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3247 
3248 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3249 }
3250 
3251 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3252 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3253 {
3254 	int type = folio_is_file_lru(folio);
3255 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3256 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3257 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3258 
3259 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3260 
3261 	do {
3262 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3263 		/* folio_update_gen() has promoted this page? */
3264 		if (new_gen >= 0 && new_gen != old_gen)
3265 			return new_gen;
3266 
3267 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3268 
3269 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3270 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3271 		/* for folio_end_writeback() */
3272 		if (reclaiming)
3273 			new_flags |= BIT(PG_reclaim);
3274 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3275 
3276 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3277 
3278 	return new_gen;
3279 }
3280 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3281 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3282 			      int old_gen, int new_gen)
3283 {
3284 	int type = folio_is_file_lru(folio);
3285 	int zone = folio_zonenum(folio);
3286 	int delta = folio_nr_pages(folio);
3287 
3288 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3289 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3290 
3291 	walk->batched++;
3292 
3293 	walk->nr_pages[old_gen][type][zone] -= delta;
3294 	walk->nr_pages[new_gen][type][zone] += delta;
3295 }
3296 
reset_batch_size(struct lru_gen_mm_walk * walk)3297 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3298 {
3299 	int gen, type, zone;
3300 	struct lruvec *lruvec = walk->lruvec;
3301 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3302 
3303 	walk->batched = 0;
3304 
3305 	for_each_gen_type_zone(gen, type, zone) {
3306 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3307 		int delta = walk->nr_pages[gen][type][zone];
3308 
3309 		if (!delta)
3310 			continue;
3311 
3312 		walk->nr_pages[gen][type][zone] = 0;
3313 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3314 			   lrugen->nr_pages[gen][type][zone] + delta);
3315 
3316 		if (lru_gen_is_active(lruvec, gen))
3317 			lru += LRU_ACTIVE;
3318 		__update_lru_size(lruvec, lru, zone, delta);
3319 	}
3320 }
3321 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3322 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3323 {
3324 	struct address_space *mapping;
3325 	struct vm_area_struct *vma = args->vma;
3326 	struct lru_gen_mm_walk *walk = args->private;
3327 
3328 	if (!vma_is_accessible(vma))
3329 		return true;
3330 
3331 	if (is_vm_hugetlb_page(vma))
3332 		return true;
3333 
3334 	if (!vma_has_recency(vma))
3335 		return true;
3336 
3337 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3338 		return true;
3339 
3340 	if (vma == get_gate_vma(vma->vm_mm))
3341 		return true;
3342 
3343 	if (vma_is_anonymous(vma))
3344 		return !walk->swappiness;
3345 
3346 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3347 		return true;
3348 
3349 	mapping = vma->vm_file->f_mapping;
3350 	if (mapping_unevictable(mapping))
3351 		return true;
3352 
3353 	if (shmem_mapping(mapping))
3354 		return !walk->swappiness;
3355 
3356 	if (walk->swappiness > MAX_SWAPPINESS)
3357 		return true;
3358 
3359 	/* to exclude special mappings like dax, etc. */
3360 	return !mapping->a_ops->read_folio;
3361 }
3362 
3363 /*
3364  * Some userspace memory allocators map many single-page VMAs. Instead of
3365  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3366  * table to reduce zigzags and improve cache performance.
3367  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3368 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3369 			 unsigned long *vm_start, unsigned long *vm_end)
3370 {
3371 	unsigned long start = round_up(*vm_end, size);
3372 	unsigned long end = (start | ~mask) + 1;
3373 	VMA_ITERATOR(vmi, args->mm, start);
3374 
3375 	VM_WARN_ON_ONCE(mask & size);
3376 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3377 
3378 	for_each_vma(vmi, args->vma) {
3379 		if (end && end <= args->vma->vm_start)
3380 			return false;
3381 
3382 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3383 			continue;
3384 
3385 		*vm_start = max(start, args->vma->vm_start);
3386 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3387 
3388 		return true;
3389 	}
3390 
3391 	return false;
3392 }
3393 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3394 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3395 				 struct pglist_data *pgdat)
3396 {
3397 	unsigned long pfn = pte_pfn(pte);
3398 
3399 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3400 
3401 	if (!pte_present(pte) || is_zero_pfn(pfn))
3402 		return -1;
3403 
3404 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3405 		return -1;
3406 
3407 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3408 		return -1;
3409 
3410 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3411 		return -1;
3412 
3413 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3414 		return -1;
3415 
3416 	return pfn;
3417 }
3418 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3419 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3420 				 struct pglist_data *pgdat)
3421 {
3422 	unsigned long pfn = pmd_pfn(pmd);
3423 
3424 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3425 
3426 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3427 		return -1;
3428 
3429 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3430 		return -1;
3431 
3432 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3433 		return -1;
3434 
3435 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3436 		return -1;
3437 
3438 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3439 		return -1;
3440 
3441 	return pfn;
3442 }
3443 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3444 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3445 				   struct pglist_data *pgdat)
3446 {
3447 	struct folio *folio = pfn_folio(pfn);
3448 
3449 	if (folio_lru_gen(folio) < 0)
3450 		return NULL;
3451 
3452 	if (folio_nid(folio) != pgdat->node_id)
3453 		return NULL;
3454 
3455 	if (folio_memcg(folio) != memcg)
3456 		return NULL;
3457 
3458 	return folio;
3459 }
3460 
suitable_to_scan(int total,int young)3461 static bool suitable_to_scan(int total, int young)
3462 {
3463 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3464 
3465 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3466 	return young * n >= total;
3467 }
3468 
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3469 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3470 			      int new_gen, bool dirty)
3471 {
3472 	int old_gen;
3473 
3474 	if (!folio)
3475 		return;
3476 
3477 	if (dirty && !folio_test_dirty(folio) &&
3478 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3479 	      !folio_test_swapcache(folio)))
3480 		folio_mark_dirty(folio);
3481 
3482 	if (walk) {
3483 		old_gen = folio_update_gen(folio, new_gen);
3484 		if (old_gen >= 0 && old_gen != new_gen)
3485 			update_batch_size(walk, folio, old_gen, new_gen);
3486 	} else if (lru_gen_set_refs(folio)) {
3487 		old_gen = folio_lru_gen(folio);
3488 		if (old_gen >= 0 && old_gen != new_gen)
3489 			folio_activate(folio);
3490 	}
3491 }
3492 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3493 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3494 			   struct mm_walk *args)
3495 {
3496 	int i;
3497 	bool dirty;
3498 	pte_t *pte;
3499 	spinlock_t *ptl;
3500 	unsigned long addr;
3501 	int total = 0;
3502 	int young = 0;
3503 	struct folio *last = NULL;
3504 	struct lru_gen_mm_walk *walk = args->private;
3505 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3506 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3507 	DEFINE_MAX_SEQ(walk->lruvec);
3508 	int gen = lru_gen_from_seq(max_seq);
3509 	pmd_t pmdval;
3510 
3511 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3512 	if (!pte)
3513 		return false;
3514 
3515 	if (!spin_trylock(ptl)) {
3516 		pte_unmap(pte);
3517 		return true;
3518 	}
3519 
3520 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3521 		pte_unmap_unlock(pte, ptl);
3522 		return false;
3523 	}
3524 
3525 	arch_enter_lazy_mmu_mode();
3526 restart:
3527 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3528 		unsigned long pfn;
3529 		struct folio *folio;
3530 		pte_t ptent = ptep_get(pte + i);
3531 
3532 		total++;
3533 		walk->mm_stats[MM_LEAF_TOTAL]++;
3534 
3535 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3536 		if (pfn == -1)
3537 			continue;
3538 
3539 		folio = get_pfn_folio(pfn, memcg, pgdat);
3540 		if (!folio)
3541 			continue;
3542 
3543 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3544 			continue;
3545 
3546 		if (last != folio) {
3547 			walk_update_folio(walk, last, gen, dirty);
3548 
3549 			last = folio;
3550 			dirty = false;
3551 		}
3552 
3553 		if (pte_dirty(ptent))
3554 			dirty = true;
3555 
3556 		young++;
3557 		walk->mm_stats[MM_LEAF_YOUNG]++;
3558 	}
3559 
3560 	walk_update_folio(walk, last, gen, dirty);
3561 	last = NULL;
3562 
3563 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3564 		goto restart;
3565 
3566 	arch_leave_lazy_mmu_mode();
3567 	pte_unmap_unlock(pte, ptl);
3568 
3569 	return suitable_to_scan(total, young);
3570 }
3571 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3572 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3573 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3574 {
3575 	int i;
3576 	bool dirty;
3577 	pmd_t *pmd;
3578 	spinlock_t *ptl;
3579 	struct folio *last = NULL;
3580 	struct lru_gen_mm_walk *walk = args->private;
3581 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3582 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3583 	DEFINE_MAX_SEQ(walk->lruvec);
3584 	int gen = lru_gen_from_seq(max_seq);
3585 
3586 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3587 
3588 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3589 	if (*first == -1) {
3590 		*first = addr;
3591 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3592 		return;
3593 	}
3594 
3595 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3596 	if (i && i <= MIN_LRU_BATCH) {
3597 		__set_bit(i - 1, bitmap);
3598 		return;
3599 	}
3600 
3601 	pmd = pmd_offset(pud, *first);
3602 
3603 	ptl = pmd_lockptr(args->mm, pmd);
3604 	if (!spin_trylock(ptl))
3605 		goto done;
3606 
3607 	arch_enter_lazy_mmu_mode();
3608 
3609 	do {
3610 		unsigned long pfn;
3611 		struct folio *folio;
3612 
3613 		/* don't round down the first address */
3614 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3615 
3616 		if (!pmd_present(pmd[i]))
3617 			goto next;
3618 
3619 		if (!pmd_trans_huge(pmd[i])) {
3620 			if (!walk->force_scan && should_clear_pmd_young() &&
3621 			    !mm_has_notifiers(args->mm))
3622 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3623 			goto next;
3624 		}
3625 
3626 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3627 		if (pfn == -1)
3628 			goto next;
3629 
3630 		folio = get_pfn_folio(pfn, memcg, pgdat);
3631 		if (!folio)
3632 			goto next;
3633 
3634 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3635 			goto next;
3636 
3637 		if (last != folio) {
3638 			walk_update_folio(walk, last, gen, dirty);
3639 
3640 			last = folio;
3641 			dirty = false;
3642 		}
3643 
3644 		if (pmd_dirty(pmd[i]))
3645 			dirty = true;
3646 
3647 		walk->mm_stats[MM_LEAF_YOUNG]++;
3648 next:
3649 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3650 	} while (i <= MIN_LRU_BATCH);
3651 
3652 	walk_update_folio(walk, last, gen, dirty);
3653 
3654 	arch_leave_lazy_mmu_mode();
3655 	spin_unlock(ptl);
3656 done:
3657 	*first = -1;
3658 }
3659 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3660 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3661 			   struct mm_walk *args)
3662 {
3663 	int i;
3664 	pmd_t *pmd;
3665 	unsigned long next;
3666 	unsigned long addr;
3667 	struct vm_area_struct *vma;
3668 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3669 	unsigned long first = -1;
3670 	struct lru_gen_mm_walk *walk = args->private;
3671 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3672 
3673 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3674 
3675 	/*
3676 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3677 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3678 	 * the PMD lock to clear the accessed bit in PMD entries.
3679 	 */
3680 	pmd = pmd_offset(pud, start & PUD_MASK);
3681 restart:
3682 	/* walk_pte_range() may call get_next_vma() */
3683 	vma = args->vma;
3684 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3685 		pmd_t val = pmdp_get_lockless(pmd + i);
3686 
3687 		next = pmd_addr_end(addr, end);
3688 
3689 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3690 			walk->mm_stats[MM_LEAF_TOTAL]++;
3691 			continue;
3692 		}
3693 
3694 		if (pmd_trans_huge(val)) {
3695 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3696 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3697 
3698 			walk->mm_stats[MM_LEAF_TOTAL]++;
3699 
3700 			if (pfn != -1)
3701 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3702 			continue;
3703 		}
3704 
3705 		if (!walk->force_scan && should_clear_pmd_young() &&
3706 		    !mm_has_notifiers(args->mm)) {
3707 			if (!pmd_young(val))
3708 				continue;
3709 
3710 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3711 		}
3712 
3713 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3714 			continue;
3715 
3716 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3717 
3718 		if (!walk_pte_range(&val, addr, next, args))
3719 			continue;
3720 
3721 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3722 
3723 		/* carry over to the next generation */
3724 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3725 	}
3726 
3727 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3728 
3729 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3730 		goto restart;
3731 }
3732 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3733 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3734 			  struct mm_walk *args)
3735 {
3736 	int i;
3737 	pud_t *pud;
3738 	unsigned long addr;
3739 	unsigned long next;
3740 	struct lru_gen_mm_walk *walk = args->private;
3741 
3742 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3743 
3744 	pud = pud_offset(p4d, start & P4D_MASK);
3745 restart:
3746 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3747 		pud_t val = READ_ONCE(pud[i]);
3748 
3749 		next = pud_addr_end(addr, end);
3750 
3751 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3752 			continue;
3753 
3754 		walk_pmd_range(&val, addr, next, args);
3755 
3756 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3757 			end = (addr | ~PUD_MASK) + 1;
3758 			goto done;
3759 		}
3760 	}
3761 
3762 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3763 		goto restart;
3764 
3765 	end = round_up(end, P4D_SIZE);
3766 done:
3767 	if (!end || !args->vma)
3768 		return 1;
3769 
3770 	walk->next_addr = max(end, args->vma->vm_start);
3771 
3772 	return -EAGAIN;
3773 }
3774 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3775 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3776 {
3777 	static const struct mm_walk_ops mm_walk_ops = {
3778 		.test_walk = should_skip_vma,
3779 		.p4d_entry = walk_pud_range,
3780 		.walk_lock = PGWALK_RDLOCK,
3781 	};
3782 	int err;
3783 	struct lruvec *lruvec = walk->lruvec;
3784 
3785 	walk->next_addr = FIRST_USER_ADDRESS;
3786 
3787 	do {
3788 		DEFINE_MAX_SEQ(lruvec);
3789 
3790 		err = -EBUSY;
3791 
3792 		/* another thread might have called inc_max_seq() */
3793 		if (walk->seq != max_seq)
3794 			break;
3795 
3796 		/* the caller might be holding the lock for write */
3797 		if (mmap_read_trylock(mm)) {
3798 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3799 
3800 			mmap_read_unlock(mm);
3801 		}
3802 
3803 		if (walk->batched) {
3804 			spin_lock_irq(&lruvec->lru_lock);
3805 			reset_batch_size(walk);
3806 			spin_unlock_irq(&lruvec->lru_lock);
3807 		}
3808 
3809 		cond_resched();
3810 	} while (err == -EAGAIN);
3811 }
3812 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3813 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3814 {
3815 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3816 
3817 	if (pgdat && current_is_kswapd()) {
3818 		VM_WARN_ON_ONCE(walk);
3819 
3820 		walk = &pgdat->mm_walk;
3821 	} else if (!walk && force_alloc) {
3822 		VM_WARN_ON_ONCE(current_is_kswapd());
3823 
3824 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3825 	}
3826 
3827 	current->reclaim_state->mm_walk = walk;
3828 
3829 	return walk;
3830 }
3831 
clear_mm_walk(void)3832 static void clear_mm_walk(void)
3833 {
3834 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3835 
3836 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3837 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3838 
3839 	current->reclaim_state->mm_walk = NULL;
3840 
3841 	if (!current_is_kswapd())
3842 		kfree(walk);
3843 }
3844 
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3845 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3846 {
3847 	int zone;
3848 	int remaining = MAX_LRU_BATCH;
3849 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3850 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3851 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3852 
3853 	if (type ? swappiness > MAX_SWAPPINESS : !swappiness)
3854 		goto done;
3855 
3856 	/* prevent cold/hot inversion if the type is evictable */
3857 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3858 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3859 
3860 		while (!list_empty(head)) {
3861 			struct folio *folio = lru_to_folio(head);
3862 			int refs = folio_lru_refs(folio);
3863 			bool workingset = folio_test_workingset(folio);
3864 
3865 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3866 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3867 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3868 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3869 
3870 			new_gen = folio_inc_gen(lruvec, folio, false);
3871 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3872 
3873 			/* don't count the workingset being lazily promoted */
3874 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3875 				int tier = lru_tier_from_refs(refs, workingset);
3876 				int delta = folio_nr_pages(folio);
3877 
3878 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3879 					   lrugen->protected[hist][type][tier] + delta);
3880 			}
3881 
3882 			if (!--remaining)
3883 				return false;
3884 		}
3885 	}
3886 done:
3887 	reset_ctrl_pos(lruvec, type, true);
3888 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3889 
3890 	return true;
3891 }
3892 
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3893 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3894 {
3895 	int gen, type, zone;
3896 	bool success = false;
3897 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3898 	DEFINE_MIN_SEQ(lruvec);
3899 
3900 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3901 
3902 	/* find the oldest populated generation */
3903 	for_each_evictable_type(type, swappiness) {
3904 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3905 			gen = lru_gen_from_seq(min_seq[type]);
3906 
3907 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3908 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3909 					goto next;
3910 			}
3911 
3912 			min_seq[type]++;
3913 		}
3914 next:
3915 		;
3916 	}
3917 
3918 	/* see the comment on lru_gen_folio */
3919 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3920 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3921 
3922 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3923 			min_seq[LRU_GEN_ANON] = seq;
3924 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3925 			min_seq[LRU_GEN_FILE] = seq;
3926 	}
3927 
3928 	for_each_evictable_type(type, swappiness) {
3929 		if (min_seq[type] <= lrugen->min_seq[type])
3930 			continue;
3931 
3932 		reset_ctrl_pos(lruvec, type, true);
3933 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3934 		success = true;
3935 	}
3936 
3937 	return success;
3938 }
3939 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3940 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3941 {
3942 	bool success;
3943 	int prev, next;
3944 	int type, zone;
3945 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3946 restart:
3947 	if (seq < READ_ONCE(lrugen->max_seq))
3948 		return false;
3949 
3950 	spin_lock_irq(&lruvec->lru_lock);
3951 
3952 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3953 
3954 	success = seq == lrugen->max_seq;
3955 	if (!success)
3956 		goto unlock;
3957 
3958 	for (type = 0; type < ANON_AND_FILE; type++) {
3959 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3960 			continue;
3961 
3962 		if (inc_min_seq(lruvec, type, swappiness))
3963 			continue;
3964 
3965 		spin_unlock_irq(&lruvec->lru_lock);
3966 		cond_resched();
3967 		goto restart;
3968 	}
3969 
3970 	/*
3971 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3972 	 * the current max_seq need to be covered, since max_seq+1 can overlap
3973 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3974 	 * overlap, cold/hot inversion happens.
