1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 
31 #include <asm/dma.h>
32 #include <asm/pgalloc.h>
33 #include <asm/tlbflush.h>
34 
35 #include "hugetlb_vmemmap.h"
36 
37 /*
38  * Flags for vmemmap_populate_range and friends.
39  */
40 /* Get a ref on the head page struct page, for ZONE_DEVICE compound pages */
41 #define VMEMMAP_POPULATE_PAGEREF	0x0001
42 
43 #include "internal.h"
44 
45 /*
46  * Allocate a block of memory to be used to back the virtual memory map
47  * or to back the page tables that are used to create the mapping.
48  * Uses the main allocators if they are available, else bootmem.
49  */
50 
__earlyonly_bootmem_alloc(int node,unsigned long size,unsigned long align,unsigned long goal)51 static void * __ref __earlyonly_bootmem_alloc(int node,
52 				unsigned long size,
53 				unsigned long align,
54 				unsigned long goal)
55 {
56 	return memmap_alloc(size, align, goal, node, false);
57 }
58 
vmemmap_alloc_block(unsigned long size,int node)59 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
60 {
61 	/* If the main allocator is up use that, fallback to bootmem. */
62 	if (slab_is_available()) {
63 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
64 		int order = get_order(size);
65 		static bool warned;
66 		struct page *page;
67 
68 		page = alloc_pages_node(node, gfp_mask, order);
69 		if (page)
70 			return page_address(page);
71 
72 		if (!warned) {
73 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
74 				   "vmemmap alloc failure: order:%u", order);
75 			warned = true;
76 		}
77 		return NULL;
78 	} else
79 		return __earlyonly_bootmem_alloc(node, size, size,
80 				__pa(MAX_DMA_ADDRESS));
81 }
82 
83 static void * __meminit altmap_alloc_block_buf(unsigned long size,
84 					       struct vmem_altmap *altmap);
85 
86 /* need to make sure size is all the same during early stage */
vmemmap_alloc_block_buf(unsigned long size,int node,struct vmem_altmap * altmap)87 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
88 					 struct vmem_altmap *altmap)
89 {
90 	void *ptr;
91 
92 	if (altmap)
93 		return altmap_alloc_block_buf(size, altmap);
94 
95 	ptr = sparse_buffer_alloc(size);
96 	if (!ptr)
97 		ptr = vmemmap_alloc_block(size, node);
98 	return ptr;
99 }
100 
vmem_altmap_next_pfn(struct vmem_altmap * altmap)101 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
102 {
103 	return altmap->base_pfn + altmap->reserve + altmap->alloc
104 		+ altmap->align;
105 }
106 
vmem_altmap_nr_free(struct vmem_altmap * altmap)107 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
108 {
109 	unsigned long allocated = altmap->alloc + altmap->align;
110 
111 	if (altmap->free > allocated)
112 		return altmap->free - allocated;
113 	return 0;
114 }
115 
altmap_alloc_block_buf(unsigned long size,struct vmem_altmap * altmap)116 static void * __meminit altmap_alloc_block_buf(unsigned long size,
117 					       struct vmem_altmap *altmap)
118 {
119 	unsigned long pfn, nr_pfns, nr_align;
120 
121 	if (size & ~PAGE_MASK) {
122 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
123 				__func__, size);
124 		return NULL;
125 	}
126 
127 	pfn = vmem_altmap_next_pfn(altmap);
128 	nr_pfns = size >> PAGE_SHIFT;
129 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
130 	nr_align = ALIGN(pfn, nr_align) - pfn;
131 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
132 		return NULL;
133 
134 	altmap->alloc += nr_pfns;
135 	altmap->align += nr_align;
136 	pfn += nr_align;
137 
138 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
139 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
140 	return __va(__pfn_to_phys(pfn));
141 }
142 
vmemmap_verify(pte_t * pte,int node,unsigned long start,unsigned long end)143 void __meminit vmemmap_verify(pte_t *pte, int node,
144 				unsigned long start, unsigned long end)
145 {
146 	unsigned long pfn = pte_pfn(ptep_get(pte));
147 	int actual_node = early_pfn_to_nid(pfn);
148 
149 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
150 		pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
151 			start, end - 1);
152 }
153 
vmemmap_pte_populate(pmd_t * pmd,unsigned long addr,int node,struct vmem_altmap * altmap,unsigned long ptpfn,unsigned long flags)154 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
155 				       struct vmem_altmap *altmap,
156 				       unsigned long ptpfn, unsigned long flags)
157 {
158 	pte_t *pte = pte_offset_kernel(pmd, addr);
159 	if (pte_none(ptep_get(pte))) {
160 		pte_t entry;
161 		void *p;
162 
163 		if (ptpfn == (unsigned long)-1) {
164 			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
165 			if (!p)
166 				return NULL;
167 			ptpfn = PHYS_PFN(__pa(p));
168 		} else {
169 			/*
170 			 * When a PTE/PMD entry is freed from the init_mm
171 			 * there's a free_pages() call to this page allocated
172 			 * above. Thus this get_page() is paired with the
173 			 * put_page_testzero() on the freeing path.
