1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17 #include <linux/vmstat.h>
18 #include "internal.h"
19 #include <asm/dma.h>
20 
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section	- memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 	____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33 
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45 
page_to_nid(const struct page * page)46 int page_to_nid(const struct page *page)
47 {
48 	return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51 
set_section_nid(unsigned long section_nr,int nid)52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 	section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61 
62 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 	struct mem_section *section = NULL;
66 	unsigned long array_size = SECTIONS_PER_ROOT *
67 				   sizeof(struct mem_section);
68 
69 	if (slab_is_available()) {
70 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 	} else {
72 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 					      nid);
74 		if (!section)
75 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 			      __func__, array_size, nid);
77 	}
78 
79 	return section;
80 }
81 
sparse_index_init(unsigned long section_nr,int nid)82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 	struct mem_section *section;
86 
87 	/*
88 	 * An existing section is possible in the sub-section hotplug
89 	 * case. First hot-add instantiates, follow-on hot-add reuses
90 	 * the existing section.
91 	 *
92 	 * The mem_hotplug_lock resolves the apparent race below.
93 	 */
94 	if (mem_section[root])
95 		return 0;
96 
97 	section = sparse_index_alloc(nid);
98 	if (!section)
99 		return -ENOMEM;
100 
101 	mem_section[root] = section;
102 
103 	return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 /*
113  * During early boot, before section_mem_map is used for an actual
114  * mem_map, we use section_mem_map to store the section's NUMA
115  * node.  This keeps us from having to use another data structure.  The
116  * node information is cleared just before we store the real mem_map.
117  */
sparse_encode_early_nid(int nid)118 static inline unsigned long sparse_encode_early_nid(int nid)
119 {
120 	return ((unsigned long)nid << SECTION_NID_SHIFT);
121 }
122 
sparse_early_nid(struct mem_section * section)123 static inline int sparse_early_nid(struct mem_section *section)
124 {
125 	return (section->section_mem_map >> SECTION_NID_SHIFT);
126 }
127 
128 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130 						unsigned long *end_pfn)
131 {
132 	unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT;
133 
134 	/*
135 	 * Sanity checks - do not allow an architecture to pass
136 	 * in larger pfns than the maximum scope of sparsemem:
137 	 */
138 	if (*start_pfn > max_sparsemem_pfn) {
139 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141 			*start_pfn, *end_pfn, max_sparsemem_pfn);
142 		WARN_ON_ONCE(1);
143 		*start_pfn = max_sparsemem_pfn;
144 		*end_pfn = max_sparsemem_pfn;
145 	} else if (*end_pfn > max_sparsemem_pfn) {
146 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148 			*start_pfn, *end_pfn, max_sparsemem_pfn);
149 		WARN_ON_ONCE(1);
150 		*end_pfn = max_sparsemem_pfn;
151 	}
152 }
153 
154 /*
155  * There are a number of times that we loop over NR_MEM_SECTIONS,
156  * looking for section_present() on each.  But, when we have very
157  * large physical address spaces, NR_MEM_SECTIONS can also be
158  * very large which makes the loops quite long.
159  *
160  * Keeping track of this gives us an easy way to break out of
161  * those loops early.
