1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99
100 /*
101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102 * inode->i_private (with i_rwsem making sure that it has only one user at
103 * a time): we would prefer not to enlarge the shmem inode just for that.
104 */
105 struct shmem_falloc {
106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 pgoff_t start; /* start of range currently being fallocated */
108 pgoff_t next; /* the next page offset to be fallocated */
109 pgoff_t nr_falloced; /* how many new pages have been fallocated */
110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
111 };
112
113 struct shmem_options {
114 unsigned long long blocks;
115 unsigned long long inodes;
116 struct mempolicy *mpol;
117 kuid_t uid;
118 kgid_t gid;
119 umode_t mode;
120 bool full_inums;
121 int huge;
122 int seen;
123 bool noswap;
124 unsigned short quota_types;
125 struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 struct unicode_map *encoding;
128 bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_NOSWAP 16
135 #define SHMEM_SEEN_QUOTA 32
136 };
137
138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
139 static unsigned long huge_shmem_orders_always __read_mostly;
140 static unsigned long huge_shmem_orders_madvise __read_mostly;
141 static unsigned long huge_shmem_orders_inherit __read_mostly;
142 static unsigned long huge_shmem_orders_within_size __read_mostly;
143 static bool shmem_orders_configured __initdata;
144 #endif
145
146 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)147 static unsigned long shmem_default_max_blocks(void)
148 {
149 return totalram_pages() / 2;
150 }
151
shmem_default_max_inodes(void)152 static unsigned long shmem_default_max_inodes(void)
153 {
154 unsigned long nr_pages = totalram_pages();
155
156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 ULONG_MAX / BOGO_INODE_SIZE);
158 }
159 #endif
160
161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 struct vm_area_struct *vma, vm_fault_t *fault_type);
164
SHMEM_SB(struct super_block * sb)165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166 {
167 return sb->s_fs_info;
168 }
169
170 /*
171 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172 * for shared memory and for shared anonymous (/dev/zero) mappings
173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174 * consistent with the pre-accounting of private mappings ...
175 */
shmem_acct_size(unsigned long flags,loff_t size)176 static inline int shmem_acct_size(unsigned long flags, loff_t size)
177 {
178 return (flags & VM_NORESERVE) ?
179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180 }
181
shmem_unacct_size(unsigned long flags,loff_t size)182 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183 {
184 if (!(flags & VM_NORESERVE))
185 vm_unacct_memory(VM_ACCT(size));
186 }
187
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)188 static inline int shmem_reacct_size(unsigned long flags,
189 loff_t oldsize, loff_t newsize)
190 {
191 if (!(flags & VM_NORESERVE)) {
192 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 return security_vm_enough_memory_mm(current->mm,
194 VM_ACCT(newsize) - VM_ACCT(oldsize));
195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 }
198 return 0;
199 }
200
201 /*
202 * ... whereas tmpfs objects are accounted incrementally as
203 * pages are allocated, in order to allow large sparse files.
204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206 */
shmem_acct_blocks(unsigned long flags,long pages)207 static inline int shmem_acct_blocks(unsigned long flags, long pages)
208 {
209 if (!(flags & VM_NORESERVE))
210 return 0;
211
212 return security_vm_enough_memory_mm(current->mm,
213 pages * VM_ACCT(PAGE_SIZE));
214 }
215
shmem_unacct_blocks(unsigned long flags,long pages)216 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217 {
218 if (flags & VM_NORESERVE)
219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
220 }
221
shmem_inode_acct_blocks(struct inode * inode,long pages)222 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 int err = -ENOSPC;
227
228 if (shmem_acct_blocks(info->flags, pages))
229 return err;
230
231 might_sleep(); /* when quotas */
232 if (sbinfo->max_blocks) {
233 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
234 sbinfo->max_blocks, pages))
235 goto unacct;
236
237 err = dquot_alloc_block_nodirty(inode, pages);
238 if (err) {
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 goto unacct;
241 }
242 } else {
243 err = dquot_alloc_block_nodirty(inode, pages);
244 if (err)
245 goto unacct;
246 }
247
248 return 0;
249
250 unacct:
251 shmem_unacct_blocks(info->flags, pages);
252 return err;
253 }
254
shmem_inode_unacct_blocks(struct inode * inode,long pages)255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256 {
257 struct shmem_inode_info *info = SHMEM_I(inode);
258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259
260 might_sleep(); /* when quotas */
261 dquot_free_block_nodirty(inode, pages);
262
263 if (sbinfo->max_blocks)
264 percpu_counter_sub(&sbinfo->used_blocks, pages);
265 shmem_unacct_blocks(info->flags, pages);
266 }
267
268 static const struct super_operations shmem_ops;
269 static const struct address_space_operations shmem_aops;
270 static const struct file_operations shmem_file_operations;
271 static const struct inode_operations shmem_inode_operations;
272 static const struct inode_operations shmem_dir_inode_operations;
273 static const struct inode_operations shmem_special_inode_operations;
274 static const struct vm_operations_struct shmem_vm_ops;
275 static const struct vm_operations_struct shmem_anon_vm_ops;
276 static struct file_system_type shmem_fs_type;
277
shmem_mapping(struct address_space * mapping)278 bool shmem_mapping(struct address_space *mapping)
279 {
280 return mapping->a_ops == &shmem_aops;
281 }
282 EXPORT_SYMBOL_GPL(shmem_mapping);
283
vma_is_anon_shmem(struct vm_area_struct * vma)284 bool vma_is_anon_shmem(struct vm_area_struct *vma)
285 {
286 return vma->vm_ops == &shmem_anon_vm_ops;
287 }
288
vma_is_shmem(struct vm_area_struct * vma)289 bool vma_is_shmem(struct vm_area_struct *vma)
290 {
291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292 }
293
294 static LIST_HEAD(shmem_swaplist);
295 static DEFINE_MUTEX(shmem_swaplist_mutex);
296
297 #ifdef CONFIG_TMPFS_QUOTA
298
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)299 static int shmem_enable_quotas(struct super_block *sb,
300 unsigned short quota_types)
301 {
302 int type, err = 0;
303
304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 if (!(quota_types & (1 << type)))
307 continue;
308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 DQUOT_USAGE_ENABLED |
310 DQUOT_LIMITS_ENABLED);
311 if (err)
312 goto out_err;
313 }
314 return 0;
315
316 out_err:
317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 type, err);
319 for (type--; type >= 0; type--)
320 dquot_quota_off(sb, type);
321 return err;
322 }
323
shmem_disable_quotas(struct super_block * sb)324 static void shmem_disable_quotas(struct super_block *sb)
325 {
326 int type;
327
328 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 dquot_quota_off(sb, type);
330 }
331
shmem_get_dquots(struct inode * inode)332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333 {
334 return SHMEM_I(inode)->i_dquot;
335 }
336 #endif /* CONFIG_TMPFS_QUOTA */
337
338 /*
339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340 * produces a novel ino for the newly allocated inode.
341 *
342 * It may also be called when making a hard link to permit the space needed by
343 * each dentry. However, in that case, no new inode number is needed since that
344 * internally draws from another pool of inode numbers (currently global
345 * get_next_ino()). This case is indicated by passing NULL as inop.
346 */
347 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349 {
350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 ino_t ino;
352
353 if (!(sb->s_flags & SB_KERNMOUNT)) {
354 raw_spin_lock(&sbinfo->stat_lock);
355 if (sbinfo->max_inodes) {
356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 raw_spin_unlock(&sbinfo->stat_lock);
358 return -ENOSPC;
359 }
360 sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 }
362 if (inop) {
363 ino = sbinfo->next_ino++;
364 if (unlikely(is_zero_ino(ino)))
365 ino = sbinfo->next_ino++;
366 if (unlikely(!sbinfo->full_inums &&
367 ino > UINT_MAX)) {
368 /*
369 * Emulate get_next_ino uint wraparound for
370 * compatibility
371 */
372 if (IS_ENABLED(CONFIG_64BIT))
373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 __func__, MINOR(sb->s_dev));
375 sbinfo->next_ino = 1;
376 ino = sbinfo->next_ino++;
377 }
378 *inop = ino;
379 }
380 raw_spin_unlock(&sbinfo->stat_lock);
381 } else if (inop) {
382 /*
383 * __shmem_file_setup, one of our callers, is lock-free: it
384 * doesn't hold stat_lock in shmem_reserve_inode since
385 * max_inodes is always 0, and is called from potentially
386 * unknown contexts. As such, use a per-cpu batched allocator
387 * which doesn't require the per-sb stat_lock unless we are at
388 * the batch boundary.
389 *
390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 * shmem mounts are not exposed to userspace, so we don't need
392 * to worry about things like glibc compatibility.
393 */
394 ino_t *next_ino;
395
396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 ino = *next_ino;
398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 raw_spin_lock(&sbinfo->stat_lock);
400 ino = sbinfo->next_ino;
401 sbinfo->next_ino += SHMEM_INO_BATCH;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 if (unlikely(is_zero_ino(ino)))
404 ino++;
405 }
406 *inop = ino;
407 *next_ino = ++ino;
408 put_cpu();
409 }
410
411 return 0;
412 }
413
shmem_free_inode(struct super_block * sb,size_t freed_ispace)414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415 {
416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 if (sbinfo->max_inodes) {
418 raw_spin_lock(&sbinfo->stat_lock);
419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 raw_spin_unlock(&sbinfo->stat_lock);
421 }
422 }
423
424 /**
425 * shmem_recalc_inode - recalculate the block usage of an inode
426 * @inode: inode to recalc
427 * @alloced: the change in number of pages allocated to inode
428 * @swapped: the change in number of pages swapped from inode
429 *
430 * We have to calculate the free blocks since the mm can drop
431 * undirtied hole pages behind our back.
432 *
433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
437 {
438 struct shmem_inode_info *info = SHMEM_I(inode);
439 long freed;
440
441 spin_lock(&info->lock);
442 info->alloced += alloced;
443 info->swapped += swapped;
444 freed = info->alloced - info->swapped -
445 READ_ONCE(inode->i_mapping->nrpages);
446 /*
447 * Special case: whereas normally shmem_recalc_inode() is called
448 * after i_mapping->nrpages has already been adjusted (up or down),
449 * shmem_writepage() has to raise swapped before nrpages is lowered -
450 * to stop a racing shmem_recalc_inode() from thinking that a page has
451 * been freed. Compensate here, to avoid the need for a followup call.
452 */
453 if (swapped > 0)
454 freed += swapped;
455 if (freed > 0)
456 info->alloced -= freed;
457 spin_unlock(&info->lock);
458
459 /* The quota case may block */
460 if (freed > 0)
461 shmem_inode_unacct_blocks(inode, freed);
462 }
463
shmem_charge(struct inode * inode,long pages)464 bool shmem_charge(struct inode *inode, long pages)
465 {
466 struct address_space *mapping = inode->i_mapping;
467
468 if (shmem_inode_acct_blocks(inode, pages))
469 return false;
470
471 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
472 xa_lock_irq(&mapping->i_pages);
473 mapping->nrpages += pages;
474 xa_unlock_irq(&mapping->i_pages);
475
476 shmem_recalc_inode(inode, pages, 0);
477 return true;
478 }
479
shmem_uncharge(struct inode * inode,long pages)480 void shmem_uncharge(struct inode *inode, long pages)
481 {
482 /* pages argument is currently unused: keep it to help debugging */
483 /* nrpages adjustment done by __filemap_remove_folio() or caller */
484
485 shmem_recalc_inode(inode, 0, 0);
486 }
487
488 /*
489 * Replace item expected in xarray by a new item, while holding xa_lock.
490 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)491 static int shmem_replace_entry(struct address_space *mapping,
492 pgoff_t index, void *expected, void *replacement)
493 {
494 XA_STATE(xas, &mapping->i_pages, index);
495 void *item;
496
497 VM_BUG_ON(!expected);
498 VM_BUG_ON(!replacement);
499 item = xas_load(&xas);
500 if (item != expected)
501 return -ENOENT;
502 xas_store(&xas, replacement);
503 return 0;
504 }
505
506 /*
507 * Sometimes, before we decide whether to proceed or to fail, we must check
508 * that an entry was not already brought back from swap by a racing thread.
509 *
510 * Checking folio is not enough: by the time a swapcache folio is locked, it
511 * might be reused, and again be swapcache, using the same swap as before.
512 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)513 static bool shmem_confirm_swap(struct address_space *mapping,
514 pgoff_t index, swp_entry_t swap)
515 {
516 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
517 }
518
519 /*
520 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
521 *
522 * SHMEM_HUGE_NEVER:
523 * disables huge pages for the mount;
524 * SHMEM_HUGE_ALWAYS:
525 * enables huge pages for the mount;
526 * SHMEM_HUGE_WITHIN_SIZE:
527 * only allocate huge pages if the page will be fully within i_size,
528 * also respect madvise() hints;
529 * SHMEM_HUGE_ADVISE:
530 * only allocate huge pages if requested with madvise();
531 */
532
533 #define SHMEM_HUGE_NEVER 0
534 #define SHMEM_HUGE_ALWAYS 1
535 #define SHMEM_HUGE_WITHIN_SIZE 2
536 #define SHMEM_HUGE_ADVISE 3
537
538 /*
539 * Special values.
540 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
541 *
542 * SHMEM_HUGE_DENY:
543 * disables huge on shm_mnt and all mounts, for emergency use;
544 * SHMEM_HUGE_FORCE:
545 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
546 *
547 */
548 #define SHMEM_HUGE_DENY (-1)
549 #define SHMEM_HUGE_FORCE (-2)
550
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 /* ifdef here to avoid bloating shmem.o when not necessary */
553
554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
555 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
556
557 /**
558 * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
559 * @mapping: Target address_space.
560 * @index: The page index.
561 * @write_end: end of a write, could extend inode size.
562 *
563 * This returns huge orders for folios (when supported) based on the file size
564 * which the mapping currently allows at the given index. The index is relevant
565 * due to alignment considerations the mapping might have. The returned order
566 * may be less than the size passed.
567 *
568 * Return: The orders.
569 */
570 static inline unsigned int
shmem_mapping_size_orders(struct address_space * mapping,pgoff_t index,loff_t write_end)571 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
572 {
573 unsigned int order;
574 size_t size;
575
576 if (!mapping_large_folio_support(mapping) || !write_end)
577 return 0;
578
579 /* Calculate the write size based on the write_end */
580 size = write_end - (index << PAGE_SHIFT);
581 order = filemap_get_order(size);
582 if (!order)
583 return 0;
584
585 /* If we're not aligned, allocate a smaller folio */
586 if (index & ((1UL << order) - 1))
587 order = __ffs(index);
588
589 order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
590 return order > 0 ? BIT(order + 1) - 1 : 0;
591 }
592
shmem_get_orders_within_size(struct inode * inode,unsigned long within_size_orders,pgoff_t index,loff_t write_end)593 static unsigned int shmem_get_orders_within_size(struct inode *inode,
594 unsigned long within_size_orders, pgoff_t index,
595 loff_t write_end)
596 {
597 pgoff_t aligned_index;
598 unsigned long order;
599 loff_t i_size;
600
601 order = highest_order(within_size_orders);
602 while (within_size_orders) {
603 aligned_index = round_up(index + 1, 1 << order);
604 i_size = max(write_end, i_size_read(inode));
605 i_size = round_up(i_size, PAGE_SIZE);
606 if (i_size >> PAGE_SHIFT >= aligned_index)
607 return within_size_orders;
608
609 order = next_order(&within_size_orders, order);
610 }
611
612 return 0;
613 }
614
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)615 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
616 loff_t write_end, bool shmem_huge_force,
617 struct vm_area_struct *vma,
618 unsigned long vm_flags)
619 {
620 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
621 0 : BIT(HPAGE_PMD_ORDER);
622 unsigned long within_size_orders;
623
624 if (!S_ISREG(inode->i_mode))
625 return 0;
626 if (shmem_huge == SHMEM_HUGE_DENY)
627 return 0;
628 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
629 return maybe_pmd_order;
630
631 /*
632 * The huge order allocation for anon shmem is controlled through
633 * the mTHP interface, so we still use PMD-sized huge order to
634 * check whether global control is enabled.
635 *
636 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
637 * allocate huge pages due to lack of a write size hint.
638 *
639 * Otherwise, tmpfs will allow getting a highest order hint based on
640 * the size of write and fallocate paths, then will try each allowable
641 * huge orders.
642 */
643 switch (SHMEM_SB(inode->i_sb)->huge) {
644 case SHMEM_HUGE_ALWAYS:
645 if (vma)
646 return maybe_pmd_order;
647
648 return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
649 case SHMEM_HUGE_WITHIN_SIZE:
650 if (vma)
651 within_size_orders = maybe_pmd_order;
652 else
653 within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
654 index, write_end);
655
656 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders,
657 index, write_end);
658 if (within_size_orders > 0)
659 return within_size_orders;
660
661 fallthrough;
662 case SHMEM_HUGE_ADVISE:
663 if (vm_flags & VM_HUGEPAGE)
664 return maybe_pmd_order;
665 fallthrough;
666 default:
667 return 0;
668 }
669 }
670
shmem_parse_huge(const char * str)671 static int shmem_parse_huge(const char *str)
672 {
673 int huge;
674
675 if (!str)
676 return -EINVAL;
677
678 if (!strcmp(str, "never"))
679 huge = SHMEM_HUGE_NEVER;
680 else if (!strcmp(str, "always"))
681 huge = SHMEM_HUGE_ALWAYS;
682 else if (!strcmp(str, "within_size"))
683 huge = SHMEM_HUGE_WITHIN_SIZE;
684 else if (!strcmp(str, "advise"))
685 huge = SHMEM_HUGE_ADVISE;
686 else if (!strcmp(str, "deny"))
687 huge = SHMEM_HUGE_DENY;
688 else if (!strcmp(str, "force"))
689 huge = SHMEM_HUGE_FORCE;
690 else
691 return -EINVAL;
692
693 if (!has_transparent_hugepage() &&
694 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
695 return -EINVAL;
696
697 /* Do not override huge allocation policy with non-PMD sized mTHP */
698 if (huge == SHMEM_HUGE_FORCE &&
699 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
700 return -EINVAL;
701
702 return huge;
703 }
704
705 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)706 static const char *shmem_format_huge(int huge)
707 {
708 switch (huge) {
709 case SHMEM_HUGE_NEVER:
710 return "never";
711 case SHMEM_HUGE_ALWAYS:
712 return "always";
713 case SHMEM_HUGE_WITHIN_SIZE:
714 return "within_size";
715 case SHMEM_HUGE_ADVISE:
716 return "advise";
717 case SHMEM_HUGE_DENY:
718 return "deny";
719 case SHMEM_HUGE_FORCE:
720 return "force";
721 default:
722 VM_BUG_ON(1);
723 return "bad_val";
724 }
725 }
726 #endif
727
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)728 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
729 struct shrink_control *sc, unsigned long nr_to_free)
730 {
731 LIST_HEAD(list), *pos, *next;
732 struct inode *inode;
733 struct shmem_inode_info *info;
734 struct folio *folio;
735 unsigned long batch = sc ? sc->nr_to_scan : 128;
736 unsigned long split = 0, freed = 0;
737
738 if (list_empty(&sbinfo->shrinklist))
739 return SHRINK_STOP;
740
741 spin_lock(&sbinfo->shrinklist_lock);
742 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
743 info = list_entry(pos, struct shmem_inode_info, shrinklist);
744
745 /* pin the inode */
746 inode = igrab(&info->vfs_inode);
747
748 /* inode is about to be evicted */
749 if (!inode) {
750 list_del_init(&info->shrinklist);
751 goto next;
752 }
753
754 list_move(&info->shrinklist, &list);
755 next:
756 sbinfo->shrinklist_len--;
757 if (!--batch)
758 break;
759 }
760 spin_unlock(&sbinfo->shrinklist_lock);
761
762 list_for_each_safe(pos, next, &list) {
763 pgoff_t next, end;
764 loff_t i_size;
765 int ret;
766
767 info = list_entry(pos, struct shmem_inode_info, shrinklist);
768 inode = &info->vfs_inode;
769
770 if (nr_to_free && freed >= nr_to_free)
771 goto move_back;
772
773 i_size = i_size_read(inode);
774 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
775 if (!folio || xa_is_value(folio))
776 goto drop;
777
778 /* No large folio at the end of the file: nothing to split */
779 if (!folio_test_large(folio)) {
780 folio_put(folio);
781 goto drop;
782 }
783
784 /* Check if there is anything to gain from splitting */
785 next = folio_next_index(folio);
786 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
787 if (end <= folio->index || end >= next) {
788 folio_put(folio);
789 goto drop;
790 }
791
792 /*
793 * Move the inode on the list back to shrinklist if we failed
794 * to lock the page at this time.
795 *
796 * Waiting for the lock may lead to deadlock in the
797 * reclaim path.
798 */
799 if (!folio_trylock(folio)) {
800 folio_put(folio);
801 goto move_back;
802 }
803
804 ret = split_folio(folio);
805 folio_unlock(folio);
806 folio_put(folio);
807
808 /* If split failed move the inode on the list back to shrinklist */
809 if (ret)
810 goto move_back;
811
812 freed += next - end;
813 split++;
814 drop:
815 list_del_init(&info->shrinklist);
816 goto put;
817 move_back:
818 /*
819 * Make sure the inode is either on the global list or deleted
820 * from any local list before iput() since it could be deleted
821 * in another thread once we put the inode (then the local list
822 * is corrupted).
823 */
824 spin_lock(&sbinfo->shrinklist_lock);
825 list_move(&info->shrinklist, &sbinfo->shrinklist);
826 sbinfo->shrinklist_len++;
827 spin_unlock(&sbinfo->shrinklist_lock);
828 put:
829 iput(inode);
830 }
831
832 return split;
833 }
834
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)835 static long shmem_unused_huge_scan(struct super_block *sb,
836 struct shrink_control *sc)
837 {
838 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
839
840 if (!READ_ONCE(sbinfo->shrinklist_len))
841 return SHRINK_STOP;
842
843 return shmem_unused_huge_shrink(sbinfo, sc, 0);
844 }
845
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)846 static long shmem_unused_huge_count(struct super_block *sb,
847 struct shrink_control *sc)
848 {
849 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
850 return READ_ONCE(sbinfo->shrinklist_len);
851 }
852 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
853
854 #define shmem_huge SHMEM_HUGE_DENY
855
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)856 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
857 struct shrink_control *sc, unsigned long nr_to_free)
858 {
859 return 0;
860 }
861
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)862 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
863 loff_t write_end, bool shmem_huge_force,
864 struct vm_area_struct *vma,
865 unsigned long vm_flags)
866 {
867 return 0;
868 }
869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
870
shmem_update_stats(struct folio * folio,int nr_pages)871 static void shmem_update_stats(struct folio *folio, int nr_pages)
872 {
873 if (folio_test_pmd_mappable(folio))
874 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
875 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
876 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
877 }
878
879 /*
880 * Somewhat like filemap_add_folio, but error if expected item has gone.