174 			 * This can only called by certain ZONE_DEVICE path,
175 			 * and through vmemmap_populate_compound_pages() when
176 			 * slab is available.
177 			 */
178 			if (flags & VMEMMAP_POPULATE_PAGEREF)
179 				get_page(pfn_to_page(ptpfn));
180 		}
181 		entry = pfn_pte(ptpfn, PAGE_KERNEL);
182 		set_pte_at(&init_mm, addr, pte, entry);
183 	}
184 	return pte;
185 }
186 
vmemmap_alloc_block_zero(unsigned long size,int node)187 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
188 {
189 	void *p = vmemmap_alloc_block(size, node);
190 
191 	if (!p)
192 		return NULL;
193 	memset(p, 0, size);
194 
195 	return p;
196 }
197 
vmemmap_pmd_populate(pud_t * pud,unsigned long addr,int node)198 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
199 {
200 	pmd_t *pmd = pmd_offset(pud, addr);
201 	if (pmd_none(*pmd)) {
202 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
203 		if (!p)
204 			return NULL;
205 		kernel_pte_init(p);
206 		pmd_populate_kernel(&init_mm, pmd, p);
207 	}
208 	return pmd;
209 }
210 
vmemmap_pud_populate(p4d_t * p4d,unsigned long addr,int node)211 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
212 {
213 	pud_t *pud = pud_offset(p4d, addr);
214 	if (pud_none(*pud)) {
215 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
216 		if (!p)
217 			return NULL;
218 		pmd_init(p);
219 		pud_populate(&init_mm, pud, p);
220 	}
221 	return pud;
222 }
223 
vmemmap_p4d_populate(pgd_t * pgd,unsigned long addr,int node)224 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
225 {
226 	p4d_t *p4d = p4d_offset(pgd, addr);
227 	if (p4d_none(*p4d)) {
228 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
229 		if (!p)
230 			return NULL;
231 		pud_init(p);
232 		p4d_populate(&init_mm, p4d, p);
233 	}
234 	return p4d;
235 }
236 
vmemmap_pgd_populate(unsigned long addr,int node)237 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
238 {
239 	pgd_t *pgd = pgd_offset_k(addr);
240 	if (pgd_none(*pgd)) {
241 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
242 		if (!p)
243 			return NULL;
244 		pgd_populate(&init_mm, pgd, p);
245 	}
246 	return pgd;
247 }
248 
vmemmap_populate_address(unsigned long addr,int node,struct vmem_altmap * altmap,unsigned long ptpfn,unsigned long flags)249 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
250 					      struct vmem_altmap *altmap,
251 					      unsigned long ptpfn,
252 					      unsigned long flags)
253 {
254 	pgd_t *pgd;
255 	p4d_t *p4d;
256 	pud_t *pud;
257 	pmd_t *pmd;
258 	pte_t *pte;
259 
260 	pgd = vmemmap_pgd_populate(addr, node);
261 	if (!pgd)
262 		return NULL;
263 	p4d = vmemmap_p4d_populate(pgd, addr, node);
264 	if (!p4d)
265 		return NULL;
266 	pud = vmemmap_pud_populate(p4d, addr, node);
267 	if (!pud)
268 		return NULL;
269 	pmd = vmemmap_pmd_populate(pud, addr, node);
270 	if (!pmd)
271 		return NULL;
272 	pte = vmemmap_pte_populate(pmd, addr, node, altmap, ptpfn, flags);
273 	if (!pte)
274 		return NULL;
275 	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
276 
277 	return pte;
278 }
279 