162  */
163 unsigned long __highest_present_section_nr;
__section_mark_present(struct mem_section * ms,unsigned long section_nr)164 static void __section_mark_present(struct mem_section *ms,
165 		unsigned long section_nr)
166 {
167 	if (section_nr > __highest_present_section_nr)
168 		__highest_present_section_nr = section_nr;
169 
170 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171 }
172 
first_present_section_nr(void)173 static inline unsigned long first_present_section_nr(void)
174 {
175 	return next_present_section_nr(-1);
176 }
177 
178 #ifdef CONFIG_SPARSEMEM_VMEMMAP
subsection_mask_set(unsigned long * map,unsigned long pfn,unsigned long nr_pages)179 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
180 		unsigned long nr_pages)
181 {
182 	int idx = subsection_map_index(pfn);
183 	int end = subsection_map_index(pfn + nr_pages - 1);
184 
185 	bitmap_set(map, idx, end - idx + 1);
186 }
187 
subsection_map_init(unsigned long pfn,unsigned long nr_pages)188 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
189 {
190 	int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
191 	unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
192 
193 	for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
194 		struct mem_section *ms;
195 		unsigned long pfns;
196 
197 		pfns = min(nr_pages, PAGES_PER_SECTION
198 				- (pfn & ~PAGE_SECTION_MASK));
199 		ms = __nr_to_section(nr);
200 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
201 
202 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
203 				pfns, subsection_map_index(pfn),
204 				subsection_map_index(pfn + pfns - 1));
205 
206 		pfn += pfns;
207 		nr_pages -= pfns;
208 	}
209 }
210 #else
subsection_map_init(unsigned long pfn,unsigned long nr_pages)211 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
212 {
213 }
214 #endif
215 
216 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)217 static void __init memory_present(int nid, unsigned long start, unsigned long end)
218 {
219 	unsigned long pfn;
220 
221 	start &= PAGE_SECTION_MASK;
222 	mminit_validate_memmodel_limits(&start, &end);
223 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
224 		unsigned long section_nr = pfn_to_section_nr(pfn);
225 		struct mem_section *ms;
226 
227 		sparse_index_init(section_nr, nid);
228 		set_section_nid(section_nr, nid);
229 
230 		ms = __nr_to_section(section_nr);
231 		if (!ms->section_mem_map) {
232 			ms->section_mem_map = sparse_encode_early_nid(nid) |
233 							SECTION_IS_ONLINE;
234 			__section_mark_present(ms, section_nr);
235 		}
236 	}
237 }
238 
239 /*
240  * Mark all memblocks as present using memory_present().
241  * This is a convenience function that is useful to mark all of the systems
242  * memory as present during initialization.
243  */
memblocks_present(void)244 static void __init memblocks_present(void)
245 {
246 	unsigned long start, end;
247 	int i, nid;
248 
249 #ifdef CONFIG_SPARSEMEM_EXTREME
250 	if (unlikely(!mem_section)) {
251 		unsigned long size, align;
252 
253 		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
254 		align = 1 << (INTERNODE_CACHE_SHIFT);
255 		mem_section = memblock_alloc_or_panic(size, align);
256 	}
257 #endif
258 
259 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
260 		memory_present(nid, start, end);
261 }
262 
263 /*
264  * Subtle, we encode the real pfn into the mem_map such that
265  * the identity pfn - section_mem_map will return the actual
266  * physical page frame number.
267  */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)268 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
269 {
270 	unsigned long coded_mem_map =
271 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
272 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
273 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
274 	return coded_mem_map;
275 }
276 
277 #ifdef CONFIG_MEMORY_HOTPLUG
278 /*
279  * Decode mem_map from the coded memmap
280  */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)281 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
282 {
283 	/* mask off the extra low bits of information */
284 	coded_mem_map &= SECTION_MAP_MASK;
285 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
286 }
287 #endif /* CONFIG_MEMORY_HOTPLUG */
288 
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,struct mem_section_usage * usage,unsigned long flags)289 static void __meminit sparse_init_one_section(struct mem_section *ms,
290 		unsigned long pnum, struct page *mem_map,
291 		struct mem_section_usage *usage, unsigned long flags)
292 {
293 	ms->section_mem_map &= ~SECTION_MAP_MASK;
294 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
295 		| SECTION_HAS_MEM_MAP | flags;
296 	ms->usage = usage;
297 }
298 
usemap_size(void)299 static unsigned long usemap_size(void)
300 {
301 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302 }
303 
mem_section_usage_size(void)304 size_t mem_section_usage_size(void)
305 {
306 	return sizeof(struct mem_section_usage) + usemap_size();
307 }
308 
309 #ifdef CONFIG_MEMORY_HOTREMOVE
pgdat_to_phys(struct pglist_data * pgdat)310 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
311 {
312 #ifndef CONFIG_NUMA
313 	VM_BUG_ON(pgdat != &contig_page_data);
314 	return __pa_symbol(&contig_page_data);
315 #else
316 	return __pa(pgdat);
317 #endif
318 }
319 
320 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)321 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
322 					 unsigned long size)
323 {
324 	struct mem_section_usage *usage;
325 	unsigned long goal, limit;
326 	int nid;
327 	/*
328 	 * A page may contain usemaps for other sections preventing the
329 	 * page being freed and making a section unremovable while
330 	 * other sections referencing the usemap remain active. Similarly,
331 	 * a pgdat can prevent a section being removed. If section A
332 	 * contains a pgdat and section B contains the usemap, both
333 	 * sections become inter-dependent. This allocates usemaps
334 	 * from the same section as the pgdat where possible to avoid
335 	 * this problem.