881 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)882 static int shmem_add_to_page_cache(struct folio *folio,
883 struct address_space *mapping,
884 pgoff_t index, void *expected, gfp_t gfp)
885 {
886 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
887 long nr = folio_nr_pages(folio);
888
889 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
890 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
891 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
892
893 folio_ref_add(folio, nr);
894 folio->mapping = mapping;
895 folio->index = index;
896
897 gfp &= GFP_RECLAIM_MASK;
898 folio_throttle_swaprate(folio, gfp);
899
900 do {
901 xas_lock_irq(&xas);
902 if (expected != xas_find_conflict(&xas)) {
903 xas_set_err(&xas, -EEXIST);
904 goto unlock;
905 }
906 if (expected && xas_find_conflict(&xas)) {
907 xas_set_err(&xas, -EEXIST);
908 goto unlock;
909 }
910 xas_store(&xas, folio);
911 if (xas_error(&xas))
912 goto unlock;
913 shmem_update_stats(folio, nr);
914 mapping->nrpages += nr;
915 unlock:
916 xas_unlock_irq(&xas);
917 } while (xas_nomem(&xas, gfp));
918
919 if (xas_error(&xas)) {
920 folio->mapping = NULL;
921 folio_ref_sub(folio, nr);
922 return xas_error(&xas);
923 }
924
925 return 0;
926 }
927
928 /*
929 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
930 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)931 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
932 {
933 struct address_space *mapping = folio->mapping;
934 long nr = folio_nr_pages(folio);
935 int error;
936
937 xa_lock_irq(&mapping->i_pages);
938 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
939 folio->mapping = NULL;
940 mapping->nrpages -= nr;
941 shmem_update_stats(folio, -nr);
942 xa_unlock_irq(&mapping->i_pages);
943 folio_put_refs(folio, nr);
944 BUG_ON(error);
945 }
946
947 /*
948 * Remove swap entry from page cache, free the swap and its page cache. Returns
949 * the number of pages being freed. 0 means entry not found in XArray (0 pages
950 * being freed).
951 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)952 static long shmem_free_swap(struct address_space *mapping,
953 pgoff_t index, void *radswap)
954 {
955 int order = xa_get_order(&mapping->i_pages, index);
956 void *old;
957
958 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
959 if (old != radswap)
960 return 0;
961 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
962
963 return 1 << order;
964 }
965
966 /*
967 * Determine (in bytes) how many of the shmem object's pages mapped by the
968 * given offsets are swapped out.
969 *
970 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
971 * as long as the inode doesn't go away and racy results are not a problem.
972 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)973 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
974 pgoff_t start, pgoff_t end)
975 {
976 XA_STATE(xas, &mapping->i_pages, start);
977 struct page *page;
978 unsigned long swapped = 0;
979 unsigned long max = end - 1;
980
981 rcu_read_lock();
982 xas_for_each(&xas, page, max) {
983 if (xas_retry(&xas, page))
984 continue;
985 if (xa_is_value(page))
986 swapped += 1 << xas_get_order(&xas);
987 if (xas.xa_index == max)
988 break;
989 if (need_resched()) {
990 xas_pause(&xas);
991 cond_resched_rcu();
992 }
993 }
994 rcu_read_unlock();
995
996 return swapped << PAGE_SHIFT;
997 }
998
999 /*
1000 * Determine (in bytes) how many of the shmem object's pages mapped by the
1001 * given vma is swapped out.
1002 *
1003 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1004 * as long as the inode doesn't go away and racy results are not a problem.
1005 */
shmem_swap_usage(struct vm_area_struct * vma)1006 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1007 {
1008 struct inode *inode = file_inode(vma->vm_file);
1009 struct shmem_inode_info *info = SHMEM_I(inode);
1010 struct address_space *mapping = inode->i_mapping;
1011 unsigned long swapped;
1012
1013 /* Be careful as we don't hold info->lock */
1014 swapped = READ_ONCE(info->swapped);
1015
1016 /*
1017 * The easier cases are when the shmem object has nothing in swap, or
1018 * the vma maps it whole. Then we can simply use the stats that we
1019 * already track.
1020 */
1021 if (!swapped)
1022 return 0;
1023
1024 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1025 return swapped << PAGE_SHIFT;
1026
1027 /* Here comes the more involved part */
1028 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1029 vma->vm_pgoff + vma_pages(vma));
1030 }
1031
1032 /*
1033 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1034 */
shmem_unlock_mapping(struct address_space * mapping)1035 void shmem_unlock_mapping(struct address_space *mapping)
1036 {
1037 struct folio_batch fbatch;
1038 pgoff_t index = 0;
1039
1040 folio_batch_init(&fbatch);
1041 /*
1042 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1043 */
1044 while (!mapping_unevictable(mapping) &&
1045 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1046 check_move_unevictable_folios(&fbatch);
1047 folio_batch_release(&fbatch);
1048 cond_resched();
1049 }
1050 }
1051
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1052 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1053 {
1054 struct folio *folio;
1055
1056 /*
1057 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1058 * beyond i_size, and reports fallocated folios as holes.
1059 */
1060 folio = filemap_get_entry(inode->i_mapping, index);
1061 if (!folio)
1062 return folio;
1063 if (!xa_is_value(folio)) {
1064 folio_lock(folio);
1065 if (folio->mapping == inode->i_mapping)
1066 return folio;
1067 /* The folio has been swapped out */
1068 folio_unlock(folio);
1069 folio_put(folio);
1070 }
1071 /*
1072 * But read a folio back from swap if any of it is within i_size
1073 * (although in some cases this is just a waste of time).
1074 */
1075 folio = NULL;
1076 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1077 return folio;
1078 }
1079
1080 /*
1081 * Remove range of pages and swap entries from page cache, and free them.
1082 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1083 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1084 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1085 bool unfalloc)
1086 {
1087 struct address_space *mapping = inode->i_mapping;
1088 struct shmem_inode_info *info = SHMEM_I(inode);
1089 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1091 struct folio_batch fbatch;
1092 pgoff_t indices[PAGEVEC_SIZE];
1093 struct folio *folio;
1094 bool same_folio;
1095 long nr_swaps_freed = 0;
1096 pgoff_t index;
1097 int i;
1098
1099 if (lend == -1)
1100 end = -1; /* unsigned, so actually very big */
1101
1102 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1103 info->fallocend = start;
1104
1105 folio_batch_init(&fbatch);
1106 index = start;
1107 while (index < end && find_lock_entries(mapping, &index, end - 1,
1108 &fbatch, indices)) {
1109 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1110 folio = fbatch.folios[i];
1111
1112 if (xa_is_value(folio)) {
1113 if (unfalloc)
1114 continue;
1115 nr_swaps_freed += shmem_free_swap(mapping,
1116 indices[i], folio);
1117 continue;
1118 }
1119
1120 if (!unfalloc || !folio_test_uptodate(folio))
1121 truncate_inode_folio(mapping, folio);
1122 folio_unlock(folio);
1123 }
1124 folio_batch_remove_exceptionals(&fbatch);
1125 folio_batch_release(&fbatch);
1126 cond_resched();
1127 }
1128
1129 /*
1130 * When undoing a failed fallocate, we want none of the partial folio
1131 * zeroing and splitting below, but shall want to truncate the whole
1132 * folio when !uptodate indicates that it was added by this fallocate,
1133 * even when [lstart, lend] covers only a part of the folio.
1134 */
1135 if (unfalloc)
1136 goto whole_folios;
1137
1138 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1139 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1140 if (folio) {
1141 same_folio = lend < folio_pos(folio) + folio_size(folio);
1142 folio_mark_dirty(folio);
1143 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1144 start = folio_next_index(folio);
1145 if (same_folio)
1146 end = folio->index;
1147 }
1148 folio_unlock(folio);
1149 folio_put(folio);
1150 folio = NULL;
1151 }
1152
1153 if (!same_folio)
1154 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1155 if (folio) {
1156 folio_mark_dirty(folio);
1157 if (!truncate_inode_partial_folio(folio, lstart, lend))
1158 end = folio->index;
1159 folio_unlock(folio);
1160 folio_put(folio);
1161 }
1162
1163 whole_folios:
1164
1165 index = start;
1166 while (index < end) {
1167 cond_resched();
1168
1169 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1170 indices)) {
1171 /* If all gone or hole-punch or unfalloc, we're done */
1172 if (index == start || end != -1)
1173 break;
1174 /* But if truncating, restart to make sure all gone */
1175 index = start;
1176 continue;
1177 }
1178 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1179 folio = fbatch.folios[i];
1180
1181 if (xa_is_value(folio)) {
1182 long swaps_freed;
1183
1184 if (unfalloc)
1185 continue;
1186 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1187 if (!swaps_freed) {
1188 /* Swap was replaced by page: retry */
1189 index = indices[i];
1190 break;
1191 }
1192 nr_swaps_freed += swaps_freed;
1193 continue;
1194 }
1195
1196 folio_lock(folio);
1197
1198 if (!unfalloc || !folio_test_uptodate(folio)) {
1199 if (folio_mapping(folio) != mapping) {
1200 /* Page was replaced by swap: retry */
1201 folio_unlock(folio);
1202 index = indices[i];
1203 break;
1204 }
1205 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1206 folio);
1207
1208 if (!folio_test_large(folio)) {
1209 truncate_inode_folio(mapping, folio);
1210 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1211 /*
1212 * If we split a page, reset the loop so
1213 * that we pick up the new sub pages.
1214 * Otherwise the THP was entirely
1215 * dropped or the target range was
1216 * zeroed, so just continue the loop as
1217 * is.
1218 */
1219 if (!folio_test_large(folio)) {
1220 folio_unlock(folio);
1221 index = start;
1222 break;
1223 }
1224 }
1225 }
1226 folio_unlock(folio);
1227 }
1228 folio_batch_remove_exceptionals(&fbatch);
1229 folio_batch_release(&fbatch);
1230 }
1231
1232 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1233 }
1234
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1235 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1236 {
1237 shmem_undo_range(inode, lstart, lend, false);
1238 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1239 inode_inc_iversion(inode);
1240 }
1241 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1242
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1243 static int shmem_getattr(struct mnt_idmap *idmap,
1244 const struct path *path, struct kstat *stat,
1245 u32 request_mask, unsigned int query_flags)
1246 {
1247 struct inode *inode = path->dentry->d_inode;
1248 struct shmem_inode_info *info = SHMEM_I(inode);
1249
1250 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1251 shmem_recalc_inode(inode, 0, 0);
1252
1253 if (info->fsflags & FS_APPEND_FL)
1254 stat->attributes |= STATX_ATTR_APPEND;
1255 if (info->fsflags & FS_IMMUTABLE_FL)
1256 stat->attributes |= STATX_ATTR_IMMUTABLE;
1257 if (info->fsflags & FS_NODUMP_FL)
1258 stat->attributes |= STATX_ATTR_NODUMP;
1259 stat->attributes_mask |= (STATX_ATTR_APPEND |
1260 STATX_ATTR_IMMUTABLE |
1261 STATX_ATTR_NODUMP);
1262 generic_fillattr(idmap, request_mask, inode, stat);
1263
1264 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1265 stat->blksize = HPAGE_PMD_SIZE;
1266
1267 if (request_mask & STATX_BTIME) {
1268 stat->result_mask |= STATX_BTIME;
1269 stat->btime.tv_sec = info->i_crtime.tv_sec;
1270 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1271 }
1272
1273 return 0;
1274 }
1275
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1276 static int shmem_setattr(struct mnt_idmap *idmap,
1277 struct dentry *dentry, struct iattr *attr)
1278 {
1279 struct inode *inode = d_inode(dentry);
1280 struct shmem_inode_info *info = SHMEM_I(inode);
1281 int error;
1282 bool update_mtime = false;
1283 bool update_ctime = true;
1284
1285 error = setattr_prepare(idmap, dentry, attr);
1286 if (error)
1287 return error;
1288
1289 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1290 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1291 return -EPERM;
1292 }
1293 }
1294
1295 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1296 loff_t oldsize = inode->i_size;
1297 loff_t newsize = attr->ia_size;
1298
1299 /* protected by i_rwsem */
1300 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1301 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1302 return -EPERM;
1303
1304 if (newsize != oldsize) {
1305 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1306 oldsize, newsize);
1307 if (error)
1308 return error;
1309 i_size_write(inode, newsize);
1310 update_mtime = true;
1311 } else {
1312 update_ctime = false;
1313 }
1314 if (newsize <= oldsize) {
1315 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1316 if (oldsize > holebegin)
1317 unmap_mapping_range(inode->i_mapping,
1318 holebegin, 0, 1);
1319 if (info->alloced)
1320 shmem_truncate_range(inode,
1321 newsize, (loff_t)-1);
1322 /* unmap again to remove racily COWed private pages */
1323 if (oldsize > holebegin)
1324 unmap_mapping_range(inode->i_mapping,
1325 holebegin, 0, 1);
1326 }
1327 }
1328
1329 if (is_quota_modification(idmap, inode, attr)) {
1330 error = dquot_initialize(inode);
1331 if (error)
1332 return error;
1333 }
1334
1335 /* Transfer quota accounting */
1336 if (i_uid_needs_update(idmap, attr, inode) ||
1337 i_gid_needs_update(idmap, attr, inode)) {
1338 error = dquot_transfer(idmap, inode, attr);
1339 if (error)
1340 return error;
1341 }
1342
1343 setattr_copy(idmap, inode, attr);
1344 if (attr->ia_valid & ATTR_MODE)
1345 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1346 if (!error && update_ctime) {
1347 inode_set_ctime_current(inode);
1348 if (update_mtime)
1349 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1350 inode_inc_iversion(inode);
1351 }
1352 return error;
1353 }
1354
shmem_evict_inode(struct inode * inode)1355 static void shmem_evict_inode(struct inode *inode)
1356 {
1357 struct shmem_inode_info *info = SHMEM_I(inode);
1358 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1359 size_t freed = 0;
1360
1361 if (shmem_mapping(inode->i_mapping)) {
1362 shmem_unacct_size(info->flags, inode->i_size);
1363 inode->i_size = 0;
1364 mapping_set_exiting(inode->i_mapping);
1365 shmem_truncate_range(inode, 0, (loff_t)-1);
1366 if (!list_empty(&info->shrinklist)) {
1367 spin_lock(&sbinfo->shrinklist_lock);
1368 if (!list_empty(&info->shrinklist)) {
1369 list_del_init(&info->shrinklist);
1370 sbinfo->shrinklist_len--;
1371 }
1372 spin_unlock(&sbinfo->shrinklist_lock);
1373 }
1374 while (!list_empty(&info->swaplist)) {
1375 /* Wait while shmem_unuse() is scanning this inode... */
1376 wait_var_event(&info->stop_eviction,
1377 !atomic_read(&info->stop_eviction));
1378 mutex_lock(&shmem_swaplist_mutex);
1379 /* ...but beware of the race if we peeked too early */
1380 if (!atomic_read(&info->stop_eviction))
1381 list_del_init(&info->swaplist);
1382 mutex_unlock(&shmem_swaplist_mutex);
1383 }
1384 }
1385
1386 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1387 shmem_free_inode(inode->i_sb, freed);
1388 WARN_ON(inode->i_blocks);
1389 clear_inode(inode);
1390 #ifdef CONFIG_TMPFS_QUOTA
1391 dquot_free_inode(inode);
1392 dquot_drop(inode);
1393 #endif
1394 }
1395
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1396 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1397 pgoff_t start, struct folio_batch *fbatch,
1398 pgoff_t *indices, unsigned int type)
1399 {
1400 XA_STATE(xas, &mapping->i_pages, start);
1401 struct folio *folio;
1402 swp_entry_t entry;
1403
1404 rcu_read_lock();
1405 xas_for_each(&xas, folio, ULONG_MAX) {
1406 if (xas_retry(&xas, folio))
1407 continue;
1408
1409 if (!xa_is_value(folio))
1410 continue;
1411
1412 entry = radix_to_swp_entry(folio);
1413 /*
1414 * swapin error entries can be found in the mapping. But they're
1415 * deliberately ignored here as we've done everything we can do.
1416 */
1417 if (swp_type(entry) != type)
1418 continue;
1419
1420 indices[folio_batch_count(fbatch)] = xas.xa_index;
1421 if (!folio_batch_add(fbatch, folio))
1422 break;
1423
1424 if (need_resched()) {
1425 xas_pause(&xas);
1426 cond_resched_rcu();
1427 }
1428 }
1429 rcu_read_unlock();
1430
1431 return folio_batch_count(fbatch);
1432 }
1433
1434 /*
1435 * Move the swapped pages for an inode to page cache. Returns the count
1436 * of pages swapped in, or the error in case of failure.
1437 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1438 static int shmem_unuse_swap_entries(struct inode *inode,
1439 struct folio_batch *fbatch, pgoff_t *indices)
1440 {
1441 int i = 0;
1442 int ret = 0;
1443 int error = 0;
1444 struct address_space *mapping = inode->i_mapping;
1445
1446 for (i = 0; i < folio_batch_count(fbatch); i++) {
1447 struct folio *folio = fbatch->folios[i];
1448
1449 if (!xa_is_value(folio))
1450 continue;
1451 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1452 mapping_gfp_mask(mapping), NULL, NULL);
1453 if (error == 0) {
1454 folio_unlock(folio);
1455 folio_put(folio);
1456 ret++;
1457 }
1458 if (error == -ENOMEM)
1459 break;
1460 error = 0;
1461 }
1462 return error ? error : ret;
1463 }
1464
1465 /*
1466 * If swap found in inode, free it and move page from swapcache to filecache.
1467 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1468 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1469 {
1470 struct address_space *mapping = inode->i_mapping;
1471 pgoff_t start = 0;
1472 struct folio_batch fbatch;
1473 pgoff_t indices[PAGEVEC_SIZE];
1474 int ret = 0;
1475
1476 do {
1477 folio_batch_init(&fbatch);
1478 if (!shmem_find_swap_entries(mapping, start, &fbatch,
1479 indices, type)) {
1480 ret = 0;
1481 break;
1482 }
1483
1484 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1485 if (ret < 0)
1486 break;
1487
1488 start = indices[folio_batch_count(&fbatch) - 1];
1489 } while (true);
1490
1491 return ret;
1492 }
1493
1494 /*
1495 * Read all the shared memory data that resides in the swap
1496 * device 'type' back into memory, so the swap device can be
1497 * unused.
1498 */
shmem_unuse(unsigned int type)1499 int shmem_unuse(unsigned int type)
1500 {
1501 struct shmem_inode_info *info, *next;
1502 int error = 0;
1503
1504 if (list_empty(&shmem_swaplist))
1505 return 0;
1506
1507 mutex_lock(&shmem_swaplist_mutex);
1508 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1509 if (!info->swapped) {
1510 list_del_init(&info->swaplist);
1511 continue;
1512 }
1513 /*
1514 * Drop the swaplist mutex while searching the inode for swap;
1515 * but before doing so, make sure shmem_evict_inode() will not
1516 * remove placeholder inode from swaplist, nor let it be freed
1517 * (igrab() would protect from unlink, but not from unmount).
1518 */
1519 atomic_inc(&info->stop_eviction);
1520 mutex_unlock(&shmem_swaplist_mutex);
1521
1522 error = shmem_unuse_inode(&info->vfs_inode, type);
1523 cond_resched();
1524
1525 mutex_lock(&shmem_swaplist_mutex);
1526 next = list_next_entry(info, swaplist);
1527 if (!info->swapped)
1528 list_del_init(&info->swaplist);
1529 if (atomic_dec_and_test(&info->stop_eviction))
1530 wake_up_var(&info->stop_eviction);
1531 if (error)
1532 break;
1533 }
1534 mutex_unlock(&shmem_swaplist_mutex);
1535
1536 return error;
1537 }
1538
1539 /*
1540 * Move the page from the page cache to the swap cache.
1541 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1542 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1543 {
1544 struct folio *folio = page_folio(page);
1545 struct address_space *mapping = folio->mapping;
1546 struct inode *inode = mapping->host;
1547 struct shmem_inode_info *info = SHMEM_I(inode);
1548 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1549 pgoff_t index;
1550 int nr_pages;
1551 bool split = false;
1552
1553 /*
1554 * Our capabilities prevent regular writeback or sync from ever calling
1555 * shmem_writepage; but a stacking filesystem might use ->writepage of
1556 * its underlying filesystem, in which case tmpfs should write out to
1557 * swap only in response to memory pressure, and not for the writeback
1558 * threads or sync.
1559 */
1560 if (WARN_ON_ONCE(!wbc->for_reclaim))
1561 goto redirty;
1562
1563 if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1564 goto redirty;
1565
1566 if (!total_swap_pages)
1567 goto redirty;
1568
1569 /*
1570 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1571 * split when swapping.
1572 *
1573 * And shrinkage of pages beyond i_size does not split swap, so
1574 * swapout of a large folio crossing i_size needs to split too
1575 * (unless fallocate has been used to preallocate beyond EOF).
1576 */
1577 if (folio_test_large(folio)) {
1578 index = shmem_fallocend(inode,
1579 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1580 if ((index > folio->index && index < folio_next_index(folio)) ||
1581 !IS_ENABLED(CONFIG_THP_SWAP))
1582 split = true;
1583 }
1584
1585 if (split) {
1586 try_split:
1587 /* Ensure the subpages are still dirty */
1588 folio_test_set_dirty(folio);
1589 if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1590 goto redirty;
1591 folio = page_folio(page);
1592 folio_clear_dirty(folio);
1593 }
1594
1595 index = folio->index;
1596 nr_pages = folio_nr_pages(folio);
1597
1598 /*
1599 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1600 * value into swapfile.c, the only way we can correctly account for a
1601 * fallocated folio arriving here is now to initialize it and write it.
1602 *
1603 * That's okay for a folio already fallocated earlier, but if we have
1604 * not yet completed the fallocation, then (a) we want to keep track
1605 * of this folio in case we have to undo it, and (b) it may not be a
1606 * good idea to continue anyway, once we're pushing into swap. So
1607 * reactivate the folio, and let shmem_fallocate() quit when too many.
