1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
68
69 /*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79 /*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2))
93
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100 * On SMP, spin_trylock is sufficient protection.
101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102 */
103 #define pcp_trylock_prepare(flags) do { } while (0)
104 #define pcp_trylock_finish(flag) do { } while (0)
105 #else
106
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags) local_irq_save(flags)
109 #define pcp_trylock_finish(flags) local_irq_restore(flags)
110 #endif
111
112 /*
113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114 * a migration causing the wrong PCP to be locked and remote memory being
115 * potentially allocated, pin the task to the CPU for the lookup+lock.
116 * preempt_disable is used on !RT because it is faster than migrate_disable.
117 * migrate_disable is used on RT because otherwise RT spinlock usage is
118 * interfered with and a high priority task cannot preempt the allocator.
119 */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin() preempt_disable()
122 #define pcpu_task_unpin() preempt_enable()
123 #else
124 #define pcpu_task_pin() migrate_disable()
125 #define pcpu_task_unpin() migrate_enable()
126 #endif
127
128 /*
129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130 * Return value should be used with equivalent unlock helper.
131 */
132 #define pcpu_spin_lock(type, member, ptr) \
133 ({ \
134 type *_ret; \
135 pcpu_task_pin(); \
136 _ret = this_cpu_ptr(ptr); \
137 spin_lock(&_ret->member); \
138 _ret; \
139 })
140
141 #define pcpu_spin_trylock(type, member, ptr) \
142 ({ \
143 type *_ret; \
144 pcpu_task_pin(); \
145 _ret = this_cpu_ptr(ptr); \
146 if (!spin_trylock(&_ret->member)) { \
147 pcpu_task_unpin(); \
148 _ret = NULL; \
149 } \
150 _ret; \
151 })
152
153 #define pcpu_spin_unlock(member, ptr) \
154 ({ \
155 spin_unlock(&ptr->member); \
156 pcpu_task_unpin(); \
157 })
158
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr) \
161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162
163 #define pcp_spin_trylock(ptr) \
164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165
166 #define pcp_spin_unlock(ptr) \
167 pcpu_spin_unlock(lock, ptr)
168
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181 * defined in <linux/topology.h>.
182 */
183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193
194 /*
195 * Array of node states.
196 */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 [N_POSSIBLE] = NODE_MASK_ALL,
199 [N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 [N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 [N_MEMORY] = { { [0] = 1UL } },
206 [N_CPU] = { { [0] = 1UL } },
207 #endif /* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 fpi_t fpi_flags);
219
220 /*
221 * results with 256, 32 in the lowmem_reserve sysctl:
222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223 * 1G machine -> (16M dma, 784M normal, 224M high)
224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227 *
228 * TBD: should special case ZONE_DMA32 machines here - in those we normally
229 * don't need any ZONE_NORMAL reservation
230 */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 [ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 [ZONE_DMA32] = 256,
237 #endif
238 [ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 [ZONE_HIGHMEM] = 0,
241 #endif
242 [ZONE_MOVABLE] = 0,
243 };
244
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 "DMA32",
251 #endif
252 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 "HighMem",
255 #endif
256 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 "Device",
259 #endif
260 };
261
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 "Unmovable",
264 "Movable",
265 "Reclaimable",
266 "HighAtomic",
267 #ifdef CONFIG_CMA
268 "CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 "Isolate",
272 #endif
273 };
274
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order,
294 int alloc_flags);
295 static bool __free_unaccepted(struct page *page);
296
297 int page_group_by_mobility_disabled __read_mostly;
298
299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
300 /*
301 * During boot we initialize deferred pages on-demand, as needed, but once
302 * page_alloc_init_late() has finished, the deferred pages are all initialized,
303 * and we can permanently disable that path.
304 */
305 DEFINE_STATIC_KEY_TRUE(deferred_pages);
306
deferred_pages_enabled(void)307 static inline bool deferred_pages_enabled(void)
308 {
309 return static_branch_unlikely(&deferred_pages);
310 }
311
312 /*
313 * deferred_grow_zone() is __init, but it is called from
314 * get_page_from_freelist() during early boot until deferred_pages permanently
315 * disables this call. This is why we have refdata wrapper to avoid warning,
316 * and to ensure that the function body gets unloaded.
317 */
318 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)319 _deferred_grow_zone(struct zone *zone, unsigned int order)
320 {
321 return deferred_grow_zone(zone, order);
322 }
323 #else
deferred_pages_enabled(void)324 static inline bool deferred_pages_enabled(void)
325 {
326 return false;
327 }
328
_deferred_grow_zone(struct zone * zone,unsigned int order)329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
330 {
331 return false;
332 }
333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
334
335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)336 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
337 unsigned long pfn)
338 {
339 #ifdef CONFIG_SPARSEMEM
340 return section_to_usemap(__pfn_to_section(pfn));
341 #else
342 return page_zone(page)->pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344 }
345
pfn_to_bitidx(const struct page * page,unsigned long pfn)346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 pfn &= (PAGES_PER_SECTION-1);
350 #else
351 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
352 #endif /* CONFIG_SPARSEMEM */
353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
354 }
355
356 /**
357 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
358 * @page: The page within the block of interest
359 * @pfn: The target page frame number
360 * @mask: mask of bits that the caller is interested in
361 *
362 * Return: pageblock_bits flags
363 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)364 unsigned long get_pfnblock_flags_mask(const struct page *page,
365 unsigned long pfn, unsigned long mask)
366 {
367 unsigned long *bitmap;
368 unsigned long bitidx, word_bitidx;
369 unsigned long word;
370
371 bitmap = get_pageblock_bitmap(page, pfn);
372 bitidx = pfn_to_bitidx(page, pfn);
373 word_bitidx = bitidx / BITS_PER_LONG;
374 bitidx &= (BITS_PER_LONG-1);
375 /*
376 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
377 * a consistent read of the memory array, so that results, even though
378 * racy, are not corrupted.
379 */
380 word = READ_ONCE(bitmap[word_bitidx]);
381 return (word >> bitidx) & mask;
382 }
383
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)384 static __always_inline int get_pfnblock_migratetype(const struct page *page,
385 unsigned long pfn)
386 {
387 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
388 }
389
390 /**
391 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
392 * @page: The page within the block of interest
393 * @flags: The flags to set
394 * @pfn: The target page frame number
395 * @mask: mask of bits that the caller is interested in
396 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)397 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
398 unsigned long pfn,
399 unsigned long mask)
400 {
401 unsigned long *bitmap;
402 unsigned long bitidx, word_bitidx;
403 unsigned long word;
404
405 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
406 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
407
408 bitmap = get_pageblock_bitmap(page, pfn);
409 bitidx = pfn_to_bitidx(page, pfn);
410 word_bitidx = bitidx / BITS_PER_LONG;
411 bitidx &= (BITS_PER_LONG-1);
412
413 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
414
415 mask <<= bitidx;
416 flags <<= bitidx;
417
418 word = READ_ONCE(bitmap[word_bitidx]);
419 do {
420 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
421 }
422
set_pageblock_migratetype(struct page * page,int migratetype)423 void set_pageblock_migratetype(struct page *page, int migratetype)
424 {
425 if (unlikely(page_group_by_mobility_disabled &&
426 migratetype < MIGRATE_PCPTYPES))
427 migratetype = MIGRATE_UNMOVABLE;
428
429 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
430 page_to_pfn(page), MIGRATETYPE_MASK);
431 }
432
433 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)434 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
435 {
436 int ret;
437 unsigned seq;
438 unsigned long pfn = page_to_pfn(page);
439 unsigned long sp, start_pfn;
440
441 do {
442 seq = zone_span_seqbegin(zone);
443 start_pfn = zone->zone_start_pfn;
444 sp = zone->spanned_pages;
445 ret = !zone_spans_pfn(zone, pfn);
446 } while (zone_span_seqretry(zone, seq));
447
448 if (ret)
449 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
450 pfn, zone_to_nid(zone), zone->name,
451 start_pfn, start_pfn + sp);
452
453 return ret;
454 }
455
456 /*
457 * Temporary debugging check for pages not lying within a given zone.
458 */
bad_range(struct zone * zone,struct page * page)459 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
460 {
461 if (page_outside_zone_boundaries(zone, page))
462 return true;
463 if (zone != page_zone(page))
464 return true;
465
466 return false;
467 }
468 #else
bad_range(struct zone * zone,struct page * page)469 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
470 {
471 return false;
472 }
473 #endif
474
bad_page(struct page * page,const char * reason)475 static void bad_page(struct page *page, const char *reason)
476 {
477 static unsigned long resume;
478 static unsigned long nr_shown;
479 static unsigned long nr_unshown;
480
481 /*
482 * Allow a burst of 60 reports, then keep quiet for that minute;
483 * or allow a steady drip of one report per second.
484 */
485 if (nr_shown == 60) {
486 if (time_before(jiffies, resume)) {
487 nr_unshown++;
488 goto out;
489 }
490 if (nr_unshown) {
491 pr_alert(
492 "BUG: Bad page state: %lu messages suppressed\n",
493 nr_unshown);
494 nr_unshown = 0;
495 }
496 nr_shown = 0;
497 }
498 if (nr_shown++ == 0)
499 resume = jiffies + 60 * HZ;
500
501 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
502 current->comm, page_to_pfn(page));
503 dump_page(page, reason);
504
505 print_modules();
506 dump_stack();
507 out:
508 /* Leave bad fields for debug, except PageBuddy could make trouble */
509 if (PageBuddy(page))
510 __ClearPageBuddy(page);
511 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
512 }
513
order_to_pindex(int migratetype,int order)514 static inline unsigned int order_to_pindex(int migratetype, int order)
515 {
516
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 bool movable;
519 if (order > PAGE_ALLOC_COSTLY_ORDER) {
520 VM_BUG_ON(order != HPAGE_PMD_ORDER);
521
522 movable = migratetype == MIGRATE_MOVABLE;
523
524 return NR_LOWORDER_PCP_LISTS + movable;
525 }
526 #else
527 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528 #endif
529
530 return (MIGRATE_PCPTYPES * order) + migratetype;
531 }
532
pindex_to_order(unsigned int pindex)533 static inline int pindex_to_order(unsigned int pindex)
534 {
535 int order = pindex / MIGRATE_PCPTYPES;
536
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 if (pindex >= NR_LOWORDER_PCP_LISTS)
539 order = HPAGE_PMD_ORDER;
540 #else
541 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
542 #endif
543
544 return order;
545 }
546
pcp_allowed_order(unsigned int order)547 static inline bool pcp_allowed_order(unsigned int order)
548 {
549 if (order <= PAGE_ALLOC_COSTLY_ORDER)
550 return true;
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 if (order == HPAGE_PMD_ORDER)
553 return true;
554 #endif
555 return false;
556 }
557
558 /*
559 * Higher-order pages are called "compound pages". They are structured thusly:
560 *
561 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562 *
563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565 *
566 * The first tail page's ->compound_order holds the order of allocation.
567 * This usage means that zero-order pages may not be compound.
568 */
569
prep_compound_page(struct page * page,unsigned int order)570 void prep_compound_page(struct page *page, unsigned int order)
571 {
572 int i;
573 int nr_pages = 1 << order;
574
575 __SetPageHead(page);
576 for (i = 1; i < nr_pages; i++)
577 prep_compound_tail(page, i);
578
579 prep_compound_head(page, order);
580 }
581
set_buddy_order(struct page * page,unsigned int order)582 static inline void set_buddy_order(struct page *page, unsigned int order)
583 {
584 set_page_private(page, order);
585 __SetPageBuddy(page);
586 }
587
588 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)589 static inline struct capture_control *task_capc(struct zone *zone)
590 {
591 struct capture_control *capc = current->capture_control;
592
593 return unlikely(capc) &&
594 !(current->flags & PF_KTHREAD) &&
595 !capc->page &&
596 capc->cc->zone == zone ? capc : NULL;
597 }
598
599 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)600 compaction_capture(struct capture_control *capc, struct page *page,
601 int order, int migratetype)
602 {
603 if (!capc || order != capc->cc->order)
604 return false;
605
606 /* Do not accidentally pollute CMA or isolated regions*/
607 if (is_migrate_cma(migratetype) ||
608 is_migrate_isolate(migratetype))
609 return false;
610
611 /*
612 * Do not let lower order allocations pollute a movable pageblock
613 * unless compaction is also requesting movable pages.
614 * This might let an unmovable request use a reclaimable pageblock
615 * and vice-versa but no more than normal fallback logic which can
616 * have trouble finding a high-order free page.