3975 	 */
3976 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3977 	next = lru_gen_from_seq(lrugen->max_seq + 1);
3978 
3979 	for (type = 0; type < ANON_AND_FILE; type++) {
3980 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3981 			enum lru_list lru = type * LRU_INACTIVE_FILE;
3982 			long delta = lrugen->nr_pages[prev][type][zone] -
3983 				     lrugen->nr_pages[next][type][zone];
3984 
3985 			if (!delta)
3986 				continue;
3987 
3988 			__update_lru_size(lruvec, lru, zone, delta);
3989 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3990 		}
3991 	}
3992 
3993 	for (type = 0; type < ANON_AND_FILE; type++)
3994 		reset_ctrl_pos(lruvec, type, false);
3995 
3996 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3997 	/* make sure preceding modifications appear */
3998 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3999 unlock:
4000 	spin_unlock_irq(&lruvec->lru_lock);
4001 
4002 	return success;
4003 }
4004 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4005 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4006 			       int swappiness, bool force_scan)
4007 {
4008 	bool success;
4009 	struct lru_gen_mm_walk *walk;
4010 	struct mm_struct *mm = NULL;
4011 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4012 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4013 
4014 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4015 
4016 	if (!mm_state)
4017 		return inc_max_seq(lruvec, seq, swappiness);
4018 
4019 	/* see the comment in iterate_mm_list() */
4020 	if (seq <= READ_ONCE(mm_state->seq))
4021 		return false;
4022 
4023 	/*
4024 	 * If the hardware doesn't automatically set the accessed bit, fallback
4025 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4026 	 * handful of PTEs. Spreading the work out over a period of time usually
4027 	 * is less efficient, but it avoids bursty page faults.
4028 	 */
4029 	if (!should_walk_mmu()) {
4030 		success = iterate_mm_list_nowalk(lruvec, seq);
4031 		goto done;
4032 	}
4033 
4034 	walk = set_mm_walk(NULL, true);
4035 	if (!walk) {
4036 		success = iterate_mm_list_nowalk(lruvec, seq);
4037 		goto done;
4038 	}
4039 
4040 	walk->lruvec = lruvec;
4041 	walk->seq = seq;
4042 	walk->swappiness = swappiness;
4043 	walk->force_scan = force_scan;
4044 
4045 	do {
4046 		success = iterate_mm_list(walk, &mm);
4047 		if (mm)
4048 			walk_mm(mm, walk);
4049 	} while (mm);
4050 done:
4051 	if (success) {
4052 		success = inc_max_seq(lruvec, seq, swappiness);
4053 		WARN_ON_ONCE(!success);
4054 	}
4055 
4056 	return success;
4057 }
4058 
4059 /******************************************************************************
4060  *                          working set protection
4061  ******************************************************************************/
4062 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4063 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4064 {
4065 	int priority;
4066 	unsigned long reclaimable;
4067 
4068 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4069 		return;
4070 	/*
4071 	 * Determine the initial priority based on
4072 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4073 	 * where reclaimed_to_scanned_ratio = inactive / total.
4074 	 */
4075 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4076 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4077 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4078 
4079 	/* round down reclaimable and round up sc->nr_to_reclaim */
4080 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4081 
4082 	/*
4083 	 * The estimation is based on LRU pages only, so cap it to prevent
4084 	 * overshoots of shrinker objects by large margins.
4085 	 */
4086 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4087 }
4088 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4089 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4090 {
4091 	int gen, type, zone;
4092 	unsigned long total = 0;
4093 	int swappiness = get_swappiness(lruvec, sc);
4094 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4095 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4096 	DEFINE_MAX_SEQ(lruvec);
4097 	DEFINE_MIN_SEQ(lruvec);
4098 
4099 	for_each_evictable_type(type, swappiness) {
4100 		unsigned long seq;
4101 
4102 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4103 			gen = lru_gen_from_seq(seq);
4104 
4105 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4106 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4107 		}
4108 	}
4109 
4110 	/* whether the size is big enough to be helpful */
4111 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4112 }
4113 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4114 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4115 				  unsigned long min_ttl)
4116 {
4117 	int gen;
4118 	unsigned long birth;
4119 	int swappiness = get_swappiness(lruvec, sc);
4120 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4121 	DEFINE_MIN_SEQ(lruvec);
4122 
4123 	if (mem_cgroup_below_min(NULL, memcg))
4124 		return false;
4125 
4126 	if (!lruvec_is_sizable(lruvec, sc))
4127 		return false;
4128 
4129 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4130 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4131 
4132 	return time_is_before_jiffies(birth + min_ttl);
4133 }
4134 
4135 /* to protect the working set of the last N jiffies */
4136 static unsigned long lru_gen_min_ttl __read_mostly;
4137 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4138 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4139 {
4140 	struct mem_cgroup *memcg;
4141 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4142 	bool reclaimable = !min_ttl;
4143 
4144 	VM_WARN_ON_ONCE(!current_is_kswapd());
4145 
4146 	set_initial_priority(pgdat, sc);
4147 
4148 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4149 	do {
4150 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4151 
4152 		mem_cgroup_calculate_protection(NULL, memcg);
4153 
4154 		if (!reclaimable)
4155 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4156 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4157 
4158 	/*
4159 	 * The main goal is to OOM kill if every generation from all memcgs is
4160 	 * younger than min_ttl. However, another possibility is all memcgs are
4161 	 * either too small or below min.
4162 	 */
4163 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4164 		struct oom_control oc = {
4165 			.gfp_mask = sc->gfp_mask,
4166 		};
4167 
4168 		out_of_memory(&oc);
4169 
4170 		mutex_unlock(&oom_lock);
4171 	}
4172 }
4173 
4174 /******************************************************************************
4175  *                          rmap/PT walk feedback
4176  ******************************************************************************/
4177 
4178 /*
4179  * This function exploits spatial locality when shrink_folio_list() walks the
4180  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4181  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4182  * the PTE table to the Bloom filter. This forms a feedback loop between the
4183  * eviction and the aging.
4184  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4185 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4186 {
4187 	int i;
4188 	bool dirty;
4189 	unsigned long start;
4190 	unsigned long end;
4191 	struct lru_gen_mm_walk *walk;
4192 	struct folio *last = NULL;
4193 	int young = 1;
4194 	pte_t *pte = pvmw->pte;
4195 	unsigned long addr = pvmw->address;
4196 	struct vm_area_struct *vma = pvmw->vma;
4197 	struct folio *folio = pfn_folio(pvmw->pfn);
4198 	struct mem_cgroup *memcg = folio_memcg(folio);
4199 	struct pglist_data *pgdat = folio_pgdat(folio);
4200 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4201 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4202 	DEFINE_MAX_SEQ(lruvec);
4203 	int gen = lru_gen_from_seq(max_seq);
4204 
4205 	lockdep_assert_held(pvmw->ptl);
4206 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4207 
4208 	if (!ptep_clear_young_notify(vma, addr, pte))
4209 		return false;
4210 
4211 	if (spin_is_contended(pvmw->ptl))
4212 		return true;
4213 
4214 	/* exclude special VMAs containing anon pages from COW */
4215 	if (vma->vm_flags & VM_SPECIAL)
4216 		return true;
4217 
4218 	/* avoid taking the LRU lock under the PTL when possible */
4219 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4220 
4221 	start = max(addr & PMD_MASK, vma->vm_start);
4222 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4223 
4224 	if (end - start == PAGE_SIZE)
4225 		return true;
4226 
4227 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4228 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4229 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4230 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4231 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4232 		else {
4233 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4234 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4235 		}
4236 	}
4237 
4238 	arch_enter_lazy_mmu_mode();
4239 
4240 	pte -= (addr - start) / PAGE_SIZE;
4241 
4242 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4243 		unsigned long pfn;
4244 		pte_t ptent = ptep_get(pte + i);
4245 
4246 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4247 		if (pfn == -1)
4248 			continue;
4249 
4250 		folio = get_pfn_folio(pfn, memcg, pgdat);
4251 		if (!folio)
4252 			continue;
4253 
4254 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4255 			continue;
4256 
4257 		if (last != folio) {
4258 			walk_update_folio(walk, last, gen, dirty);
4259 
4260 			last = folio;
4261 			dirty = false;
4262 		}
4263 
4264 		if (pte_dirty(ptent))
4265 			dirty = true;
4266 
4267 		young++;
4268 	}
4269 
4270 	walk_update_folio(walk, last, gen, dirty);
4271 
4272 	arch_leave_lazy_mmu_mode();
4273 
4274 	/* feedback from rmap walkers to page table walkers */
4275 	if (mm_state && suitable_to_scan(i, young))
4276 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4277 
4278 	return true;
4279 }
4280 
4281 /******************************************************************************
4282  *                          memcg LRU
4283  ******************************************************************************/
4284 
4285 /* see the comment on MEMCG_NR_GENS */
4286 enum {
4287 	MEMCG_LRU_NOP,
4288 	MEMCG_LRU_HEAD,
4289 	MEMCG_LRU_TAIL,
4290 	MEMCG_LRU_OLD,
4291 	MEMCG_LRU_YOUNG,
4292 };
4293 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4294 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4295 {
4296 	int seg;
4297 	int old, new;
4298 	unsigned long flags;
4299 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4300 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4301 
4302 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4303 
4304 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4305 
4306 	seg = 0;
4307 	new = old = lruvec->lrugen.gen;
4308 
4309 	/* see the comment on MEMCG_NR_GENS */
4310 	if (op == MEMCG_LRU_HEAD)
4311 		seg = MEMCG_LRU_HEAD;
4312 	else if (op == MEMCG_LRU_TAIL)
4313 		seg = MEMCG_LRU_TAIL;
4314 	else if (op == MEMCG_LRU_OLD)
4315 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4316 	else if (op == MEMCG_LRU_YOUNG)
4317 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4318 	else
4319 		VM_WARN_ON_ONCE(true);
4320 
4321 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4322 	WRITE_ONCE(lruvec->lrugen.gen, new);
4323 
4324 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4325 
4326 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4327 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4328 	else
4329 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4330 
4331 	pgdat->memcg_lru.nr_memcgs[old]--;
4332 	pgdat->memcg_lru.nr_memcgs[new]++;
4333 
4334 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4335 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4336 
4337 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4338 }
4339 
4340 #ifdef CONFIG_MEMCG
4341 
lru_gen_online_memcg(struct mem_cgroup * memcg)4342 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4343 {
4344 	int gen;
4345 	int nid;
4346 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4347 
4348 	for_each_node(nid) {
4349 		struct pglist_data *pgdat = NODE_DATA(nid);
4350 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4351 
4352 		spin_lock_irq(&pgdat->memcg_lru.lock);
4353 
4354 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4355 
4356 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4357 
4358 		lruvec->lrugen.gen = gen;
4359 
4360 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4361 		pgdat->memcg_lru.nr_memcgs[gen]++;
4362 
4363 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4364 	}
4365 }
4366 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4367 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4368 {
4369 	int nid;
4370 
4371 	for_each_node(nid) {
4372 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4373 
4374 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4375 	}
4376 }
4377 
lru_gen_release_memcg(struct mem_cgroup * memcg)4378 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4379 {
4380 	int gen;
4381 	int nid;
4382 
4383 	for_each_node(nid) {
4384 		struct pglist_data *pgdat = NODE_DATA(nid);
4385 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4386 
4387 		spin_lock_irq(&pgdat->memcg_lru.lock);
4388 
4389 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4390 			goto unlock;
4391 
4392 		gen = lruvec->lrugen.gen;
4393 
4394 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4395 		pgdat->memcg_lru.nr_memcgs[gen]--;
4396 
4397 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4398 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4399 unlock:
4400 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4401 	}
4402 }
4403 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4404 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4405 {
4406 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4407 
4408 	/* see the comment on MEMCG_NR_GENS */
4409 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4410 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4411 }
4412 
4413 #endif /* CONFIG_MEMCG */
4414 
4415 /******************************************************************************
4416  *                          the eviction
4417  ******************************************************************************/
4418 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4419 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4420 		       int tier_idx)
4421 {
4422 	bool success;
4423 	bool dirty, writeback;
4424 	int gen = folio_lru_gen(folio);
4425 	int type = folio_is_file_lru(folio);
4426 	int zone = folio_zonenum(folio);
4427 	int delta = folio_nr_pages(folio);
4428 	int refs = folio_lru_refs(folio);
4429 	bool workingset = folio_test_workingset(folio);
4430 	int tier = lru_tier_from_refs(refs, workingset);
4431 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4432 
4433 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4434 
4435 	/* unevictable */
4436 	if (!folio_evictable(folio)) {
4437 		success = lru_gen_del_folio(lruvec, folio, true);
4438 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4439 		folio_set_unevictable(folio);
4440 		lruvec_add_folio(lruvec, folio);
4441 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4442 		return true;
4443 	}
4444 
4445 	/* promoted */
4446 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4447 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4448 		return true;
4449 	}
4450 
4451 	/* protected */
4452 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4453 		gen = folio_inc_gen(lruvec, folio, false);
4454 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4455 
4456 		/* don't count the workingset being lazily promoted */
4457 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4458 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4459 
4460 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4461 				   lrugen->protected[hist][type][tier] + delta);
4462 		}
4463 		return true;
4464 	}
4465 
4466 	/* ineligible */
4467 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4468 		gen = folio_inc_gen(lruvec, folio, false);
4469 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4470 		return true;
4471 	}
4472 
4473 	dirty = folio_test_dirty(folio);
4474 	writeback = folio_test_writeback(folio);
4475 	if (type == LRU_GEN_FILE && dirty) {
4476 		sc->nr.file_taken += delta;
4477 		if (!writeback)
4478 			sc->nr.unqueued_dirty += delta;
4479 	}
4480 
4481 	/* waiting for writeback */
4482 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4483 		gen = folio_inc_gen(lruvec, folio, true);
4484 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4485 		return true;
4486 	}
4487 
4488 	return false;
4489 }
4490 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4491 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4492 {
4493 	bool success;
4494 
4495 	/* swap constrained */
4496 	if (!(sc->gfp_mask & __GFP_IO) &&
4497 	    (folio_test_dirty(folio) ||
4498 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4499 		return false;
4500 
4501 	/* raced with release_pages() */
4502 	if (!folio_try_get(folio))
4503 		return false;
4504 
4505 	/* raced with another isolation */
4506 	if (!folio_test_clear_lru(folio)) {
4507 		folio_put(folio);
4508 		return false;
4509 	}
4510 
4511 	/* see the comment on LRU_REFS_FLAGS */
4512 	if (!folio_test_referenced(folio))
4513 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4514 
4515 	/* for shrink_folio_list() */
4516 	folio_clear_reclaim(folio);
4517 
4518 	success = lru_gen_del_folio(lruvec, folio, true);
4519 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4520 
4521 	return true;
4522 }
4523 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4524 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4525 		       int type, int tier, struct list_head *list)
4526 {
4527 	int i;
4528 	int gen;
4529 	enum vm_event_item item;
4530 	int sorted = 0;
4531 	int scanned = 0;
4532 	int isolated = 0;
4533 	int skipped = 0;
4534 	int remaining = MAX_LRU_BATCH;
4535 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4536 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4537 
4538 	VM_WARN_ON_ONCE(!list_empty(list));
4539 
4540 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4541 		return 0;
4542 
4543 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4544 
4545 	for (i = MAX_NR_ZONES; i > 0; i--) {
4546 		LIST_HEAD(moved);
4547 		int skipped_zone = 0;
4548 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4549 		struct list_head *head = &lrugen->folios[gen][type][zone];
4550 
4551 		while (!list_empty(head)) {
4552 			struct folio *folio = lru_to_folio(head);
4553 			int delta = folio_nr_pages(folio);
4554 
4555 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4556 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4557 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4558 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4559 
4560 			scanned += delta;
4561 
4562 			if (sort_folio(lruvec, folio, sc, tier))
4563 				sorted += delta;
4564 			else if (isolate_folio(lruvec, folio, sc)) {
4565 				list_add(&folio->lru, list);
4566 				isolated += delta;
4567 			} else {
4568 				list_move(&folio->lru, &moved);
4569 				skipped_zone += delta;
4570 			}
4571 
4572 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4573 				break;
4574 		}
4575 
4576 		if (skipped_zone) {
4577 			list_splice(&moved, head);
4578 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4579 			skipped += skipped_zone;
4580 		}
4581 
4582 		if (!remaining || isolated >= MIN_LRU_BATCH)
4583 			break;
4584 	}
4585 
4586 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4587 	if (!cgroup_reclaim(sc)) {
4588 		__count_vm_events(item, isolated);
4589 		__count_vm_events(PGREFILL, sorted);
4590 	}
4591 	__count_memcg_events(memcg, item, isolated);
4592 	__count_memcg_events(memcg, PGREFILL, sorted);
4593 	__count_vm_events(PGSCAN_ANON + type, isolated);
4594 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4595 				scanned, skipped, isolated,
4596 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4597 	if (type == LRU_GEN_FILE)
4598 		sc->nr.file_taken += isolated;
4599 	/*
4600 	 * There might not be eligible folios due to reclaim_idx. Check the
4601 	 * remaining to prevent livelock if it's not making progress.