336 	 */
337 	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
338 	limit = goal + (1UL << PA_SECTION_SHIFT);
339 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
340 again:
341 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
342 	if (!usage && limit) {
343 		limit = MEMBLOCK_ALLOC_ACCESSIBLE;
344 		goto again;
345 	}
346 	return usage;
347 }
348 
check_usemap_section_nr(int nid,struct mem_section_usage * usage)349 static void __init check_usemap_section_nr(int nid,
350 		struct mem_section_usage *usage)
351 {
352 	unsigned long usemap_snr, pgdat_snr;
353 	static unsigned long old_usemap_snr;
354 	static unsigned long old_pgdat_snr;
355 	struct pglist_data *pgdat = NODE_DATA(nid);
356 	int usemap_nid;
357 
358 	/* First call */
359 	if (!old_usemap_snr) {
360 		old_usemap_snr = NR_MEM_SECTIONS;
361 		old_pgdat_snr = NR_MEM_SECTIONS;
362 	}
363 
364 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
365 	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
366 	if (usemap_snr == pgdat_snr)
367 		return;
368 
369 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
370 		/* skip redundant message */
371 		return;
372 
373 	old_usemap_snr = usemap_snr;
374 	old_pgdat_snr = pgdat_snr;
375 
376 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
377 	if (usemap_nid != nid) {
378 		pr_info("node %d must be removed before remove section %ld\n",
379 			nid, usemap_snr);
380 		return;
381 	}
382 	/*
383 	 * There is a circular dependency.
384 	 * Some platforms allow un-removable section because they will just
385 	 * gather other removable sections for dynamic partitioning.
386 	 * Just notify un-removable section's number here.
387 	 */
388 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
389 		usemap_snr, pgdat_snr, nid);
390 }
391 #else
392 static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)393 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
394 					 unsigned long size)
395 {
396 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
397 }
398 
check_usemap_section_nr(int nid,struct mem_section_usage * usage)399 static void __init check_usemap_section_nr(int nid,
400 		struct mem_section_usage *usage)
401 {
402 }
403 #endif /* CONFIG_MEMORY_HOTREMOVE */
404 
405 #ifdef CONFIG_SPARSEMEM_VMEMMAP
section_map_size(void)406 unsigned long __init section_map_size(void)
407 {
408 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
409 }
410 
411 #else
section_map_size(void)412 unsigned long __init section_map_size(void)
413 {
414 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
415 }
416 
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)417 struct page __init *__populate_section_memmap(unsigned long pfn,
418 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
419 		struct dev_pagemap *pgmap)
420 {
421 	unsigned long size = section_map_size();
422 	struct page *map = sparse_buffer_alloc(size);
423 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
424 
425 	if (map)
426 		return map;
427 
428 	map = memmap_alloc(size, size, addr, nid, false);
429 	if (!map)
430 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
431 		      __func__, size, PAGE_SIZE, nid, &addr);
432 
433 	return map;
434 }
435 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
436 
437 static void *sparsemap_buf __meminitdata;
438 static void *sparsemap_buf_end __meminitdata;
439 
sparse_buffer_free(unsigned long size)440 static inline void __meminit sparse_buffer_free(unsigned long size)
441 {
442 	WARN_ON(!sparsemap_buf || size == 0);
443 	memblock_free(sparsemap_buf, size);
444 }
445 
sparse_buffer_init(unsigned long size,int nid)446 static void __init sparse_buffer_init(unsigned long size, int nid)
447 {
448 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
449 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
450 	/*
451 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
452 	 * and we want it to be properly aligned to the section size - this is
453 	 * especially the case for VMEMMAP which maps memmap to PMDs
454 	 */
455 	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
456 	sparsemap_buf_end = sparsemap_buf + size;
457 #ifndef CONFIG_SPARSEMEM_VMEMMAP
458 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
459 #endif
460 }
461 
sparse_buffer_fini(void)462 static void __init sparse_buffer_fini(void)
463 {
464 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
465 
466 	if (sparsemap_buf && size > 0)
467 		sparse_buffer_free(size);
468 	sparsemap_buf = NULL;
469 }
470 
sparse_buffer_alloc(unsigned long size)471 void * __meminit sparse_buffer_alloc(unsigned long size)
472 {
473 	void *ptr = NULL;
474 
475 	if (sparsemap_buf) {
476 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
477 		if (ptr + size > sparsemap_buf_end)
478 			ptr = NULL;
479 		else {
480 			/* Free redundant aligned space */
481 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
482 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
483 			sparsemap_buf = ptr + size;
484 		}
485 	}
486 	return ptr;
487 }
488 
vmemmap_populate_print_last(void)489 void __weak __meminit vmemmap_populate_print_last(void)
490 {
491 }
492 
493 static void *sparse_usagebuf __meminitdata;
494 static void *sparse_usagebuf_end __meminitdata;
495 
496 /*
497  * Helper function that is used for generic section initialization, and
498  * can also be used by any hooks added above.
