1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/mempolicy.h>
30 #include <linux/ctype.h>
31 #include <linux/stackdepot.h>
32 #include <linux/debugobjects.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kfence.h>
35 #include <linux/memory.h>
36 #include <linux/math64.h>
37 #include <linux/fault-inject.h>
38 #include <linux/kmemleak.h>
39 #include <linux/stacktrace.h>
40 #include <linux/prefetch.h>
41 #include <linux/memcontrol.h>
42 #include <linux/random.h>
43 #include <kunit/test.h>
44 #include <kunit/test-bug.h>
45 #include <linux/sort.h>
46
47 #include <linux/debugfs.h>
48 #include <trace/events/kmem.h>
49
50 #include "internal.h"
51
52 /*
53 * Lock order:
54 * 1. slab_mutex (Global Mutex)
55 * 2. node->list_lock (Spinlock)
56 * 3. kmem_cache->cpu_slab->lock (Local lock)
57 * 4. slab_lock(slab) (Only on some arches)
58 * 5. object_map_lock (Only for debugging)
59 *
60 * slab_mutex
61 *
62 * The role of the slab_mutex is to protect the list of all the slabs
63 * and to synchronize major metadata changes to slab cache structures.
64 * Also synchronizes memory hotplug callbacks.
65 *
66 * slab_lock
67 *
68 * The slab_lock is a wrapper around the page lock, thus it is a bit
69 * spinlock.
70 *
71 * The slab_lock is only used on arches that do not have the ability
72 * to do a cmpxchg_double. It only protects:
73 *
74 * A. slab->freelist -> List of free objects in a slab
75 * B. slab->inuse -> Number of objects in use
76 * C. slab->objects -> Number of objects in slab
77 * D. slab->frozen -> frozen state
78 *
79 * Frozen slabs
80 *
81 * If a slab is frozen then it is exempt from list management. It is
82 * the cpu slab which is actively allocated from by the processor that
83 * froze it and it is not on any list. The processor that froze the
84 * slab is the one who can perform list operations on the slab. Other
85 * processors may put objects onto the freelist but the processor that
86 * froze the slab is the only one that can retrieve the objects from the
87 * slab's freelist.
88 *
89 * CPU partial slabs
90 *
91 * The partially empty slabs cached on the CPU partial list are used
92 * for performance reasons, which speeds up the allocation process.
93 * These slabs are not frozen, but are also exempt from list management,
94 * by clearing the PG_workingset flag when moving out of the node
95 * partial list. Please see __slab_free() for more details.
96 *
97 * To sum up, the current scheme is:
98 * - node partial slab: PG_Workingset && !frozen
99 * - cpu partial slab: !PG_Workingset && !frozen
100 * - cpu slab: !PG_Workingset && frozen
101 * - full slab: !PG_Workingset && !frozen
102 *
103 * list_lock
104 *
105 * The list_lock protects the partial and full list on each node and
106 * the partial slab counter. If taken then no new slabs may be added or
107 * removed from the lists nor make the number of partial slabs be modified.
108 * (Note that the total number of slabs is an atomic value that may be
109 * modified without taking the list lock).
110 *
111 * The list_lock is a centralized lock and thus we avoid taking it as
112 * much as possible. As long as SLUB does not have to handle partial
113 * slabs, operations can continue without any centralized lock. F.e.
114 * allocating a long series of objects that fill up slabs does not require
115 * the list lock.
116 *
117 * For debug caches, all allocations are forced to go through a list_lock
118 * protected region to serialize against concurrent validation.
119 *
120 * cpu_slab->lock local lock
121 *
122 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
123 * except the stat counters. This is a percpu structure manipulated only by
124 * the local cpu, so the lock protects against being preempted or interrupted
125 * by an irq. Fast path operations rely on lockless operations instead.
126 *
127 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
128 * which means the lockless fastpath cannot be used as it might interfere with
129 * an in-progress slow path operations. In this case the local lock is always
130 * taken but it still utilizes the freelist for the common operations.
131 *
132 * lockless fastpaths
133 *
134 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
135 * are fully lockless when satisfied from the percpu slab (and when
136 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
137 * They also don't disable preemption or migration or irqs. They rely on
138 * the transaction id (tid) field to detect being preempted or moved to
139 * another cpu.
140 *
141 * irq, preemption, migration considerations
142 *
143 * Interrupts are disabled as part of list_lock or local_lock operations, or
144 * around the slab_lock operation, in order to make the slab allocator safe
145 * to use in the context of an irq.
146 *
147 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
148 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
149 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
150 * doesn't have to be revalidated in each section protected by the local lock.
151 *
152 * SLUB assigns one slab for allocation to each processor.
153 * Allocations only occur from these slabs called cpu slabs.
154 *
155 * Slabs with free elements are kept on a partial list and during regular
156 * operations no list for full slabs is used. If an object in a full slab is
157 * freed then the slab will show up again on the partial lists.
158 * We track full slabs for debugging purposes though because otherwise we
159 * cannot scan all objects.
160 *
161 * Slabs are freed when they become empty. Teardown and setup is
162 * minimal so we rely on the page allocators per cpu caches for
163 * fast frees and allocs.
164 *
165 * slab->frozen The slab is frozen and exempt from list processing.
166 * This means that the slab is dedicated to a purpose
167 * such as satisfying allocations for a specific
168 * processor. Objects may be freed in the slab while
169 * it is frozen but slab_free will then skip the usual
170 * list operations. It is up to the processor holding
171 * the slab to integrate the slab into the slab lists
172 * when the slab is no longer needed.
173 *
174 * One use of this flag is to mark slabs that are
175 * used for allocations. Then such a slab becomes a cpu
176 * slab. The cpu slab may be equipped with an additional
177 * freelist that allows lockless access to
178 * free objects in addition to the regular freelist
179 * that requires the slab lock.
180 *
181 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
182 * options set. This moves slab handling out of
183 * the fast path and disables lockless freelists.
184 */
185
186 /*
187 * We could simply use migrate_disable()/enable() but as long as it's a
188 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 */
190 #ifndef CONFIG_PREEMPT_RT
191 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
192 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
193 #define USE_LOCKLESS_FAST_PATH() (true)
194 #else
195 #define slub_get_cpu_ptr(var) \
196 ({ \
197 migrate_disable(); \
198 this_cpu_ptr(var); \
199 })
200 #define slub_put_cpu_ptr(var) \
201 do { \
202 (void)(var); \
203 migrate_enable(); \
204 } while (0)
205 #define USE_LOCKLESS_FAST_PATH() (false)
206 #endif
207
208 #ifndef CONFIG_SLUB_TINY
209 #define __fastpath_inline __always_inline
210 #else
211 #define __fastpath_inline
212 #endif
213
214 #ifdef CONFIG_SLUB_DEBUG
215 #ifdef CONFIG_SLUB_DEBUG_ON
216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 #else
218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif
220 #endif /* CONFIG_SLUB_DEBUG */
221
222 #ifdef CONFIG_NUMA
223 static DEFINE_STATIC_KEY_FALSE(strict_numa);
224 #endif
225
226 /* Structure holding parameters for get_partial() call chain */
227 struct partial_context {
228 gfp_t flags;
229 unsigned int orig_size;
230 void *object;
231 };
232
kmem_cache_debug(struct kmem_cache * s)233 static inline bool kmem_cache_debug(struct kmem_cache *s)
234 {
235 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
236 }
237
fixup_red_left(struct kmem_cache * s,void * p)238 void *fixup_red_left(struct kmem_cache *s, void *p)
239 {
240 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
241 p += s->red_left_pad;
242
243 return p;
244 }
245
kmem_cache_has_cpu_partial(struct kmem_cache * s)246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
247 {
248 #ifdef CONFIG_SLUB_CPU_PARTIAL
249 return !kmem_cache_debug(s);
250 #else
251 return false;
252 #endif
253 }
254
255 /*
256 * Issues still to be resolved:
257 *
258 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
259 *
260 * - Variable sizing of the per node arrays
261 */
262
263 /* Enable to log cmpxchg failures */
264 #undef SLUB_DEBUG_CMPXCHG
265
266 #ifndef CONFIG_SLUB_TINY
267 /*
268 * Minimum number of partial slabs. These will be left on the partial
269 * lists even if they are empty. kmem_cache_shrink may reclaim them.
270 */
271 #define MIN_PARTIAL 5
272
273 /*
274 * Maximum number of desirable partial slabs.
275 * The existence of more partial slabs makes kmem_cache_shrink
276 * sort the partial list by the number of objects in use.
277 */
278 #define MAX_PARTIAL 10
279 #else
280 #define MIN_PARTIAL 0
281 #define MAX_PARTIAL 0
282 #endif
283
284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
285 SLAB_POISON | SLAB_STORE_USER)
286
287 /*
288 * These debug flags cannot use CMPXCHG because there might be consistency
289 * issues when checking or reading debug information
290 */
291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
292 SLAB_TRACE)
293
294
295 /*
296 * Debugging flags that require metadata to be stored in the slab. These get
297 * disabled when slab_debug=O is used and a cache's min order increases with
298 * metadata.
299 */
300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
301
302 #define OO_SHIFT 16
303 #define OO_MASK ((1 << OO_SHIFT) - 1)
304 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
305
306 /* Internal SLUB flags */
307 /* Poison object */
308 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
309 /* Use cmpxchg_double */
310
311 #ifdef system_has_freelist_aba
312 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
313 #else
314 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
315 #endif
316
317 /*
318 * Tracking user of a slab.
319 */
320 #define TRACK_ADDRS_COUNT 16
321 struct track {
322 unsigned long addr; /* Called from address */
323 #ifdef CONFIG_STACKDEPOT
324 depot_stack_handle_t handle;
325 #endif
326 int cpu; /* Was running on cpu */
327 int pid; /* Pid context */
328 unsigned long when; /* When did the operation occur */
329 };
330
331 enum track_item { TRACK_ALLOC, TRACK_FREE };
332
333 #ifdef SLAB_SUPPORTS_SYSFS
334 static int sysfs_slab_add(struct kmem_cache *);
335 static int sysfs_slab_alias(struct kmem_cache *, const char *);
336 #else
sysfs_slab_add(struct kmem_cache * s)337 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)338 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
339 { return 0; }
340 #endif
341
342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
343 static void debugfs_slab_add(struct kmem_cache *);
344 #else
debugfs_slab_add(struct kmem_cache * s)345 static inline void debugfs_slab_add(struct kmem_cache *s) { }
346 #endif
347
348 enum stat_item {
349 ALLOC_FASTPATH, /* Allocation from cpu slab */
350 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
351 FREE_FASTPATH, /* Free to cpu slab */
352 FREE_SLOWPATH, /* Freeing not to cpu slab */
353 FREE_FROZEN, /* Freeing to frozen slab */
354 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
355 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
356 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
357 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
358 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
359 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
360 FREE_SLAB, /* Slab freed to the page allocator */
361 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
362 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
363 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
364 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
365 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
366 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
367 DEACTIVATE_BYPASS, /* Implicit deactivation */
368 ORDER_FALLBACK, /* Number of times fallback was necessary */
369 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
370 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
371 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
372 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
373 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
374 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
375 NR_SLUB_STAT_ITEMS
376 };
377
378 #ifndef CONFIG_SLUB_TINY
379 /*
380 * When changing the layout, make sure freelist and tid are still compatible
381 * with this_cpu_cmpxchg_double() alignment requirements.
382 */
383 struct kmem_cache_cpu {
384 union {
385 struct {
386 void **freelist; /* Pointer to next available object */
387 unsigned long tid; /* Globally unique transaction id */
388 };
389 freelist_aba_t freelist_tid;
390 };
391 struct slab *slab; /* The slab from which we are allocating */
392 #ifdef CONFIG_SLUB_CPU_PARTIAL
393 struct slab *partial; /* Partially allocated slabs */
394 #endif
395 local_lock_t lock; /* Protects the fields above */
396 #ifdef CONFIG_SLUB_STATS
397 unsigned int stat[NR_SLUB_STAT_ITEMS];
398 #endif
399 };
400 #endif /* CONFIG_SLUB_TINY */
401
stat(const struct kmem_cache * s,enum stat_item si)402 static inline void stat(const struct kmem_cache *s, enum stat_item si)
403 {
404 #ifdef CONFIG_SLUB_STATS
405 /*
406 * The rmw is racy on a preemptible kernel but this is acceptable, so
407 * avoid this_cpu_add()'s irq-disable overhead.
408 */
409 raw_cpu_inc(s->cpu_slab->stat[si]);
410 #endif
411 }
412
413 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)414 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
415 {
416 #ifdef CONFIG_SLUB_STATS
417 raw_cpu_add(s->cpu_slab->stat[si], v);
418 #endif
419 }
420
421 /*
422 * The slab lists for all objects.
423 */
424 struct kmem_cache_node {
425 spinlock_t list_lock;
426 unsigned long nr_partial;
427 struct list_head partial;
428 #ifdef CONFIG_SLUB_DEBUG
429 atomic_long_t nr_slabs;
430 atomic_long_t total_objects;
431 struct list_head full;
432 #endif
433 };
434
get_node(struct kmem_cache * s,int node)435 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
436 {
437 return s->node[node];
438 }
439
440 /*
441 * Iterator over all nodes. The body will be executed for each node that has
442 * a kmem_cache_node structure allocated (which is true for all online nodes)
443 */
444 #define for_each_kmem_cache_node(__s, __node, __n) \
445 for (__node = 0; __node < nr_node_ids; __node++) \
446 if ((__n = get_node(__s, __node)))
447
448 /*
449 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
450 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
451 * differ during memory hotplug/hotremove operations.
452 * Protected by slab_mutex.
453 */
454 static nodemask_t slab_nodes;
455
456 #ifndef CONFIG_SLUB_TINY
457 /*
458 * Workqueue used for flush_cpu_slab().
459 */
460 static struct workqueue_struct *flushwq;
461 #endif
462
463 /********************************************************************
464 * Core slab cache functions
465 *******************************************************************/
466
467 /*
468 * Returns freelist pointer (ptr). With hardening, this is obfuscated
469 * with an XOR of the address where the pointer is held and a per-cache
470 * random number.
471 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)472 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
473 void *ptr, unsigned long ptr_addr)
474 {
475 unsigned long encoded;
476
477 #ifdef CONFIG_SLAB_FREELIST_HARDENED
478 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
479 #else
480 encoded = (unsigned long)ptr;
481 #endif
482 return (freeptr_t){.v = encoded};
483 }
484
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)485 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
486 freeptr_t ptr, unsigned long ptr_addr)
487 {
488 void *decoded;
489
490 #ifdef CONFIG_SLAB_FREELIST_HARDENED
491 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
492 #else
493 decoded = (void *)ptr.v;
494 #endif
495 return decoded;
496 }
497
get_freepointer(struct kmem_cache * s,void * object)498 static inline void *get_freepointer(struct kmem_cache *s, void *object)
499 {
500 unsigned long ptr_addr;
501 freeptr_t p;
502
503 object = kasan_reset_tag(object);
504 ptr_addr = (unsigned long)object + s->offset;
505 p = *(freeptr_t *)(ptr_addr);
506 return freelist_ptr_decode(s, p, ptr_addr);
507 }
508
509 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)510 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
511 {
512 prefetchw(object + s->offset);
513 }
514 #endif
515
516 /*
517 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
518 * pointer value in the case the current thread loses the race for the next
519 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
520 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
521 * KMSAN will still check all arguments of cmpxchg because of imperfect
522 * handling of inline assembly.
523 * To work around this problem, we apply __no_kmsan_checks to ensure that
524 * get_freepointer_safe() returns initialized memory.
525 */
526 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)527 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
528 {
529 unsigned long freepointer_addr;
530 freeptr_t p;
531
532 if (!debug_pagealloc_enabled_static())
533 return get_freepointer(s, object);
534
535 object = kasan_reset_tag(object);
536 freepointer_addr = (unsigned long)object + s->offset;
537 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
538 return freelist_ptr_decode(s, p, freepointer_addr);
539 }
540
set_freepointer(struct kmem_cache * s,void * object,void * fp)541 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
542 {
543 unsigned long freeptr_addr = (unsigned long)object + s->offset;
544
545 #ifdef CONFIG_SLAB_FREELIST_HARDENED
546 BUG_ON(object == fp); /* naive detection of double free or corruption */
547 #endif
548
549 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
550 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
551 }
552
553 /*
554 * See comment in calculate_sizes().
555 */
freeptr_outside_object(struct kmem_cache * s)556 static inline bool freeptr_outside_object(struct kmem_cache *s)
557 {
558 return s->offset >= s->inuse;
559 }
560
561 /*
562 * Return offset of the end of info block which is inuse + free pointer if
563 * not overlapping with object.
564 */
get_info_end(struct kmem_cache * s)565 static inline unsigned int get_info_end(struct kmem_cache *s)
566 {
567 if (freeptr_outside_object(s))
568 return s->inuse + sizeof(void *);
569 else
570 return s->inuse;
571 }
572
573 /* Loop over all objects in a slab */
574 #define for_each_object(__p, __s, __addr, __objects) \
575 for (__p = fixup_red_left(__s, __addr); \
576 __p < (__addr) + (__objects) * (__s)->size; \
577 __p += (__s)->size)
578
order_objects(unsigned int order,unsigned int size)579 static inline unsigned int order_objects(unsigned int order, unsigned int size)
580 {
581 return ((unsigned int)PAGE_SIZE << order) / size;
582 }
583
oo_make(unsigned int order,unsigned int size)584 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
585 unsigned int size)
586 {
587 struct kmem_cache_order_objects x = {
588 (order << OO_SHIFT) + order_objects(order, size)
589 };
590
591 return x;
592 }
593
oo_order(struct kmem_cache_order_objects x)594 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
595 {
596 return x.x >> OO_SHIFT;
597 }
598
oo_objects(struct kmem_cache_order_objects x)599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
600 {
601 return x.x & OO_MASK;
602 }
603
604 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)605 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
606 {
607 unsigned int nr_slabs;
608
609 s->cpu_partial = nr_objects;
610
611 /*
612 * We take the number of objects but actually limit the number of
613 * slabs on the per cpu partial list, in order to limit excessive
614 * growth of the list. For simplicity we assume that the slabs will
615 * be half-full.
616 */
617 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
618 s->cpu_partial_slabs = nr_slabs;
619 }
620
slub_get_cpu_partial(struct kmem_cache * s)621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
622 {
623 return s->cpu_partial_slabs;
624 }
625 #else
626 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)627 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
628 {
629 }
630
slub_get_cpu_partial(struct kmem_cache * s)631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
632 {
633 return 0;
634 }
635 #endif /* CONFIG_SLUB_CPU_PARTIAL */
636
637 /*
638 * Per slab locking using the pagelock
639 */
slab_lock(struct slab * slab)640 static __always_inline void slab_lock(struct slab *slab)
641 {
642 bit_spin_lock(PG_locked, &slab->__page_flags);
643 }
644
slab_unlock(struct slab * slab)645 static __always_inline void slab_unlock(struct slab *slab)
646 {
647 bit_spin_unlock(PG_locked, &slab->__page_flags);
648 }
649
650 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)651 __update_freelist_fast(struct slab *slab,
652 void *freelist_old, unsigned long counters_old,
653 void *freelist_new, unsigned long counters_new)
654 {
655 #ifdef system_has_freelist_aba
656 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
657 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
658
659 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
660 #else
661 return false;
662 #endif
663 }
664
665 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)666 __update_freelist_slow(struct slab *slab,
667 void *freelist_old, unsigned long counters_old,
668 void *freelist_new, unsigned long counters_new)
669 {
670 bool ret = false;
671
672 slab_lock(slab);
673 if (slab->freelist == freelist_old &&
674 slab->counters == counters_old) {
675 slab->freelist = freelist_new;
676 slab->counters = counters_new;
677 ret = true;
678 }
679 slab_unlock(slab);
680
681 return ret;
682 }
683
684 /*
685 * Interrupts must be disabled (for the fallback code to work right), typically
686 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
687 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
688 * allocation/ free operation in hardirq context. Therefore nothing can
689 * interrupt the operation.
690 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)691 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
692 void *freelist_old, unsigned long counters_old,
693 void *freelist_new, unsigned long counters_new,
694 const char *n)
695 {
696 bool ret;
697
698 if (USE_LOCKLESS_FAST_PATH())
699 lockdep_assert_irqs_disabled();
700
701 if (s->flags & __CMPXCHG_DOUBLE) {
702 ret = __update_freelist_fast(slab, freelist_old, counters_old,
703 freelist_new, counters_new);
704 } else {
705 ret = __update_freelist_slow(slab, freelist_old, counters_old,
706 freelist_new, counters_new);
707 }
708 if (likely(ret))
709 return true;
710
711 cpu_relax();
712 stat(s, CMPXCHG_DOUBLE_FAIL);
713
714 #ifdef SLUB_DEBUG_CMPXCHG
715 pr_info("%s %s: cmpxchg double redo ", n, s->name);
716 #endif
717
718 return false;
719 }
720
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)721 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
722 void *freelist_old, unsigned long counters_old,
723 void *freelist_new, unsigned long counters_new,
724 const char *n)
725 {
726 bool ret;
727
728 if (s->flags & __CMPXCHG_DOUBLE) {
729 ret = __update_freelist_fast(slab, freelist_old, counters_old,
730 freelist_new, counters_new);
731 } else {
732 unsigned long flags;
733
734 local_irq_save(flags);
735 ret = __update_freelist_slow(slab, freelist_old, counters_old,
736 freelist_new, counters_new);
737 local_irq_restore(flags);
738 }
739 if (likely(ret))
740 return true;
741
742 cpu_relax();
743 stat(s, CMPXCHG_DOUBLE_FAIL);
744
745 #ifdef SLUB_DEBUG_CMPXCHG
746 pr_info("%s %s: cmpxchg double redo ", n, s->name);
747 #endif
748
749 return false;
750 }
751
752 /*
753 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
754 * family will round up the real request size to these fixed ones, so
755 * there could be an extra area than what is requested. Save the original
756 * request size in the meta data area, for better debug and sanity check.
757 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)758 static inline void set_orig_size(struct kmem_cache *s,
759 void *object, unsigned int orig_size)
760 {
761 void *p = kasan_reset_tag(object);
762
763 if (!slub_debug_orig_size(s))
764 return;
765
766 p += get_info_end(s);
767 p += sizeof(struct track) * 2;
768
769 *(unsigned int *)p = orig_size;
770 }
771
get_orig_size(struct kmem_cache * s,void * object)772 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
773 {
774 void *p = kasan_reset_tag(object);
775
776 if (is_kfence_address(object))
777 return kfence_ksize(object);
778
779 if (!slub_debug_orig_size(s))
780 return s->object_size;
781
782 p += get_info_end(s);
783 p += sizeof(struct track) * 2;
784
785 return *(unsigned int *)p;
786 }
787
788 #ifdef CONFIG_SLUB_DEBUG
789 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
790 static DEFINE_SPINLOCK(object_map_lock);
791
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)792 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
793 struct slab *slab)
794 {
795 void *addr = slab_address(slab);
796 void *p;
797
798 bitmap_zero(obj_map, slab->objects);
799
800 for (p = slab->freelist; p; p = get_freepointer(s, p))
801 set_bit(__obj_to_index(s, addr, p), obj_map);
802 }
803
804 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)805 static bool slab_add_kunit_errors(void)
806 {
807 struct kunit_resource *resource;
808
809 if (!kunit_get_current_test())
810 return false;
811
812 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
813 if (!resource)
814 return false;
815
816 (*(int *)resource->data)++;
817 kunit_put_resource(resource);
818 return true;
819 }
820
slab_in_kunit_test(void)821 bool slab_in_kunit_test(void)
822 {
823 struct kunit_resource *resource;
824
825 if (!kunit_get_current_test())
826 return false;
827
828 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
829 if (!resource)
830 return false;
831
832 kunit_put_resource(resource);
833 return true;
834 }
835 #else
slab_add_kunit_errors(void)836 static inline bool slab_add_kunit_errors(void) { return false; }
837 #endif
838
size_from_object(struct kmem_cache * s)839 static inline unsigned int size_from_object(struct kmem_cache *s)
840 {
841 if (s->flags & SLAB_RED_ZONE)
842 return s->size - s->red_left_pad;
843
844 return s->size;
845 }
846
restore_red_left(struct kmem_cache * s,void * p)847 static inline void *restore_red_left(struct kmem_cache *s, void *p)
848 {
849 if (s->flags & SLAB_RED_ZONE)
850 p -= s->red_left_pad;
851
852 return p;
853 }
854
855 /*
856 * Debug settings:
857 */
858 #if defined(CONFIG_SLUB_DEBUG_ON)
859 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
860 #else
861 static slab_flags_t slub_debug;
862 #endif
863
864 static char *slub_debug_string;
865 static int disable_higher_order_debug;
866
867 /*
868 * slub is about to manipulate internal object metadata. This memory lies
869 * outside the range of the allocated object, so accessing it would normally
870 * be reported by kasan as a bounds error. metadata_access_enable() is used
871 * to tell kasan that these accesses are OK.
872 */
metadata_access_enable(void)873 static inline void metadata_access_enable(void)
874 {
875 kasan_disable_current();
876 kmsan_disable_current();
877 }
878
metadata_access_disable(void)879 static inline void metadata_access_disable(void)
880 {
881 kmsan_enable_current();
882 kasan_enable_current();
883 }
884
885 /*
886 * Object debugging
887 */
888
889 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)890 static inline int check_valid_pointer(struct kmem_cache *s,
891 struct slab *slab, void *object)
892 {
893 void *base;
894
895 if (!object)
896 return 1;
897
898 base = slab_address(slab);
899 object = kasan_reset_tag(object);
900 object = restore_red_left(s, object);
901 if (object < base || object >= base + slab->objects * s->size ||
902 (object - base) % s->size) {
903 return 0;
904 }
905
906 return 1;
907 }
908
print_section(char * level,char * text,u8 * addr,unsigned int length)909 static void print_section(char *level, char *text, u8 *addr,
910 unsigned int length)
911 {
912 metadata_access_enable();
913 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
914 16, 1, kasan_reset_tag((void *)addr), length, 1);
915 metadata_access_disable();
916 }
917
get_track(struct kmem_cache * s,void * object,enum track_item alloc)918 static struct track *get_track(struct kmem_cache *s, void *object,
919 enum track_item alloc)
920 {
921 struct track *p;
922
923 p = object + get_info_end(s);
924
925 return kasan_reset_tag(p + alloc);
926 }
927
928 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)929 static noinline depot_stack_handle_t set_track_prepare(void)
930 {
931 depot_stack_handle_t handle;
932 unsigned long entries[TRACK_ADDRS_COUNT];
933 unsigned int nr_entries;
934
935 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
936 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
937
938 return handle;
939 }
940 #else
set_track_prepare(void)941 static inline depot_stack_handle_t set_track_prepare(void)
942 {
943 return 0;
944 }
945 #endif
946
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)947 static void set_track_update(struct kmem_cache *s, void *object,
948 enum track_item alloc, unsigned long addr,
949 depot_stack_handle_t handle)
950 {
951 struct track *p = get_track(s, object, alloc);
952
953 #ifdef CONFIG_STACKDEPOT
954 p->handle = handle;
955 #endif
956 p->addr = addr;
957 p->cpu = smp_processor_id();
958 p->pid = current->pid;
959 p->when = jiffies;
960 }
961
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)962 static __always_inline void set_track(struct kmem_cache *s, void *object,
963 enum track_item alloc, unsigned long addr)
964 {
965 depot_stack_handle_t handle = set_track_prepare();
966
967 set_track_update(s, object, alloc, addr, handle);
968 }
969
init_tracking(struct kmem_cache * s,void * object)970 static void init_tracking(struct kmem_cache *s, void *object)
971 {
972 struct track *p;
973
974 if (!(s->flags & SLAB_STORE_USER))
975 return;
976
977 p = get_track(s, object, TRACK_ALLOC);
978 memset(p, 0, 2*sizeof(struct track));
979 }
980
print_track(const char * s,struct track * t,unsigned long pr_time)981 static void print_track(const char *s, struct track *t, unsigned long pr_time)
982 {
983 depot_stack_handle_t handle __maybe_unused;
984
985 if (!t->addr)
986 return;
987
988 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
989 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
990 #ifdef CONFIG_STACKDEPOT
991 handle = READ_ONCE(t->handle);
992 if (handle)
993 stack_depot_print(handle);
994 else
995 pr_err("object allocation/free stack trace missing\n");
996 #endif
997 }
998
print_tracking(struct kmem_cache * s,void * object)999 void print_tracking(struct kmem_cache *s, void *object)
1000 {
1001 unsigned long pr_time = jiffies;
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
1005 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1006 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1007 }
1008
print_slab_info(const struct slab * slab)1009 static void print_slab_info(const struct slab *slab)
1010 {
1011 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1012 slab, slab->objects, slab->inuse, slab->freelist,
1013 &slab->__page_flags);
1014 }
1015
skip_orig_size_check(struct kmem_cache * s,const void * object)1016 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 {
1018 set_orig_size(s, (void *)object, s->object_size);
1019 }
1020
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1021 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1022 {
1023 struct va_format vaf;
1024 va_list args;
1025
1026 va_copy(args, argsp);
1027 vaf.fmt = fmt;
1028 vaf.va = &args;
1029 pr_err("=============================================================================\n");
1030 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1031 pr_err("-----------------------------------------------------------------------------\n\n");
1032 va_end(args);
1033 }
1034
slab_bug(struct kmem_cache * s,const char * fmt,...)1035 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1036 {
1037 va_list args;
1038
1039 va_start(args, fmt);
1040 __slab_bug(s, fmt, args);
1041 va_end(args);
1042 }
1043
1044 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1045 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1046 {
1047 struct va_format vaf;
1048 va_list args;
1049
1050 if (slab_add_kunit_errors())
1051 return;
1052
1053 va_start(args, fmt);
1054 vaf.fmt = fmt;
1055 vaf.va = &args;
1056 pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 va_end(args);
1058 }
1059
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1061 {
1062 unsigned int off; /* Offset of last byte */
1063 u8 *addr = slab_address(slab);
1064
1065 print_tracking(s, p);
1066
1067 print_slab_info(slab);
1068
1069 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 p, p - addr, get_freepointer(s, p));
1071
1072 if (s->flags & SLAB_RED_ZONE)
1073 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1074 s->red_left_pad);
1075 else if (p > addr + 16)
1076 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1077
1078 print_section(KERN_ERR, "Object ", p,
1079 min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 if (s->flags & SLAB_RED_ZONE)
1081 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1082 s->inuse - s->object_size);
1083
1084 off = get_info_end(s);
1085
1086 if (s->flags & SLAB_STORE_USER)
1087 off += 2 * sizeof(struct track);
1088
1089 if (slub_debug_orig_size(s))
1090 off += sizeof(unsigned int);
1091
1092 off += kasan_metadata_size(s, false);
1093
1094 if (off != size_from_object(s))
1095 /* Beginning of the filler is the free pointer */
1096 print_section(KERN_ERR, "Padding ", p + off,
1097 size_from_object(s) - off);
1098 }
1099
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1100 static void object_err(struct kmem_cache *s, struct slab *slab,
1101 u8 *object, const char *reason)
1102 {
1103 if (slab_add_kunit_errors())
1104 return;
1105
1106 slab_bug(s, reason);
1107 print_trailer(s, slab, object);
1108 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1109
1110 WARN_ON(1);
1111 }
1112
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 void **freelist, void *nextfree)
1115 {
1116 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 object_err(s, slab, *freelist, "Freechain corrupt");
1119 *freelist = NULL;
1120 slab_fix(s, "Isolate corrupted freechain");
1121 return true;
1122 }
1123
1124 return false;
1125 }
1126
__slab_err(struct slab * slab)1127 static void __slab_err(struct slab *slab)
1128 {
1129 if (slab_in_kunit_test())
1130 return;
1131
1132 print_slab_info(slab);
1133 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1134
1135 WARN_ON(1);
1136 }
1137
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1138 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1139 const char *fmt, ...)