4602 	 */
4603 	return isolated || !remaining ? scanned : 0;
4604 }
4605 
get_tier_idx(struct lruvec * lruvec,int type)4606 static int get_tier_idx(struct lruvec *lruvec, int type)
4607 {
4608 	int tier;
4609 	struct ctrl_pos sp, pv;
4610 
4611 	/*
4612 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4613 	 * This value is chosen because any other tier would have at least twice
4614 	 * as many refaults as the first tier.
4615 	 */
4616 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4617 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4618 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4619 		if (!positive_ctrl_err(&sp, &pv))
4620 			break;
4621 	}
4622 
4623 	return tier - 1;
4624 }
4625 
get_type_to_scan(struct lruvec * lruvec,int swappiness)4626 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4627 {
4628 	struct ctrl_pos sp, pv;
4629 
4630 	if (swappiness <= MIN_SWAPPINESS + 1)
4631 		return LRU_GEN_FILE;
4632 
4633 	if (swappiness >= MAX_SWAPPINESS)
4634 		return LRU_GEN_ANON;
4635 	/*
4636 	 * Compare the sum of all tiers of anon with that of file to determine
4637 	 * which type to scan.
4638 	 */
4639 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4640 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4641 
4642 	return positive_ctrl_err(&sp, &pv);
4643 }
4644 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4645 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4646 			  int *type_scanned, struct list_head *list)
4647 {
4648 	int i;
4649 	int type = get_type_to_scan(lruvec, swappiness);
4650 
4651 	for_each_evictable_type(i, swappiness) {
4652 		int scanned;
4653 		int tier = get_tier_idx(lruvec, type);
4654 
4655 		*type_scanned = type;
4656 
4657 		scanned = scan_folios(lruvec, sc, type, tier, list);
4658 		if (scanned)
4659 			return scanned;
4660 
4661 		type = !type;
4662 	}
4663 
4664 	return 0;
4665 }
4666 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4667 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4668 {
4669 	int type;
4670 	int scanned;
4671 	int reclaimed;
4672 	LIST_HEAD(list);
4673 	LIST_HEAD(clean);
4674 	struct folio *folio;
4675 	struct folio *next;
4676 	enum vm_event_item item;
4677 	struct reclaim_stat stat;
4678 	struct lru_gen_mm_walk *walk;
4679 	bool skip_retry = false;
4680 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4681 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4682 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4683 
4684 	spin_lock_irq(&lruvec->lru_lock);
4685 
4686 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4687 
4688 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4689 
4690 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4691 		scanned = 0;
4692 
4693 	spin_unlock_irq(&lruvec->lru_lock);
4694 
4695 	if (list_empty(&list))
4696 		return scanned;
4697 retry:
4698 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4699 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4700 	sc->nr_reclaimed += reclaimed;
4701 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4702 			scanned, reclaimed, &stat, sc->priority,
4703 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4704 
4705 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4706 		DEFINE_MIN_SEQ(lruvec);
4707 
4708 		if (!folio_evictable(folio)) {
4709 			list_del(&folio->lru);
4710 			folio_putback_lru(folio);
4711 			continue;
4712 		}
4713 
4714 		/* retry folios that may have missed folio_rotate_reclaimable() */
4715 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4716 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4717 			list_move(&folio->lru, &clean);
4718 			continue;
4719 		}
4720 
4721 		/* don't add rejected folios to the oldest generation */
4722 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4723 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4724 	}
4725 
4726 	spin_lock_irq(&lruvec->lru_lock);
4727 
4728 	move_folios_to_lru(lruvec, &list);
4729 
4730 	walk = current->reclaim_state->mm_walk;
4731 	if (walk && walk->batched) {
4732 		walk->lruvec = lruvec;
4733 		reset_batch_size(walk);
4734 	}
4735 
4736 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4737 					stat.nr_demoted);
4738 
4739 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4740 	if (!cgroup_reclaim(sc))
4741 		__count_vm_events(item, reclaimed);
4742 	__count_memcg_events(memcg, item, reclaimed);
4743 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4744 
4745 	spin_unlock_irq(&lruvec->lru_lock);
4746 
4747 	list_splice_init(&clean, &list);
4748 
4749 	if (!list_empty(&list)) {
4750 		skip_retry = true;
4751 		goto retry;
4752 	}
4753 
4754 	return scanned;
4755 }
4756 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4757 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4758 			     int swappiness, unsigned long *nr_to_scan)
4759 {
4760 	int gen, type, zone;
4761 	unsigned long size = 0;
4762 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4763 	DEFINE_MIN_SEQ(lruvec);
4764 
4765 	*nr_to_scan = 0;
4766 	/* have to run aging, since eviction is not possible anymore */
4767 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4768 		return true;
4769 
4770 	for_each_evictable_type(type, swappiness) {
4771 		unsigned long seq;
4772 
4773 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4774 			gen = lru_gen_from_seq(seq);
4775 
4776 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4777 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4778 		}
4779 	}
4780 
4781 	*nr_to_scan = size;
4782 	/* better to run aging even though eviction is still possible */
4783 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4784 }
4785 
4786 /*
4787  * For future optimizations:
4788  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4789  *    reclaim.
4790  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4791 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4792 {
4793 	bool success;
4794 	unsigned long nr_to_scan;
4795 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4796 	DEFINE_MAX_SEQ(lruvec);
4797 
4798 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4799 		return -1;
4800 
4801 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4802 
4803 	/* try to scrape all its memory if this memcg was deleted */
4804 	if (nr_to_scan && !mem_cgroup_online(memcg))
4805 		return nr_to_scan;
4806 
4807 	/* try to get away with not aging at the default priority */
4808 	if (!success || sc->priority == DEF_PRIORITY)
4809 		return nr_to_scan >> sc->priority;
4810 
4811 	/* stop scanning this lruvec as it's low on cold folios */
4812 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4813 }
4814 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4815 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4816 {
4817 	int i;
4818 	enum zone_watermarks mark;
4819 
4820 	/* don't abort memcg reclaim to ensure fairness */
4821 	if (!root_reclaim(sc))
4822 		return false;
4823 
4824 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4825 		return true;
4826 
4827 	/* check the order to exclude compaction-induced reclaim */
4828 	if (!current_is_kswapd() || sc->order)
4829 		return false;
4830 
4831 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4832 	       WMARK_PROMO : WMARK_HIGH;
4833 
4834 	for (i = 0; i <= sc->reclaim_idx; i++) {
4835 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4836 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4837 
4838 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4839 			return false;
4840 	}
4841 
4842 	/* kswapd should abort if all eligible zones are safe */
4843 	return true;
4844 }
4845 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4846 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4847 {
4848 	long nr_to_scan;
4849 	unsigned long scanned = 0;
4850 	int swappiness = get_swappiness(lruvec, sc);
4851 
4852 	while (true) {
4853 		int delta;
4854 
4855 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4856 		if (nr_to_scan <= 0)
4857 			break;
4858 
4859 		delta = evict_folios(lruvec, sc, swappiness);
4860 		if (!delta)
4861 			break;
4862 
4863 		scanned += delta;
4864 		if (scanned >= nr_to_scan)
4865 			break;
4866 
4867 		if (should_abort_scan(lruvec, sc))
4868 			break;
4869 
4870 		cond_resched();
4871 	}
4872 
4873 	/*
4874 	 * If too many file cache in the coldest generation can't be evicted
4875 	 * due to being dirty, wake up the flusher.
4876 	 */
4877 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4878 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4879 
4880 	/* whether this lruvec should be rotated */
4881 	return nr_to_scan < 0;
4882 }
4883 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4884 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4885 {
4886 	bool success;
4887 	unsigned long scanned = sc->nr_scanned;
4888 	unsigned long reclaimed = sc->nr_reclaimed;
4889 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4890 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4891 
4892 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4893 	if (mem_cgroup_below_min(NULL, memcg))
4894 		return MEMCG_LRU_YOUNG;
4895 
4896 	if (mem_cgroup_below_low(NULL, memcg)) {
4897 		/* see the comment on MEMCG_NR_GENS */
4898 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4899 			return MEMCG_LRU_TAIL;
4900 
4901 		memcg_memory_event(memcg, MEMCG_LOW);
4902 	}
4903 
4904 	success = try_to_shrink_lruvec(lruvec, sc);
4905 
4906 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4907 
4908 	if (!sc->proactive)
4909 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4910 			   sc->nr_reclaimed - reclaimed);
4911 
4912 	flush_reclaim_state(sc);
4913 
4914 	if (success && mem_cgroup_online(memcg))
4915 		return MEMCG_LRU_YOUNG;
4916 
4917 	if (!success && lruvec_is_sizable(lruvec, sc))
4918 		return 0;
4919 
4920 	/* one retry if offlined or too small */
4921 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4922 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4923 }
4924 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4925 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4926 {
4927 	int op;
4928 	int gen;
4929 	int bin;
4930 	int first_bin;
4931 	struct lruvec *lruvec;
4932 	struct lru_gen_folio *lrugen;
4933 	struct mem_cgroup *memcg;
4934 	struct hlist_nulls_node *pos;
4935 
4936 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4937 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4938 restart:
4939 	op = 0;
4940 	memcg = NULL;
4941 
4942 	rcu_read_lock();
4943 
4944 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4945 		if (op) {
4946 			lru_gen_rotate_memcg(lruvec, op);
4947 			op = 0;
4948 		}
4949 
4950 		mem_cgroup_put(memcg);
4951 		memcg = NULL;
4952 
4953 		if (gen != READ_ONCE(lrugen->gen))
4954 			continue;
4955 
4956 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4957 		memcg = lruvec_memcg(lruvec);
4958 
4959 		if (!mem_cgroup_tryget(memcg)) {
4960 			lru_gen_release_memcg(memcg);
4961 			memcg = NULL;
4962 			continue;
4963 		}
4964 
4965 		rcu_read_unlock();
4966 
4967 		op = shrink_one(lruvec, sc);
4968 
4969 		rcu_read_lock();
4970 
4971 		if (should_abort_scan(lruvec, sc))
4972 			break;
4973 	}
4974 
4975 	rcu_read_unlock();
4976 
4977 	if (op)
4978 		lru_gen_rotate_memcg(lruvec, op);
4979 
4980 	mem_cgroup_put(memcg);
4981 
4982 	if (!is_a_nulls(pos))
4983 		return;
4984 
4985 	/* restart if raced with lru_gen_rotate_memcg() */
4986 	if (gen != get_nulls_value(pos))
4987 		goto restart;
4988 
4989 	/* try the rest of the bins of the current generation */
4990 	bin = get_memcg_bin(bin + 1);
4991 	if (bin != first_bin)
4992 		goto restart;
4993 }
4994 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4995 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4996 {
4997 	struct blk_plug plug;
4998 
4999 	VM_WARN_ON_ONCE(root_reclaim(sc));
5000 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5001 
5002 	lru_add_drain();
5003 
5004 	blk_start_plug(&plug);
5005 
5006 	set_mm_walk(NULL, sc->proactive);
5007 
5008 	if (try_to_shrink_lruvec(lruvec, sc))
5009 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5010 
5011 	clear_mm_walk();
5012 
5013 	blk_finish_plug(&plug);
5014 }
5015 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5016 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5017 {
5018 	struct blk_plug plug;
5019 	unsigned long reclaimed = sc->nr_reclaimed;
5020 
5021 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5022 
5023 	/*
5024 	 * Unmapped clean folios are already prioritized. Scanning for more of
5025 	 * them is likely futile and can cause high reclaim latency when there
5026 	 * is a large number of memcgs.