vmemmap_populate_range(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap,unsigned long ptpfn,unsigned long flags)280 static int __meminit vmemmap_populate_range(unsigned long start,
281 					    unsigned long end, int node,
282 					    struct vmem_altmap *altmap,
283 					    unsigned long ptpfn,
284 					    unsigned long flags)
285 {
286 	unsigned long addr = start;
287 	pte_t *pte;
288 
289 	for (; addr < end; addr += PAGE_SIZE) {
290 		pte = vmemmap_populate_address(addr, node, altmap,
291 					       ptpfn, flags);
292 		if (!pte)
293 			return -ENOMEM;
294 	}
295 
296 	return 0;
297 }
298 
vmemmap_populate_basepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)299 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
300 					 int node, struct vmem_altmap *altmap)
301 {
302 	return vmemmap_populate_range(start, end, node, altmap, -1, 0);
303 }
304 
305 /*
306  * Undo populate_hvo, and replace it with a normal base page mapping.
307  * Used in memory init in case a HVO mapping needs to be undone.
308  *
309  * This can happen when it is discovered that a memblock allocated
310  * hugetlb page spans multiple zones, which can only be verified
311  * after zones have been initialized.
312  *
313  * We know that:
314  * 1) The first @headsize / PAGE_SIZE vmemmap pages were individually
315  *    allocated through memblock, and mapped.
316  *
317  * 2) The rest of the vmemmap pages are mirrors of the last head page.
318  */
vmemmap_undo_hvo(unsigned long addr,unsigned long end,int node,unsigned long headsize)319 int __meminit vmemmap_undo_hvo(unsigned long addr, unsigned long end,
320 				      int node, unsigned long headsize)
321 {
322 	unsigned long maddr, pfn;
323 	pte_t *pte;
324 	int headpages;
325 
326 	/*
327 	 * Should only be called early in boot, so nothing will
328 	 * be accessing these page structures.
329 	 */
330 	WARN_ON(!early_boot_irqs_disabled);
331 
332 	headpages = headsize >> PAGE_SHIFT;
333 
334 	/*
335 	 * Clear mirrored mappings for tail page structs.
336 	 */
337 	for (maddr = addr + headsize; maddr < end; maddr += PAGE_SIZE) {
338 		pte = virt_to_kpte(maddr);
339 		pte_clear(&init_mm, maddr, pte);
340 	}
341 
342 	/*
343 	 * Clear and free mappings for head page and first tail page
344 	 * structs.
345 	 */
346 	for (maddr = addr; headpages-- > 0; maddr += PAGE_SIZE) {
347 		pte = virt_to_kpte(maddr);
348 		pfn = pte_pfn(ptep_get(pte));
349 		pte_clear(&init_mm, maddr, pte);
350 		memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE);
351 	}
352 
353 	flush_tlb_kernel_range(addr, end);
354 
355 	return vmemmap_populate(addr, end, node, NULL);
356 }
357 
358 /*
359  * Write protect the mirrored tail page structs for HVO. This will be
360  * called from the hugetlb code when gathering and initializing the
361  * memblock allocated gigantic pages. The write protect can't be
362  * done earlier, since it can't be guaranteed that the reserved
363  * page structures will not be written to during initialization,
364  * even if CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled.
365  *
366  * The PTEs are known to exist, and nothing else should be touching
367  * these pages. The caller is responsible for any TLB flushing.