617 */
618 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
619 capc->cc->migratetype != MIGRATE_MOVABLE)
620 return false;
621
622 if (migratetype != capc->cc->migratetype)
623 trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
624 capc->cc->migratetype, migratetype);
625
626 capc->page = page;
627 return true;
628 }
629
630 #else
task_capc(struct zone * zone)631 static inline struct capture_control *task_capc(struct zone *zone)
632 {
633 return NULL;
634 }
635
636 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)637 compaction_capture(struct capture_control *capc, struct page *page,
638 int order, int migratetype)
639 {
640 return false;
641 }
642 #endif /* CONFIG_COMPACTION */
643
account_freepages(struct zone * zone,int nr_pages,int migratetype)644 static inline void account_freepages(struct zone *zone, int nr_pages,
645 int migratetype)
646 {
647 lockdep_assert_held(&zone->lock);
648
649 if (is_migrate_isolate(migratetype))
650 return;
651
652 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
653
654 if (is_migrate_cma(migratetype))
655 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
656 else if (is_migrate_highatomic(migratetype))
657 WRITE_ONCE(zone->nr_free_highatomic,
658 zone->nr_free_highatomic + nr_pages);
659 }
660
661 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)662 static inline void __add_to_free_list(struct page *page, struct zone *zone,
663 unsigned int order, int migratetype,
664 bool tail)
665 {
666 struct free_area *area = &zone->free_area[order];
667 int nr_pages = 1 << order;
668
669 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
670 "page type is %lu, passed migratetype is %d (nr=%d)\n",
671 get_pageblock_migratetype(page), migratetype, nr_pages);
672
673 if (tail)
674 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
675 else
676 list_add(&page->buddy_list, &area->free_list[migratetype]);
677 area->nr_free++;
678
679 if (order >= pageblock_order && !is_migrate_isolate(migratetype))
680 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
681 }
682
683 /*
684 * Used for pages which are on another list. Move the pages to the tail
685 * of the list - so the moved pages won't immediately be considered for
686 * allocation again (e.g., optimization for memory onlining).
687 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)688 static inline void move_to_free_list(struct page *page, struct zone *zone,
689 unsigned int order, int old_mt, int new_mt)
690 {
691 struct free_area *area = &zone->free_area[order];
692 int nr_pages = 1 << order;
693
694 /* Free page moving can fail, so it happens before the type update */
695 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
696 "page type is %lu, passed migratetype is %d (nr=%d)\n",
697 get_pageblock_migratetype(page), old_mt, nr_pages);
698
699 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
700
701 account_freepages(zone, -nr_pages, old_mt);
702 account_freepages(zone, nr_pages, new_mt);
703
704 if (order >= pageblock_order &&
705 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
706 if (!is_migrate_isolate(old_mt))
707 nr_pages = -nr_pages;
708 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
709 }
710 }
711
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)712 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
713 unsigned int order, int migratetype)
714 {
715 int nr_pages = 1 << order;
716
717 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
718 "page type is %lu, passed migratetype is %d (nr=%d)\n",
719 get_pageblock_migratetype(page), migratetype, nr_pages);
720
721 /* clear reported state and update reported page count */
722 if (page_reported(page))
723 __ClearPageReported(page);
724
725 list_del(&page->buddy_list);
726 __ClearPageBuddy(page);
727 set_page_private(page, 0);
728 zone->free_area[order].nr_free--;
729
730 if (order >= pageblock_order && !is_migrate_isolate(migratetype))
731 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
732 }
733
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)734 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
735 unsigned int order, int migratetype)
736 {
737 __del_page_from_free_list(page, zone, order, migratetype);
738 account_freepages(zone, -(1 << order), migratetype);
739 }
740
get_page_from_free_area(struct free_area * area,int migratetype)741 static inline struct page *get_page_from_free_area(struct free_area *area,
742 int migratetype)
743 {
744 return list_first_entry_or_null(&area->free_list[migratetype],
745 struct page, buddy_list);
746 }
747
748 /*
749 * If this is less than the 2nd largest possible page, check if the buddy
750 * of the next-higher order is free. If it is, it's possible
751 * that pages are being freed that will coalesce soon. In case,
752 * that is happening, add the free page to the tail of the list
753 * so it's less likely to be used soon and more likely to be merged
754 * as a 2-level higher order page
755 */
756 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)757 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
758 struct page *page, unsigned int order)
759 {
760 unsigned long higher_page_pfn;
761 struct page *higher_page;
762
763 if (order >= MAX_PAGE_ORDER - 1)
764 return false;
765
766 higher_page_pfn = buddy_pfn & pfn;
767 higher_page = page + (higher_page_pfn - pfn);
768
769 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
770 NULL) != NULL;
771 }
772
773 /*
774 * Freeing function for a buddy system allocator.
775 *
776 * The concept of a buddy system is to maintain direct-mapped table
777 * (containing bit values) for memory blocks of various "orders".
778 * The bottom level table contains the map for the smallest allocatable
779 * units of memory (here, pages), and each level above it describes
780 * pairs of units from the levels below, hence, "buddies".
781 * At a high level, all that happens here is marking the table entry
782 * at the bottom level available, and propagating the changes upward
783 * as necessary, plus some accounting needed to play nicely with other
784 * parts of the VM system.
785 * At each level, we keep a list of pages, which are heads of continuous
786 * free pages of length of (1 << order) and marked with PageBuddy.
787 * Page's order is recorded in page_private(page) field.
788 * So when we are allocating or freeing one, we can derive the state of the
789 * other. That is, if we allocate a small block, and both were
790 * free, the remainder of the region must be split into blocks.
791 * If a block is freed, and its buddy is also free, then this
792 * triggers coalescing into a block of larger size.
793 *
794 * -- nyc
795 */
796
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)797 static inline void __free_one_page(struct page *page,
798 unsigned long pfn,
799 struct zone *zone, unsigned int order,
800 int migratetype, fpi_t fpi_flags)
801 {
802 struct capture_control *capc = task_capc(zone);
803 unsigned long buddy_pfn = 0;
804 unsigned long combined_pfn;
805 struct page *buddy;
806 bool to_tail;
807
808 VM_BUG_ON(!zone_is_initialized(zone));
809 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
810
811 VM_BUG_ON(migratetype == -1);
812 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
813 VM_BUG_ON_PAGE(bad_range(zone, page), page);
814
815 account_freepages(zone, 1 << order, migratetype);
816
817 while (order < MAX_PAGE_ORDER) {
818 int buddy_mt = migratetype;
819
820 if (compaction_capture(capc, page, order, migratetype)) {
821 account_freepages(zone, -(1 << order), migratetype);
822 return;
823 }
824
825 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
826 if (!buddy)
827 goto done_merging;
828
829 if (unlikely(order >= pageblock_order)) {
830 /*
831 * We want to prevent merge between freepages on pageblock
832 * without fallbacks and normal pageblock. Without this,
833 * pageblock isolation could cause incorrect freepage or CMA
834 * accounting or HIGHATOMIC accounting.
835 */
836 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
837
838 if (migratetype != buddy_mt &&
839 (!migratetype_is_mergeable(migratetype) ||
840 !migratetype_is_mergeable(buddy_mt)))
841 goto done_merging;
842 }
843
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy))
849 clear_page_guard(zone, buddy, order);
850 else
851 __del_page_from_free_list(buddy, zone, order, buddy_mt);
852
853 if (unlikely(buddy_mt != migratetype)) {
854 /*
855 * Match buddy type. This ensures that an
856 * expand() down the line puts the sub-blocks
857 * on the right freelists.
858 */
859 set_pageblock_migratetype(buddy, migratetype);
860 }
861
862 combined_pfn = buddy_pfn & pfn;
863 page = page + (combined_pfn - pfn);
864 pfn = combined_pfn;
865 order++;
866 }
867
868 done_merging:
869 set_buddy_order(page, order);
870
871 if (fpi_flags & FPI_TO_TAIL)
872 to_tail = true;
873 else if (is_shuffle_order(order))
874 to_tail = shuffle_pick_tail();
875 else
876 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
877
878 __add_to_free_list(page, zone, order, migratetype, to_tail);
879
880 /* Notify page reporting subsystem of freed page */
881 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
882 page_reporting_notify_free(order);
883 }
884
885 /*
886 * A bad page could be due to a number of fields. Instead of multiple branches,
887 * try and check multiple fields with one check. The caller must do a detailed
888 * check if necessary.
889 */
page_expected_state(struct page * page,unsigned long check_flags)890 static inline bool page_expected_state(struct page *page,
891 unsigned long check_flags)
892 {
893 if (unlikely(atomic_read(&page->_mapcount) != -1))
894 return false;
895
896 if (unlikely((unsigned long)page->mapping |
897 page_ref_count(page) |
898 #ifdef CONFIG_MEMCG
899 page->memcg_data |
900 #endif
901 #ifdef CONFIG_PAGE_POOL
902 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
903 #endif
904 (page->flags & check_flags)))
905 return false;
906
907 return true;
908 }
909
page_bad_reason(struct page * page,unsigned long flags)910 static const char *page_bad_reason(struct page *page, unsigned long flags)
911 {
912 const char *bad_reason = NULL;
913
914 if (unlikely(atomic_read(&page->_mapcount) != -1))
915 bad_reason = "nonzero mapcount";
916 if (unlikely(page->mapping != NULL))
917 bad_reason = "non-NULL mapping";
918 if (unlikely(page_ref_count(page) != 0))
919 bad_reason = "nonzero _refcount";
920 if (unlikely(page->flags & flags)) {
921 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
922 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
923 else
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 }
926 #ifdef CONFIG_MEMCG
927 if (unlikely(page->memcg_data))
928 bad_reason = "page still charged to cgroup";
929 #endif
930 #ifdef CONFIG_PAGE_POOL
931 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
932 bad_reason = "page_pool leak";
933 #endif
934 return bad_reason;
935 }
936
free_page_is_bad_report(struct page * page)937 static void free_page_is_bad_report(struct page *page)
938 {
939 bad_page(page,
940 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
941 }
942
free_page_is_bad(struct page * page)943 static inline bool free_page_is_bad(struct page *page)
944 {
945 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
946 return false;
947
948 /* Something has gone sideways, find it */
949 free_page_is_bad_report(page);
950 return true;
951 }
952
is_check_pages_enabled(void)953 static inline bool is_check_pages_enabled(void)
954 {
955 return static_branch_unlikely(&check_pages_enabled);
956 }
957
free_tail_page_prepare(struct page * head_page,struct page * page)958 static int free_tail_page_prepare(struct page *head_page, struct page *page)
959 {
960 struct folio *folio = (struct folio *)head_page;
961 int ret = 1;
962
963 /*
964 * We rely page->lru.next never has bit 0 set, unless the page
965 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
966 */
967 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
968
969 if (!is_check_pages_enabled()) {
970 ret = 0;
971 goto out;
972 }
973 switch (page - head_page) {
974 case 1:
975 /* the first tail page: these may be in place of ->mapping */
976 if (unlikely(folio_large_mapcount(folio))) {
977 bad_page(page, "nonzero large_mapcount");
978 goto out;
979 }
980 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
981 unlikely(atomic_read(&folio->_nr_pages_mapped))) {
982 bad_page(page, "nonzero nr_pages_mapped");
983 goto out;
984 }
985 if (IS_ENABLED(CONFIG_MM_ID)) {
986 if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
987 bad_page(page, "nonzero mm mapcount 0");
988 goto out;
989 }
990 if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
991 bad_page(page, "nonzero mm mapcount 1");
992 goto out;
993 }
994 }
995 if (IS_ENABLED(CONFIG_64BIT)) {
996 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
997 bad_page(page, "nonzero entire_mapcount");
998 goto out;
999 }
1000 if (unlikely(atomic_read(&folio->_pincount))) {
1001 bad_page(page, "nonzero pincount");
1002 goto out;
1003 }
1004 }
1005 break;
1006 case 2:
1007 /* the second tail page: deferred_list overlaps ->mapping */
1008 if (unlikely(!list_empty(&folio->_deferred_list))) {
1009 bad_page(page, "on deferred list");
1010 goto out;
1011 }
1012 if (!IS_ENABLED(CONFIG_64BIT)) {
1013 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1014 bad_page(page, "nonzero entire_mapcount");
1015 goto out;
1016 }
1017 if (unlikely(atomic_read(&folio->_pincount))) {
1018 bad_page(page, "nonzero pincount");
1019 goto out;
1020 }
1021 }
1022 break;
1023 case 3:
1024 /* the third tail page: hugetlb specifics overlap ->mappings */
1025 if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1026 break;
1027 fallthrough;
1028 default:
1029 if (page->mapping != TAIL_MAPPING) {
1030 bad_page(page, "corrupted mapping in tail page");
1031 goto out;
1032 }
1033 break;
1034 }
1035 if (unlikely(!PageTail(page))) {
1036 bad_page(page, "PageTail not set");
1037 goto out;
1038 }
1039 if (unlikely(compound_head(page) != head_page)) {
1040 bad_page(page, "compound_head not consistent");
1041 goto out;
1042 }
1043 ret = 0;
1044 out:
1045 page->mapping = NULL;
1046 clear_compound_head(page);
1047 return ret;
1048 }
1049
1050 /*
1051 * Skip KASAN memory poisoning when either:
1052 *
1053 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1054 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1055 * using page tags instead (see below).
1056 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1057 * that error detection is disabled for accesses via the page address.
1058 *
1059 * Pages will have match-all tags in the following circumstances:
1060 *
1061 * 1. Pages are being initialized for the first time, including during deferred
1062 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1063 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1064 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1065 * 3. The allocation was excluded from being checked due to sampling,
1066 * see the call to kasan_unpoison_pages.