5027 	 */
5028 	if (!sc->may_writepage || !sc->may_unmap)
5029 		goto done;
5030 
5031 	lru_add_drain();
5032 
5033 	blk_start_plug(&plug);
5034 
5035 	set_mm_walk(pgdat, sc->proactive);
5036 
5037 	set_initial_priority(pgdat, sc);
5038 
5039 	if (current_is_kswapd())
5040 		sc->nr_reclaimed = 0;
5041 
5042 	if (mem_cgroup_disabled())
5043 		shrink_one(&pgdat->__lruvec, sc);
5044 	else
5045 		shrink_many(pgdat, sc);
5046 
5047 	if (current_is_kswapd())
5048 		sc->nr_reclaimed += reclaimed;
5049 
5050 	clear_mm_walk();
5051 
5052 	blk_finish_plug(&plug);
5053 done:
5054 	if (sc->nr_reclaimed > reclaimed)
5055 		pgdat->kswapd_failures = 0;
5056 }
5057 
5058 /******************************************************************************
5059  *                          state change
5060  ******************************************************************************/
5061 
state_is_valid(struct lruvec * lruvec)5062 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5063 {
5064 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5065 
5066 	if (lrugen->enabled) {
5067 		enum lru_list lru;
5068 
5069 		for_each_evictable_lru(lru) {
5070 			if (!list_empty(&lruvec->lists[lru]))
5071 				return false;
5072 		}
5073 	} else {
5074 		int gen, type, zone;
5075 
5076 		for_each_gen_type_zone(gen, type, zone) {
5077 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5078 				return false;
5079 		}
5080 	}
5081 
5082 	return true;
5083 }
5084 
fill_evictable(struct lruvec * lruvec)5085 static bool fill_evictable(struct lruvec *lruvec)
5086 {
5087 	enum lru_list lru;
5088 	int remaining = MAX_LRU_BATCH;
5089 
5090 	for_each_evictable_lru(lru) {
5091 		int type = is_file_lru(lru);
5092 		bool active = is_active_lru(lru);
5093 		struct list_head *head = &lruvec->lists[lru];
5094 
5095 		while (!list_empty(head)) {
5096 			bool success;
5097 			struct folio *folio = lru_to_folio(head);
5098 
5099 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5100 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5101 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5102 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5103 
5104 			lruvec_del_folio(lruvec, folio);
5105 			success = lru_gen_add_folio(lruvec, folio, false);
5106 			VM_WARN_ON_ONCE(!success);
5107 
5108 			if (!--remaining)
5109 				return false;
5110 		}
5111 	}
5112 
5113 	return true;
5114 }
5115 
drain_evictable(struct lruvec * lruvec)5116 static bool drain_evictable(struct lruvec *lruvec)
5117 {
5118 	int gen, type, zone;
5119 	int remaining = MAX_LRU_BATCH;
5120 
5121 	for_each_gen_type_zone(gen, type, zone) {
5122 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5123 
5124 		while (!list_empty(head)) {
5125 			bool success;
5126 			struct folio *folio = lru_to_folio(head);
5127 
5128 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5129 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5130 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5131 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5132 
5133 			success = lru_gen_del_folio(lruvec, folio, false);
5134 			VM_WARN_ON_ONCE(!success);
5135 			lruvec_add_folio(lruvec, folio);
5136 
5137 			if (!--remaining)
5138 				return false;
5139 		}
5140 	}
5141 
5142 	return true;
5143 }
5144 
lru_gen_change_state(bool enabled)5145 static void lru_gen_change_state(bool enabled)
5146 {
5147 	static DEFINE_MUTEX(state_mutex);
5148 
5149 	struct mem_cgroup *memcg;
5150 
5151 	cgroup_lock();
5152 	cpus_read_lock();
5153 	get_online_mems();
5154 	mutex_lock(&state_mutex);
5155 
5156 	if (enabled == lru_gen_enabled())
5157 		goto unlock;
5158 
5159 	if (enabled)
5160 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5161 	else
5162 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5163 
5164 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5165 	do {
5166 		int nid;
5167 
5168 		for_each_node(nid) {
5169 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5170 
5171 			spin_lock_irq(&lruvec->lru_lock);
5172 
5173 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5174 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5175 
5176 			lruvec->lrugen.enabled = enabled;
5177 
5178 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5179 				spin_unlock_irq(&lruvec->lru_lock);
5180 				cond_resched();
5181 				spin_lock_irq(&lruvec->lru_lock);
5182 			}
5183 
5184 			spin_unlock_irq(&lruvec->lru_lock);
5185 		}
5186 
5187 		cond_resched();
5188 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5189 unlock:
5190 	mutex_unlock(&state_mutex);
5191 	put_online_mems();
5192 	cpus_read_unlock();
5193 	cgroup_unlock();
5194 }
5195 
5196 /******************************************************************************
5197  *                          sysfs interface
5198  ******************************************************************************/
5199 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5200 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5201 {
5202 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5203 }
5204 
5205 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5206 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5207 				const char *buf, size_t len)
5208 {
5209 	unsigned int msecs;
5210 
5211 	if (kstrtouint(buf, 0, &msecs))
5212 		return -EINVAL;
5213 
5214 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5215 
5216 	return len;
5217 }
5218 
5219 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5220 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5221 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5222 {
5223 	unsigned int caps = 0;
5224 
5225 	if (get_cap(LRU_GEN_CORE))
5226 		caps |= BIT(LRU_GEN_CORE);
5227 
5228 	if (should_walk_mmu())
5229 		caps |= BIT(LRU_GEN_MM_WALK);
5230 
5231 	if (should_clear_pmd_young())
5232 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5233 
5234 	return sysfs_emit(buf, "0x%04x\n", caps);
5235 }
5236 
5237 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5238 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5239 			     const char *buf, size_t len)
5240 {
5241 	int i;
5242 	unsigned int caps;
5243 
5244 	if (tolower(*buf) == 'n')
5245 		caps = 0;
5246 	else if (tolower(*buf) == 'y')
5247 		caps = -1;
5248 	else if (kstrtouint(buf, 0, &caps))
5249 		return -EINVAL;
5250 
5251 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5252 		bool enabled = caps & BIT(i);
5253 
5254 		if (i == LRU_GEN_CORE)
5255 			lru_gen_change_state(enabled);
5256 		else if (enabled)
5257 			static_branch_enable(&lru_gen_caps[i]);
5258 		else
5259 			static_branch_disable(&lru_gen_caps[i]);
5260 	}
5261 
5262 	return len;
5263 }
5264 
5265 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5266 
5267 static struct attribute *lru_gen_attrs[] = {
5268 	&lru_gen_min_ttl_attr.attr,
5269 	&lru_gen_enabled_attr.attr,
5270 	NULL
5271 };
5272 
5273 static const struct attribute_group lru_gen_attr_group = {
5274 	.name = "lru_gen",
5275 	.attrs = lru_gen_attrs,
5276 };
5277 
5278 /******************************************************************************
5279  *                          debugfs interface
5280  ******************************************************************************/
5281 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5282 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5283 {
5284 	struct mem_cgroup *memcg;
5285 	loff_t nr_to_skip = *pos;
5286 
5287 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5288 	if (!m->private)
5289 		return ERR_PTR(-ENOMEM);
5290 
5291 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5292 	do {
5293 		int nid;
5294 
5295 		for_each_node_state(nid, N_MEMORY) {
5296 			if (!nr_to_skip--)
5297 				return get_lruvec(memcg, nid);
5298 		}
5299 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5300 
5301 	return NULL;
5302 }
5303 
lru_gen_seq_stop(struct seq_file * m,void * v)5304 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5305 {
5306 	if (!IS_ERR_OR_NULL(v))
5307 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5308 
5309 	kvfree(m->private);
5310 	m->private = NULL;
5311 }
5312 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5313 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5314 {
5315 	int nid = lruvec_pgdat(v)->node_id;
5316 	struct mem_cgroup *memcg = lruvec_memcg(v);
5317 
5318 	++*pos;
5319 
5320 	nid = next_memory_node(nid);
5321 	if (nid == MAX_NUMNODES) {
5322 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5323 		if (!memcg)
5324 			return NULL;
5325 
5326 		nid = first_memory_node;
5327 	}
5328 
5329 	return get_lruvec(memcg, nid);
5330 }
5331 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5332 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5333 				  unsigned long max_seq, unsigned long *min_seq,
5334 				  unsigned long seq)
5335 {
5336 	int i;
5337 	int type, tier;
5338 	int hist = lru_hist_from_seq(seq);
5339 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5340 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5341 
5342 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5343 		seq_printf(m, "            %10d", tier);
5344 		for (type = 0; type < ANON_AND_FILE; type++) {
5345 			const char *s = "xxx";
5346 			unsigned long n[3] = {};
5347 
5348 			if (seq == max_seq) {
5349 				s = "RTx";
5350 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5351 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5352 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5353 				s = "rep";
5354 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5355 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5356 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5357 			}
5358 
5359 			for (i = 0; i < 3; i++)
5360 				seq_printf(m, " %10lu%c", n[i], s[i]);
5361 		}
5362 		seq_putc(m, '\n');
5363 	}
5364 
5365 	if (!mm_state)
5366 		return;
5367 
5368 	seq_puts(m, "                      ");
5369 	for (i = 0; i < NR_MM_STATS; i++) {
5370 		const char *s = "xxxx";
5371 		unsigned long n = 0;
5372 
5373 		if (seq == max_seq && NR_HIST_GENS == 1) {
5374 			s = "TYFA";
5375 			n = READ_ONCE(mm_state->stats[hist][i]);
5376 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5377 			s = "tyfa";
5378 			n = READ_ONCE(mm_state->stats[hist][i]);
5379 		}
5380 
5381 		seq_printf(m, " %10lu%c", n, s[i]);
5382 	}
5383 	seq_putc(m, '\n');
5384 }
5385 
5386 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5387 static int lru_gen_seq_show(struct seq_file *m, void *v)
5388 {
5389 	unsigned long seq;
5390 	bool full = !debugfs_real_fops(m->file)->write;
5391 	struct lruvec *lruvec = v;
5392 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5393 	int nid = lruvec_pgdat(lruvec)->node_id;
5394 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5395 	DEFINE_MAX_SEQ(lruvec);
5396 	DEFINE_MIN_SEQ(lruvec);
5397 
5398 	if (nid == first_memory_node) {
5399 		const char *path = memcg ? m->private : "";
5400 
5401 #ifdef CONFIG_MEMCG
5402 		if (memcg)
5403 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5404 #endif
5405 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5406 	}
5407 
5408 	seq_printf(m, " node %5d\n", nid);
5409 
5410 	if (!full)
5411 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5412 	else if (max_seq >= MAX_NR_GENS)
5413 		seq = max_seq - MAX_NR_GENS + 1;
5414 	else
5415 		seq = 0;
5416 
5417 	for (; seq <= max_seq; seq++) {
5418 		int type, zone;
5419 		int gen = lru_gen_from_seq(seq);
5420 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5421 
5422 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5423 
5424 		for (type = 0; type < ANON_AND_FILE; type++) {
5425 			unsigned long size = 0;
5426 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5427 
5428 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5429 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5430 
5431 			seq_printf(m, " %10lu%c", size, mark);
5432 		}
5433 
5434 		seq_putc(m, '\n');
5435 
5436 		if (full)
5437 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5438 	}
5439 
5440 	return 0;
5441 }
5442 
5443 static const struct seq_operations lru_gen_seq_ops = {
5444 	.start = lru_gen_seq_start,
5445 	.stop = lru_gen_seq_stop,
5446 	.next = lru_gen_seq_next,
5447 	.show = lru_gen_seq_show,
5448 };
5449 
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5450 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5451 		     int swappiness, bool force_scan)
5452 {
5453 	DEFINE_MAX_SEQ(lruvec);
5454 
5455 	if (seq > max_seq)
5456 		return -EINVAL;
5457 
5458 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5459 }
5460 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5461 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5462 			int swappiness, unsigned long nr_to_reclaim)
5463 {
5464 	DEFINE_MAX_SEQ(lruvec);
5465 
5466 	if (seq + MIN_NR_GENS > max_seq)
5467 		return -EINVAL;
5468 
5469 	sc->nr_reclaimed = 0;
5470 
5471 	while (!signal_pending(current)) {
5472 		DEFINE_MIN_SEQ(lruvec);
5473 
5474 		if (seq < evictable_min_seq(min_seq, swappiness))
5475 			return 0;
5476 
5477 		if (sc->nr_reclaimed >= nr_to_reclaim)
5478 			return 0;
5479 
5480 		if (!evict_folios(lruvec, sc, swappiness))
5481 			return 0;
5482 
5483 		cond_resched();
5484 	}
5485 
5486 	return -EINTR;
5487 }
5488 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5489 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5490 		   struct scan_control *sc, int swappiness, unsigned long opt)
5491 {
5492 	struct lruvec *lruvec;
5493 	int err = -EINVAL;
5494 	struct mem_cgroup *memcg = NULL;
5495 
5496 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5497 		return -EINVAL;
5498 
5499 	if (!mem_cgroup_disabled()) {
5500 		rcu_read_lock();
5501 
5502 		memcg = mem_cgroup_from_id(memcg_id);
5503 		if (!mem_cgroup_tryget(memcg))
5504 			memcg = NULL;
5505 
5506 		rcu_read_unlock();
5507 
5508 		if (!memcg)
5509 			return -EINVAL;
5510 	}
5511 
5512 	if (memcg_id != mem_cgroup_id(memcg))
5513 		goto done;
5514 
5515 	lruvec = get_lruvec(memcg, nid);
5516 
5517 	if (swappiness < MIN_SWAPPINESS)
5518 		swappiness = get_swappiness(lruvec, sc);
5519 	else if (swappiness > MAX_SWAPPINESS + 1)
5520 		goto done;
5521 
5522 	switch (cmd) {
5523 	case '+':
5524 		err = run_aging(lruvec, seq, swappiness, opt);
5525 		break;
5526 	case '-':
5527 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5528 		break;
5529 	}
5530 done:
5531 	mem_cgroup_put(memcg);
5532 
5533 	return err;
5534 }
5535 
5536 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5537 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5538 				 size_t len, loff_t *pos)
5539 {
5540 	void *buf;
5541 	char *cur, *next;
5542 	unsigned int flags;
5543 	struct blk_plug plug;
5544 	int err = -EINVAL;
5545 	struct scan_control sc = {
5546 		.may_writepage = true,
5547 		.may_unmap = true,
5548 		.may_swap = true,
5549 		.reclaim_idx = MAX_NR_ZONES - 1,
5550 		.gfp_mask = GFP_KERNEL,
5551 	};
5552 
5553 	buf = kvmalloc(len + 1, GFP_KERNEL);
5554 	if (!buf)
5555 		return -ENOMEM;
5556 
5557 	if (copy_from_user(buf, src, len)) {
5558 		kvfree(buf);
5559 		return -EFAULT;
5560 	}
5561 
5562 	set_task_reclaim_state(current, &sc.reclaim_state);
5563 	flags = memalloc_noreclaim_save();
5564 	blk_start_plug(&plug);
5565 	if (!set_mm_walk(NULL, true)) {
5566 		err = -ENOMEM;
5567 		goto done;
5568 	}
5569 
5570 	next = buf;
5571 	next[len] = '\0';
5572 
5573 	while ((cur = strsep(&next, ",;\n"))) {
5574 		int n;
5575 		int end;
5576 		char cmd;
5577 		unsigned int memcg_id;
5578 		unsigned int nid;
5579 		unsigned long seq;
5580 		unsigned int swappiness = -1;
5581 		unsigned long opt = -1;
5582 
5583 		cur = skip_spaces(cur);
5584 		if (!*cur)
5585 			continue;
5586 
5587 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5588 			   &seq, &end, &swappiness, &end, &opt, &end);
5589 		if (n < 4 || cur[end]) {
5590 			err = -EINVAL;
5591 			break;
5592 		}
5593 
5594 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5595 		if (err)
5596 			break;
5597 	}
5598 done:
5599 	clear_mm_walk();
5600 	blk_finish_plug(&plug);
5601 	memalloc_noreclaim_restore(flags);
5602 	set_task_reclaim_state(current, NULL);
5603 
5604 	kvfree(buf);
5605 
5606 	return err ? : len;
5607 }
5608 
lru_gen_seq_open(struct inode * inode,struct file * file)5609 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5610 {
5611 	return seq_open(file, &lru_gen_seq_ops);
5612 }
5613 
5614 static const struct file_operations lru_gen_rw_fops = {
5615 	.open = lru_gen_seq_open,
5616 	.read = seq_read,
5617 	.write = lru_gen_seq_write,
5618 	.llseek = seq_lseek,
5619 	.release = seq_release,
5620 };
5621 
5622 static const struct file_operations lru_gen_ro_fops = {
5623 	.open = lru_gen_seq_open,
5624 	.read = seq_read,
5625 	.llseek = seq_lseek,
5626 	.release = seq_release,
5627 };
5628 
5629 /******************************************************************************
5630  *                          initialization
5631  ******************************************************************************/
5632 
lru_gen_init_pgdat(struct pglist_data * pgdat)5633 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5634 {
5635 	int i, j;
5636 
5637 	spin_lock_init(&pgdat->memcg_lru.lock);
5638 
5639 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5640 		for (j = 0; j < MEMCG_NR_BINS; j++)
5641 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5642 	}
5643 }
5644 
lru_gen_init_lruvec(struct lruvec * lruvec)5645 void lru_gen_init_lruvec(struct lruvec *lruvec)
5646 {
5647 	int i;
5648 	int gen, type, zone;
5649 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5650 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5651 
5652 	lrugen->max_seq = MIN_NR_GENS + 1;
5653 	lrugen->enabled = lru_gen_enabled();
5654 
5655 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5656 		lrugen->timestamps[i] = jiffies;
5657 
5658 	for_each_gen_type_zone(gen, type, zone)
5659 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5660 
5661 	if (mm_state)
5662 		mm_state->seq = MIN_NR_GENS;
5663 }
5664 
5665 #ifdef CONFIG_MEMCG
5666 
lru_gen_init_memcg(struct mem_cgroup * memcg)5667 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5668 {
5669 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5670 
5671 	if (!mm_list)
5672 		return;
5673 
5674 	INIT_LIST_HEAD(&mm_list->fifo);
5675 	spin_lock_init(&mm_list->lock);
5676 }
5677 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5678 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5679 {
5680 	int i;
5681 	int nid;
5682 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5683 
5684 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5685 
5686 	for_each_node(nid) {
5687 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5688 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5689 
5690 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5691 					   sizeof(lruvec->lrugen.nr_pages)));
5692 
5693 		lruvec->lrugen.list.next = LIST_POISON1;
5694 
5695 		if (!mm_state)
5696 			continue;
5697 
5698 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5699 			bitmap_free(mm_state->filters[i]);
5700 			mm_state->filters[i] = NULL;
5701 		}
5702 	}
5703 }
5704 
5705 #endif /* CONFIG_MEMCG */
5706 
init_lru_gen(void)5707 static int __init init_lru_gen(void)
5708 {
5709 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5710 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5711 
5712 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5713 		pr_err("lru_gen: failed to create sysfs group\n");
5714 
5715 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5716 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5717 
5718 	return 0;
5719 };
5720 late_initcall(init_lru_gen);
5721 
5722 #else /* !CONFIG_LRU_GEN */
5723 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5724 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5725 {
5726 	BUILD_BUG();
5727 }
5728 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5729 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5730 {
5731 	BUILD_BUG();
5732 }
5733 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5734 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5735 {
5736 	BUILD_BUG();
5737 }
5738 
5739 #endif /* CONFIG_LRU_GEN */
5740 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5741 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5742 {
5743 	unsigned long nr[NR_LRU_LISTS];
5744 	unsigned long targets[NR_LRU_LISTS];
5745 	unsigned long nr_to_scan;
5746 	enum lru_list lru;
5747 	unsigned long nr_reclaimed = 0;
5748 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5749 	bool proportional_reclaim;
5750 	struct blk_plug plug;
5751 
5752 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5753 		lru_gen_shrink_lruvec(lruvec, sc);
5754 		return;
5755 	}
5756 
5757 	get_scan_count(lruvec, sc, nr);
5758 
5759 	/* Record the original scan target for proportional adjustments later */
5760 	memcpy(targets, nr, sizeof(nr));
5761 
5762 	/*
5763 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5764 	 * event that can occur when there is little memory pressure e.g.