1608 */
1609 if (!folio_test_uptodate(folio)) {
1610 if (inode->i_private) {
1611 struct shmem_falloc *shmem_falloc;
1612 spin_lock(&inode->i_lock);
1613 shmem_falloc = inode->i_private;
1614 if (shmem_falloc &&
1615 !shmem_falloc->waitq &&
1616 index >= shmem_falloc->start &&
1617 index < shmem_falloc->next)
1618 shmem_falloc->nr_unswapped += nr_pages;
1619 else
1620 shmem_falloc = NULL;
1621 spin_unlock(&inode->i_lock);
1622 if (shmem_falloc)
1623 goto redirty;
1624 }
1625 folio_zero_range(folio, 0, folio_size(folio));
1626 flush_dcache_folio(folio);
1627 folio_mark_uptodate(folio);
1628 }
1629
1630 /*
1631 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1632 * if it's not already there. Do it now before the folio is
1633 * moved to swap cache, when its pagelock no longer protects
1634 * the inode from eviction. But don't unlock the mutex until
1635 * we've incremented swapped, because shmem_unuse_inode() will
1636 * prune a !swapped inode from the swaplist under this mutex.
1637 */
1638 mutex_lock(&shmem_swaplist_mutex);
1639 if (list_empty(&info->swaplist))
1640 list_add(&info->swaplist, &shmem_swaplist);
1641
1642 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1643 shmem_recalc_inode(inode, 0, nr_pages);
1644 swap_shmem_alloc(folio->swap, nr_pages);
1645 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1646
1647 mutex_unlock(&shmem_swaplist_mutex);
1648 BUG_ON(folio_mapped(folio));
1649 return swap_writepage(&folio->page, wbc);
1650 }
1651
1652 list_del_init(&info->swaplist);
1653 mutex_unlock(&shmem_swaplist_mutex);
1654 if (nr_pages > 1)
1655 goto try_split;
1656 redirty:
1657 folio_mark_dirty(folio);
1658 if (wbc->for_reclaim)
1659 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1660 folio_unlock(folio);
1661 return 0;
1662 }
1663
1664 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1665 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1666 {
1667 char buffer[64];
1668
1669 if (!mpol || mpol->mode == MPOL_DEFAULT)
1670 return; /* show nothing */
1671
1672 mpol_to_str(buffer, sizeof(buffer), mpol);
1673
1674 seq_printf(seq, ",mpol=%s", buffer);
1675 }
1676
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1677 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1678 {
1679 struct mempolicy *mpol = NULL;
1680 if (sbinfo->mpol) {
1681 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1682 mpol = sbinfo->mpol;
1683 mpol_get(mpol);
1684 raw_spin_unlock(&sbinfo->stat_lock);
1685 }
1686 return mpol;
1687 }
1688 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1689 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1690 {
1691 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1692 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1693 {
1694 return NULL;
1695 }
1696 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1697
1698 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1699 pgoff_t index, unsigned int order, pgoff_t *ilx);
1700
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1701 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1702 struct shmem_inode_info *info, pgoff_t index)
1703 {
1704 struct mempolicy *mpol;
1705 pgoff_t ilx;
1706 struct folio *folio;
1707
1708 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1709 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1710 mpol_cond_put(mpol);
1711
1712 return folio;
1713 }
1714
1715 /*
1716 * Make sure huge_gfp is always more limited than limit_gfp.
1717 * Some of the flags set permissions, while others set limitations.
1718 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1719 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1720 {
1721 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1722 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1723 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1724 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1725
1726 /* Allow allocations only from the originally specified zones. */
1727 result |= zoneflags;
1728
1729 /*
1730 * Minimize the result gfp by taking the union with the deny flags,
1731 * and the intersection of the allow flags.
1732 */
1733 result |= (limit_gfp & denyflags);
1734 result |= (huge_gfp & limit_gfp) & allowflags;
1735
1736 return result;
1737 }
1738
1739 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1740 bool shmem_hpage_pmd_enabled(void)
1741 {
1742 if (shmem_huge == SHMEM_HUGE_DENY)
1743 return false;
1744 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1745 return true;
1746 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1747 return true;
1748 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1749 return true;
1750 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1751 shmem_huge != SHMEM_HUGE_NEVER)
1752 return true;
1753
1754 return false;
1755 }
1756
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1757 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1758 struct vm_area_struct *vma, pgoff_t index,
1759 loff_t write_end, bool shmem_huge_force)
1760 {
1761 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1762 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1763 unsigned long vm_flags = vma ? vma->vm_flags : 0;
1764 unsigned int global_orders;
1765
1766 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1767 return 0;
1768
1769 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1770 shmem_huge_force, vma, vm_flags);
1771 /* Tmpfs huge pages allocation */
1772 if (!vma || !vma_is_anon_shmem(vma))
1773 return global_orders;
1774
1775 /*
1776 * Following the 'deny' semantics of the top level, force the huge
1777 * option off from all mounts.
1778 */
1779 if (shmem_huge == SHMEM_HUGE_DENY)
1780 return 0;
1781
1782 /*
1783 * Only allow inherit orders if the top-level value is 'force', which
1784 * means non-PMD sized THP can not override 'huge' mount option now.
1785 */
1786 if (shmem_huge == SHMEM_HUGE_FORCE)
1787 return READ_ONCE(huge_shmem_orders_inherit);
1788
1789 /* Allow mTHP that will be fully within i_size. */
1790 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1791
1792 if (vm_flags & VM_HUGEPAGE)
1793 mask |= READ_ONCE(huge_shmem_orders_madvise);
1794
1795 if (global_orders > 0)
1796 mask |= READ_ONCE(huge_shmem_orders_inherit);
1797
1798 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1799 }
1800
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1801 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1802 struct address_space *mapping, pgoff_t index,
1803 unsigned long orders)
1804 {
1805 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1806 pgoff_t aligned_index;
1807 unsigned long pages;
1808 int order;
1809
1810 if (vma) {
1811 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1812 if (!orders)
1813 return 0;
1814 }
1815
1816 /* Find the highest order that can add into the page cache */
1817 order = highest_order(orders);
1818 while (orders) {
1819 pages = 1UL << order;
1820 aligned_index = round_down(index, pages);
1821 /*
1822 * Check for conflict before waiting on a huge allocation.
1823 * Conflict might be that a huge page has just been allocated
1824 * and added to page cache by a racing thread, or that there
1825 * is already at least one small page in the huge extent.
1826 * Be careful to retry when appropriate, but not forever!
1827 * Elsewhere -EEXIST would be the right code, but not here.
1828 */
1829 if (!xa_find(&mapping->i_pages, &aligned_index,
1830 aligned_index + pages - 1, XA_PRESENT))
1831 break;
1832 order = next_order(&orders, order);
1833 }
1834
1835 return orders;
1836 }
1837 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1838 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1839 struct address_space *mapping, pgoff_t index,
1840 unsigned long orders)
1841 {
1842 return 0;
1843 }
1844 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1845
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1846 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1847 struct shmem_inode_info *info, pgoff_t index)
1848 {
1849 struct mempolicy *mpol;
1850 pgoff_t ilx;
1851 struct folio *folio;
1852
1853 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1854 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1855 mpol_cond_put(mpol);
1856
1857 return folio;
1858 }
1859
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1860 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1861 gfp_t gfp, struct inode *inode, pgoff_t index,
1862 struct mm_struct *fault_mm, unsigned long orders)
1863 {
1864 struct address_space *mapping = inode->i_mapping;
1865 struct shmem_inode_info *info = SHMEM_I(inode);
1866 unsigned long suitable_orders = 0;
1867 struct folio *folio = NULL;
1868 long pages;
1869 int error, order;
1870
1871 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1872 orders = 0;
1873
1874 if (orders > 0) {
1875 suitable_orders = shmem_suitable_orders(inode, vmf,
1876 mapping, index, orders);
1877
1878 order = highest_order(suitable_orders);
1879 while (suitable_orders) {
1880 pages = 1UL << order;
1881 index = round_down(index, pages);
1882 folio = shmem_alloc_folio(gfp, order, info, index);
1883 if (folio)
1884 goto allocated;
1885
1886 if (pages == HPAGE_PMD_NR)
1887 count_vm_event(THP_FILE_FALLBACK);
1888 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1889 order = next_order(&suitable_orders, order);
1890 }
1891 } else {
1892 pages = 1;
1893 folio = shmem_alloc_folio(gfp, 0, info, index);
1894 }
1895 if (!folio)
1896 return ERR_PTR(-ENOMEM);
1897
1898 allocated:
1899 __folio_set_locked(folio);
1900 __folio_set_swapbacked(folio);
1901
1902 gfp &= GFP_RECLAIM_MASK;
1903 error = mem_cgroup_charge(folio, fault_mm, gfp);
1904 if (error) {
1905 if (xa_find(&mapping->i_pages, &index,
1906 index + pages - 1, XA_PRESENT)) {
1907 error = -EEXIST;
1908 } else if (pages > 1) {
1909 if (pages == HPAGE_PMD_NR) {
1910 count_vm_event(THP_FILE_FALLBACK);
1911 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1912 }
1913 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1914 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1915 }
1916 goto unlock;
1917 }
1918
1919 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1920 if (error)
1921 goto unlock;
1922
1923 error = shmem_inode_acct_blocks(inode, pages);
1924 if (error) {
1925 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1926 long freed;
1927 /*
1928 * Try to reclaim some space by splitting a few
1929 * large folios beyond i_size on the filesystem.
1930 */
1931 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1932 /*
1933 * And do a shmem_recalc_inode() to account for freed pages:
1934 * except our folio is there in cache, so not quite balanced.
1935 */
1936 spin_lock(&info->lock);
1937 freed = pages + info->alloced - info->swapped -
1938 READ_ONCE(mapping->nrpages);
1939 if (freed > 0)
1940 info->alloced -= freed;
1941 spin_unlock(&info->lock);
1942 if (freed > 0)
1943 shmem_inode_unacct_blocks(inode, freed);
1944 error = shmem_inode_acct_blocks(inode, pages);
1945 if (error) {
1946 filemap_remove_folio(folio);
1947 goto unlock;
1948 }
1949 }
1950
1951 shmem_recalc_inode(inode, pages, 0);
1952 folio_add_lru(folio);
1953 return folio;
1954
1955 unlock:
1956 folio_unlock(folio);
1957 folio_put(folio);
1958 return ERR_PTR(error);
1959 }
1960
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)1961 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1962 struct vm_area_struct *vma, pgoff_t index,
1963 swp_entry_t entry, int order, gfp_t gfp)
1964 {
1965 struct shmem_inode_info *info = SHMEM_I(inode);
1966 struct folio *new;
1967 void *shadow;
1968 int nr_pages;
1969
1970 /*
1971 * We have arrived here because our zones are constrained, so don't
1972 * limit chance of success with further cpuset and node constraints.
1973 */
1974 gfp &= ~GFP_CONSTRAINT_MASK;
1975 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
1976 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1977
1978 gfp = limit_gfp_mask(huge_gfp, gfp);
1979 }
1980
1981 new = shmem_alloc_folio(gfp, order, info, index);
1982 if (!new)
1983 return ERR_PTR(-ENOMEM);
1984
1985 nr_pages = folio_nr_pages(new);
1986 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
1987 gfp, entry)) {
1988 folio_put(new);
1989 return ERR_PTR(-ENOMEM);
1990 }
1991
1992 /*
1993 * Prevent parallel swapin from proceeding with the swap cache flag.
1994 *
1995 * Of course there is another possible concurrent scenario as well,
1996 * that is to say, the swap cache flag of a large folio has already
1997 * been set by swapcache_prepare(), while another thread may have
1998 * already split the large swap entry stored in the shmem mapping.
1999 * In this case, shmem_add_to_page_cache() will help identify the
2000 * concurrent swapin and return -EEXIST.
2001 */
2002 if (swapcache_prepare(entry, nr_pages)) {
2003 folio_put(new);
2004 return ERR_PTR(-EEXIST);
2005 }
2006
2007 __folio_set_locked(new);
2008 __folio_set_swapbacked(new);
2009 new->swap = entry;
2010
2011 memcg1_swapin(entry, nr_pages);
2012 shadow = get_shadow_from_swap_cache(entry);
2013 if (shadow)
2014 workingset_refault(new, shadow);
2015 folio_add_lru(new);
2016 swap_read_folio(new, NULL);
2017 return new;
2018 }
2019
2020 /*
2021 * When a page is moved from swapcache to shmem filecache (either by the
2022 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2023 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2024 * ignorance of the mapping it belongs to. If that mapping has special
2025 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2026 * we may need to copy to a suitable page before moving to filecache.
2027 *
2028 * In a future release, this may well be extended to respect cpuset and
2029 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2030 * but for now it is a simple matter of zone.
2031 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2032 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2033 {
2034 return folio_zonenum(folio) > gfp_zone(gfp);
2035 }
2036
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2037 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2038 struct shmem_inode_info *info, pgoff_t index,
2039 struct vm_area_struct *vma)
2040 {
2041 struct folio *new, *old = *foliop;
2042 swp_entry_t entry = old->swap;
2043 struct address_space *swap_mapping = swap_address_space(entry);
2044 pgoff_t swap_index = swap_cache_index(entry);
2045 XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2046 int nr_pages = folio_nr_pages(old);
2047 int error = 0, i;
2048
2049 /*
2050 * We have arrived here because our zones are constrained, so don't
2051 * limit chance of success by further cpuset and node constraints.
2052 */
2053 gfp &= ~GFP_CONSTRAINT_MASK;
2054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2055 if (nr_pages > 1) {
2056 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2057
2058 gfp = limit_gfp_mask(huge_gfp, gfp);
2059 }
2060 #endif
2061
2062 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2063 if (!new)
2064 return -ENOMEM;
2065
2066 folio_ref_add(new, nr_pages);
2067 folio_copy(new, old);
2068 flush_dcache_folio(new);
2069
2070 __folio_set_locked(new);
2071 __folio_set_swapbacked(new);
2072 folio_mark_uptodate(new);
2073 new->swap = entry;
2074 folio_set_swapcache(new);
2075
2076 /* Swap cache still stores N entries instead of a high-order entry */
2077 xa_lock_irq(&swap_mapping->i_pages);
2078 for (i = 0; i < nr_pages; i++) {
2079 void *item = xas_load(&xas);
2080
2081 if (item != old) {
2082 error = -ENOENT;
2083 break;
2084 }
2085
2086 xas_store(&xas, new);
2087 xas_next(&xas);
2088 }
2089 if (!error) {
2090 mem_cgroup_replace_folio(old, new);
2091 shmem_update_stats(new, nr_pages);
2092 shmem_update_stats(old, -nr_pages);
2093 }
2094 xa_unlock_irq(&swap_mapping->i_pages);
2095
2096 if (unlikely(error)) {
2097 /*
2098 * Is this possible? I think not, now that our callers
2099 * check both the swapcache flag and folio->private
2100 * after getting the folio lock; but be defensive.
2101 * Reverse old to newpage for clear and free.
2102 */
2103 old = new;
2104 } else {
2105 folio_add_lru(new);
2106 *foliop = new;
2107 }
2108
2109 folio_clear_swapcache(old);
2110 old->private = NULL;
2111
2112 folio_unlock(old);
2113 /*
2114 * The old folio are removed from swap cache, drop the 'nr_pages'
2115 * reference, as well as one temporary reference getting from swap
2116 * cache.
2117 */
2118 folio_put_refs(old, nr_pages + 1);
2119 return error;
2120 }
2121
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2122 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2123 struct folio *folio, swp_entry_t swap,
2124 bool skip_swapcache)
2125 {
2126 struct address_space *mapping = inode->i_mapping;
2127 swp_entry_t swapin_error;
2128 void *old;
2129 int nr_pages;
2130
2131 swapin_error = make_poisoned_swp_entry();
2132 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2133 swp_to_radix_entry(swap),
2134 swp_to_radix_entry(swapin_error), 0);
2135 if (old != swp_to_radix_entry(swap))
2136 return;
2137
2138 nr_pages = folio_nr_pages(folio);
2139 folio_wait_writeback(folio);
2140 if (!skip_swapcache)
2141 delete_from_swap_cache(folio);
2142 /*
2143 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2144 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2145 * in shmem_evict_inode().
2146 */
2147 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2148 swap_free_nr(swap, nr_pages);
2149 }
2150
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2151 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2152 swp_entry_t swap, gfp_t gfp)
2153 {
2154 struct address_space *mapping = inode->i_mapping;
2155 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2156 int split_order = 0, entry_order;
2157 int i;
2158
2159 /* Convert user data gfp flags to xarray node gfp flags */
2160 gfp &= GFP_RECLAIM_MASK;
2161
2162 for (;;) {
2163 void *old = NULL;
2164 int cur_order;
2165 pgoff_t swap_index;
2166
2167 xas_lock_irq(&xas);
2168 old = xas_load(&xas);
2169 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2170 xas_set_err(&xas, -EEXIST);
2171 goto unlock;
2172 }
2173
2174 entry_order = xas_get_order(&xas);
2175
2176 if (!entry_order)
2177 goto unlock;
2178
2179 /* Try to split large swap entry in pagecache */
2180 cur_order = entry_order;
2181 swap_index = round_down(index, 1 << entry_order);
2182
2183 split_order = xas_try_split_min_order(cur_order);
2184
2185 while (cur_order > 0) {
2186 pgoff_t aligned_index =
2187 round_down(index, 1 << cur_order);
2188 pgoff_t swap_offset = aligned_index - swap_index;
2189
2190 xas_set_order(&xas, index, split_order);
2191 xas_try_split(&xas, old, cur_order);
2192 if (xas_error(&xas))
2193 goto unlock;
2194
2195 /*
2196 * Re-set the swap entry after splitting, and the swap
2197 * offset of the original large entry must be continuous.
2198 */
2199 for (i = 0; i < 1 << cur_order;
2200 i += (1 << split_order)) {
2201 swp_entry_t tmp;
2202
2203 tmp = swp_entry(swp_type(swap),
2204 swp_offset(swap) + swap_offset +
2205 i);
2206 __xa_store(&mapping->i_pages, aligned_index + i,
2207 swp_to_radix_entry(tmp), 0);
2208 }
2209 cur_order = split_order;
2210 split_order = xas_try_split_min_order(split_order);
2211 }
2212
2213 unlock:
2214 xas_unlock_irq(&xas);
2215
2216 if (!xas_nomem(&xas, gfp))
2217 break;
2218 }
2219
2220 if (xas_error(&xas))
2221 return xas_error(&xas);
2222
2223 return entry_order;
2224 }
2225
2226 /*
2227 * Swap in the folio pointed to by *foliop.
2228 * Caller has to make sure that *foliop contains a valid swapped folio.
2229 * Returns 0 and the folio in foliop if success. On failure, returns the
2230 * error code and NULL in *foliop.
2231 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2232 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2233 struct folio **foliop, enum sgp_type sgp,
2234 gfp_t gfp, struct vm_area_struct *vma,
2235 vm_fault_t *fault_type)
2236 {
2237 struct address_space *mapping = inode->i_mapping;
2238 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2239 struct shmem_inode_info *info = SHMEM_I(inode);
2240 struct swap_info_struct *si;
2241 struct folio *folio = NULL;
2242 bool skip_swapcache = false;
2243 swp_entry_t swap;
2244 int error, nr_pages, order, split_order;
2245
2246 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2247 swap = radix_to_swp_entry(*foliop);
2248 *foliop = NULL;
2249
2250 if (is_poisoned_swp_entry(swap))
2251 return -EIO;
2252
2253 si = get_swap_device(swap);
2254 if (!si) {
2255 if (!shmem_confirm_swap(mapping, index, swap))
2256 return -EEXIST;
2257 else
2258 return -EINVAL;
2259 }
2260
2261 /* Look it up and read it in.. */
2262 folio = swap_cache_get_folio(swap, NULL, 0);
2263 order = xa_get_order(&mapping->i_pages, index);
2264 if (!folio) {
2265 bool fallback_order0 = false;
2266
2267 /* Or update major stats only when swapin succeeds?? */
2268 if (fault_type) {
2269 *fault_type |= VM_FAULT_MAJOR;
2270 count_vm_event(PGMAJFAULT);
2271 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2272 }
2273
2274 /*
2275 * If uffd is active for the vma, we need per-page fault
2276 * fidelity to maintain the uffd semantics, then fallback
2277 * to swapin order-0 folio, as well as for zswap case.
2278 */
2279 if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
2280 !zswap_never_enabled()))
2281 fallback_order0 = true;
2282
2283 /* Skip swapcache for synchronous device. */
2284 if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2285 folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp);
2286 if (!IS_ERR(folio)) {
2287 skip_swapcache = true;
2288 goto alloced;
2289 }
2290
2291 /*
2292 * Fallback to swapin order-0 folio unless the swap entry
2293 * already exists.
2294 */
2295 error = PTR_ERR(folio);
2296 folio = NULL;
2297 if (error == -EEXIST)
2298 goto failed;
2299 }
2300
2301 /*
2302 * Now swap device can only swap in order 0 folio, then we
2303 * should split the large swap entry stored in the pagecache
2304 * if necessary.
2305 */
2306 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2307 if (split_order < 0) {
2308 error = split_order;
2309 goto failed;
2310 }
2311
2312 /*
2313 * If the large swap entry has already been split, it is
2314 * necessary to recalculate the new swap entry based on
2315 * the old order alignment.
2316 */
2317 if (split_order > 0) {
2318 pgoff_t offset = index - round_down(index, 1 << split_order);
2319
2320 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2321 }
2322
2323 /* Here we actually start the io */
2324 folio = shmem_swapin_cluster(swap, gfp, info, index);
2325 if (!folio) {
2326 error = -ENOMEM;
2327 goto failed;
2328 }
2329 } else if (order != folio_order(folio)) {
2330 /*
2331 * Swap readahead may swap in order 0 folios into swapcache
2332 * asynchronously, while the shmem mapping can still stores
2333 * large swap entries. In such cases, we should split the
2334 * large swap entry to prevent possible data corruption.
2335 */
2336 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2337 if (split_order < 0) {
2338 error = split_order;
2339 goto failed;
2340 }
2341
2342 /*
2343 * If the large swap entry has already been split, it is
2344 * necessary to recalculate the new swap entry based on
2345 * the old order alignment.
2346 */
2347 if (split_order > 0) {
2348 pgoff_t offset = index - round_down(index, 1 << split_order);
2349
2350 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2351 }
2352 }
2353
2354 alloced:
2355 /* We have to do this with folio locked to prevent races */
2356 folio_lock(folio);
2357 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2358 folio->swap.val != swap.val ||
2359 !shmem_confirm_swap(mapping, index, swap) ||
2360 xa_get_order(&mapping->i_pages, index) != folio_order(folio)) {
2361 error = -EEXIST;
2362 goto unlock;
2363 }
2364 if (!folio_test_uptodate(folio)) {
2365 error = -EIO;
2366 goto failed;
2367 }
2368 folio_wait_writeback(folio);
2369 nr_pages = folio_nr_pages(folio);
2370
2371 /*
2372 * Some architectures may have to restore extra metadata to the
2373 * folio after reading from swap.