1067 *
1068 * Poisoning pages during deferred memory init will greatly lengthen the
1069 * process and cause problem in large memory systems as the deferred pages
1070 * initialization is done with interrupt disabled.
1071 *
1072 * Assuming that there will be no reference to those newly initialized
1073 * pages before they are ever allocated, this should have no effect on
1074 * KASAN memory tracking as the poison will be properly inserted at page
1075 * allocation time. The only corner case is when pages are allocated by
1076 * on-demand allocation and then freed again before the deferred pages
1077 * initialization is done, but this is not likely to happen.
1078 */
should_skip_kasan_poison(struct page * page)1079 static inline bool should_skip_kasan_poison(struct page *page)
1080 {
1081 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1082 return deferred_pages_enabled();
1083
1084 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1085 }
1086
kernel_init_pages(struct page * page,int numpages)1087 static void kernel_init_pages(struct page *page, int numpages)
1088 {
1089 int i;
1090
1091 /* s390's use of memset() could override KASAN redzones. */
1092 kasan_disable_current();
1093 for (i = 0; i < numpages; i++)
1094 clear_highpage_kasan_tagged(page + i);
1095 kasan_enable_current();
1096 }
1097
1098 #ifdef CONFIG_MEM_ALLOC_PROFILING
1099
1100 /* Should be called only if mem_alloc_profiling_enabled() */
__clear_page_tag_ref(struct page * page)1101 void __clear_page_tag_ref(struct page *page)
1102 {
1103 union pgtag_ref_handle handle;
1104 union codetag_ref ref;
1105
1106 if (get_page_tag_ref(page, &ref, &handle)) {
1107 set_codetag_empty(&ref);
1108 update_page_tag_ref(handle, &ref);
1109 put_page_tag_ref(handle);
1110 }
1111 }
1112
1113 /* Should be called only if mem_alloc_profiling_enabled() */
1114 static noinline
__pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1115 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1116 unsigned int nr)
1117 {
1118 union pgtag_ref_handle handle;
1119 union codetag_ref ref;
1120
1121 if (get_page_tag_ref(page, &ref, &handle)) {
1122 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1123 update_page_tag_ref(handle, &ref);
1124 put_page_tag_ref(handle);
1125 }
1126 }
1127
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1128 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1129 unsigned int nr)
1130 {
1131 if (mem_alloc_profiling_enabled())
1132 __pgalloc_tag_add(page, task, nr);
1133 }
1134
1135 /* Should be called only if mem_alloc_profiling_enabled() */
1136 static noinline
__pgalloc_tag_sub(struct page * page,unsigned int nr)1137 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1138 {
1139 union pgtag_ref_handle handle;
1140 union codetag_ref ref;
1141
1142 if (get_page_tag_ref(page, &ref, &handle)) {
1143 alloc_tag_sub(&ref, PAGE_SIZE * nr);
1144 update_page_tag_ref(handle, &ref);
1145 put_page_tag_ref(handle);
1146 }
1147 }
1148
pgalloc_tag_sub(struct page * page,unsigned int nr)1149 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1150 {
1151 if (mem_alloc_profiling_enabled())
1152 __pgalloc_tag_sub(page, nr);
1153 }
1154
1155 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
pgalloc_tag_sub_pages(struct alloc_tag * tag,unsigned int nr)1156 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1157 {
1158 if (tag)
1159 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1160 }
1161
1162 #else /* CONFIG_MEM_ALLOC_PROFILING */
1163
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1164 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1165 unsigned int nr) {}
pgalloc_tag_sub(struct page * page,unsigned int nr)1166 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
pgalloc_tag_sub_pages(struct alloc_tag * tag,unsigned int nr)1167 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1168
1169 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1170
free_pages_prepare(struct page * page,unsigned int order)1171 __always_inline bool free_pages_prepare(struct page *page,
1172 unsigned int order)
1173 {
1174 int bad = 0;
1175 bool skip_kasan_poison = should_skip_kasan_poison(page);
1176 bool init = want_init_on_free();
1177 bool compound = PageCompound(page);
1178 struct folio *folio = page_folio(page);
1179
1180 VM_BUG_ON_PAGE(PageTail(page), page);
1181
1182 trace_mm_page_free(page, order);
1183 kmsan_free_page(page, order);
1184
1185 if (memcg_kmem_online() && PageMemcgKmem(page))
1186 __memcg_kmem_uncharge_page(page, order);
1187
1188 /*
1189 * In rare cases, when truncation or holepunching raced with
1190 * munlock after VM_LOCKED was cleared, Mlocked may still be
1191 * found set here. This does not indicate a problem, unless
1192 * "unevictable_pgs_cleared" appears worryingly large.
1193 */
1194 if (unlikely(folio_test_mlocked(folio))) {
1195 long nr_pages = folio_nr_pages(folio);
1196
1197 __folio_clear_mlocked(folio);
1198 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1199 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1200 }
1201
1202 if (unlikely(PageHWPoison(page)) && !order) {
1203 /* Do not let hwpoison pages hit pcplists/buddy */
1204 reset_page_owner(page, order);
1205 page_table_check_free(page, order);
1206 pgalloc_tag_sub(page, 1 << order);
1207
1208 /*
1209 * The page is isolated and accounted for.
1210 * Mark the codetag as empty to avoid accounting error
1211 * when the page is freed by unpoison_memory().
1212 */
1213 clear_page_tag_ref(page);
1214 return false;
1215 }
1216
1217 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1218
1219 /*
1220 * Check tail pages before head page information is cleared to
1221 * avoid checking PageCompound for order-0 pages.
1222 */
1223 if (unlikely(order)) {
1224 int i;
1225
1226 if (compound) {
1227 page[1].flags &= ~PAGE_FLAGS_SECOND;
1228 #ifdef NR_PAGES_IN_LARGE_FOLIO
1229 folio->_nr_pages = 0;
1230 #endif
1231 }
1232 for (i = 1; i < (1 << order); i++) {
1233 if (compound)
1234 bad += free_tail_page_prepare(page, page + i);
1235 if (is_check_pages_enabled()) {
1236 if (free_page_is_bad(page + i)) {
1237 bad++;
1238 continue;
1239 }
1240 }
1241 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1242 }
1243 }
1244 if (PageMappingFlags(page)) {
1245 if (PageAnon(page))
1246 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1247 page->mapping = NULL;
1248 }
1249 if (is_check_pages_enabled()) {
1250 if (free_page_is_bad(page))
1251 bad++;
1252 if (bad)
1253 return false;
1254 }
1255
1256 page_cpupid_reset_last(page);
1257 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 reset_page_owner(page, order);
1259 page_table_check_free(page, order);
1260 pgalloc_tag_sub(page, 1 << order);
1261
1262 if (!PageHighMem(page)) {
1263 debug_check_no_locks_freed(page_address(page),
1264 PAGE_SIZE << order);
1265 debug_check_no_obj_freed(page_address(page),
1266 PAGE_SIZE << order);
1267 }
1268
1269 kernel_poison_pages(page, 1 << order);
1270
1271 /*
1272 * As memory initialization might be integrated into KASAN,
1273 * KASAN poisoning and memory initialization code must be
1274 * kept together to avoid discrepancies in behavior.
1275 *
1276 * With hardware tag-based KASAN, memory tags must be set before the
1277 * page becomes unavailable via debug_pagealloc or arch_free_page.
1278 */
1279 if (!skip_kasan_poison) {
1280 kasan_poison_pages(page, order, init);
1281
1282 /* Memory is already initialized if KASAN did it internally. */
1283 if (kasan_has_integrated_init())
1284 init = false;
1285 }
1286 if (init)
1287 kernel_init_pages(page, 1 << order);
1288
1289 /*
1290 * arch_free_page() can make the page's contents inaccessible. s390
1291 * does this. So nothing which can access the page's contents should
1292 * happen after this.
1293 */
1294 arch_free_page(page, order);
1295
1296 debug_pagealloc_unmap_pages(page, 1 << order);
1297
1298 return true;
1299 }
1300
1301 /*
1302 * Frees a number of pages from the PCP lists
1303 * Assumes all pages on list are in same zone.
1304 * count is the number of pages to free.
1305 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1306 static void free_pcppages_bulk(struct zone *zone, int count,
1307 struct per_cpu_pages *pcp,
1308 int pindex)
1309 {
1310 unsigned long flags;
1311 unsigned int order;
1312 struct page *page;
1313
1314 /*
1315 * Ensure proper count is passed which otherwise would stuck in the
1316 * below while (list_empty(list)) loop.
1317 */
1318 count = min(pcp->count, count);
1319
1320 /* Ensure requested pindex is drained first. */
1321 pindex = pindex - 1;
1322
1323 spin_lock_irqsave(&zone->lock, flags);
1324
1325 while (count > 0) {
1326 struct list_head *list;
1327 int nr_pages;
1328
1329 /* Remove pages from lists in a round-robin fashion. */
1330 do {
1331 if (++pindex > NR_PCP_LISTS - 1)
1332 pindex = 0;
1333 list = &pcp->lists[pindex];
1334 } while (list_empty(list));
1335
1336 order = pindex_to_order(pindex);
1337 nr_pages = 1 << order;
1338 do {
1339 unsigned long pfn;
1340 int mt;
1341
1342 page = list_last_entry(list, struct page, pcp_list);
1343 pfn = page_to_pfn(page);
1344 mt = get_pfnblock_migratetype(page, pfn);
1345
1346 /* must delete to avoid corrupting pcp list */
1347 list_del(&page->pcp_list);
1348 count -= nr_pages;
1349 pcp->count -= nr_pages;
1350
1351 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1352 trace_mm_page_pcpu_drain(page, order, mt);
1353 } while (count > 0 && !list_empty(list));
1354 }
1355
1356 spin_unlock_irqrestore(&zone->lock, flags);
1357 }
1358
1359 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1360 static void split_large_buddy(struct zone *zone, struct page *page,
1361 unsigned long pfn, int order, fpi_t fpi)
1362 {
1363 unsigned long end = pfn + (1 << order);
1364
1365 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1366 /* Caller removed page from freelist, buddy info cleared! */
1367 VM_WARN_ON_ONCE(PageBuddy(page));
1368
1369 if (order > pageblock_order)
1370 order = pageblock_order;
1371
1372 do {
1373 int mt = get_pfnblock_migratetype(page, pfn);
1374
1375 __free_one_page(page, pfn, zone, order, mt, fpi);
1376 pfn += 1 << order;
1377 if (pfn == end)
1378 break;
1379 page = pfn_to_page(pfn);
1380 } while (1);
1381 }
1382
add_page_to_zone_llist(struct zone * zone,struct page * page,unsigned int order)1383 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1384 unsigned int order)
1385 {
1386 /* Remember the order */
1387 page->order = order;
1388 /* Add the page to the free list */
1389 llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1390 }
1391
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1392 static void free_one_page(struct zone *zone, struct page *page,
1393 unsigned long pfn, unsigned int order,
1394 fpi_t fpi_flags)
1395 {
1396 struct llist_head *llhead;
1397 unsigned long flags;
1398
1399 if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1400 if (!spin_trylock_irqsave(&zone->lock, flags)) {
1401 add_page_to_zone_llist(zone, page, order);
1402 return;
1403 }
1404 } else {
1405 spin_lock_irqsave(&zone->lock, flags);
1406 }
1407
1408 /* The lock succeeded. Process deferred pages. */
1409 llhead = &zone->trylock_free_pages;
1410 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1411 struct llist_node *llnode;
1412 struct page *p, *tmp;
1413
1414 llnode = llist_del_all(llhead);
1415 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1416 unsigned int p_order = p->order;
1417
1418 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1419 __count_vm_events(PGFREE, 1 << p_order);
1420 }
1421 }
1422 split_large_buddy(zone, page, pfn, order, fpi_flags);
1423 spin_unlock_irqrestore(&zone->lock, flags);
1424
1425 __count_vm_events(PGFREE, 1 << order);
1426 }
1427
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1428 static void __free_pages_ok(struct page *page, unsigned int order,
1429 fpi_t fpi_flags)
1430 {
1431 unsigned long pfn = page_to_pfn(page);
1432 struct zone *zone = page_zone(page);
1433
1434 if (free_pages_prepare(page, order))
1435 free_one_page(zone, page, pfn, order, fpi_flags);
1436 }
1437
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1438 void __meminit __free_pages_core(struct page *page, unsigned int order,
1439 enum meminit_context context)
1440 {
1441 unsigned int nr_pages = 1 << order;
1442 struct page *p = page;
1443 unsigned int loop;
1444
1445 /*
1446 * When initializing the memmap, __init_single_page() sets the refcount
1447 * of all pages to 1 ("allocated"/"not free"). We have to set the
1448 * refcount of all involved pages to 0.
1449 *
1450 * Note that hotplugged memory pages are initialized to PageOffline().
1451 * Pages freed from memblock might be marked as reserved.
