1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/page_isolation.c
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/page-isolation.h>
8 #include <linux/pageblock-flags.h>
9 #include <linux/memory.h>
10 #include <linux/hugetlb.h>
11 #include <linux/page_owner.h>
12 #include <linux/migrate.h>
13 #include "internal.h"
14 
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/page_isolation.h>
17 
18 /*
19  * This function checks whether the range [start_pfn, end_pfn) includes
20  * unmovable pages or not. The range must fall into a single pageblock and
21  * consequently belong to a single zone.
22  *
23  * PageLRU check without isolation or lru_lock could race so that
24  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
25  * check without lock_page also may miss some movable non-lru pages at
26  * race condition. So you can't expect this function should be exact.
27  *
28  * Returns a page without holding a reference. If the caller wants to
29  * dereference that page (e.g., dumping), it has to make sure that it
30  * cannot get removed (e.g., via memory unplug) concurrently.
31  *
32  */
has_unmovable_pages(unsigned long start_pfn,unsigned long end_pfn,int migratetype,int flags)33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
34 				int migratetype, int flags)
35 {
36 	struct page *page = pfn_to_page(start_pfn);
37 	struct zone *zone = page_zone(page);
38 	unsigned long pfn;
39 
40 	VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
41 		  pageblock_start_pfn(end_pfn - 1));
42 
43 	if (is_migrate_cma_page(page)) {
44 		/*
45 		 * CMA allocations (alloc_contig_range) really need to mark
46 		 * isolate CMA pageblocks even when they are not movable in fact
47 		 * so consider them movable here.
48 		 */
49 		if (is_migrate_cma(migratetype))
50 			return NULL;
51 
52 		return page;
53 	}
54 
55 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
56 		page = pfn_to_page(pfn);
57 
58 		/*
59 		 * Both, bootmem allocations and memory holes are marked
60 		 * PG_reserved and are unmovable. We can even have unmovable
61 		 * allocations inside ZONE_MOVABLE, for example when
62 		 * specifying "movablecore".
63 		 */
64 		if (PageReserved(page))
65 			return page;
66 
67 		/*
68 		 * If the zone is movable and we have ruled out all reserved
69 		 * pages then it should be reasonably safe to assume the rest
70 		 * is movable.
71 		 */
72 		if (zone_idx(zone) == ZONE_MOVABLE)
73 			continue;
74 
75 		/*
76 		 * Hugepages are not in LRU lists, but they're movable.
77 		 * THPs are on the LRU, but need to be counted as #small pages.
78 		 * We need not scan over tail pages because we don't
79 		 * handle each tail page individually in migration.
80 		 */
81 		if (PageHuge(page) || PageTransCompound(page)) {
82 			struct folio *folio = page_folio(page);
83 			unsigned int skip_pages;
84 
85 			if (PageHuge(page)) {
86 				struct hstate *h;
87 
88 				/*
89 				 * The huge page may be freed so can not
90 				 * use folio_hstate() directly.
91 				 */
92 				h = size_to_hstate(folio_size(folio));
93 				if (h && !hugepage_migration_supported(h))
94 					return page;
95 			} else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
96 				return page;
97 			}
98 
99 			skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
100 			pfn += skip_pages - 1;
101 			continue;
102 		}
103 
104 		/*
105 		 * We can't use page_count without pin a page
106 		 * because another CPU can free compound page.
107 		 * This check already skips compound tails of THP
108 		 * because their page->_refcount is zero at all time.
109 		 */
110 		if (!page_ref_count(page)) {
111 			if (PageBuddy(page))
112 				pfn += (1 << buddy_order(page)) - 1;
113 			continue;
114 		}
115 
116 		/*
117 		 * The HWPoisoned page may be not in buddy system, and
118 		 * page_count() is not 0.
119 		 */
120 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
121 			continue;
122 
123 		/*
124 		 * We treat all PageOffline() pages as movable when offlining
125 		 * to give drivers a chance to decrement their reference count
126 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
127 		 * can be offlined as there are no direct references anymore.
128 		 * For actually unmovable PageOffline() where the driver does
129 		 * not support this, we will fail later when trying to actually
130 		 * move these pages that still have a reference count > 0.
131 		 * (false negatives in this function only)
132 		 */
133 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
134 			continue;
135 
136 		if (__PageMovable(page) || PageLRU(page))
137 			continue;
138 
139 		/*
140 		 * If there are RECLAIMABLE pages, we need to check
141 		 * it.  But now, memory offline itself doesn't call
142 		 * shrink_node_slabs() and it still to be fixed.