2374 */
2375 arch_swap_restore(folio_swap(swap, folio), folio);
2376
2377 if (shmem_should_replace_folio(folio, gfp)) {
2378 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2379 if (error)
2380 goto failed;
2381 }
2382
2383 error = shmem_add_to_page_cache(folio, mapping,
2384 round_down(index, nr_pages),
2385 swp_to_radix_entry(swap), gfp);
2386 if (error)
2387 goto failed;
2388
2389 shmem_recalc_inode(inode, 0, -nr_pages);
2390
2391 if (sgp == SGP_WRITE)
2392 folio_mark_accessed(folio);
2393
2394 if (skip_swapcache) {
2395 folio->swap.val = 0;
2396 swapcache_clear(si, swap, nr_pages);
2397 } else {
2398 delete_from_swap_cache(folio);
2399 }
2400 folio_mark_dirty(folio);
2401 swap_free_nr(swap, nr_pages);
2402 put_swap_device(si);
2403
2404 *foliop = folio;
2405 return 0;
2406 failed:
2407 if (!shmem_confirm_swap(mapping, index, swap))
2408 error = -EEXIST;
2409 if (error == -EIO)
2410 shmem_set_folio_swapin_error(inode, index, folio, swap,
2411 skip_swapcache);
2412 unlock:
2413 if (skip_swapcache)
2414 swapcache_clear(si, swap, folio_nr_pages(folio));
2415 if (folio) {
2416 folio_unlock(folio);
2417 folio_put(folio);
2418 }
2419 put_swap_device(si);
2420
2421 return error;
2422 }
2423
2424 /*
2425 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2426 *
2427 * If we allocate a new one we do not mark it dirty. That's up to the
2428 * vm. If we swap it in we mark it dirty since we also free the swap
2429 * entry since a page cannot live in both the swap and page cache.
2430 *
2431 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2432 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2433 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2434 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2435 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2436 {
2437 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2438 struct mm_struct *fault_mm;
2439 struct folio *folio;
2440 int error;
2441 bool alloced;
2442 unsigned long orders = 0;
2443
2444 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2445 return -EINVAL;
2446
2447 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2448 return -EFBIG;
2449 repeat:
2450 if (sgp <= SGP_CACHE &&
2451 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2452 return -EINVAL;
2453
2454 alloced = false;
2455 fault_mm = vma ? vma->vm_mm : NULL;
2456
2457 folio = filemap_get_entry(inode->i_mapping, index);
2458 if (folio && vma && userfaultfd_minor(vma)) {
2459 if (!xa_is_value(folio))
2460 folio_put(folio);
2461 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2462 return 0;
2463 }
2464
2465 if (xa_is_value(folio)) {
2466 error = shmem_swapin_folio(inode, index, &folio,
2467 sgp, gfp, vma, fault_type);
2468 if (error == -EEXIST)
2469 goto repeat;
2470
2471 *foliop = folio;
2472 return error;
2473 }
2474
2475 if (folio) {
2476 folio_lock(folio);
2477
2478 /* Has the folio been truncated or swapped out? */
2479 if (unlikely(folio->mapping != inode->i_mapping)) {
2480 folio_unlock(folio);
2481 folio_put(folio);
2482 goto repeat;
2483 }
2484 if (sgp == SGP_WRITE)
2485 folio_mark_accessed(folio);
2486 if (folio_test_uptodate(folio))
2487 goto out;
2488 /* fallocated folio */
2489 if (sgp != SGP_READ)
2490 goto clear;
2491 folio_unlock(folio);
2492 folio_put(folio);
2493 }
2494
2495 /*
2496 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2497 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2498 */
2499 *foliop = NULL;
2500 if (sgp == SGP_READ)
2501 return 0;
2502 if (sgp == SGP_NOALLOC)
2503 return -ENOENT;
2504
2505 /*
2506 * Fast cache lookup and swap lookup did not find it: allocate.
2507 */
2508
2509 if (vma && userfaultfd_missing(vma)) {
2510 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2511 return 0;
2512 }
2513
2514 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2515 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2516 if (orders > 0) {
2517 gfp_t huge_gfp;
2518
2519 huge_gfp = vma_thp_gfp_mask(vma);
2520 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2521 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2522 inode, index, fault_mm, orders);
2523 if (!IS_ERR(folio)) {
2524 if (folio_test_pmd_mappable(folio))
2525 count_vm_event(THP_FILE_ALLOC);
2526 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2527 goto alloced;
2528 }
2529 if (PTR_ERR(folio) == -EEXIST)
2530 goto repeat;
2531 }
2532
2533 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2534 if (IS_ERR(folio)) {
2535 error = PTR_ERR(folio);
2536 if (error == -EEXIST)
2537 goto repeat;
2538 folio = NULL;
2539 goto unlock;
2540 }
2541
2542 alloced:
2543 alloced = true;
2544 if (folio_test_large(folio) &&
2545 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2546 folio_next_index(folio)) {
2547 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2548 struct shmem_inode_info *info = SHMEM_I(inode);
2549 /*
2550 * Part of the large folio is beyond i_size: subject
2551 * to shrink under memory pressure.
2552 */
2553 spin_lock(&sbinfo->shrinklist_lock);
2554 /*
2555 * _careful to defend against unlocked access to
2556 * ->shrink_list in shmem_unused_huge_shrink()
2557 */
2558 if (list_empty_careful(&info->shrinklist)) {
2559 list_add_tail(&info->shrinklist,
2560 &sbinfo->shrinklist);
2561 sbinfo->shrinklist_len++;
2562 }
2563 spin_unlock(&sbinfo->shrinklist_lock);
2564 }
2565
2566 if (sgp == SGP_WRITE)
2567 folio_set_referenced(folio);
2568 /*
2569 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2570 */
2571 if (sgp == SGP_FALLOC)
2572 sgp = SGP_WRITE;
2573 clear:
2574 /*
2575 * Let SGP_WRITE caller clear ends if write does not fill folio;
2576 * but SGP_FALLOC on a folio fallocated earlier must initialize
2577 * it now, lest undo on failure cancel our earlier guarantee.
2578 */
2579 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2580 long i, n = folio_nr_pages(folio);
2581
2582 for (i = 0; i < n; i++)
2583 clear_highpage(folio_page(folio, i));
2584 flush_dcache_folio(folio);
2585 folio_mark_uptodate(folio);
2586 }
2587
2588 /* Perhaps the file has been truncated since we checked */
2589 if (sgp <= SGP_CACHE &&
2590 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2591 error = -EINVAL;
2592 goto unlock;
2593 }
2594 out:
2595 *foliop = folio;
2596 return 0;
2597
2598 /*
2599 * Error recovery.
2600 */
2601 unlock:
2602 if (alloced)
2603 filemap_remove_folio(folio);
2604 shmem_recalc_inode(inode, 0, 0);
2605 if (folio) {
2606 folio_unlock(folio);
2607 folio_put(folio);
2608 }
2609 return error;
2610 }
2611
2612 /**
2613 * shmem_get_folio - find, and lock a shmem folio.
2614 * @inode: inode to search
2615 * @index: the page index.
2616 * @write_end: end of a write, could extend inode size
2617 * @foliop: pointer to the folio if found
2618 * @sgp: SGP_* flags to control behavior
2619 *
2620 * Looks up the page cache entry at @inode & @index. If a folio is
2621 * present, it is returned locked with an increased refcount.
2622 *
2623 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2624 * before unlocking the folio to ensure that the folio is not reclaimed.
2625 * There is no need to reserve space before calling folio_mark_dirty().
2626 *
2627 * When no folio is found, the behavior depends on @sgp:
2628 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2629 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2630 * - for all other flags a new folio is allocated, inserted into the
2631 * page cache and returned locked in @foliop.
2632 *
2633 * Context: May sleep.
2634 * Return: 0 if successful, else a negative error code.
2635 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2636 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2637 struct folio **foliop, enum sgp_type sgp)
2638 {
2639 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2640 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2641 }
2642 EXPORT_SYMBOL_GPL(shmem_get_folio);
2643
2644 /*
2645 * This is like autoremove_wake_function, but it removes the wait queue
2646 * entry unconditionally - even if something else had already woken the
2647 * target.
2648 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2649 static int synchronous_wake_function(wait_queue_entry_t *wait,
2650 unsigned int mode, int sync, void *key)
2651 {
2652 int ret = default_wake_function(wait, mode, sync, key);
2653 list_del_init(&wait->entry);
2654 return ret;
2655 }
2656
2657 /*
2658 * Trinity finds that probing a hole which tmpfs is punching can
2659 * prevent the hole-punch from ever completing: which in turn
2660 * locks writers out with its hold on i_rwsem. So refrain from
2661 * faulting pages into the hole while it's being punched. Although
2662 * shmem_undo_range() does remove the additions, it may be unable to
2663 * keep up, as each new page needs its own unmap_mapping_range() call,
2664 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2665 *
2666 * It does not matter if we sometimes reach this check just before the
2667 * hole-punch begins, so that one fault then races with the punch:
2668 * we just need to make racing faults a rare case.
2669 *
2670 * The implementation below would be much simpler if we just used a
2671 * standard mutex or completion: but we cannot take i_rwsem in fault,
2672 * and bloating every shmem inode for this unlikely case would be sad.
2673 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2674 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2675 {
2676 struct shmem_falloc *shmem_falloc;
2677 struct file *fpin = NULL;
2678 vm_fault_t ret = 0;
2679
2680 spin_lock(&inode->i_lock);
2681 shmem_falloc = inode->i_private;
2682 if (shmem_falloc &&
2683 shmem_falloc->waitq &&
2684 vmf->pgoff >= shmem_falloc->start &&
2685 vmf->pgoff < shmem_falloc->next) {
2686 wait_queue_head_t *shmem_falloc_waitq;
2687 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2688
2689 ret = VM_FAULT_NOPAGE;
2690 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2691 shmem_falloc_waitq = shmem_falloc->waitq;
2692 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2693 TASK_UNINTERRUPTIBLE);
2694 spin_unlock(&inode->i_lock);
2695 schedule();
2696
2697 /*
2698 * shmem_falloc_waitq points into the shmem_fallocate()
2699 * stack of the hole-punching task: shmem_falloc_waitq
2700 * is usually invalid by the time we reach here, but
2701 * finish_wait() does not dereference it in that case;
2702 * though i_lock needed lest racing with wake_up_all().
2703 */
2704 spin_lock(&inode->i_lock);
2705 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2706 }
2707 spin_unlock(&inode->i_lock);
2708 if (fpin) {
2709 fput(fpin);
2710 ret = VM_FAULT_RETRY;
2711 }
2712 return ret;
2713 }
2714
shmem_fault(struct vm_fault * vmf)2715 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2716 {
2717 struct inode *inode = file_inode(vmf->vma->vm_file);
2718 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2719 struct folio *folio = NULL;
2720 vm_fault_t ret = 0;
2721 int err;
2722
2723 /*
2724 * Trinity finds that probing a hole which tmpfs is punching can
2725 * prevent the hole-punch from ever completing: noted in i_private.
2726 */
2727 if (unlikely(inode->i_private)) {
2728 ret = shmem_falloc_wait(vmf, inode);
2729 if (ret)
2730 return ret;
2731 }
2732
2733 WARN_ON_ONCE(vmf->page != NULL);
2734 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2735 gfp, vmf, &ret);
2736 if (err)
2737 return vmf_error(err);
2738 if (folio) {
2739 vmf->page = folio_file_page(folio, vmf->pgoff);
2740 ret |= VM_FAULT_LOCKED;
2741 }
2742 return ret;
2743 }
2744
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2745 unsigned long shmem_get_unmapped_area(struct file *file,
2746 unsigned long uaddr, unsigned long len,
2747 unsigned long pgoff, unsigned long flags)
2748 {
2749 unsigned long addr;
2750 unsigned long offset;
2751 unsigned long inflated_len;
2752 unsigned long inflated_addr;
2753 unsigned long inflated_offset;
2754 unsigned long hpage_size;
2755
2756 if (len > TASK_SIZE)
2757 return -ENOMEM;
2758
2759 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2760 flags);
2761
2762 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2763 return addr;
2764 if (IS_ERR_VALUE(addr))
2765 return addr;
2766 if (addr & ~PAGE_MASK)
2767 return addr;
2768 if (addr > TASK_SIZE - len)
2769 return addr;
2770
2771 if (shmem_huge == SHMEM_HUGE_DENY)
2772 return addr;
2773 if (flags & MAP_FIXED)
2774 return addr;
2775 /*
2776 * Our priority is to support MAP_SHARED mapped hugely;
2777 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2778 * But if caller specified an address hint and we allocated area there
2779 * successfully, respect that as before.
2780 */
2781 if (uaddr == addr)
2782 return addr;
2783
2784 hpage_size = HPAGE_PMD_SIZE;
2785 if (shmem_huge != SHMEM_HUGE_FORCE) {
2786 struct super_block *sb;
2787 unsigned long __maybe_unused hpage_orders;
2788 int order = 0;
2789
2790 if (file) {
2791 VM_BUG_ON(file->f_op != &shmem_file_operations);
2792 sb = file_inode(file)->i_sb;
2793 } else {
2794 /*
2795 * Called directly from mm/mmap.c, or drivers/char/mem.c
2796 * for "/dev/zero", to create a shared anonymous object.
2797 */
2798 if (IS_ERR(shm_mnt))
2799 return addr;
2800 sb = shm_mnt->mnt_sb;
2801
2802 /*
2803 * Find the highest mTHP order used for anonymous shmem to
2804 * provide a suitable alignment address.
2805 */
2806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2807 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2808 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2809 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2810 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2811 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2812
2813 if (hpage_orders > 0) {
2814 order = highest_order(hpage_orders);
2815 hpage_size = PAGE_SIZE << order;
2816 }
2817 #endif
2818 }
2819 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2820 return addr;
2821 }
2822
2823 if (len < hpage_size)
2824 return addr;
2825
2826 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2827 if (offset && offset + len < 2 * hpage_size)
2828 return addr;
2829 if ((addr & (hpage_size - 1)) == offset)
2830 return addr;
2831
2832 inflated_len = len + hpage_size - PAGE_SIZE;
2833 if (inflated_len > TASK_SIZE)
2834 return addr;
2835 if (inflated_len < len)
2836 return addr;
2837
2838 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2839 inflated_len, 0, flags);
2840 if (IS_ERR_VALUE(inflated_addr))
2841 return addr;
2842 if (inflated_addr & ~PAGE_MASK)
2843 return addr;
2844
2845 inflated_offset = inflated_addr & (hpage_size - 1);
2846 inflated_addr += offset - inflated_offset;
2847 if (inflated_offset > offset)
2848 inflated_addr += hpage_size;
2849
2850 if (inflated_addr > TASK_SIZE - len)
2851 return addr;
2852 return inflated_addr;
2853 }
2854
2855 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2856 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2857 {
2858 struct inode *inode = file_inode(vma->vm_file);
2859 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2860 }
2861
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2862 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2863 unsigned long addr, pgoff_t *ilx)
2864 {
2865 struct inode *inode = file_inode(vma->vm_file);
2866 pgoff_t index;
2867
2868 /*
2869 * Bias interleave by inode number to distribute better across nodes;
2870 * but this interface is independent of which page order is used, so
2871 * supplies only that bias, letting caller apply the offset (adjusted
2872 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2873 */
2874 *ilx = inode->i_ino;
2875 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2876 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2877 }
2878
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2879 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2880 pgoff_t index, unsigned int order, pgoff_t *ilx)
2881 {
2882 struct mempolicy *mpol;
2883
2884 /* Bias interleave by inode number to distribute better across nodes */
2885 *ilx = info->vfs_inode.i_ino + (index >> order);
2886
2887 mpol = mpol_shared_policy_lookup(&info->policy, index);
2888 return mpol ? mpol : get_task_policy(current);
2889 }
2890 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2891 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2892 pgoff_t index, unsigned int order, pgoff_t *ilx)
2893 {
2894 *ilx = 0;
2895 return NULL;
2896 }
2897 #endif /* CONFIG_NUMA */
2898
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2899 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2900 {
2901 struct inode *inode = file_inode(file);
2902 struct shmem_inode_info *info = SHMEM_I(inode);
2903 int retval = -ENOMEM;
2904
2905 /*
2906 * What serializes the accesses to info->flags?
2907 * ipc_lock_object() when called from shmctl_do_lock(),
2908 * no serialization needed when called from shm_destroy().
2909 */
2910 if (lock && !(info->flags & VM_LOCKED)) {
2911 if (!user_shm_lock(inode->i_size, ucounts))
2912 goto out_nomem;
2913 info->flags |= VM_LOCKED;
2914 mapping_set_unevictable(file->f_mapping);
2915 }
2916 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2917 user_shm_unlock(inode->i_size, ucounts);
2918 info->flags &= ~VM_LOCKED;
2919 mapping_clear_unevictable(file->f_mapping);
2920 }
2921 retval = 0;
2922
2923 out_nomem:
2924 return retval;
2925 }
2926
shmem_mmap(struct file * file,struct vm_area_struct * vma)2927 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2928 {
2929 struct inode *inode = file_inode(file);
2930
2931 file_accessed(file);
2932 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2933 if (inode->i_nlink)
2934 vma->vm_ops = &shmem_vm_ops;
2935 else
2936 vma->vm_ops = &shmem_anon_vm_ops;
2937 return 0;
2938 }
2939
shmem_file_open(struct inode * inode,struct file * file)2940 static int shmem_file_open(struct inode *inode, struct file *file)
2941 {
2942 file->f_mode |= FMODE_CAN_ODIRECT;
2943 return generic_file_open(inode, file);
2944 }
2945
2946 #ifdef CONFIG_TMPFS_XATTR
2947 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2948
2949 #if IS_ENABLED(CONFIG_UNICODE)
2950 /*
2951 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2952 *
2953 * The casefold file attribute needs some special checks. I can just be added to
2954 * an empty dir, and can't be removed from a non-empty dir.
2955 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2956 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2957 struct dentry *dentry, unsigned int *i_flags)
2958 {
2959 unsigned int old = inode->i_flags;
2960 struct super_block *sb = inode->i_sb;
2961
2962 if (fsflags & FS_CASEFOLD_FL) {
2963 if (!(old & S_CASEFOLD)) {
2964 if (!sb->s_encoding)
2965 return -EOPNOTSUPP;
2966
2967 if (!S_ISDIR(inode->i_mode))
2968 return -ENOTDIR;
2969
2970 if (dentry && !simple_empty(dentry))
2971 return -ENOTEMPTY;
2972 }
2973
2974 *i_flags = *i_flags | S_CASEFOLD;
2975 } else if (old & S_CASEFOLD) {
2976 if (dentry && !simple_empty(dentry))
2977 return -ENOTEMPTY;
2978 }
2979
2980 return 0;
2981 }
2982 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2983 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2984 struct dentry *dentry, unsigned int *i_flags)
2985 {
2986 if (fsflags & FS_CASEFOLD_FL)
2987 return -EOPNOTSUPP;
2988
2989 return 0;
2990 }
2991 #endif
2992
2993 /*
2994 * chattr's fsflags are unrelated to extended attributes,
2995 * but tmpfs has chosen to enable them under the same config option.
2996 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)2997 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2998 {
2999 unsigned int i_flags = 0;
3000 int ret;
3001
3002 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3003 if (ret)
3004 return ret;
3005
3006 if (fsflags & FS_NOATIME_FL)
3007 i_flags |= S_NOATIME;
3008 if (fsflags & FS_APPEND_FL)
3009 i_flags |= S_APPEND;
3010 if (fsflags & FS_IMMUTABLE_FL)
3011 i_flags |= S_IMMUTABLE;
3012 /*
3013 * But FS_NODUMP_FL does not require any action in i_flags.
3014 */
3015 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3016
3017 return 0;
3018 }
3019 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3020 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3021 {
3022 }
3023 #define shmem_initxattrs NULL
3024 #endif
3025
shmem_get_offset_ctx(struct inode * inode)3026 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3027 {
3028 return &SHMEM_I(inode)->dir_offsets;
3029 }
3030
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3031 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3032 struct super_block *sb,
3033 struct inode *dir, umode_t mode,
3034 dev_t dev, unsigned long flags)
3035 {
3036 struct inode *inode;
3037 struct shmem_inode_info *info;
3038 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3039 ino_t ino;
3040 int err;
3041
3042 err = shmem_reserve_inode(sb, &ino);
3043 if (err)
3044 return ERR_PTR(err);
3045
3046 inode = new_inode(sb);
3047 if (!inode) {
3048 shmem_free_inode(sb, 0);
3049 return ERR_PTR(-ENOSPC);
3050 }
3051
3052 inode->i_ino = ino;
3053 inode_init_owner(idmap, inode, dir, mode);
3054 inode->i_blocks = 0;
3055 simple_inode_init_ts(inode);
3056 inode->i_generation = get_random_u32();
3057 info = SHMEM_I(inode);
3058 memset(info, 0, (char *)inode - (char *)info);
3059 spin_lock_init(&info->lock);
3060 atomic_set(&info->stop_eviction, 0);
3061 info->seals = F_SEAL_SEAL;
3062 info->flags = flags & VM_NORESERVE;
3063 info->i_crtime = inode_get_mtime(inode);
3064 info->fsflags = (dir == NULL) ? 0 :
3065 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3066 if (info->fsflags)
3067 shmem_set_inode_flags(inode, info->fsflags, NULL);
3068 INIT_LIST_HEAD(&info->shrinklist);
3069 INIT_LIST_HEAD(&info->swaplist);
3070 simple_xattrs_init(&info->xattrs);
3071 cache_no_acl(inode);
3072 if (sbinfo->noswap)
3073 mapping_set_unevictable(inode->i_mapping);
3074
3075 /* Don't consider 'deny' for emergencies and 'force' for testing */
3076 if (sbinfo->huge)
3077 mapping_set_large_folios(inode->i_mapping);
3078
3079 switch (mode & S_IFMT) {
3080 default:
3081 inode->i_op = &shmem_special_inode_operations;
3082 init_special_inode(inode, mode, dev);
3083 break;
3084 case S_IFREG:
3085 inode->i_mapping->a_ops = &shmem_aops;
3086 inode->i_op = &shmem_inode_operations;
3087 inode->i_fop = &shmem_file_operations;
3088 mpol_shared_policy_init(&info->policy,
3089 shmem_get_sbmpol(sbinfo));
3090 break;
3091 case S_IFDIR:
3092 inc_nlink(inode);
3093 /* Some things misbehave if size == 0 on a directory */
3094 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3095 inode->i_op = &shmem_dir_inode_operations;
3096 inode->i_fop = &simple_offset_dir_operations;
3097 simple_offset_init(shmem_get_offset_ctx(inode));
3098 break;
3099 case S_IFLNK:
3100 /*
3101 * Must not load anything in the rbtree,
3102 * mpol_free_shared_policy will not be called.