1452 */
1453 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1454 unlikely(context == MEMINIT_HOTPLUG)) {
1455 for (loop = 0; loop < nr_pages; loop++, p++) {
1456 VM_WARN_ON_ONCE(PageReserved(p));
1457 __ClearPageOffline(p);
1458 set_page_count(p, 0);
1459 }
1460
1461 adjust_managed_page_count(page, nr_pages);
1462 } else {
1463 for (loop = 0; loop < nr_pages; loop++, p++) {
1464 __ClearPageReserved(p);
1465 set_page_count(p, 0);
1466 }
1467
1468 /* memblock adjusts totalram_pages() manually. */
1469 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1470 }
1471
1472 if (page_contains_unaccepted(page, order)) {
1473 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1474 return;
1475
1476 accept_memory(page_to_phys(page), PAGE_SIZE << order);
1477 }
1478
1479 /*
1480 * Bypass PCP and place fresh pages right to the tail, primarily
1481 * relevant for memory onlining.
1482 */
1483 __free_pages_ok(page, order, FPI_TO_TAIL);
1484 }
1485
1486 /*
1487 * Check that the whole (or subset of) a pageblock given by the interval of
1488 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1489 * with the migration of free compaction scanner.
1490 *
1491 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1492 *
1493 * It's possible on some configurations to have a setup like node0 node1 node0
1494 * i.e. it's possible that all pages within a zones range of pages do not
1495 * belong to a single zone. We assume that a border between node0 and node1
1496 * can occur within a single pageblock, but not a node0 node1 node0
1497 * interleaving within a single pageblock. It is therefore sufficient to check
1498 * the first and last page of a pageblock and avoid checking each individual
1499 * page in a pageblock.
1500 *
1501 * Note: the function may return non-NULL struct page even for a page block
1502 * which contains a memory hole (i.e. there is no physical memory for a subset
1503 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1504 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1505 * even though the start pfn is online and valid. This should be safe most of
1506 * the time because struct pages are still initialized via init_unavailable_range()
1507 * and pfn walkers shouldn't touch any physical memory range for which they do
1508 * not recognize any specific metadata in struct pages.
1509 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1510 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1511 unsigned long end_pfn, struct zone *zone)
1512 {
1513 struct page *start_page;
1514 struct page *end_page;
1515
1516 /* end_pfn is one past the range we are checking */
1517 end_pfn--;
1518
1519 if (!pfn_valid(end_pfn))
1520 return NULL;
1521
1522 start_page = pfn_to_online_page(start_pfn);
1523 if (!start_page)
1524 return NULL;
1525
1526 if (page_zone(start_page) != zone)
1527 return NULL;
1528
1529 end_page = pfn_to_page(end_pfn);
1530
1531 /* This gives a shorter code than deriving page_zone(end_page) */
1532 if (page_zone_id(start_page) != page_zone_id(end_page))
1533 return NULL;
1534
1535 return start_page;
1536 }
1537
1538 /*
1539 * The order of subdivision here is critical for the IO subsystem.
1540 * Please do not alter this order without good reasons and regression
1541 * testing. Specifically, as large blocks of memory are subdivided,
1542 * the order in which smaller blocks are delivered depends on the order
1543 * they're subdivided in this function. This is the primary factor
1544 * influencing the order in which pages are delivered to the IO
1545 * subsystem according to empirical testing, and this is also justified
1546 * by considering the behavior of a buddy system containing a single
1547 * large block of memory acted on by a series of small allocations.
1548 * This behavior is a critical factor in sglist merging's success.
1549 *
1550 * -- nyc
1551 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1552 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1553 int high, int migratetype)
1554 {
1555 unsigned int size = 1 << high;
1556 unsigned int nr_added = 0;
1557
1558 while (high > low) {
1559 high--;
1560 size >>= 1;
1561 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1562
1563 /*
1564 * Mark as guard pages (or page), that will allow to
1565 * merge back to allocator when buddy will be freed.
1566 * Corresponding page table entries will not be touched,
1567 * pages will stay not present in virtual address space
1568 */
1569 if (set_page_guard(zone, &page[size], high))
1570 continue;
1571
1572 __add_to_free_list(&page[size], zone, high, migratetype, false);
1573 set_buddy_order(&page[size], high);
1574 nr_added += size;
1575 }
1576
1577 return nr_added;
1578 }
1579
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1580 static __always_inline void page_del_and_expand(struct zone *zone,
1581 struct page *page, int low,
1582 int high, int migratetype)
1583 {
1584 int nr_pages = 1 << high;
1585
1586 __del_page_from_free_list(page, zone, high, migratetype);
1587 nr_pages -= expand(zone, page, low, high, migratetype);
1588 account_freepages(zone, -nr_pages, migratetype);
1589 }
1590
check_new_page_bad(struct page * page)1591 static void check_new_page_bad(struct page *page)
1592 {
1593 if (unlikely(PageHWPoison(page))) {
1594 /* Don't complain about hwpoisoned pages */
1595 if (PageBuddy(page))
1596 __ClearPageBuddy(page);
1597 return;
1598 }
1599
1600 bad_page(page,
1601 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1602 }
1603
1604 /*
1605 * This page is about to be returned from the page allocator
1606 */
check_new_page(struct page * page)1607 static bool check_new_page(struct page *page)
1608 {
1609 if (likely(page_expected_state(page,
1610 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1611 return false;
1612
1613 check_new_page_bad(page);
1614 return true;
1615 }
1616
check_new_pages(struct page * page,unsigned int order)1617 static inline bool check_new_pages(struct page *page, unsigned int order)
1618 {
1619 if (is_check_pages_enabled()) {
1620 for (int i = 0; i < (1 << order); i++) {
1621 struct page *p = page + i;
1622
1623 if (check_new_page(p))
1624 return true;
1625 }
1626 }
1627
1628 return false;
1629 }
1630
should_skip_kasan_unpoison(gfp_t flags)1631 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1632 {
1633 /* Don't skip if a software KASAN mode is enabled. */
1634 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1635 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1636 return false;
1637
1638 /* Skip, if hardware tag-based KASAN is not enabled. */
1639 if (!kasan_hw_tags_enabled())
1640 return true;
1641
1642 /*
1643 * With hardware tag-based KASAN enabled, skip if this has been
1644 * requested via __GFP_SKIP_KASAN.
1645 */
1646 return flags & __GFP_SKIP_KASAN;
1647 }
1648
should_skip_init(gfp_t flags)1649 static inline bool should_skip_init(gfp_t flags)
1650 {
1651 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1652 if (!kasan_hw_tags_enabled())
1653 return false;
1654
1655 /* For hardware tag-based KASAN, skip if requested. */
1656 return (flags & __GFP_SKIP_ZERO);
1657 }
1658
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1659 inline void post_alloc_hook(struct page *page, unsigned int order,
1660 gfp_t gfp_flags)
1661 {
1662 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1663 !should_skip_init(gfp_flags);
1664 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1665 int i;
1666
1667 set_page_private(page, 0);
1668
1669 arch_alloc_page(page, order);
1670 debug_pagealloc_map_pages(page, 1 << order);
1671
1672 /*
1673 * Page unpoisoning must happen before memory initialization.
1674 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1675 * allocations and the page unpoisoning code will complain.
1676 */
1677 kernel_unpoison_pages(page, 1 << order);
1678
1679 /*
1680 * As memory initialization might be integrated into KASAN,
1681 * KASAN unpoisoning and memory initializion code must be
1682 * kept together to avoid discrepancies in behavior.
1683 */
1684
1685 /*
1686 * If memory tags should be zeroed
1687 * (which happens only when memory should be initialized as well).
1688 */
1689 if (zero_tags) {
1690 /* Initialize both memory and memory tags. */
1691 for (i = 0; i != 1 << order; ++i)
1692 tag_clear_highpage(page + i);
1693
1694 /* Take note that memory was initialized by the loop above. */
1695 init = false;
1696 }
1697 if (!should_skip_kasan_unpoison(gfp_flags) &&
1698 kasan_unpoison_pages(page, order, init)) {
1699 /* Take note that memory was initialized by KASAN. */
1700 if (kasan_has_integrated_init())
1701 init = false;
1702 } else {
1703 /*
1704 * If memory tags have not been set by KASAN, reset the page
1705 * tags to ensure page_address() dereferencing does not fault.
1706 */
1707 for (i = 0; i != 1 << order; ++i)
1708 page_kasan_tag_reset(page + i);
1709 }
1710 /* If memory is still not initialized, initialize it now. */
1711 if (init)
1712 kernel_init_pages(page, 1 << order);
1713
1714 set_page_owner(page, order, gfp_flags);
1715 page_table_check_alloc(page, order);
1716 pgalloc_tag_add(page, current, 1 << order);
1717 }
1718
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1719 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1720 unsigned int alloc_flags)
1721 {
1722 post_alloc_hook(page, order, gfp_flags);
1723
1724 if (order && (gfp_flags & __GFP_COMP))
1725 prep_compound_page(page, order);
1726
1727 /*
1728 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1729 * allocate the page. The expectation is that the caller is taking
1730 * steps that will free more memory. The caller should avoid the page
1731 * being used for !PFMEMALLOC purposes.
1732 */
1733 if (alloc_flags & ALLOC_NO_WATERMARKS)
1734 set_page_pfmemalloc(page);
1735 else
1736 clear_page_pfmemalloc(page);
1737 }
1738
1739 /*
1740 * Go through the free lists for the given migratetype and remove
1741 * the smallest available page from the freelists
1742 */
1743 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1744 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1745 int migratetype)
1746 {
1747 unsigned int current_order;
1748 struct free_area *area;
1749 struct page *page;
1750
1751 /* Find a page of the appropriate size in the preferred list */
1752 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1753 area = &(zone->free_area[current_order]);
1754 page = get_page_from_free_area(area, migratetype);
1755 if (!page)
1756 continue;
1757
1758 page_del_and_expand(zone, page, order, current_order,
1759 migratetype);
1760 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1761 pcp_allowed_order(order) &&
1762 migratetype < MIGRATE_PCPTYPES);
1763 return page;
1764 }
1765
1766 return NULL;
1767 }
1768
1769
1770 /*
1771 * This array describes the order lists are fallen back to when
1772 * the free lists for the desirable migrate type are depleted
1773 *
1774 * The other migratetypes do not have fallbacks.
1775 */
1776 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1777 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1778 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1779 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1780 };
1781
1782 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1783 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1784 unsigned int order)
1785 {
1786 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1787 }
1788 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1789 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1790 unsigned int order) { return NULL; }
1791 #endif
1792
1793 /*
1794 * Change the type of a block and move all its free pages to that
1795 * type's freelist.
1796 */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1797 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1798 int old_mt, int new_mt)
1799 {
1800 struct page *page;
1801 unsigned long pfn, end_pfn;
1802 unsigned int order;
1803 int pages_moved = 0;
1804
1805 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1806 end_pfn = pageblock_end_pfn(start_pfn);
1807
1808 for (pfn = start_pfn; pfn < end_pfn;) {
1809 page = pfn_to_page(pfn);
1810 if (!PageBuddy(page)) {
1811 pfn++;
1812 continue;
1813 }
1814
1815 /* Make sure we are not inadvertently changing nodes */
1816 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1817 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1818
1819 order = buddy_order(page);
1820
1821 move_to_free_list(page, zone, order, old_mt, new_mt);
1822
1823 pfn += 1 << order;
1824 pages_moved += 1 << order;
1825 }
1826
1827 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1828
1829 return pages_moved;
1830 }
1831
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1832 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1833 unsigned long *start_pfn,
1834 int *num_free, int *num_movable)
1835 {
1836 unsigned long pfn, start, end;
1837
1838 pfn = page_to_pfn(page);
1839 start = pageblock_start_pfn(pfn);
1840 end = pageblock_end_pfn(pfn);
1841
1842 /*
1843 * The caller only has the lock for @zone, don't touch ranges
1844 * that straddle into other zones. While we could move part of
1845 * the range that's inside the zone, this call is usually
1846 * accompanied by other operations such as migratetype updates
1847 * which also should be locked.
1848 */
1849 if (!zone_spans_pfn(zone, start))
1850 return false;
1851 if (!zone_spans_pfn(zone, end - 1))
1852 return false;
1853
1854 *start_pfn = start;
1855
1856 if (num_free) {
1857 *num_free = 0;
1858 *num_movable = 0;
1859 for (pfn = start; pfn < end;) {
1860 page = pfn_to_page(pfn);
1861 if (PageBuddy(page)) {
1862 int nr = 1 << buddy_order(page);
1863
1864 *num_free += nr;
1865 pfn += nr;
1866 continue;
1867 }
1868 /*
1869 * We assume that pages that could be isolated for
1870 * migration are movable. But we don't actually try
1871 * isolating, as that would be expensive.