368  */
vmemmap_wrprotect_hvo(unsigned long addr,unsigned long end,int node,unsigned long headsize)369 void vmemmap_wrprotect_hvo(unsigned long addr, unsigned long end,
370 				    int node, unsigned long headsize)
371 {
372 	unsigned long maddr;
373 	pte_t *pte;
374 
375 	for (maddr = addr + headsize; maddr < end; maddr += PAGE_SIZE) {
376 		pte = virt_to_kpte(maddr);
377 		ptep_set_wrprotect(&init_mm, maddr, pte);
378 	}
379 }
380 
381 /*
382  * Populate vmemmap pages HVO-style. The first page contains the head
383  * page and needed tail pages, the other ones are mirrors of the first
384  * page.
385  */
vmemmap_populate_hvo(unsigned long addr,unsigned long end,int node,unsigned long headsize)386 int __meminit vmemmap_populate_hvo(unsigned long addr, unsigned long end,
387 				       int node, unsigned long headsize)
388 {
389 	pte_t *pte;
390 	unsigned long maddr;
391 
392 	for (maddr = addr; maddr < addr + headsize; maddr += PAGE_SIZE) {
393 		pte = vmemmap_populate_address(maddr, node, NULL, -1, 0);
394 		if (!pte)
395 			return -ENOMEM;
396 	}
397 
398 	/*
399 	 * Reuse the last page struct page mapped above for the rest.
400 	 */
401 	return vmemmap_populate_range(maddr, end, node, NULL,
402 					pte_pfn(ptep_get(pte)), 0);
403 }
404 
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)405 void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
406 				      unsigned long addr, unsigned long next)
407 {
408 }
409 
vmemmap_check_pmd(pmd_t * pmd,int node,unsigned long addr,unsigned long next)410 int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
411 				       unsigned long addr, unsigned long next)
412 {
413 	return 0;
414 }
415 
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)416 int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
417 					 int node, struct vmem_altmap *altmap)
418 {
419 	unsigned long addr;
420 	unsigned long next;
421 	pgd_t *pgd;
422 	p4d_t *p4d;
423 	pud_t *pud;
424 	pmd_t *pmd;
425 
426 	for (addr = start; addr < end; addr = next) {
427 		next = pmd_addr_end(addr, end);
428 
429 		pgd = vmemmap_pgd_populate(addr, node);
430 		if (!pgd)
431 			return -ENOMEM;
432 
433 		p4d = vmemmap_p4d_populate(pgd, addr, node);
434 		if (!p4d)
435 			return -ENOMEM;
436 
437 		pud = vmemmap_pud_populate(p4d, addr, node);
438 		if (!pud)
439 			return -ENOMEM;
440 
441 		pmd = pmd_offset(pud, addr);
442 		if (pmd_none(READ_ONCE(*pmd))) {
443 			void *p;
444 
445 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
446 			if (p) {
447 				vmemmap_set_pmd(pmd, p, node, addr, next);
448 				continue;
449 			} else if (altmap) {
450 				/*
451 				 * No fallback: In any case we care about, the
452 				 * altmap should be reasonably sized and aligned
453 				 * such that vmemmap_alloc_block_buf() will always
454 				 * succeed. For consistency with the PTE case,
455 				 * return an error here as failure could indicate
456 				 * a configuration issue with the size of the altmap.
457 				 */
458 				return -ENOMEM;
459 			}
460 		} else if (vmemmap_check_pmd(pmd, node, addr, next))
461 			continue;
462 		if (vmemmap_populate_basepages(addr, next, node, altmap))
463 			return -ENOMEM;
464 	}
465 	return 0;
466 }
467 
468 #ifndef vmemmap_populate_compound_pages
469 /*
470  * For compound pages bigger than section size (e.g. x86 1G compound
471  * pages with 2M subsection size) fill the rest of sections as tail
472  * pages.
473  *
474  * Note that memremap_pages() resets @nr_range value and will increment
475  * it after each range successful onlining. Thus the value or @nr_range
476  * at section memmap populate corresponds to the in-progress range
477  * being onlined here.
478  */
reuse_compound_section(unsigned long start_pfn,struct dev_pagemap * pgmap)479 static bool __meminit reuse_compound_section(unsigned long start_pfn,
480 					     struct dev_pagemap *pgmap)
481 {
482 	unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
483 	unsigned long offset = start_pfn -
484 		PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
485 
486 	return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
487 }
488 
compound_section_tail_page(unsigned long addr)489 static pte_t * __meminit compound_section_tail_page(unsigned long addr)
490 {
491 	pte_t *pte;
492 
493 	addr -= PAGE_SIZE;
494 
495 	/*
496 	 * Assuming sections are populated sequentially, the previous section's
497 	 * page data can be reused.