5765 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5766 	 * when the requested number of pages are reclaimed when scanning at
5767 	 * DEF_PRIORITY on the assumption that the fact we are direct
5768 	 * reclaiming implies that kswapd is not keeping up and it is best to
5769 	 * do a batch of work at once. For memcg reclaim one check is made to
5770 	 * abort proportional reclaim if either the file or anon lru has already
5771 	 * dropped to zero at the first pass.
5772 	 */
5773 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5774 				sc->priority == DEF_PRIORITY);
5775 
5776 	blk_start_plug(&plug);
5777 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5778 					nr[LRU_INACTIVE_FILE]) {
5779 		unsigned long nr_anon, nr_file, percentage;
5780 		unsigned long nr_scanned;
5781 
5782 		for_each_evictable_lru(lru) {
5783 			if (nr[lru]) {
5784 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5785 				nr[lru] -= nr_to_scan;
5786 
5787 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5788 							    lruvec, sc);
5789 			}
5790 		}
5791 
5792 		cond_resched();
5793 
5794 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5795 			continue;
5796 
5797 		/*
5798 		 * For kswapd and memcg, reclaim at least the number of pages
5799 		 * requested. Ensure that the anon and file LRUs are scanned
5800 		 * proportionally what was requested by get_scan_count(). We
5801 		 * stop reclaiming one LRU and reduce the amount scanning
5802 		 * proportional to the original scan target.
5803 		 */
5804 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5805 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5806 
5807 		/*
5808 		 * It's just vindictive to attack the larger once the smaller
5809 		 * has gone to zero.  And given the way we stop scanning the
5810 		 * smaller below, this makes sure that we only make one nudge
5811 		 * towards proportionality once we've got nr_to_reclaim.
5812 		 */
5813 		if (!nr_file || !nr_anon)
5814 			break;
5815 
5816 		if (nr_file > nr_anon) {
5817 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5818 						targets[LRU_ACTIVE_ANON] + 1;
5819 			lru = LRU_BASE;
5820 			percentage = nr_anon * 100 / scan_target;
5821 		} else {
5822 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5823 						targets[LRU_ACTIVE_FILE] + 1;
5824 			lru = LRU_FILE;
5825 			percentage = nr_file * 100 / scan_target;
5826 		}
5827 
5828 		/* Stop scanning the smaller of the LRU */
5829 		nr[lru] = 0;
5830 		nr[lru + LRU_ACTIVE] = 0;
5831 
5832 		/*
5833 		 * Recalculate the other LRU scan count based on its original
5834 		 * scan target and the percentage scanning already complete
5835 		 */
5836 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5837 		nr_scanned = targets[lru] - nr[lru];
5838 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5839 		nr[lru] -= min(nr[lru], nr_scanned);
5840 
5841 		lru += LRU_ACTIVE;
5842 		nr_scanned = targets[lru] - nr[lru];
5843 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5844 		nr[lru] -= min(nr[lru], nr_scanned);
5845 	}
5846 	blk_finish_plug(&plug);
5847 	sc->nr_reclaimed += nr_reclaimed;
5848 
5849 	/*
5850 	 * Even if we did not try to evict anon pages at all, we want to
5851 	 * rebalance the anon lru active/inactive ratio.
5852 	 */
5853 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5854 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5855 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5856 				   sc, LRU_ACTIVE_ANON);
5857 }
5858 
5859 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5860 static bool in_reclaim_compaction(struct scan_control *sc)
5861 {
5862 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5863 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5864 			 sc->priority < DEF_PRIORITY - 2))
5865 		return true;
5866 
5867 	return false;
5868 }
5869 
5870 /*
5871  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5872  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5873  * true if more pages should be reclaimed such that when the page allocator
5874  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5875  * It will give up earlier than that if there is difficulty reclaiming pages.
5876  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5877 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5878 					unsigned long nr_reclaimed,
5879 					struct scan_control *sc)
5880 {
5881 	unsigned long pages_for_compaction;
5882 	unsigned long inactive_lru_pages;
5883 	int z;
5884 	struct zone *zone;
5885 
5886 	/* If not in reclaim/compaction mode, stop */
5887 	if (!in_reclaim_compaction(sc))
5888 		return false;
5889 
5890 	/*
5891 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5892 	 * number of pages that were scanned. This will return to the caller
5893 	 * with the risk reclaim/compaction and the resulting allocation attempt
5894 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5895 	 * allocations through requiring that the full LRU list has been scanned
5896 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5897 	 * scan, but that approximation was wrong, and there were corner cases
5898 	 * where always a non-zero amount of pages were scanned.
5899 	 */
5900 	if (!nr_reclaimed)
5901 		return false;
5902 
5903 	/* If compaction would go ahead or the allocation would succeed, stop */
5904 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5905 		unsigned long watermark = min_wmark_pages(zone);
5906 
5907 		/* Allocation can already succeed, nothing to do */
5908 		if (zone_watermark_ok(zone, sc->order, watermark,
5909 				      sc->reclaim_idx, 0))
5910 			return false;
5911 
5912 		if (compaction_suitable(zone, sc->order, watermark,
5913 					sc->reclaim_idx))
5914 			return false;
5915 	}
5916 
5917 	/*
5918 	 * If we have not reclaimed enough pages for compaction and the
5919 	 * inactive lists are large enough, continue reclaiming
5920 	 */
5921 	pages_for_compaction = compact_gap(sc->order);
5922 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5923 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5924 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5925 
5926 	return inactive_lru_pages > pages_for_compaction;
5927 }
5928 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5929 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5930 {
5931 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5932 	struct mem_cgroup_reclaim_cookie reclaim = {
5933 		.pgdat = pgdat,
5934 	};
5935 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5936 	struct mem_cgroup *memcg;
5937 
5938 	/*
5939 	 * In most cases, direct reclaimers can do partial walks
5940 	 * through the cgroup tree, using an iterator state that
5941 	 * persists across invocations. This strikes a balance between
5942 	 * fairness and allocation latency.
5943 	 *
5944 	 * For kswapd, reliable forward progress is more important
5945 	 * than a quick return to idle. Always do full walks.
5946 	 */
5947 	if (current_is_kswapd() || sc->memcg_full_walk)
5948 		partial = NULL;
5949 
5950 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5951 	do {
5952 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5953 		unsigned long reclaimed;
5954 		unsigned long scanned;
5955 
5956 		/*
5957 		 * This loop can become CPU-bound when target memcgs
5958 		 * aren't eligible for reclaim - either because they
5959 		 * don't have any reclaimable pages, or because their
5960 		 * memory is explicitly protected. Avoid soft lockups.
5961 		 */
5962 		cond_resched();
5963 
5964 		mem_cgroup_calculate_protection(target_memcg, memcg);
5965 
5966 		if (mem_cgroup_below_min(target_memcg, memcg)) {
5967 			/*
5968 			 * Hard protection.
5969 			 * If there is no reclaimable memory, OOM.
5970 			 */
5971 			continue;
5972 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5973 			/*
5974 			 * Soft protection.
5975 			 * Respect the protection only as long as
5976 			 * there is an unprotected supply
5977 			 * of reclaimable memory from other cgroups.
5978 			 */
5979 			if (!sc->memcg_low_reclaim) {
5980 				sc->memcg_low_skipped = 1;
5981 				continue;
5982 			}
5983 			memcg_memory_event(memcg, MEMCG_LOW);
5984 		}
5985 
5986 		reclaimed = sc->nr_reclaimed;
5987 		scanned = sc->nr_scanned;
5988 
5989 		shrink_lruvec(lruvec, sc);
5990 
5991 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5992 			    sc->priority);
5993 
5994 		/* Record the group's reclaim efficiency */
5995 		if (!sc->proactive)
5996 			vmpressure(sc->gfp_mask, memcg, false,
5997 				   sc->nr_scanned - scanned,
5998 				   sc->nr_reclaimed - reclaimed);
5999 
6000 		/* If partial walks are allowed, bail once goal is reached */
6001 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6002 			mem_cgroup_iter_break(target_memcg, memcg);
6003 			break;
6004 		}
6005 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6006 }
6007 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6008 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6009 {
6010 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6011 	struct lruvec *target_lruvec;
6012 	bool reclaimable = false;
6013 
6014 	if (lru_gen_enabled() && root_reclaim(sc)) {
6015 		memset(&sc->nr, 0, sizeof(sc->nr));
6016 		lru_gen_shrink_node(pgdat, sc);
6017 		return;
6018 	}
6019 
6020 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6021 
6022 again:
6023 	memset(&sc->nr, 0, sizeof(sc->nr));
6024 
6025 	nr_reclaimed = sc->nr_reclaimed;
6026 	nr_scanned = sc->nr_scanned;
6027 
6028 	prepare_scan_control(pgdat, sc);
6029 
6030 	shrink_node_memcgs(pgdat, sc);
6031 
6032 	flush_reclaim_state(sc);
6033 
6034 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6035 
6036 	/* Record the subtree's reclaim efficiency */
6037 	if (!sc->proactive)
6038 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6039 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6040 
6041 	if (nr_node_reclaimed)
6042 		reclaimable = true;
6043 
6044 	if (current_is_kswapd()) {
6045 		/*
6046 		 * If reclaim is isolating dirty pages under writeback,
6047 		 * it implies that the long-lived page allocation rate
6048 		 * is exceeding the page laundering rate. Either the
6049 		 * global limits are not being effective at throttling
6050 		 * processes due to the page distribution throughout
6051 		 * zones or there is heavy usage of a slow backing
6052 		 * device. The only option is to throttle from reclaim
6053 		 * context which is not ideal as there is no guarantee
6054 		 * the dirtying process is throttled in the same way
6055 		 * balance_dirty_pages() manages.
6056 		 *
6057 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6058 		 * count the number of pages under pages flagged for
6059 		 * immediate reclaim and stall if any are encountered
6060 		 * in the nr_immediate check below.
6061 		 */
6062 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6063 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6064 
6065 		/* Allow kswapd to start writing pages during reclaim.*/
6066 		if (sc->nr.unqueued_dirty &&
6067 			sc->nr.unqueued_dirty == sc->nr.file_taken)
6068 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6069 
6070 		/*
6071 		 * If kswapd scans pages marked for immediate
6072 		 * reclaim and under writeback (nr_immediate), it
6073 		 * implies that pages are cycling through the LRU
6074 		 * faster than they are written so forcibly stall
6075 		 * until some pages complete writeback.
6076 		 */
6077 		if (sc->nr.immediate)
6078 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6079 	}
6080 
6081 	/*
6082 	 * Tag a node/memcg as congested if all the dirty pages were marked
6083 	 * for writeback and immediate reclaim (counted in nr.congested).
6084 	 *
6085 	 * Legacy memcg will stall in page writeback so avoid forcibly
6086 	 * stalling in reclaim_throttle().
6087 	 */
6088 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6089 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6090 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6091 
6092 		if (current_is_kswapd())
6093 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6094 	}
6095 
6096 	/*
6097 	 * Stall direct reclaim for IO completions if the lruvec is
6098 	 * node is congested. Allow kswapd to continue until it
6099 	 * starts encountering unqueued dirty pages or cycling through
6100 	 * the LRU too quickly.
6101 	 */
6102 	if (!current_is_kswapd() && current_may_throttle() &&
6103 	    !sc->hibernation_mode &&
6104 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6105 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6106 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6107 
6108 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6109 		goto again;
6110 
6111 	/*
6112 	 * Kswapd gives up on balancing particular nodes after too
6113 	 * many failures to reclaim anything from them and goes to
6114 	 * sleep. On reclaim progress, reset the failure counter. A
6115 	 * successful direct reclaim run will revive a dormant kswapd.
6116 	 */
6117 	if (reclaimable)
6118 		pgdat->kswapd_failures = 0;
6119 	else if (sc->cache_trim_mode)
6120 		sc->cache_trim_mode_failed = 1;
6121 }
6122 
6123 /*
6124  * Returns true if compaction should go ahead for a costly-order request, or
6125  * the allocation would already succeed without compaction. Return false if we
6126  * should reclaim first.
6127  */
compaction_ready(struct zone * zone,struct scan_control * sc)6128 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6129 {
6130 	unsigned long watermark;
6131 
6132 	if (!gfp_compaction_allowed(sc->gfp_mask))
6133 		return false;
6134 
6135 	/* Allocation can already succeed, nothing to do */
6136 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6137 			      sc->reclaim_idx, 0))
6138 		return true;
6139 
6140 	/*
6141 	 * Direct reclaim usually targets the min watermark, but compaction
6142 	 * takes time to run and there are potentially other callers using the
6143 	 * pages just freed. So target a higher buffer to give compaction a
6144 	 * reasonable chance of completing and allocating the pages.
6145 	 *
6146 	 * Note that we won't actually reclaim the whole buffer in one attempt
6147 	 * as the target watermark in should_continue_reclaim() is lower. But if
6148 	 * we are already above the high+gap watermark, don't reclaim at all.
6149 	 */
6150 	watermark = high_wmark_pages(zone);
6151 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6152 		return true;
6153 
6154 	return false;
6155 }
6156 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6157 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6158 {
6159 	/*
6160 	 * If reclaim is making progress greater than 12% efficiency then
6161 	 * wake all the NOPROGRESS throttled tasks.
6162 	 */
6163 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6164 		wait_queue_head_t *wqh;
6165 
6166 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6167 		if (waitqueue_active(wqh))
6168 			wake_up(wqh);
6169 
6170 		return;
6171 	}
6172 
6173 	/*
6174 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6175 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6176 	 * under writeback and marked for immediate reclaim at the tail of the
6177 	 * LRU.