3103 */
3104 mpol_shared_policy_init(&info->policy, NULL);
3105 break;
3106 }
3107
3108 lockdep_annotate_inode_mutex_key(inode);
3109 return inode;
3110 }
3111
3112 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3113 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3114 struct super_block *sb, struct inode *dir,
3115 umode_t mode, dev_t dev, unsigned long flags)
3116 {
3117 int err;
3118 struct inode *inode;
3119
3120 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3121 if (IS_ERR(inode))
3122 return inode;
3123
3124 err = dquot_initialize(inode);
3125 if (err)
3126 goto errout;
3127
3128 err = dquot_alloc_inode(inode);
3129 if (err) {
3130 dquot_drop(inode);
3131 goto errout;
3132 }
3133 return inode;
3134
3135 errout:
3136 inode->i_flags |= S_NOQUOTA;
3137 iput(inode);
3138 return ERR_PTR(err);
3139 }
3140 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3141 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3142 struct super_block *sb, struct inode *dir,
3143 umode_t mode, dev_t dev, unsigned long flags)
3144 {
3145 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3146 }
3147 #endif /* CONFIG_TMPFS_QUOTA */
3148
3149 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3150 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3151 struct vm_area_struct *dst_vma,
3152 unsigned long dst_addr,
3153 unsigned long src_addr,
3154 uffd_flags_t flags,
3155 struct folio **foliop)
3156 {
3157 struct inode *inode = file_inode(dst_vma->vm_file);
3158 struct shmem_inode_info *info = SHMEM_I(inode);
3159 struct address_space *mapping = inode->i_mapping;
3160 gfp_t gfp = mapping_gfp_mask(mapping);
3161 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3162 void *page_kaddr;
3163 struct folio *folio;
3164 int ret;
3165 pgoff_t max_off;
3166
3167 if (shmem_inode_acct_blocks(inode, 1)) {
3168 /*
3169 * We may have got a page, returned -ENOENT triggering a retry,
3170 * and now we find ourselves with -ENOMEM. Release the page, to
3171 * avoid a BUG_ON in our caller.
3172 */
3173 if (unlikely(*foliop)) {
3174 folio_put(*foliop);
3175 *foliop = NULL;
3176 }
3177 return -ENOMEM;
3178 }
3179
3180 if (!*foliop) {
3181 ret = -ENOMEM;
3182 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3183 if (!folio)
3184 goto out_unacct_blocks;
3185
3186 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3187 page_kaddr = kmap_local_folio(folio, 0);
3188 /*
3189 * The read mmap_lock is held here. Despite the
3190 * mmap_lock being read recursive a deadlock is still
3191 * possible if a writer has taken a lock. For example:
3192 *
3193 * process A thread 1 takes read lock on own mmap_lock
3194 * process A thread 2 calls mmap, blocks taking write lock
3195 * process B thread 1 takes page fault, read lock on own mmap lock
3196 * process B thread 2 calls mmap, blocks taking write lock
3197 * process A thread 1 blocks taking read lock on process B
3198 * process B thread 1 blocks taking read lock on process A
3199 *
3200 * Disable page faults to prevent potential deadlock
3201 * and retry the copy outside the mmap_lock.
3202 */
3203 pagefault_disable();
3204 ret = copy_from_user(page_kaddr,
3205 (const void __user *)src_addr,
3206 PAGE_SIZE);
3207 pagefault_enable();
3208 kunmap_local(page_kaddr);
3209
3210 /* fallback to copy_from_user outside mmap_lock */
3211 if (unlikely(ret)) {
3212 *foliop = folio;
3213 ret = -ENOENT;
3214 /* don't free the page */
3215 goto out_unacct_blocks;
3216 }
3217
3218 flush_dcache_folio(folio);
3219 } else { /* ZEROPAGE */
3220 clear_user_highpage(&folio->page, dst_addr);
3221 }
3222 } else {
3223 folio = *foliop;
3224 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3225 *foliop = NULL;
3226 }
3227
3228 VM_BUG_ON(folio_test_locked(folio));
3229 VM_BUG_ON(folio_test_swapbacked(folio));
3230 __folio_set_locked(folio);
3231 __folio_set_swapbacked(folio);
3232 __folio_mark_uptodate(folio);
3233
3234 ret = -EFAULT;
3235 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3236 if (unlikely(pgoff >= max_off))
3237 goto out_release;
3238
3239 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3240 if (ret)
3241 goto out_release;
3242 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3243 if (ret)
3244 goto out_release;
3245
3246 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3247 &folio->page, true, flags);
3248 if (ret)
3249 goto out_delete_from_cache;
3250
3251 shmem_recalc_inode(inode, 1, 0);
3252 folio_unlock(folio);
3253 return 0;
3254 out_delete_from_cache:
3255 filemap_remove_folio(folio);
3256 out_release:
3257 folio_unlock(folio);
3258 folio_put(folio);
3259 out_unacct_blocks:
3260 shmem_inode_unacct_blocks(inode, 1);
3261 return ret;
3262 }
3263 #endif /* CONFIG_USERFAULTFD */
3264
3265 #ifdef CONFIG_TMPFS
3266 static const struct inode_operations shmem_symlink_inode_operations;
3267 static const struct inode_operations shmem_short_symlink_operations;
3268
3269 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3270 shmem_write_begin(struct file *file, struct address_space *mapping,
3271 loff_t pos, unsigned len,
3272 struct folio **foliop, void **fsdata)
3273 {
3274 struct inode *inode = mapping->host;
3275 struct shmem_inode_info *info = SHMEM_I(inode);
3276 pgoff_t index = pos >> PAGE_SHIFT;
3277 struct folio *folio;
3278 int ret = 0;
3279
3280 /* i_rwsem is held by caller */
3281 if (unlikely(info->seals & (F_SEAL_GROW |
3282 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3283 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3284 return -EPERM;
3285 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3286 return -EPERM;
3287 }
3288
3289 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3290 if (ret)
3291 return ret;
3292
3293 if (folio_contain_hwpoisoned_page(folio)) {
3294 folio_unlock(folio);
3295 folio_put(folio);
3296 return -EIO;
3297 }
3298
3299 *foliop = folio;
3300 return 0;
3301 }
3302
3303 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3304 shmem_write_end(struct file *file, struct address_space *mapping,
3305 loff_t pos, unsigned len, unsigned copied,
3306 struct folio *folio, void *fsdata)
3307 {
3308 struct inode *inode = mapping->host;
3309
3310 if (pos + copied > inode->i_size)
3311 i_size_write(inode, pos + copied);
3312
3313 if (!folio_test_uptodate(folio)) {
3314 if (copied < folio_size(folio)) {
3315 size_t from = offset_in_folio(folio, pos);
3316 folio_zero_segments(folio, 0, from,
3317 from + copied, folio_size(folio));
3318 }
3319 folio_mark_uptodate(folio);
3320 }
3321 folio_mark_dirty(folio);
3322 folio_unlock(folio);
3323 folio_put(folio);
3324
3325 return copied;
3326 }
3327
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3328 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3329 {
3330 struct file *file = iocb->ki_filp;
3331 struct inode *inode = file_inode(file);
3332 struct address_space *mapping = inode->i_mapping;
3333 pgoff_t index;
3334 unsigned long offset;
3335 int error = 0;
3336 ssize_t retval = 0;
3337
3338 for (;;) {
3339 struct folio *folio = NULL;
3340 struct page *page = NULL;
3341 unsigned long nr, ret;
3342 loff_t end_offset, i_size = i_size_read(inode);
3343 bool fallback_page_copy = false;
3344 size_t fsize;
3345
3346 if (unlikely(iocb->ki_pos >= i_size))
3347 break;
3348
3349 index = iocb->ki_pos >> PAGE_SHIFT;
3350 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3351 if (error) {
3352 if (error == -EINVAL)
3353 error = 0;
3354 break;
3355 }
3356 if (folio) {
3357 folio_unlock(folio);
3358
3359 page = folio_file_page(folio, index);
3360 if (PageHWPoison(page)) {
3361 folio_put(folio);
3362 error = -EIO;
3363 break;
3364 }
3365
3366 if (folio_test_large(folio) &&
3367 folio_test_has_hwpoisoned(folio))
3368 fallback_page_copy = true;
3369 }
3370
3371 /*
3372 * We must evaluate after, since reads (unlike writes)
3373 * are called without i_rwsem protection against truncate
3374 */
3375 i_size = i_size_read(inode);
3376 if (unlikely(iocb->ki_pos >= i_size)) {
3377 if (folio)
3378 folio_put(folio);
3379 break;
3380 }
3381 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3382 if (folio && likely(!fallback_page_copy))
3383 fsize = folio_size(folio);
3384 else
3385 fsize = PAGE_SIZE;
3386 offset = iocb->ki_pos & (fsize - 1);
3387 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3388
3389 if (folio) {
3390 /*
3391 * If users can be writing to this page using arbitrary
3392 * virtual addresses, take care about potential aliasing
3393 * before reading the page on the kernel side.
3394 */
3395 if (mapping_writably_mapped(mapping)) {
3396 if (likely(!fallback_page_copy))
3397 flush_dcache_folio(folio);
3398 else
3399 flush_dcache_page(page);
3400 }
3401
3402 /*
3403 * Mark the folio accessed if we read the beginning.
3404 */
3405 if (!offset)
3406 folio_mark_accessed(folio);
3407 /*
3408 * Ok, we have the page, and it's up-to-date, so
3409 * now we can copy it to user space...
3410 */
3411 if (likely(!fallback_page_copy))
3412 ret = copy_folio_to_iter(folio, offset, nr, to);
3413 else
3414 ret = copy_page_to_iter(page, offset, nr, to);
3415 folio_put(folio);
3416 } else if (user_backed_iter(to)) {
3417 /*
3418 * Copy to user tends to be so well optimized, but
3419 * clear_user() not so much, that it is noticeably
3420 * faster to copy the zero page instead of clearing.
3421 */
3422 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3423 } else {
3424 /*
3425 * But submitting the same page twice in a row to
3426 * splice() - or others? - can result in confusion:
3427 * so don't attempt that optimization on pipes etc.
3428 */
3429 ret = iov_iter_zero(nr, to);
3430 }
3431
3432 retval += ret;
3433 iocb->ki_pos += ret;
3434
3435 if (!iov_iter_count(to))
3436 break;
3437 if (ret < nr) {
3438 error = -EFAULT;
3439 break;
3440 }
3441 cond_resched();
3442 }
3443
3444 file_accessed(file);
3445 return retval ? retval : error;
3446 }
3447
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3448 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3449 {
3450 struct file *file = iocb->ki_filp;
3451 struct inode *inode = file->f_mapping->host;
3452 ssize_t ret;
3453
3454 inode_lock(inode);
3455 ret = generic_write_checks(iocb, from);
3456 if (ret <= 0)
3457 goto unlock;
3458 ret = file_remove_privs(file);
3459 if (ret)
3460 goto unlock;
3461 ret = file_update_time(file);
3462 if (ret)
3463 goto unlock;
3464 ret = generic_perform_write(iocb, from);
3465 unlock:
3466 inode_unlock(inode);
3467 return ret;
3468 }
3469
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3470 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3471 struct pipe_buffer *buf)
3472 {
3473 return true;
3474 }
3475
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3476 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3477 struct pipe_buffer *buf)
3478 {
3479 }
3480
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3481 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3482 struct pipe_buffer *buf)
3483 {
3484 return false;
3485 }
3486
3487 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3488 .release = zero_pipe_buf_release,
3489 .try_steal = zero_pipe_buf_try_steal,
3490 .get = zero_pipe_buf_get,
3491 };
3492
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3493 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3494 loff_t fpos, size_t size)
3495 {
3496 size_t offset = fpos & ~PAGE_MASK;
3497
3498 size = min_t(size_t, size, PAGE_SIZE - offset);
3499
3500 if (!pipe_is_full(pipe)) {
3501 struct pipe_buffer *buf = pipe_head_buf(pipe);
3502
3503 *buf = (struct pipe_buffer) {
3504 .ops = &zero_pipe_buf_ops,
3505 .page = ZERO_PAGE(0),
3506 .offset = offset,
3507 .len = size,
3508 };
3509 pipe->head++;
3510 }
3511
3512 return size;
3513 }
3514
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3515 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3516 struct pipe_inode_info *pipe,
3517 size_t len, unsigned int flags)
3518 {
3519 struct inode *inode = file_inode(in);
3520 struct address_space *mapping = inode->i_mapping;
3521 struct folio *folio = NULL;
3522 size_t total_spliced = 0, used, npages, n, part;
3523 loff_t isize;
3524 int error = 0;
3525
3526 /* Work out how much data we can actually add into the pipe */
3527 used = pipe_buf_usage(pipe);
3528 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3529 len = min_t(size_t, len, npages * PAGE_SIZE);
3530
3531 do {
3532 bool fallback_page_splice = false;
3533 struct page *page = NULL;
3534 pgoff_t index;
3535 size_t size;
3536
3537 if (*ppos >= i_size_read(inode))
3538 break;
3539
3540 index = *ppos >> PAGE_SHIFT;
3541 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3542 if (error) {
3543 if (error == -EINVAL)
3544 error = 0;
3545 break;
3546 }
3547 if (folio) {
3548 folio_unlock(folio);
3549
3550 page = folio_file_page(folio, index);
3551 if (PageHWPoison(page)) {
3552 error = -EIO;
3553 break;
3554 }
3555
3556 if (folio_test_large(folio) &&
3557 folio_test_has_hwpoisoned(folio))
3558 fallback_page_splice = true;
3559 }
3560
3561 /*
3562 * i_size must be checked after we know the pages are Uptodate.
3563 *
3564 * Checking i_size after the check allows us to calculate
3565 * the correct value for "nr", which means the zero-filled
3566 * part of the page is not copied back to userspace (unless
3567 * another truncate extends the file - this is desired though).
3568 */
3569 isize = i_size_read(inode);
3570 if (unlikely(*ppos >= isize))
3571 break;
3572 /*
3573 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3574 * pages.
3575 */
3576 size = len;
3577 if (unlikely(fallback_page_splice)) {
3578 size_t offset = *ppos & ~PAGE_MASK;
3579
3580 size = umin(size, PAGE_SIZE - offset);
3581 }
3582 part = min_t(loff_t, isize - *ppos, size);
3583
3584 if (folio) {
3585 /*
3586 * If users can be writing to this page using arbitrary
3587 * virtual addresses, take care about potential aliasing
3588 * before reading the page on the kernel side.
3589 */
3590 if (mapping_writably_mapped(mapping)) {
3591 if (likely(!fallback_page_splice))
3592 flush_dcache_folio(folio);
3593 else
3594 flush_dcache_page(page);
3595 }
3596 folio_mark_accessed(folio);
3597 /*
3598 * Ok, we have the page, and it's up-to-date, so we can
3599 * now splice it into the pipe.
3600 */
3601 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3602 folio_put(folio);
3603 folio = NULL;
3604 } else {
3605 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3606 }
3607
3608 if (!n)
3609 break;
3610 len -= n;
3611 total_spliced += n;
3612 *ppos += n;
3613 in->f_ra.prev_pos = *ppos;
3614 if (pipe_is_full(pipe))
3615 break;
3616
3617 cond_resched();
3618 } while (len);
3619
3620 if (folio)
3621 folio_put(folio);
3622
3623 file_accessed(in);
3624 return total_spliced ? total_spliced : error;
3625 }
3626
shmem_file_llseek(struct file * file,loff_t offset,int whence)3627 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3628 {
3629 struct address_space *mapping = file->f_mapping;
3630 struct inode *inode = mapping->host;
3631
3632 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3633 return generic_file_llseek_size(file, offset, whence,
3634 MAX_LFS_FILESIZE, i_size_read(inode));
3635 if (offset < 0)
3636 return -ENXIO;
3637
3638 inode_lock(inode);
3639 /* We're holding i_rwsem so we can access i_size directly */
3640 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3641 if (offset >= 0)
3642 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3643 inode_unlock(inode);
3644 return offset;
3645 }
3646
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3647 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3648 loff_t len)
3649 {
3650 struct inode *inode = file_inode(file);
3651 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3652 struct shmem_inode_info *info = SHMEM_I(inode);
3653 struct shmem_falloc shmem_falloc;
3654 pgoff_t start, index, end, undo_fallocend;
3655 int error;
3656
3657 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3658 return -EOPNOTSUPP;
3659
3660 inode_lock(inode);
3661
3662 if (mode & FALLOC_FL_PUNCH_HOLE) {
3663 struct address_space *mapping = file->f_mapping;
3664 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3665 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3666 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3667
3668 /* protected by i_rwsem */
3669 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3670 error = -EPERM;
3671 goto out;
3672 }
3673
3674 shmem_falloc.waitq = &shmem_falloc_waitq;
3675 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3676 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3677 spin_lock(&inode->i_lock);
3678 inode->i_private = &shmem_falloc;
3679 spin_unlock(&inode->i_lock);
3680
3681 if ((u64)unmap_end > (u64)unmap_start)
3682 unmap_mapping_range(mapping, unmap_start,
3683 1 + unmap_end - unmap_start, 0);
3684 shmem_truncate_range(inode, offset, offset + len - 1);
3685 /* No need to unmap again: hole-punching leaves COWed pages */
3686
3687 spin_lock(&inode->i_lock);
3688 inode->i_private = NULL;
3689 wake_up_all(&shmem_falloc_waitq);
3690 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3691 spin_unlock(&inode->i_lock);
3692 error = 0;
3693 goto out;
3694 }
3695
3696 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3697 error = inode_newsize_ok(inode, offset + len);
3698 if (error)
3699 goto out;
3700
3701 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3702 error = -EPERM;
3703 goto out;
3704 }
3705
3706 start = offset >> PAGE_SHIFT;
3707 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3708 /* Try to avoid a swapstorm if len is impossible to satisfy */
3709 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3710 error = -ENOSPC;
3711 goto out;
3712 }
3713
3714 shmem_falloc.waitq = NULL;
3715 shmem_falloc.start = start;
3716 shmem_falloc.next = start;
3717 shmem_falloc.nr_falloced = 0;
3718 shmem_falloc.nr_unswapped = 0;
3719 spin_lock(&inode->i_lock);
3720 inode->i_private = &shmem_falloc;
3721 spin_unlock(&inode->i_lock);
3722
3723 /*
3724 * info->fallocend is only relevant when huge pages might be
3725 * involved: to prevent split_huge_page() freeing fallocated
3726 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3727 */
3728 undo_fallocend = info->fallocend;
3729 if (info->fallocend < end)
3730 info->fallocend = end;
3731
3732 for (index = start; index < end; ) {
3733 struct folio *folio;
3734
3735 /*
3736 * Check for fatal signal so that we abort early in OOM
3737 * situations. We don't want to abort in case of non-fatal
3738 * signals as large fallocate can take noticeable time and
3739 * e.g. periodic timers may result in fallocate constantly
3740 * restarting.
3741 */
3742 if (fatal_signal_pending(current))
3743 error = -EINTR;
3744 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3745 error = -ENOMEM;
3746 else
3747 error = shmem_get_folio(inode, index, offset + len,
3748 &folio, SGP_FALLOC);
3749 if (error) {
3750 info->fallocend = undo_fallocend;
3751 /* Remove the !uptodate folios we added */
3752 if (index > start) {
3753 shmem_undo_range(inode,
3754 (loff_t)start << PAGE_SHIFT,
3755 ((loff_t)index << PAGE_SHIFT) - 1, true);
3756 }
3757 goto undone;
3758 }
3759
3760 /*
3761 * Here is a more important optimization than it appears:
3762 * a second SGP_FALLOC on the same large folio will clear it,
3763 * making it uptodate and un-undoable if we fail later.
3764 */
3765 index = folio_next_index(folio);
3766 /* Beware 32-bit wraparound */
3767 if (!index)
3768 index--;
3769
3770 /*
3771 * Inform shmem_writepage() how far we have reached.
3772 * No need for lock or barrier: we have the page lock.
3773 */
3774 if (!folio_test_uptodate(folio))
3775 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3776 shmem_falloc.next = index;
3777
3778 /*
3779 * If !uptodate, leave it that way so that freeable folios
3780 * can be recognized if we need to rollback on error later.
3781 * But mark it dirty so that memory pressure will swap rather
3782 * than free the folios we are allocating (and SGP_CACHE folios
3783 * might still be clean: we now need to mark those dirty too).
3784 */
3785 folio_mark_dirty(folio);
3786 folio_unlock(folio);
3787 folio_put(folio);
3788 cond_resched();
3789 }
3790
3791 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3792 i_size_write(inode, offset + len);
3793 undone:
3794 spin_lock(&inode->i_lock);
3795 inode->i_private = NULL;
3796 spin_unlock(&inode->i_lock);
3797 out:
3798 if (!error)
3799 file_modified(file);
3800 inode_unlock(inode);
3801 return error;
3802 }
3803
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3804 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3805 {
3806 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3807
3808 buf->f_type = TMPFS_MAGIC;
3809 buf->f_bsize = PAGE_SIZE;
3810 buf->f_namelen = NAME_MAX;
3811 if (sbinfo->max_blocks) {
3812 buf->f_blocks = sbinfo->max_blocks;
3813 buf->f_bavail =
3814 buf->f_bfree = sbinfo->max_blocks -
3815 percpu_counter_sum(&sbinfo->used_blocks);
3816 }
3817 if (sbinfo->max_inodes) {
3818 buf->f_files = sbinfo->max_inodes;
3819 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3820 }
3821 /* else leave those fields 0 like simple_statfs */
3822
3823 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3824
3825 return 0;
3826 }
3827
3828 /*
3829 * File creation. Allocate an inode, and we're done..