1872 */
1873 if (PageLRU(page) || __PageMovable(page))
1874 (*num_movable)++;
1875 pfn++;
1876 }
1877 }
1878
1879 return true;
1880 }
1881
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1882 static int move_freepages_block(struct zone *zone, struct page *page,
1883 int old_mt, int new_mt)
1884 {
1885 unsigned long start_pfn;
1886
1887 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1888 return -1;
1889
1890 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1891 }
1892
1893 #ifdef CONFIG_MEMORY_ISOLATION
1894 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1895 static unsigned long find_large_buddy(unsigned long start_pfn)
1896 {
1897 int order = 0;
1898 struct page *page;
1899 unsigned long pfn = start_pfn;
1900
1901 while (!PageBuddy(page = pfn_to_page(pfn))) {
1902 /* Nothing found */
1903 if (++order > MAX_PAGE_ORDER)
1904 return start_pfn;
1905 pfn &= ~0UL << order;
1906 }
1907
1908 /*
1909 * Found a preceding buddy, but does it straddle?
1910 */
1911 if (pfn + (1 << buddy_order(page)) > start_pfn)
1912 return pfn;
1913
1914 /* Nothing found */
1915 return start_pfn;
1916 }
1917
1918 /**
1919 * move_freepages_block_isolate - move free pages in block for page isolation
1920 * @zone: the zone
1921 * @page: the pageblock page
1922 * @migratetype: migratetype to set on the pageblock
1923 *
1924 * This is similar to move_freepages_block(), but handles the special
1925 * case encountered in page isolation, where the block of interest
1926 * might be part of a larger buddy spanning multiple pageblocks.
1927 *
1928 * Unlike the regular page allocator path, which moves pages while
1929 * stealing buddies off the freelist, page isolation is interested in
1930 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1931 *
1932 * This function handles that. Straddling buddies are split into
1933 * individual pageblocks. Only the block of interest is moved.
1934 *
1935 * Returns %true if pages could be moved, %false otherwise.
1936 */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1937 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1938 int migratetype)
1939 {
1940 unsigned long start_pfn, pfn;
1941
1942 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1943 return false;
1944
1945 /* No splits needed if buddies can't span multiple blocks */
1946 if (pageblock_order == MAX_PAGE_ORDER)
1947 goto move;
1948
1949 /* We're a tail block in a larger buddy */
1950 pfn = find_large_buddy(start_pfn);
1951 if (pfn != start_pfn) {
1952 struct page *buddy = pfn_to_page(pfn);
1953 int order = buddy_order(buddy);
1954
1955 del_page_from_free_list(buddy, zone, order,
1956 get_pfnblock_migratetype(buddy, pfn));
1957 set_pageblock_migratetype(page, migratetype);
1958 split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1959 return true;
1960 }
1961
1962 /* We're the starting block of a larger buddy */
1963 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1964 int order = buddy_order(page);
1965
1966 del_page_from_free_list(page, zone, order,
1967 get_pfnblock_migratetype(page, pfn));
1968 set_pageblock_migratetype(page, migratetype);
1969 split_large_buddy(zone, page, pfn, order, FPI_NONE);
1970 return true;
1971 }
1972 move:
1973 __move_freepages_block(zone, start_pfn,
1974 get_pfnblock_migratetype(page, start_pfn),
1975 migratetype);
1976 return true;
1977 }
1978 #endif /* CONFIG_MEMORY_ISOLATION */
1979
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1980 static void change_pageblock_range(struct page *pageblock_page,
1981 int start_order, int migratetype)
1982 {
1983 int nr_pageblocks = 1 << (start_order - pageblock_order);
1984
1985 while (nr_pageblocks--) {
1986 set_pageblock_migratetype(pageblock_page, migratetype);
1987 pageblock_page += pageblock_nr_pages;
1988 }
1989 }
1990
boost_watermark(struct zone * zone)1991 static inline bool boost_watermark(struct zone *zone)
1992 {
1993 unsigned long max_boost;
1994
1995 if (!watermark_boost_factor)
1996 return false;
1997 /*
1998 * Don't bother in zones that are unlikely to produce results.
1999 * On small machines, including kdump capture kernels running
2000 * in a small area, boosting the watermark can cause an out of
2001 * memory situation immediately.
2002 */
2003 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2004 return false;
2005
2006 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2007 watermark_boost_factor, 10000);
2008
2009 /*
2010 * high watermark may be uninitialised if fragmentation occurs
2011 * very early in boot so do not boost. We do not fall
2012 * through and boost by pageblock_nr_pages as failing
2013 * allocations that early means that reclaim is not going
2014 * to help and it may even be impossible to reclaim the
2015 * boosted watermark resulting in a hang.
2016 */
2017 if (!max_boost)
2018 return false;
2019
2020 max_boost = max(pageblock_nr_pages, max_boost);
2021
2022 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2023 max_boost);
2024
2025 return true;
2026 }
2027
2028 /*
2029 * When we are falling back to another migratetype during allocation, should we
2030 * try to claim an entire block to satisfy further allocations, instead of
2031 * polluting multiple pageblocks?
2032 */
should_try_claim_block(unsigned int order,int start_mt)2033 static bool should_try_claim_block(unsigned int order, int start_mt)
2034 {
2035 /*
2036 * Leaving this order check is intended, although there is
2037 * relaxed order check in next check. The reason is that
2038 * we can actually claim the whole pageblock if this condition met,
2039 * but, below check doesn't guarantee it and that is just heuristic
2040 * so could be changed anytime.
2041 */
2042 if (order >= pageblock_order)
2043 return true;
2044
2045 /*
2046 * Above a certain threshold, always try to claim, as it's likely there
2047 * will be more free pages in the pageblock.
2048 */
2049 if (order >= pageblock_order / 2)
2050 return true;
2051
2052 /*
2053 * Unmovable/reclaimable allocations would cause permanent
2054 * fragmentations if they fell back to allocating from a movable block
2055 * (polluting it), so we try to claim the whole block regardless of the
2056 * allocation size. Later movable allocations can always steal from this
2057 * block, which is less problematic.
2058 */
2059 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2060 return true;
2061
2062 if (page_group_by_mobility_disabled)
2063 return true;
2064
2065 /*
2066 * Movable pages won't cause permanent fragmentation, so when you alloc
2067 * small pages, we just need to temporarily steal unmovable or
2068 * reclaimable pages that are closest to the request size. After a
2069 * while, memory compaction may occur to form large contiguous pages,
2070 * and the next movable allocation may not need to steal.
2071 */
2072 return false;
2073 }
2074
2075 /*
2076 * Check whether there is a suitable fallback freepage with requested order.
2077 * Sets *claim_block to instruct the caller whether it should convert a whole
2078 * pageblock to the returned migratetype.
2079 * If only_claim is true, this function returns fallback_mt only if
2080 * we would do this whole-block claiming. This would help to reduce
2081 * fragmentation due to mixed migratetype pages in one pageblock.
2082 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_claim,bool * claim_block)2083 int find_suitable_fallback(struct free_area *area, unsigned int order,
2084 int migratetype, bool only_claim, bool *claim_block)
2085 {
2086 int i;
2087 int fallback_mt;
2088
2089 if (area->nr_free == 0)
2090 return -1;
2091
2092 *claim_block = false;
2093 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2094 fallback_mt = fallbacks[migratetype][i];
2095 if (free_area_empty(area, fallback_mt))
2096 continue;
2097
2098 if (should_try_claim_block(order, migratetype))
2099 *claim_block = true;
2100
2101 if (*claim_block || !only_claim)
2102 return fallback_mt;
2103 }
2104
2105 return -1;
2106 }
2107
2108 /*
2109 * This function implements actual block claiming behaviour. If order is large
2110 * enough, we can claim the whole pageblock for the requested migratetype. If
2111 * not, we check the pageblock for constituent pages; if at least half of the
2112 * pages are free or compatible, we can still claim the whole block, so pages
2113 * freed in the future will be put on the correct free list.
2114 */
2115 static struct page *
try_to_claim_block(struct zone * zone,struct page * page,int current_order,int order,int start_type,int block_type,unsigned int alloc_flags)2116 try_to_claim_block(struct zone *zone, struct page *page,
2117 int current_order, int order, int start_type,
2118 int block_type, unsigned int alloc_flags)
2119 {
2120 int free_pages, movable_pages, alike_pages;
2121 unsigned long start_pfn;
2122
2123 /* Take ownership for orders >= pageblock_order */
2124 if (current_order >= pageblock_order) {
2125 unsigned int nr_added;
2126
2127 del_page_from_free_list(page, zone, current_order, block_type);
2128 change_pageblock_range(page, current_order, start_type);
2129 nr_added = expand(zone, page, order, current_order, start_type);
2130 account_freepages(zone, nr_added, start_type);
2131 return page;
2132 }
2133
2134 /*
2135 * Boost watermarks to increase reclaim pressure to reduce the
2136 * likelihood of future fallbacks. Wake kswapd now as the node
2137 * may be balanced overall and kswapd will not wake naturally.
2138 */
2139 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2140 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2141
2142 /* moving whole block can fail due to zone boundary conditions */
2143 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2144 &movable_pages))
2145 return NULL;
2146
2147 /*
2148 * Determine how many pages are compatible with our allocation.
2149 * For movable allocation, it's the number of movable pages which
2150 * we just obtained. For other types it's a bit more tricky.
2151 */
2152 if (start_type == MIGRATE_MOVABLE) {
2153 alike_pages = movable_pages;
2154 } else {
2155 /*
2156 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2157 * to MOVABLE pageblock, consider all non-movable pages as
2158 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2159 * vice versa, be conservative since we can't distinguish the
2160 * exact migratetype of non-movable pages.
2161 */
2162 if (block_type == MIGRATE_MOVABLE)
2163 alike_pages = pageblock_nr_pages
2164 - (free_pages + movable_pages);
2165 else
2166 alike_pages = 0;
2167 }
2168 /*
2169 * If a sufficient number of pages in the block are either free or of
2170 * compatible migratability as our allocation, claim the whole block.
2171 */
2172 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2173 page_group_by_mobility_disabled) {
2174 __move_freepages_block(zone, start_pfn, block_type, start_type);
2175 return __rmqueue_smallest(zone, order, start_type);
2176 }
2177
2178 return NULL;
2179 }
2180
2181 /*
2182 * Try to allocate from some fallback migratetype by claiming the entire block,
2183 * i.e. converting it to the allocation's start migratetype.
2184 *
2185 * The use of signed ints for order and current_order is a deliberate
2186 * deviation from the rest of this file, to make the for loop
2187 * condition simpler.
2188 */
2189 static __always_inline struct page *
__rmqueue_claim(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2190 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2191 unsigned int alloc_flags)
2192 {
2193 struct free_area *area;
2194 int current_order;
2195 int min_order = order;
2196 struct page *page;
2197 int fallback_mt;
2198 bool claim_block;
2199
2200 /*
2201 * Do not steal pages from freelists belonging to other pageblocks
2202 * i.e. orders < pageblock_order. If there are no local zones free,
2203 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2204 */
2205 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2206 min_order = pageblock_order;
2207
2208 /*
2209 * Find the largest available free page in the other list. This roughly
2210 * approximates finding the pageblock with the most free pages, which
2211 * would be too costly to do exactly.
2212 */
2213 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2214 --current_order) {
2215 area = &(zone->free_area[current_order]);
2216 fallback_mt = find_suitable_fallback(area, current_order,
2217 start_migratetype, false, &claim_block);
2218 if (fallback_mt == -1)
2219 continue;
2220
2221 if (!claim_block)
2222 break;
2223
2224 page = get_page_from_free_area(area, fallback_mt);
2225 page = try_to_claim_block(zone, page, current_order, order,
2226 start_migratetype, fallback_mt,
2227 alloc_flags);
2228 if (page) {
2229 trace_mm_page_alloc_extfrag(page, order, current_order,
2230 start_migratetype, fallback_mt);
2231 return page;
2232 }
2233 }
2234
2235 return NULL;
2236 }
2237
2238 /*
2239 * Try to steal a single page from some fallback migratetype. Leave the rest of
2240 * the block as its current migratetype, potentially causing fragmentation.
2241 */
2242 static __always_inline struct page *
__rmqueue_steal(struct zone * zone,int order,int start_migratetype)2243 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2244 {
2245 struct free_area *area;
2246 int current_order;
2247 struct page *page;
2248 int fallback_mt;
2249 bool claim_block;
2250
2251 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2252 area = &(zone->free_area[current_order]);
2253 fallback_mt = find_suitable_fallback(area, current_order,
2254 start_migratetype, false, &claim_block);
2255 if (fallback_mt == -1)
2256 continue;
2257
2258 page = get_page_from_free_area(area, fallback_mt);
2259 page_del_and_expand(zone, page, order, current_order, fallback_mt);
2260 trace_mm_page_alloc_extfrag(page, order, current_order,
2261 start_migratetype, fallback_mt);
2262 return page;
2263 }
2264
2265 return NULL;
2266 }
2267
2268 enum rmqueue_mode {
2269 RMQUEUE_NORMAL,
2270 RMQUEUE_CMA,
2271 RMQUEUE_CLAIM,
2272 RMQUEUE_STEAL,
2273 };
2274
2275 /*
2276 * Do the hard work of removing an element from the buddy allocator.
2277 * Call me with the zone->lock already held.