143 		 */
144 		return page;
145 	}
146 	return NULL;
147 }
148 
149 /*
150  * This function set pageblock migratetype to isolate if no unmovable page is
151  * present in [start_pfn, end_pfn). The pageblock must intersect with
152  * [start_pfn, end_pfn).
153  */
set_migratetype_isolate(struct page * page,int migratetype,int isol_flags,unsigned long start_pfn,unsigned long end_pfn)154 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
155 			unsigned long start_pfn, unsigned long end_pfn)
156 {
157 	struct zone *zone = page_zone(page);
158 	struct page *unmovable;
159 	unsigned long flags;
160 	unsigned long check_unmovable_start, check_unmovable_end;
161 
162 	if (PageUnaccepted(page))
163 		accept_page(page);
164 
165 	spin_lock_irqsave(&zone->lock, flags);
166 
167 	/*
168 	 * We assume the caller intended to SET migrate type to isolate.
169 	 * If it is already set, then someone else must have raced and
170 	 * set it before us.
171 	 */
172 	if (is_migrate_isolate_page(page)) {
173 		spin_unlock_irqrestore(&zone->lock, flags);
174 		return -EBUSY;
175 	}
176 
177 	/*
178 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
179 	 * We just check MOVABLE pages.
180 	 *
181 	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
182 	 * to avoid redundant checks.
183 	 */
184 	check_unmovable_start = max(page_to_pfn(page), start_pfn);
185 	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
186 				  end_pfn);
187 
188 	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
189 			migratetype, isol_flags);
190 	if (!unmovable) {
191 		if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) {
192 			spin_unlock_irqrestore(&zone->lock, flags);
193 			return -EBUSY;
194 		}
195 		zone->nr_isolate_pageblock++;
196 		spin_unlock_irqrestore(&zone->lock, flags);
197 		return 0;
198 	}
199 
200 	spin_unlock_irqrestore(&zone->lock, flags);
201 	if (isol_flags & REPORT_FAILURE) {
202 		/*
203 		 * printk() with zone->lock held will likely trigger a
204 		 * lockdep splat, so defer it here.
205 		 */
206 		dump_page(unmovable, "unmovable page");
207 	}
208 
209 	return -EBUSY;
210 }
211 
unset_migratetype_isolate(struct page * page,int migratetype)212 static void unset_migratetype_isolate(struct page *page, int migratetype)
213 {
214 	struct zone *zone;
215 	unsigned long flags;
216 	bool isolated_page = false;
217 	unsigned int order;
218 	struct page *buddy;
219 
220 	zone = page_zone(page);
221 	spin_lock_irqsave(&zone->lock, flags);
222 	if (!is_migrate_isolate_page(page))
223 		goto out;
224 
225 	/*
226 	 * Because freepage with more than pageblock_order on isolated
227 	 * pageblock is restricted to merge due to freepage counting problem,
228 	 * it is possible that there is free buddy page.
229 	 * move_freepages_block() doesn't care of merge so we need other
230 	 * approach in order to merge them. Isolation and free will make
231 	 * these pages to be merged.
232 	 */
233 	if (PageBuddy(page)) {
234 		order = buddy_order(page);
235 		if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
236 			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
237 						    order, NULL);
238 			if (buddy && !is_migrate_isolate_page(buddy)) {
239 				isolated_page = !!__isolate_free_page(page, order);
240 				/*
241 				 * Isolating a free page in an isolated pageblock
242 				 * is expected to always work as watermarks don't
243 				 * apply here.
244 				 */
245 				VM_WARN_ON(!isolated_page);
246 			}
247 		}
248 	}
249 
250 	/*
251 	 * If we isolate freepage with more than pageblock_order, there
252 	 * should be no freepage in the range, so we could avoid costly
253 	 * pageblock scanning for freepage moving.
254 	 *
255 	 * We didn't actually touch any of the isolated pages, so place them
256 	 * to the tail of the freelist. This is an optimization for memory
257 	 * onlining - just onlined memory won't immediately be considered for
258 	 * allocation.
259 	 */
260 	if (!isolated_page) {
261 		/*
262 		 * Isolating this block already succeeded, so this
263 		 * should not fail on zone boundaries.