1140 {
1141 va_list args;
1142
1143 if (slab_add_kunit_errors())
1144 return;
1145
1146 va_start(args, fmt);
1147 __slab_bug(s, fmt, args);
1148 va_end(args);
1149
1150 __slab_err(slab);
1151 }
1152
init_object(struct kmem_cache * s,void * object,u8 val)1153 static void init_object(struct kmem_cache *s, void *object, u8 val)
1154 {
1155 u8 *p = kasan_reset_tag(object);
1156 unsigned int poison_size = s->object_size;
1157
1158 if (s->flags & SLAB_RED_ZONE) {
1159 /*
1160 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1161 * the shadow makes it possible to distinguish uninit-value
1162 * from use-after-free.
1163 */
1164 memset_no_sanitize_memory(p - s->red_left_pad, val,
1165 s->red_left_pad);
1166
1167 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1168 /*
1169 * Redzone the extra allocated space by kmalloc than
1170 * requested, and the poison size will be limited to
1171 * the original request size accordingly.
1172 */
1173 poison_size = get_orig_size(s, object);
1174 }
1175 }
1176
1177 if (s->flags & __OBJECT_POISON) {
1178 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1179 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1180 }
1181
1182 if (s->flags & SLAB_RED_ZONE)
1183 memset_no_sanitize_memory(p + poison_size, val,
1184 s->inuse - poison_size);
1185 }
1186
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1187 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1188 void *from, void *to)
1189 {
1190 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1191 memset(from, data, to - from);
1192 }
1193
1194 #ifdef CONFIG_KMSAN
1195 #define pad_check_attributes noinline __no_kmsan_checks
1196 #else
1197 #define pad_check_attributes
1198 #endif
1199
1200 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1201 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1202 u8 *object, const char *what, u8 *start, unsigned int value,
1203 unsigned int bytes, bool slab_obj_print)
1204 {
1205 u8 *fault;
1206 u8 *end;
1207 u8 *addr = slab_address(slab);
1208
1209 metadata_access_enable();
1210 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1211 metadata_access_disable();
1212 if (!fault)
1213 return 1;
1214
1215 end = start + bytes;
1216 while (end > fault && end[-1] == value)
1217 end--;
1218
1219 if (slab_add_kunit_errors())
1220 goto skip_bug_print;
1221
1222 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 what, fault, end - 1, fault - addr, fault[0], value);
1224
1225 if (slab_obj_print)
1226 object_err(s, slab, object, "Object corrupt");
1227
1228 skip_bug_print:
1229 restore_bytes(s, what, value, fault, end);
1230 return 0;
1231 }
1232
1233 /*
1234 * Object layout:
1235 *
1236 * object address
1237 * Bytes of the object to be managed.
1238 * If the freepointer may overlay the object then the free
1239 * pointer is at the middle of the object.
1240 *
1241 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1242 * 0xa5 (POISON_END)
1243 *
1244 * object + s->object_size
1245 * Padding to reach word boundary. This is also used for Redzoning.
1246 * Padding is extended by another word if Redzoning is enabled and
1247 * object_size == inuse.
1248 *
1249 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1250 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1251 *
1252 * object + s->inuse
1253 * Meta data starts here.
1254 *
1255 * A. Free pointer (if we cannot overwrite object on free)
1256 * B. Tracking data for SLAB_STORE_USER
1257 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1258 * D. Padding to reach required alignment boundary or at minimum
1259 * one word if debugging is on to be able to detect writes
1260 * before the word boundary.
1261 *
1262 * Padding is done using 0x5a (POISON_INUSE)
1263 *
1264 * object + s->size
1265 * Nothing is used beyond s->size.
1266 *
1267 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1268 * ignored. And therefore no slab options that rely on these boundaries
1269 * may be used with merged slabcaches.
1270 */
1271
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1272 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1273 {
1274 unsigned long off = get_info_end(s); /* The end of info */
1275
1276 if (s->flags & SLAB_STORE_USER) {
1277 /* We also have user information there */
1278 off += 2 * sizeof(struct track);
1279
1280 if (s->flags & SLAB_KMALLOC)
1281 off += sizeof(unsigned int);
1282 }
1283
1284 off += kasan_metadata_size(s, false);
1285
1286 if (size_from_object(s) == off)
1287 return 1;
1288
1289 return check_bytes_and_report(s, slab, p, "Object padding",
1290 p + off, POISON_INUSE, size_from_object(s) - off, true);
1291 }
1292
1293 /* Check the pad bytes at the end of a slab page */
1294 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1295 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1296 {
1297 u8 *start;
1298 u8 *fault;
1299 u8 *end;
1300 u8 *pad;
1301 int length;
1302 int remainder;
1303
1304 if (!(s->flags & SLAB_POISON))
1305 return;
1306
1307 start = slab_address(slab);
1308 length = slab_size(slab);
1309 end = start + length;
1310 remainder = length % s->size;
1311 if (!remainder)
1312 return;
1313
1314 pad = end - remainder;
1315 metadata_access_enable();
1316 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1317 metadata_access_disable();
1318 if (!fault)
1319 return;
1320 while (end > fault && end[-1] == POISON_INUSE)
1321 end--;
1322
1323 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1324 fault, end - 1, fault - start);
1325 print_section(KERN_ERR, "Padding ", pad, remainder);
1326 __slab_err(slab);
1327
1328 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1329 }
1330
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1331 static int check_object(struct kmem_cache *s, struct slab *slab,
1332 void *object, u8 val)
1333 {
1334 u8 *p = object;
1335 u8 *endobject = object + s->object_size;
1336 unsigned int orig_size, kasan_meta_size;
1337 int ret = 1;
1338
1339 if (s->flags & SLAB_RED_ZONE) {
1340 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1341 object - s->red_left_pad, val, s->red_left_pad, ret))
1342 ret = 0;
1343
1344 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1345 endobject, val, s->inuse - s->object_size, ret))
1346 ret = 0;
1347
1348 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1349 orig_size = get_orig_size(s, object);
1350
1351 if (s->object_size > orig_size &&
1352 !check_bytes_and_report(s, slab, object,
1353 "kmalloc Redzone", p + orig_size,
1354 val, s->object_size - orig_size, ret)) {
1355 ret = 0;
1356 }
1357 }
1358 } else {
1359 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1360 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1361 endobject, POISON_INUSE,
1362 s->inuse - s->object_size, ret))
1363 ret = 0;
1364 }
1365 }
1366
1367 if (s->flags & SLAB_POISON) {
1368 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1369 /*
1370 * KASAN can save its free meta data inside of the
1371 * object at offset 0. Thus, skip checking the part of
1372 * the redzone that overlaps with the meta data.
1373 */
1374 kasan_meta_size = kasan_metadata_size(s, true);
1375 if (kasan_meta_size < s->object_size - 1 &&
1376 !check_bytes_and_report(s, slab, p, "Poison",
1377 p + kasan_meta_size, POISON_FREE,
1378 s->object_size - kasan_meta_size - 1, ret))
1379 ret = 0;
1380 if (kasan_meta_size < s->object_size &&
1381 !check_bytes_and_report(s, slab, p, "End Poison",
1382 p + s->object_size - 1, POISON_END, 1, ret))
1383 ret = 0;
1384 }
1385 /*
1386 * check_pad_bytes cleans up on its own.
1387 */
1388 if (!check_pad_bytes(s, slab, p))
1389 ret = 0;
1390 }
1391
1392 /*
1393 * Cannot check freepointer while object is allocated if
1394 * object and freepointer overlap.
1395 */
1396 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1397 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1398 object_err(s, slab, p, "Freepointer corrupt");
1399 /*
1400 * No choice but to zap it and thus lose the remainder
1401 * of the free objects in this slab. May cause
1402 * another error because the object count is now wrong.
1403 */
1404 set_freepointer(s, p, NULL);
1405 ret = 0;
1406 }
1407
1408 return ret;
1409 }
1410
check_slab(struct kmem_cache * s,struct slab * slab)1411 static int check_slab(struct kmem_cache *s, struct slab *slab)
1412 {
1413 int maxobj;
1414
1415 if (!folio_test_slab(slab_folio(slab))) {
1416 slab_err(s, slab, "Not a valid slab page");
1417 return 0;
1418 }
1419
1420 maxobj = order_objects(slab_order(slab), s->size);
1421 if (slab->objects > maxobj) {
1422 slab_err(s, slab, "objects %u > max %u",
1423 slab->objects, maxobj);
1424 return 0;
1425 }
1426 if (slab->inuse > slab->objects) {
1427 slab_err(s, slab, "inuse %u > max %u",
1428 slab->inuse, slab->objects);
1429 return 0;
1430 }
1431 if (slab->frozen) {
1432 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1433 return 0;
1434 }
1435
1436 /* Slab_pad_check fixes things up after itself */
1437 slab_pad_check(s, slab);
1438 return 1;
1439 }
1440
1441 /*
1442 * Determine if a certain object in a slab is on the freelist. Must hold the
1443 * slab lock to guarantee that the chains are in a consistent state.
1444 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1445 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1446 {
1447 int nr = 0;
1448 void *fp;
1449 void *object = NULL;
1450 int max_objects;
1451
1452 fp = slab->freelist;
1453 while (fp && nr <= slab->objects) {
1454 if (fp == search)
1455 return true;
1456 if (!check_valid_pointer(s, slab, fp)) {
1457 if (object) {
1458 object_err(s, slab, object,
1459 "Freechain corrupt");
1460 set_freepointer(s, object, NULL);
1461 break;
1462 } else {
1463 slab_err(s, slab, "Freepointer corrupt");
1464 slab->freelist = NULL;
1465 slab->inuse = slab->objects;
1466 slab_fix(s, "Freelist cleared");
1467 return false;
1468 }
1469 }
1470 object = fp;
1471 fp = get_freepointer(s, object);
1472 nr++;
1473 }
1474
1475 if (nr > slab->objects) {
1476 slab_err(s, slab, "Freelist cycle detected");
1477 slab->freelist = NULL;
1478 slab->inuse = slab->objects;
1479 slab_fix(s, "Freelist cleared");
1480 return false;
1481 }
1482
1483 max_objects = order_objects(slab_order(slab), s->size);
1484 if (max_objects > MAX_OBJS_PER_PAGE)
1485 max_objects = MAX_OBJS_PER_PAGE;
1486
1487 if (slab->objects != max_objects) {
1488 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1489 slab->objects, max_objects);
1490 slab->objects = max_objects;
1491 slab_fix(s, "Number of objects adjusted");
1492 }
1493 if (slab->inuse != slab->objects - nr) {
1494 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1495 slab->inuse, slab->objects - nr);
1496 slab->inuse = slab->objects - nr;
1497 slab_fix(s, "Object count adjusted");
1498 }
1499 return search == NULL;
1500 }
1501
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1502 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1503 int alloc)
1504 {
1505 if (s->flags & SLAB_TRACE) {
1506 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1507 s->name,
1508 alloc ? "alloc" : "free",
1509 object, slab->inuse,
1510 slab->freelist);
1511
1512 if (!alloc)
1513 print_section(KERN_INFO, "Object ", (void *)object,
1514 s->object_size);
1515
1516 dump_stack();
1517 }
1518 }
1519
1520 /*
1521 * Tracking of fully allocated slabs for debugging purposes.
1522 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1523 static void add_full(struct kmem_cache *s,
1524 struct kmem_cache_node *n, struct slab *slab)
1525 {
1526 if (!(s->flags & SLAB_STORE_USER))
1527 return;
1528
1529 lockdep_assert_held(&n->list_lock);
1530 list_add(&slab->slab_list, &n->full);
1531 }
1532
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1533 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1534 {
1535 if (!(s->flags & SLAB_STORE_USER))
1536 return;
1537
1538 lockdep_assert_held(&n->list_lock);
1539 list_del(&slab->slab_list);
1540 }
1541
node_nr_slabs(struct kmem_cache_node * n)1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1543 {
1544 return atomic_long_read(&n->nr_slabs);
1545 }
1546
inc_slabs_node(struct kmem_cache * s,int node,int objects)1547 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1548 {
1549 struct kmem_cache_node *n = get_node(s, node);
1550
1551 atomic_long_inc(&n->nr_slabs);
1552 atomic_long_add(objects, &n->total_objects);
1553 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1554 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1555 {
1556 struct kmem_cache_node *n = get_node(s, node);
1557
1558 atomic_long_dec(&n->nr_slabs);
1559 atomic_long_sub(objects, &n->total_objects);
1560 }
1561
1562 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1563 static void setup_object_debug(struct kmem_cache *s, void *object)
1564 {
1565 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1566 return;
1567
1568 init_object(s, object, SLUB_RED_INACTIVE);
1569 init_tracking(s, object);
1570 }
1571
1572 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1573 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1574 {
1575 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1576 return;
1577
1578 metadata_access_enable();
1579 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1580 metadata_access_disable();
1581 }
1582
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1583 static inline int alloc_consistency_checks(struct kmem_cache *s,
1584 struct slab *slab, void *object)
1585 {
1586 if (!check_slab(s, slab))
1587 return 0;
1588
1589 if (!check_valid_pointer(s, slab, object)) {
1590 object_err(s, slab, object, "Freelist Pointer check fails");
1591 return 0;
1592 }
1593
1594 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1595 return 0;
1596
1597 return 1;
1598 }
1599
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1600 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1601 struct slab *slab, void *object, int orig_size)
1602 {
1603 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1604 if (!alloc_consistency_checks(s, slab, object))
1605 goto bad;
1606 }
1607
1608 /* Success. Perform special debug activities for allocs */
1609 trace(s, slab, object, 1);
1610 set_orig_size(s, object, orig_size);
1611 init_object(s, object, SLUB_RED_ACTIVE);
1612 return true;
1613
1614 bad:
1615 if (folio_test_slab(slab_folio(slab))) {
1616 /*
1617 * If this is a slab page then lets do the best we can
1618 * to avoid issues in the future. Marking all objects
1619 * as used avoids touching the remaining objects.
1620 */
1621 slab_fix(s, "Marking all objects used");
1622 slab->inuse = slab->objects;
1623 slab->freelist = NULL;
1624 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1625 }
1626 return false;
1627 }
1628
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1629 static inline int free_consistency_checks(struct kmem_cache *s,
1630 struct slab *slab, void *object, unsigned long addr)
1631 {
1632 if (!check_valid_pointer(s, slab, object)) {
1633 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1634 return 0;
1635 }
1636
1637 if (on_freelist(s, slab, object)) {
1638 object_err(s, slab, object, "Object already free");
1639 return 0;
1640 }
1641
1642 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1643 return 0;
1644
1645 if (unlikely(s != slab->slab_cache)) {
1646 if (!folio_test_slab(slab_folio(slab))) {
1647 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1648 object);
1649 } else if (!slab->slab_cache) {
1650 slab_err(NULL, slab, "No slab cache for object 0x%p",
1651 object);
1652 } else {
1653 object_err(s, slab, object,
1654 "page slab pointer corrupt.");
1655 }
1656 return 0;
1657 }
1658 return 1;
1659 }
1660
1661 /*
1662 * Parse a block of slab_debug options. Blocks are delimited by ';'
1663 *
1664 * @str: start of block
1665 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1666 * @slabs: return start of list of slabs, or NULL when there's no list
1667 * @init: assume this is initial parsing and not per-kmem-create parsing
1668 *
1669 * returns the start of next block if there's any, or NULL
1670 */
1671 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1672 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1673 {
1674 bool higher_order_disable = false;
1675
1676 /* Skip any completely empty blocks */
1677 while (*str && *str == ';')
1678 str++;
1679
1680 if (*str == ',') {
1681 /*
1682 * No options but restriction on slabs. This means full
1683 * debugging for slabs matching a pattern.
1684 */
1685 *flags = DEBUG_DEFAULT_FLAGS;
1686 goto check_slabs;
1687 }
1688 *flags = 0;
1689
1690 /* Determine which debug features should be switched on */
1691 for (; *str && *str != ',' && *str != ';'; str++) {
1692 switch (tolower(*str)) {
1693 case '-':
1694 *flags = 0;
1695 break;
1696 case 'f':
1697 *flags |= SLAB_CONSISTENCY_CHECKS;
1698 break;
1699 case 'z':
1700 *flags |= SLAB_RED_ZONE;
1701 break;
1702 case 'p':
1703 *flags |= SLAB_POISON;
1704 break;
1705 case 'u':
1706 *flags |= SLAB_STORE_USER;
1707 break;
1708 case 't':
1709 *flags |= SLAB_TRACE;
1710 break;
1711 case 'a':
1712 *flags |= SLAB_FAILSLAB;
1713 break;
1714 case 'o':
1715 /*
1716 * Avoid enabling debugging on caches if its minimum
1717 * order would increase as a result.
1718 */
1719 higher_order_disable = true;
1720 break;
1721 default:
1722 if (init)
1723 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1724 }
1725 }
1726 check_slabs:
1727 if (*str == ',')
1728 *slabs = ++str;
1729 else
1730 *slabs = NULL;
1731
1732 /* Skip over the slab list */
1733 while (*str && *str != ';')
1734 str++;
1735
1736 /* Skip any completely empty blocks */
1737 while (*str && *str == ';')
1738 str++;
1739
1740 if (init && higher_order_disable)
1741 disable_higher_order_debug = 1;
1742
1743 if (*str)
1744 return str;
1745 else
1746 return NULL;
1747 }
1748
setup_slub_debug(char * str)1749 static int __init setup_slub_debug(char *str)
1750 {
1751 slab_flags_t flags;
1752 slab_flags_t global_flags;
1753 char *saved_str;
1754 char *slab_list;
1755 bool global_slub_debug_changed = false;
1756 bool slab_list_specified = false;
1757
1758 global_flags = DEBUG_DEFAULT_FLAGS;
1759 if (*str++ != '=' || !*str)
1760 /*
1761 * No options specified. Switch on full debugging.
1762 */
1763 goto out;
1764
1765 saved_str = str;
1766 while (str) {
1767 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1768
1769 if (!slab_list) {
1770 global_flags = flags;
1771 global_slub_debug_changed = true;
1772 } else {
1773 slab_list_specified = true;
1774 if (flags & SLAB_STORE_USER)
1775 stack_depot_request_early_init();
1776 }
1777 }
1778
1779 /*
1780 * For backwards compatibility, a single list of flags with list of
1781 * slabs means debugging is only changed for those slabs, so the global
1782 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1783 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1784 * long as there is no option specifying flags without a slab list.
1785 */
1786 if (slab_list_specified) {
1787 if (!global_slub_debug_changed)
1788 global_flags = slub_debug;
1789 slub_debug_string = saved_str;
1790 }
1791 out:
1792 slub_debug = global_flags;
1793 if (slub_debug & SLAB_STORE_USER)
1794 stack_depot_request_early_init();
1795 if (slub_debug != 0 || slub_debug_string)
1796 static_branch_enable(&slub_debug_enabled);
1797 else
1798 static_branch_disable(&slub_debug_enabled);
1799 if ((static_branch_unlikely(&init_on_alloc) ||
1800 static_branch_unlikely(&init_on_free)) &&
1801 (slub_debug & SLAB_POISON))
1802 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1803 return 1;
1804 }
1805
1806 __setup("slab_debug", setup_slub_debug);
1807 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1808
1809 /*
1810 * kmem_cache_flags - apply debugging options to the cache
1811 * @flags: flags to set
1812 * @name: name of the cache
1813 *
1814 * Debug option(s) are applied to @flags. In addition to the debug
1815 * option(s), if a slab name (or multiple) is specified i.e.
1816 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1817 * then only the select slabs will receive the debug option(s).
1818 */
kmem_cache_flags(slab_flags_t flags,const char * name)1819 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1820 {
1821 char *iter;
1822 size_t len;
1823 char *next_block;
1824 slab_flags_t block_flags;
1825 slab_flags_t slub_debug_local = slub_debug;
1826
1827 if (flags & SLAB_NO_USER_FLAGS)
1828 return flags;
1829
1830 /*
1831 * If the slab cache is for debugging (e.g. kmemleak) then
1832 * don't store user (stack trace) information by default,
1833 * but let the user enable it via the command line below.
1834 */
1835 if (flags & SLAB_NOLEAKTRACE)
1836 slub_debug_local &= ~SLAB_STORE_USER;
1837
1838 len = strlen(name);
1839 next_block = slub_debug_string;
1840 /* Go through all blocks of debug options, see if any matches our slab's name */
1841 while (next_block) {
1842 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1843 if (!iter)
1844 continue;
1845 /* Found a block that has a slab list, search it */
1846 while (*iter) {
1847 char *end, *glob;
1848 size_t cmplen;
1849
1850 end = strchrnul(iter, ',');
1851 if (next_block && next_block < end)
1852 end = next_block - 1;
1853
1854 glob = strnchr(iter, end - iter, '*');
1855 if (glob)
1856 cmplen = glob - iter;
1857 else
1858 cmplen = max_t(size_t, len, (end - iter));
1859
1860 if (!strncmp(name, iter, cmplen)) {
1861 flags |= block_flags;
1862 return flags;
1863 }
1864
1865 if (!*end || *end == ';')
1866 break;
1867 iter = end + 1;
1868 }
1869 }
1870
1871 return flags | slub_debug_local;
1872 }
1873 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1874 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1875 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1876 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1877
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1878 static inline bool alloc_debug_processing(struct kmem_cache *s,
1879 struct slab *slab, void *object, int orig_size) { return true; }
1880
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1881 static inline bool free_debug_processing(struct kmem_cache *s,
1882 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1883 unsigned long addr, depot_stack_handle_t handle) { return true; }
1884
slab_pad_check(struct kmem_cache * s,struct slab * slab)1885 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1886 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1887 void *object, u8 val) { return 1; }
set_track_prepare(void)1888 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1889 static inline void set_track(struct kmem_cache *s, void *object,
1890 enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1891 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1892 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1893 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1894 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1895 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1896 {
1897 return flags;
1898 }
1899 #define slub_debug 0
1900
1901 #define disable_higher_order_debug 0
1902
node_nr_slabs(struct kmem_cache_node * n)1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1904 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1905 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1906 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1907 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1908 int objects) {}
1909 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1910 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1911 void **freelist, void *nextfree)
1912 {
1913 return false;
1914 }
1915 #endif
1916 #endif /* CONFIG_SLUB_DEBUG */
1917
1918 #ifdef CONFIG_SLAB_OBJ_EXT
1919
1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1921
mark_objexts_empty(struct slabobj_ext * obj_exts)1922 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1923 {
1924 struct slabobj_ext *slab_exts;
1925 struct slab *obj_exts_slab;
1926
1927 obj_exts_slab = virt_to_slab(obj_exts);
1928 slab_exts = slab_obj_exts(obj_exts_slab);
1929 if (slab_exts) {
1930 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1931 obj_exts_slab, obj_exts);
1932 /* codetag should be NULL */
1933 WARN_ON(slab_exts[offs].ref.ct);
1934 set_codetag_empty(&slab_exts[offs].ref);
1935 }
1936 }
1937
mark_failed_objexts_alloc(struct slab * slab)1938 static inline void mark_failed_objexts_alloc(struct slab *slab)
1939 {
1940 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1941 }
1942
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1944 struct slabobj_ext *vec, unsigned int objects)
1945 {
1946 /*
1947 * If vector previously failed to allocate then we have live
1948 * objects with no tag reference. Mark all references in this
1949 * vector as empty to avoid warnings later on.
1950 */
1951 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1952 unsigned int i;
1953
1954 for (i = 0; i < objects; i++)
1955 set_codetag_empty(&vec[i].ref);
1956 }
1957 }
1958
1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1960
mark_objexts_empty(struct slabobj_ext * obj_exts)1961 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)1962 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1964 struct slabobj_ext *vec, unsigned int objects) {}
1965
1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1967
1968 /*
1969 * The allocated objcg pointers array is not accounted directly.
1970 * Moreover, it should not come from DMA buffer and is not readily
1971 * reclaimable. So those GFP bits should be masked off.
1972 */
1973 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1974 __GFP_ACCOUNT | __GFP_NOFAIL)
1975
init_slab_obj_exts(struct slab * slab)1976 static inline void init_slab_obj_exts(struct slab *slab)
1977 {
1978 slab->obj_exts = 0;
1979 }
1980
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)1981 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1982 gfp_t gfp, bool new_slab)
1983 {
1984 unsigned int objects = objs_per_slab(s, slab);
1985 unsigned long new_exts;
1986 unsigned long old_exts;
1987 struct slabobj_ext *vec;
1988
1989 gfp &= ~OBJCGS_CLEAR_MASK;
1990 /* Prevent recursive extension vector allocation */
1991 gfp |= __GFP_NO_OBJ_EXT;
1992 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1993 slab_nid(slab));
1994 if (!vec) {
1995 /* Mark vectors which failed to allocate */
1996 if (new_slab)
1997 mark_failed_objexts_alloc(slab);
1998
1999 return -ENOMEM;
2000 }
2001
2002 new_exts = (unsigned long)vec;
2003 #ifdef CONFIG_MEMCG
2004 new_exts |= MEMCG_DATA_OBJEXTS;
2005 #endif
2006 old_exts = READ_ONCE(slab->obj_exts);
2007 handle_failed_objexts_alloc(old_exts, vec, objects);
2008 if (new_slab) {
2009 /*
2010 * If the slab is brand new and nobody can yet access its
2011 * obj_exts, no synchronization is required and obj_exts can
2012 * be simply assigned.