3830 */
3831 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3832 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3833 struct dentry *dentry, umode_t mode, dev_t dev)
3834 {
3835 struct inode *inode;
3836 int error;
3837
3838 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3839 return -EINVAL;
3840
3841 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3842 if (IS_ERR(inode))
3843 return PTR_ERR(inode);
3844
3845 error = simple_acl_create(dir, inode);
3846 if (error)
3847 goto out_iput;
3848 error = security_inode_init_security(inode, dir, &dentry->d_name,
3849 shmem_initxattrs, NULL);
3850 if (error && error != -EOPNOTSUPP)
3851 goto out_iput;
3852
3853 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3854 if (error)
3855 goto out_iput;
3856
3857 dir->i_size += BOGO_DIRENT_SIZE;
3858 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3859 inode_inc_iversion(dir);
3860
3861 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3862 d_add(dentry, inode);
3863 else
3864 d_instantiate(dentry, inode);
3865
3866 dget(dentry); /* Extra count - pin the dentry in core */
3867 return error;
3868
3869 out_iput:
3870 iput(inode);
3871 return error;
3872 }
3873
3874 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3875 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3876 struct file *file, umode_t mode)
3877 {
3878 struct inode *inode;
3879 int error;
3880
3881 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3882 if (IS_ERR(inode)) {
3883 error = PTR_ERR(inode);
3884 goto err_out;
3885 }
3886 error = security_inode_init_security(inode, dir, NULL,
3887 shmem_initxattrs, NULL);
3888 if (error && error != -EOPNOTSUPP)
3889 goto out_iput;
3890 error = simple_acl_create(dir, inode);
3891 if (error)
3892 goto out_iput;
3893 d_tmpfile(file, inode);
3894
3895 err_out:
3896 return finish_open_simple(file, error);
3897 out_iput:
3898 iput(inode);
3899 return error;
3900 }
3901
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3902 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3903 struct dentry *dentry, umode_t mode)
3904 {
3905 int error;
3906
3907 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3908 if (error)
3909 return ERR_PTR(error);
3910 inc_nlink(dir);
3911 return NULL;
3912 }
3913
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3914 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3915 struct dentry *dentry, umode_t mode, bool excl)
3916 {
3917 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3918 }
3919
3920 /*
3921 * Link a file..
3922 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3923 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3924 struct dentry *dentry)
3925 {
3926 struct inode *inode = d_inode(old_dentry);
3927 int ret = 0;
3928
3929 /*
3930 * No ordinary (disk based) filesystem counts links as inodes;
3931 * but each new link needs a new dentry, pinning lowmem, and
3932 * tmpfs dentries cannot be pruned until they are unlinked.
3933 * But if an O_TMPFILE file is linked into the tmpfs, the
3934 * first link must skip that, to get the accounting right.
3935 */
3936 if (inode->i_nlink) {
3937 ret = shmem_reserve_inode(inode->i_sb, NULL);
3938 if (ret)
3939 goto out;
3940 }
3941
3942 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3943 if (ret) {
3944 if (inode->i_nlink)
3945 shmem_free_inode(inode->i_sb, 0);
3946 goto out;
3947 }
3948
3949 dir->i_size += BOGO_DIRENT_SIZE;
3950 inode_set_mtime_to_ts(dir,
3951 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3952 inode_inc_iversion(dir);
3953 inc_nlink(inode);
3954 ihold(inode); /* New dentry reference */
3955 dget(dentry); /* Extra pinning count for the created dentry */
3956 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3957 d_add(dentry, inode);
3958 else
3959 d_instantiate(dentry, inode);
3960 out:
3961 return ret;
3962 }
3963
shmem_unlink(struct inode * dir,struct dentry * dentry)3964 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3965 {
3966 struct inode *inode = d_inode(dentry);
3967
3968 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3969 shmem_free_inode(inode->i_sb, 0);
3970
3971 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3972
3973 dir->i_size -= BOGO_DIRENT_SIZE;
3974 inode_set_mtime_to_ts(dir,
3975 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3976 inode_inc_iversion(dir);
3977 drop_nlink(inode);
3978 dput(dentry); /* Undo the count from "create" - does all the work */
3979
3980 /*
3981 * For now, VFS can't deal with case-insensitive negative dentries, so
3982 * we invalidate them
3983 */
3984 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3985 d_invalidate(dentry);
3986
3987 return 0;
3988 }
3989
shmem_rmdir(struct inode * dir,struct dentry * dentry)3990 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3991 {
3992 if (!simple_empty(dentry))
3993 return -ENOTEMPTY;
3994
3995 drop_nlink(d_inode(dentry));
3996 drop_nlink(dir);
3997 return shmem_unlink(dir, dentry);
3998 }
3999
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4000 static int shmem_whiteout(struct mnt_idmap *idmap,
4001 struct inode *old_dir, struct dentry *old_dentry)
4002 {
4003 struct dentry *whiteout;
4004 int error;
4005
4006 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4007 if (!whiteout)
4008 return -ENOMEM;
4009
4010 error = shmem_mknod(idmap, old_dir, whiteout,
4011 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4012 dput(whiteout);
4013 if (error)
4014 return error;
4015
4016 /*
4017 * Cheat and hash the whiteout while the old dentry is still in
4018 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4019 *
4020 * d_lookup() will consistently find one of them at this point,
4021 * not sure which one, but that isn't even important.
4022 */
4023 d_rehash(whiteout);
4024 return 0;
4025 }
4026
4027 /*
4028 * The VFS layer already does all the dentry stuff for rename,
4029 * we just have to decrement the usage count for the target if
4030 * it exists so that the VFS layer correctly free's it when it
4031 * gets overwritten.
4032 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4033 static int shmem_rename2(struct mnt_idmap *idmap,
4034 struct inode *old_dir, struct dentry *old_dentry,
4035 struct inode *new_dir, struct dentry *new_dentry,
4036 unsigned int flags)
4037 {
4038 struct inode *inode = d_inode(old_dentry);
4039 int they_are_dirs = S_ISDIR(inode->i_mode);
4040 int error;
4041
4042 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4043 return -EINVAL;
4044
4045 if (flags & RENAME_EXCHANGE)
4046 return simple_offset_rename_exchange(old_dir, old_dentry,
4047 new_dir, new_dentry);
4048
4049 if (!simple_empty(new_dentry))
4050 return -ENOTEMPTY;
4051
4052 if (flags & RENAME_WHITEOUT) {
4053 error = shmem_whiteout(idmap, old_dir, old_dentry);
4054 if (error)
4055 return error;
4056 }
4057
4058 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4059 if (error)
4060 return error;
4061
4062 if (d_really_is_positive(new_dentry)) {
4063 (void) shmem_unlink(new_dir, new_dentry);
4064 if (they_are_dirs) {
4065 drop_nlink(d_inode(new_dentry));
4066 drop_nlink(old_dir);
4067 }
4068 } else if (they_are_dirs) {
4069 drop_nlink(old_dir);
4070 inc_nlink(new_dir);
4071 }
4072
4073 old_dir->i_size -= BOGO_DIRENT_SIZE;
4074 new_dir->i_size += BOGO_DIRENT_SIZE;
4075 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4076 inode_inc_iversion(old_dir);
4077 inode_inc_iversion(new_dir);
4078 return 0;
4079 }
4080
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4081 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4082 struct dentry *dentry, const char *symname)
4083 {
4084 int error;
4085 int len;
4086 struct inode *inode;
4087 struct folio *folio;
4088 char *link;
4089
4090 len = strlen(symname) + 1;
4091 if (len > PAGE_SIZE)
4092 return -ENAMETOOLONG;
4093
4094 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4095 VM_NORESERVE);
4096 if (IS_ERR(inode))
4097 return PTR_ERR(inode);
4098
4099 error = security_inode_init_security(inode, dir, &dentry->d_name,
4100 shmem_initxattrs, NULL);
4101 if (error && error != -EOPNOTSUPP)
4102 goto out_iput;
4103
4104 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4105 if (error)
4106 goto out_iput;
4107
4108 inode->i_size = len-1;
4109 if (len <= SHORT_SYMLINK_LEN) {
4110 link = kmemdup(symname, len, GFP_KERNEL);
4111 if (!link) {
4112 error = -ENOMEM;
4113 goto out_remove_offset;
4114 }
4115 inode->i_op = &shmem_short_symlink_operations;
4116 inode_set_cached_link(inode, link, len - 1);
4117 } else {
4118 inode_nohighmem(inode);
4119 inode->i_mapping->a_ops = &shmem_aops;
4120 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4121 if (error)
4122 goto out_remove_offset;
4123 inode->i_op = &shmem_symlink_inode_operations;
4124 memcpy(folio_address(folio), symname, len);
4125 folio_mark_uptodate(folio);
4126 folio_mark_dirty(folio);
4127 folio_unlock(folio);
4128 folio_put(folio);
4129 }
4130 dir->i_size += BOGO_DIRENT_SIZE;
4131 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4132 inode_inc_iversion(dir);
4133 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4134 d_add(dentry, inode);
4135 else
4136 d_instantiate(dentry, inode);
4137 dget(dentry);
4138 return 0;
4139
4140 out_remove_offset:
4141 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4142 out_iput:
4143 iput(inode);
4144 return error;
4145 }
4146
shmem_put_link(void * arg)4147 static void shmem_put_link(void *arg)
4148 {
4149 folio_mark_accessed(arg);
4150 folio_put(arg);
4151 }
4152
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4153 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4154 struct delayed_call *done)
4155 {
4156 struct folio *folio = NULL;
4157 int error;
4158
4159 if (!dentry) {
4160 folio = filemap_get_folio(inode->i_mapping, 0);
4161 if (IS_ERR(folio))
4162 return ERR_PTR(-ECHILD);
4163 if (PageHWPoison(folio_page(folio, 0)) ||
4164 !folio_test_uptodate(folio)) {
4165 folio_put(folio);
4166 return ERR_PTR(-ECHILD);
4167 }
4168 } else {
4169 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4170 if (error)
4171 return ERR_PTR(error);
4172 if (!folio)
4173 return ERR_PTR(-ECHILD);
4174 if (PageHWPoison(folio_page(folio, 0))) {
4175 folio_unlock(folio);
4176 folio_put(folio);
4177 return ERR_PTR(-ECHILD);
4178 }
4179 folio_unlock(folio);
4180 }
4181 set_delayed_call(done, shmem_put_link, folio);
4182 return folio_address(folio);
4183 }
4184
4185 #ifdef CONFIG_TMPFS_XATTR
4186
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)4187 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4188 {
4189 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4190
4191 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4192
4193 return 0;
4194 }
4195
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)4196 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4197 struct dentry *dentry, struct fileattr *fa)
4198 {
4199 struct inode *inode = d_inode(dentry);
4200 struct shmem_inode_info *info = SHMEM_I(inode);
4201 int ret, flags;
4202
4203 if (fileattr_has_fsx(fa))
4204 return -EOPNOTSUPP;
4205 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4206 return -EOPNOTSUPP;
4207
4208 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4209 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4210
4211 ret = shmem_set_inode_flags(inode, flags, dentry);
4212
4213 if (ret)
4214 return ret;
4215
4216 info->fsflags = flags;
4217
4218 inode_set_ctime_current(inode);
4219 inode_inc_iversion(inode);
4220 return 0;
4221 }
4222
4223 /*
4224 * Superblocks without xattr inode operations may get some security.* xattr
4225 * support from the LSM "for free". As soon as we have any other xattrs
4226 * like ACLs, we also need to implement the security.* handlers at
4227 * filesystem level, though.
4228 */
4229
4230 /*
4231 * Callback for security_inode_init_security() for acquiring xattrs.
4232 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4233 static int shmem_initxattrs(struct inode *inode,
4234 const struct xattr *xattr_array, void *fs_info)
4235 {
4236 struct shmem_inode_info *info = SHMEM_I(inode);
4237 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4238 const struct xattr *xattr;
4239 struct simple_xattr *new_xattr;
4240 size_t ispace = 0;
4241 size_t len;
4242
4243 if (sbinfo->max_inodes) {
4244 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4245 ispace += simple_xattr_space(xattr->name,
4246 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4247 }
4248 if (ispace) {
4249 raw_spin_lock(&sbinfo->stat_lock);
4250 if (sbinfo->free_ispace < ispace)
4251 ispace = 0;
4252 else
4253 sbinfo->free_ispace -= ispace;
4254 raw_spin_unlock(&sbinfo->stat_lock);
4255 if (!ispace)
4256 return -ENOSPC;
4257 }
4258 }
4259
4260 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4261 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4262 if (!new_xattr)
4263 break;
4264
4265 len = strlen(xattr->name) + 1;
4266 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4267 GFP_KERNEL_ACCOUNT);
4268 if (!new_xattr->name) {
4269 kvfree(new_xattr);
4270 break;
4271 }
4272
4273 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4274 XATTR_SECURITY_PREFIX_LEN);
4275 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4276 xattr->name, len);
4277
4278 simple_xattr_add(&info->xattrs, new_xattr);
4279 }
4280
4281 if (xattr->name != NULL) {
4282 if (ispace) {
4283 raw_spin_lock(&sbinfo->stat_lock);
4284 sbinfo->free_ispace += ispace;
4285 raw_spin_unlock(&sbinfo->stat_lock);
4286 }
4287 simple_xattrs_free(&info->xattrs, NULL);
4288 return -ENOMEM;
4289 }
4290
4291 return 0;
4292 }
4293
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4294 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4295 struct dentry *unused, struct inode *inode,
4296 const char *name, void *buffer, size_t size)
4297 {
4298 struct shmem_inode_info *info = SHMEM_I(inode);
4299
4300 name = xattr_full_name(handler, name);
4301 return simple_xattr_get(&info->xattrs, name, buffer, size);
4302 }
4303
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4304 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4305 struct mnt_idmap *idmap,
4306 struct dentry *unused, struct inode *inode,
4307 const char *name, const void *value,
4308 size_t size, int flags)
4309 {
4310 struct shmem_inode_info *info = SHMEM_I(inode);
4311 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4312 struct simple_xattr *old_xattr;
4313 size_t ispace = 0;
4314
4315 name = xattr_full_name(handler, name);
4316 if (value && sbinfo->max_inodes) {
4317 ispace = simple_xattr_space(name, size);
4318 raw_spin_lock(&sbinfo->stat_lock);
4319 if (sbinfo->free_ispace < ispace)
4320 ispace = 0;
4321 else
4322 sbinfo->free_ispace -= ispace;
4323 raw_spin_unlock(&sbinfo->stat_lock);
4324 if (!ispace)
4325 return -ENOSPC;
4326 }
4327
4328 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4329 if (!IS_ERR(old_xattr)) {
4330 ispace = 0;
4331 if (old_xattr && sbinfo->max_inodes)
4332 ispace = simple_xattr_space(old_xattr->name,
4333 old_xattr->size);
4334 simple_xattr_free(old_xattr);
4335 old_xattr = NULL;
4336 inode_set_ctime_current(inode);
4337 inode_inc_iversion(inode);
4338 }
4339 if (ispace) {
4340 raw_spin_lock(&sbinfo->stat_lock);
4341 sbinfo->free_ispace += ispace;
4342 raw_spin_unlock(&sbinfo->stat_lock);
4343 }
4344 return PTR_ERR(old_xattr);
4345 }
4346
4347 static const struct xattr_handler shmem_security_xattr_handler = {
4348 .prefix = XATTR_SECURITY_PREFIX,
4349 .get = shmem_xattr_handler_get,
4350 .set = shmem_xattr_handler_set,
4351 };
4352
4353 static const struct xattr_handler shmem_trusted_xattr_handler = {
4354 .prefix = XATTR_TRUSTED_PREFIX,
4355 .get = shmem_xattr_handler_get,
4356 .set = shmem_xattr_handler_set,
4357 };
4358
4359 static const struct xattr_handler shmem_user_xattr_handler = {
4360 .prefix = XATTR_USER_PREFIX,
4361 .get = shmem_xattr_handler_get,
4362 .set = shmem_xattr_handler_set,
4363 };
4364
4365 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4366 &shmem_security_xattr_handler,
4367 &shmem_trusted_xattr_handler,
4368 &shmem_user_xattr_handler,
4369 NULL
4370 };
4371
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4372 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4373 {
4374 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4375 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4376 }
4377 #endif /* CONFIG_TMPFS_XATTR */
4378
4379 static const struct inode_operations shmem_short_symlink_operations = {
4380 .getattr = shmem_getattr,
4381 .setattr = shmem_setattr,
4382 .get_link = simple_get_link,
4383 #ifdef CONFIG_TMPFS_XATTR
4384 .listxattr = shmem_listxattr,
4385 #endif
4386 };
4387
4388 static const struct inode_operations shmem_symlink_inode_operations = {
4389 .getattr = shmem_getattr,
4390 .setattr = shmem_setattr,
4391 .get_link = shmem_get_link,
4392 #ifdef CONFIG_TMPFS_XATTR
4393 .listxattr = shmem_listxattr,
4394 #endif
4395 };
4396
shmem_get_parent(struct dentry * child)4397 static struct dentry *shmem_get_parent(struct dentry *child)
4398 {
4399 return ERR_PTR(-ESTALE);
4400 }
4401
shmem_match(struct inode * ino,void * vfh)4402 static int shmem_match(struct inode *ino, void *vfh)
4403 {
4404 __u32 *fh = vfh;
4405 __u64 inum = fh[2];
4406 inum = (inum << 32) | fh[1];
4407 return ino->i_ino == inum && fh[0] == ino->i_generation;
4408 }
4409
4410 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4411 static struct dentry *shmem_find_alias(struct inode *inode)
4412 {
4413 struct dentry *alias = d_find_alias(inode);
4414
4415 return alias ?: d_find_any_alias(inode);
4416 }
4417
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4418 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4419 struct fid *fid, int fh_len, int fh_type)
4420 {
4421 struct inode *inode;
4422 struct dentry *dentry = NULL;
4423 u64 inum;
4424
4425 if (fh_len < 3)
4426 return NULL;
4427
4428 inum = fid->raw[2];
4429 inum = (inum << 32) | fid->raw[1];
4430
4431 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4432 shmem_match, fid->raw);
4433 if (inode) {
4434 dentry = shmem_find_alias(inode);
4435 iput(inode);
4436 }
4437
4438 return dentry;
4439 }
4440
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4441 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4442 struct inode *parent)
4443 {
4444 if (*len < 3) {
4445 *len = 3;
4446 return FILEID_INVALID;
4447 }
4448
4449 if (inode_unhashed(inode)) {
4450 /* Unfortunately insert_inode_hash is not idempotent,
4451 * so as we hash inodes here rather than at creation
4452 * time, we need a lock to ensure we only try
4453 * to do it once
4454 */
4455 static DEFINE_SPINLOCK(lock);
4456 spin_lock(&lock);
4457 if (inode_unhashed(inode))
4458 __insert_inode_hash(inode,
4459 inode->i_ino + inode->i_generation);
4460 spin_unlock(&lock);
4461 }
4462
4463 fh[0] = inode->i_generation;
4464 fh[1] = inode->i_ino;
4465 fh[2] = ((__u64)inode->i_ino) >> 32;
4466
4467 *len = 3;
4468 return 1;
4469 }
4470
4471 static const struct export_operations shmem_export_ops = {
4472 .get_parent = shmem_get_parent,
4473 .encode_fh = shmem_encode_fh,
4474 .fh_to_dentry = shmem_fh_to_dentry,
4475 };
4476
4477 enum shmem_param {
4478 Opt_gid,
4479 Opt_huge,
4480 Opt_mode,
4481 Opt_mpol,
4482 Opt_nr_blocks,
4483 Opt_nr_inodes,
4484 Opt_size,
4485 Opt_uid,
4486 Opt_inode32,
4487 Opt_inode64,
4488 Opt_noswap,
4489 Opt_quota,
4490 Opt_usrquota,
4491 Opt_grpquota,
4492 Opt_usrquota_block_hardlimit,
4493 Opt_usrquota_inode_hardlimit,
4494 Opt_grpquota_block_hardlimit,
4495 Opt_grpquota_inode_hardlimit,
4496 Opt_casefold_version,
4497 Opt_casefold,
4498 Opt_strict_encoding,
4499 };
4500
4501 static const struct constant_table shmem_param_enums_huge[] = {
4502 {"never", SHMEM_HUGE_NEVER },
4503 {"always", SHMEM_HUGE_ALWAYS },
4504 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4505 {"advise", SHMEM_HUGE_ADVISE },
4506 {}
4507 };
4508
4509 const struct fs_parameter_spec shmem_fs_parameters[] = {
4510 fsparam_gid ("gid", Opt_gid),
4511 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4512 fsparam_u32oct("mode", Opt_mode),
4513 fsparam_string("mpol", Opt_mpol),
4514 fsparam_string("nr_blocks", Opt_nr_blocks),
4515 fsparam_string("nr_inodes", Opt_nr_inodes),
4516 fsparam_string("size", Opt_size),
4517 fsparam_uid ("uid", Opt_uid),
4518 fsparam_flag ("inode32", Opt_inode32),
4519 fsparam_flag ("inode64", Opt_inode64),
4520 fsparam_flag ("noswap", Opt_noswap),
4521 #ifdef CONFIG_TMPFS_QUOTA
4522 fsparam_flag ("quota", Opt_quota),
4523 fsparam_flag ("usrquota", Opt_usrquota),
4524 fsparam_flag ("grpquota", Opt_grpquota),
4525 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4526 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4527 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4528 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4529 #endif
4530 fsparam_string("casefold", Opt_casefold_version),
4531 fsparam_flag ("casefold", Opt_casefold),
4532 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4533 {}
4534 };
4535
4536 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4537 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4538 bool latest_version)
4539 {
4540 struct shmem_options *ctx = fc->fs_private;
4541 int version = UTF8_LATEST;
4542 struct unicode_map *encoding;
4543 char *version_str = param->string + 5;
4544
4545 if (!latest_version) {
4546 if (strncmp(param->string, "utf8-", 5))
4547 return invalfc(fc, "Only UTF-8 encodings are supported "
4548 "in the format: utf8-<version number>");
4549
4550 version = utf8_parse_version(version_str);
4551 if (version < 0)
4552 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4553 }
4554
4555 encoding = utf8_load(version);
4556
4557 if (IS_ERR(encoding)) {
4558 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4559 unicode_major(version), unicode_minor(version),
4560 unicode_rev(version));
4561 }
4562
4563 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4564 unicode_major(version), unicode_minor(version), unicode_rev(version));
4565
4566 ctx->encoding = encoding;
4567
4568 return 0;
4569 }
4570 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4571 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4572 bool latest_version)
4573 {
4574 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4575 }
4576 #endif
4577
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4578 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4579 {
4580 struct shmem_options *ctx = fc->fs_private;
4581 struct fs_parse_result result;
4582 unsigned long long size;
4583 char *rest;
4584 int opt;
4585 kuid_t kuid;
4586 kgid_t kgid;
4587
4588 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4589 if (opt < 0)
4590 return opt;
4591
4592 switch (opt) {
4593 case Opt_size:
4594 size = memparse(param->string, &rest);
4595 if (*rest == '%') {
4596 size <<= PAGE_SHIFT;
4597 size *= totalram_pages();
4598 do_div(size, 100);
4599 rest++;
4600 }
4601 if (*rest)
4602 goto bad_value;
4603 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4604 ctx->seen |= SHMEM_SEEN_BLOCKS;
4605 break;
4606 case Opt_nr_blocks:
4607 ctx->blocks = memparse(param->string, &rest);
4608 if (*rest || ctx->blocks > LONG_MAX)
4609 goto bad_value;
4610 ctx->seen |= SHMEM_SEEN_BLOCKS;
4611 break;
4612 case Opt_nr_inodes:
4613 ctx->inodes = memparse(param->string, &rest);
4614 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4615 goto bad_value;
4616 ctx->seen |= SHMEM_SEEN_INODES;
4617 break;
4618 case Opt_mode:
4619 ctx->mode = result.uint_32 & 07777;
4620 break;
4621 case Opt_uid:
4622 kuid = result.uid;
4623
4624 /*
4625 * The requested uid must be representable in the
4626 * filesystem's idmapping.