6178 	 */
6179 	if (current_is_kswapd() || cgroup_reclaim(sc))
6180 		return;
6181 
6182 	/* Throttle if making no progress at high prioities. */
6183 	if (sc->priority == 1 && !sc->nr_reclaimed)
6184 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6185 }
6186 
6187 /*
6188  * This is the direct reclaim path, for page-allocating processes.  We only
6189  * try to reclaim pages from zones which will satisfy the caller's allocation
6190  * request.
6191  *
6192  * If a zone is deemed to be full of pinned pages then just give it a light
6193  * scan then give up on it.
6194  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6195 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6196 {
6197 	struct zoneref *z;
6198 	struct zone *zone;
6199 	unsigned long nr_soft_reclaimed;
6200 	unsigned long nr_soft_scanned;
6201 	gfp_t orig_mask;
6202 	pg_data_t *last_pgdat = NULL;
6203 	pg_data_t *first_pgdat = NULL;
6204 
6205 	/*
6206 	 * If the number of buffer_heads in the machine exceeds the maximum
6207 	 * allowed level, force direct reclaim to scan the highmem zone as
6208 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6209 	 */
6210 	orig_mask = sc->gfp_mask;
6211 	if (buffer_heads_over_limit) {
6212 		sc->gfp_mask |= __GFP_HIGHMEM;
6213 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6214 	}
6215 
6216 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6217 					sc->reclaim_idx, sc->nodemask) {
6218 		/*
6219 		 * Take care memory controller reclaiming has small influence
6220 		 * to global LRU.
6221 		 */
6222 		if (!cgroup_reclaim(sc)) {
6223 			if (!cpuset_zone_allowed(zone,
6224 						 GFP_KERNEL | __GFP_HARDWALL))
6225 				continue;
6226 
6227 			/*
6228 			 * If we already have plenty of memory free for
6229 			 * compaction in this zone, don't free any more.
6230 			 * Even though compaction is invoked for any
6231 			 * non-zero order, only frequent costly order
6232 			 * reclamation is disruptive enough to become a
6233 			 * noticeable problem, like transparent huge
6234 			 * page allocations.
6235 			 */
6236 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6237 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6238 			    compaction_ready(zone, sc)) {
6239 				sc->compaction_ready = true;
6240 				continue;
6241 			}
6242 
6243 			/*
6244 			 * Shrink each node in the zonelist once. If the
6245 			 * zonelist is ordered by zone (not the default) then a
6246 			 * node may be shrunk multiple times but in that case
6247 			 * the user prefers lower zones being preserved.
6248 			 */
6249 			if (zone->zone_pgdat == last_pgdat)
6250 				continue;
6251 
6252 			/*
6253 			 * This steals pages from memory cgroups over softlimit
6254 			 * and returns the number of reclaimed pages and
6255 			 * scanned pages. This works for global memory pressure
6256 			 * and balancing, not for a memcg's limit.
6257 			 */
6258 			nr_soft_scanned = 0;
6259 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6260 								      sc->order, sc->gfp_mask,
6261 								      &nr_soft_scanned);
6262 			sc->nr_reclaimed += nr_soft_reclaimed;
6263 			sc->nr_scanned += nr_soft_scanned;
6264 			/* need some check for avoid more shrink_zone() */
6265 		}
6266 
6267 		if (!first_pgdat)
6268 			first_pgdat = zone->zone_pgdat;
6269 
6270 		/* See comment about same check for global reclaim above */
6271 		if (zone->zone_pgdat == last_pgdat)
6272 			continue;
6273 		last_pgdat = zone->zone_pgdat;
6274 		shrink_node(zone->zone_pgdat, sc);
6275 	}
6276 
6277 	if (first_pgdat)
6278 		consider_reclaim_throttle(first_pgdat, sc);
6279 
6280 	/*
6281 	 * Restore to original mask to avoid the impact on the caller if we
6282 	 * promoted it to __GFP_HIGHMEM.
6283 	 */
6284 	sc->gfp_mask = orig_mask;
6285 }
6286 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6287 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6288 {
6289 	struct lruvec *target_lruvec;
6290 	unsigned long refaults;
6291 
6292 	if (lru_gen_enabled())
6293 		return;
6294 
6295 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6296 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6297 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6298 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6299 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6300 }
6301 
6302 /*
6303  * This is the main entry point to direct page reclaim.
6304  *
6305  * If a full scan of the inactive list fails to free enough memory then we
6306  * are "out of memory" and something needs to be killed.
6307  *
6308  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6309  * high - the zone may be full of dirty or under-writeback pages, which this
6310  * caller can't do much about.  We kick the writeback threads and take explicit
6311  * naps in the hope that some of these pages can be written.  But if the
6312  * allocating task holds filesystem locks which prevent writeout this might not
6313  * work, and the allocation attempt will fail.
6314  *
6315  * returns:	0, if no pages reclaimed
6316  * 		else, the number of pages reclaimed
6317  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6318 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6319 					  struct scan_control *sc)
6320 {
6321 	int initial_priority = sc->priority;
6322 	pg_data_t *last_pgdat;
6323 	struct zoneref *z;
6324 	struct zone *zone;
6325 retry:
6326 	delayacct_freepages_start();
6327 
6328 	if (!cgroup_reclaim(sc))
6329 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6330 
6331 	do {
6332 		if (!sc->proactive)
6333 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6334 					sc->priority);
6335 		sc->nr_scanned = 0;
6336 		shrink_zones(zonelist, sc);
6337 
6338 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6339 			break;
6340 
6341 		if (sc->compaction_ready)
6342 			break;
6343 
6344 		/*
6345 		 * If we're getting trouble reclaiming, start doing
6346 		 * writepage even in laptop mode.
6347 		 */
6348 		if (sc->priority < DEF_PRIORITY - 2)
6349 			sc->may_writepage = 1;
6350 	} while (--sc->priority >= 0);
6351 
6352 	last_pgdat = NULL;
6353 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6354 					sc->nodemask) {
6355 		if (zone->zone_pgdat == last_pgdat)
6356 			continue;
6357 		last_pgdat = zone->zone_pgdat;
6358 
6359 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6360 
6361 		if (cgroup_reclaim(sc)) {
6362 			struct lruvec *lruvec;
6363 
6364 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6365 						   zone->zone_pgdat);
6366 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6367 		}
6368 	}
6369 
6370 	delayacct_freepages_end();
6371 
6372 	if (sc->nr_reclaimed)
6373 		return sc->nr_reclaimed;
6374 
6375 	/* Aborted reclaim to try compaction? don't OOM, then */
6376 	if (sc->compaction_ready)
6377 		return 1;
6378 
6379 	/*
6380 	 * In most cases, direct reclaimers can do partial walks
6381 	 * through the cgroup tree to meet the reclaim goal while
6382 	 * keeping latency low. Since the iterator state is shared
6383 	 * among all direct reclaim invocations (to retain fairness
6384 	 * among cgroups), though, high concurrency can result in
6385 	 * individual threads not seeing enough cgroups to make
6386 	 * meaningful forward progress. Avoid false OOMs in this case.
6387 	 */
6388 	if (!sc->memcg_full_walk) {
6389 		sc->priority = initial_priority;
6390 		sc->memcg_full_walk = 1;
6391 		goto retry;
6392 	}
6393 
6394 	/*
6395 	 * We make inactive:active ratio decisions based on the node's
6396 	 * composition of memory, but a restrictive reclaim_idx or a
6397 	 * memory.low cgroup setting can exempt large amounts of
6398 	 * memory from reclaim. Neither of which are very common, so
6399 	 * instead of doing costly eligibility calculations of the
6400 	 * entire cgroup subtree up front, we assume the estimates are
6401 	 * good, and retry with forcible deactivation if that fails.
6402 	 */
6403 	if (sc->skipped_deactivate) {
6404 		sc->priority = initial_priority;
6405 		sc->force_deactivate = 1;
6406 		sc->skipped_deactivate = 0;
6407 		goto retry;
6408 	}
6409 
6410 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6411 	if (sc->memcg_low_skipped) {
6412 		sc->priority = initial_priority;
6413 		sc->force_deactivate = 0;
6414 		sc->memcg_low_reclaim = 1;
6415 		sc->memcg_low_skipped = 0;
6416 		goto retry;
6417 	}
6418 
6419 	return 0;
6420 }
6421 
allow_direct_reclaim(pg_data_t * pgdat)6422 static bool allow_direct_reclaim(pg_data_t *pgdat)
6423 {
6424 	struct zone *zone;
6425 	unsigned long pfmemalloc_reserve = 0;
6426 	unsigned long free_pages = 0;
6427 	int i;
6428 	bool wmark_ok;
6429 
6430 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6431 		return true;
6432 
6433 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6434 		if (!zone_reclaimable_pages(zone))
6435 			continue;
6436 
6437 		pfmemalloc_reserve += min_wmark_pages(zone);
6438 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6439 	}
6440 
6441 	/* If there are no reserves (unexpected config) then do not throttle */
6442 	if (!pfmemalloc_reserve)
6443 		return true;
6444 
6445 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6446 
6447 	/* kswapd must be awake if processes are being throttled */
6448 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6449 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6450 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6451 
6452 		wake_up_interruptible(&pgdat->kswapd_wait);
6453 	}
6454 
6455 	return wmark_ok;
6456 }
6457 
6458 /*
6459  * Throttle direct reclaimers if backing storage is backed by the network
6460  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6461  * depleted. kswapd will continue to make progress and wake the processes
6462  * when the low watermark is reached.
6463  *
6464  * Returns true if a fatal signal was delivered during throttling. If this
6465  * happens, the page allocator should not consider triggering the OOM killer.
6466  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6467 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6468 					nodemask_t *nodemask)
6469 {
6470 	struct zoneref *z;
6471 	struct zone *zone;
6472 	pg_data_t *pgdat = NULL;
6473 
6474 	/*
6475 	 * Kernel threads should not be throttled as they may be indirectly
6476 	 * responsible for cleaning pages necessary for reclaim to make forward
6477 	 * progress. kjournald for example may enter direct reclaim while
6478 	 * committing a transaction where throttling it could forcing other
6479 	 * processes to block on log_wait_commit().
6480 	 */
6481 	if (current->flags & PF_KTHREAD)
6482 		goto out;
6483 
6484 	/*
6485 	 * If a fatal signal is pending, this process should not throttle.
6486 	 * It should return quickly so it can exit and free its memory
6487 	 */
6488 	if (fatal_signal_pending(current))
6489 		goto out;
6490 
6491 	/*
6492 	 * Check if the pfmemalloc reserves are ok by finding the first node
6493 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6494 	 * GFP_KERNEL will be required for allocating network buffers when
6495 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6496 	 *
6497 	 * Throttling is based on the first usable node and throttled processes
6498 	 * wait on a queue until kswapd makes progress and wakes them. There
6499 	 * is an affinity then between processes waking up and where reclaim
6500 	 * progress has been made assuming the process wakes on the same node.
6501 	 * More importantly, processes running on remote nodes will not compete
6502 	 * for remote pfmemalloc reserves and processes on different nodes
6503 	 * should make reasonable progress.
6504 	 */
6505 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6506 					gfp_zone(gfp_mask), nodemask) {
6507 		if (zone_idx(zone) > ZONE_NORMAL)
6508 			continue;
6509 
6510 		/* Throttle based on the first usable node */
6511 		pgdat = zone->zone_pgdat;
6512 		if (allow_direct_reclaim(pgdat))
6513 			goto out;
6514 		break;
6515 	}
6516 
6517 	/* If no zone was usable by the allocation flags then do not throttle */
6518 	if (!pgdat)
6519 		goto out;
6520 
6521 	/* Account for the throttling */
6522 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6523 
6524 	/*
6525 	 * If the caller cannot enter the filesystem, it's possible that it
6526 	 * is due to the caller holding an FS lock or performing a journal
6527 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6528 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6529 	 * blocked waiting on the same lock. Instead, throttle for up to a
6530 	 * second before continuing.
6531 	 */
6532 	if (!(gfp_mask & __GFP_FS))
6533 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6534 			allow_direct_reclaim(pgdat), HZ);
6535 	else
6536 		/* Throttle until kswapd wakes the process */
6537 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6538 			allow_direct_reclaim(pgdat));
6539 
6540 	if (fatal_signal_pending(current))
6541 		return true;
6542 
6543 out:
6544 	return false;
6545 }
6546 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6547 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6548 				gfp_t gfp_mask, nodemask_t *nodemask)
6549 {
6550 	unsigned long nr_reclaimed;
6551 	struct scan_control sc = {
6552 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6553 		.gfp_mask = current_gfp_context(gfp_mask),
6554 		.reclaim_idx = gfp_zone(gfp_mask),
6555 		.order = order,
6556 		.nodemask = nodemask,
6557 		.priority = DEF_PRIORITY,
6558 		.may_writepage = !laptop_mode,
6559 		.may_unmap = 1,
6560 		.may_swap = 1,
6561 	};
6562 
6563 	/*
6564 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6565 	 * Confirm they are large enough for max values.
6566 	 */
6567 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6568 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6569 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6570 
6571 	/*
6572 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6573 	 * 1 is returned so that the page allocator does not OOM kill at this
6574 	 * point.
6575 	 */
6576 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6577 		return 1;
6578 
6579 	set_task_reclaim_state(current, &sc.reclaim_state);
6580 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6581 
6582 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6583 
6584 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6585 	set_task_reclaim_state(current, NULL);
6586 
6587 	return nr_reclaimed;
6588 }
6589 
6590 #ifdef CONFIG_MEMCG
6591 
6592 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6593 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6594 						gfp_t gfp_mask, bool noswap,
6595 						pg_data_t *pgdat,
6596 						unsigned long *nr_scanned)
6597 {
6598 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6599 	struct scan_control sc = {
6600 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6601 		.target_mem_cgroup = memcg,
6602 		.may_writepage = !laptop_mode,
6603 		.may_unmap = 1,
6604 		.reclaim_idx = MAX_NR_ZONES - 1,
6605 		.may_swap = !noswap,
6606 	};
6607 
6608 	WARN_ON_ONCE(!current->reclaim_state);
6609 
6610 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6611 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6612 
6613 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6614 						      sc.gfp_mask);
6615 
6616 	/*
6617 	 * NOTE: Although we can get the priority field, using it
6618 	 * here is not a good idea, since it limits the pages we can scan.
6619 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6620 	 * will pick up pages from other mem cgroup's as well. We hack
6621 	 * the priority and make it zero.
6622 	 */
6623 	shrink_lruvec(lruvec, &sc);
6624 
6625 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6626 
6627 	*nr_scanned = sc.nr_scanned;
6628 
6629 	return sc.nr_reclaimed;
6630 }
6631 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6632 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6633 					   unsigned long nr_pages,
6634 					   gfp_t gfp_mask,
6635 					   unsigned int reclaim_options,
6636 					   int *swappiness)
6637 {
6638 	unsigned long nr_reclaimed;
6639 	unsigned int noreclaim_flag;
6640 	struct scan_control sc = {
6641 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6642 		.proactive_swappiness = swappiness,
6643 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6644 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6645 		.reclaim_idx = MAX_NR_ZONES - 1,
6646 		.target_mem_cgroup = memcg,
6647 		.priority = DEF_PRIORITY,
6648 		.may_writepage = !laptop_mode,
6649 		.may_unmap = 1,
6650 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6651 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6652 	};
6653 	/*
6654 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6655 	 * equal pressure on all the nodes. This is based on the assumption that
6656 	 * the reclaim does not bail out early.
6657 	 */
6658 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6659 
6660 	set_task_reclaim_state(current, &sc.reclaim_state);
6661 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6662 	noreclaim_flag = memalloc_noreclaim_save();
6663 
6664 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6665 
6666 	memalloc_noreclaim_restore(noreclaim_flag);
6667 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6668 	set_task_reclaim_state(current, NULL);
6669 
6670 	return nr_reclaimed;
6671 }
6672 #endif
6673 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6674 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6675 {
6676 	struct mem_cgroup *memcg;
6677 	struct lruvec *lruvec;
6678 
6679 	if (lru_gen_enabled()) {
6680 		lru_gen_age_node(pgdat, sc);
6681 		return;
6682 	}
6683 
6684 	if (!can_age_anon_pages(pgdat, sc))
6685 		return;
6686 
6687 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6688 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6689 		return;
6690 
6691 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6692 	do {
6693 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6694 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6695 				   sc, LRU_ACTIVE_ANON);
6696 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6697 	} while (memcg);
6698 }
6699 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6700 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6701 {
6702 	int i;
6703 	struct zone *zone;
6704 
6705 	/*
6706 	 * Check for watermark boosts top-down as the higher zones
6707 	 * are more likely to be boosted. Both watermarks and boosts
6708 	 * should not be checked at the same time as reclaim would
6709 	 * start prematurely when there is no boosting and a lower
6710 	 * zone is balanced.