2013 */
2014 slab->obj_exts = new_exts;
2015 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2016 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2017 /*
2018 * If the slab is already in use, somebody can allocate and
2019 * assign slabobj_exts in parallel. In this case the existing
2020 * objcg vector should be reused.
2021 */
2022 mark_objexts_empty(vec);
2023 kfree(vec);
2024 return 0;
2025 }
2026
2027 kmemleak_not_leak(vec);
2028 return 0;
2029 }
2030
free_slab_obj_exts(struct slab * slab)2031 static inline void free_slab_obj_exts(struct slab *slab)
2032 {
2033 struct slabobj_ext *obj_exts;
2034
2035 obj_exts = slab_obj_exts(slab);
2036 if (!obj_exts)
2037 return;
2038
2039 /*
2040 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2041 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2042 * warning if slab has extensions but the extension of an object is
2043 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2044 * the extension for obj_exts is expected to be NULL.
2045 */
2046 mark_objexts_empty(obj_exts);
2047 kfree(obj_exts);
2048 slab->obj_exts = 0;
2049 }
2050
2051 #else /* CONFIG_SLAB_OBJ_EXT */
2052
init_slab_obj_exts(struct slab * slab)2053 static inline void init_slab_obj_exts(struct slab *slab)
2054 {
2055 }
2056
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2057 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2058 gfp_t gfp, bool new_slab)
2059 {
2060 return 0;
2061 }
2062
free_slab_obj_exts(struct slab * slab)2063 static inline void free_slab_obj_exts(struct slab *slab)
2064 {
2065 }
2066
2067 #endif /* CONFIG_SLAB_OBJ_EXT */
2068
2069 #ifdef CONFIG_MEM_ALLOC_PROFILING
2070
2071 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2072 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2073 {
2074 struct slab *slab;
2075
2076 if (!p)
2077 return NULL;
2078
2079 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2080 return NULL;
2081
2082 if (flags & __GFP_NO_OBJ_EXT)
2083 return NULL;
2084
2085 slab = virt_to_slab(p);
2086 if (!slab_obj_exts(slab) &&
2087 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2088 "%s, %s: Failed to create slab extension vector!\n",
2089 __func__, s->name))
2090 return NULL;
2091
2092 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2093 }
2094
2095 /* Should be called only if mem_alloc_profiling_enabled() */
2096 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2097 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2098 {
2099 struct slabobj_ext *obj_exts;
2100
2101 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2102 /*
2103 * Currently obj_exts is used only for allocation profiling.
2104 * If other users appear then mem_alloc_profiling_enabled()
2105 * check should be added before alloc_tag_add().
2106 */
2107 if (likely(obj_exts))
2108 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2109 }
2110
2111 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2112 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2113 {
2114 if (mem_alloc_profiling_enabled())
2115 __alloc_tagging_slab_alloc_hook(s, object, flags);
2116 }
2117
2118 /* Should be called only if mem_alloc_profiling_enabled() */
2119 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2120 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2121 int objects)
2122 {
2123 struct slabobj_ext *obj_exts;
2124 int i;
2125
2126 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2127 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2128 return;
2129
2130 obj_exts = slab_obj_exts(slab);
2131 if (!obj_exts)
2132 return;
2133
2134 for (i = 0; i < objects; i++) {
2135 unsigned int off = obj_to_index(s, slab, p[i]);
2136
2137 alloc_tag_sub(&obj_exts[off].ref, s->size);
2138 }
2139 }
2140
2141 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2142 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2143 int objects)
2144 {
2145 if (mem_alloc_profiling_enabled())
2146 __alloc_tagging_slab_free_hook(s, slab, p, objects);
2147 }
2148
2149 #else /* CONFIG_MEM_ALLOC_PROFILING */
2150
2151 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2152 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2153 {
2154 }
2155
2156 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2157 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2158 int objects)
2159 {
2160 }
2161
2162 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2163
2164
2165 #ifdef CONFIG_MEMCG
2166
2167 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2168
2169 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2170 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2171 gfp_t flags, size_t size, void **p)
2172 {
2173 if (likely(!memcg_kmem_online()))
2174 return true;
2175
2176 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2177 return true;
2178
2179 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2180 return true;
2181
2182 if (likely(size == 1)) {
2183 memcg_alloc_abort_single(s, *p);
2184 *p = NULL;
2185 } else {
2186 kmem_cache_free_bulk(s, size, p);
2187 }
2188
2189 return false;
2190 }
2191
2192 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2193 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2194 int objects)
2195 {
2196 struct slabobj_ext *obj_exts;
2197
2198 if (!memcg_kmem_online())
2199 return;
2200
2201 obj_exts = slab_obj_exts(slab);
2202 if (likely(!obj_exts))
2203 return;
2204
2205 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2206 }
2207
2208 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2209 bool memcg_slab_post_charge(void *p, gfp_t flags)
2210 {
2211 struct slabobj_ext *slab_exts;
2212 struct kmem_cache *s;
2213 struct folio *folio;
2214 struct slab *slab;
2215 unsigned long off;
2216
2217 folio = virt_to_folio(p);
2218 if (!folio_test_slab(folio)) {
2219 int size;
2220
2221 if (folio_memcg_kmem(folio))
2222 return true;
2223
2224 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2225 folio_order(folio)))
2226 return false;
2227
2228 /*
2229 * This folio has already been accounted in the global stats but
2230 * not in the memcg stats. So, subtract from the global and use
2231 * the interface which adds to both global and memcg stats.
2232 */
2233 size = folio_size(folio);
2234 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2235 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2236 return true;
2237 }
2238
2239 slab = folio_slab(folio);
2240 s = slab->slab_cache;
2241
2242 /*
2243 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2244 * of slab_obj_exts being allocated from the same slab and thus the slab
2245 * becoming effectively unfreeable.
2246 */
2247 if (is_kmalloc_normal(s))
2248 return true;
2249
2250 /* Ignore already charged objects. */
2251 slab_exts = slab_obj_exts(slab);
2252 if (slab_exts) {
2253 off = obj_to_index(s, slab, p);
2254 if (unlikely(slab_exts[off].objcg))
2255 return true;
2256 }
2257
2258 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2259 }
2260
2261 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2262 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2263 struct list_lru *lru,
2264 gfp_t flags, size_t size,
2265 void **p)
2266 {
2267 return true;
2268 }
2269
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2270 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2271 void **p, int objects)
2272 {
2273 }
2274
memcg_slab_post_charge(void * p,gfp_t flags)2275 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2276 {
2277 return true;
2278 }
2279 #endif /* CONFIG_MEMCG */
2280
2281 #ifdef CONFIG_SLUB_RCU_DEBUG
2282 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2283
2284 struct rcu_delayed_free {
2285 struct rcu_head head;
2286 void *object;
2287 };
2288 #endif
2289
2290 /*
2291 * Hooks for other subsystems that check memory allocations. In a typical
2292 * production configuration these hooks all should produce no code at all.
2293 *
2294 * Returns true if freeing of the object can proceed, false if its reuse
2295 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2296 * to KFENCE.
2297 */
2298 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2299 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2300 bool after_rcu_delay)
2301 {
2302 /* Are the object contents still accessible? */
2303 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2304
2305 kmemleak_free_recursive(x, s->flags);
2306 kmsan_slab_free(s, x);
2307
2308 debug_check_no_locks_freed(x, s->object_size);
2309
2310 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2311 debug_check_no_obj_freed(x, s->object_size);
2312
2313 /* Use KCSAN to help debug racy use-after-free. */
2314 if (!still_accessible)
2315 __kcsan_check_access(x, s->object_size,
2316 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2317
2318 if (kfence_free(x))
2319 return false;
2320
2321 /*
2322 * Give KASAN a chance to notice an invalid free operation before we
2323 * modify the object.
2324 */
2325 if (kasan_slab_pre_free(s, x))
2326 return false;
2327
2328 #ifdef CONFIG_SLUB_RCU_DEBUG
2329 if (still_accessible) {
2330 struct rcu_delayed_free *delayed_free;
2331
2332 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2333 if (delayed_free) {
2334 /*
2335 * Let KASAN track our call stack as a "related work
2336 * creation", just like if the object had been freed
2337 * normally via kfree_rcu().
2338 * We have to do this manually because the rcu_head is
2339 * not located inside the object.
2340 */
2341 kasan_record_aux_stack(x);
2342
2343 delayed_free->object = x;
2344 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2345 return false;
2346 }
2347 }
2348 #endif /* CONFIG_SLUB_RCU_DEBUG */
2349
2350 /*
2351 * As memory initialization might be integrated into KASAN,
2352 * kasan_slab_free and initialization memset's must be
2353 * kept together to avoid discrepancies in behavior.
2354 *
2355 * The initialization memset's clear the object and the metadata,
2356 * but don't touch the SLAB redzone.
2357 *
2358 * The object's freepointer is also avoided if stored outside the
2359 * object.
2360 */
2361 if (unlikely(init)) {
2362 int rsize;
2363 unsigned int inuse, orig_size;
2364
2365 inuse = get_info_end(s);
2366 orig_size = get_orig_size(s, x);
2367 if (!kasan_has_integrated_init())
2368 memset(kasan_reset_tag(x), 0, orig_size);
2369 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2370 memset((char *)kasan_reset_tag(x) + inuse, 0,
2371 s->size - inuse - rsize);
2372 /*
2373 * Restore orig_size, otherwize kmalloc redzone overwritten
2374 * would be reported
2375 */
2376 set_orig_size(s, x, orig_size);
2377
2378 }
2379 /* KASAN might put x into memory quarantine, delaying its reuse. */
2380 return !kasan_slab_free(s, x, init, still_accessible);
2381 }
2382
2383 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2384 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2385 int *cnt)
2386 {
2387
2388 void *object;
2389 void *next = *head;
2390 void *old_tail = *tail;
2391 bool init;
2392
2393 if (is_kfence_address(next)) {
2394 slab_free_hook(s, next, false, false);
2395 return false;
2396 }
2397
2398 /* Head and tail of the reconstructed freelist */
2399 *head = NULL;
2400 *tail = NULL;
2401
2402 init = slab_want_init_on_free(s);
2403
2404 do {
2405 object = next;
2406 next = get_freepointer(s, object);
2407
2408 /* If object's reuse doesn't have to be delayed */
2409 if (likely(slab_free_hook(s, object, init, false))) {
2410 /* Move object to the new freelist */
2411 set_freepointer(s, object, *head);
2412 *head = object;
2413 if (!*tail)
2414 *tail = object;
2415 } else {
2416 /*
2417 * Adjust the reconstructed freelist depth
2418 * accordingly if object's reuse is delayed.
2419 */
2420 --(*cnt);
2421 }
2422 } while (object != old_tail);
2423
2424 return *head != NULL;
2425 }
2426
setup_object(struct kmem_cache * s,void * object)2427 static void *setup_object(struct kmem_cache *s, void *object)
2428 {
2429 setup_object_debug(s, object);
2430 object = kasan_init_slab_obj(s, object);
2431 if (unlikely(s->ctor)) {
2432 kasan_unpoison_new_object(s, object);
2433 s->ctor(object);
2434 kasan_poison_new_object(s, object);
2435 }
2436 return object;
2437 }
2438
2439 /*
2440 * Slab allocation and freeing
2441 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2442 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2443 struct kmem_cache_order_objects oo)
2444 {
2445 struct folio *folio;
2446 struct slab *slab;
2447 unsigned int order = oo_order(oo);
2448
2449 if (node == NUMA_NO_NODE)
2450 folio = (struct folio *)alloc_frozen_pages(flags, order);
2451 else
2452 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2453
2454 if (!folio)
2455 return NULL;
2456
2457 slab = folio_slab(folio);
2458 __folio_set_slab(folio);
2459 if (folio_is_pfmemalloc(folio))
2460 slab_set_pfmemalloc(slab);
2461
2462 return slab;
2463 }
2464
2465 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2466 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2467 static int init_cache_random_seq(struct kmem_cache *s)
2468 {
2469 unsigned int count = oo_objects(s->oo);
2470 int err;
2471
2472 /* Bailout if already initialised */
2473 if (s->random_seq)
2474 return 0;
2475
2476 err = cache_random_seq_create(s, count, GFP_KERNEL);
2477 if (err) {
2478 pr_err("SLUB: Unable to initialize free list for %s\n",
2479 s->name);
2480 return err;
2481 }
2482
2483 /* Transform to an offset on the set of pages */
2484 if (s->random_seq) {
2485 unsigned int i;
2486
2487 for (i = 0; i < count; i++)
2488 s->random_seq[i] *= s->size;
2489 }
2490 return 0;
2491 }
2492
2493 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2494 static void __init init_freelist_randomization(void)
2495 {
2496 struct kmem_cache *s;
2497
2498 mutex_lock(&slab_mutex);
2499
2500 list_for_each_entry(s, &slab_caches, list)
2501 init_cache_random_seq(s);
2502
2503 mutex_unlock(&slab_mutex);
2504 }
2505
2506 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2507 static void *next_freelist_entry(struct kmem_cache *s,
2508 unsigned long *pos, void *start,
2509 unsigned long page_limit,
2510 unsigned long freelist_count)
2511 {
2512 unsigned int idx;
2513
2514 /*
2515 * If the target page allocation failed, the number of objects on the
2516 * page might be smaller than the usual size defined by the cache.
2517 */
2518 do {
2519 idx = s->random_seq[*pos];
2520 *pos += 1;
2521 if (*pos >= freelist_count)
2522 *pos = 0;
2523 } while (unlikely(idx >= page_limit));
2524
2525 return (char *)start + idx;
2526 }
2527
2528 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2529 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2530 {
2531 void *start;
2532 void *cur;
2533 void *next;
2534 unsigned long idx, pos, page_limit, freelist_count;
2535
2536 if (slab->objects < 2 || !s->random_seq)
2537 return false;
2538
2539 freelist_count = oo_objects(s->oo);
2540 pos = get_random_u32_below(freelist_count);
2541
2542 page_limit = slab->objects * s->size;
2543 start = fixup_red_left(s, slab_address(slab));
2544
2545 /* First entry is used as the base of the freelist */
2546 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2547 cur = setup_object(s, cur);
2548 slab->freelist = cur;
2549
2550 for (idx = 1; idx < slab->objects; idx++) {
2551 next = next_freelist_entry(s, &pos, start, page_limit,
2552 freelist_count);
2553 next = setup_object(s, next);
2554 set_freepointer(s, cur, next);
2555 cur = next;
2556 }
2557 set_freepointer(s, cur, NULL);
2558
2559 return true;
2560 }
2561 #else
init_cache_random_seq(struct kmem_cache * s)2562 static inline int init_cache_random_seq(struct kmem_cache *s)
2563 {
2564 return 0;
2565 }
init_freelist_randomization(void)2566 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2567 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2568 {
2569 return false;
2570 }
2571 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2572
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2573 static __always_inline void account_slab(struct slab *slab, int order,
2574 struct kmem_cache *s, gfp_t gfp)
2575 {
2576 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2577 alloc_slab_obj_exts(slab, s, gfp, true);
2578
2579 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2580 PAGE_SIZE << order);
2581 }
2582
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2583 static __always_inline void unaccount_slab(struct slab *slab, int order,
2584 struct kmem_cache *s)
2585 {
2586 /*
2587 * The slab object extensions should now be freed regardless of
2588 * whether mem_alloc_profiling_enabled() or not because profiling
2589 * might have been disabled after slab->obj_exts got allocated.
2590 */
2591 free_slab_obj_exts(slab);
2592
2593 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2594 -(PAGE_SIZE << order));
2595 }
2596
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2597 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2598 {
2599 struct slab *slab;
2600 struct kmem_cache_order_objects oo = s->oo;
2601 gfp_t alloc_gfp;
2602 void *start, *p, *next;
2603 int idx;
2604 bool shuffle;
2605
2606 flags &= gfp_allowed_mask;
2607
2608 flags |= s->allocflags;
2609
2610 /*
2611 * Let the initial higher-order allocation fail under memory pressure
2612 * so we fall-back to the minimum order allocation.
2613 */
2614 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2615 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2616 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2617
2618 slab = alloc_slab_page(alloc_gfp, node, oo);
2619 if (unlikely(!slab)) {
2620 oo = s->min;
2621 alloc_gfp = flags;
2622 /*
2623 * Allocation may have failed due to fragmentation.
2624 * Try a lower order alloc if possible
2625 */
2626 slab = alloc_slab_page(alloc_gfp, node, oo);
2627 if (unlikely(!slab))
2628 return NULL;
2629 stat(s, ORDER_FALLBACK);
2630 }
2631
2632 slab->objects = oo_objects(oo);
2633 slab->inuse = 0;
2634 slab->frozen = 0;
2635 init_slab_obj_exts(slab);
2636
2637 account_slab(slab, oo_order(oo), s, flags);
2638
2639 slab->slab_cache = s;
2640
2641 kasan_poison_slab(slab);
2642
2643 start = slab_address(slab);
2644
2645 setup_slab_debug(s, slab, start);
2646
2647 shuffle = shuffle_freelist(s, slab);
2648
2649 if (!shuffle) {
2650 start = fixup_red_left(s, start);
2651 start = setup_object(s, start);
2652 slab->freelist = start;
2653 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2654 next = p + s->size;
2655 next = setup_object(s, next);
2656 set_freepointer(s, p, next);
2657 p = next;
2658 }
2659 set_freepointer(s, p, NULL);
2660 }
2661
2662 return slab;
2663 }
2664
new_slab(struct kmem_cache * s,gfp_t flags,int node)2665 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2666 {
2667 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2668 flags = kmalloc_fix_flags(flags);
2669
2670 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2671
2672 return allocate_slab(s,
2673 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2674 }
2675
__free_slab(struct kmem_cache * s,struct slab * slab)2676 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2677 {
2678 struct folio *folio = slab_folio(slab);
2679 int order = folio_order(folio);
2680 int pages = 1 << order;
2681
2682 __slab_clear_pfmemalloc(slab);
2683 folio->mapping = NULL;
2684 __folio_clear_slab(folio);
2685 mm_account_reclaimed_pages(pages);
2686 unaccount_slab(slab, order, s);
2687 free_frozen_pages(&folio->page, order);
2688 }
2689
rcu_free_slab(struct rcu_head * h)2690 static void rcu_free_slab(struct rcu_head *h)
2691 {
2692 struct slab *slab = container_of(h, struct slab, rcu_head);
2693
2694 __free_slab(slab->slab_cache, slab);
2695 }
2696
free_slab(struct kmem_cache * s,struct slab * slab)2697 static void free_slab(struct kmem_cache *s, struct slab *slab)
2698 {
2699 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2700 void *p;
2701
2702 slab_pad_check(s, slab);
2703 for_each_object(p, s, slab_address(slab), slab->objects)
2704 check_object(s, slab, p, SLUB_RED_INACTIVE);
2705 }
2706
2707 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2708 call_rcu(&slab->rcu_head, rcu_free_slab);
2709 else
2710 __free_slab(s, slab);
2711 }
2712
discard_slab(struct kmem_cache * s,struct slab * slab)2713 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2714 {
2715 dec_slabs_node(s, slab_nid(slab), slab->objects);
2716 free_slab(s, slab);
2717 }
2718
2719 /*
2720 * SLUB reuses PG_workingset bit to keep track of whether it's on
2721 * the per-node partial list.
2722 */
slab_test_node_partial(const struct slab * slab)2723 static inline bool slab_test_node_partial(const struct slab *slab)
2724 {
2725 return folio_test_workingset(slab_folio(slab));
2726 }
2727
slab_set_node_partial(struct slab * slab)2728 static inline void slab_set_node_partial(struct slab *slab)
2729 {
2730 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2731 }
2732
slab_clear_node_partial(struct slab * slab)2733 static inline void slab_clear_node_partial(struct slab *slab)
2734 {
2735 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2736 }
2737
2738 /*
2739 * Management of partially allocated slabs.
2740 */
2741 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2742 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2743 {
2744 n->nr_partial++;
2745 if (tail == DEACTIVATE_TO_TAIL)
2746 list_add_tail(&slab->slab_list, &n->partial);
2747 else
2748 list_add(&slab->slab_list, &n->partial);
2749 slab_set_node_partial(slab);
2750 }
2751
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2752 static inline void add_partial(struct kmem_cache_node *n,
2753 struct slab *slab, int tail)
2754 {
2755 lockdep_assert_held(&n->list_lock);
2756 __add_partial(n, slab, tail);
2757 }
2758
remove_partial(struct kmem_cache_node * n,struct slab * slab)2759 static inline void remove_partial(struct kmem_cache_node *n,
2760 struct slab *slab)
2761 {
2762 lockdep_assert_held(&n->list_lock);
2763 list_del(&slab->slab_list);
2764 slab_clear_node_partial(slab);
2765 n->nr_partial--;
2766 }
2767
2768 /*
2769 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2770 * slab from the n->partial list. Remove only a single object from the slab, do
2771 * the alloc_debug_processing() checks and leave the slab on the list, or move
2772 * it to full list if it was the last free object.
2773 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2774 static void *alloc_single_from_partial(struct kmem_cache *s,
2775 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2776 {
2777 void *object;
2778
2779 lockdep_assert_held(&n->list_lock);
2780
2781 object = slab->freelist;
2782 slab->freelist = get_freepointer(s, object);
2783 slab->inuse++;
2784
2785 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2786 if (folio_test_slab(slab_folio(slab)))
2787 remove_partial(n, slab);
2788 return NULL;
2789 }
2790
2791 if (slab->inuse == slab->objects) {
2792 remove_partial(n, slab);
2793 add_full(s, n, slab);
2794 }
2795
2796 return object;
2797 }
2798
2799 /*
2800 * Called only for kmem_cache_debug() caches to allocate from a freshly
2801 * allocated slab. Allocate a single object instead of whole freelist
2802 * and put the slab to the partial (or full) list.
2803 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2804 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2805 struct slab *slab, int orig_size)
2806 {
2807 int nid = slab_nid(slab);
2808 struct kmem_cache_node *n = get_node(s, nid);
2809 unsigned long flags;
2810 void *object;
2811
2812
2813 object = slab->freelist;
2814 slab->freelist = get_freepointer(s, object);
2815 slab->inuse = 1;
2816
2817 if (!alloc_debug_processing(s, slab, object, orig_size))
2818 /*
2819 * It's not really expected that this would fail on a
2820 * freshly allocated slab, but a concurrent memory
2821 * corruption in theory could cause that.
2822 */
2823 return NULL;
2824
2825 spin_lock_irqsave(&n->list_lock, flags);
2826
2827 if (slab->inuse == slab->objects)
2828 add_full(s, n, slab);
2829 else
2830 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2831
2832 inc_slabs_node(s, nid, slab->objects);
2833 spin_unlock_irqrestore(&n->list_lock, flags);
2834
2835 return object;
2836 }
2837
2838 #ifdef CONFIG_SLUB_CPU_PARTIAL
2839 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2840 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2841 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2842 int drain) { }
2843 #endif
2844 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2845
2846 /*
2847 * Try to allocate a partial slab from a specific node.
2848 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2849 static struct slab *get_partial_node(struct kmem_cache *s,
2850 struct kmem_cache_node *n,
2851 struct partial_context *pc)
2852 {
2853 struct slab *slab, *slab2, *partial = NULL;
2854 unsigned long flags;
2855 unsigned int partial_slabs = 0;
2856
2857 /*
2858 * Racy check. If we mistakenly see no partial slabs then we
2859 * just allocate an empty slab. If we mistakenly try to get a
2860 * partial slab and there is none available then get_partial()
2861 * will return NULL.
2862 */
2863 if (!n || !n->nr_partial)
2864 return NULL;
2865
2866 spin_lock_irqsave(&n->list_lock, flags);
2867 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2868 if (!pfmemalloc_match(slab, pc->flags))
2869 continue;
2870
2871 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2872 void *object = alloc_single_from_partial(s, n, slab,
2873 pc->orig_size);
2874 if (object) {
2875 partial = slab;
2876 pc->object = object;
2877 break;
2878 }
2879 continue;
2880 }
2881
2882 remove_partial(n, slab);
2883
2884 if (!partial) {
2885 partial = slab;
2886 stat(s, ALLOC_FROM_PARTIAL);
2887
2888 if ((slub_get_cpu_partial(s) == 0)) {
2889 break;
2890 }
2891 } else {
2892 put_cpu_partial(s, slab, 0);
2893 stat(s, CPU_PARTIAL_NODE);
2894
2895 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2896 break;
2897 }
2898 }
2899 }
2900 spin_unlock_irqrestore(&n->list_lock, flags);
2901 return partial;
2902 }
2903
2904 /*
2905 * Get a slab from somewhere. Search in increasing NUMA distances.
2906 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2907 static struct slab *get_any_partial(struct kmem_cache *s,
2908 struct partial_context *pc)
2909 {
2910 #ifdef CONFIG_NUMA
2911 struct zonelist *zonelist;
2912 struct zoneref *z;
2913 struct zone *zone;
2914 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2915 struct slab *slab;
2916 unsigned int cpuset_mems_cookie;
2917
2918 /*
2919 * The defrag ratio allows a configuration of the tradeoffs between
2920 * inter node defragmentation and node local allocations. A lower
2921 * defrag_ratio increases the tendency to do local allocations
2922 * instead of attempting to obtain partial slabs from other nodes.
2923 *
2924 * If the defrag_ratio is set to 0 then kmalloc() always
2925 * returns node local objects. If the ratio is higher then kmalloc()
2926 * may return off node objects because partial slabs are obtained
2927 * from other nodes and filled up.
2928 *
2929 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2930 * (which makes defrag_ratio = 1000) then every (well almost)
2931 * allocation will first attempt to defrag slab caches on other nodes.
2932 * This means scanning over all nodes to look for partial slabs which
2933 * may be expensive if we do it every time we are trying to find a slab
2934 * with available objects.
2935 */
2936 if (!s->remote_node_defrag_ratio ||
2937 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2938 return NULL;
2939
2940 do {
2941 cpuset_mems_cookie = read_mems_allowed_begin();
2942 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2943 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2944 struct kmem_cache_node *n;
2945
2946 n = get_node(s, zone_to_nid(zone));
2947
2948 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2949 n->nr_partial > s->min_partial) {
2950 slab = get_partial_node(s, n, pc);
2951 if (slab) {
2952 /*
2953 * Don't check read_mems_allowed_retry()
2954 * here - if mems_allowed was updated in
2955 * parallel, that was a harmless race
2956 * between allocation and the cpuset
2957 * update
2958 */
2959 return slab;
2960 }
2961 }
2962 }
2963 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2964 #endif /* CONFIG_NUMA */
2965 return NULL;
2966 }
2967
2968 /*
2969 * Get a partial slab, lock it and return it.
2970 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2971 static struct slab *get_partial(struct kmem_cache *s, int node,
2972 struct partial_context *pc)
2973 {
2974 struct slab *slab;
2975 int searchnode = node;
2976
2977 if (node == NUMA_NO_NODE)
2978 searchnode = numa_mem_id();
2979
2980 slab = get_partial_node(s, get_node(s, searchnode), pc);
2981 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2982 return slab;
2983
2984 return get_any_partial(s, pc);
2985 }
2986
2987 #ifndef CONFIG_SLUB_TINY
2988
2989 #ifdef CONFIG_PREEMPTION
2990 /*
2991 * Calculate the next globally unique transaction for disambiguation
2992 * during cmpxchg. The transactions start with the cpu number and are then
2993 * incremented by CONFIG_NR_CPUS.
2994 */
2995 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2996 #else
2997 /*
2998 * No preemption supported therefore also no need to check for
2999 * different cpus.
3000 */
3001 #define TID_STEP 1
3002 #endif /* CONFIG_PREEMPTION */
3003
next_tid(unsigned long tid)3004 static inline unsigned long next_tid(unsigned long tid)
3005 {
3006 return tid + TID_STEP;
3007 }
3008
3009 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3010 static inline unsigned int tid_to_cpu(unsigned long tid)
3011 {
3012 return tid % TID_STEP;
3013 }
3014
tid_to_event(unsigned long tid)3015 static inline unsigned long tid_to_event(unsigned long tid)
3016 {
3017 return tid / TID_STEP;
3018 }
3019 #endif
3020
init_tid(int cpu)3021 static inline unsigned int init_tid(int cpu)
3022 {
3023 return cpu;
3024 }
3025
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3026 static inline void note_cmpxchg_failure(const char *n,
3027 const struct kmem_cache *s, unsigned long tid)
3028 {
3029 #ifdef SLUB_DEBUG_CMPXCHG
3030 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3031
3032 pr_info("%s %s: cmpxchg redo ", n, s->name);
3033
3034 #ifdef CONFIG_PREEMPTION
3035 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3036 pr_warn("due to cpu change %d -> %d\n",
3037 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3038 else
3039 #endif
3040 if (tid_to_event(tid) != tid_to_event(actual_tid))
3041 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3042 tid_to_event(tid), tid_to_event(actual_tid));
3043 else
3044 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3045 actual_tid, tid, next_tid(tid));
3046 #endif
3047 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3048 }
3049
init_kmem_cache_cpus(struct kmem_cache * s)3050 static void init_kmem_cache_cpus(struct kmem_cache *s)
3051 {
3052 int cpu;
3053 struct kmem_cache_cpu *c;
3054
3055 for_each_possible_cpu(cpu) {
3056 c = per_cpu_ptr(s->cpu_slab, cpu);
3057 local_lock_init(&c->lock);
3058 c->tid = init_tid(cpu);
3059 }
3060 }
3061
3062 /*
3063 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3064 * unfreezes the slabs and puts it on the proper list.