4627 */
4628 if (!kuid_has_mapping(fc->user_ns, kuid))
4629 goto bad_value;
4630
4631 ctx->uid = kuid;
4632 break;
4633 case Opt_gid:
4634 kgid = result.gid;
4635
4636 /*
4637 * The requested gid must be representable in the
4638 * filesystem's idmapping.
4639 */
4640 if (!kgid_has_mapping(fc->user_ns, kgid))
4641 goto bad_value;
4642
4643 ctx->gid = kgid;
4644 break;
4645 case Opt_huge:
4646 ctx->huge = result.uint_32;
4647 if (ctx->huge != SHMEM_HUGE_NEVER &&
4648 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4649 has_transparent_hugepage()))
4650 goto unsupported_parameter;
4651 ctx->seen |= SHMEM_SEEN_HUGE;
4652 break;
4653 case Opt_mpol:
4654 if (IS_ENABLED(CONFIG_NUMA)) {
4655 mpol_put(ctx->mpol);
4656 ctx->mpol = NULL;
4657 if (mpol_parse_str(param->string, &ctx->mpol))
4658 goto bad_value;
4659 break;
4660 }
4661 goto unsupported_parameter;
4662 case Opt_inode32:
4663 ctx->full_inums = false;
4664 ctx->seen |= SHMEM_SEEN_INUMS;
4665 break;
4666 case Opt_inode64:
4667 if (sizeof(ino_t) < 8) {
4668 return invalfc(fc,
4669 "Cannot use inode64 with <64bit inums in kernel\n");
4670 }
4671 ctx->full_inums = true;
4672 ctx->seen |= SHMEM_SEEN_INUMS;
4673 break;
4674 case Opt_noswap:
4675 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4676 return invalfc(fc,
4677 "Turning off swap in unprivileged tmpfs mounts unsupported");
4678 }
4679 ctx->noswap = true;
4680 ctx->seen |= SHMEM_SEEN_NOSWAP;
4681 break;
4682 case Opt_quota:
4683 if (fc->user_ns != &init_user_ns)
4684 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4685 ctx->seen |= SHMEM_SEEN_QUOTA;
4686 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4687 break;
4688 case Opt_usrquota:
4689 if (fc->user_ns != &init_user_ns)
4690 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4691 ctx->seen |= SHMEM_SEEN_QUOTA;
4692 ctx->quota_types |= QTYPE_MASK_USR;
4693 break;
4694 case Opt_grpquota:
4695 if (fc->user_ns != &init_user_ns)
4696 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4697 ctx->seen |= SHMEM_SEEN_QUOTA;
4698 ctx->quota_types |= QTYPE_MASK_GRP;
4699 break;
4700 case Opt_usrquota_block_hardlimit:
4701 size = memparse(param->string, &rest);
4702 if (*rest || !size)
4703 goto bad_value;
4704 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4705 return invalfc(fc,
4706 "User quota block hardlimit too large.");
4707 ctx->qlimits.usrquota_bhardlimit = size;
4708 break;
4709 case Opt_grpquota_block_hardlimit:
4710 size = memparse(param->string, &rest);
4711 if (*rest || !size)
4712 goto bad_value;
4713 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4714 return invalfc(fc,
4715 "Group quota block hardlimit too large.");
4716 ctx->qlimits.grpquota_bhardlimit = size;
4717 break;
4718 case Opt_usrquota_inode_hardlimit:
4719 size = memparse(param->string, &rest);
4720 if (*rest || !size)
4721 goto bad_value;
4722 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4723 return invalfc(fc,
4724 "User quota inode hardlimit too large.");
4725 ctx->qlimits.usrquota_ihardlimit = size;
4726 break;
4727 case Opt_grpquota_inode_hardlimit:
4728 size = memparse(param->string, &rest);
4729 if (*rest || !size)
4730 goto bad_value;
4731 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4732 return invalfc(fc,
4733 "Group quota inode hardlimit too large.");
4734 ctx->qlimits.grpquota_ihardlimit = size;
4735 break;
4736 case Opt_casefold_version:
4737 return shmem_parse_opt_casefold(fc, param, false);
4738 case Opt_casefold:
4739 return shmem_parse_opt_casefold(fc, param, true);
4740 case Opt_strict_encoding:
4741 #if IS_ENABLED(CONFIG_UNICODE)
4742 ctx->strict_encoding = true;
4743 break;
4744 #else
4745 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4746 #endif
4747 }
4748 return 0;
4749
4750 unsupported_parameter:
4751 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4752 bad_value:
4753 return invalfc(fc, "Bad value for '%s'", param->key);
4754 }
4755
shmem_next_opt(char ** s)4756 static char *shmem_next_opt(char **s)
4757 {
4758 char *sbegin = *s;
4759 char *p;
4760
4761 if (sbegin == NULL)
4762 return NULL;
4763
4764 /*
4765 * NUL-terminate this option: unfortunately,
4766 * mount options form a comma-separated list,
4767 * but mpol's nodelist may also contain commas.
4768 */
4769 for (;;) {
4770 p = strchr(*s, ',');
4771 if (p == NULL)
4772 break;
4773 *s = p + 1;
4774 if (!isdigit(*(p+1))) {
4775 *p = '\0';
4776 return sbegin;
4777 }
4778 }
4779
4780 *s = NULL;
4781 return sbegin;
4782 }
4783
shmem_parse_monolithic(struct fs_context * fc,void * data)4784 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4785 {
4786 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4787 }
4788
4789 /*
4790 * Reconfigure a shmem filesystem.
4791 */
shmem_reconfigure(struct fs_context * fc)4792 static int shmem_reconfigure(struct fs_context *fc)
4793 {
4794 struct shmem_options *ctx = fc->fs_private;
4795 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4796 unsigned long used_isp;
4797 struct mempolicy *mpol = NULL;
4798 const char *err;
4799
4800 raw_spin_lock(&sbinfo->stat_lock);
4801 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4802
4803 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4804 if (!sbinfo->max_blocks) {
4805 err = "Cannot retroactively limit size";
4806 goto out;
4807 }
4808 if (percpu_counter_compare(&sbinfo->used_blocks,
4809 ctx->blocks) > 0) {
4810 err = "Too small a size for current use";
4811 goto out;
4812 }
4813 }
4814 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4815 if (!sbinfo->max_inodes) {
4816 err = "Cannot retroactively limit inodes";
4817 goto out;
4818 }
4819 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4820 err = "Too few inodes for current use";
4821 goto out;
4822 }
4823 }
4824
4825 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4826 sbinfo->next_ino > UINT_MAX) {
4827 err = "Current inum too high to switch to 32-bit inums";
4828 goto out;
4829 }
4830 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4831 err = "Cannot disable swap on remount";
4832 goto out;
4833 }
4834 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4835 err = "Cannot enable swap on remount if it was disabled on first mount";
4836 goto out;
4837 }
4838
4839 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4840 !sb_any_quota_loaded(fc->root->d_sb)) {
4841 err = "Cannot enable quota on remount";
4842 goto out;
4843 }
4844
4845 #ifdef CONFIG_TMPFS_QUOTA
4846 #define CHANGED_LIMIT(name) \
4847 (ctx->qlimits.name## hardlimit && \
4848 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4849
4850 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4851 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4852 err = "Cannot change global quota limit on remount";
4853 goto out;
4854 }
4855 #endif /* CONFIG_TMPFS_QUOTA */
4856
4857 if (ctx->seen & SHMEM_SEEN_HUGE)
4858 sbinfo->huge = ctx->huge;
4859 if (ctx->seen & SHMEM_SEEN_INUMS)
4860 sbinfo->full_inums = ctx->full_inums;
4861 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4862 sbinfo->max_blocks = ctx->blocks;
4863 if (ctx->seen & SHMEM_SEEN_INODES) {
4864 sbinfo->max_inodes = ctx->inodes;
4865 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4866 }
4867
4868 /*
4869 * Preserve previous mempolicy unless mpol remount option was specified.
4870 */
4871 if (ctx->mpol) {
4872 mpol = sbinfo->mpol;
4873 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4874 ctx->mpol = NULL;
4875 }
4876
4877 if (ctx->noswap)
4878 sbinfo->noswap = true;
4879
4880 raw_spin_unlock(&sbinfo->stat_lock);
4881 mpol_put(mpol);
4882 return 0;
4883 out:
4884 raw_spin_unlock(&sbinfo->stat_lock);
4885 return invalfc(fc, "%s", err);
4886 }
4887
shmem_show_options(struct seq_file * seq,struct dentry * root)4888 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4889 {
4890 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4891 struct mempolicy *mpol;
4892
4893 if (sbinfo->max_blocks != shmem_default_max_blocks())
4894 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4895 if (sbinfo->max_inodes != shmem_default_max_inodes())
4896 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4897 if (sbinfo->mode != (0777 | S_ISVTX))
4898 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4899 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4900 seq_printf(seq, ",uid=%u",
4901 from_kuid_munged(&init_user_ns, sbinfo->uid));
4902 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4903 seq_printf(seq, ",gid=%u",
4904 from_kgid_munged(&init_user_ns, sbinfo->gid));
4905
4906 /*
4907 * Showing inode{64,32} might be useful even if it's the system default,
4908 * since then people don't have to resort to checking both here and
4909 * /proc/config.gz to confirm 64-bit inums were successfully applied
4910 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4911 *
4912 * We hide it when inode64 isn't the default and we are using 32-bit
4913 * inodes, since that probably just means the feature isn't even under
4914 * consideration.
4915 *
4916 * As such:
4917 *
4918 * +-----------------+-----------------+
4919 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4920 * +------------------+-----------------+-----------------+
4921 * | full_inums=true | show | show |
4922 * | full_inums=false | show | hide |
4923 * +------------------+-----------------+-----------------+
4924 *
4925 */
4926 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4927 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4929 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4930 if (sbinfo->huge)
4931 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4932 #endif
4933 mpol = shmem_get_sbmpol(sbinfo);
4934 shmem_show_mpol(seq, mpol);
4935 mpol_put(mpol);
4936 if (sbinfo->noswap)
4937 seq_printf(seq, ",noswap");
4938 #ifdef CONFIG_TMPFS_QUOTA
4939 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4940 seq_printf(seq, ",usrquota");
4941 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4942 seq_printf(seq, ",grpquota");
4943 if (sbinfo->qlimits.usrquota_bhardlimit)
4944 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4945 sbinfo->qlimits.usrquota_bhardlimit);
4946 if (sbinfo->qlimits.grpquota_bhardlimit)
4947 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4948 sbinfo->qlimits.grpquota_bhardlimit);
4949 if (sbinfo->qlimits.usrquota_ihardlimit)
4950 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4951 sbinfo->qlimits.usrquota_ihardlimit);
4952 if (sbinfo->qlimits.grpquota_ihardlimit)
4953 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4954 sbinfo->qlimits.grpquota_ihardlimit);
4955 #endif
4956 return 0;
4957 }
4958
4959 #endif /* CONFIG_TMPFS */
4960
shmem_put_super(struct super_block * sb)4961 static void shmem_put_super(struct super_block *sb)
4962 {
4963 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4964
4965 #if IS_ENABLED(CONFIG_UNICODE)
4966 if (sb->s_encoding)
4967 utf8_unload(sb->s_encoding);
4968 #endif
4969
4970 #ifdef CONFIG_TMPFS_QUOTA
4971 shmem_disable_quotas(sb);
4972 #endif
4973 free_percpu(sbinfo->ino_batch);
4974 percpu_counter_destroy(&sbinfo->used_blocks);
4975 mpol_put(sbinfo->mpol);
4976 kfree(sbinfo);
4977 sb->s_fs_info = NULL;
4978 }
4979
4980 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4981 static const struct dentry_operations shmem_ci_dentry_ops = {
4982 .d_hash = generic_ci_d_hash,
4983 .d_compare = generic_ci_d_compare,
4984 .d_delete = always_delete_dentry,
4985 };
4986 #endif
4987
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4988 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4989 {
4990 struct shmem_options *ctx = fc->fs_private;
4991 struct inode *inode;
4992 struct shmem_sb_info *sbinfo;
4993 int error = -ENOMEM;
4994
4995 /* Round up to L1_CACHE_BYTES to resist false sharing */
4996 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4997 L1_CACHE_BYTES), GFP_KERNEL);
4998 if (!sbinfo)
4999 return error;
5000
5001 sb->s_fs_info = sbinfo;
5002
5003 #ifdef CONFIG_TMPFS
5004 /*
5005 * Per default we only allow half of the physical ram per
5006 * tmpfs instance, limiting inodes to one per page of lowmem;
5007 * but the internal instance is left unlimited.
5008 */
5009 if (!(sb->s_flags & SB_KERNMOUNT)) {
5010 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5011 ctx->blocks = shmem_default_max_blocks();
5012 if (!(ctx->seen & SHMEM_SEEN_INODES))
5013 ctx->inodes = shmem_default_max_inodes();
5014 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5015 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5016 sbinfo->noswap = ctx->noswap;
5017 } else {
5018 sb->s_flags |= SB_NOUSER;
5019 }
5020 sb->s_export_op = &shmem_export_ops;
5021 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5022
5023 #if IS_ENABLED(CONFIG_UNICODE)
5024 if (!ctx->encoding && ctx->strict_encoding) {
5025 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5026 error = -EINVAL;
5027 goto failed;
5028 }
5029
5030 if (ctx->encoding) {
5031 sb->s_encoding = ctx->encoding;
5032 sb->s_d_op = &shmem_ci_dentry_ops;
5033 if (ctx->strict_encoding)
5034 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5035 }
5036 #endif
5037
5038 #else
5039 sb->s_flags |= SB_NOUSER;
5040 #endif /* CONFIG_TMPFS */
5041 sbinfo->max_blocks = ctx->blocks;
5042 sbinfo->max_inodes = ctx->inodes;
5043 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5044 if (sb->s_flags & SB_KERNMOUNT) {
5045 sbinfo->ino_batch = alloc_percpu(ino_t);
5046 if (!sbinfo->ino_batch)
5047 goto failed;
5048 }
5049 sbinfo->uid = ctx->uid;
5050 sbinfo->gid = ctx->gid;
5051 sbinfo->full_inums = ctx->full_inums;
5052 sbinfo->mode = ctx->mode;
5053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5054 if (ctx->seen & SHMEM_SEEN_HUGE)
5055 sbinfo->huge = ctx->huge;
5056 else
5057 sbinfo->huge = tmpfs_huge;
5058 #endif
5059 sbinfo->mpol = ctx->mpol;
5060 ctx->mpol = NULL;
5061
5062 raw_spin_lock_init(&sbinfo->stat_lock);
5063 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5064 goto failed;
5065 spin_lock_init(&sbinfo->shrinklist_lock);
5066 INIT_LIST_HEAD(&sbinfo->shrinklist);
5067
5068 sb->s_maxbytes = MAX_LFS_FILESIZE;
5069 sb->s_blocksize = PAGE_SIZE;
5070 sb->s_blocksize_bits = PAGE_SHIFT;
5071 sb->s_magic = TMPFS_MAGIC;
5072 sb->s_op = &shmem_ops;
5073 sb->s_time_gran = 1;
5074 #ifdef CONFIG_TMPFS_XATTR
5075 sb->s_xattr = shmem_xattr_handlers;
5076 #endif
5077 #ifdef CONFIG_TMPFS_POSIX_ACL
5078 sb->s_flags |= SB_POSIXACL;
5079 #endif
5080 uuid_t uuid;
5081 uuid_gen(&uuid);
5082 super_set_uuid(sb, uuid.b, sizeof(uuid));
5083
5084 #ifdef CONFIG_TMPFS_QUOTA
5085 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5086 sb->dq_op = &shmem_quota_operations;
5087 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5088 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5089
5090 /* Copy the default limits from ctx into sbinfo */
5091 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5092 sizeof(struct shmem_quota_limits));
5093
5094 if (shmem_enable_quotas(sb, ctx->quota_types))
5095 goto failed;
5096 }
5097 #endif /* CONFIG_TMPFS_QUOTA */
5098
5099 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5100 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5101 if (IS_ERR(inode)) {
5102 error = PTR_ERR(inode);
5103 goto failed;
5104 }
5105 inode->i_uid = sbinfo->uid;
5106 inode->i_gid = sbinfo->gid;
5107 sb->s_root = d_make_root(inode);
5108 if (!sb->s_root)
5109 goto failed;
5110 return 0;
5111
5112 failed:
5113 shmem_put_super(sb);
5114 return error;
5115 }
5116
shmem_get_tree(struct fs_context * fc)5117 static int shmem_get_tree(struct fs_context *fc)
5118 {
5119 return get_tree_nodev(fc, shmem_fill_super);
5120 }
5121
shmem_free_fc(struct fs_context * fc)5122 static void shmem_free_fc(struct fs_context *fc)
5123 {
5124 struct shmem_options *ctx = fc->fs_private;
5125
5126 if (ctx) {
5127 mpol_put(ctx->mpol);
5128 kfree(ctx);
5129 }
5130 }
5131
5132 static const struct fs_context_operations shmem_fs_context_ops = {
5133 .free = shmem_free_fc,
5134 .get_tree = shmem_get_tree,
5135 #ifdef CONFIG_TMPFS
5136 .parse_monolithic = shmem_parse_monolithic,
5137 .parse_param = shmem_parse_one,
5138 .reconfigure = shmem_reconfigure,
5139 #endif
5140 };
5141
5142 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5143
shmem_alloc_inode(struct super_block * sb)5144 static struct inode *shmem_alloc_inode(struct super_block *sb)
5145 {
5146 struct shmem_inode_info *info;
5147 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5148 if (!info)
5149 return NULL;
5150 return &info->vfs_inode;
5151 }
5152
shmem_free_in_core_inode(struct inode * inode)5153 static void shmem_free_in_core_inode(struct inode *inode)
5154 {
5155 if (S_ISLNK(inode->i_mode))
5156 kfree(inode->i_link);
5157 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5158 }
5159
shmem_destroy_inode(struct inode * inode)5160 static void shmem_destroy_inode(struct inode *inode)
5161 {
5162 if (S_ISREG(inode->i_mode))
5163 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5164 if (S_ISDIR(inode->i_mode))
5165 simple_offset_destroy(shmem_get_offset_ctx(inode));
5166 }
5167
shmem_init_inode(void * foo)5168 static void shmem_init_inode(void *foo)
5169 {
5170 struct shmem_inode_info *info = foo;
5171 inode_init_once(&info->vfs_inode);
5172 }
5173
shmem_init_inodecache(void)5174 static void __init shmem_init_inodecache(void)
5175 {
5176 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5177 sizeof(struct shmem_inode_info),
5178 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5179 }
5180
shmem_destroy_inodecache(void)5181 static void __init shmem_destroy_inodecache(void)
5182 {
5183 kmem_cache_destroy(shmem_inode_cachep);
5184 }
5185
5186 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5187 static int shmem_error_remove_folio(struct address_space *mapping,
5188 struct folio *folio)
5189 {
5190 return 0;
5191 }
5192
5193 static const struct address_space_operations shmem_aops = {
5194 .writepage = shmem_writepage,
5195 .dirty_folio = noop_dirty_folio,
5196 #ifdef CONFIG_TMPFS
5197 .write_begin = shmem_write_begin,
5198 .write_end = shmem_write_end,
5199 #endif
5200 #ifdef CONFIG_MIGRATION
5201 .migrate_folio = migrate_folio,
5202 #endif
5203 .error_remove_folio = shmem_error_remove_folio,
5204 };
5205
5206 static const struct file_operations shmem_file_operations = {
5207 .mmap = shmem_mmap,
5208 .open = shmem_file_open,
5209 .get_unmapped_area = shmem_get_unmapped_area,
5210 #ifdef CONFIG_TMPFS
5211 .llseek = shmem_file_llseek,
5212 .read_iter = shmem_file_read_iter,
5213 .write_iter = shmem_file_write_iter,
5214 .fsync = noop_fsync,
5215 .splice_read = shmem_file_splice_read,
5216 .splice_write = iter_file_splice_write,
5217 .fallocate = shmem_fallocate,
5218 #endif
5219 };
5220
5221 static const struct inode_operations shmem_inode_operations = {
5222 .getattr = shmem_getattr,
5223 .setattr = shmem_setattr,
5224 #ifdef CONFIG_TMPFS_XATTR
5225 .listxattr = shmem_listxattr,
5226 .set_acl = simple_set_acl,
5227 .fileattr_get = shmem_fileattr_get,
5228 .fileattr_set = shmem_fileattr_set,
5229 #endif
5230 };
5231
5232 static const struct inode_operations shmem_dir_inode_operations = {
5233 #ifdef CONFIG_TMPFS
5234 .getattr = shmem_getattr,
5235 .create = shmem_create,
5236 .lookup = simple_lookup,
5237 .link = shmem_link,
5238 .unlink = shmem_unlink,
5239 .symlink = shmem_symlink,
5240 .mkdir = shmem_mkdir,
5241 .rmdir = shmem_rmdir,
5242 .mknod = shmem_mknod,
5243 .rename = shmem_rename2,
5244 .tmpfile = shmem_tmpfile,
5245 .get_offset_ctx = shmem_get_offset_ctx,
5246 #endif
5247 #ifdef CONFIG_TMPFS_XATTR
5248 .listxattr = shmem_listxattr,
5249 .fileattr_get = shmem_fileattr_get,
5250 .fileattr_set = shmem_fileattr_set,
5251 #endif
5252 #ifdef CONFIG_TMPFS_POSIX_ACL
5253 .setattr = shmem_setattr,
5254 .set_acl = simple_set_acl,
5255 #endif
5256 };
5257
5258 static const struct inode_operations shmem_special_inode_operations = {
5259 .getattr = shmem_getattr,
5260 #ifdef CONFIG_TMPFS_XATTR
5261 .listxattr = shmem_listxattr,
5262 #endif
5263 #ifdef CONFIG_TMPFS_POSIX_ACL
5264 .setattr = shmem_setattr,
5265 .set_acl = simple_set_acl,
5266 #endif
5267 };
5268
5269 static const struct super_operations shmem_ops = {
5270 .alloc_inode = shmem_alloc_inode,
5271 .free_inode = shmem_free_in_core_inode,
5272 .destroy_inode = shmem_destroy_inode,
5273 #ifdef CONFIG_TMPFS
5274 .statfs = shmem_statfs,
5275 .show_options = shmem_show_options,
5276 #endif
5277 #ifdef CONFIG_TMPFS_QUOTA
5278 .get_dquots = shmem_get_dquots,
5279 #endif
5280 .evict_inode = shmem_evict_inode,
5281 .drop_inode = generic_delete_inode,
5282 .put_super = shmem_put_super,
5283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5284 .nr_cached_objects = shmem_unused_huge_count,
5285 .free_cached_objects = shmem_unused_huge_scan,
5286 #endif
5287 };
5288
5289 static const struct vm_operations_struct shmem_vm_ops = {
5290 .fault = shmem_fault,
5291 .map_pages = filemap_map_pages,
5292 #ifdef CONFIG_NUMA
5293 .set_policy = shmem_set_policy,
5294 .get_policy = shmem_get_policy,
5295 #endif
5296 };
5297
5298 static const struct vm_operations_struct shmem_anon_vm_ops = {
5299 .fault = shmem_fault,
5300 .map_pages = filemap_map_pages,
5301 #ifdef CONFIG_NUMA
5302 .set_policy = shmem_set_policy,
5303 .get_policy = shmem_get_policy,
5304 #endif
5305 };
5306
shmem_init_fs_context(struct fs_context * fc)5307 int shmem_init_fs_context(struct fs_context *fc)
5308 {
5309 struct shmem_options *ctx;
5310
5311 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5312 if (!ctx)
5313 return -ENOMEM;
5314
5315 ctx->mode = 0777 | S_ISVTX;
5316 ctx->uid = current_fsuid();
5317 ctx->gid = current_fsgid();
5318
5319 #if IS_ENABLED(CONFIG_UNICODE)
5320 ctx->encoding = NULL;
5321 #endif
5322
5323 fc->fs_private = ctx;
5324 fc->ops = &shmem_fs_context_ops;
5325 return 0;
5326 }
5327
5328 static struct file_system_type shmem_fs_type = {
5329 .owner = THIS_MODULE,
5330 .name = "tmpfs",
5331 .init_fs_context = shmem_init_fs_context,
5332 #ifdef CONFIG_TMPFS
5333 .parameters = shmem_fs_parameters,
5334 #endif
5335 .kill_sb = kill_litter_super,
5336 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5337 };
5338
5339 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5340
5341 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5342 { \
5343 .attr = { .name = __stringify(_name), .mode = _mode }, \
5344 .show = _show, \
5345 .store = _store, \
5346 }
5347
5348 #define TMPFS_ATTR_W(_name, _store) \
5349 static struct kobj_attribute tmpfs_attr_##_name = \
5350 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5351
5352 #define TMPFS_ATTR_RW(_name, _show, _store) \
5353 static struct kobj_attribute tmpfs_attr_##_name = \
5354 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5355
5356 #define TMPFS_ATTR_RO(_name, _show) \
5357 static struct kobj_attribute tmpfs_attr_##_name = \
5358 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5359
5360 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5361 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5362 char *buf)
5363 {
5364 return sysfs_emit(buf, "supported\n");
5365 }
5366 TMPFS_ATTR_RO(casefold, casefold_show);
5367 #endif
5368
5369 static struct attribute *tmpfs_attributes[] = {
5370 #if IS_ENABLED(CONFIG_UNICODE)
5371 &tmpfs_attr_casefold.attr,
5372 #endif
5373 NULL
5374 };
5375
5376 static const struct attribute_group tmpfs_attribute_group = {
5377 .attrs = tmpfs_attributes,
5378 .name = "features"
5379 };
5380
5381 static struct kobject *tmpfs_kobj;
5382
tmpfs_sysfs_init(void)5383 static int __init tmpfs_sysfs_init(void)
5384 {
5385 int ret;
5386
5387 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5388 if (!tmpfs_kobj)
5389 return -ENOMEM;
5390
5391 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5392 if (ret)
5393 kobject_put(tmpfs_kobj);
5394
5395 return ret;
5396 }
5397 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5398
shmem_init(void)5399 void __init shmem_init(void)
5400 {
5401 int error;
5402
5403 shmem_init_inodecache();
5404
5405 #ifdef CONFIG_TMPFS_QUOTA
5406 register_quota_format(&shmem_quota_format);
5407 #endif
5408
5409 error = register_filesystem(&shmem_fs_type);
5410 if (error) {
5411 pr_err("Could not register tmpfs\n");
5412 goto out2;
5413 }
5414
5415 shm_mnt = kern_mount(&shmem_fs_type);
5416 if (IS_ERR(shm_mnt)) {
5417 error = PTR_ERR(shm_mnt);
5418 pr_err("Could not kern_mount tmpfs\n");
5419 goto out1;
5420 }
5421
5422 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5423 error = tmpfs_sysfs_init();
5424 if (error) {
5425 pr_err("Could not init tmpfs sysfs\n");
5426 goto out1;
5427 }
5428 #endif
5429
5430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5431 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5432 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5433 else
5434 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5435
5436 /*
5437 * Default to setting PMD-sized THP to inherit the global setting and
5438 * disable all other multi-size THPs.