499  */
sparse_init_early_section(int nid,struct page * map,unsigned long pnum,unsigned long flags)500 void __init sparse_init_early_section(int nid, struct page *map,
501 				      unsigned long pnum, unsigned long flags)
502 {
503 	BUG_ON(!sparse_usagebuf || sparse_usagebuf >= sparse_usagebuf_end);
504 	check_usemap_section_nr(nid, sparse_usagebuf);
505 	sparse_init_one_section(__nr_to_section(pnum), pnum, map,
506 			sparse_usagebuf, SECTION_IS_EARLY | flags);
507 	sparse_usagebuf = (void *)sparse_usagebuf + mem_section_usage_size();
508 }
509 
sparse_usage_init(int nid,unsigned long map_count)510 static int __init sparse_usage_init(int nid, unsigned long map_count)
511 {
512 	unsigned long size;
513 
514 	size = mem_section_usage_size() * map_count;
515 	sparse_usagebuf = sparse_early_usemaps_alloc_pgdat_section(
516 				NODE_DATA(nid), size);
517 	if (!sparse_usagebuf) {
518 		sparse_usagebuf_end = NULL;
519 		return -ENOMEM;
520 	}
521 
522 	sparse_usagebuf_end = sparse_usagebuf + size;
523 	return 0;
524 }
525 
sparse_usage_fini(void)526 static void __init sparse_usage_fini(void)
527 {
528 	sparse_usagebuf = sparse_usagebuf_end = NULL;
529 }
530 
531 /*
532  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
533  * And number of present sections in this node is map_count.
534  */
sparse_init_nid(int nid,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count)535 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
536 				   unsigned long pnum_end,
537 				   unsigned long map_count)
538 {
539 	unsigned long pnum;
540 	struct page *map;
541 	struct mem_section *ms;
542 
543 	if (sparse_usage_init(nid, map_count)) {
544 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
545 		goto failed;
546 	}
547 
548 	sparse_buffer_init(map_count * section_map_size(), nid);
549 
550 	sparse_vmemmap_init_nid_early(nid);
551 
552 	for_each_present_section_nr(pnum_begin, pnum) {
553 		unsigned long pfn = section_nr_to_pfn(pnum);
554 
555 		if (pnum >= pnum_end)
556 			break;
557 
558 		ms = __nr_to_section(pnum);
559 		if (!preinited_vmemmap_section(ms)) {
560 			map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
561 					nid, NULL, NULL);
562 			if (!map) {
563 				pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
564 				       __func__, nid);
565 				pnum_begin = pnum;
566 				sparse_usage_fini();
567 				sparse_buffer_fini();
568 				goto failed;
569 			}
570 			sparse_init_early_section(nid, map, pnum, 0);
571 		}
572 	}
573 	sparse_usage_fini();
574 	sparse_buffer_fini();
575 	return;
576 failed:
577 	/*
578 	 * We failed to allocate, mark all the following pnums as not present,
579 	 * except the ones already initialized earlier.