3065 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3066 * by the caller.
3067 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3068 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3069 void *freelist)
3070 {
3071 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3072 int free_delta = 0;
3073 void *nextfree, *freelist_iter, *freelist_tail;
3074 int tail = DEACTIVATE_TO_HEAD;
3075 unsigned long flags = 0;
3076 struct slab new;
3077 struct slab old;
3078
3079 if (READ_ONCE(slab->freelist)) {
3080 stat(s, DEACTIVATE_REMOTE_FREES);
3081 tail = DEACTIVATE_TO_TAIL;
3082 }
3083
3084 /*
3085 * Stage one: Count the objects on cpu's freelist as free_delta and
3086 * remember the last object in freelist_tail for later splicing.
3087 */
3088 freelist_tail = NULL;
3089 freelist_iter = freelist;
3090 while (freelist_iter) {
3091 nextfree = get_freepointer(s, freelist_iter);
3092
3093 /*
3094 * If 'nextfree' is invalid, it is possible that the object at
3095 * 'freelist_iter' is already corrupted. So isolate all objects
3096 * starting at 'freelist_iter' by skipping them.
3097 */
3098 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3099 break;
3100
3101 freelist_tail = freelist_iter;
3102 free_delta++;
3103
3104 freelist_iter = nextfree;
3105 }
3106
3107 /*
3108 * Stage two: Unfreeze the slab while splicing the per-cpu
3109 * freelist to the head of slab's freelist.
3110 */
3111 do {
3112 old.freelist = READ_ONCE(slab->freelist);
3113 old.counters = READ_ONCE(slab->counters);
3114 VM_BUG_ON(!old.frozen);
3115
3116 /* Determine target state of the slab */
3117 new.counters = old.counters;
3118 new.frozen = 0;
3119 if (freelist_tail) {
3120 new.inuse -= free_delta;
3121 set_freepointer(s, freelist_tail, old.freelist);
3122 new.freelist = freelist;
3123 } else {
3124 new.freelist = old.freelist;
3125 }
3126 } while (!slab_update_freelist(s, slab,
3127 old.freelist, old.counters,
3128 new.freelist, new.counters,
3129 "unfreezing slab"));
3130
3131 /*
3132 * Stage three: Manipulate the slab list based on the updated state.
3133 */
3134 if (!new.inuse && n->nr_partial >= s->min_partial) {
3135 stat(s, DEACTIVATE_EMPTY);
3136 discard_slab(s, slab);
3137 stat(s, FREE_SLAB);
3138 } else if (new.freelist) {
3139 spin_lock_irqsave(&n->list_lock, flags);
3140 add_partial(n, slab, tail);
3141 spin_unlock_irqrestore(&n->list_lock, flags);
3142 stat(s, tail);
3143 } else {
3144 stat(s, DEACTIVATE_FULL);
3145 }
3146 }
3147
3148 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3149 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3150 {
3151 struct kmem_cache_node *n = NULL, *n2 = NULL;
3152 struct slab *slab, *slab_to_discard = NULL;
3153 unsigned long flags = 0;
3154
3155 while (partial_slab) {
3156 slab = partial_slab;
3157 partial_slab = slab->next;
3158
3159 n2 = get_node(s, slab_nid(slab));
3160 if (n != n2) {
3161 if (n)
3162 spin_unlock_irqrestore(&n->list_lock, flags);
3163
3164 n = n2;
3165 spin_lock_irqsave(&n->list_lock, flags);
3166 }
3167
3168 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3169 slab->next = slab_to_discard;
3170 slab_to_discard = slab;
3171 } else {
3172 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3173 stat(s, FREE_ADD_PARTIAL);
3174 }
3175 }
3176
3177 if (n)
3178 spin_unlock_irqrestore(&n->list_lock, flags);
3179
3180 while (slab_to_discard) {
3181 slab = slab_to_discard;
3182 slab_to_discard = slab_to_discard->next;
3183
3184 stat(s, DEACTIVATE_EMPTY);
3185 discard_slab(s, slab);
3186 stat(s, FREE_SLAB);
3187 }
3188 }
3189
3190 /*
3191 * Put all the cpu partial slabs to the node partial list.
3192 */
put_partials(struct kmem_cache * s)3193 static void put_partials(struct kmem_cache *s)
3194 {
3195 struct slab *partial_slab;
3196 unsigned long flags;
3197
3198 local_lock_irqsave(&s->cpu_slab->lock, flags);
3199 partial_slab = this_cpu_read(s->cpu_slab->partial);
3200 this_cpu_write(s->cpu_slab->partial, NULL);
3201 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3202
3203 if (partial_slab)
3204 __put_partials(s, partial_slab);
3205 }
3206
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3207 static void put_partials_cpu(struct kmem_cache *s,
3208 struct kmem_cache_cpu *c)
3209 {
3210 struct slab *partial_slab;
3211
3212 partial_slab = slub_percpu_partial(c);
3213 c->partial = NULL;
3214
3215 if (partial_slab)
3216 __put_partials(s, partial_slab);
3217 }
3218
3219 /*
3220 * Put a slab into a partial slab slot if available.
3221 *
3222 * If we did not find a slot then simply move all the partials to the
3223 * per node partial list.
3224 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3225 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3226 {
3227 struct slab *oldslab;
3228 struct slab *slab_to_put = NULL;
3229 unsigned long flags;
3230 int slabs = 0;
3231
3232 local_lock_irqsave(&s->cpu_slab->lock, flags);
3233
3234 oldslab = this_cpu_read(s->cpu_slab->partial);
3235
3236 if (oldslab) {
3237 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3238 /*
3239 * Partial array is full. Move the existing set to the
3240 * per node partial list. Postpone the actual unfreezing
3241 * outside of the critical section.
3242 */
3243 slab_to_put = oldslab;
3244 oldslab = NULL;
3245 } else {
3246 slabs = oldslab->slabs;
3247 }
3248 }
3249
3250 slabs++;
3251
3252 slab->slabs = slabs;
3253 slab->next = oldslab;
3254
3255 this_cpu_write(s->cpu_slab->partial, slab);
3256
3257 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3258
3259 if (slab_to_put) {
3260 __put_partials(s, slab_to_put);
3261 stat(s, CPU_PARTIAL_DRAIN);
3262 }
3263 }
3264
3265 #else /* CONFIG_SLUB_CPU_PARTIAL */
3266
put_partials(struct kmem_cache * s)3267 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3268 static inline void put_partials_cpu(struct kmem_cache *s,
3269 struct kmem_cache_cpu *c) { }
3270
3271 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3272
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3273 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3274 {
3275 unsigned long flags;
3276 struct slab *slab;
3277 void *freelist;
3278
3279 local_lock_irqsave(&s->cpu_slab->lock, flags);
3280
3281 slab = c->slab;
3282 freelist = c->freelist;
3283
3284 c->slab = NULL;
3285 c->freelist = NULL;
3286 c->tid = next_tid(c->tid);
3287
3288 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3289
3290 if (slab) {
3291 deactivate_slab(s, slab, freelist);
3292 stat(s, CPUSLAB_FLUSH);
3293 }
3294 }
3295
__flush_cpu_slab(struct kmem_cache * s,int cpu)3296 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3297 {
3298 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3299 void *freelist = c->freelist;
3300 struct slab *slab = c->slab;
3301
3302 c->slab = NULL;
3303 c->freelist = NULL;
3304 c->tid = next_tid(c->tid);
3305
3306 if (slab) {
3307 deactivate_slab(s, slab, freelist);
3308 stat(s, CPUSLAB_FLUSH);
3309 }
3310
3311 put_partials_cpu(s, c);
3312 }
3313
3314 struct slub_flush_work {
3315 struct work_struct work;
3316 struct kmem_cache *s;
3317 bool skip;
3318 };
3319
3320 /*
3321 * Flush cpu slab.
3322 *
3323 * Called from CPU work handler with migration disabled.
3324 */
flush_cpu_slab(struct work_struct * w)3325 static void flush_cpu_slab(struct work_struct *w)
3326 {
3327 struct kmem_cache *s;
3328 struct kmem_cache_cpu *c;
3329 struct slub_flush_work *sfw;
3330
3331 sfw = container_of(w, struct slub_flush_work, work);
3332
3333 s = sfw->s;
3334 c = this_cpu_ptr(s->cpu_slab);
3335
3336 if (c->slab)
3337 flush_slab(s, c);
3338
3339 put_partials(s);
3340 }
3341
has_cpu_slab(int cpu,struct kmem_cache * s)3342 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3343 {
3344 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3345
3346 return c->slab || slub_percpu_partial(c);
3347 }
3348
3349 static DEFINE_MUTEX(flush_lock);
3350 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3351
flush_all_cpus_locked(struct kmem_cache * s)3352 static void flush_all_cpus_locked(struct kmem_cache *s)
3353 {
3354 struct slub_flush_work *sfw;
3355 unsigned int cpu;
3356
3357 lockdep_assert_cpus_held();
3358 mutex_lock(&flush_lock);
3359
3360 for_each_online_cpu(cpu) {
3361 sfw = &per_cpu(slub_flush, cpu);
3362 if (!has_cpu_slab(cpu, s)) {
3363 sfw->skip = true;
3364 continue;
3365 }
3366 INIT_WORK(&sfw->work, flush_cpu_slab);
3367 sfw->skip = false;
3368 sfw->s = s;
3369 queue_work_on(cpu, flushwq, &sfw->work);
3370 }
3371
3372 for_each_online_cpu(cpu) {
3373 sfw = &per_cpu(slub_flush, cpu);
3374 if (sfw->skip)
3375 continue;
3376 flush_work(&sfw->work);
3377 }
3378
3379 mutex_unlock(&flush_lock);
3380 }
3381
flush_all(struct kmem_cache * s)3382 static void flush_all(struct kmem_cache *s)
3383 {
3384 cpus_read_lock();
3385 flush_all_cpus_locked(s);
3386 cpus_read_unlock();
3387 }
3388
3389 /*
3390 * Use the cpu notifier to insure that the cpu slabs are flushed when
3391 * necessary.
3392 */
slub_cpu_dead(unsigned int cpu)3393 static int slub_cpu_dead(unsigned int cpu)
3394 {
3395 struct kmem_cache *s;
3396
3397 mutex_lock(&slab_mutex);
3398 list_for_each_entry(s, &slab_caches, list)
3399 __flush_cpu_slab(s, cpu);
3400 mutex_unlock(&slab_mutex);
3401 return 0;
3402 }
3403
3404 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3405 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3406 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3407 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3408 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3409 #endif /* CONFIG_SLUB_TINY */
3410
3411 /*
3412 * Check if the objects in a per cpu structure fit numa
3413 * locality expectations.
3414 */
node_match(struct slab * slab,int node)3415 static inline int node_match(struct slab *slab, int node)
3416 {
3417 #ifdef CONFIG_NUMA
3418 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3419 return 0;
3420 #endif
3421 return 1;
3422 }
3423
3424 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3425 static int count_free(struct slab *slab)
3426 {
3427 return slab->objects - slab->inuse;
3428 }
3429
node_nr_objs(struct kmem_cache_node * n)3430 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3431 {
3432 return atomic_long_read(&n->total_objects);
3433 }
3434
3435 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3436 static inline bool free_debug_processing(struct kmem_cache *s,
3437 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3438 unsigned long addr, depot_stack_handle_t handle)
3439 {
3440 bool checks_ok = false;
3441 void *object = head;
3442 int cnt = 0;
3443
3444 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3445 if (!check_slab(s, slab))
3446 goto out;
3447 }
3448
3449 if (slab->inuse < *bulk_cnt) {
3450 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3451 slab->inuse, *bulk_cnt);
3452 goto out;
3453 }
3454
3455 next_object:
3456
3457 if (++cnt > *bulk_cnt)
3458 goto out_cnt;
3459
3460 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3461 if (!free_consistency_checks(s, slab, object, addr))
3462 goto out;
3463 }
3464
3465 if (s->flags & SLAB_STORE_USER)
3466 set_track_update(s, object, TRACK_FREE, addr, handle);
3467 trace(s, slab, object, 0);
3468 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3469 init_object(s, object, SLUB_RED_INACTIVE);
3470
3471 /* Reached end of constructed freelist yet? */
3472 if (object != tail) {
3473 object = get_freepointer(s, object);
3474 goto next_object;
3475 }
3476 checks_ok = true;
3477
3478 out_cnt:
3479 if (cnt != *bulk_cnt) {
3480 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3481 *bulk_cnt, cnt);
3482 *bulk_cnt = cnt;
3483 }
3484
3485 out:
3486
3487 if (!checks_ok)
3488 slab_fix(s, "Object at 0x%p not freed", object);
3489
3490 return checks_ok;
3491 }
3492 #endif /* CONFIG_SLUB_DEBUG */
3493
3494 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3495 static unsigned long count_partial(struct kmem_cache_node *n,
3496 int (*get_count)(struct slab *))
3497 {
3498 unsigned long flags;
3499 unsigned long x = 0;
3500 struct slab *slab;
3501
3502 spin_lock_irqsave(&n->list_lock, flags);
3503 list_for_each_entry(slab, &n->partial, slab_list)
3504 x += get_count(slab);
3505 spin_unlock_irqrestore(&n->list_lock, flags);
3506 return x;
3507 }
3508 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3509
3510 #ifdef CONFIG_SLUB_DEBUG
3511 #define MAX_PARTIAL_TO_SCAN 10000
3512
count_partial_free_approx(struct kmem_cache_node * n)3513 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3514 {
3515 unsigned long flags;
3516 unsigned long x = 0;
3517 struct slab *slab;
3518
3519 spin_lock_irqsave(&n->list_lock, flags);
3520 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3521 list_for_each_entry(slab, &n->partial, slab_list)
3522 x += slab->objects - slab->inuse;
3523 } else {
3524 /*
3525 * For a long list, approximate the total count of objects in
3526 * it to meet the limit on the number of slabs to scan.
3527 * Scan from both the list's head and tail for better accuracy.
3528 */
3529 unsigned long scanned = 0;
3530
3531 list_for_each_entry(slab, &n->partial, slab_list) {
3532 x += slab->objects - slab->inuse;
3533 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3534 break;
3535 }
3536 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3537 x += slab->objects - slab->inuse;
3538 if (++scanned == MAX_PARTIAL_TO_SCAN)
3539 break;
3540 }
3541 x = mult_frac(x, n->nr_partial, scanned);
3542 x = min(x, node_nr_objs(n));
3543 }
3544 spin_unlock_irqrestore(&n->list_lock, flags);
3545 return x;
3546 }
3547
3548 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3549 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3550 {
3551 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3552 DEFAULT_RATELIMIT_BURST);
3553 int cpu = raw_smp_processor_id();
3554 int node;
3555 struct kmem_cache_node *n;
3556
3557 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3558 return;
3559
3560 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3561 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3562 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3563 s->name, s->object_size, s->size, oo_order(s->oo),
3564 oo_order(s->min));
3565
3566 if (oo_order(s->min) > get_order(s->object_size))
3567 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3568 s->name);
3569
3570 for_each_kmem_cache_node(s, node, n) {
3571 unsigned long nr_slabs;
3572 unsigned long nr_objs;
3573 unsigned long nr_free;
3574
3575 nr_free = count_partial_free_approx(n);
3576 nr_slabs = node_nr_slabs(n);
3577 nr_objs = node_nr_objs(n);
3578
3579 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3580 node, nr_slabs, nr_objs, nr_free);
3581 }
3582 }
3583 #else /* CONFIG_SLUB_DEBUG */
3584 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3585 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3586 #endif
3587
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3588 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3589 {
3590 if (unlikely(slab_test_pfmemalloc(slab)))
3591 return gfp_pfmemalloc_allowed(gfpflags);
3592
3593 return true;
3594 }
3595
3596 #ifndef CONFIG_SLUB_TINY
3597 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3598 __update_cpu_freelist_fast(struct kmem_cache *s,
3599 void *freelist_old, void *freelist_new,
3600 unsigned long tid)
3601 {
3602 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3603 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3604
3605 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3606 &old.full, new.full);
3607 }
3608
3609 /*
3610 * Check the slab->freelist and either transfer the freelist to the
3611 * per cpu freelist or deactivate the slab.
3612 *
3613 * The slab is still frozen if the return value is not NULL.
3614 *
3615 * If this function returns NULL then the slab has been unfrozen.
3616 */
get_freelist(struct kmem_cache * s,struct slab * slab)3617 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3618 {
3619 struct slab new;
3620 unsigned long counters;
3621 void *freelist;
3622
3623 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3624
3625 do {
3626 freelist = slab->freelist;
3627 counters = slab->counters;
3628
3629 new.counters = counters;
3630
3631 new.inuse = slab->objects;
3632 new.frozen = freelist != NULL;
3633
3634 } while (!__slab_update_freelist(s, slab,
3635 freelist, counters,
3636 NULL, new.counters,
3637 "get_freelist"));
3638
3639 return freelist;
3640 }
3641
3642 /*
3643 * Freeze the partial slab and return the pointer to the freelist.
3644 */
freeze_slab(struct kmem_cache * s,struct slab * slab)3645 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3646 {
3647 struct slab new;
3648 unsigned long counters;
3649 void *freelist;
3650
3651 do {
3652 freelist = slab->freelist;
3653 counters = slab->counters;
3654
3655 new.counters = counters;
3656 VM_BUG_ON(new.frozen);
3657
3658 new.inuse = slab->objects;
3659 new.frozen = 1;
3660
3661 } while (!slab_update_freelist(s, slab,
3662 freelist, counters,
3663 NULL, new.counters,
3664 "freeze_slab"));
3665
3666 return freelist;
3667 }
3668
3669 /*
3670 * Slow path. The lockless freelist is empty or we need to perform
3671 * debugging duties.
3672 *
3673 * Processing is still very fast if new objects have been freed to the
3674 * regular freelist. In that case we simply take over the regular freelist
3675 * as the lockless freelist and zap the regular freelist.
3676 *
3677 * If that is not working then we fall back to the partial lists. We take the
3678 * first element of the freelist as the object to allocate now and move the
3679 * rest of the freelist to the lockless freelist.
3680 *
3681 * And if we were unable to get a new slab from the partial slab lists then
3682 * we need to allocate a new slab. This is the slowest path since it involves
3683 * a call to the page allocator and the setup of a new slab.
3684 *
3685 * Version of __slab_alloc to use when we know that preemption is
3686 * already disabled (which is the case for bulk allocation).
3687 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3688 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3689 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3690 {
3691 void *freelist;
3692 struct slab *slab;
3693 unsigned long flags;
3694 struct partial_context pc;
3695 bool try_thisnode = true;
3696
3697 stat(s, ALLOC_SLOWPATH);
3698
3699 reread_slab:
3700
3701 slab = READ_ONCE(c->slab);
3702 if (!slab) {
3703 /*
3704 * if the node is not online or has no normal memory, just
3705 * ignore the node constraint
3706 */
3707 if (unlikely(node != NUMA_NO_NODE &&
3708 !node_isset(node, slab_nodes)))
3709 node = NUMA_NO_NODE;
3710 goto new_slab;
3711 }
3712
3713 if (unlikely(!node_match(slab, node))) {
3714 /*
3715 * same as above but node_match() being false already
3716 * implies node != NUMA_NO_NODE
3717 */
3718 if (!node_isset(node, slab_nodes)) {
3719 node = NUMA_NO_NODE;
3720 } else {
3721 stat(s, ALLOC_NODE_MISMATCH);
3722 goto deactivate_slab;
3723 }
3724 }
3725
3726 /*
3727 * By rights, we should be searching for a slab page that was
3728 * PFMEMALLOC but right now, we are losing the pfmemalloc
3729 * information when the page leaves the per-cpu allocator
3730 */
3731 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3732 goto deactivate_slab;
3733
3734 /* must check again c->slab in case we got preempted and it changed */
3735 local_lock_irqsave(&s->cpu_slab->lock, flags);
3736 if (unlikely(slab != c->slab)) {
3737 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3738 goto reread_slab;
3739 }
3740 freelist = c->freelist;
3741 if (freelist)
3742 goto load_freelist;
3743
3744 freelist = get_freelist(s, slab);
3745
3746 if (!freelist) {
3747 c->slab = NULL;
3748 c->tid = next_tid(c->tid);
3749 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3750 stat(s, DEACTIVATE_BYPASS);
3751 goto new_slab;
3752 }
3753
3754 stat(s, ALLOC_REFILL);
3755
3756 load_freelist:
3757
3758 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3759
3760 /*
3761 * freelist is pointing to the list of objects to be used.
3762 * slab is pointing to the slab from which the objects are obtained.
3763 * That slab must be frozen for per cpu allocations to work.
3764 */
3765 VM_BUG_ON(!c->slab->frozen);
3766 c->freelist = get_freepointer(s, freelist);
3767 c->tid = next_tid(c->tid);
3768 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3769 return freelist;
3770
3771 deactivate_slab:
3772
3773 local_lock_irqsave(&s->cpu_slab->lock, flags);
3774 if (slab != c->slab) {
3775 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3776 goto reread_slab;
3777 }
3778 freelist = c->freelist;
3779 c->slab = NULL;
3780 c->freelist = NULL;
3781 c->tid = next_tid(c->tid);
3782 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3783 deactivate_slab(s, slab, freelist);
3784
3785 new_slab:
3786
3787 #ifdef CONFIG_SLUB_CPU_PARTIAL
3788 while (slub_percpu_partial(c)) {
3789 local_lock_irqsave(&s->cpu_slab->lock, flags);
3790 if (unlikely(c->slab)) {
3791 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3792 goto reread_slab;
3793 }
3794 if (unlikely(!slub_percpu_partial(c))) {
3795 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3796 /* we were preempted and partial list got empty */
3797 goto new_objects;
3798 }
3799
3800 slab = slub_percpu_partial(c);
3801 slub_set_percpu_partial(c, slab);
3802
3803 if (likely(node_match(slab, node) &&
3804 pfmemalloc_match(slab, gfpflags))) {
3805 c->slab = slab;
3806 freelist = get_freelist(s, slab);
3807 VM_BUG_ON(!freelist);
3808 stat(s, CPU_PARTIAL_ALLOC);
3809 goto load_freelist;
3810 }
3811
3812 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3813
3814 slab->next = NULL;
3815 __put_partials(s, slab);
3816 }
3817 #endif
3818
3819 new_objects:
3820
3821 pc.flags = gfpflags;
3822 /*
3823 * When a preferred node is indicated but no __GFP_THISNODE
3824 *
3825 * 1) try to get a partial slab from target node only by having
3826 * __GFP_THISNODE in pc.flags for get_partial()
3827 * 2) if 1) failed, try to allocate a new slab from target node with
3828 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3829 * 3) if 2) failed, retry with original gfpflags which will allow
3830 * get_partial() try partial lists of other nodes before potentially
3831 * allocating new page from other nodes
3832 */
3833 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3834 && try_thisnode))
3835 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3836
3837 pc.orig_size = orig_size;
3838 slab = get_partial(s, node, &pc);
3839 if (slab) {
3840 if (kmem_cache_debug(s)) {
3841 freelist = pc.object;
3842 /*
3843 * For debug caches here we had to go through
3844 * alloc_single_from_partial() so just store the
3845 * tracking info and return the object.
3846 */
3847 if (s->flags & SLAB_STORE_USER)
3848 set_track(s, freelist, TRACK_ALLOC, addr);
3849
3850 return freelist;
3851 }
3852
3853 freelist = freeze_slab(s, slab);
3854 goto retry_load_slab;
3855 }
3856
3857 slub_put_cpu_ptr(s->cpu_slab);
3858 slab = new_slab(s, pc.flags, node);
3859 c = slub_get_cpu_ptr(s->cpu_slab);
3860
3861 if (unlikely(!slab)) {
3862 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3863 && try_thisnode) {
3864 try_thisnode = false;
3865 goto new_objects;
3866 }
3867 slab_out_of_memory(s, gfpflags, node);
3868 return NULL;
3869 }
3870
3871 stat(s, ALLOC_SLAB);
3872
3873 if (kmem_cache_debug(s)) {
3874 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3875
3876 if (unlikely(!freelist))
3877 goto new_objects;
3878
3879 if (s->flags & SLAB_STORE_USER)
3880 set_track(s, freelist, TRACK_ALLOC, addr);
3881
3882 return freelist;
3883 }
3884
3885 /*
3886 * No other reference to the slab yet so we can
3887 * muck around with it freely without cmpxchg
3888 */
3889 freelist = slab->freelist;
3890 slab->freelist = NULL;
3891 slab->inuse = slab->objects;
3892 slab->frozen = 1;
3893
3894 inc_slabs_node(s, slab_nid(slab), slab->objects);
3895
3896 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3897 /*
3898 * For !pfmemalloc_match() case we don't load freelist so that
3899 * we don't make further mismatched allocations easier.
3900 */
3901 deactivate_slab(s, slab, get_freepointer(s, freelist));
3902 return freelist;
3903 }
3904
3905 retry_load_slab:
3906
3907 local_lock_irqsave(&s->cpu_slab->lock, flags);
3908 if (unlikely(c->slab)) {
3909 void *flush_freelist = c->freelist;
3910 struct slab *flush_slab = c->slab;
3911
3912 c->slab = NULL;
3913 c->freelist = NULL;
3914 c->tid = next_tid(c->tid);
3915
3916 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3917
3918 deactivate_slab(s, flush_slab, flush_freelist);
3919
3920 stat(s, CPUSLAB_FLUSH);
3921
3922 goto retry_load_slab;
3923 }
3924 c->slab = slab;
3925
3926 goto load_freelist;
3927 }
3928
3929 /*
3930 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3931 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3932 * pointer.
3933 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3934 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3935 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3936 {
3937 void *p;
3938
3939 #ifdef CONFIG_PREEMPT_COUNT
3940 /*
3941 * We may have been preempted and rescheduled on a different
3942 * cpu before disabling preemption. Need to reload cpu area
3943 * pointer.
3944 */
3945 c = slub_get_cpu_ptr(s->cpu_slab);
3946 #endif
3947
3948 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3949 #ifdef CONFIG_PREEMPT_COUNT
3950 slub_put_cpu_ptr(s->cpu_slab);
3951 #endif
3952 return p;
3953 }
3954
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3955 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3956 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3957 {
3958 struct kmem_cache_cpu *c;
3959 struct slab *slab;
3960 unsigned long tid;
3961 void *object;
3962
3963 redo:
3964 /*
3965 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3966 * enabled. We may switch back and forth between cpus while
3967 * reading from one cpu area. That does not matter as long
3968 * as we end up on the original cpu again when doing the cmpxchg.
3969 *
3970 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3971 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3972 * the tid. If we are preempted and switched to another cpu between the
3973 * two reads, it's OK as the two are still associated with the same cpu
3974 * and cmpxchg later will validate the cpu.
3975 */
3976 c = raw_cpu_ptr(s->cpu_slab);
3977 tid = READ_ONCE(c->tid);
3978
3979 /*
3980 * Irqless object alloc/free algorithm used here depends on sequence
3981 * of fetching cpu_slab's data. tid should be fetched before anything
3982 * on c to guarantee that object and slab associated with previous tid
3983 * won't be used with current tid. If we fetch tid first, object and
3984 * slab could be one associated with next tid and our alloc/free
3985 * request will be failed. In this case, we will retry. So, no problem.
3986 */
3987 barrier();
3988
3989 /*
3990 * The transaction ids are globally unique per cpu and per operation on
3991 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3992 * occurs on the right processor and that there was no operation on the
3993 * linked list in between.
3994 */
3995
3996 object = c->freelist;
3997 slab = c->slab;
3998
3999 #ifdef CONFIG_NUMA
4000 if (static_branch_unlikely(&strict_numa) &&
4001 node == NUMA_NO_NODE) {
4002
4003 struct mempolicy *mpol = current->mempolicy;
4004
4005 if (mpol) {
4006 /*
4007 * Special BIND rule support. If existing slab
4008 * is in permitted set then do not redirect
4009 * to a particular node.