2278 */
2279 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,enum rmqueue_mode * mode)2280 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2281 unsigned int alloc_flags, enum rmqueue_mode *mode)
2282 {
2283 struct page *page;
2284
2285 if (IS_ENABLED(CONFIG_CMA)) {
2286 /*
2287 * Balance movable allocations between regular and CMA areas by
2288 * allocating from CMA when over half of the zone's free memory
2289 * is in the CMA area.
2290 */
2291 if (alloc_flags & ALLOC_CMA &&
2292 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2293 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2294 page = __rmqueue_cma_fallback(zone, order);
2295 if (page)
2296 return page;
2297 }
2298 }
2299
2300 /*
2301 * First try the freelists of the requested migratetype, then try
2302 * fallbacks modes with increasing levels of fragmentation risk.
2303 *
2304 * The fallback logic is expensive and rmqueue_bulk() calls in
2305 * a loop with the zone->lock held, meaning the freelists are
2306 * not subject to any outside changes. Remember in *mode where
2307 * we found pay dirt, to save us the search on the next call.
2308 */
2309 switch (*mode) {
2310 case RMQUEUE_NORMAL:
2311 page = __rmqueue_smallest(zone, order, migratetype);
2312 if (page)
2313 return page;
2314 fallthrough;
2315 case RMQUEUE_CMA:
2316 if (alloc_flags & ALLOC_CMA) {
2317 page = __rmqueue_cma_fallback(zone, order);
2318 if (page) {
2319 *mode = RMQUEUE_CMA;
2320 return page;
2321 }
2322 }
2323 fallthrough;
2324 case RMQUEUE_CLAIM:
2325 page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2326 if (page) {
2327 /* Replenished preferred freelist, back to normal mode. */
2328 *mode = RMQUEUE_NORMAL;
2329 return page;
2330 }
2331 fallthrough;
2332 case RMQUEUE_STEAL:
2333 if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2334 page = __rmqueue_steal(zone, order, migratetype);
2335 if (page) {
2336 *mode = RMQUEUE_STEAL;
2337 return page;
2338 }
2339 }
2340 }
2341 return NULL;
2342 }
2343
2344 /*
2345 * Obtain a specified number of elements from the buddy allocator, all under
2346 * a single hold of the lock, for efficiency. Add them to the supplied list.
2347 * Returns the number of new pages which were placed at *list.
2348 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2349 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2350 unsigned long count, struct list_head *list,
2351 int migratetype, unsigned int alloc_flags)
2352 {
2353 enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2354 unsigned long flags;
2355 int i;
2356
2357 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2358 if (!spin_trylock_irqsave(&zone->lock, flags))
2359 return 0;
2360 } else {
2361 spin_lock_irqsave(&zone->lock, flags);
2362 }
2363 for (i = 0; i < count; ++i) {
2364 struct page *page = __rmqueue(zone, order, migratetype,
2365 alloc_flags, &rmqm);
2366 if (unlikely(page == NULL))
2367 break;
2368
2369 /*
2370 * Split buddy pages returned by expand() are received here in
2371 * physical page order. The page is added to the tail of
2372 * caller's list. From the callers perspective, the linked list
2373 * is ordered by page number under some conditions. This is
2374 * useful for IO devices that can forward direction from the
2375 * head, thus also in the physical page order. This is useful
2376 * for IO devices that can merge IO requests if the physical
2377 * pages are ordered properly.
2378 */
2379 list_add_tail(&page->pcp_list, list);
2380 }
2381 spin_unlock_irqrestore(&zone->lock, flags);
2382
2383 return i;
2384 }
2385
2386 /*
2387 * Called from the vmstat counter updater to decay the PCP high.
2388 * Return whether there are addition works to do.
2389 */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2390 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2391 {
2392 int high_min, to_drain, batch;
2393 int todo = 0;
2394
2395 high_min = READ_ONCE(pcp->high_min);
2396 batch = READ_ONCE(pcp->batch);
2397 /*
2398 * Decrease pcp->high periodically to try to free possible
2399 * idle PCP pages. And, avoid to free too many pages to
2400 * control latency. This caps pcp->high decrement too.
2401 */
2402 if (pcp->high > high_min) {
2403 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2404 pcp->high - (pcp->high >> 3), high_min);
2405 if (pcp->high > high_min)
2406 todo++;
2407 }
2408
2409 to_drain = pcp->count - pcp->high;
2410 if (to_drain > 0) {
2411 spin_lock(&pcp->lock);
2412 free_pcppages_bulk(zone, to_drain, pcp, 0);
2413 spin_unlock(&pcp->lock);
2414 todo++;
2415 }
2416
2417 return todo;
2418 }
2419
2420 #ifdef CONFIG_NUMA
2421 /*
2422 * Called from the vmstat counter updater to drain pagesets of this
2423 * currently executing processor on remote nodes after they have
2424 * expired.
2425 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2426 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2427 {
2428 int to_drain, batch;
2429
2430 batch = READ_ONCE(pcp->batch);
2431 to_drain = min(pcp->count, batch);
2432 if (to_drain > 0) {
2433 spin_lock(&pcp->lock);
2434 free_pcppages_bulk(zone, to_drain, pcp, 0);
2435 spin_unlock(&pcp->lock);
2436 }
2437 }
2438 #endif
2439
2440 /*
2441 * Drain pcplists of the indicated processor and zone.
2442 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2443 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2444 {
2445 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2446 int count;
2447
2448 do {
2449 spin_lock(&pcp->lock);
2450 count = pcp->count;
2451 if (count) {
2452 int to_drain = min(count,
2453 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2454
2455 free_pcppages_bulk(zone, to_drain, pcp, 0);
2456 count -= to_drain;
2457 }
2458 spin_unlock(&pcp->lock);
2459 } while (count);
2460 }
2461
2462 /*
2463 * Drain pcplists of all zones on the indicated processor.
2464 */
drain_pages(unsigned int cpu)2465 static void drain_pages(unsigned int cpu)
2466 {
2467 struct zone *zone;
2468
2469 for_each_populated_zone(zone) {
2470 drain_pages_zone(cpu, zone);
2471 }
2472 }
2473
2474 /*
2475 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2476 */
drain_local_pages(struct zone * zone)2477 void drain_local_pages(struct zone *zone)
2478 {
2479 int cpu = smp_processor_id();
2480
2481 if (zone)
2482 drain_pages_zone(cpu, zone);
2483 else
2484 drain_pages(cpu);
2485 }
2486
2487 /*
2488 * The implementation of drain_all_pages(), exposing an extra parameter to
2489 * drain on all cpus.
2490 *
2491 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2492 * not empty. The check for non-emptiness can however race with a free to
2493 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2494 * that need the guarantee that every CPU has drained can disable the
2495 * optimizing racy check.
2496 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2497 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2498 {
2499 int cpu;
2500
2501 /*
2502 * Allocate in the BSS so we won't require allocation in
2503 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2504 */
2505 static cpumask_t cpus_with_pcps;
2506
2507 /*
2508 * Do not drain if one is already in progress unless it's specific to
2509 * a zone. Such callers are primarily CMA and memory hotplug and need
2510 * the drain to be complete when the call returns.
2511 */
2512 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2513 if (!zone)
2514 return;
2515 mutex_lock(&pcpu_drain_mutex);
2516 }
2517
2518 /*
2519 * We don't care about racing with CPU hotplug event
2520 * as offline notification will cause the notified
2521 * cpu to drain that CPU pcps and on_each_cpu_mask
2522 * disables preemption as part of its processing
2523 */
2524 for_each_online_cpu(cpu) {
2525 struct per_cpu_pages *pcp;
2526 struct zone *z;
2527 bool has_pcps = false;
2528
2529 if (force_all_cpus) {
2530 /*
2531 * The pcp.count check is racy, some callers need a
2532 * guarantee that no cpu is missed.
2533 */
2534 has_pcps = true;
2535 } else if (zone) {
2536 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2537 if (pcp->count)
2538 has_pcps = true;
2539 } else {
2540 for_each_populated_zone(z) {
2541 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2542 if (pcp->count) {
2543 has_pcps = true;
2544 break;
2545 }
2546 }
2547 }
2548
2549 if (has_pcps)
2550 cpumask_set_cpu(cpu, &cpus_with_pcps);
2551 else
2552 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2553 }
2554
2555 for_each_cpu(cpu, &cpus_with_pcps) {
2556 if (zone)
2557 drain_pages_zone(cpu, zone);
2558 else
2559 drain_pages(cpu);
2560 }
2561
2562 mutex_unlock(&pcpu_drain_mutex);
2563 }
2564
2565 /*
2566 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2567 *
2568 * When zone parameter is non-NULL, spill just the single zone's pages.
2569 */
drain_all_pages(struct zone * zone)2570 void drain_all_pages(struct zone *zone)
2571 {
2572 __drain_all_pages(zone, false);
2573 }
2574
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2575 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2576 {
2577 int min_nr_free, max_nr_free;
2578
2579 /* Free as much as possible if batch freeing high-order pages. */
2580 if (unlikely(free_high))
2581 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2582
2583 /* Check for PCP disabled or boot pageset */
2584 if (unlikely(high < batch))
2585 return 1;
2586
2587 /* Leave at least pcp->batch pages on the list */
2588 min_nr_free = batch;
2589 max_nr_free = high - batch;
2590
2591 /*
2592 * Increase the batch number to the number of the consecutive
2593 * freed pages to reduce zone lock contention.
2594 */
2595 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2596
2597 return batch;
2598 }
2599
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2600 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2601 int batch, bool free_high)
2602 {
2603 int high, high_min, high_max;
2604
2605 high_min = READ_ONCE(pcp->high_min);
2606 high_max = READ_ONCE(pcp->high_max);
2607 high = pcp->high = clamp(pcp->high, high_min, high_max);
2608
2609 if (unlikely(!high))
2610 return 0;
2611
2612 if (unlikely(free_high)) {
2613 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2614 high_min);
2615 return 0;
2616 }
2617
2618 /*
2619 * If reclaim is active, limit the number of pages that can be
2620 * stored on pcp lists
2621 */
2622 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2623 int free_count = max_t(int, pcp->free_count, batch);
2624
2625 pcp->high = max(high - free_count, high_min);
2626 return min(batch << 2, pcp->high);
2627 }
2628
2629 if (high_min == high_max)
2630 return high;
2631
2632 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2633 int free_count = max_t(int, pcp->free_count, batch);
2634
2635 pcp->high = max(high - free_count, high_min);
2636 high = max(pcp->count, high_min);
2637 } else if (pcp->count >= high) {
2638 int need_high = pcp->free_count + batch;
2639
2640 /* pcp->high should be large enough to hold batch freed pages */
2641 if (pcp->high < need_high)
2642 pcp->high = clamp(need_high, high_min, high_max);
2643 }
2644
2645 return high;
2646 }
2647
free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order,fpi_t fpi_flags)2648 static void free_frozen_page_commit(struct zone *zone,
2649 struct per_cpu_pages *pcp, struct page *page, int migratetype,
2650 unsigned int order, fpi_t fpi_flags)
2651 {
2652 int high, batch;
2653 int pindex;
2654 bool free_high = false;
2655
2656 /*
2657 * On freeing, reduce the number of pages that are batch allocated.
2658 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2659 * allocations.
2660 */
2661 pcp->alloc_factor >>= 1;
2662 __count_vm_events(PGFREE, 1 << order);
2663 pindex = order_to_pindex(migratetype, order);
2664 list_add(&page->pcp_list, &pcp->lists[pindex]);
2665 pcp->count += 1 << order;
2666
2667 batch = READ_ONCE(pcp->batch);
2668 /*
2669 * As high-order pages other than THP's stored on PCP can contribute
2670 * to fragmentation, limit the number stored when PCP is heavily
2671 * freeing without allocation. The remainder after bulk freeing
2672 * stops will be drained from vmstat refresh context.
2673 */
2674 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2675 free_high = (pcp->free_count >= batch &&
2676 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2677 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2678 pcp->count >= READ_ONCE(batch)));
2679 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2680 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2681 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2682 }
2683 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2684 pcp->free_count += (1 << order);
2685
2686 if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2687 /*
2688 * Do not attempt to take a zone lock. Let pcp->count get
2689 * over high mark temporarily.
2690 */
2691 return;
2692 }
2693 high = nr_pcp_high(pcp, zone, batch, free_high);
2694 if (pcp->count >= high) {
2695 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2696 pcp, pindex);
2697 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2698 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2699 ZONE_MOVABLE, 0))
2700 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2701 }
2702 }
2703
2704 /*
2705 * Free a pcp page
2706 */
__free_frozen_pages(struct page * page,unsigned int order,fpi_t fpi_flags)2707 static void __free_frozen_pages(struct page *page, unsigned int order,
2708 fpi_t fpi_flags)
2709 {
2710 unsigned long __maybe_unused UP_flags;
2711 struct per_cpu_pages *pcp;
2712 struct zone *zone;
2713 unsigned long pfn = page_to_pfn(page);
2714 int migratetype;
2715
2716 if (!pcp_allowed_order(order)) {
2717 __free_pages_ok(page, order, fpi_flags);
2718 return;
2719 }
2720
2721 if (!free_pages_prepare(page, order))
2722 return;
2723
2724 /*
2725 * We only track unmovable, reclaimable and movable on pcp lists.