498 	 */
499 	pte = pte_offset_kernel(pmd_off_k(addr), addr);
500 	if (!pte)
501 		return NULL;
502 
503 	return pte;
504 }
505 
vmemmap_populate_compound_pages(unsigned long start_pfn,unsigned long start,unsigned long end,int node,struct dev_pagemap * pgmap)506 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
507 						     unsigned long start,
508 						     unsigned long end, int node,
509 						     struct dev_pagemap *pgmap)
510 {
511 	unsigned long size, addr;
512 	pte_t *pte;
513 	int rc;
514 
515 	if (reuse_compound_section(start_pfn, pgmap)) {
516 		pte = compound_section_tail_page(start);
517 		if (!pte)
518 			return -ENOMEM;
519 
520 		/*
521 		 * Reuse the page that was populated in the prior iteration
522 		 * with just tail struct pages.
523 		 */
524 		return vmemmap_populate_range(start, end, node, NULL,
525 					      pte_pfn(ptep_get(pte)),
526 					      VMEMMAP_POPULATE_PAGEREF);
527 	}
528 
529 	size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
530 	for (addr = start; addr < end; addr += size) {
531 		unsigned long next, last = addr + size;
532 
533 		/* Populate the head page vmemmap page */
534 		pte = vmemmap_populate_address(addr, node, NULL, -1, 0);
535 		if (!pte)
536 			return -ENOMEM;
537 
538 		/* Populate the tail pages vmemmap page */
539 		next = addr + PAGE_SIZE;
540 		pte = vmemmap_populate_address(next, node, NULL, -1, 0);
541 		if (!pte)
542 			return -ENOMEM;
543 
544 		/*
545 		 * Reuse the previous page for the rest of tail pages
546 		 * See layout diagram in Documentation/mm/vmemmap_dedup.rst
547 		 */
548 		next += PAGE_SIZE;
549 		rc = vmemmap_populate_range(next, last, node, NULL,
550 					    pte_pfn(ptep_get(pte)),
551 					    VMEMMAP_POPULATE_PAGEREF);
552 		if (rc)
553 			return -ENOMEM;
554 	}
555 
556 	return 0;
557 }
558 
559 #endif
560 
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)561 struct page * __meminit __populate_section_memmap(unsigned long pfn,
562 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
563 		struct dev_pagemap *pgmap)
564 {
565 	unsigned long start = (unsigned long) pfn_to_page(pfn);
566 	unsigned long end = start + nr_pages * sizeof(struct page);
567 	int r;
568 
569 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
570 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
571 		return NULL;
572 
573 	if (vmemmap_can_optimize(altmap, pgmap))
574 		r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
575 	else
576 		r = vmemmap_populate(start, end, nid, altmap);
577 
578 	if (r < 0)
579 		return NULL;
580 
581 	if (system_state == SYSTEM_BOOTING)
582 		memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
583 	else
584 		memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
585 
586 	return pfn_to_page(pfn);
587 }
588 
589 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
590 /*
591  * This is called just before initializing sections for a NUMA node.
592  * Any special initialization that needs to be done before the
593  * generic initialization can be done from here. Sections that
594  * are initialized in hooks called from here will be skipped by
595  * the generic initialization.
596  */
sparse_vmemmap_init_nid_early(int nid)597 void __init sparse_vmemmap_init_nid_early(int nid)
598 {
599 	hugetlb_vmemmap_init_early(nid);
600 }
601 
602 /*
603  * This is called just before the initialization of page structures
604  * through memmap_init. Zones are now initialized, so any work that
605  * needs to be done that needs zone information can be done from
606  * here.
607  */
sparse_vmemmap_init_nid_late(int nid)608 void __init sparse_vmemmap_init_nid_late(int nid)
609 {
610 	hugetlb_vmemmap_init_late(nid);
611 }
612 #endif
613