4010 * Otherwise we apply the memory policy to get
4011 * the node we need to allocate on.
4012 */
4013 if (mpol->mode != MPOL_BIND || !slab ||
4014 !node_isset(slab_nid(slab), mpol->nodes))
4015
4016 node = mempolicy_slab_node();
4017 }
4018 }
4019 #endif
4020
4021 if (!USE_LOCKLESS_FAST_PATH() ||
4022 unlikely(!object || !slab || !node_match(slab, node))) {
4023 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4024 } else {
4025 void *next_object = get_freepointer_safe(s, object);
4026
4027 /*
4028 * The cmpxchg will only match if there was no additional
4029 * operation and if we are on the right processor.
4030 *
4031 * The cmpxchg does the following atomically (without lock
4032 * semantics!)
4033 * 1. Relocate first pointer to the current per cpu area.
4034 * 2. Verify that tid and freelist have not been changed
4035 * 3. If they were not changed replace tid and freelist
4036 *
4037 * Since this is without lock semantics the protection is only
4038 * against code executing on this cpu *not* from access by
4039 * other cpus.
4040 */
4041 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4042 note_cmpxchg_failure("slab_alloc", s, tid);
4043 goto redo;
4044 }
4045 prefetch_freepointer(s, next_object);
4046 stat(s, ALLOC_FASTPATH);
4047 }
4048
4049 return object;
4050 }
4051 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4052 static void *__slab_alloc_node(struct kmem_cache *s,
4053 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4054 {
4055 struct partial_context pc;
4056 struct slab *slab;
4057 void *object;
4058
4059 pc.flags = gfpflags;
4060 pc.orig_size = orig_size;
4061 slab = get_partial(s, node, &pc);
4062
4063 if (slab)
4064 return pc.object;
4065
4066 slab = new_slab(s, gfpflags, node);
4067 if (unlikely(!slab)) {
4068 slab_out_of_memory(s, gfpflags, node);
4069 return NULL;
4070 }
4071
4072 object = alloc_single_from_new_slab(s, slab, orig_size);
4073
4074 return object;
4075 }
4076 #endif /* CONFIG_SLUB_TINY */
4077
4078 /*
4079 * If the object has been wiped upon free, make sure it's fully initialized by
4080 * zeroing out freelist pointer.
4081 *
4082 * Note that we also wipe custom freelist pointers.
4083 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4084 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4085 void *obj)
4086 {
4087 if (unlikely(slab_want_init_on_free(s)) && obj &&
4088 !freeptr_outside_object(s))
4089 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4090 0, sizeof(void *));
4091 }
4092
4093 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4094 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4095 {
4096 flags &= gfp_allowed_mask;
4097
4098 might_alloc(flags);
4099
4100 if (unlikely(should_failslab(s, flags)))
4101 return NULL;
4102
4103 return s;
4104 }
4105
4106 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4107 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4108 gfp_t flags, size_t size, void **p, bool init,
4109 unsigned int orig_size)
4110 {
4111 unsigned int zero_size = s->object_size;
4112 bool kasan_init = init;
4113 size_t i;
4114 gfp_t init_flags = flags & gfp_allowed_mask;
4115
4116 /*
4117 * For kmalloc object, the allocated memory size(object_size) is likely
4118 * larger than the requested size(orig_size). If redzone check is
4119 * enabled for the extra space, don't zero it, as it will be redzoned
4120 * soon. The redzone operation for this extra space could be seen as a
4121 * replacement of current poisoning under certain debug option, and
4122 * won't break other sanity checks.
4123 */
4124 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4125 (s->flags & SLAB_KMALLOC))
4126 zero_size = orig_size;
4127
4128 /*
4129 * When slab_debug is enabled, avoid memory initialization integrated
4130 * into KASAN and instead zero out the memory via the memset below with
4131 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4132 * cause false-positive reports. This does not lead to a performance
4133 * penalty on production builds, as slab_debug is not intended to be
4134 * enabled there.
4135 */
4136 if (__slub_debug_enabled())
4137 kasan_init = false;
4138
4139 /*
4140 * As memory initialization might be integrated into KASAN,
4141 * kasan_slab_alloc and initialization memset must be
4142 * kept together to avoid discrepancies in behavior.
4143 *
4144 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4145 */
4146 for (i = 0; i < size; i++) {
4147 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4148 if (p[i] && init && (!kasan_init ||
4149 !kasan_has_integrated_init()))
4150 memset(p[i], 0, zero_size);
4151 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4152 s->flags, init_flags);
4153 kmsan_slab_alloc(s, p[i], init_flags);
4154 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4155 }
4156
4157 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4158 }
4159
4160 /*
4161 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4162 * have the fastpath folded into their functions. So no function call
4163 * overhead for requests that can be satisfied on the fastpath.
4164 *
4165 * The fastpath works by first checking if the lockless freelist can be used.
4166 * If not then __slab_alloc is called for slow processing.
4167 *
4168 * Otherwise we can simply pick the next object from the lockless free list.
4169 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4170 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4171 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4172 {
4173 void *object;
4174 bool init = false;
4175
4176 s = slab_pre_alloc_hook(s, gfpflags);
4177 if (unlikely(!s))
4178 return NULL;
4179
4180 object = kfence_alloc(s, orig_size, gfpflags);
4181 if (unlikely(object))
4182 goto out;
4183
4184 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4185
4186 maybe_wipe_obj_freeptr(s, object);
4187 init = slab_want_init_on_alloc(gfpflags, s);
4188
4189 out:
4190 /*
4191 * When init equals 'true', like for kzalloc() family, only
4192 * @orig_size bytes might be zeroed instead of s->object_size
4193 * In case this fails due to memcg_slab_post_alloc_hook(),
4194 * object is set to NULL
4195 */
4196 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4197
4198 return object;
4199 }
4200
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4201 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4202 {
4203 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4204 s->object_size);
4205
4206 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4207
4208 return ret;
4209 }
4210 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4211
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4212 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4213 gfp_t gfpflags)
4214 {
4215 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4216 s->object_size);
4217
4218 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4219
4220 return ret;
4221 }
4222 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4223
kmem_cache_charge(void * objp,gfp_t gfpflags)4224 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4225 {
4226 if (!memcg_kmem_online())
4227 return true;
4228
4229 return memcg_slab_post_charge(objp, gfpflags);
4230 }
4231 EXPORT_SYMBOL(kmem_cache_charge);
4232
4233 /**
4234 * kmem_cache_alloc_node - Allocate an object on the specified node
4235 * @s: The cache to allocate from.
4236 * @gfpflags: See kmalloc().
4237 * @node: node number of the target node.
4238 *
4239 * Identical to kmem_cache_alloc but it will allocate memory on the given
4240 * node, which can improve the performance for cpu bound structures.
4241 *
4242 * Fallback to other node is possible if __GFP_THISNODE is not set.
4243 *
4244 * Return: pointer to the new object or %NULL in case of error
4245 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4246 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4247 {
4248 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4249
4250 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4251
4252 return ret;
4253 }
4254 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4255
4256 /*
4257 * To avoid unnecessary overhead, we pass through large allocation requests
4258 * directly to the page allocator. We use __GFP_COMP, because we will need to
4259 * know the allocation order to free the pages properly in kfree.
4260 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4261 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4262 {
4263 struct folio *folio;
4264 void *ptr = NULL;
4265 unsigned int order = get_order(size);
4266
4267 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4268 flags = kmalloc_fix_flags(flags);
4269
4270 flags |= __GFP_COMP;
4271 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4272 if (folio) {
4273 ptr = folio_address(folio);
4274 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4275 PAGE_SIZE << order);
4276 __folio_set_large_kmalloc(folio);
4277 }
4278
4279 ptr = kasan_kmalloc_large(ptr, size, flags);
4280 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4281 kmemleak_alloc(ptr, size, 1, flags);
4282 kmsan_kmalloc_large(ptr, size, flags);
4283
4284 return ptr;
4285 }
4286
__kmalloc_large_noprof(size_t size,gfp_t flags)4287 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4288 {
4289 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4290
4291 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4292 flags, NUMA_NO_NODE);
4293 return ret;
4294 }
4295 EXPORT_SYMBOL(__kmalloc_large_noprof);
4296
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4297 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4298 {
4299 void *ret = ___kmalloc_large_node(size, flags, node);
4300
4301 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4302 flags, node);
4303 return ret;
4304 }
4305 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4306
4307 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4308 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4309 unsigned long caller)
4310 {
4311 struct kmem_cache *s;
4312 void *ret;
4313
4314 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4315 ret = __kmalloc_large_node_noprof(size, flags, node);
4316 trace_kmalloc(caller, ret, size,
4317 PAGE_SIZE << get_order(size), flags, node);
4318 return ret;
4319 }
4320
4321 if (unlikely(!size))
4322 return ZERO_SIZE_PTR;
4323
4324 s = kmalloc_slab(size, b, flags, caller);
4325
4326 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4327 ret = kasan_kmalloc(s, ret, size, flags);
4328 trace_kmalloc(caller, ret, size, s->size, flags, node);
4329 return ret;
4330 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4331 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4332 {
4333 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4334 }
4335 EXPORT_SYMBOL(__kmalloc_node_noprof);
4336
__kmalloc_noprof(size_t size,gfp_t flags)4337 void *__kmalloc_noprof(size_t size, gfp_t flags)
4338 {
4339 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4340 }
4341 EXPORT_SYMBOL(__kmalloc_noprof);
4342
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4343 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4344 int node, unsigned long caller)
4345 {
4346 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4347
4348 }
4349 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4350
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4351 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4352 {
4353 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4354 _RET_IP_, size);
4355
4356 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4357
4358 ret = kasan_kmalloc(s, ret, size, gfpflags);
4359 return ret;
4360 }
4361 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4362
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4363 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4364 int node, size_t size)
4365 {
4366 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4367
4368 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4369
4370 ret = kasan_kmalloc(s, ret, size, gfpflags);
4371 return ret;
4372 }
4373 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4374
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4375 static noinline void free_to_partial_list(
4376 struct kmem_cache *s, struct slab *slab,
4377 void *head, void *tail, int bulk_cnt,
4378 unsigned long addr)
4379 {
4380 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4381 struct slab *slab_free = NULL;
4382 int cnt = bulk_cnt;
4383 unsigned long flags;
4384 depot_stack_handle_t handle = 0;
4385
4386 if (s->flags & SLAB_STORE_USER)
4387 handle = set_track_prepare();
4388
4389 spin_lock_irqsave(&n->list_lock, flags);
4390
4391 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4392 void *prior = slab->freelist;
4393
4394 /* Perform the actual freeing while we still hold the locks */
4395 slab->inuse -= cnt;
4396 set_freepointer(s, tail, prior);
4397 slab->freelist = head;
4398
4399 /*
4400 * If the slab is empty, and node's partial list is full,
4401 * it should be discarded anyway no matter it's on full or
4402 * partial list.
4403 */
4404 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4405 slab_free = slab;
4406
4407 if (!prior) {
4408 /* was on full list */
4409 remove_full(s, n, slab);
4410 if (!slab_free) {
4411 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4412 stat(s, FREE_ADD_PARTIAL);
4413 }
4414 } else if (slab_free) {
4415 remove_partial(n, slab);
4416 stat(s, FREE_REMOVE_PARTIAL);
4417 }
4418 }
4419
4420 if (slab_free) {
4421 /*
4422 * Update the counters while still holding n->list_lock to
4423 * prevent spurious validation warnings
4424 */
4425 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4426 }
4427
4428 spin_unlock_irqrestore(&n->list_lock, flags);
4429
4430 if (slab_free) {
4431 stat(s, FREE_SLAB);
4432 free_slab(s, slab_free);
4433 }
4434 }
4435
4436 /*
4437 * Slow path handling. This may still be called frequently since objects
4438 * have a longer lifetime than the cpu slabs in most processing loads.
4439 *
4440 * So we still attempt to reduce cache line usage. Just take the slab
4441 * lock and free the item. If there is no additional partial slab
4442 * handling required then we can return immediately.
4443 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4444 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4445 void *head, void *tail, int cnt,
4446 unsigned long addr)
4447
4448 {
4449 void *prior;
4450 int was_frozen;
4451 struct slab new;
4452 unsigned long counters;
4453 struct kmem_cache_node *n = NULL;
4454 unsigned long flags;
4455 bool on_node_partial;
4456
4457 stat(s, FREE_SLOWPATH);
4458
4459 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4460 free_to_partial_list(s, slab, head, tail, cnt, addr);
4461 return;
4462 }
4463
4464 do {
4465 if (unlikely(n)) {
4466 spin_unlock_irqrestore(&n->list_lock, flags);
4467 n = NULL;
4468 }
4469 prior = slab->freelist;
4470 counters = slab->counters;
4471 set_freepointer(s, tail, prior);
4472 new.counters = counters;
4473 was_frozen = new.frozen;
4474 new.inuse -= cnt;
4475 if ((!new.inuse || !prior) && !was_frozen) {
4476 /* Needs to be taken off a list */
4477 if (!kmem_cache_has_cpu_partial(s) || prior) {
4478
4479 n = get_node(s, slab_nid(slab));
4480 /*
4481 * Speculatively acquire the list_lock.
4482 * If the cmpxchg does not succeed then we may
4483 * drop the list_lock without any processing.
4484 *
4485 * Otherwise the list_lock will synchronize with
4486 * other processors updating the list of slabs.
4487 */
4488 spin_lock_irqsave(&n->list_lock, flags);
4489
4490 on_node_partial = slab_test_node_partial(slab);
4491 }
4492 }
4493
4494 } while (!slab_update_freelist(s, slab,
4495 prior, counters,
4496 head, new.counters,
4497 "__slab_free"));
4498
4499 if (likely(!n)) {
4500
4501 if (likely(was_frozen)) {
4502 /*
4503 * The list lock was not taken therefore no list
4504 * activity can be necessary.
4505 */
4506 stat(s, FREE_FROZEN);
4507 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4508 /*
4509 * If we started with a full slab then put it onto the
4510 * per cpu partial list.
4511 */
4512 put_cpu_partial(s, slab, 1);
4513 stat(s, CPU_PARTIAL_FREE);
4514 }
4515
4516 return;
4517 }
4518
4519 /*
4520 * This slab was partially empty but not on the per-node partial list,
4521 * in which case we shouldn't manipulate its list, just return.
4522 */
4523 if (prior && !on_node_partial) {
4524 spin_unlock_irqrestore(&n->list_lock, flags);
4525 return;
4526 }
4527
4528 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4529 goto slab_empty;
4530
4531 /*
4532 * Objects left in the slab. If it was not on the partial list before
4533 * then add it.
4534 */
4535 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4536 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4537 stat(s, FREE_ADD_PARTIAL);
4538 }
4539 spin_unlock_irqrestore(&n->list_lock, flags);
4540 return;
4541
4542 slab_empty:
4543 if (prior) {
4544 /*
4545 * Slab on the partial list.
4546 */
4547 remove_partial(n, slab);
4548 stat(s, FREE_REMOVE_PARTIAL);
4549 }
4550
4551 spin_unlock_irqrestore(&n->list_lock, flags);
4552 stat(s, FREE_SLAB);
4553 discard_slab(s, slab);
4554 }
4555
4556 #ifndef CONFIG_SLUB_TINY
4557 /*
4558 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4559 * can perform fastpath freeing without additional function calls.
4560 *
4561 * The fastpath is only possible if we are freeing to the current cpu slab
4562 * of this processor. This typically the case if we have just allocated
4563 * the item before.
4564 *
4565 * If fastpath is not possible then fall back to __slab_free where we deal
4566 * with all sorts of special processing.
4567 *
4568 * Bulk free of a freelist with several objects (all pointing to the
4569 * same slab) possible by specifying head and tail ptr, plus objects
4570 * count (cnt). Bulk free indicated by tail pointer being set.
4571 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4572 static __always_inline void do_slab_free(struct kmem_cache *s,
4573 struct slab *slab, void *head, void *tail,
4574 int cnt, unsigned long addr)
4575 {
4576 struct kmem_cache_cpu *c;
4577 unsigned long tid;
4578 void **freelist;
4579
4580 redo:
4581 /*
4582 * Determine the currently cpus per cpu slab.
4583 * The cpu may change afterward. However that does not matter since
4584 * data is retrieved via this pointer. If we are on the same cpu
4585 * during the cmpxchg then the free will succeed.
4586 */
4587 c = raw_cpu_ptr(s->cpu_slab);
4588 tid = READ_ONCE(c->tid);
4589
4590 /* Same with comment on barrier() in __slab_alloc_node() */
4591 barrier();
4592
4593 if (unlikely(slab != c->slab)) {
4594 __slab_free(s, slab, head, tail, cnt, addr);
4595 return;
4596 }
4597
4598 if (USE_LOCKLESS_FAST_PATH()) {
4599 freelist = READ_ONCE(c->freelist);
4600
4601 set_freepointer(s, tail, freelist);
4602
4603 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4604 note_cmpxchg_failure("slab_free", s, tid);
4605 goto redo;
4606 }
4607 } else {
4608 /* Update the free list under the local lock */
4609 local_lock(&s->cpu_slab->lock);
4610 c = this_cpu_ptr(s->cpu_slab);
4611 if (unlikely(slab != c->slab)) {
4612 local_unlock(&s->cpu_slab->lock);
4613 goto redo;
4614 }
4615 tid = c->tid;
4616 freelist = c->freelist;
4617
4618 set_freepointer(s, tail, freelist);
4619 c->freelist = head;
4620 c->tid = next_tid(tid);
4621
4622 local_unlock(&s->cpu_slab->lock);
4623 }
4624 stat_add(s, FREE_FASTPATH, cnt);
4625 }
4626 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4627 static void do_slab_free(struct kmem_cache *s,
4628 struct slab *slab, void *head, void *tail,
4629 int cnt, unsigned long addr)
4630 {
4631 __slab_free(s, slab, head, tail, cnt, addr);
4632 }
4633 #endif /* CONFIG_SLUB_TINY */
4634
4635 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4636 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4637 unsigned long addr)
4638 {
4639 memcg_slab_free_hook(s, slab, &object, 1);
4640 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4641
4642 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4643 do_slab_free(s, slab, object, object, 1, addr);
4644 }
4645
4646 #ifdef CONFIG_MEMCG
4647 /* Do not inline the rare memcg charging failed path into the allocation path */
4648 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4649 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4650 {
4651 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4652 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4653 }
4654 #endif
4655
4656 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4657 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4658 void *tail, void **p, int cnt, unsigned long addr)
4659 {
4660 memcg_slab_free_hook(s, slab, p, cnt);
4661 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4662 /*
4663 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4664 * to remove objects, whose reuse must be delayed.
4665 */
4666 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4667 do_slab_free(s, slab, head, tail, cnt, addr);
4668 }
4669
4670 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4671 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4672 {
4673 struct rcu_delayed_free *delayed_free =
4674 container_of(rcu_head, struct rcu_delayed_free, head);
4675 void *object = delayed_free->object;
4676 struct slab *slab = virt_to_slab(object);
4677 struct kmem_cache *s;
4678
4679 kfree(delayed_free);
4680
4681 if (WARN_ON(is_kfence_address(object)))
4682 return;
4683
4684 /* find the object and the cache again */
4685 if (WARN_ON(!slab))
4686 return;
4687 s = slab->slab_cache;
4688 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4689 return;
4690
4691 /* resume freeing */
4692 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4693 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4694 }
4695 #endif /* CONFIG_SLUB_RCU_DEBUG */
4696
4697 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4698 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4699 {
4700 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4701 }
4702 #endif
4703
virt_to_cache(const void * obj)4704 static inline struct kmem_cache *virt_to_cache(const void *obj)
4705 {
4706 struct slab *slab;
4707
4708 slab = virt_to_slab(obj);
4709 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4710 return NULL;
4711 return slab->slab_cache;
4712 }
4713
cache_from_obj(struct kmem_cache * s,void * x)4714 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4715 {
4716 struct kmem_cache *cachep;
4717
4718 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4719 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4720 return s;
4721
4722 cachep = virt_to_cache(x);
4723 if (WARN(cachep && cachep != s,
4724 "%s: Wrong slab cache. %s but object is from %s\n",
4725 __func__, s->name, cachep->name))
4726 print_tracking(cachep, x);
4727 return cachep;
4728 }
4729
4730 /**
4731 * kmem_cache_free - Deallocate an object
4732 * @s: The cache the allocation was from.
4733 * @x: The previously allocated object.
4734 *
4735 * Free an object which was previously allocated from this
4736 * cache.
4737 */
kmem_cache_free(struct kmem_cache * s,void * x)4738 void kmem_cache_free(struct kmem_cache *s, void *x)
4739 {
4740 s = cache_from_obj(s, x);
4741 if (!s)
4742 return;
4743 trace_kmem_cache_free(_RET_IP_, x, s);
4744 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4745 }
4746 EXPORT_SYMBOL(kmem_cache_free);
4747
free_large_kmalloc(struct folio * folio,void * object)4748 static void free_large_kmalloc(struct folio *folio, void *object)
4749 {
4750 unsigned int order = folio_order(folio);
4751
4752 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4753 dump_page(&folio->page, "Not a kmalloc allocation");
4754 return;
4755 }
4756
4757 if (WARN_ON_ONCE(order == 0))
4758 pr_warn_once("object pointer: 0x%p\n", object);
4759
4760 kmemleak_free(object);
4761 kasan_kfree_large(object);
4762 kmsan_kfree_large(object);
4763
4764 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4765 -(PAGE_SIZE << order));
4766 __folio_clear_large_kmalloc(folio);
4767 folio_put(folio);
4768 }
4769
4770 /*
4771 * Given an rcu_head embedded within an object obtained from kvmalloc at an
4772 * offset < 4k, free the object in question.
4773 */
kvfree_rcu_cb(struct rcu_head * head)4774 void kvfree_rcu_cb(struct rcu_head *head)
4775 {
4776 void *obj = head;
4777 struct folio *folio;
4778 struct slab *slab;
4779 struct kmem_cache *s;
4780 void *slab_addr;
4781
4782 if (is_vmalloc_addr(obj)) {
4783 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4784 vfree(obj);
4785 return;
4786 }
4787
4788 folio = virt_to_folio(obj);
4789 if (!folio_test_slab(folio)) {
4790 /*
4791 * rcu_head offset can be only less than page size so no need to
4792 * consider folio order
4793 */
4794 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4795 free_large_kmalloc(folio, obj);
4796 return;
4797 }
4798
4799 slab = folio_slab(folio);
4800 s = slab->slab_cache;
4801 slab_addr = folio_address(folio);
4802
4803 if (is_kfence_address(obj)) {
4804 obj = kfence_object_start(obj);
4805 } else {
4806 unsigned int idx = __obj_to_index(s, slab_addr, obj);
4807
4808 obj = slab_addr + s->size * idx;
4809 obj = fixup_red_left(s, obj);
4810 }
4811
4812 slab_free(s, slab, obj, _RET_IP_);
4813 }
4814
4815 /**
4816 * kfree - free previously allocated memory
4817 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4818 *
4819 * If @object is NULL, no operation is performed.
4820 */
kfree(const void * object)4821 void kfree(const void *object)
4822 {
4823 struct folio *folio;
4824 struct slab *slab;
4825 struct kmem_cache *s;
4826 void *x = (void *)object;
4827
4828 trace_kfree(_RET_IP_, object);
4829
4830 if (unlikely(ZERO_OR_NULL_PTR(object)))
4831 return;
4832
4833 folio = virt_to_folio(object);
4834 if (unlikely(!folio_test_slab(folio))) {
4835 free_large_kmalloc(folio, (void *)object);
4836 return;
4837 }
4838
4839 slab = folio_slab(folio);
4840 s = slab->slab_cache;
4841 slab_free(s, slab, x, _RET_IP_);
4842 }
4843 EXPORT_SYMBOL(kfree);
4844
4845 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)4846 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4847 {
4848 void *ret;
4849 size_t ks = 0;
4850 int orig_size = 0;
4851 struct kmem_cache *s = NULL;
4852
4853 if (unlikely(ZERO_OR_NULL_PTR(p)))
4854 goto alloc_new;
4855
4856 /* Check for double-free. */
4857 if (!kasan_check_byte(p))
4858 return NULL;
4859
4860 if (is_kfence_address(p)) {
4861 ks = orig_size = kfence_ksize(p);
4862 } else {
4863 struct folio *folio;
4864
4865 folio = virt_to_folio(p);
4866 if (unlikely(!folio_test_slab(folio))) {
4867 /* Big kmalloc object */
4868 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4869 WARN_ON(p != folio_address(folio));
4870 ks = folio_size(folio);
4871 } else {
4872 s = folio_slab(folio)->slab_cache;
4873 orig_size = get_orig_size(s, (void *)p);
4874 ks = s->object_size;
4875 }
4876 }
4877
4878 /* If the old object doesn't fit, allocate a bigger one */
4879 if (new_size > ks)
4880 goto alloc_new;
4881
4882 /* Zero out spare memory. */
4883 if (want_init_on_alloc(flags)) {
4884 kasan_disable_current();
4885 if (orig_size && orig_size < new_size)
4886 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4887 else
4888 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4889 kasan_enable_current();
4890 }
4891
4892 /* Setup kmalloc redzone when needed */
4893 if (s && slub_debug_orig_size(s)) {
4894 set_orig_size(s, (void *)p, new_size);
4895 if (s->flags & SLAB_RED_ZONE && new_size < ks)
4896 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4897 SLUB_RED_ACTIVE, ks - new_size);
4898 }
4899
4900 p = kasan_krealloc(p, new_size, flags);
4901 return (void *)p;
4902
4903 alloc_new:
4904 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4905 if (ret && p) {
4906 /* Disable KASAN checks as the object's redzone is accessed. */
4907 kasan_disable_current();
4908 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4909 kasan_enable_current();
4910 }
4911
4912 return ret;
4913 }
4914
4915 /**
4916 * krealloc - reallocate memory. The contents will remain unchanged.
4917 * @p: object to reallocate memory for.
4918 * @new_size: how many bytes of memory are required.
4919 * @flags: the type of memory to allocate.
4920 *
4921 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4922 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4923 *
4924 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4925 * initial memory allocation, every subsequent call to this API for the same
4926 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4927 * __GFP_ZERO is not fully honored by this API.
4928 *
4929 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4930 * size of an allocation (but not the exact size it was allocated with) and
4931 * hence implements the following semantics for shrinking and growing buffers
4932 * with __GFP_ZERO.
4933 *
4934 * new bucket
4935 * 0 size size
4936 * |--------|----------------|
4937 * | keep | zero |
4938 *
4939 * Otherwise, the original allocation size 'orig_size' could be used to
4940 * precisely clear the requested size, and the new size will also be stored
4941 * as the new 'orig_size'.
4942 *
4943 * In any case, the contents of the object pointed to are preserved up to the
4944 * lesser of the new and old sizes.
4945 *
4946 * Return: pointer to the allocated memory or %NULL in case of error
4947 */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)4948 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4949 {
4950 void *ret;
4951
4952 if (unlikely(!new_size)) {
4953 kfree(p);
4954 return ZERO_SIZE_PTR;
4955 }
4956
4957 ret = __do_krealloc(p, new_size, flags);
4958 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4959 kfree(p);
4960
4961 return ret;
4962 }
4963 EXPORT_SYMBOL(krealloc_noprof);
4964
kmalloc_gfp_adjust(gfp_t flags,size_t size)4965 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
4966 {
4967 /*
4968 * We want to attempt a large physically contiguous block first because
4969 * it is less likely to fragment multiple larger blocks and therefore
4970 * contribute to a long term fragmentation less than vmalloc fallback.
4971 * However make sure that larger requests are not too disruptive - no
4972 * OOM killer and no allocation failure warnings as we have a fallback.
4973 */
4974 if (size > PAGE_SIZE) {
4975 flags |= __GFP_NOWARN;
4976
4977 if (!(flags & __GFP_RETRY_MAYFAIL))
4978 flags |= __GFP_NORETRY;
4979
4980 /* nofail semantic is implemented by the vmalloc fallback */
4981 flags &= ~__GFP_NOFAIL;
4982 }
4983
4984 return flags;
4985 }
4986
4987 /**
4988 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
4989 * failure, fall back to non-contiguous (vmalloc) allocation.
4990 * @size: size of the request.
4991 * @b: which set of kmalloc buckets to allocate from.
4992 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
4993 * @node: numa node to allocate from
4994 *
4995 * Uses kmalloc to get the memory but if the allocation fails then falls back
4996 * to the vmalloc allocator. Use kvfree for freeing the memory.