2726 * Place ISOLATE pages on the isolated list because they are being
2727 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2728 * get those areas back if necessary. Otherwise, we may have to free
2729 * excessively into the page allocator
2730 */
2731 zone = page_zone(page);
2732 migratetype = get_pfnblock_migratetype(page, pfn);
2733 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2734 if (unlikely(is_migrate_isolate(migratetype))) {
2735 free_one_page(zone, page, pfn, order, fpi_flags);
2736 return;
2737 }
2738 migratetype = MIGRATE_MOVABLE;
2739 }
2740
2741 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2742 && (in_nmi() || in_hardirq()))) {
2743 add_page_to_zone_llist(zone, page, order);
2744 return;
2745 }
2746 pcp_trylock_prepare(UP_flags);
2747 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2748 if (pcp) {
2749 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2750 pcp_spin_unlock(pcp);
2751 } else {
2752 free_one_page(zone, page, pfn, order, fpi_flags);
2753 }
2754 pcp_trylock_finish(UP_flags);
2755 }
2756
free_frozen_pages(struct page * page,unsigned int order)2757 void free_frozen_pages(struct page *page, unsigned int order)
2758 {
2759 __free_frozen_pages(page, order, FPI_NONE);
2760 }
2761
2762 /*
2763 * Free a batch of folios
2764 */
free_unref_folios(struct folio_batch * folios)2765 void free_unref_folios(struct folio_batch *folios)
2766 {
2767 unsigned long __maybe_unused UP_flags;
2768 struct per_cpu_pages *pcp = NULL;
2769 struct zone *locked_zone = NULL;
2770 int i, j;
2771
2772 /* Prepare folios for freeing */
2773 for (i = 0, j = 0; i < folios->nr; i++) {
2774 struct folio *folio = folios->folios[i];
2775 unsigned long pfn = folio_pfn(folio);
2776 unsigned int order = folio_order(folio);
2777
2778 if (!free_pages_prepare(&folio->page, order))
2779 continue;
2780 /*
2781 * Free orders not handled on the PCP directly to the
2782 * allocator.
2783 */
2784 if (!pcp_allowed_order(order)) {
2785 free_one_page(folio_zone(folio), &folio->page,
2786 pfn, order, FPI_NONE);
2787 continue;
2788 }
2789 folio->private = (void *)(unsigned long)order;
2790 if (j != i)
2791 folios->folios[j] = folio;
2792 j++;
2793 }
2794 folios->nr = j;
2795
2796 for (i = 0; i < folios->nr; i++) {
2797 struct folio *folio = folios->folios[i];
2798 struct zone *zone = folio_zone(folio);
2799 unsigned long pfn = folio_pfn(folio);
2800 unsigned int order = (unsigned long)folio->private;
2801 int migratetype;
2802
2803 folio->private = NULL;
2804 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2805
2806 /* Different zone requires a different pcp lock */
2807 if (zone != locked_zone ||
2808 is_migrate_isolate(migratetype)) {
2809 if (pcp) {
2810 pcp_spin_unlock(pcp);
2811 pcp_trylock_finish(UP_flags);
2812 locked_zone = NULL;
2813 pcp = NULL;
2814 }
2815
2816 /*
2817 * Free isolated pages directly to the
2818 * allocator, see comment in free_frozen_pages.
2819 */
2820 if (is_migrate_isolate(migratetype)) {
2821 free_one_page(zone, &folio->page, pfn,
2822 order, FPI_NONE);
2823 continue;
2824 }
2825
2826 /*
2827 * trylock is necessary as folios may be getting freed
2828 * from IRQ or SoftIRQ context after an IO completion.
2829 */
2830 pcp_trylock_prepare(UP_flags);
2831 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2832 if (unlikely(!pcp)) {
2833 pcp_trylock_finish(UP_flags);
2834 free_one_page(zone, &folio->page, pfn,
2835 order, FPI_NONE);
2836 continue;
2837 }
2838 locked_zone = zone;
2839 }
2840
2841 /*
2842 * Non-isolated types over MIGRATE_PCPTYPES get added
2843 * to the MIGRATE_MOVABLE pcp list.
2844 */
2845 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2846 migratetype = MIGRATE_MOVABLE;
2847
2848 trace_mm_page_free_batched(&folio->page);
2849 free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2850 order, FPI_NONE);
2851 }
2852
2853 if (pcp) {
2854 pcp_spin_unlock(pcp);
2855 pcp_trylock_finish(UP_flags);
2856 }
2857 folio_batch_reinit(folios);
2858 }
2859
2860 /*
2861 * split_page takes a non-compound higher-order page, and splits it into
2862 * n (1<<order) sub-pages: page[0..n]
2863 * Each sub-page must be freed individually.
2864 *
2865 * Note: this is probably too low level an operation for use in drivers.
2866 * Please consult with lkml before using this in your driver.
2867 */
split_page(struct page * page,unsigned int order)2868 void split_page(struct page *page, unsigned int order)
2869 {
2870 int i;
2871
2872 VM_BUG_ON_PAGE(PageCompound(page), page);
2873 VM_BUG_ON_PAGE(!page_count(page), page);
2874
2875 for (i = 1; i < (1 << order); i++)
2876 set_page_refcounted(page + i);
2877 split_page_owner(page, order, 0);
2878 pgalloc_tag_split(page_folio(page), order, 0);
2879 split_page_memcg(page, order);
2880 }
2881 EXPORT_SYMBOL_GPL(split_page);
2882
__isolate_free_page(struct page * page,unsigned int order)2883 int __isolate_free_page(struct page *page, unsigned int order)
2884 {
2885 struct zone *zone = page_zone(page);
2886 int mt = get_pageblock_migratetype(page);
2887
2888 if (!is_migrate_isolate(mt)) {
2889 unsigned long watermark;
2890 /*
2891 * Obey watermarks as if the page was being allocated. We can
2892 * emulate a high-order watermark check with a raised order-0
2893 * watermark, because we already know our high-order page
2894 * exists.
2895 */
2896 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2897 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2898 return 0;
2899 }
2900
2901 del_page_from_free_list(page, zone, order, mt);
2902
2903 /*
2904 * Set the pageblock if the isolated page is at least half of a
2905 * pageblock
2906 */
2907 if (order >= pageblock_order - 1) {
2908 struct page *endpage = page + (1 << order) - 1;
2909 for (; page < endpage; page += pageblock_nr_pages) {
2910 int mt = get_pageblock_migratetype(page);
2911 /*
2912 * Only change normal pageblocks (i.e., they can merge
2913 * with others)
2914 */
2915 if (migratetype_is_mergeable(mt))
2916 move_freepages_block(zone, page, mt,
2917 MIGRATE_MOVABLE);
2918 }
2919 }
2920
2921 return 1UL << order;
2922 }
2923
2924 /**
2925 * __putback_isolated_page - Return a now-isolated page back where we got it
2926 * @page: Page that was isolated
2927 * @order: Order of the isolated page
2928 * @mt: The page's pageblock's migratetype
2929 *
2930 * This function is meant to return a page pulled from the free lists via
2931 * __isolate_free_page back to the free lists they were pulled from.
2932 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2933 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2934 {
2935 struct zone *zone = page_zone(page);
2936
2937 /* zone lock should be held when this function is called */
2938 lockdep_assert_held(&zone->lock);
2939
2940 /* Return isolated page to tail of freelist. */
2941 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2942 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2943 }
2944
2945 /*
2946 * Update NUMA hit/miss statistics
2947 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2948 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2949 long nr_account)
2950 {
2951 #ifdef CONFIG_NUMA
2952 enum numa_stat_item local_stat = NUMA_LOCAL;
2953
2954 /* skip numa counters update if numa stats is disabled */
2955 if (!static_branch_likely(&vm_numa_stat_key))
2956 return;
2957
2958 if (zone_to_nid(z) != numa_node_id())
2959 local_stat = NUMA_OTHER;
2960
2961 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2962 __count_numa_events(z, NUMA_HIT, nr_account);
2963 else {
2964 __count_numa_events(z, NUMA_MISS, nr_account);
2965 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2966 }
2967 __count_numa_events(z, local_stat, nr_account);
2968 #endif
2969 }
2970
2971 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2972 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2973 unsigned int order, unsigned int alloc_flags,
2974 int migratetype)
2975 {
2976 struct page *page;
2977 unsigned long flags;
2978
2979 do {
2980 page = NULL;
2981 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2982 if (!spin_trylock_irqsave(&zone->lock, flags))
2983 return NULL;
2984 } else {
2985 spin_lock_irqsave(&zone->lock, flags);
2986 }
2987 if (alloc_flags & ALLOC_HIGHATOMIC)
2988 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2989 if (!page) {
2990 enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2991
2992 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
2993
2994 /*
2995 * If the allocation fails, allow OOM handling and
2996 * order-0 (atomic) allocs access to HIGHATOMIC
2997 * reserves as failing now is worse than failing a
2998 * high-order atomic allocation in the future.
2999 */
3000 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3001 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002
3003 if (!page) {
3004 spin_unlock_irqrestore(&zone->lock, flags);
3005 return NULL;
3006 }
3007 }
3008 spin_unlock_irqrestore(&zone->lock, flags);
3009 } while (check_new_pages(page, order));
3010
3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3012 zone_statistics(preferred_zone, zone, 1);
3013
3014 return page;
3015 }
3016
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)3017 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3018 {
3019 int high, base_batch, batch, max_nr_alloc;
3020 int high_max, high_min;
3021
3022 base_batch = READ_ONCE(pcp->batch);
3023 high_min = READ_ONCE(pcp->high_min);
3024 high_max = READ_ONCE(pcp->high_max);
3025 high = pcp->high = clamp(pcp->high, high_min, high_max);
3026
3027 /* Check for PCP disabled or boot pageset */
3028 if (unlikely(high < base_batch))
3029 return 1;
3030
3031 if (order)
3032 batch = base_batch;
3033 else
3034 batch = (base_batch << pcp->alloc_factor);
3035
3036 /*
3037 * If we had larger pcp->high, we could avoid to allocate from
3038 * zone.
3039 */
3040 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3041 high = pcp->high = min(high + batch, high_max);
3042
3043 if (!order) {
3044 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3045 /*
3046 * Double the number of pages allocated each time there is
3047 * subsequent allocation of order-0 pages without any freeing.
3048 */
3049 if (batch <= max_nr_alloc &&
3050 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3051 pcp->alloc_factor++;
3052 batch = min(batch, max_nr_alloc);
3053 }
3054
3055 /*
3056 * Scale batch relative to order if batch implies free pages
3057 * can be stored on the PCP. Batch can be 1 for small zones or
3058 * for boot pagesets which should never store free pages as
3059 * the pages may belong to arbitrary zones.
3060 */
3061 if (batch > 1)
3062 batch = max(batch >> order, 2);
3063
3064 return batch;
3065 }
3066
3067 /* Remove page from the per-cpu list, caller must protect the list */
3068 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3069 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3070 int migratetype,
3071 unsigned int alloc_flags,
3072 struct per_cpu_pages *pcp,
3073 struct list_head *list)
3074 {
3075 struct page *page;
3076
3077 do {
3078 if (list_empty(list)) {
3079 int batch = nr_pcp_alloc(pcp, zone, order);
3080 int alloced;
3081
3082 alloced = rmqueue_bulk(zone, order,
3083 batch, list,
3084 migratetype, alloc_flags);
3085
3086 pcp->count += alloced << order;
3087 if (unlikely(list_empty(list)))
3088 return NULL;
3089 }
3090
3091 page = list_first_entry(list, struct page, pcp_list);
3092 list_del(&page->pcp_list);
3093 pcp->count -= 1 << order;
3094 } while (check_new_pages(page, order));
3095
3096 return page;
3097 }
3098
3099 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3100 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3101 struct zone *zone, unsigned int order,
3102 int migratetype, unsigned int alloc_flags)
3103 {
3104 struct per_cpu_pages *pcp;
3105 struct list_head *list;
3106 struct page *page;
3107 unsigned long __maybe_unused UP_flags;
3108
3109 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3110 pcp_trylock_prepare(UP_flags);
3111 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3112 if (!pcp) {
3113 pcp_trylock_finish(UP_flags);
3114 return NULL;
3115 }
3116
3117 /*
3118 * On allocation, reduce the number of pages that are batch freed.
3119 * See nr_pcp_free() where free_factor is increased for subsequent
3120 * frees.
3121 */
3122 pcp->free_count >>= 1;
3123 list = &pcp->lists[order_to_pindex(migratetype, order)];
3124 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3125 pcp_spin_unlock(pcp);
3126 pcp_trylock_finish(UP_flags);
3127 if (page) {
3128 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3129 zone_statistics(preferred_zone, zone, 1);
3130 }
3131 return page;
3132 }
3133
3134 /*
3135 * Allocate a page from the given zone.