264 		 */
265 		WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype));
266 	} else {
267 		set_pageblock_migratetype(page, migratetype);
268 		__putback_isolated_page(page, order, migratetype);
269 	}
270 	zone->nr_isolate_pageblock--;
271 out:
272 	spin_unlock_irqrestore(&zone->lock, flags);
273 }
274 
275 static inline struct page *
__first_valid_page(unsigned long pfn,unsigned long nr_pages)276 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
277 {
278 	int i;
279 
280 	for (i = 0; i < nr_pages; i++) {
281 		struct page *page;
282 
283 		page = pfn_to_online_page(pfn + i);
284 		if (!page)
285 			continue;
286 		return page;
287 	}
288 	return NULL;
289 }
290 
291 /**
292  * isolate_single_pageblock() -- tries to isolate a pageblock that might be
293  * within a free or in-use page.
294  * @boundary_pfn:		pageblock-aligned pfn that a page might cross
295  * @flags:			isolation flags
296  * @isolate_before:	isolate the pageblock before the boundary_pfn
297  * @skip_isolation:	the flag to skip the pageblock isolation in second
298  *			isolate_single_pageblock()
299  * @migratetype:	migrate type to set in error recovery.
300  *
301  * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
302  * pageblock. When not all pageblocks within a page are isolated at the same
303  * time, free page accounting can go wrong. For example, in the case of
304  * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
305  * pagelbocks.
306  * [      MAX_PAGE_ORDER         ]
307  * [  pageblock0  |  pageblock1  ]
308  * When either pageblock is isolated, if it is a free page, the page is not
309  * split into separate migratetype lists, which is supposed to; if it is an
310  * in-use page and freed later, __free_one_page() does not split the free page
311  * either. The function handles this by splitting the free page or migrating
312  * the in-use page then splitting the free page.
313  */
isolate_single_pageblock(unsigned long boundary_pfn,int flags,bool isolate_before,bool skip_isolation,int migratetype)314 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
315 		bool isolate_before, bool skip_isolation, int migratetype)
316 {
317 	unsigned long start_pfn;
318 	unsigned long isolate_pageblock;
319 	unsigned long pfn;
320 	struct zone *zone;
321 	int ret;
322 
323 	VM_BUG_ON(!pageblock_aligned(boundary_pfn));
324 
325 	if (isolate_before)
326 		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
327 	else
328 		isolate_pageblock = boundary_pfn;
329 
330 	/*
331 	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
332 	 * only isolating a subset of pageblocks from a bigger than pageblock
333 	 * free or in-use page. Also make sure all to-be-isolated pageblocks
334 	 * are within the same zone.
335 	 */
336 	zone  = page_zone(pfn_to_page(isolate_pageblock));
337 	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
338 				      zone->zone_start_pfn);
339 
340 	if (skip_isolation) {
341 		int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
342 
343 		VM_BUG_ON(!is_migrate_isolate(mt));
344 	} else {
345 		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
346 				flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
347 
348 		if (ret)
349 			return ret;
350 	}
351 
352 	/*
353 	 * Bail out early when the to-be-isolated pageblock does not form
354 	 * a free or in-use page across boundary_pfn:
355 	 *
356 	 * 1. isolate before boundary_pfn: the page after is not online
357 	 * 2. isolate after boundary_pfn: the page before is not online
358 	 *
359 	 * This also ensures correctness. Without it, when isolate after
360 	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
361 	 * __first_valid_page() will return unexpected NULL in the for loop
362 	 * below.
363 	 */
364 	if (isolate_before) {
365 		if (!pfn_to_online_page(boundary_pfn))
366 			return 0;
367 	} else {
368 		if (!pfn_to_online_page(boundary_pfn - 1))
369 			return 0;
370 	}
371 
372 	for (pfn = start_pfn; pfn < boundary_pfn;) {
373 		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
374 
375 		VM_BUG_ON(!page);
376 		pfn = page_to_pfn(page);
377 
378 		if (PageUnaccepted(page)) {
379 			pfn += MAX_ORDER_NR_PAGES;
380 			continue;
381 		}
382 
383 		if (PageBuddy(page)) {
384 			int order = buddy_order(page);
385 
386 			/* move_freepages_block_isolate() handled this */
387 			VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
388 
389 			pfn += 1UL << order;
390 			continue;
391 		}
392 
393 		/*
394 		 * If a compound page is straddling our block, attempt
395 		 * to migrate it out of the way.
396 		 *
397 		 * We don't have to worry about this creating a large
398 		 * free page that straddles into our block: gigantic
399 		 * pages are freed as order-0 chunks, and LRU pages
400 		 * (currently) do not exceed pageblock_order.