4997 *
4998 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
4999 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5000 * preferable to the vmalloc fallback, due to visible performance drawbacks.
5001 *
5002 * Return: pointer to the allocated memory of %NULL in case of failure
5003 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5004 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5005 {
5006 void *ret;
5007
5008 /*
5009 * It doesn't really make sense to fallback to vmalloc for sub page
5010 * requests
5011 */
5012 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5013 kmalloc_gfp_adjust(flags, size),
5014 node, _RET_IP_);
5015 if (ret || size <= PAGE_SIZE)
5016 return ret;
5017
5018 /* non-sleeping allocations are not supported by vmalloc */
5019 if (!gfpflags_allow_blocking(flags))
5020 return NULL;
5021
5022 /* Don't even allow crazy sizes */
5023 if (unlikely(size > INT_MAX)) {
5024 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5025 return NULL;
5026 }
5027
5028 /*
5029 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5030 * since the callers already cannot assume anything
5031 * about the resulting pointer, and cannot play
5032 * protection games.
5033 */
5034 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5035 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5036 node, __builtin_return_address(0));
5037 }
5038 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5039
5040 /**
5041 * kvfree() - Free memory.
5042 * @addr: Pointer to allocated memory.
5043 *
5044 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5045 * It is slightly more efficient to use kfree() or vfree() if you are certain
5046 * that you know which one to use.
5047 *
5048 * Context: Either preemptible task context or not-NMI interrupt.
5049 */
kvfree(const void * addr)5050 void kvfree(const void *addr)
5051 {
5052 if (is_vmalloc_addr(addr))
5053 vfree(addr);
5054 else
5055 kfree(addr);
5056 }
5057 EXPORT_SYMBOL(kvfree);
5058
5059 /**
5060 * kvfree_sensitive - Free a data object containing sensitive information.
5061 * @addr: address of the data object to be freed.
5062 * @len: length of the data object.
5063 *
5064 * Use the special memzero_explicit() function to clear the content of a
5065 * kvmalloc'ed object containing sensitive data to make sure that the
5066 * compiler won't optimize out the data clearing.
5067 */
kvfree_sensitive(const void * addr,size_t len)5068 void kvfree_sensitive(const void *addr, size_t len)
5069 {
5070 if (likely(!ZERO_OR_NULL_PTR(addr))) {
5071 memzero_explicit((void *)addr, len);
5072 kvfree(addr);
5073 }
5074 }
5075 EXPORT_SYMBOL(kvfree_sensitive);
5076
5077 /**
5078 * kvrealloc - reallocate memory; contents remain unchanged
5079 * @p: object to reallocate memory for
5080 * @size: the size to reallocate
5081 * @flags: the flags for the page level allocator
5082 *
5083 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5084 * and @p is not a %NULL pointer, the object pointed to is freed.
5085 *
5086 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5087 * initial memory allocation, every subsequent call to this API for the same
5088 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5089 * __GFP_ZERO is not fully honored by this API.
5090 *
5091 * In any case, the contents of the object pointed to are preserved up to the
5092 * lesser of the new and old sizes.
5093 *
5094 * This function must not be called concurrently with itself or kvfree() for the
5095 * same memory allocation.
5096 *
5097 * Return: pointer to the allocated memory or %NULL in case of error
5098 */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)5099 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5100 {
5101 void *n;
5102
5103 if (is_vmalloc_addr(p))
5104 return vrealloc_noprof(p, size, flags);
5105
5106 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5107 if (!n) {
5108 /* We failed to krealloc(), fall back to kvmalloc(). */
5109 n = kvmalloc_noprof(size, flags);
5110 if (!n)
5111 return NULL;
5112
5113 if (p) {
5114 /* We already know that `p` is not a vmalloc address. */
5115 kasan_disable_current();
5116 memcpy(n, kasan_reset_tag(p), ksize(p));
5117 kasan_enable_current();
5118
5119 kfree(p);
5120 }
5121 }
5122
5123 return n;
5124 }
5125 EXPORT_SYMBOL(kvrealloc_noprof);
5126
5127 struct detached_freelist {
5128 struct slab *slab;
5129 void *tail;
5130 void *freelist;
5131 int cnt;
5132 struct kmem_cache *s;
5133 };
5134
5135 /*
5136 * This function progressively scans the array with free objects (with
5137 * a limited look ahead) and extract objects belonging to the same
5138 * slab. It builds a detached freelist directly within the given
5139 * slab/objects. This can happen without any need for
5140 * synchronization, because the objects are owned by running process.
5141 * The freelist is build up as a single linked list in the objects.
5142 * The idea is, that this detached freelist can then be bulk
5143 * transferred to the real freelist(s), but only requiring a single
5144 * synchronization primitive. Look ahead in the array is limited due
5145 * to performance reasons.
5146 */
5147 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)5148 int build_detached_freelist(struct kmem_cache *s, size_t size,
5149 void **p, struct detached_freelist *df)
5150 {
5151 int lookahead = 3;
5152 void *object;
5153 struct folio *folio;
5154 size_t same;
5155
5156 object = p[--size];
5157 folio = virt_to_folio(object);
5158 if (!s) {
5159 /* Handle kalloc'ed objects */
5160 if (unlikely(!folio_test_slab(folio))) {
5161 free_large_kmalloc(folio, object);
5162 df->slab = NULL;
5163 return size;
5164 }
5165 /* Derive kmem_cache from object */
5166 df->slab = folio_slab(folio);
5167 df->s = df->slab->slab_cache;
5168 } else {
5169 df->slab = folio_slab(folio);
5170 df->s = cache_from_obj(s, object); /* Support for memcg */
5171 }
5172
5173 /* Start new detached freelist */
5174 df->tail = object;
5175 df->freelist = object;
5176 df->cnt = 1;
5177
5178 if (is_kfence_address(object))
5179 return size;
5180
5181 set_freepointer(df->s, object, NULL);
5182
5183 same = size;
5184 while (size) {
5185 object = p[--size];
5186 /* df->slab is always set at this point */
5187 if (df->slab == virt_to_slab(object)) {
5188 /* Opportunity build freelist */
5189 set_freepointer(df->s, object, df->freelist);
5190 df->freelist = object;
5191 df->cnt++;
5192 same--;
5193 if (size != same)
5194 swap(p[size], p[same]);
5195 continue;
5196 }
5197
5198 /* Limit look ahead search */
5199 if (!--lookahead)
5200 break;
5201 }
5202
5203 return same;
5204 }
5205
5206 /*
5207 * Internal bulk free of objects that were not initialised by the post alloc
5208 * hooks and thus should not be processed by the free hooks
5209 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5210 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5211 {
5212 if (!size)
5213 return;
5214
5215 do {
5216 struct detached_freelist df;
5217
5218 size = build_detached_freelist(s, size, p, &df);
5219 if (!df.slab)
5220 continue;
5221
5222 if (kfence_free(df.freelist))
5223 continue;
5224
5225 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5226 _RET_IP_);
5227 } while (likely(size));
5228 }
5229
5230 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5231 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5232 {
5233 if (!size)
5234 return;
5235
5236 do {
5237 struct detached_freelist df;
5238
5239 size = build_detached_freelist(s, size, p, &df);
5240 if (!df.slab)
5241 continue;
5242
5243 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5244 df.cnt, _RET_IP_);
5245 } while (likely(size));
5246 }
5247 EXPORT_SYMBOL(kmem_cache_free_bulk);
5248
5249 #ifndef CONFIG_SLUB_TINY
5250 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5251 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5252 void **p)
5253 {
5254 struct kmem_cache_cpu *c;
5255 unsigned long irqflags;
5256 int i;
5257
5258 /*
5259 * Drain objects in the per cpu slab, while disabling local
5260 * IRQs, which protects against PREEMPT and interrupts
5261 * handlers invoking normal fastpath.
5262 */
5263 c = slub_get_cpu_ptr(s->cpu_slab);
5264 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5265
5266 for (i = 0; i < size; i++) {
5267 void *object = kfence_alloc(s, s->object_size, flags);
5268
5269 if (unlikely(object)) {
5270 p[i] = object;
5271 continue;
5272 }
5273
5274 object = c->freelist;
5275 if (unlikely(!object)) {
5276 /*
5277 * We may have removed an object from c->freelist using
5278 * the fastpath in the previous iteration; in that case,
5279 * c->tid has not been bumped yet.
5280 * Since ___slab_alloc() may reenable interrupts while
5281 * allocating memory, we should bump c->tid now.
5282 */
5283 c->tid = next_tid(c->tid);
5284
5285 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5286
5287 /*
5288 * Invoking slow path likely have side-effect
5289 * of re-populating per CPU c->freelist
5290 */
5291 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5292 _RET_IP_, c, s->object_size);
5293 if (unlikely(!p[i]))
5294 goto error;
5295
5296 c = this_cpu_ptr(s->cpu_slab);
5297 maybe_wipe_obj_freeptr(s, p[i]);
5298
5299 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5300
5301 continue; /* goto for-loop */
5302 }
5303 c->freelist = get_freepointer(s, object);
5304 p[i] = object;
5305 maybe_wipe_obj_freeptr(s, p[i]);
5306 stat(s, ALLOC_FASTPATH);
5307 }
5308 c->tid = next_tid(c->tid);
5309 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5310 slub_put_cpu_ptr(s->cpu_slab);
5311
5312 return i;
5313
5314 error:
5315 slub_put_cpu_ptr(s->cpu_slab);
5316 __kmem_cache_free_bulk(s, i, p);
5317 return 0;
5318
5319 }
5320 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5321 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5322 size_t size, void **p)
5323 {
5324 int i;
5325
5326 for (i = 0; i < size; i++) {
5327 void *object = kfence_alloc(s, s->object_size, flags);
5328
5329 if (unlikely(object)) {
5330 p[i] = object;
5331 continue;
5332 }
5333
5334 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5335 _RET_IP_, s->object_size);
5336 if (unlikely(!p[i]))
5337 goto error;
5338
5339 maybe_wipe_obj_freeptr(s, p[i]);
5340 }
5341
5342 return i;
5343
5344 error:
5345 __kmem_cache_free_bulk(s, i, p);
5346 return 0;
5347 }
5348 #endif /* CONFIG_SLUB_TINY */
5349
5350 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5351 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5352 void **p)
5353 {
5354 int i;
5355
5356 if (!size)
5357 return 0;
5358
5359 s = slab_pre_alloc_hook(s, flags);
5360 if (unlikely(!s))
5361 return 0;
5362
5363 i = __kmem_cache_alloc_bulk(s, flags, size, p);
5364 if (unlikely(i == 0))
5365 return 0;
5366
5367 /*
5368 * memcg and kmem_cache debug support and memory initialization.
5369 * Done outside of the IRQ disabled fastpath loop.
5370 */
5371 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5372 slab_want_init_on_alloc(flags, s), s->object_size))) {
5373 return 0;
5374 }
5375 return i;
5376 }
5377 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5378
5379
5380 /*
5381 * Object placement in a slab is made very easy because we always start at
5382 * offset 0. If we tune the size of the object to the alignment then we can
5383 * get the required alignment by putting one properly sized object after
5384 * another.
5385 *
5386 * Notice that the allocation order determines the sizes of the per cpu
5387 * caches. Each processor has always one slab available for allocations.
5388 * Increasing the allocation order reduces the number of times that slabs
5389 * must be moved on and off the partial lists and is therefore a factor in
5390 * locking overhead.
5391 */
5392
5393 /*
5394 * Minimum / Maximum order of slab pages. This influences locking overhead
5395 * and slab fragmentation. A higher order reduces the number of partial slabs
5396 * and increases the number of allocations possible without having to
5397 * take the list_lock.
5398 */
5399 static unsigned int slub_min_order;
5400 static unsigned int slub_max_order =
5401 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5402 static unsigned int slub_min_objects;
5403
5404 /*
5405 * Calculate the order of allocation given an slab object size.
5406 *
5407 * The order of allocation has significant impact on performance and other
5408 * system components. Generally order 0 allocations should be preferred since
5409 * order 0 does not cause fragmentation in the page allocator. Larger objects
5410 * be problematic to put into order 0 slabs because there may be too much
5411 * unused space left. We go to a higher order if more than 1/16th of the slab
5412 * would be wasted.
5413 *
5414 * In order to reach satisfactory performance we must ensure that a minimum
5415 * number of objects is in one slab. Otherwise we may generate too much
5416 * activity on the partial lists which requires taking the list_lock. This is
5417 * less a concern for large slabs though which are rarely used.
5418 *
5419 * slab_max_order specifies the order where we begin to stop considering the
5420 * number of objects in a slab as critical. If we reach slab_max_order then
5421 * we try to keep the page order as low as possible. So we accept more waste
5422 * of space in favor of a small page order.
5423 *
5424 * Higher order allocations also allow the placement of more objects in a
5425 * slab and thereby reduce object handling overhead. If the user has
5426 * requested a higher minimum order then we start with that one instead of
5427 * the smallest order which will fit the object.
5428 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5429 static inline unsigned int calc_slab_order(unsigned int size,
5430 unsigned int min_order, unsigned int max_order,
5431 unsigned int fract_leftover)
5432 {
5433 unsigned int order;
5434
5435 for (order = min_order; order <= max_order; order++) {
5436
5437 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5438 unsigned int rem;
5439
5440 rem = slab_size % size;
5441
5442 if (rem <= slab_size / fract_leftover)
5443 break;
5444 }
5445
5446 return order;
5447 }
5448
calculate_order(unsigned int size)5449 static inline int calculate_order(unsigned int size)
5450 {
5451 unsigned int order;
5452 unsigned int min_objects;
5453 unsigned int max_objects;
5454 unsigned int min_order;
5455
5456 min_objects = slub_min_objects;
5457 if (!min_objects) {
5458 /*
5459 * Some architectures will only update present cpus when
5460 * onlining them, so don't trust the number if it's just 1. But
5461 * we also don't want to use nr_cpu_ids always, as on some other
5462 * architectures, there can be many possible cpus, but never
5463 * onlined. Here we compromise between trying to avoid too high
5464 * order on systems that appear larger than they are, and too
5465 * low order on systems that appear smaller than they are.
5466 */
5467 unsigned int nr_cpus = num_present_cpus();
5468 if (nr_cpus <= 1)
5469 nr_cpus = nr_cpu_ids;
5470 min_objects = 4 * (fls(nr_cpus) + 1);
5471 }
5472 /* min_objects can't be 0 because get_order(0) is undefined */
5473 max_objects = max(order_objects(slub_max_order, size), 1U);
5474 min_objects = min(min_objects, max_objects);
5475
5476 min_order = max_t(unsigned int, slub_min_order,
5477 get_order(min_objects * size));
5478 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5479 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5480
5481 /*
5482 * Attempt to find best configuration for a slab. This works by first
5483 * attempting to generate a layout with the best possible configuration
5484 * and backing off gradually.
5485 *
5486 * We start with accepting at most 1/16 waste and try to find the
5487 * smallest order from min_objects-derived/slab_min_order up to
5488 * slab_max_order that will satisfy the constraint. Note that increasing
5489 * the order can only result in same or less fractional waste, not more.
5490 *
5491 * If that fails, we increase the acceptable fraction of waste and try
5492 * again. The last iteration with fraction of 1/2 would effectively
5493 * accept any waste and give us the order determined by min_objects, as
5494 * long as at least single object fits within slab_max_order.
5495 */
5496 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5497 order = calc_slab_order(size, min_order, slub_max_order,
5498 fraction);
5499 if (order <= slub_max_order)
5500 return order;
5501 }
5502
5503 /*
5504 * Doh this slab cannot be placed using slab_max_order.
5505 */
5506 order = get_order(size);
5507 if (order <= MAX_PAGE_ORDER)
5508 return order;
5509 return -ENOSYS;
5510 }
5511
5512 static void
init_kmem_cache_node(struct kmem_cache_node * n)5513 init_kmem_cache_node(struct kmem_cache_node *n)
5514 {
5515 n->nr_partial = 0;
5516 spin_lock_init(&n->list_lock);
5517 INIT_LIST_HEAD(&n->partial);
5518 #ifdef CONFIG_SLUB_DEBUG
5519 atomic_long_set(&n->nr_slabs, 0);
5520 atomic_long_set(&n->total_objects, 0);
5521 INIT_LIST_HEAD(&n->full);
5522 #endif
5523 }
5524
5525 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5526 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5527 {
5528 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5529 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5530 sizeof(struct kmem_cache_cpu));
5531
5532 /*
5533 * Must align to double word boundary for the double cmpxchg
5534 * instructions to work; see __pcpu_double_call_return_bool().
5535 */
5536 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5537 2 * sizeof(void *));
5538
5539 if (!s->cpu_slab)
5540 return 0;
5541
5542 init_kmem_cache_cpus(s);
5543
5544 return 1;
5545 }
5546 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5547 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5548 {
5549 return 1;
5550 }
5551 #endif /* CONFIG_SLUB_TINY */
5552
5553 static struct kmem_cache *kmem_cache_node;
5554
5555 /*
5556 * No kmalloc_node yet so do it by hand. We know that this is the first
5557 * slab on the node for this slabcache. There are no concurrent accesses
5558 * possible.
5559 *
5560 * Note that this function only works on the kmem_cache_node
5561 * when allocating for the kmem_cache_node. This is used for bootstrapping
5562 * memory on a fresh node that has no slab structures yet.
5563 */
early_kmem_cache_node_alloc(int node)5564 static void early_kmem_cache_node_alloc(int node)
5565 {
5566 struct slab *slab;
5567 struct kmem_cache_node *n;
5568
5569 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5570
5571 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5572
5573 BUG_ON(!slab);
5574 if (slab_nid(slab) != node) {
5575 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5576 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5577 }
5578
5579 n = slab->freelist;
5580 BUG_ON(!n);
5581 #ifdef CONFIG_SLUB_DEBUG
5582 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5583 #endif
5584 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5585 slab->freelist = get_freepointer(kmem_cache_node, n);
5586 slab->inuse = 1;
5587 kmem_cache_node->node[node] = n;
5588 init_kmem_cache_node(n);
5589 inc_slabs_node(kmem_cache_node, node, slab->objects);
5590
5591 /*
5592 * No locks need to be taken here as it has just been
5593 * initialized and there is no concurrent access.
5594 */
5595 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5596 }
5597
free_kmem_cache_nodes(struct kmem_cache * s)5598 static void free_kmem_cache_nodes(struct kmem_cache *s)
5599 {
5600 int node;
5601 struct kmem_cache_node *n;
5602
5603 for_each_kmem_cache_node(s, node, n) {
5604 s->node[node] = NULL;
5605 kmem_cache_free(kmem_cache_node, n);
5606 }
5607 }
5608
__kmem_cache_release(struct kmem_cache * s)5609 void __kmem_cache_release(struct kmem_cache *s)
5610 {
5611 cache_random_seq_destroy(s);
5612 #ifndef CONFIG_SLUB_TINY
5613 free_percpu(s->cpu_slab);
5614 #endif
5615 free_kmem_cache_nodes(s);
5616 }
5617
init_kmem_cache_nodes(struct kmem_cache * s)5618 static int init_kmem_cache_nodes(struct kmem_cache *s)
5619 {
5620 int node;
5621
5622 for_each_node_mask(node, slab_nodes) {
5623 struct kmem_cache_node *n;
5624
5625 if (slab_state == DOWN) {
5626 early_kmem_cache_node_alloc(node);
5627 continue;
5628 }
5629 n = kmem_cache_alloc_node(kmem_cache_node,
5630 GFP_KERNEL, node);
5631
5632 if (!n) {
5633 free_kmem_cache_nodes(s);
5634 return 0;
5635 }
5636
5637 init_kmem_cache_node(n);
5638 s->node[node] = n;
5639 }
5640 return 1;
5641 }
5642
set_cpu_partial(struct kmem_cache * s)5643 static void set_cpu_partial(struct kmem_cache *s)
5644 {
5645 #ifdef CONFIG_SLUB_CPU_PARTIAL
5646 unsigned int nr_objects;
5647
5648 /*
5649 * cpu_partial determined the maximum number of objects kept in the
5650 * per cpu partial lists of a processor.
5651 *
5652 * Per cpu partial lists mainly contain slabs that just have one
5653 * object freed. If they are used for allocation then they can be
5654 * filled up again with minimal effort. The slab will never hit the
5655 * per node partial lists and therefore no locking will be required.
5656 *
5657 * For backwards compatibility reasons, this is determined as number
5658 * of objects, even though we now limit maximum number of pages, see
5659 * slub_set_cpu_partial()
5660 */
5661 if (!kmem_cache_has_cpu_partial(s))
5662 nr_objects = 0;
5663 else if (s->size >= PAGE_SIZE)
5664 nr_objects = 6;
5665 else if (s->size >= 1024)
5666 nr_objects = 24;
5667 else if (s->size >= 256)
5668 nr_objects = 52;
5669 else
5670 nr_objects = 120;
5671
5672 slub_set_cpu_partial(s, nr_objects);
5673 #endif
5674 }
5675
5676 /*
5677 * calculate_sizes() determines the order and the distribution of data within
5678 * a slab object.
5679 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5680 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5681 {
5682 slab_flags_t flags = s->flags;
5683 unsigned int size = s->object_size;
5684 unsigned int order;
5685
5686 /*
5687 * Round up object size to the next word boundary. We can only
5688 * place the free pointer at word boundaries and this determines
5689 * the possible location of the free pointer.
5690 */
5691 size = ALIGN(size, sizeof(void *));
5692
5693 #ifdef CONFIG_SLUB_DEBUG
5694 /*
5695 * Determine if we can poison the object itself. If the user of
5696 * the slab may touch the object after free or before allocation
5697 * then we should never poison the object itself.
5698 */
5699 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5700 !s->ctor)
5701 s->flags |= __OBJECT_POISON;
5702 else
5703 s->flags &= ~__OBJECT_POISON;
5704
5705
5706 /*
5707 * If we are Redzoning then check if there is some space between the
5708 * end of the object and the free pointer. If not then add an
5709 * additional word to have some bytes to store Redzone information.
5710 */
5711 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5712 size += sizeof(void *);
5713 #endif
5714
5715 /*
5716 * With that we have determined the number of bytes in actual use
5717 * by the object and redzoning.
5718 */
5719 s->inuse = size;
5720
5721 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5722 (flags & SLAB_POISON) || s->ctor ||
5723 ((flags & SLAB_RED_ZONE) &&
5724 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5725 /*
5726 * Relocate free pointer after the object if it is not
5727 * permitted to overwrite the first word of the object on
5728 * kmem_cache_free.
5729 *
5730 * This is the case if we do RCU, have a constructor or
5731 * destructor, are poisoning the objects, or are
5732 * redzoning an object smaller than sizeof(void *) or are
5733 * redzoning an object with slub_debug_orig_size() enabled,
5734 * in which case the right redzone may be extended.
5735 *
5736 * The assumption that s->offset >= s->inuse means free
5737 * pointer is outside of the object is used in the
5738 * freeptr_outside_object() function. If that is no
5739 * longer true, the function needs to be modified.
5740 */
5741 s->offset = size;
5742 size += sizeof(void *);
5743 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5744 s->offset = args->freeptr_offset;
5745 } else {
5746 /*
5747 * Store freelist pointer near middle of object to keep
5748 * it away from the edges of the object to avoid small
5749 * sized over/underflows from neighboring allocations.
5750 */
5751 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5752 }
5753
5754 #ifdef CONFIG_SLUB_DEBUG
5755 if (flags & SLAB_STORE_USER) {
5756 /*
5757 * Need to store information about allocs and frees after
5758 * the object.
5759 */
5760 size += 2 * sizeof(struct track);
5761
5762 /* Save the original kmalloc request size */
5763 if (flags & SLAB_KMALLOC)
5764 size += sizeof(unsigned int);
5765 }
5766 #endif
5767
5768 kasan_cache_create(s, &size, &s->flags);
5769 #ifdef CONFIG_SLUB_DEBUG
5770 if (flags & SLAB_RED_ZONE) {
5771 /*
5772 * Add some empty padding so that we can catch
5773 * overwrites from earlier objects rather than let
5774 * tracking information or the free pointer be
5775 * corrupted if a user writes before the start
5776 * of the object.
5777 */
5778 size += sizeof(void *);
5779
5780 s->red_left_pad = sizeof(void *);
5781 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5782 size += s->red_left_pad;
5783 }
5784 #endif
5785
5786 /*
5787 * SLUB stores one object immediately after another beginning from
5788 * offset 0. In order to align the objects we have to simply size
5789 * each object to conform to the alignment.
5790 */
5791 size = ALIGN(size, s->align);
5792 s->size = size;
5793 s->reciprocal_size = reciprocal_value(size);
5794 order = calculate_order(size);
5795
5796 if ((int)order < 0)
5797 return 0;
5798
5799 s->allocflags = __GFP_COMP;
5800
5801 if (s->flags & SLAB_CACHE_DMA)
5802 s->allocflags |= GFP_DMA;
5803
5804 if (s->flags & SLAB_CACHE_DMA32)
5805 s->allocflags |= GFP_DMA32;
5806
5807 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5808 s->allocflags |= __GFP_RECLAIMABLE;
5809
5810 /*
5811 * Determine the number of objects per slab
5812 */
5813 s->oo = oo_make(order, size);
5814 s->min = oo_make(get_order(size), size);
5815
5816 return !!oo_objects(s->oo);
5817 }
5818
list_slab_objects(struct kmem_cache * s,struct slab * slab)5819 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5820 {
5821 #ifdef CONFIG_SLUB_DEBUG
5822 void *addr = slab_address(slab);
5823 void *p;
5824
5825 if (!slab_add_kunit_errors())
5826 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5827
5828 spin_lock(&object_map_lock);
5829 __fill_map(object_map, s, slab);
5830
5831 for_each_object(p, s, addr, slab->objects) {
5832
5833 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5834 if (slab_add_kunit_errors())
5835 continue;
5836 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5837 print_tracking(s, p);
5838 }
5839 }
5840 spin_unlock(&object_map_lock);
5841
5842 __slab_err(slab);
5843 #endif
5844 }
5845
5846 /*
5847 * Attempt to free all partial slabs on a node.
5848 * This is called from __kmem_cache_shutdown(). We must take list_lock
5849 * because sysfs file might still access partial list after the shutdowning.
5850 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5851 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5852 {
5853 LIST_HEAD(discard);
5854 struct slab *slab, *h;
5855
5856 BUG_ON(irqs_disabled());
5857 spin_lock_irq(&n->list_lock);
5858 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5859 if (!slab->inuse) {
5860 remove_partial(n, slab);
5861 list_add(&slab->slab_list, &discard);
5862 } else {
5863 list_slab_objects(s, slab);
5864 }
5865 }
5866 spin_unlock_irq(&n->list_lock);
5867
5868 list_for_each_entry_safe(slab, h, &discard, slab_list)
5869 discard_slab(s, slab);
5870 }
5871
__kmem_cache_empty(struct kmem_cache * s)5872 bool __kmem_cache_empty(struct kmem_cache *s)
5873 {
5874 int node;
5875 struct kmem_cache_node *n;
5876
5877 for_each_kmem_cache_node(s, node, n)
5878 if (n->nr_partial || node_nr_slabs(n))
5879 return false;
5880 return true;
5881 }
5882
5883 /*
5884 * Release all resources used by a slab cache.