580 	 */
581 	for_each_present_section_nr(pnum_begin, pnum) {
582 		if (pnum >= pnum_end)
583 			break;
584 		ms = __nr_to_section(pnum);
585 		if (!preinited_vmemmap_section(ms))
586 			ms->section_mem_map = 0;
587 		ms->section_mem_map = 0;
588 	}
589 }
590 
591 /*
592  * Allocate the accumulated non-linear sections, allocate a mem_map
593  * for each and record the physical to section mapping.
594  */
sparse_init(void)595 void __init sparse_init(void)
596 {
597 	unsigned long pnum_end, pnum_begin, map_count = 1;
598 	int nid_begin;
599 
600 	/* see include/linux/mmzone.h 'struct mem_section' definition */
601 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
602 	memblocks_present();
603 
604 	pnum_begin = first_present_section_nr();
605 	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
606 
607 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
608 	set_pageblock_order();
609 
610 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
611 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
612 
613 		if (nid == nid_begin) {
614 			map_count++;
615 			continue;
616 		}
617 		/* Init node with sections in range [pnum_begin, pnum_end) */
618 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
619 		nid_begin = nid;
620 		pnum_begin = pnum_end;
621 		map_count = 1;
622 	}
623 	/* cover the last node */
624 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
625 	vmemmap_populate_print_last();
626 }
627 
628 #ifdef CONFIG_MEMORY_HOTPLUG
629 
630 /* Mark all memory sections within the pfn range as online */
online_mem_sections(unsigned long start_pfn,unsigned long end_pfn)631 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
632 {
633 	unsigned long pfn;
634 
635 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
636 		unsigned long section_nr = pfn_to_section_nr(pfn);
637 		struct mem_section *ms;
638 
639 		/* onlining code should never touch invalid ranges */
640 		if (WARN_ON(!valid_section_nr(section_nr)))
641 			continue;
642 
643 		ms = __nr_to_section(section_nr);
644 		ms->section_mem_map |= SECTION_IS_ONLINE;
645 	}
646 }
647 
648 /* Mark all memory sections within the pfn range as offline */
offline_mem_sections(unsigned long start_pfn,unsigned long end_pfn)649 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
650 {
651 	unsigned long pfn;
652 
653 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
654 		unsigned long section_nr = pfn_to_section_nr(pfn);
655 		struct mem_section *ms;
656 
657 		/*
658 		 * TODO this needs some double checking. Offlining code makes
659 		 * sure to check pfn_valid but those checks might be just bogus
660 		 */
661 		if (WARN_ON(!valid_section_nr(section_nr)))
662 			continue;
663 
664 		ms = __nr_to_section(section_nr);
665 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
666 	}
667 }
668 
669 #ifdef CONFIG_SPARSEMEM_VMEMMAP
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)670 static struct page * __meminit populate_section_memmap(unsigned long pfn,
671 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
672 		struct dev_pagemap *pgmap)
673 {
674 	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
675 }
676 
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)677 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
678 		struct vmem_altmap *altmap)
679 {
680 	unsigned long start = (unsigned long) pfn_to_page(pfn);
681 	unsigned long end = start + nr_pages * sizeof(struct page);
682 
683 	memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
684 	vmemmap_free(start, end, altmap);
685 }
free_map_bootmem(struct page * memmap)686 static void free_map_bootmem(struct page *memmap)
687 {
688 	unsigned long start = (unsigned long)memmap;
689 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
690 
691 	vmemmap_free(start, end, NULL);
692 }
693 
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)694 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
695 {
696 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
697 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
698 	struct mem_section *ms = __pfn_to_section(pfn);
699 	unsigned long *subsection_map = ms->usage
700 		? &ms->usage->subsection_map[0] : NULL;
701 
702 	subsection_mask_set(map, pfn, nr_pages);
703 	if (subsection_map)
704 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
705 
706 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
707 				"section already deactivated (%#lx + %ld)\n",
708 				pfn, nr_pages))
709 		return -EINVAL;
710 
711 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
712 	return 0;
713 }
714 
is_subsection_map_empty(struct mem_section * ms)715 static bool is_subsection_map_empty(struct mem_section *ms)