5439 */
5440 if (!shmem_orders_configured)
5441 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5442 #endif
5443 return;
5444
5445 out1:
5446 unregister_filesystem(&shmem_fs_type);
5447 out2:
5448 #ifdef CONFIG_TMPFS_QUOTA
5449 unregister_quota_format(&shmem_quota_format);
5450 #endif
5451 shmem_destroy_inodecache();
5452 shm_mnt = ERR_PTR(error);
5453 }
5454
5455 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5456 static ssize_t shmem_enabled_show(struct kobject *kobj,
5457 struct kobj_attribute *attr, char *buf)
5458 {
5459 static const int values[] = {
5460 SHMEM_HUGE_ALWAYS,
5461 SHMEM_HUGE_WITHIN_SIZE,
5462 SHMEM_HUGE_ADVISE,
5463 SHMEM_HUGE_NEVER,
5464 SHMEM_HUGE_DENY,
5465 SHMEM_HUGE_FORCE,
5466 };
5467 int len = 0;
5468 int i;
5469
5470 for (i = 0; i < ARRAY_SIZE(values); i++) {
5471 len += sysfs_emit_at(buf, len,
5472 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5473 i ? " " : "", shmem_format_huge(values[i]));
5474 }
5475 len += sysfs_emit_at(buf, len, "\n");
5476
5477 return len;
5478 }
5479
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5480 static ssize_t shmem_enabled_store(struct kobject *kobj,
5481 struct kobj_attribute *attr, const char *buf, size_t count)
5482 {
5483 char tmp[16];
5484 int huge, err;
5485
5486 if (count + 1 > sizeof(tmp))
5487 return -EINVAL;
5488 memcpy(tmp, buf, count);
5489 tmp[count] = '\0';
5490 if (count && tmp[count - 1] == '\n')
5491 tmp[count - 1] = '\0';
5492
5493 huge = shmem_parse_huge(tmp);
5494 if (huge == -EINVAL)
5495 return huge;
5496
5497 shmem_huge = huge;
5498 if (shmem_huge > SHMEM_HUGE_DENY)
5499 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5500
5501 err = start_stop_khugepaged();
5502 return err ? err : count;
5503 }
5504
5505 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5506 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5507
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5508 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5509 struct kobj_attribute *attr, char *buf)
5510 {
5511 int order = to_thpsize(kobj)->order;
5512 const char *output;
5513
5514 if (test_bit(order, &huge_shmem_orders_always))
5515 output = "[always] inherit within_size advise never";
5516 else if (test_bit(order, &huge_shmem_orders_inherit))
5517 output = "always [inherit] within_size advise never";
5518 else if (test_bit(order, &huge_shmem_orders_within_size))
5519 output = "always inherit [within_size] advise never";
5520 else if (test_bit(order, &huge_shmem_orders_madvise))
5521 output = "always inherit within_size [advise] never";
5522 else
5523 output = "always inherit within_size advise [never]";
5524
5525 return sysfs_emit(buf, "%s\n", output);
5526 }
5527
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5528 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5529 struct kobj_attribute *attr,
5530 const char *buf, size_t count)
5531 {
5532 int order = to_thpsize(kobj)->order;
5533 ssize_t ret = count;
5534
5535 if (sysfs_streq(buf, "always")) {
5536 spin_lock(&huge_shmem_orders_lock);
5537 clear_bit(order, &huge_shmem_orders_inherit);
5538 clear_bit(order, &huge_shmem_orders_madvise);
5539 clear_bit(order, &huge_shmem_orders_within_size);
5540 set_bit(order, &huge_shmem_orders_always);
5541 spin_unlock(&huge_shmem_orders_lock);
5542 } else if (sysfs_streq(buf, "inherit")) {
5543 /* Do not override huge allocation policy with non-PMD sized mTHP */
5544 if (shmem_huge == SHMEM_HUGE_FORCE &&
5545 order != HPAGE_PMD_ORDER)
5546 return -EINVAL;
5547
5548 spin_lock(&huge_shmem_orders_lock);
5549 clear_bit(order, &huge_shmem_orders_always);
5550 clear_bit(order, &huge_shmem_orders_madvise);
5551 clear_bit(order, &huge_shmem_orders_within_size);
5552 set_bit(order, &huge_shmem_orders_inherit);
5553 spin_unlock(&huge_shmem_orders_lock);
5554 } else if (sysfs_streq(buf, "within_size")) {
5555 spin_lock(&huge_shmem_orders_lock);
5556 clear_bit(order, &huge_shmem_orders_always);
5557 clear_bit(order, &huge_shmem_orders_inherit);
5558 clear_bit(order, &huge_shmem_orders_madvise);
5559 set_bit(order, &huge_shmem_orders_within_size);
5560 spin_unlock(&huge_shmem_orders_lock);
5561 } else if (sysfs_streq(buf, "advise")) {
5562 spin_lock(&huge_shmem_orders_lock);
5563 clear_bit(order, &huge_shmem_orders_always);
5564 clear_bit(order, &huge_shmem_orders_inherit);
5565 clear_bit(order, &huge_shmem_orders_within_size);
5566 set_bit(order, &huge_shmem_orders_madvise);
5567 spin_unlock(&huge_shmem_orders_lock);
5568 } else if (sysfs_streq(buf, "never")) {
5569 spin_lock(&huge_shmem_orders_lock);
5570 clear_bit(order, &huge_shmem_orders_always);
5571 clear_bit(order, &huge_shmem_orders_inherit);
5572 clear_bit(order, &huge_shmem_orders_within_size);
5573 clear_bit(order, &huge_shmem_orders_madvise);
5574 spin_unlock(&huge_shmem_orders_lock);
5575 } else {
5576 ret = -EINVAL;
5577 }
5578
5579 if (ret > 0) {
5580 int err = start_stop_khugepaged();
5581
5582 if (err)
5583 ret = err;
5584 }
5585 return ret;
5586 }
5587
5588 struct kobj_attribute thpsize_shmem_enabled_attr =
5589 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5590 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5591
5592 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5593
setup_transparent_hugepage_shmem(char * str)5594 static int __init setup_transparent_hugepage_shmem(char *str)
5595 {
5596 int huge;
5597
5598 huge = shmem_parse_huge(str);
5599 if (huge == -EINVAL) {
5600 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5601 return huge;
5602 }
5603
5604 shmem_huge = huge;
5605 return 1;
5606 }
5607 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5608
setup_transparent_hugepage_tmpfs(char * str)5609 static int __init setup_transparent_hugepage_tmpfs(char *str)
5610 {
5611 int huge;
5612
5613 huge = shmem_parse_huge(str);
5614 if (huge < 0) {
5615 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5616 return huge;
5617 }
5618
5619 tmpfs_huge = huge;
5620 return 1;
5621 }
5622 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5623
5624 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5625 static int __init setup_thp_shmem(char *str)
5626 {
5627 char *token, *range, *policy, *subtoken;
5628 unsigned long always, inherit, madvise, within_size;
5629 char *start_size, *end_size;
5630 int start, end, nr;
5631 char *p;
5632
5633 if (!str || strlen(str) + 1 > PAGE_SIZE)
5634 goto err;
5635 strscpy(str_dup, str);
5636
5637 always = huge_shmem_orders_always;
5638 inherit = huge_shmem_orders_inherit;
5639 madvise = huge_shmem_orders_madvise;
5640 within_size = huge_shmem_orders_within_size;
5641 p = str_dup;
5642 while ((token = strsep(&p, ";")) != NULL) {
5643 range = strsep(&token, ":");
5644 policy = token;
5645
5646 if (!policy)
5647 goto err;
5648
5649 while ((subtoken = strsep(&range, ",")) != NULL) {
5650 if (strchr(subtoken, '-')) {
5651 start_size = strsep(&subtoken, "-");
5652 end_size = subtoken;
5653
5654 start = get_order_from_str(start_size,
5655 THP_ORDERS_ALL_FILE_DEFAULT);
5656 end = get_order_from_str(end_size,
5657 THP_ORDERS_ALL_FILE_DEFAULT);
5658 } else {
5659 start_size = end_size = subtoken;
5660 start = end = get_order_from_str(subtoken,
5661 THP_ORDERS_ALL_FILE_DEFAULT);
5662 }
5663
5664 if (start < 0) {
5665 pr_err("invalid size %s in thp_shmem boot parameter\n",
5666 start_size);
5667 goto err;
5668 }
5669
5670 if (end < 0) {
5671 pr_err("invalid size %s in thp_shmem boot parameter\n",
5672 end_size);
5673 goto err;
5674 }
5675
5676 if (start > end)
5677 goto err;
5678
5679 nr = end - start + 1;
5680 if (!strcmp(policy, "always")) {
5681 bitmap_set(&always, start, nr);
5682 bitmap_clear(&inherit, start, nr);
5683 bitmap_clear(&madvise, start, nr);
5684 bitmap_clear(&within_size, start, nr);
5685 } else if (!strcmp(policy, "advise")) {
5686 bitmap_set(&madvise, start, nr);
5687 bitmap_clear(&inherit, start, nr);
5688 bitmap_clear(&always, start, nr);
5689 bitmap_clear(&within_size, start, nr);
5690 } else if (!strcmp(policy, "inherit")) {
5691 bitmap_set(&inherit, start, nr);
5692 bitmap_clear(&madvise, start, nr);
5693 bitmap_clear(&always, start, nr);
5694 bitmap_clear(&within_size, start, nr);
5695 } else if (!strcmp(policy, "within_size")) {
5696 bitmap_set(&within_size, start, nr);
5697 bitmap_clear(&inherit, start, nr);
5698 bitmap_clear(&madvise, start, nr);
5699 bitmap_clear(&always, start, nr);
5700 } else if (!strcmp(policy, "never")) {
5701 bitmap_clear(&inherit, start, nr);
5702 bitmap_clear(&madvise, start, nr);
5703 bitmap_clear(&always, start, nr);
5704 bitmap_clear(&within_size, start, nr);
5705 } else {
5706 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5707 goto err;
5708 }
5709 }
5710 }
5711
5712 huge_shmem_orders_always = always;
5713 huge_shmem_orders_madvise = madvise;
5714 huge_shmem_orders_inherit = inherit;
5715 huge_shmem_orders_within_size = within_size;
5716 shmem_orders_configured = true;
5717 return 1;
5718
5719 err:
5720 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5721 return 0;
5722 }
5723 __setup("thp_shmem=", setup_thp_shmem);
5724
5725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5726
5727 #else /* !CONFIG_SHMEM */
5728
5729 /*
5730 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5731 *
5732 * This is intended for small system where the benefits of the full
5733 * shmem code (swap-backed and resource-limited) are outweighed by
5734 * their complexity. On systems without swap this code should be
5735 * effectively equivalent, but much lighter weight.
5736 */
5737
5738 static struct file_system_type shmem_fs_type = {
5739 .name = "tmpfs",
5740 .init_fs_context = ramfs_init_fs_context,
5741 .parameters = ramfs_fs_parameters,
5742 .kill_sb = ramfs_kill_sb,
5743 .fs_flags = FS_USERNS_MOUNT,
5744 };
5745
shmem_init(void)5746 void __init shmem_init(void)
5747 {
5748 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5749
5750 shm_mnt = kern_mount(&shmem_fs_type);
5751 BUG_ON(IS_ERR(shm_mnt));
5752 }
5753
shmem_unuse(unsigned int type)5754 int shmem_unuse(unsigned int type)
5755 {
5756 return 0;
5757 }
5758
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5759 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5760 {
5761 return 0;
5762 }
5763
shmem_unlock_mapping(struct address_space * mapping)5764 void shmem_unlock_mapping(struct address_space *mapping)
5765 {
5766 }
5767
5768 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5769 unsigned long shmem_get_unmapped_area(struct file *file,
5770 unsigned long addr, unsigned long len,
5771 unsigned long pgoff, unsigned long flags)
5772 {
5773 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5774 }
5775 #endif
5776
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5777 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5778 {
5779 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5780 }
5781 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5782
5783 #define shmem_vm_ops generic_file_vm_ops
5784 #define shmem_anon_vm_ops generic_file_vm_ops
5785 #define shmem_file_operations ramfs_file_operations
5786 #define shmem_acct_size(flags, size) 0
5787 #define shmem_unacct_size(flags, size) do {} while (0)
5788
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5789 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5790 struct super_block *sb, struct inode *dir,
5791 umode_t mode, dev_t dev, unsigned long flags)
5792 {
5793 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5794 return inode ? inode : ERR_PTR(-ENOSPC);
5795 }
5796
5797 #endif /* CONFIG_SHMEM */
5798
5799 /* common code */
5800
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5801 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5802 loff_t size, unsigned long flags, unsigned int i_flags)
5803 {
5804 struct inode *inode;
5805 struct file *res;
5806
5807 if (IS_ERR(mnt))
5808 return ERR_CAST(mnt);
5809
5810 if (size < 0 || size > MAX_LFS_FILESIZE)
5811 return ERR_PTR(-EINVAL);
5812
5813 if (shmem_acct_size(flags, size))
5814 return ERR_PTR(-ENOMEM);
5815
5816 if (is_idmapped_mnt(mnt))
5817 return ERR_PTR(-EINVAL);
5818
5819 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5820 S_IFREG | S_IRWXUGO, 0, flags);
5821 if (IS_ERR(inode)) {
5822 shmem_unacct_size(flags, size);
5823 return ERR_CAST(inode);
5824 }
5825 inode->i_flags |= i_flags;
5826 inode->i_size = size;
5827 clear_nlink(inode); /* It is unlinked */
5828 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5829 if (!IS_ERR(res))
5830 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5831 &shmem_file_operations);
5832 if (IS_ERR(res))
5833 iput(inode);
5834 return res;
5835 }
5836
5837 /**
5838 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5839 * kernel internal. There will be NO LSM permission checks against the
5840 * underlying inode. So users of this interface must do LSM checks at a
5841 * higher layer. The users are the big_key and shm implementations. LSM
5842 * checks are provided at the key or shm level rather than the inode.
5843 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5844 * @size: size to be set for the file
5845 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5846 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5847 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5848 {
5849 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5850 }
5851 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5852
5853 /**
5854 * shmem_file_setup - get an unlinked file living in tmpfs
5855 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5856 * @size: size to be set for the file
5857 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5858 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5859 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5860 {
5861 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5862 }
5863 EXPORT_SYMBOL_GPL(shmem_file_setup);
5864
5865 /**
5866 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5867 * @mnt: the tmpfs mount where the file will be created
5868 * @name: name for dentry (to be seen in /proc/<pid>/maps)
5869 * @size: size to be set for the file
5870 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5871 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5872 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5873 loff_t size, unsigned long flags)
5874 {
5875 return __shmem_file_setup(mnt, name, size, flags, 0);
5876 }
5877 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5878
5879 /**
5880 * shmem_zero_setup - setup a shared anonymous mapping
5881 * @vma: the vma to be mmapped is prepared by do_mmap
5882 */
shmem_zero_setup(struct vm_area_struct * vma)5883 int shmem_zero_setup(struct vm_area_struct *vma)
5884 {
5885 struct file *file;
5886 loff_t size = vma->vm_end - vma->vm_start;
5887
5888 /*
5889 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5890 * between XFS directory reading and selinux: since this file is only
5891 * accessible to the user through its mapping, use S_PRIVATE flag to
5892 * bypass file security, in the same way as shmem_kernel_file_setup().
5893 */
5894 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5895 if (IS_ERR(file))
5896 return PTR_ERR(file);
5897
5898 if (vma->vm_file)
5899 fput(vma->vm_file);
5900 vma->vm_file = file;
5901 vma->vm_ops = &shmem_anon_vm_ops;
5902
5903 return 0;
5904 }
5905
5906 /**
5907 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5908 * @mapping: the folio's address_space
5909 * @index: the folio index
5910 * @gfp: the page allocator flags to use if allocating
5911 *
5912 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5913 * with any new page allocations done using the specified allocation flags.
5914 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5915 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5916 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5917 *
5918 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5919 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5920 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5921 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5922 pgoff_t index, gfp_t gfp)
5923 {
5924 #ifdef CONFIG_SHMEM
5925 struct inode *inode = mapping->host;
5926 struct folio *folio;
5927 int error;
5928
5929 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5930 gfp, NULL, NULL);
5931 if (error)
5932 return ERR_PTR(error);
5933
5934 folio_unlock(folio);
5935 return folio;
5936 #else
5937 /*
5938 * The tiny !SHMEM case uses ramfs without swap
5939 */
5940 return mapping_read_folio_gfp(mapping, index, gfp);
5941 #endif
5942 }
5943 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5944
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5945 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5946 pgoff_t index, gfp_t gfp)
5947 {
5948 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5949 struct page *page;
5950
5951 if (IS_ERR(folio))
5952 return &folio->page;
5953
5954 page = folio_file_page(folio, index);
5955 if (PageHWPoison(page)) {
5956 folio_put(folio);
5957 return ERR_PTR(-EIO);
5958 }
5959
5960 return page;
5961 }
5962 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5963