5885 */
__kmem_cache_shutdown(struct kmem_cache * s)5886 int __kmem_cache_shutdown(struct kmem_cache *s)
5887 {
5888 int node;
5889 struct kmem_cache_node *n;
5890
5891 flush_all_cpus_locked(s);
5892 /* Attempt to free all objects */
5893 for_each_kmem_cache_node(s, node, n) {
5894 free_partial(s, n);
5895 if (n->nr_partial || node_nr_slabs(n))
5896 return 1;
5897 }
5898 return 0;
5899 }
5900
5901 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5902 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5903 {
5904 void *base;
5905 int __maybe_unused i;
5906 unsigned int objnr;
5907 void *objp;
5908 void *objp0;
5909 struct kmem_cache *s = slab->slab_cache;
5910 struct track __maybe_unused *trackp;
5911
5912 kpp->kp_ptr = object;
5913 kpp->kp_slab = slab;
5914 kpp->kp_slab_cache = s;
5915 base = slab_address(slab);
5916 objp0 = kasan_reset_tag(object);
5917 #ifdef CONFIG_SLUB_DEBUG
5918 objp = restore_red_left(s, objp0);
5919 #else
5920 objp = objp0;
5921 #endif
5922 objnr = obj_to_index(s, slab, objp);
5923 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5924 objp = base + s->size * objnr;
5925 kpp->kp_objp = objp;
5926 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5927 || (objp - base) % s->size) ||
5928 !(s->flags & SLAB_STORE_USER))
5929 return;
5930 #ifdef CONFIG_SLUB_DEBUG
5931 objp = fixup_red_left(s, objp);
5932 trackp = get_track(s, objp, TRACK_ALLOC);
5933 kpp->kp_ret = (void *)trackp->addr;
5934 #ifdef CONFIG_STACKDEPOT
5935 {
5936 depot_stack_handle_t handle;
5937 unsigned long *entries;
5938 unsigned int nr_entries;
5939
5940 handle = READ_ONCE(trackp->handle);
5941 if (handle) {
5942 nr_entries = stack_depot_fetch(handle, &entries);
5943 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5944 kpp->kp_stack[i] = (void *)entries[i];
5945 }
5946
5947 trackp = get_track(s, objp, TRACK_FREE);
5948 handle = READ_ONCE(trackp->handle);
5949 if (handle) {
5950 nr_entries = stack_depot_fetch(handle, &entries);
5951 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5952 kpp->kp_free_stack[i] = (void *)entries[i];
5953 }
5954 }
5955 #endif
5956 #endif
5957 }
5958 #endif
5959
5960 /********************************************************************
5961 * Kmalloc subsystem
5962 *******************************************************************/
5963
setup_slub_min_order(char * str)5964 static int __init setup_slub_min_order(char *str)
5965 {
5966 get_option(&str, (int *)&slub_min_order);
5967
5968 if (slub_min_order > slub_max_order)
5969 slub_max_order = slub_min_order;
5970
5971 return 1;
5972 }
5973
5974 __setup("slab_min_order=", setup_slub_min_order);
5975 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5976
5977
setup_slub_max_order(char * str)5978 static int __init setup_slub_max_order(char *str)
5979 {
5980 get_option(&str, (int *)&slub_max_order);
5981 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5982
5983 if (slub_min_order > slub_max_order)
5984 slub_min_order = slub_max_order;
5985
5986 return 1;
5987 }
5988
5989 __setup("slab_max_order=", setup_slub_max_order);
5990 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5991
setup_slub_min_objects(char * str)5992 static int __init setup_slub_min_objects(char *str)
5993 {
5994 get_option(&str, (int *)&slub_min_objects);
5995
5996 return 1;
5997 }
5998
5999 __setup("slab_min_objects=", setup_slub_min_objects);
6000 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
6001
6002 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)6003 static int __init setup_slab_strict_numa(char *str)
6004 {
6005 if (nr_node_ids > 1) {
6006 static_branch_enable(&strict_numa);
6007 pr_info("SLUB: Strict NUMA enabled.\n");
6008 } else {
6009 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6010 }
6011
6012 return 1;
6013 }
6014
6015 __setup("slab_strict_numa", setup_slab_strict_numa);
6016 #endif
6017
6018
6019 #ifdef CONFIG_HARDENED_USERCOPY
6020 /*
6021 * Rejects incorrectly sized objects and objects that are to be copied
6022 * to/from userspace but do not fall entirely within the containing slab
6023 * cache's usercopy region.
6024 *
6025 * Returns NULL if check passes, otherwise const char * to name of cache
6026 * to indicate an error.
6027 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)6028 void __check_heap_object(const void *ptr, unsigned long n,
6029 const struct slab *slab, bool to_user)
6030 {
6031 struct kmem_cache *s;
6032 unsigned int offset;
6033 bool is_kfence = is_kfence_address(ptr);
6034
6035 ptr = kasan_reset_tag(ptr);
6036
6037 /* Find object and usable object size. */
6038 s = slab->slab_cache;
6039
6040 /* Reject impossible pointers. */
6041 if (ptr < slab_address(slab))
6042 usercopy_abort("SLUB object not in SLUB page?!", NULL,
6043 to_user, 0, n);
6044
6045 /* Find offset within object. */
6046 if (is_kfence)
6047 offset = ptr - kfence_object_start(ptr);
6048 else
6049 offset = (ptr - slab_address(slab)) % s->size;
6050
6051 /* Adjust for redzone and reject if within the redzone. */
6052 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6053 if (offset < s->red_left_pad)
6054 usercopy_abort("SLUB object in left red zone",
6055 s->name, to_user, offset, n);
6056 offset -= s->red_left_pad;
6057 }
6058
6059 /* Allow address range falling entirely within usercopy region. */
6060 if (offset >= s->useroffset &&
6061 offset - s->useroffset <= s->usersize &&
6062 n <= s->useroffset - offset + s->usersize)
6063 return;
6064
6065 usercopy_abort("SLUB object", s->name, to_user, offset, n);
6066 }
6067 #endif /* CONFIG_HARDENED_USERCOPY */
6068
6069 #define SHRINK_PROMOTE_MAX 32
6070
6071 /*
6072 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6073 * up most to the head of the partial lists. New allocations will then
6074 * fill those up and thus they can be removed from the partial lists.
6075 *
6076 * The slabs with the least items are placed last. This results in them
6077 * being allocated from last increasing the chance that the last objects
6078 * are freed in them.
6079 */
__kmem_cache_do_shrink(struct kmem_cache * s)6080 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6081 {
6082 int node;
6083 int i;
6084 struct kmem_cache_node *n;
6085 struct slab *slab;
6086 struct slab *t;
6087 struct list_head discard;
6088 struct list_head promote[SHRINK_PROMOTE_MAX];
6089 unsigned long flags;
6090 int ret = 0;
6091
6092 for_each_kmem_cache_node(s, node, n) {
6093 INIT_LIST_HEAD(&discard);
6094 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6095 INIT_LIST_HEAD(promote + i);
6096
6097 spin_lock_irqsave(&n->list_lock, flags);
6098
6099 /*
6100 * Build lists of slabs to discard or promote.
6101 *
6102 * Note that concurrent frees may occur while we hold the
6103 * list_lock. slab->inuse here is the upper limit.
6104 */
6105 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6106 int free = slab->objects - slab->inuse;
6107
6108 /* Do not reread slab->inuse */
6109 barrier();
6110
6111 /* We do not keep full slabs on the list */
6112 BUG_ON(free <= 0);
6113
6114 if (free == slab->objects) {
6115 list_move(&slab->slab_list, &discard);
6116 slab_clear_node_partial(slab);
6117 n->nr_partial--;
6118 dec_slabs_node(s, node, slab->objects);
6119 } else if (free <= SHRINK_PROMOTE_MAX)
6120 list_move(&slab->slab_list, promote + free - 1);
6121 }
6122
6123 /*
6124 * Promote the slabs filled up most to the head of the
6125 * partial list.
6126 */
6127 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6128 list_splice(promote + i, &n->partial);
6129
6130 spin_unlock_irqrestore(&n->list_lock, flags);
6131
6132 /* Release empty slabs */
6133 list_for_each_entry_safe(slab, t, &discard, slab_list)
6134 free_slab(s, slab);
6135
6136 if (node_nr_slabs(n))
6137 ret = 1;
6138 }
6139
6140 return ret;
6141 }
6142
__kmem_cache_shrink(struct kmem_cache * s)6143 int __kmem_cache_shrink(struct kmem_cache *s)
6144 {
6145 flush_all(s);
6146 return __kmem_cache_do_shrink(s);
6147 }
6148
slab_mem_going_offline_callback(void * arg)6149 static int slab_mem_going_offline_callback(void *arg)
6150 {
6151 struct kmem_cache *s;
6152
6153 mutex_lock(&slab_mutex);
6154 list_for_each_entry(s, &slab_caches, list) {
6155 flush_all_cpus_locked(s);
6156 __kmem_cache_do_shrink(s);
6157 }
6158 mutex_unlock(&slab_mutex);
6159
6160 return 0;
6161 }
6162
slab_mem_offline_callback(void * arg)6163 static void slab_mem_offline_callback(void *arg)
6164 {
6165 struct memory_notify *marg = arg;
6166 int offline_node;
6167
6168 offline_node = marg->status_change_nid_normal;
6169
6170 /*
6171 * If the node still has available memory. we need kmem_cache_node
6172 * for it yet.
6173 */
6174 if (offline_node < 0)
6175 return;
6176
6177 mutex_lock(&slab_mutex);
6178 node_clear(offline_node, slab_nodes);
6179 /*
6180 * We no longer free kmem_cache_node structures here, as it would be
6181 * racy with all get_node() users, and infeasible to protect them with
6182 * slab_mutex.
6183 */
6184 mutex_unlock(&slab_mutex);
6185 }
6186
slab_mem_going_online_callback(void * arg)6187 static int slab_mem_going_online_callback(void *arg)
6188 {
6189 struct kmem_cache_node *n;
6190 struct kmem_cache *s;
6191 struct memory_notify *marg = arg;
6192 int nid = marg->status_change_nid_normal;
6193 int ret = 0;
6194
6195 /*
6196 * If the node's memory is already available, then kmem_cache_node is
6197 * already created. Nothing to do.
6198 */
6199 if (nid < 0)
6200 return 0;
6201
6202 /*
6203 * We are bringing a node online. No memory is available yet. We must
6204 * allocate a kmem_cache_node structure in order to bring the node
6205 * online.
6206 */
6207 mutex_lock(&slab_mutex);
6208 list_for_each_entry(s, &slab_caches, list) {
6209 /*
6210 * The structure may already exist if the node was previously
6211 * onlined and offlined.
6212 */
6213 if (get_node(s, nid))
6214 continue;
6215 /*
6216 * XXX: kmem_cache_alloc_node will fallback to other nodes
6217 * since memory is not yet available from the node that
6218 * is brought up.
6219 */
6220 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6221 if (!n) {
6222 ret = -ENOMEM;
6223 goto out;
6224 }
6225 init_kmem_cache_node(n);
6226 s->node[nid] = n;
6227 }
6228 /*
6229 * Any cache created after this point will also have kmem_cache_node
6230 * initialized for the new node.
6231 */
6232 node_set(nid, slab_nodes);
6233 out:
6234 mutex_unlock(&slab_mutex);
6235 return ret;
6236 }
6237
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)6238 static int slab_memory_callback(struct notifier_block *self,
6239 unsigned long action, void *arg)
6240 {
6241 int ret = 0;
6242
6243 switch (action) {
6244 case MEM_GOING_ONLINE:
6245 ret = slab_mem_going_online_callback(arg);
6246 break;
6247 case MEM_GOING_OFFLINE:
6248 ret = slab_mem_going_offline_callback(arg);
6249 break;
6250 case MEM_OFFLINE:
6251 case MEM_CANCEL_ONLINE:
6252 slab_mem_offline_callback(arg);
6253 break;
6254 case MEM_ONLINE:
6255 case MEM_CANCEL_OFFLINE:
6256 break;
6257 }
6258 if (ret)
6259 ret = notifier_from_errno(ret);
6260 else
6261 ret = NOTIFY_OK;
6262 return ret;
6263 }
6264
6265 /********************************************************************
6266 * Basic setup of slabs
6267 *******************************************************************/
6268
6269 /*
6270 * Used for early kmem_cache structures that were allocated using
6271 * the page allocator. Allocate them properly then fix up the pointers
6272 * that may be pointing to the wrong kmem_cache structure.
6273 */
6274
bootstrap(struct kmem_cache * static_cache)6275 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6276 {
6277 int node;
6278 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6279 struct kmem_cache_node *n;
6280
6281 memcpy(s, static_cache, kmem_cache->object_size);
6282
6283 /*
6284 * This runs very early, and only the boot processor is supposed to be
6285 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6286 * IPIs around.
6287 */
6288 __flush_cpu_slab(s, smp_processor_id());
6289 for_each_kmem_cache_node(s, node, n) {
6290 struct slab *p;
6291
6292 list_for_each_entry(p, &n->partial, slab_list)
6293 p->slab_cache = s;
6294
6295 #ifdef CONFIG_SLUB_DEBUG
6296 list_for_each_entry(p, &n->full, slab_list)
6297 p->slab_cache = s;
6298 #endif
6299 }
6300 list_add(&s->list, &slab_caches);
6301 return s;
6302 }
6303
kmem_cache_init(void)6304 void __init kmem_cache_init(void)
6305 {
6306 static __initdata struct kmem_cache boot_kmem_cache,
6307 boot_kmem_cache_node;
6308 int node;
6309
6310 if (debug_guardpage_minorder())
6311 slub_max_order = 0;
6312
6313 /* Print slub debugging pointers without hashing */
6314 if (__slub_debug_enabled())
6315 no_hash_pointers_enable(NULL);
6316
6317 kmem_cache_node = &boot_kmem_cache_node;
6318 kmem_cache = &boot_kmem_cache;
6319
6320 /*
6321 * Initialize the nodemask for which we will allocate per node
6322 * structures. Here we don't need taking slab_mutex yet.
6323 */
6324 for_each_node_state(node, N_NORMAL_MEMORY)
6325 node_set(node, slab_nodes);
6326
6327 create_boot_cache(kmem_cache_node, "kmem_cache_node",
6328 sizeof(struct kmem_cache_node),
6329 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6330
6331 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6332
6333 /* Able to allocate the per node structures */
6334 slab_state = PARTIAL;
6335
6336 create_boot_cache(kmem_cache, "kmem_cache",
6337 offsetof(struct kmem_cache, node) +
6338 nr_node_ids * sizeof(struct kmem_cache_node *),
6339 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6340
6341 kmem_cache = bootstrap(&boot_kmem_cache);
6342 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6343
6344 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6345 setup_kmalloc_cache_index_table();
6346 create_kmalloc_caches();
6347
6348 /* Setup random freelists for each cache */
6349 init_freelist_randomization();
6350
6351 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6352 slub_cpu_dead);
6353
6354 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6355 cache_line_size(),
6356 slub_min_order, slub_max_order, slub_min_objects,
6357 nr_cpu_ids, nr_node_ids);
6358 }
6359
kmem_cache_init_late(void)6360 void __init kmem_cache_init_late(void)
6361 {
6362 #ifndef CONFIG_SLUB_TINY
6363 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6364 WARN_ON(!flushwq);
6365 #endif
6366 }
6367
6368 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6369 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6370 slab_flags_t flags, void (*ctor)(void *))
6371 {
6372 struct kmem_cache *s;
6373
6374 s = find_mergeable(size, align, flags, name, ctor);
6375 if (s) {
6376 if (sysfs_slab_alias(s, name))
6377 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6378 name);
6379
6380 s->refcount++;
6381
6382 /*
6383 * Adjust the object sizes so that we clear
6384 * the complete object on kzalloc.
6385 */
6386 s->object_size = max(s->object_size, size);
6387 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6388 }
6389
6390 return s;
6391 }
6392
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6393 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6394 unsigned int size, struct kmem_cache_args *args,
6395 slab_flags_t flags)
6396 {
6397 int err = -EINVAL;
6398
6399 s->name = name;
6400 s->size = s->object_size = size;
6401
6402 s->flags = kmem_cache_flags(flags, s->name);
6403 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6404 s->random = get_random_long();
6405 #endif
6406 s->align = args->align;
6407 s->ctor = args->ctor;
6408 #ifdef CONFIG_HARDENED_USERCOPY
6409 s->useroffset = args->useroffset;
6410 s->usersize = args->usersize;
6411 #endif
6412
6413 if (!calculate_sizes(args, s))
6414 goto out;
6415 if (disable_higher_order_debug) {
6416 /*
6417 * Disable debugging flags that store metadata if the min slab
6418 * order increased.
6419 */
6420 if (get_order(s->size) > get_order(s->object_size)) {
6421 s->flags &= ~DEBUG_METADATA_FLAGS;
6422 s->offset = 0;
6423 if (!calculate_sizes(args, s))
6424 goto out;
6425 }
6426 }
6427
6428 #ifdef system_has_freelist_aba
6429 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6430 /* Enable fast mode */
6431 s->flags |= __CMPXCHG_DOUBLE;
6432 }
6433 #endif
6434
6435 /*
6436 * The larger the object size is, the more slabs we want on the partial
6437 * list to avoid pounding the page allocator excessively.
6438 */
6439 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6440 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6441
6442 set_cpu_partial(s);
6443
6444 #ifdef CONFIG_NUMA
6445 s->remote_node_defrag_ratio = 1000;
6446 #endif
6447
6448 /* Initialize the pre-computed randomized freelist if slab is up */
6449 if (slab_state >= UP) {
6450 if (init_cache_random_seq(s))
6451 goto out;
6452 }
6453
6454 if (!init_kmem_cache_nodes(s))
6455 goto out;
6456
6457 if (!alloc_kmem_cache_cpus(s))
6458 goto out;
6459
6460 err = 0;
6461
6462 /* Mutex is not taken during early boot */
6463 if (slab_state <= UP)
6464 goto out;
6465
6466 /*
6467 * Failing to create sysfs files is not critical to SLUB functionality.
6468 * If it fails, proceed with cache creation without these files.
6469 */
6470 if (sysfs_slab_add(s))
6471 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6472
6473 if (s->flags & SLAB_STORE_USER)
6474 debugfs_slab_add(s);
6475
6476 out:
6477 if (err)
6478 __kmem_cache_release(s);
6479 return err;
6480 }
6481
6482 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6483 static int count_inuse(struct slab *slab)
6484 {
6485 return slab->inuse;
6486 }
6487
count_total(struct slab * slab)6488 static int count_total(struct slab *slab)
6489 {
6490 return slab->objects;
6491 }
6492 #endif
6493
6494 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6495 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6496 unsigned long *obj_map)
6497 {
6498 void *p;
6499 void *addr = slab_address(slab);
6500
6501 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6502 return;
6503
6504 /* Now we know that a valid freelist exists */
6505 __fill_map(obj_map, s, slab);
6506 for_each_object(p, s, addr, slab->objects) {
6507 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6508 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6509
6510 if (!check_object(s, slab, p, val))
6511 break;
6512 }
6513 }
6514
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6515 static int validate_slab_node(struct kmem_cache *s,
6516 struct kmem_cache_node *n, unsigned long *obj_map)
6517 {
6518 unsigned long count = 0;
6519 struct slab *slab;
6520 unsigned long flags;
6521
6522 spin_lock_irqsave(&n->list_lock, flags);
6523
6524 list_for_each_entry(slab, &n->partial, slab_list) {
6525 validate_slab(s, slab, obj_map);
6526 count++;
6527 }
6528 if (count != n->nr_partial) {
6529 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6530 s->name, count, n->nr_partial);
6531 slab_add_kunit_errors();
6532 }
6533
6534 if (!(s->flags & SLAB_STORE_USER))
6535 goto out;
6536
6537 list_for_each_entry(slab, &n->full, slab_list) {
6538 validate_slab(s, slab, obj_map);
6539 count++;
6540 }
6541 if (count != node_nr_slabs(n)) {
6542 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6543 s->name, count, node_nr_slabs(n));
6544 slab_add_kunit_errors();
6545 }
6546
6547 out:
6548 spin_unlock_irqrestore(&n->list_lock, flags);
6549 return count;
6550 }
6551
validate_slab_cache(struct kmem_cache * s)6552 long validate_slab_cache(struct kmem_cache *s)
6553 {
6554 int node;
6555 unsigned long count = 0;
6556 struct kmem_cache_node *n;
6557 unsigned long *obj_map;
6558
6559 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6560 if (!obj_map)
6561 return -ENOMEM;
6562
6563 flush_all(s);
6564 for_each_kmem_cache_node(s, node, n)
6565 count += validate_slab_node(s, n, obj_map);
6566
6567 bitmap_free(obj_map);
6568
6569 return count;
6570 }
6571 EXPORT_SYMBOL(validate_slab_cache);
6572
6573 #ifdef CONFIG_DEBUG_FS
6574 /*
6575 * Generate lists of code addresses where slabcache objects are allocated
6576 * and freed.
6577 */
6578
6579 struct location {
6580 depot_stack_handle_t handle;
6581 unsigned long count;
6582 unsigned long addr;
6583 unsigned long waste;
6584 long long sum_time;
6585 long min_time;
6586 long max_time;
6587 long min_pid;
6588 long max_pid;
6589 DECLARE_BITMAP(cpus, NR_CPUS);
6590 nodemask_t nodes;
6591 };
6592
6593 struct loc_track {
6594 unsigned long max;
6595 unsigned long count;
6596 struct location *loc;
6597 loff_t idx;
6598 };
6599
6600 static struct dentry *slab_debugfs_root;
6601
free_loc_track(struct loc_track * t)6602 static void free_loc_track(struct loc_track *t)
6603 {
6604 if (t->max)
6605 free_pages((unsigned long)t->loc,
6606 get_order(sizeof(struct location) * t->max));
6607 }
6608
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6609 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6610 {
6611 struct location *l;
6612 int order;
6613
6614 order = get_order(sizeof(struct location) * max);
6615
6616 l = (void *)__get_free_pages(flags, order);
6617 if (!l)
6618 return 0;
6619
6620 if (t->count) {
6621 memcpy(l, t->loc, sizeof(struct location) * t->count);
6622 free_loc_track(t);
6623 }
6624 t->max = max;
6625 t->loc = l;
6626 return 1;
6627 }
6628
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6629 static int add_location(struct loc_track *t, struct kmem_cache *s,
6630 const struct track *track,
6631 unsigned int orig_size)
6632 {
6633 long start, end, pos;
6634 struct location *l;
6635 unsigned long caddr, chandle, cwaste;
6636 unsigned long age = jiffies - track->when;
6637 depot_stack_handle_t handle = 0;
6638 unsigned int waste = s->object_size - orig_size;
6639
6640 #ifdef CONFIG_STACKDEPOT
6641 handle = READ_ONCE(track->handle);
6642 #endif
6643 start = -1;
6644 end = t->count;
6645
6646 for ( ; ; ) {
6647 pos = start + (end - start + 1) / 2;
6648
6649 /*
6650 * There is nothing at "end". If we end up there
6651 * we need to add something to before end.
6652 */
6653 if (pos == end)
6654 break;
6655
6656 l = &t->loc[pos];
6657 caddr = l->addr;
6658 chandle = l->handle;
6659 cwaste = l->waste;
6660 if ((track->addr == caddr) && (handle == chandle) &&
6661 (waste == cwaste)) {
6662
6663 l->count++;
6664 if (track->when) {
6665 l->sum_time += age;
6666 if (age < l->min_time)
6667 l->min_time = age;
6668 if (age > l->max_time)
6669 l->max_time = age;
6670
6671 if (track->pid < l->min_pid)
6672 l->min_pid = track->pid;
6673 if (track->pid > l->max_pid)
6674 l->max_pid = track->pid;
6675
6676 cpumask_set_cpu(track->cpu,
6677 to_cpumask(l->cpus));
6678 }
6679 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6680 return 1;
6681 }
6682
6683 if (track->addr < caddr)
6684 end = pos;
6685 else if (track->addr == caddr && handle < chandle)
6686 end = pos;
6687 else if (track->addr == caddr && handle == chandle &&
6688 waste < cwaste)
6689 end = pos;
6690 else
6691 start = pos;
6692 }
6693
6694 /*
6695 * Not found. Insert new tracking element.
6696 */
6697 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6698 return 0;
6699
6700 l = t->loc + pos;
6701 if (pos < t->count)
6702 memmove(l + 1, l,
6703 (t->count - pos) * sizeof(struct location));
6704 t->count++;
6705 l->count = 1;
6706 l->addr = track->addr;
6707 l->sum_time = age;
6708 l->min_time = age;
6709 l->max_time = age;
6710 l->min_pid = track->pid;
6711 l->max_pid = track->pid;
6712 l->handle = handle;
6713 l->waste = waste;
6714 cpumask_clear(to_cpumask(l->cpus));
6715 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6716 nodes_clear(l->nodes);
6717 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6718 return 1;
6719 }
6720
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6721 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6722 struct slab *slab, enum track_item alloc,
6723 unsigned long *obj_map)
6724 {
6725 void *addr = slab_address(slab);
6726 bool is_alloc = (alloc == TRACK_ALLOC);
6727 void *p;
6728
6729 __fill_map(obj_map, s, slab);
6730
6731 for_each_object(p, s, addr, slab->objects)
6732 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6733 add_location(t, s, get_track(s, p, alloc),
6734 is_alloc ? get_orig_size(s, p) :
6735 s->object_size);
6736 }
6737 #endif /* CONFIG_DEBUG_FS */
6738 #endif /* CONFIG_SLUB_DEBUG */
6739
6740 #ifdef SLAB_SUPPORTS_SYSFS
6741 enum slab_stat_type {
6742 SL_ALL, /* All slabs */
6743 SL_PARTIAL, /* Only partially allocated slabs */
6744 SL_CPU, /* Only slabs used for cpu caches */
6745 SL_OBJECTS, /* Determine allocated objects not slabs */
6746 SL_TOTAL /* Determine object capacity not slabs */
6747 };
6748
6749 #define SO_ALL (1 << SL_ALL)
6750 #define SO_PARTIAL (1 << SL_PARTIAL)
6751 #define SO_CPU (1 << SL_CPU)
6752 #define SO_OBJECTS (1 << SL_OBJECTS)
6753 #define SO_TOTAL (1 << SL_TOTAL)
6754
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6755 static ssize_t show_slab_objects(struct kmem_cache *s,
6756 char *buf, unsigned long flags)
6757 {
6758 unsigned long total = 0;
6759 int node;
6760 int x;
6761 unsigned long *nodes;
6762 int len = 0;
6763
6764 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6765 if (!nodes)
6766 return -ENOMEM;
6767
6768 if (flags & SO_CPU) {
6769 int cpu;
6770
6771 for_each_possible_cpu(cpu) {
6772 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6773 cpu);
6774 int node;
6775 struct slab *slab;
6776
6777 slab = READ_ONCE(c->slab);
6778 if (!slab)
6779 continue;
6780
6781 node = slab_nid(slab);
6782 if (flags & SO_TOTAL)
6783 x = slab->objects;
6784 else if (flags & SO_OBJECTS)
6785 x = slab->inuse;
6786 else
6787 x = 1;
6788
6789 total += x;
6790 nodes[node] += x;
6791
6792 #ifdef CONFIG_SLUB_CPU_PARTIAL
6793 slab = slub_percpu_partial_read_once(c);
6794 if (slab) {
6795 node = slab_nid(slab);
6796 if (flags & SO_TOTAL)
6797 WARN_ON_ONCE(1);
6798 else if (flags & SO_OBJECTS)
6799 WARN_ON_ONCE(1);
6800 else
6801 x = data_race(slab->slabs);
6802 total += x;
6803 nodes[node] += x;
6804 }
6805 #endif
6806 }
6807 }
6808
6809 /*
6810 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6811 * already held which will conflict with an existing lock order:
6812 *
6813 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6814 *
6815 * We don't really need mem_hotplug_lock (to hold off
6816 * slab_mem_going_offline_callback) here because slab's memory hot
6817 * unplug code doesn't destroy the kmem_cache->node[] data.