401 		 *
402 		 * The block of interest has already been marked
403 		 * MIGRATE_ISOLATE above, so when migration is done it
404 		 * will free its pages onto the correct freelists.
405 		 */
406 		if (PageCompound(page)) {
407 			struct page *head = compound_head(page);
408 			unsigned long head_pfn = page_to_pfn(head);
409 			unsigned long nr_pages = compound_nr(head);
410 
411 			if (head_pfn + nr_pages <= boundary_pfn ||
412 			    PageHuge(page)) {
413 				pfn = head_pfn + nr_pages;
414 				continue;
415 			}
416 
417 			/*
418 			 * These pages are movable too, but they're
419 			 * not expected to exceed pageblock_order.
420 			 *
421 			 * Let us know when they do, so we can add
422 			 * proper free and split handling for them.
423 			 */
424 			VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
425 			VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page);
426 
427 			goto failed;
428 		}
429 
430 		pfn++;
431 	}
432 	return 0;
433 failed:
434 	/* restore the original migratetype */
435 	if (!skip_isolation)
436 		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
437 	return -EBUSY;
438 }
439 
440 /**
441  * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
442  * @start_pfn:		The first PFN of the range to be isolated.
443  * @end_pfn:		The last PFN of the range to be isolated.
444  * @migratetype:	Migrate type to set in error recovery.
445  * @flags:		The following flags are allowed (they can be combined in
446  *			a bit mask)
447  *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
448  *					 e.g., skip over PageHWPoison() pages
449  *					 and PageOffline() pages.
450  *			REPORT_FAILURE - report details about the failure to
451  *			isolate the range
452  *
453  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
454  * the range will never be allocated. Any free pages and pages freed in the
455  * future will not be allocated again. If specified range includes migrate types
456  * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
457  * pages in the range finally, the caller have to free all pages in the range.
458  * test_page_isolated() can be used for test it.
459  *
460  * The function first tries to isolate the pageblocks at the beginning and end
461  * of the range, since there might be pages across the range boundaries.
462  * Afterwards, it isolates the rest of the range.
463  *
464  * There is no high level synchronization mechanism that prevents two threads
465  * from trying to isolate overlapping ranges. If this happens, one thread
466  * will notice pageblocks in the overlapping range already set to isolate.
467  * This happens in set_migratetype_isolate, and set_migratetype_isolate
468  * returns an error. We then clean up by restoring the migration type on
469  * pageblocks we may have modified and return -EBUSY to caller. This
470  * prevents two threads from simultaneously working on overlapping ranges.
471  *
472  * Please note that there is no strong synchronization with the page allocator
473  * either. Pages might be freed while their page blocks are marked ISOLATED.
474  * A call to drain_all_pages() after isolation can flush most of them. However
475  * in some cases pages might still end up on pcp lists and that would allow
476  * for their allocation even when they are in fact isolated already. Depending
477  * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
478  * might be used to flush and disable pcplist before isolation and enable after
479  * unisolation.
480  *
481  * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
482  */
start_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,int migratetype,int flags)483 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
484 			     int migratetype, int flags)
485 {
486 	unsigned long pfn;
487 	struct page *page;
488 	/* isolation is done at page block granularity */
489 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
490 	unsigned long isolate_end = pageblock_align(end_pfn);
491 	int ret;
492 	bool skip_isolation = false;
493 
494 	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
495 	ret = isolate_single_pageblock(isolate_start, flags, false,
496 			skip_isolation, migratetype);
497 	if (ret)
498 		return ret;
499 
500 	if (isolate_start == isolate_end - pageblock_nr_pages)
501 		skip_isolation = true;
502 
503 	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
504 	ret = isolate_single_pageblock(isolate_end, flags, true,
505 			skip_isolation, migratetype);
506 	if (ret) {
507 		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
508 		return ret;
509 	}
510 
511 	/* skip isolated pageblocks at the beginning and end */
512 	for (pfn = isolate_start + pageblock_nr_pages;
513 	     pfn < isolate_end - pageblock_nr_pages;
514 	     pfn += pageblock_nr_pages) {
515 		page = __first_valid_page(pfn, pageblock_nr_pages);
516 		if (page && set_migratetype_isolate(page, migratetype, flags,
517 					start_pfn, end_pfn)) {
518 			undo_isolate_page_range(isolate_start, pfn, migratetype);
519 			unset_migratetype_isolate(
520 				pfn_to_page(isolate_end - pageblock_nr_pages),
521 				migratetype);
522 			return -EBUSY;
523 		}
524 	}
525 	return 0;
526 }
527 
528 /**
529  * undo_isolate_page_range - undo effects of start_isolate_page_range()
530  * @start_pfn:		The first PFN of the isolated range
531  * @end_pfn:		The last PFN of the isolated range
532  * @migratetype:	New migrate type to set on the range
533  *
534  * This finds every MIGRATE_ISOLATE page block in the given range
535  * and switches it to @migratetype.