6711 	 */
6712 	for (i = highest_zoneidx; i >= 0; i--) {
6713 		zone = pgdat->node_zones + i;
6714 		if (!managed_zone(zone))
6715 			continue;
6716 
6717 		if (zone->watermark_boost)
6718 			return true;
6719 	}
6720 
6721 	return false;
6722 }
6723 
6724 /*
6725  * Returns true if there is an eligible zone balanced for the request order
6726  * and highest_zoneidx
6727  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6728 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6729 {
6730 	int i;
6731 	unsigned long mark = -1;
6732 	struct zone *zone;
6733 
6734 	/*
6735 	 * Check watermarks bottom-up as lower zones are more likely to
6736 	 * meet watermarks.
6737 	 */
6738 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6739 		enum zone_stat_item item;
6740 		unsigned long free_pages;
6741 
6742 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6743 			mark = promo_wmark_pages(zone);
6744 		else
6745 			mark = high_wmark_pages(zone);
6746 
6747 		/*
6748 		 * In defrag_mode, watermarks must be met in whole
6749 		 * blocks to avoid polluting allocator fallbacks.
6750 		 *
6751 		 * However, kswapd usually cannot accomplish this on
6752 		 * its own and needs kcompactd support. Once it's
6753 		 * reclaimed a compaction gap, and kswapd_shrink_node
6754 		 * has dropped order, simply ensure there are enough
6755 		 * base pages for compaction, wake kcompactd & sleep.
6756 		 */
6757 		if (defrag_mode && order)
6758 			item = NR_FREE_PAGES_BLOCKS;
6759 		else
6760 			item = NR_FREE_PAGES;
6761 
6762 		/*
6763 		 * When there is a high number of CPUs in the system,
6764 		 * the cumulative error from the vmstat per-cpu cache
6765 		 * can blur the line between the watermarks. In that
6766 		 * case, be safe and get an accurate snapshot.
6767 		 *
6768 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6769 		 * pageblock_nr_pages, while the vmstat pcp threshold
6770 		 * is limited to 125. On many configurations that
6771 		 * counter won't actually be per-cpu cached. But keep
6772 		 * things simple for now; revisit when somebody cares.
6773 		 */
6774 		free_pages = zone_page_state(zone, item);
6775 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6776 			free_pages = zone_page_state_snapshot(zone, item);
6777 
6778 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6779 					0, free_pages))
6780 			return true;
6781 	}
6782 
6783 	/*
6784 	 * If a node has no managed zone within highest_zoneidx, it does not
6785 	 * need balancing by definition. This can happen if a zone-restricted
6786 	 * allocation tries to wake a remote kswapd.
6787 	 */
6788 	if (mark == -1)
6789 		return true;
6790 
6791 	return false;
6792 }
6793 
6794 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6795 static void clear_pgdat_congested(pg_data_t *pgdat)
6796 {
6797 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6798 
6799 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6800 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6801 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6802 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6803 }
6804 
6805 /*
6806  * Prepare kswapd for sleeping. This verifies that there are no processes
6807  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6808  *
6809  * Returns true if kswapd is ready to sleep
6810  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6811 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6812 				int highest_zoneidx)
6813 {
6814 	/*
6815 	 * The throttled processes are normally woken up in balance_pgdat() as
6816 	 * soon as allow_direct_reclaim() is true. But there is a potential
6817 	 * race between when kswapd checks the watermarks and a process gets
6818 	 * throttled. There is also a potential race if processes get
6819 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6820 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6821 	 * the wake up checks. If kswapd is going to sleep, no process should
6822 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6823 	 * the wake up is premature, processes will wake kswapd and get
6824 	 * throttled again. The difference from wake ups in balance_pgdat() is
6825 	 * that here we are under prepare_to_wait().
6826 	 */
6827 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6828 		wake_up_all(&pgdat->pfmemalloc_wait);
6829 
6830 	/* Hopeless node, leave it to direct reclaim */
6831 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6832 		return true;
6833 
6834 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6835 		clear_pgdat_congested(pgdat);
6836 		return true;
6837 	}
6838 
6839 	return false;
6840 }
6841 
6842 /*
6843  * kswapd shrinks a node of pages that are at or below the highest usable
6844  * zone that is currently unbalanced.
6845  *
6846  * Returns true if kswapd scanned at least the requested number of pages to
6847  * reclaim or if the lack of progress was due to pages under writeback.
6848  * This is used to determine if the scanning priority needs to be raised.
6849  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6850 static bool kswapd_shrink_node(pg_data_t *pgdat,
6851 			       struct scan_control *sc)
6852 {
6853 	struct zone *zone;
6854 	int z;
6855 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6856 
6857 	/* Reclaim a number of pages proportional to the number of zones */
6858 	sc->nr_to_reclaim = 0;
6859 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6860 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6861 	}
6862 
6863 	/*
6864 	 * Historically care was taken to put equal pressure on all zones but
6865 	 * now pressure is applied based on node LRU order.
6866 	 */
6867 	shrink_node(pgdat, sc);
6868 
6869 	/*
6870 	 * Fragmentation may mean that the system cannot be rebalanced for
6871 	 * high-order allocations. If twice the allocation size has been
6872 	 * reclaimed then recheck watermarks only at order-0 to prevent
6873 	 * excessive reclaim. Assume that a process requested a high-order
6874 	 * can direct reclaim/compact.
6875 	 */
6876 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6877 		sc->order = 0;
6878 
6879 	/* account for progress from mm_account_reclaimed_pages() */
6880 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6881 }
6882 
6883 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6884 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6885 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6886 {
6887 	int i;
6888 	struct zone *zone;
6889 
6890 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6891 		if (active)
6892 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6893 		else
6894 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6895 	}
6896 }
6897 
6898 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6899 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6900 {
6901 	update_reclaim_active(pgdat, highest_zoneidx, true);
6902 }
6903 
6904 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6905 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6906 {
6907 	update_reclaim_active(pgdat, highest_zoneidx, false);
6908 }
6909 
6910 /*
6911  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6912  * that are eligible for use by the caller until at least one zone is
6913  * balanced.
6914  *
6915  * Returns the order kswapd finished reclaiming at.
6916  *
6917  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6918  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6919  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6920  * or lower is eligible for reclaim until at least one usable zone is
6921  * balanced.
6922  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6923 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6924 {
6925 	int i;
6926 	unsigned long nr_soft_reclaimed;
6927 	unsigned long nr_soft_scanned;
6928 	unsigned long pflags;
6929 	unsigned long nr_boost_reclaim;
6930 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6931 	bool boosted;
6932 	struct zone *zone;
6933 	struct scan_control sc = {
6934 		.gfp_mask = GFP_KERNEL,
6935 		.order = order,
6936 		.may_unmap = 1,
6937 	};
6938 
6939 	set_task_reclaim_state(current, &sc.reclaim_state);
6940 	psi_memstall_enter(&pflags);
6941 	__fs_reclaim_acquire(_THIS_IP_);
6942 
6943 	count_vm_event(PAGEOUTRUN);
6944 
6945 	/*
6946 	 * Account for the reclaim boost. Note that the zone boost is left in
6947 	 * place so that parallel allocations that are near the watermark will
6948 	 * stall or direct reclaim until kswapd is finished.
6949 	 */
6950 	nr_boost_reclaim = 0;
6951 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6952 		nr_boost_reclaim += zone->watermark_boost;
6953 		zone_boosts[i] = zone->watermark_boost;
6954 	}
6955 	boosted = nr_boost_reclaim;
6956 
6957 restart:
6958 	set_reclaim_active(pgdat, highest_zoneidx);
6959 	sc.priority = DEF_PRIORITY;
6960 	do {
6961 		unsigned long nr_reclaimed = sc.nr_reclaimed;
6962 		bool raise_priority = true;
6963 		bool balanced;
6964 		bool ret;
6965 		bool was_frozen;
6966 
6967 		sc.reclaim_idx = highest_zoneidx;
6968 
6969 		/*
6970 		 * If the number of buffer_heads exceeds the maximum allowed
6971 		 * then consider reclaiming from all zones. This has a dual
6972 		 * purpose -- on 64-bit systems it is expected that
6973 		 * buffer_heads are stripped during active rotation. On 32-bit
6974 		 * systems, highmem pages can pin lowmem memory and shrinking
6975 		 * buffers can relieve lowmem pressure. Reclaim may still not
6976 		 * go ahead if all eligible zones for the original allocation
6977 		 * request are balanced to avoid excessive reclaim from kswapd.
6978 		 */
6979 		if (buffer_heads_over_limit) {
6980 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6981 				zone = pgdat->node_zones + i;
6982 				if (!managed_zone(zone))
6983 					continue;
6984 
6985 				sc.reclaim_idx = i;
6986 				break;
6987 			}
6988 		}
6989 
6990 		/*
6991 		 * If the pgdat is imbalanced then ignore boosting and preserve
6992 		 * the watermarks for a later time and restart. Note that the
6993 		 * zone watermarks will be still reset at the end of balancing
6994 		 * on the grounds that the normal reclaim should be enough to
6995 		 * re-evaluate if boosting is required when kswapd next wakes.
6996 		 */
6997 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6998 		if (!balanced && nr_boost_reclaim) {
6999 			nr_boost_reclaim = 0;
7000 			goto restart;
7001 		}
7002 
7003 		/*
7004 		 * If boosting is not active then only reclaim if there are no
7005 		 * eligible zones. Note that sc.reclaim_idx is not used as
7006 		 * buffer_heads_over_limit may have adjusted it.
7007 		 */
7008 		if (!nr_boost_reclaim && balanced)
7009 			goto out;
7010 
7011 		/* Limit the priority of boosting to avoid reclaim writeback */
7012 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7013 			raise_priority = false;
7014 
7015 		/*
7016 		 * Do not writeback or swap pages for boosted reclaim. The
7017 		 * intent is to relieve pressure not issue sub-optimal IO
7018 		 * from reclaim context. If no pages are reclaimed, the
7019 		 * reclaim will be aborted.
7020 		 */
7021 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7022 		sc.may_swap = !nr_boost_reclaim;
7023 
7024 		/*
7025 		 * Do some background aging, to give pages a chance to be
7026 		 * referenced before reclaiming. All pages are rotated
7027 		 * regardless of classzone as this is about consistent aging.
7028 		 */
7029 		kswapd_age_node(pgdat, &sc);
7030 
7031 		/*
7032 		 * If we're getting trouble reclaiming, start doing writepage
7033 		 * even in laptop mode.
7034 		 */
7035 		if (sc.priority < DEF_PRIORITY - 2)
7036 			sc.may_writepage = 1;
7037 
7038 		/* Call soft limit reclaim before calling shrink_node. */
7039 		sc.nr_scanned = 0;
7040 		nr_soft_scanned = 0;
7041 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7042 							      sc.gfp_mask, &nr_soft_scanned);
7043 		sc.nr_reclaimed += nr_soft_reclaimed;
7044 
7045 		/*
7046 		 * There should be no need to raise the scanning priority if
7047 		 * enough pages are already being scanned that that high
7048 		 * watermark would be met at 100% efficiency.
7049 		 */
7050 		if (kswapd_shrink_node(pgdat, &sc))
7051 			raise_priority = false;
7052 
7053 		/*
7054 		 * If the low watermark is met there is no need for processes
7055 		 * to be throttled on pfmemalloc_wait as they should not be
7056 		 * able to safely make forward progress. Wake them
7057 		 */
7058 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7059 				allow_direct_reclaim(pgdat))
7060 			wake_up_all(&pgdat->pfmemalloc_wait);
7061 
7062 		/* Check if kswapd should be suspending */
7063 		__fs_reclaim_release(_THIS_IP_);
7064 		ret = kthread_freezable_should_stop(&was_frozen);
7065 		__fs_reclaim_acquire(_THIS_IP_);
7066 		if (was_frozen || ret)
7067 			break;
7068 
7069 		/*
7070 		 * Raise priority if scanning rate is too low or there was no
7071 		 * progress in reclaiming pages
7072 		 */
7073 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7074 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7075 
7076 		/*
7077 		 * If reclaim made no progress for a boost, stop reclaim as
7078 		 * IO cannot be queued and it could be an infinite loop in
7079 		 * extreme circumstances.
7080 		 */
7081 		if (nr_boost_reclaim && !nr_reclaimed)
7082 			break;
7083 
7084 		if (raise_priority || !nr_reclaimed)
7085 			sc.priority--;
7086 	} while (sc.priority >= 1);
7087 
7088 	/*
7089 	 * Restart only if it went through the priority loop all the way,
7090 	 * but cache_trim_mode didn't work.
7091 	 */
7092 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7093 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7094 		sc.no_cache_trim_mode = 1;
7095 		goto restart;
7096 	}
7097 
7098 	if (!sc.nr_reclaimed)
7099 		pgdat->kswapd_failures++;
7100 
7101 out:
7102 	clear_reclaim_active(pgdat, highest_zoneidx);
7103 
7104 	/* If reclaim was boosted, account for the reclaim done in this pass */
7105 	if (boosted) {
7106 		unsigned long flags;
7107 
7108 		for (i = 0; i <= highest_zoneidx; i++) {
7109 			if (!zone_boosts[i])
7110 				continue;
7111 
7112 			/* Increments are under the zone lock */
7113 			zone = pgdat->node_zones + i;
7114 			spin_lock_irqsave(&zone->lock, flags);
7115 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7116 			spin_unlock_irqrestore(&zone->lock, flags);
7117 		}
7118 
7119 		/*
7120 		 * As there is now likely space, wakeup kcompact to defragment
7121 		 * pageblocks.
7122 		 */
7123 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7124 	}
7125 
7126 	snapshot_refaults(NULL, pgdat);
7127 	__fs_reclaim_release(_THIS_IP_);
7128 	psi_memstall_leave(&pflags);
7129 	set_task_reclaim_state(current, NULL);
7130 
7131 	/*
7132 	 * Return the order kswapd stopped reclaiming at as
7133 	 * prepare_kswapd_sleep() takes it into account. If another caller
7134 	 * entered the allocator slow path while kswapd was awake, order will
7135 	 * remain at the higher level.
7136 	 */
7137 	return sc.order;
7138 }
7139 
7140 /*
7141  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7142  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7143  * not a valid index then either kswapd runs for first time or kswapd couldn't
7144  * sleep after previous reclaim attempt (node is still unbalanced). In that
7145  * case return the zone index of the previous kswapd reclaim cycle.
7146  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7147 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7148 					   enum zone_type prev_highest_zoneidx)
7149 {
7150 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7151 
7152 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7153 }
7154 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7155 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7156 				unsigned int highest_zoneidx)
7157 {
7158 	long remaining = 0;
7159 	DEFINE_WAIT(wait);
7160 
7161 	if (freezing(current) || kthread_should_stop())
7162 		return;
7163 
7164 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7165 
7166 	/*
7167 	 * Try to sleep for a short interval. Note that kcompactd will only be
7168 	 * woken if it is possible to sleep for a short interval. This is
7169 	 * deliberate on the assumption that if reclaim cannot keep an
7170 	 * eligible zone balanced that it's also unlikely that compaction will
7171 	 * succeed.
7172 	 */
7173 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7174 		/*
7175 		 * Compaction records what page blocks it recently failed to
7176 		 * isolate pages from and skips them in the future scanning.
7177 		 * When kswapd is going to sleep, it is reasonable to assume
7178 		 * that pages and compaction may succeed so reset the cache.
7179 		 */
7180 		reset_isolation_suitable(pgdat);
7181 
7182 		/*
7183 		 * We have freed the memory, now we should compact it to make
7184 		 * allocation of the requested order possible.
7185 		 */
7186 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7187 
7188 		remaining = schedule_timeout(HZ/10);
7189 
7190 		/*
7191 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7192 		 * order. The values will either be from a wakeup request or
7193 		 * the previous request that slept prematurely.