716 {
717 	return bitmap_empty(&ms->usage->subsection_map[0],
718 			    SUBSECTIONS_PER_SECTION);
719 }
720 
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)721 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
722 {
723 	struct mem_section *ms = __pfn_to_section(pfn);
724 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
725 	unsigned long *subsection_map;
726 	int rc = 0;
727 
728 	subsection_mask_set(map, pfn, nr_pages);
729 
730 	subsection_map = &ms->usage->subsection_map[0];
731 
732 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
733 		rc = -EINVAL;
734 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
735 		rc = -EEXIST;
736 	else
737 		bitmap_or(subsection_map, map, subsection_map,
738 				SUBSECTIONS_PER_SECTION);
739 
740 	return rc;
741 }
742 #else
populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)743 static struct page * __meminit populate_section_memmap(unsigned long pfn,
744 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
745 		struct dev_pagemap *pgmap)
746 {
747 	return kvmalloc_node(array_size(sizeof(struct page),
748 					PAGES_PER_SECTION), GFP_KERNEL, nid);
749 }
750 
depopulate_section_memmap(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)751 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
752 		struct vmem_altmap *altmap)
753 {
754 	kvfree(pfn_to_page(pfn));
755 }
756 
free_map_bootmem(struct page * memmap)757 static void free_map_bootmem(struct page *memmap)
758 {
759 	unsigned long maps_section_nr, removing_section_nr, i;
760 	unsigned long type, nr_pages;
761 	struct page *page = virt_to_page(memmap);
762 
763 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
764 		>> PAGE_SHIFT;
765 
766 	for (i = 0; i < nr_pages; i++, page++) {
767 		type = bootmem_type(page);
768 
769 		BUG_ON(type == NODE_INFO);
770 
771 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
772 		removing_section_nr = bootmem_info(page);
773 
774 		/*
775 		 * When this function is called, the removing section is
776 		 * logical offlined state. This means all pages are isolated
777 		 * from page allocator. If removing section's memmap is placed
778 		 * on the same section, it must not be freed.
779 		 * If it is freed, page allocator may allocate it which will
780 		 * be removed physically soon.
781 		 */
782 		if (maps_section_nr != removing_section_nr)
783 			put_page_bootmem(page);
784 	}
785 }
786 
clear_subsection_map(unsigned long pfn,unsigned long nr_pages)787 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
788 {
789 	return 0;
790 }
791 
is_subsection_map_empty(struct mem_section * ms)792 static bool is_subsection_map_empty(struct mem_section *ms)
793 {
794 	return true;
795 }
796 
fill_subsection_map(unsigned long pfn,unsigned long nr_pages)797 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
798 {
799 	return 0;
800 }
801 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
802 
803 /*
804  * To deactivate a memory region, there are 3 cases to handle across
805  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
806  *
807  * 1. deactivation of a partial hot-added section (only possible in
808  *    the SPARSEMEM_VMEMMAP=y case).
809  *      a) section was present at memory init.
810  *      b) section was hot-added post memory init.
811  * 2. deactivation of a complete hot-added section.
812  * 3. deactivation of a complete section from memory init.
813  *
814  * For 1, when subsection_map does not empty we will not be freeing the
815  * usage map, but still need to free the vmemmap range.
816  *
817  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
818  */
section_deactivate(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)819 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
820 		struct vmem_altmap *altmap)
821 {
822 	struct mem_section *ms = __pfn_to_section(pfn);
823 	bool section_is_early = early_section(ms);
824 	struct page *memmap = NULL;
825 	bool empty;
826 
827 	if (clear_subsection_map(pfn, nr_pages))
828 		return;
829 
830 	empty = is_subsection_map_empty(ms);
831 	if (empty) {
832 		unsigned long section_nr = pfn_to_section_nr(pfn);
833 
834 		/*
835 		 * Mark the section invalid so that valid_section()
836 		 * return false. This prevents code from dereferencing
837 		 * ms->usage array.
838 		 */
839 		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
840 
841 		/*
842 		 * When removing an early section, the usage map is kept (as the
843 		 * usage maps of other sections fall into the same page). It
844 		 * will be re-used when re-adding the section - which is then no
845 		 * longer an early section. If the usage map is PageReserved, it
846 		 * was allocated during boot.