536  */
undo_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,int migratetype)537 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
538 			    int migratetype)
539 {
540 	unsigned long pfn;
541 	struct page *page;
542 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
543 	unsigned long isolate_end = pageblock_align(end_pfn);
544 
545 	for (pfn = isolate_start;
546 	     pfn < isolate_end;
547 	     pfn += pageblock_nr_pages) {
548 		page = __first_valid_page(pfn, pageblock_nr_pages);
549 		if (!page || !is_migrate_isolate_page(page))
550 			continue;
551 		unset_migratetype_isolate(page, migratetype);
552 	}
553 }
554 /*
555  * Test all pages in the range is free(means isolated) or not.
556  * all pages in [start_pfn...end_pfn) must be in the same zone.
557  * zone->lock must be held before call this.
558  *
559  * Returns the last tested pfn.
560  */
561 static unsigned long
__test_page_isolated_in_pageblock(unsigned long pfn,unsigned long end_pfn,int flags)562 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
563 				  int flags)
564 {
565 	struct page *page;
566 
567 	while (pfn < end_pfn) {
568 		page = pfn_to_page(pfn);
569 		if (PageBuddy(page))
570 			/*
571 			 * If the page is on a free list, it has to be on
572 			 * the correct MIGRATE_ISOLATE freelist. There is no
573 			 * simple way to verify that as VM_BUG_ON(), though.
574 			 */
575 			pfn += 1 << buddy_order(page);
576 		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
577 			/* A HWPoisoned page cannot be also PageBuddy */
578 			pfn++;
579 		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
580 			 !page_count(page))
581 			/*
582 			 * The responsible driver agreed to skip PageOffline()
583 			 * pages when offlining memory by dropping its
584 			 * reference in MEM_GOING_OFFLINE.
585 			 */
586 			pfn++;
587 		else
588 			break;
589 	}
590 
591 	return pfn;
592 }
593 
594 /**
595  * test_pages_isolated - check if pageblocks in range are isolated
596  * @start_pfn:		The first PFN of the isolated range
597  * @end_pfn:		The first PFN *after* the isolated range
598  * @isol_flags:		Testing mode flags
599  *
600  * This tests if all in the specified range are free.
601  *
602  * If %MEMORY_OFFLINE is specified in @flags, it will consider
603  * poisoned and offlined pages free as well.
604  *
605  * Caller must ensure the requested range doesn't span zones.
606  *
607  * Returns 0 if true, -EBUSY if one or more pages are in use.
608  */
test_pages_isolated(unsigned long start_pfn,unsigned long end_pfn,int isol_flags)609 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
610 			int isol_flags)
611 {
612 	unsigned long pfn, flags;
613 	struct page *page;
614 	struct zone *zone;
615 	int ret;
616 
617 	/*
618 	 * Due to the deferred freeing of hugetlb folios, the hugepage folios may
619 	 * not immediately release to the buddy system. This can cause PageBuddy()
620 	 * to fail in __test_page_isolated_in_pageblock(). To ensure that the
621 	 * hugetlb folios are properly released back to the buddy system, we
622 	 * invoke the wait_for_freed_hugetlb_folios() function to wait for the
623 	 * release to complete.
624 	 */
625 	wait_for_freed_hugetlb_folios();
626 
627 	/*
628 	 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
629 	 * pages are not aligned to pageblock_nr_pages.
630 	 * Then we just check migratetype first.
631 	 */
632 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
633 		page = __first_valid_page(pfn, pageblock_nr_pages);
634 		if (page && !is_migrate_isolate_page(page))
635 			break;
636 	}
637 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
638 	if ((pfn < end_pfn) || !page) {
639 		ret = -EBUSY;
640 		goto out;
641 	}
642 
643 	/* Check all pages are free or marked as ISOLATED */
644 	zone = page_zone(page);
645 	spin_lock_irqsave(&zone->lock, flags);
646 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
647 	spin_unlock_irqrestore(&zone->lock, flags);
648 
649 	ret = pfn < end_pfn ? -EBUSY : 0;
650 
651 out:
652 	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
653 
654 	return ret;
655 }
656