6818 */
6819
6820 #ifdef CONFIG_SLUB_DEBUG
6821 if (flags & SO_ALL) {
6822 struct kmem_cache_node *n;
6823
6824 for_each_kmem_cache_node(s, node, n) {
6825
6826 if (flags & SO_TOTAL)
6827 x = node_nr_objs(n);
6828 else if (flags & SO_OBJECTS)
6829 x = node_nr_objs(n) - count_partial(n, count_free);
6830 else
6831 x = node_nr_slabs(n);
6832 total += x;
6833 nodes[node] += x;
6834 }
6835
6836 } else
6837 #endif
6838 if (flags & SO_PARTIAL) {
6839 struct kmem_cache_node *n;
6840
6841 for_each_kmem_cache_node(s, node, n) {
6842 if (flags & SO_TOTAL)
6843 x = count_partial(n, count_total);
6844 else if (flags & SO_OBJECTS)
6845 x = count_partial(n, count_inuse);
6846 else
6847 x = n->nr_partial;
6848 total += x;
6849 nodes[node] += x;
6850 }
6851 }
6852
6853 len += sysfs_emit_at(buf, len, "%lu", total);
6854 #ifdef CONFIG_NUMA
6855 for (node = 0; node < nr_node_ids; node++) {
6856 if (nodes[node])
6857 len += sysfs_emit_at(buf, len, " N%d=%lu",
6858 node, nodes[node]);
6859 }
6860 #endif
6861 len += sysfs_emit_at(buf, len, "\n");
6862 kfree(nodes);
6863
6864 return len;
6865 }
6866
6867 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6868 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6869
6870 struct slab_attribute {
6871 struct attribute attr;
6872 ssize_t (*show)(struct kmem_cache *s, char *buf);
6873 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6874 };
6875
6876 #define SLAB_ATTR_RO(_name) \
6877 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6878
6879 #define SLAB_ATTR(_name) \
6880 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6881
slab_size_show(struct kmem_cache * s,char * buf)6882 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6883 {
6884 return sysfs_emit(buf, "%u\n", s->size);
6885 }
6886 SLAB_ATTR_RO(slab_size);
6887
align_show(struct kmem_cache * s,char * buf)6888 static ssize_t align_show(struct kmem_cache *s, char *buf)
6889 {
6890 return sysfs_emit(buf, "%u\n", s->align);
6891 }
6892 SLAB_ATTR_RO(align);
6893
object_size_show(struct kmem_cache * s,char * buf)6894 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6895 {
6896 return sysfs_emit(buf, "%u\n", s->object_size);
6897 }
6898 SLAB_ATTR_RO(object_size);
6899
objs_per_slab_show(struct kmem_cache * s,char * buf)6900 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6901 {
6902 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6903 }
6904 SLAB_ATTR_RO(objs_per_slab);
6905
order_show(struct kmem_cache * s,char * buf)6906 static ssize_t order_show(struct kmem_cache *s, char *buf)
6907 {
6908 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6909 }
6910 SLAB_ATTR_RO(order);
6911
min_partial_show(struct kmem_cache * s,char * buf)6912 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6913 {
6914 return sysfs_emit(buf, "%lu\n", s->min_partial);
6915 }
6916
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6917 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6918 size_t length)
6919 {
6920 unsigned long min;
6921 int err;
6922
6923 err = kstrtoul(buf, 10, &min);
6924 if (err)
6925 return err;
6926
6927 s->min_partial = min;
6928 return length;
6929 }
6930 SLAB_ATTR(min_partial);
6931
cpu_partial_show(struct kmem_cache * s,char * buf)6932 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6933 {
6934 unsigned int nr_partial = 0;
6935 #ifdef CONFIG_SLUB_CPU_PARTIAL
6936 nr_partial = s->cpu_partial;
6937 #endif
6938
6939 return sysfs_emit(buf, "%u\n", nr_partial);
6940 }
6941
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6942 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6943 size_t length)
6944 {
6945 unsigned int objects;
6946 int err;
6947
6948 err = kstrtouint(buf, 10, &objects);
6949 if (err)
6950 return err;
6951 if (objects && !kmem_cache_has_cpu_partial(s))
6952 return -EINVAL;
6953
6954 slub_set_cpu_partial(s, objects);
6955 flush_all(s);
6956 return length;
6957 }
6958 SLAB_ATTR(cpu_partial);
6959
ctor_show(struct kmem_cache * s,char * buf)6960 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6961 {
6962 if (!s->ctor)
6963 return 0;
6964 return sysfs_emit(buf, "%pS\n", s->ctor);
6965 }
6966 SLAB_ATTR_RO(ctor);
6967
aliases_show(struct kmem_cache * s,char * buf)6968 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6969 {
6970 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6971 }
6972 SLAB_ATTR_RO(aliases);
6973
partial_show(struct kmem_cache * s,char * buf)6974 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6975 {
6976 return show_slab_objects(s, buf, SO_PARTIAL);
6977 }
6978 SLAB_ATTR_RO(partial);
6979
cpu_slabs_show(struct kmem_cache * s,char * buf)6980 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6981 {
6982 return show_slab_objects(s, buf, SO_CPU);
6983 }
6984 SLAB_ATTR_RO(cpu_slabs);
6985
objects_partial_show(struct kmem_cache * s,char * buf)6986 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6987 {
6988 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6989 }
6990 SLAB_ATTR_RO(objects_partial);
6991
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6992 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6993 {
6994 int objects = 0;
6995 int slabs = 0;
6996 int cpu __maybe_unused;
6997 int len = 0;
6998
6999 #ifdef CONFIG_SLUB_CPU_PARTIAL
7000 for_each_online_cpu(cpu) {
7001 struct slab *slab;
7002
7003 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7004
7005 if (slab)
7006 slabs += data_race(slab->slabs);
7007 }
7008 #endif
7009
7010 /* Approximate half-full slabs, see slub_set_cpu_partial() */
7011 objects = (slabs * oo_objects(s->oo)) / 2;
7012 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7013
7014 #ifdef CONFIG_SLUB_CPU_PARTIAL
7015 for_each_online_cpu(cpu) {
7016 struct slab *slab;
7017
7018 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7019 if (slab) {
7020 slabs = data_race(slab->slabs);
7021 objects = (slabs * oo_objects(s->oo)) / 2;
7022 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7023 cpu, objects, slabs);
7024 }
7025 }
7026 #endif
7027 len += sysfs_emit_at(buf, len, "\n");
7028
7029 return len;
7030 }
7031 SLAB_ATTR_RO(slabs_cpu_partial);
7032
reclaim_account_show(struct kmem_cache * s,char * buf)7033 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7034 {
7035 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7036 }
7037 SLAB_ATTR_RO(reclaim_account);
7038
hwcache_align_show(struct kmem_cache * s,char * buf)7039 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7040 {
7041 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7042 }
7043 SLAB_ATTR_RO(hwcache_align);
7044
7045 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)7046 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7047 {
7048 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7049 }
7050 SLAB_ATTR_RO(cache_dma);
7051 #endif
7052
7053 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)7054 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7055 {
7056 return sysfs_emit(buf, "%u\n", s->usersize);
7057 }
7058 SLAB_ATTR_RO(usersize);
7059 #endif
7060
destroy_by_rcu_show(struct kmem_cache * s,char * buf)7061 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7062 {
7063 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7064 }
7065 SLAB_ATTR_RO(destroy_by_rcu);
7066
7067 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)7068 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7069 {
7070 return show_slab_objects(s, buf, SO_ALL);
7071 }
7072 SLAB_ATTR_RO(slabs);
7073
total_objects_show(struct kmem_cache * s,char * buf)7074 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7075 {
7076 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7077 }
7078 SLAB_ATTR_RO(total_objects);
7079
objects_show(struct kmem_cache * s,char * buf)7080 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7081 {
7082 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7083 }
7084 SLAB_ATTR_RO(objects);
7085
sanity_checks_show(struct kmem_cache * s,char * buf)7086 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7087 {
7088 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7089 }
7090 SLAB_ATTR_RO(sanity_checks);
7091
trace_show(struct kmem_cache * s,char * buf)7092 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7093 {
7094 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7095 }
7096 SLAB_ATTR_RO(trace);
7097
red_zone_show(struct kmem_cache * s,char * buf)7098 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7099 {
7100 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7101 }
7102
7103 SLAB_ATTR_RO(red_zone);
7104
poison_show(struct kmem_cache * s,char * buf)7105 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7106 {
7107 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7108 }
7109
7110 SLAB_ATTR_RO(poison);
7111
store_user_show(struct kmem_cache * s,char * buf)7112 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7113 {
7114 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7115 }
7116
7117 SLAB_ATTR_RO(store_user);
7118
validate_show(struct kmem_cache * s,char * buf)7119 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7120 {
7121 return 0;
7122 }
7123
validate_store(struct kmem_cache * s,const char * buf,size_t length)7124 static ssize_t validate_store(struct kmem_cache *s,
7125 const char *buf, size_t length)
7126 {
7127 int ret = -EINVAL;
7128
7129 if (buf[0] == '1' && kmem_cache_debug(s)) {
7130 ret = validate_slab_cache(s);
7131 if (ret >= 0)
7132 ret = length;
7133 }
7134 return ret;
7135 }
7136 SLAB_ATTR(validate);
7137
7138 #endif /* CONFIG_SLUB_DEBUG */
7139
7140 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)7141 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7142 {
7143 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7144 }
7145
failslab_store(struct kmem_cache * s,const char * buf,size_t length)7146 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7147 size_t length)
7148 {
7149 if (s->refcount > 1)
7150 return -EINVAL;
7151
7152 if (buf[0] == '1')
7153 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7154 else
7155 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7156
7157 return length;
7158 }
7159 SLAB_ATTR(failslab);
7160 #endif
7161
shrink_show(struct kmem_cache * s,char * buf)7162 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7163 {
7164 return 0;
7165 }
7166
shrink_store(struct kmem_cache * s,const char * buf,size_t length)7167 static ssize_t shrink_store(struct kmem_cache *s,
7168 const char *buf, size_t length)
7169 {
7170 if (buf[0] == '1')
7171 kmem_cache_shrink(s);
7172 else
7173 return -EINVAL;
7174 return length;
7175 }
7176 SLAB_ATTR(shrink);
7177
7178 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)7179 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7180 {
7181 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7182 }
7183
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)7184 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7185 const char *buf, size_t length)
7186 {
7187 unsigned int ratio;
7188 int err;
7189
7190 err = kstrtouint(buf, 10, &ratio);
7191 if (err)
7192 return err;
7193 if (ratio > 100)
7194 return -ERANGE;
7195
7196 s->remote_node_defrag_ratio = ratio * 10;
7197
7198 return length;
7199 }
7200 SLAB_ATTR(remote_node_defrag_ratio);
7201 #endif
7202
7203 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)7204 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7205 {
7206 unsigned long sum = 0;
7207 int cpu;
7208 int len = 0;
7209 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7210
7211 if (!data)
7212 return -ENOMEM;
7213
7214 for_each_online_cpu(cpu) {
7215 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7216
7217 data[cpu] = x;
7218 sum += x;
7219 }
7220
7221 len += sysfs_emit_at(buf, len, "%lu", sum);
7222
7223 #ifdef CONFIG_SMP
7224 for_each_online_cpu(cpu) {
7225 if (data[cpu])
7226 len += sysfs_emit_at(buf, len, " C%d=%u",
7227 cpu, data[cpu]);
7228 }
7229 #endif
7230 kfree(data);
7231 len += sysfs_emit_at(buf, len, "\n");
7232
7233 return len;
7234 }
7235
clear_stat(struct kmem_cache * s,enum stat_item si)7236 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7237 {
7238 int cpu;
7239
7240 for_each_online_cpu(cpu)
7241 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7242 }
7243
7244 #define STAT_ATTR(si, text) \
7245 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7246 { \
7247 return show_stat(s, buf, si); \
7248 } \
7249 static ssize_t text##_store(struct kmem_cache *s, \
7250 const char *buf, size_t length) \
7251 { \
7252 if (buf[0] != '0') \
7253 return -EINVAL; \
7254 clear_stat(s, si); \
7255 return length; \
7256 } \
7257 SLAB_ATTR(text); \
7258
7259 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7260 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7261 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7262 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7263 STAT_ATTR(FREE_FROZEN, free_frozen);
7264 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7265 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7266 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7267 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7268 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7269 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7270 STAT_ATTR(FREE_SLAB, free_slab);
7271 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7272 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7273 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7274 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7275 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7276 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7277 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7278 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7279 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7280 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7281 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7282 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7283 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7284 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7285 #endif /* CONFIG_SLUB_STATS */
7286
7287 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)7288 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7289 {
7290 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7291 }
7292
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)7293 static ssize_t skip_kfence_store(struct kmem_cache *s,
7294 const char *buf, size_t length)
7295 {
7296 int ret = length;
7297
7298 if (buf[0] == '0')
7299 s->flags &= ~SLAB_SKIP_KFENCE;
7300 else if (buf[0] == '1')
7301 s->flags |= SLAB_SKIP_KFENCE;
7302 else
7303 ret = -EINVAL;
7304
7305 return ret;
7306 }
7307 SLAB_ATTR(skip_kfence);
7308 #endif
7309
7310 static struct attribute *slab_attrs[] = {
7311 &slab_size_attr.attr,
7312 &object_size_attr.attr,
7313 &objs_per_slab_attr.attr,
7314 &order_attr.attr,
7315 &min_partial_attr.attr,
7316 &cpu_partial_attr.attr,
7317 &objects_partial_attr.attr,
7318 &partial_attr.attr,
7319 &cpu_slabs_attr.attr,
7320 &ctor_attr.attr,
7321 &aliases_attr.attr,
7322 &align_attr.attr,
7323 &hwcache_align_attr.attr,
7324 &reclaim_account_attr.attr,
7325 &destroy_by_rcu_attr.attr,
7326 &shrink_attr.attr,
7327 &slabs_cpu_partial_attr.attr,
7328 #ifdef CONFIG_SLUB_DEBUG
7329 &total_objects_attr.attr,
7330 &objects_attr.attr,
7331 &slabs_attr.attr,
7332 &sanity_checks_attr.attr,
7333 &trace_attr.attr,
7334 &red_zone_attr.attr,
7335 &poison_attr.attr,
7336 &store_user_attr.attr,
7337 &validate_attr.attr,
7338 #endif
7339 #ifdef CONFIG_ZONE_DMA
7340 &cache_dma_attr.attr,
7341 #endif
7342 #ifdef CONFIG_NUMA
7343 &remote_node_defrag_ratio_attr.attr,
7344 #endif
7345 #ifdef CONFIG_SLUB_STATS
7346 &alloc_fastpath_attr.attr,
7347 &alloc_slowpath_attr.attr,
7348 &free_fastpath_attr.attr,
7349 &free_slowpath_attr.attr,
7350 &free_frozen_attr.attr,
7351 &free_add_partial_attr.attr,
7352 &free_remove_partial_attr.attr,
7353 &alloc_from_partial_attr.attr,
7354 &alloc_slab_attr.attr,
7355 &alloc_refill_attr.attr,
7356 &alloc_node_mismatch_attr.attr,
7357 &free_slab_attr.attr,
7358 &cpuslab_flush_attr.attr,
7359 &deactivate_full_attr.attr,
7360 &deactivate_empty_attr.attr,
7361 &deactivate_to_head_attr.attr,
7362 &deactivate_to_tail_attr.attr,
7363 &deactivate_remote_frees_attr.attr,
7364 &deactivate_bypass_attr.attr,
7365 &order_fallback_attr.attr,
7366 &cmpxchg_double_fail_attr.attr,
7367 &cmpxchg_double_cpu_fail_attr.attr,
7368 &cpu_partial_alloc_attr.attr,
7369 &cpu_partial_free_attr.attr,
7370 &cpu_partial_node_attr.attr,
7371 &cpu_partial_drain_attr.attr,
7372 #endif
7373 #ifdef CONFIG_FAILSLAB
7374 &failslab_attr.attr,
7375 #endif
7376 #ifdef CONFIG_HARDENED_USERCOPY
7377 &usersize_attr.attr,
7378 #endif
7379 #ifdef CONFIG_KFENCE
7380 &skip_kfence_attr.attr,
7381 #endif
7382
7383 NULL
7384 };
7385
7386 static const struct attribute_group slab_attr_group = {
7387 .attrs = slab_attrs,
7388 };
7389
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7390 static ssize_t slab_attr_show(struct kobject *kobj,
7391 struct attribute *attr,
7392 char *buf)
7393 {
7394 struct slab_attribute *attribute;
7395 struct kmem_cache *s;
7396
7397 attribute = to_slab_attr(attr);
7398 s = to_slab(kobj);
7399
7400 if (!attribute->show)
7401 return -EIO;
7402
7403 return attribute->show(s, buf);
7404 }
7405
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7406 static ssize_t slab_attr_store(struct kobject *kobj,
7407 struct attribute *attr,
7408 const char *buf, size_t len)
7409 {
7410 struct slab_attribute *attribute;
7411 struct kmem_cache *s;
7412
7413 attribute = to_slab_attr(attr);
7414 s = to_slab(kobj);
7415
7416 if (!attribute->store)
7417 return -EIO;
7418
7419 return attribute->store(s, buf, len);
7420 }
7421
kmem_cache_release(struct kobject * k)7422 static void kmem_cache_release(struct kobject *k)
7423 {
7424 slab_kmem_cache_release(to_slab(k));
7425 }
7426
7427 static const struct sysfs_ops slab_sysfs_ops = {
7428 .show = slab_attr_show,
7429 .store = slab_attr_store,
7430 };
7431
7432 static const struct kobj_type slab_ktype = {
7433 .sysfs_ops = &slab_sysfs_ops,
7434 .release = kmem_cache_release,
7435 };
7436
7437 static struct kset *slab_kset;
7438
cache_kset(struct kmem_cache * s)7439 static inline struct kset *cache_kset(struct kmem_cache *s)
7440 {
7441 return slab_kset;
7442 }
7443
7444 #define ID_STR_LENGTH 32
7445
7446 /* Create a unique string id for a slab cache:
7447 *
7448 * Format :[flags-]size
7449 */
create_unique_id(struct kmem_cache * s)7450 static char *create_unique_id(struct kmem_cache *s)
7451 {
7452 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7453 char *p = name;
7454
7455 if (!name)
7456 return ERR_PTR(-ENOMEM);
7457
7458 *p++ = ':';
7459 /*
7460 * First flags affecting slabcache operations. We will only
7461 * get here for aliasable slabs so we do not need to support
7462 * too many flags. The flags here must cover all flags that
7463 * are matched during merging to guarantee that the id is
7464 * unique.
7465 */
7466 if (s->flags & SLAB_CACHE_DMA)
7467 *p++ = 'd';
7468 if (s->flags & SLAB_CACHE_DMA32)
7469 *p++ = 'D';
7470 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7471 *p++ = 'a';
7472 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7473 *p++ = 'F';
7474 if (s->flags & SLAB_ACCOUNT)
7475 *p++ = 'A';
7476 if (p != name + 1)
7477 *p++ = '-';
7478 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7479
7480 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7481 kfree(name);
7482 return ERR_PTR(-EINVAL);
7483 }
7484 kmsan_unpoison_memory(name, p - name);
7485 return name;
7486 }
7487
sysfs_slab_add(struct kmem_cache * s)7488 static int sysfs_slab_add(struct kmem_cache *s)
7489 {
7490 int err;
7491 const char *name;
7492 struct kset *kset = cache_kset(s);
7493 int unmergeable = slab_unmergeable(s);
7494
7495 if (!unmergeable && disable_higher_order_debug &&
7496 (slub_debug & DEBUG_METADATA_FLAGS))
7497 unmergeable = 1;
7498
7499 if (unmergeable) {
7500 /*
7501 * Slabcache can never be merged so we can use the name proper.
7502 * This is typically the case for debug situations. In that
7503 * case we can catch duplicate names easily.
7504 */
7505 sysfs_remove_link(&slab_kset->kobj, s->name);
7506 name = s->name;
7507 } else {
7508 /*
7509 * Create a unique name for the slab as a target
7510 * for the symlinks.
7511 */
7512 name = create_unique_id(s);
7513 if (IS_ERR(name))
7514 return PTR_ERR(name);
7515 }
7516
7517 s->kobj.kset = kset;
7518 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7519 if (err)
7520 goto out;
7521
7522 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7523 if (err)
7524 goto out_del_kobj;
7525
7526 if (!unmergeable) {
7527 /* Setup first alias */
7528 sysfs_slab_alias(s, s->name);
7529 }
7530 out:
7531 if (!unmergeable)
7532 kfree(name);
7533 return err;
7534 out_del_kobj:
7535 kobject_del(&s->kobj);
7536 goto out;
7537 }
7538
sysfs_slab_unlink(struct kmem_cache * s)7539 void sysfs_slab_unlink(struct kmem_cache *s)
7540 {
7541 if (s->kobj.state_in_sysfs)
7542 kobject_del(&s->kobj);
7543 }
7544
sysfs_slab_release(struct kmem_cache * s)7545 void sysfs_slab_release(struct kmem_cache *s)
7546 {
7547 kobject_put(&s->kobj);
7548 }
7549
7550 /*
7551 * Need to buffer aliases during bootup until sysfs becomes
7552 * available lest we lose that information.
7553 */
7554 struct saved_alias {
7555 struct kmem_cache *s;
7556 const char *name;
7557 struct saved_alias *next;
7558 };
7559
7560 static struct saved_alias *alias_list;
7561
sysfs_slab_alias(struct kmem_cache * s,const char * name)7562 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7563 {
7564 struct saved_alias *al;
7565
7566 if (slab_state == FULL) {
7567 /*
7568 * If we have a leftover link then remove it.
7569 */
7570 sysfs_remove_link(&slab_kset->kobj, name);
7571 /*
7572 * The original cache may have failed to generate sysfs file.
7573 * In that case, sysfs_create_link() returns -ENOENT and
7574 * symbolic link creation is skipped.
7575 */
7576 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7577 }
7578
7579 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7580 if (!al)
7581 return -ENOMEM;
7582
7583 al->s = s;
7584 al->name = name;
7585 al->next = alias_list;
7586 alias_list = al;
7587 kmsan_unpoison_memory(al, sizeof(*al));
7588 return 0;
7589 }
7590
slab_sysfs_init(void)7591 static int __init slab_sysfs_init(void)
7592 {
7593 struct kmem_cache *s;
7594 int err;
7595
7596 mutex_lock(&slab_mutex);
7597
7598 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7599 if (!slab_kset) {
7600 mutex_unlock(&slab_mutex);
7601 pr_err("Cannot register slab subsystem.\n");
7602 return -ENOMEM;
7603 }
7604
7605 slab_state = FULL;
7606
7607 list_for_each_entry(s, &slab_caches, list) {
7608 err = sysfs_slab_add(s);
7609 if (err)
7610 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7611 s->name);
7612 }
7613
7614 while (alias_list) {
7615 struct saved_alias *al = alias_list;
7616
7617 alias_list = alias_list->next;
7618 err = sysfs_slab_alias(al->s, al->name);
7619 if (err)
7620 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7621 al->name);
7622 kfree(al);
7623 }
7624
7625 mutex_unlock(&slab_mutex);
7626 return 0;
7627 }
7628 late_initcall(slab_sysfs_init);
7629 #endif /* SLAB_SUPPORTS_SYSFS */
7630
7631 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7632 static int slab_debugfs_show(struct seq_file *seq, void *v)
7633 {
7634 struct loc_track *t = seq->private;
7635 struct location *l;
7636 unsigned long idx;
7637
7638 idx = (unsigned long) t->idx;
7639 if (idx < t->count) {
7640 l = &t->loc[idx];
7641
7642 seq_printf(seq, "%7ld ", l->count);
7643
7644 if (l->addr)
7645 seq_printf(seq, "%pS", (void *)l->addr);
7646 else
7647 seq_puts(seq, "<not-available>");
7648
7649 if (l->waste)
7650 seq_printf(seq, " waste=%lu/%lu",
7651 l->count * l->waste, l->waste);
7652
7653 if (l->sum_time != l->min_time) {
7654 seq_printf(seq, " age=%ld/%llu/%ld",
7655 l->min_time, div_u64(l->sum_time, l->count),
7656 l->max_time);
7657 } else
7658 seq_printf(seq, " age=%ld", l->min_time);
7659
7660 if (l->min_pid != l->max_pid)
7661 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7662 else
7663 seq_printf(seq, " pid=%ld",
7664 l->min_pid);
7665
7666 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7667 seq_printf(seq, " cpus=%*pbl",
7668 cpumask_pr_args(to_cpumask(l->cpus)));
7669
7670 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7671 seq_printf(seq, " nodes=%*pbl",
7672 nodemask_pr_args(&l->nodes));
7673
7674 #ifdef CONFIG_STACKDEPOT
7675 {
7676 depot_stack_handle_t handle;
7677 unsigned long *entries;
7678 unsigned int nr_entries, j;
7679
7680 handle = READ_ONCE(l->handle);
7681 if (handle) {
7682 nr_entries = stack_depot_fetch(handle, &entries);
7683 seq_puts(seq, "\n");
7684 for (j = 0; j < nr_entries; j++)
7685 seq_printf(seq, " %pS\n", (void *)entries[j]);
7686 }
7687 }
7688 #endif
7689 seq_puts(seq, "\n");
7690 }
7691
7692 if (!idx && !t->count)
7693 seq_puts(seq, "No data\n");
7694
7695 return 0;
7696 }
7697
slab_debugfs_stop(struct seq_file * seq,void * v)7698 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7699 {
7700 }
7701
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7702 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7703 {
7704 struct loc_track *t = seq->private;
7705
7706 t->idx = ++(*ppos);
7707 if (*ppos <= t->count)
7708 return ppos;
7709
7710 return NULL;
7711 }
7712
cmp_loc_by_count(const void * a,const void * b,const void * data)7713 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7714 {
7715 struct location *loc1 = (struct location *)a;
7716 struct location *loc2 = (struct location *)b;
7717
7718 if (loc1->count > loc2->count)
7719 return -1;
7720 else
7721 return 1;
7722 }
7723
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7724 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7725 {
7726 struct loc_track *t = seq->private;
7727
7728 t->idx = *ppos;
7729 return ppos;
7730 }
7731
7732 static const struct seq_operations slab_debugfs_sops = {
7733 .start = slab_debugfs_start,
7734 .next = slab_debugfs_next,
7735 .stop = slab_debugfs_stop,
7736 .show = slab_debugfs_show,
7737 };
7738
slab_debug_trace_open(struct inode * inode,struct file * filep)7739 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7740 {
7741
7742 struct kmem_cache_node *n;
7743 enum track_item alloc;
7744 int node;
7745 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7746 sizeof(struct loc_track));
7747 struct kmem_cache *s = file_inode(filep)->i_private;
7748 unsigned long *obj_map;
7749
7750 if (!t)
7751 return -ENOMEM;
7752
7753 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7754 if (!obj_map) {
7755 seq_release_private(inode, filep);
7756 return -ENOMEM;
7757 }
7758
7759 alloc = debugfs_get_aux_num(filep);
7760
7761 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7762 bitmap_free(obj_map);
7763 seq_release_private(inode, filep);
7764 return -ENOMEM;
7765 }
7766
7767 for_each_kmem_cache_node(s, node, n) {
7768 unsigned long flags;
7769 struct slab *slab;
7770
7771 if (!node_nr_slabs(n))
7772 continue;
7773
7774 spin_lock_irqsave(&n->list_lock, flags);
7775 list_for_each_entry(slab, &n->partial, slab_list)
7776 process_slab(t, s, slab, alloc, obj_map);
7777 list_for_each_entry(slab, &n->full, slab_list)
7778 process_slab(t, s, slab, alloc, obj_map);
7779 spin_unlock_irqrestore(&n->list_lock, flags);
7780 }
7781
7782 /* Sort locations by count */
7783 sort_r(t->loc, t->count, sizeof(struct location),
7784 cmp_loc_by_count, NULL, NULL);
7785
7786 bitmap_free(obj_map);
7787 return 0;
7788 }
7789
slab_debug_trace_release(struct inode * inode,struct file * file)7790 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7791 {
7792 struct seq_file *seq = file->private_data;
7793 struct loc_track *t = seq->private;
7794
7795 free_loc_track(t);
7796 return seq_release_private(inode, file);
7797 }
7798
7799 static const struct file_operations slab_debugfs_fops = {
7800 .open = slab_debug_trace_open,
7801 .read = seq_read,
7802 .llseek = seq_lseek,
7803 .release = slab_debug_trace_release,
7804 };
7805
debugfs_slab_add(struct kmem_cache * s)7806 static void debugfs_slab_add(struct kmem_cache *s)
7807 {
7808 struct dentry *slab_cache_dir;
7809
7810 if (unlikely(!slab_debugfs_root))
7811 return;
7812
7813 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7814
7815 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7816 TRACK_ALLOC, &slab_debugfs_fops);
7817
7818 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7819 TRACK_FREE, &slab_debugfs_fops);
7820 }
7821
debugfs_slab_release(struct kmem_cache * s)7822 void debugfs_slab_release(struct kmem_cache *s)
7823 {
7824 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7825 }
7826
slab_debugfs_init(void)7827 static int __init slab_debugfs_init(void)
7828 {
7829 struct kmem_cache *s;
7830
7831 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7832
7833 list_for_each_entry(s, &slab_caches, list)
7834 if (s->flags & SLAB_STORE_USER)
7835 debugfs_slab_add(s);
7836
7837 return 0;
7838
7839 }
7840 __initcall(slab_debugfs_init);
7841 #endif
7842 /*
7843 * The /proc/slabinfo ABI
7844 */
7845 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7846 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7847 {
7848 unsigned long nr_slabs = 0;
7849 unsigned long nr_objs = 0;
7850 unsigned long nr_free = 0;
7851 int node;
7852 struct kmem_cache_node *n;
7853
7854 for_each_kmem_cache_node(s, node, n) {
7855 nr_slabs += node_nr_slabs(n);
7856 nr_objs += node_nr_objs(n);
7857 nr_free += count_partial_free_approx(n);
7858 }
7859
7860 sinfo->active_objs = nr_objs - nr_free;
7861 sinfo->num_objs = nr_objs;
7862 sinfo->active_slabs = nr_slabs;
7863 sinfo->num_slabs = nr_slabs;
7864 sinfo->objects_per_slab = oo_objects(s->oo);
7865 sinfo->cache_order = oo_order(s->oo);
7866 }
7867 #endif /* CONFIG_SLUB_DEBUG */
7868