847 		 */
848 		if (!PageReserved(virt_to_page(ms->usage))) {
849 			kfree_rcu(ms->usage, rcu);
850 			WRITE_ONCE(ms->usage, NULL);
851 		}
852 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
853 	}
854 
855 	/*
856 	 * The memmap of early sections is always fully populated. See
857 	 * section_activate() and pfn_valid() .
858 	 */
859 	if (!section_is_early)
860 		depopulate_section_memmap(pfn, nr_pages, altmap);
861 	else if (memmap)
862 		free_map_bootmem(memmap);
863 
864 	if (empty)
865 		ms->section_mem_map = (unsigned long)NULL;
866 }
867 
section_activate(int nid,unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)868 static struct page * __meminit section_activate(int nid, unsigned long pfn,
869 		unsigned long nr_pages, struct vmem_altmap *altmap,
870 		struct dev_pagemap *pgmap)
871 {
872 	struct mem_section *ms = __pfn_to_section(pfn);
873 	struct mem_section_usage *usage = NULL;
874 	struct page *memmap;
875 	int rc;
876 
877 	if (!ms->usage) {
878 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
879 		if (!usage)
880 			return ERR_PTR(-ENOMEM);
881 		ms->usage = usage;
882 	}
883 
884 	rc = fill_subsection_map(pfn, nr_pages);
885 	if (rc) {
886 		if (usage)
887 			ms->usage = NULL;
888 		kfree(usage);
889 		return ERR_PTR(rc);
890 	}
891 
892 	/*
893 	 * The early init code does not consider partially populated
894 	 * initial sections, it simply assumes that memory will never be
895 	 * referenced.  If we hot-add memory into such a section then we
896 	 * do not need to populate the memmap and can simply reuse what
897 	 * is already there.
898 	 */
899 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
900 		return pfn_to_page(pfn);
901 
902 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
903 	if (!memmap) {
904 		section_deactivate(pfn, nr_pages, altmap);
905 		return ERR_PTR(-ENOMEM);
906 	}
907 
908 	return memmap;
909 }
910 
911 /**
912  * sparse_add_section - add a memory section, or populate an existing one
913  * @nid: The node to add section on
914  * @start_pfn: start pfn of the memory range
915  * @nr_pages: number of pfns to add in the section
916  * @altmap: alternate pfns to allocate the memmap backing store
917  * @pgmap: alternate compound page geometry for devmap mappings
918  *
919  * This is only intended for hotplug.
920  *
921  * Note that only VMEMMAP supports sub-section aligned hotplug,
922  * the proper alignment and size are gated by check_pfn_span().
923  *
924  *
925  * Return:
926  * * 0		- On success.
927  * * -EEXIST	- Section has been present.
928  * * -ENOMEM	- Out of memory.
929  */
sparse_add_section(int nid,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)930 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
931 		unsigned long nr_pages, struct vmem_altmap *altmap,
932 		struct dev_pagemap *pgmap)
933 {
934 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
935 	struct mem_section *ms;
936 	struct page *memmap;
937 	int ret;
938 
939 	ret = sparse_index_init(section_nr, nid);
940 	if (ret < 0)
941 		return ret;
942 
943 	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
944 	if (IS_ERR(memmap))
945 		return PTR_ERR(memmap);
946 
947 	/*
948 	 * Poison uninitialized struct pages in order to catch invalid flags
949 	 * combinations.
950 	 */
951 	if (!altmap || !altmap->inaccessible)
952 		page_init_poison(memmap, sizeof(struct page) * nr_pages);
953 
954 	ms = __nr_to_section(section_nr);
955 	set_section_nid(section_nr, nid);
956 	__section_mark_present(ms, section_nr);
957 
958 	/* Align memmap to section boundary in the subsection case */
959 	if (section_nr_to_pfn(section_nr) != start_pfn)
960 		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
961 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
962 
963 	return 0;
964 }
965 
sparse_remove_section(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)966 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
967 			   struct vmem_altmap *altmap)
968 {
969 	struct mem_section *ms = __pfn_to_section(pfn);
970 
971 	if (WARN_ON_ONCE(!valid_section(ms)))
972 		return;
973 
974 	section_deactivate(pfn, nr_pages, altmap);
975 }
976 #endif /* CONFIG_MEMORY_HOTPLUG */
977