7194 		 */
7195 		if (remaining) {
7196 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7197 					kswapd_highest_zoneidx(pgdat,
7198 							highest_zoneidx));
7199 
7200 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7201 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7202 		}
7203 
7204 		finish_wait(&pgdat->kswapd_wait, &wait);
7205 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7206 	}
7207 
7208 	/*
7209 	 * After a short sleep, check if it was a premature sleep. If not, then
7210 	 * go fully to sleep until explicitly woken up.
7211 	 */
7212 	if (!remaining &&
7213 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7214 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7215 
7216 		/*
7217 		 * vmstat counters are not perfectly accurate and the estimated
7218 		 * value for counters such as NR_FREE_PAGES can deviate from the
7219 		 * true value by nr_online_cpus * threshold. To avoid the zone
7220 		 * watermarks being breached while under pressure, we reduce the
7221 		 * per-cpu vmstat threshold while kswapd is awake and restore
7222 		 * them before going back to sleep.
7223 		 */
7224 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7225 
7226 		if (!kthread_should_stop())
7227 			schedule();
7228 
7229 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7230 	} else {
7231 		if (remaining)
7232 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7233 		else
7234 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7235 	}
7236 	finish_wait(&pgdat->kswapd_wait, &wait);
7237 }
7238 
7239 /*
7240  * The background pageout daemon, started as a kernel thread
7241  * from the init process.
7242  *
7243  * This basically trickles out pages so that we have _some_
7244  * free memory available even if there is no other activity
7245  * that frees anything up. This is needed for things like routing
7246  * etc, where we otherwise might have all activity going on in
7247  * asynchronous contexts that cannot page things out.
7248  *
7249  * If there are applications that are active memory-allocators
7250  * (most normal use), this basically shouldn't matter.
7251  */
kswapd(void * p)7252 static int kswapd(void *p)
7253 {
7254 	unsigned int alloc_order, reclaim_order;
7255 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7256 	pg_data_t *pgdat = (pg_data_t *)p;
7257 	struct task_struct *tsk = current;
7258 
7259 	/*
7260 	 * Tell the memory management that we're a "memory allocator",
7261 	 * and that if we need more memory we should get access to it
7262 	 * regardless (see "__alloc_pages()"). "kswapd" should
7263 	 * never get caught in the normal page freeing logic.
7264 	 *
7265 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7266 	 * you need a small amount of memory in order to be able to
7267 	 * page out something else, and this flag essentially protects
7268 	 * us from recursively trying to free more memory as we're
7269 	 * trying to free the first piece of memory in the first place).
7270 	 */
7271 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7272 	set_freezable();
7273 
7274 	WRITE_ONCE(pgdat->kswapd_order, 0);
7275 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7276 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7277 	for ( ; ; ) {
7278 		bool was_frozen;
7279 
7280 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7281 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7282 							highest_zoneidx);
7283 
7284 kswapd_try_sleep:
7285 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7286 					highest_zoneidx);
7287 
7288 		/* Read the new order and highest_zoneidx */
7289 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7290 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7291 							highest_zoneidx);
7292 		WRITE_ONCE(pgdat->kswapd_order, 0);
7293 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7294 
7295 		if (kthread_freezable_should_stop(&was_frozen))
7296 			break;
7297 
7298 		/*
7299 		 * We can speed up thawing tasks if we don't call balance_pgdat
7300 		 * after returning from the refrigerator
7301 		 */
7302 		if (was_frozen)
7303 			continue;
7304 
7305 		/*
7306 		 * Reclaim begins at the requested order but if a high-order
7307 		 * reclaim fails then kswapd falls back to reclaiming for
7308 		 * order-0. If that happens, kswapd will consider sleeping
7309 		 * for the order it finished reclaiming at (reclaim_order)
7310 		 * but kcompactd is woken to compact for the original
7311 		 * request (alloc_order).
7312 		 */
7313 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7314 						alloc_order);
7315 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7316 						highest_zoneidx);
7317 		if (reclaim_order < alloc_order)
7318 			goto kswapd_try_sleep;
7319 	}
7320 
7321 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7322 
7323 	return 0;
7324 }
7325 
7326 /*
7327  * A zone is low on free memory or too fragmented for high-order memory.  If
7328  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7329  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7330  * has failed or is not needed, still wake up kcompactd if only compaction is
7331  * needed.
7332  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7333 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7334 		   enum zone_type highest_zoneidx)
7335 {
7336 	pg_data_t *pgdat;
7337 	enum zone_type curr_idx;
7338 
7339 	if (!managed_zone(zone))
7340 		return;
7341 
7342 	if (!cpuset_zone_allowed(zone, gfp_flags))
7343 		return;
7344 
7345 	pgdat = zone->zone_pgdat;
7346 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7347 
7348 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7349 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7350 
7351 	if (READ_ONCE(pgdat->kswapd_order) < order)
7352 		WRITE_ONCE(pgdat->kswapd_order, order);
7353 
7354 	if (!waitqueue_active(&pgdat->kswapd_wait))
7355 		return;
7356 
7357 	/* Hopeless node, leave it to direct reclaim if possible */
7358 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7359 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7360 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7361 		/*
7362 		 * There may be plenty of free memory available, but it's too
7363 		 * fragmented for high-order allocations.  Wake up kcompactd
7364 		 * and rely on compaction_suitable() to determine if it's
7365 		 * needed.  If it fails, it will defer subsequent attempts to
7366 		 * ratelimit its work.
7367 		 */
7368 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7369 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7370 		return;
7371 	}
7372 
7373 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7374 				      gfp_flags);
7375 	wake_up_interruptible(&pgdat->kswapd_wait);
7376 }
7377 
7378 #ifdef CONFIG_HIBERNATION
7379 /*
7380  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7381  * freed pages.
7382  *
7383  * Rather than trying to age LRUs the aim is to preserve the overall
7384  * LRU order by reclaiming preferentially
7385  * inactive > active > active referenced > active mapped
7386  */
shrink_all_memory(unsigned long nr_to_reclaim)7387 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7388 {
7389 	struct scan_control sc = {
7390 		.nr_to_reclaim = nr_to_reclaim,
7391 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7392 		.reclaim_idx = MAX_NR_ZONES - 1,
7393 		.priority = DEF_PRIORITY,
7394 		.may_writepage = 1,
7395 		.may_unmap = 1,
7396 		.may_swap = 1,
7397 		.hibernation_mode = 1,
7398 	};
7399 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7400 	unsigned long nr_reclaimed;
7401 	unsigned int noreclaim_flag;
7402 
7403 	fs_reclaim_acquire(sc.gfp_mask);
7404 	noreclaim_flag = memalloc_noreclaim_save();
7405 	set_task_reclaim_state(current, &sc.reclaim_state);
7406 
7407 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7408 
7409 	set_task_reclaim_state(current, NULL);
7410 	memalloc_noreclaim_restore(noreclaim_flag);
7411 	fs_reclaim_release(sc.gfp_mask);
7412 
7413 	return nr_reclaimed;
7414 }
7415 #endif /* CONFIG_HIBERNATION */
7416 
7417 /*
7418  * This kswapd start function will be called by init and node-hot-add.
7419  */
kswapd_run(int nid)7420 void __meminit kswapd_run(int nid)
7421 {
7422 	pg_data_t *pgdat = NODE_DATA(nid);
7423 
7424 	pgdat_kswapd_lock(pgdat);
7425 	if (!pgdat->kswapd) {
7426 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7427 		if (IS_ERR(pgdat->kswapd)) {
7428 			/* failure at boot is fatal */
7429 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7430 				   nid, PTR_ERR(pgdat->kswapd));
7431 			BUG_ON(system_state < SYSTEM_RUNNING);
7432 			pgdat->kswapd = NULL;
7433 		} else {
7434 			wake_up_process(pgdat->kswapd);
7435 		}
7436 	}
7437 	pgdat_kswapd_unlock(pgdat);
7438 }
7439 
7440 /*
7441  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7442  * be holding mem_hotplug_begin/done().
7443  */
kswapd_stop(int nid)7444 void __meminit kswapd_stop(int nid)
7445 {
7446 	pg_data_t *pgdat = NODE_DATA(nid);
7447 	struct task_struct *kswapd;
7448 
7449 	pgdat_kswapd_lock(pgdat);
7450 	kswapd = pgdat->kswapd;
7451 	if (kswapd) {
7452 		kthread_stop(kswapd);
7453 		pgdat->kswapd = NULL;
7454 	}
7455 	pgdat_kswapd_unlock(pgdat);
7456 }
7457 
7458 static const struct ctl_table vmscan_sysctl_table[] = {
7459 	{
7460 		.procname	= "swappiness",
7461 		.data		= &vm_swappiness,
7462 		.maxlen		= sizeof(vm_swappiness),
7463 		.mode		= 0644,
7464 		.proc_handler	= proc_dointvec_minmax,
7465 		.extra1		= SYSCTL_ZERO,
7466 		.extra2		= SYSCTL_TWO_HUNDRED,
7467 	},
7468 #ifdef CONFIG_NUMA
7469 	{
7470 		.procname	= "zone_reclaim_mode",
7471 		.data		= &node_reclaim_mode,
7472 		.maxlen		= sizeof(node_reclaim_mode),
7473 		.mode		= 0644,
7474 		.proc_handler	= proc_dointvec_minmax,
7475 		.extra1		= SYSCTL_ZERO,
7476 	}
7477 #endif
7478 };
7479 
kswapd_init(void)7480 static int __init kswapd_init(void)
7481 {
7482 	int nid;
7483 
7484 	swap_setup();
7485 	for_each_node_state(nid, N_MEMORY)
7486  		kswapd_run(nid);
7487 	register_sysctl_init("vm", vmscan_sysctl_table);
7488 	return 0;
7489 }
7490 
7491 module_init(kswapd_init)
7492 
7493 #ifdef CONFIG_NUMA
7494 /*
7495  * Node reclaim mode
7496  *
7497  * If non-zero call node_reclaim when the number of free pages falls below
7498  * the watermarks.
7499  */
7500 int node_reclaim_mode __read_mostly;
7501 
7502 /*
7503  * Priority for NODE_RECLAIM. This determines the fraction of pages
7504  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7505  * a zone.
7506  */
7507 #define NODE_RECLAIM_PRIORITY 4
7508 
7509 /*
7510  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7511  * occur.
7512  */
7513 int sysctl_min_unmapped_ratio = 1;
7514 
7515 /*
7516  * If the number of slab pages in a zone grows beyond this percentage then
7517  * slab reclaim needs to occur.
7518  */
7519 int sysctl_min_slab_ratio = 5;
7520 
node_unmapped_file_pages(struct pglist_data * pgdat)7521 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7522 {
7523 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7524 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7525 		node_page_state(pgdat, NR_ACTIVE_FILE);
7526 
7527 	/*
7528 	 * It's possible for there to be more file mapped pages than
7529 	 * accounted for by the pages on the file LRU lists because
7530 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7531 	 */
7532 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7533 }
7534 
7535 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7536 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7537 {
7538 	unsigned long nr_pagecache_reclaimable;
7539 	unsigned long delta = 0;
7540 
7541 	/*
7542 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7543 	 * potentially reclaimable. Otherwise, we have to worry about
7544 	 * pages like swapcache and node_unmapped_file_pages() provides
7545 	 * a better estimate
7546 	 */
7547 	if (node_reclaim_mode & RECLAIM_UNMAP)
7548 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7549 	else
7550 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7551 
7552 	/* If we can't clean pages, remove dirty pages from consideration */
7553 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7554 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7555 
7556 	/* Watch for any possible underflows due to delta */
7557 	if (unlikely(delta > nr_pagecache_reclaimable))
7558 		delta = nr_pagecache_reclaimable;
7559 
7560 	return nr_pagecache_reclaimable - delta;
7561 }
7562 
7563 /*
7564  * Try to free up some pages from this node through reclaim.
7565  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7566 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7567 {
7568 	/* Minimum pages needed in order to stay on node */
7569 	const unsigned long nr_pages = 1 << order;
7570 	struct task_struct *p = current;
7571 	unsigned int noreclaim_flag;
7572 	struct scan_control sc = {
7573 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7574 		.gfp_mask = current_gfp_context(gfp_mask),
7575 		.order = order,
7576 		.priority = NODE_RECLAIM_PRIORITY,
7577 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7578 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7579 		.may_swap = 1,
7580 		.reclaim_idx = gfp_zone(gfp_mask),
7581 	};
7582 	unsigned long pflags;
7583 
7584 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7585 					   sc.gfp_mask);
7586 
7587 	cond_resched();
7588 	psi_memstall_enter(&pflags);
7589 	delayacct_freepages_start();
7590 	fs_reclaim_acquire(sc.gfp_mask);
7591 	/*
7592 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7593 	 */
7594 	noreclaim_flag = memalloc_noreclaim_save();
7595 	set_task_reclaim_state(p, &sc.reclaim_state);
7596 
7597 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7598 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7599 		/*
7600 		 * Free memory by calling shrink node with increasing
7601 		 * priorities until we have enough memory freed.
7602 		 */
7603 		do {
7604 			shrink_node(pgdat, &sc);
7605 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7606 	}
7607 
7608 	set_task_reclaim_state(p, NULL);
7609 	memalloc_noreclaim_restore(noreclaim_flag);
7610 	fs_reclaim_release(sc.gfp_mask);
7611 	psi_memstall_leave(&pflags);
7612 	delayacct_freepages_end();
7613 
7614 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7615 
7616 	return sc.nr_reclaimed >= nr_pages;
7617 }
7618 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7619 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7620 {
7621 	int ret;
7622 
7623 	/*
7624 	 * Node reclaim reclaims unmapped file backed pages and
7625 	 * slab pages if we are over the defined limits.
7626 	 *
7627 	 * A small portion of unmapped file backed pages is needed for
7628 	 * file I/O otherwise pages read by file I/O will be immediately
7629 	 * thrown out if the node is overallocated. So we do not reclaim
7630 	 * if less than a specified percentage of the node is used by
7631 	 * unmapped file backed pages.
7632 	 */
7633 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7634 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7635 	    pgdat->min_slab_pages)
7636 		return NODE_RECLAIM_FULL;
7637 
7638 	/*
7639 	 * Do not scan if the allocation should not be delayed.
7640 	 */
7641 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7642 		return NODE_RECLAIM_NOSCAN;
7643 
7644 	/*
7645 	 * Only run node reclaim on the local node or on nodes that do not
7646 	 * have associated processors. This will favor the local processor
7647 	 * over remote processors and spread off node memory allocations
7648 	 * as wide as possible.
7649 	 */
7650 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7651 		return NODE_RECLAIM_NOSCAN;
7652 
7653 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7654 		return NODE_RECLAIM_NOSCAN;
7655 
7656 	ret = __node_reclaim(pgdat, gfp_mask, order);
7657 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7658 
7659 	if (ret)
7660 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7661 	else
7662 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7663 
7664 	return ret;
7665 }
7666 #endif
7667 
7668 /**
7669  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7670  * lru list
7671  * @fbatch: Batch of lru folios to check.
7672  *
7673  * Checks folios for evictability, if an evictable folio is in the unevictable
7674  * lru list, moves it to the appropriate evictable lru list. This function
7675  * should be only used for lru folios.
7676  */
check_move_unevictable_folios(struct folio_batch * fbatch)7677 void check_move_unevictable_folios(struct folio_batch *fbatch)
7678 {
7679 	struct lruvec *lruvec = NULL;
7680 	int pgscanned = 0;
7681 	int pgrescued = 0;
7682 	int i;
7683 
7684 	for (i = 0; i < fbatch->nr; i++) {
7685 		struct folio *folio = fbatch->folios[i];
7686 		int nr_pages = folio_nr_pages(folio);
7687 
7688 		pgscanned += nr_pages;
7689 
7690 		/* block memcg migration while the folio moves between lrus */
7691 		if (!folio_test_clear_lru(folio))
7692 			continue;
7693 
7694 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7695 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7696 			lruvec_del_folio(lruvec, folio);
7697 			folio_clear_unevictable(folio);
7698 			lruvec_add_folio(lruvec, folio);
7699 			pgrescued += nr_pages;
7700 		}
7701 		folio_set_lru(folio);
7702 	}
7703 
7704 	if (lruvec) {
7705 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7706 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7707 		unlock_page_lruvec_irq(lruvec);
7708 	} else if (pgscanned) {
7709 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7710 	}
7711 }
7712 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7713