3136 * Use pcplists for THP or "cheap" high-order allocations.
3137 */
3138
3139 /*
3140 * Do not instrument rmqueue() with KMSAN. This function may call
3141 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3142 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3143 * may call rmqueue() again, which will result in a deadlock.
3144 */
3145 __no_sanitize_memory
3146 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3147 struct page *rmqueue(struct zone *preferred_zone,
3148 struct zone *zone, unsigned int order,
3149 gfp_t gfp_flags, unsigned int alloc_flags,
3150 int migratetype)
3151 {
3152 struct page *page;
3153
3154 if (likely(pcp_allowed_order(order))) {
3155 page = rmqueue_pcplist(preferred_zone, zone, order,
3156 migratetype, alloc_flags);
3157 if (likely(page))
3158 goto out;
3159 }
3160
3161 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3162 migratetype);
3163
3164 out:
3165 /* Separate test+clear to avoid unnecessary atomics */
3166 if ((alloc_flags & ALLOC_KSWAPD) &&
3167 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3168 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3169 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3170 }
3171
3172 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3173 return page;
3174 }
3175
3176 /*
3177 * Reserve the pageblock(s) surrounding an allocation request for
3178 * exclusive use of high-order atomic allocations if there are no
3179 * empty page blocks that contain a page with a suitable order
3180 */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)3181 static void reserve_highatomic_pageblock(struct page *page, int order,
3182 struct zone *zone)
3183 {
3184 int mt;
3185 unsigned long max_managed, flags;
3186
3187 /*
3188 * The number reserved as: minimum is 1 pageblock, maximum is
3189 * roughly 1% of a zone. But if 1% of a zone falls below a
3190 * pageblock size, then don't reserve any pageblocks.
3191 * Check is race-prone but harmless.
3192 */
3193 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3194 return;
3195 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3196 if (zone->nr_reserved_highatomic >= max_managed)
3197 return;
3198
3199 spin_lock_irqsave(&zone->lock, flags);
3200
3201 /* Recheck the nr_reserved_highatomic limit under the lock */
3202 if (zone->nr_reserved_highatomic >= max_managed)
3203 goto out_unlock;
3204
3205 /* Yoink! */
3206 mt = get_pageblock_migratetype(page);
3207 /* Only reserve normal pageblocks (i.e., they can merge with others) */
3208 if (!migratetype_is_mergeable(mt))
3209 goto out_unlock;
3210
3211 if (order < pageblock_order) {
3212 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3213 goto out_unlock;
3214 zone->nr_reserved_highatomic += pageblock_nr_pages;
3215 } else {
3216 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3217 zone->nr_reserved_highatomic += 1 << order;
3218 }
3219
3220 out_unlock:
3221 spin_unlock_irqrestore(&zone->lock, flags);
3222 }
3223
3224 /*
3225 * Used when an allocation is about to fail under memory pressure. This
3226 * potentially hurts the reliability of high-order allocations when under
3227 * intense memory pressure but failed atomic allocations should be easier
3228 * to recover from than an OOM.
3229 *
3230 * If @force is true, try to unreserve pageblocks even though highatomic
3231 * pageblock is exhausted.
3232 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)3233 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3234 bool force)
3235 {
3236 struct zonelist *zonelist = ac->zonelist;
3237 unsigned long flags;
3238 struct zoneref *z;
3239 struct zone *zone;
3240 struct page *page;
3241 int order;
3242 int ret;
3243
3244 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3245 ac->nodemask) {
3246 /*
3247 * Preserve at least one pageblock unless memory pressure
3248 * is really high.
3249 */
3250 if (!force && zone->nr_reserved_highatomic <=
3251 pageblock_nr_pages)
3252 continue;
3253
3254 spin_lock_irqsave(&zone->lock, flags);
3255 for (order = 0; order < NR_PAGE_ORDERS; order++) {
3256 struct free_area *area = &(zone->free_area[order]);
3257 unsigned long size;
3258
3259 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3260 if (!page)
3261 continue;
3262
3263 size = max(pageblock_nr_pages, 1UL << order);
3264 /*
3265 * It should never happen but changes to
3266 * locking could inadvertently allow a per-cpu
3267 * drain to add pages to MIGRATE_HIGHATOMIC
3268 * while unreserving so be safe and watch for
3269 * underflows.
3270 */
3271 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3272 size = zone->nr_reserved_highatomic;
3273 zone->nr_reserved_highatomic -= size;
3274
3275 /*
3276 * Convert to ac->migratetype and avoid the normal
3277 * pageblock stealing heuristics. Minimally, the caller
3278 * is doing the work and needs the pages. More
3279 * importantly, if the block was always converted to
3280 * MIGRATE_UNMOVABLE or another type then the number
3281 * of pageblocks that cannot be completely freed
3282 * may increase.
3283 */
3284 if (order < pageblock_order)
3285 ret = move_freepages_block(zone, page,
3286 MIGRATE_HIGHATOMIC,
3287 ac->migratetype);
3288 else {
3289 move_to_free_list(page, zone, order,
3290 MIGRATE_HIGHATOMIC,
3291 ac->migratetype);
3292 change_pageblock_range(page, order,
3293 ac->migratetype);
3294 ret = 1;
3295 }
3296 /*
3297 * Reserving the block(s) already succeeded,
3298 * so this should not fail on zone boundaries.
3299 */
3300 WARN_ON_ONCE(ret == -1);
3301 if (ret > 0) {
3302 spin_unlock_irqrestore(&zone->lock, flags);
3303 return ret;
3304 }
3305 }
3306 spin_unlock_irqrestore(&zone->lock, flags);
3307 }
3308
3309 return false;
3310 }
3311
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3312 static inline long __zone_watermark_unusable_free(struct zone *z,
3313 unsigned int order, unsigned int alloc_flags)
3314 {
3315 long unusable_free = (1 << order) - 1;
3316
3317 /*
3318 * If the caller does not have rights to reserves below the min
3319 * watermark then subtract the free pages reserved for highatomic.
3320 */
3321 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3322 unusable_free += READ_ONCE(z->nr_free_highatomic);
3323
3324 #ifdef CONFIG_CMA
3325 /* If allocation can't use CMA areas don't use free CMA pages */
3326 if (!(alloc_flags & ALLOC_CMA))
3327 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3328 #endif
3329
3330 return unusable_free;
3331 }
3332
3333 /*
3334 * Return true if free base pages are above 'mark'. For high-order checks it
3335 * will return true of the order-0 watermark is reached and there is at least
3336 * one free page of a suitable size. Checking now avoids taking the zone lock
3337 * to check in the allocation paths if no pages are free.
3338 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3339 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3340 int highest_zoneidx, unsigned int alloc_flags,
3341 long free_pages)
3342 {
3343 long min = mark;
3344 int o;
3345
3346 /* free_pages may go negative - that's OK */
3347 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3348
3349 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3350 /*
3351 * __GFP_HIGH allows access to 50% of the min reserve as well
3352 * as OOM.
3353 */
3354 if (alloc_flags & ALLOC_MIN_RESERVE) {
3355 min -= min / 2;
3356
3357 /*
3358 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3359 * access more reserves than just __GFP_HIGH. Other
3360 * non-blocking allocations requests such as GFP_NOWAIT
3361 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3362 * access to the min reserve.
3363 */
3364 if (alloc_flags & ALLOC_NON_BLOCK)
3365 min -= min / 4;
3366 }
3367
3368 /*
3369 * OOM victims can try even harder than the normal reserve
3370 * users on the grounds that it's definitely going to be in
3371 * the exit path shortly and free memory. Any allocation it
3372 * makes during the free path will be small and short-lived.
3373 */
3374 if (alloc_flags & ALLOC_OOM)
3375 min -= min / 2;
3376 }
3377
3378 /*
3379 * Check watermarks for an order-0 allocation request. If these
3380 * are not met, then a high-order request also cannot go ahead
3381 * even if a suitable page happened to be free.
3382 */
3383 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3384 return false;
3385
3386 /* If this is an order-0 request then the watermark is fine */
3387 if (!order)
3388 return true;
3389
3390 /* For a high-order request, check at least one suitable page is free */
3391 for (o = order; o < NR_PAGE_ORDERS; o++) {
3392 struct free_area *area = &z->free_area[o];
3393 int mt;
3394
3395 if (!area->nr_free)
3396 continue;
3397
3398 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3399 if (!free_area_empty(area, mt))
3400 return true;
3401 }
3402
3403 #ifdef CONFIG_CMA
3404 if ((alloc_flags & ALLOC_CMA) &&
3405 !free_area_empty(area, MIGRATE_CMA)) {
3406 return true;
3407 }
3408 #endif
3409 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3410 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3411 return true;
3412 }
3413 }
3414 return false;
3415 }
3416
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3417 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3418 int highest_zoneidx, unsigned int alloc_flags)
3419 {
3420 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3421 zone_page_state(z, NR_FREE_PAGES));
3422 }
3423
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3424 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3425 unsigned long mark, int highest_zoneidx,
3426 unsigned int alloc_flags, gfp_t gfp_mask)
3427 {
3428 long free_pages;
3429
3430 free_pages = zone_page_state(z, NR_FREE_PAGES);
3431
3432 /*
3433 * Fast check for order-0 only. If this fails then the reserves
3434 * need to be calculated.
3435 */
3436 if (!order) {
3437 long usable_free;
3438 long reserved;
3439
3440 usable_free = free_pages;
3441 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3442
3443 /* reserved may over estimate high-atomic reserves. */
3444 usable_free -= min(usable_free, reserved);
3445 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3446 return true;
3447 }
3448
3449 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3450 free_pages))
3451 return true;
3452
3453 /*
3454 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3455 * when checking the min watermark. The min watermark is the
3456 * point where boosting is ignored so that kswapd is woken up
3457 * when below the low watermark.
3458 */
3459 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3460 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3461 mark = z->_watermark[WMARK_MIN];
3462 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3463 alloc_flags, free_pages);
3464 }
3465
3466 return false;
3467 }
3468
3469 #ifdef CONFIG_NUMA
3470 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3471
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3472 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3473 {
3474 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3475 node_reclaim_distance;
3476 }
3477 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3478 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3479 {
3480 return true;
3481 }
3482 #endif /* CONFIG_NUMA */
3483
3484 /*
3485 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3486 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3487 * premature use of a lower zone may cause lowmem pressure problems that
3488 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3489 * probably too small. It only makes sense to spread allocations to avoid
3490 * fragmentation between the Normal and DMA32 zones.
3491 */
3492 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3493 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3494 {
3495 unsigned int alloc_flags;
3496
3497 /*
3498 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3499 * to save a branch.
3500 */
3501 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3502
3503 if (defrag_mode) {
3504 alloc_flags |= ALLOC_NOFRAGMENT;
3505 return alloc_flags;
3506 }
3507
3508 #ifdef CONFIG_ZONE_DMA32
3509 if (!zone)
3510 return alloc_flags;
3511
3512 if (zone_idx(zone) != ZONE_NORMAL)
3513 return alloc_flags;
3514
3515 /*
3516 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3517 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3518 * on UMA that if Normal is populated then so is DMA32.
3519 */
3520 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3521 if (nr_online_nodes > 1 && !populated_zone(--zone))
3522 return alloc_flags;
3523
3524 alloc_flags |= ALLOC_NOFRAGMENT;
3525 #endif /* CONFIG_ZONE_DMA32 */
3526 return alloc_flags;
3527 }
3528
3529 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3530 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3531 unsigned int alloc_flags)
3532 {
3533 #ifdef CONFIG_CMA
3534 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3535 alloc_flags |= ALLOC_CMA;
3536 #endif
3537 return alloc_flags;
3538 }
3539
3540 /*
3541 * get_page_from_freelist goes through the zonelist trying to allocate
3542 * a page.
3543 */
3544 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3545 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3546 const struct alloc_context *ac)
3547 {
3548 struct zoneref *z;
3549 struct zone *zone;
3550 struct pglist_data *last_pgdat = NULL;
3551 bool last_pgdat_dirty_ok = false;
3552 bool no_fallback;
3553
3554 retry:
3555 /*
3556 * Scan zonelist, looking for a zone with enough free.
3557 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3558 */
3559 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3560 z = ac->preferred_zoneref;
3561 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3562 ac->nodemask) {
3563 struct page *page;
3564 unsigned long mark;
3565
3566 if (cpusets_enabled() &&
3567 (alloc_flags & ALLOC_CPUSET) &&
3568 !__cpuset_zone_allowed(zone, gfp_mask))
3569 continue;
3570 /*
3571 * When allocating a page cache page for writing, we
3572 * want to get it from a node that is within its dirty
3573 * limit, such that no single node holds more than its
3574 * proportional share of globally allowed dirty pages.
3575 * The dirty limits take into account the node's
3576 * lowmem reserves and high watermark so that kswapd
3577 * should be able to balance it without having to
3578 * write pages from its LRU list.
3579 *
3580 * XXX: For now, allow allocations to potentially
3581 * exceed the per-node dirty limit in the slowpath
3582 * (spread_dirty_pages unset) before going into reclaim,
3583 * which is important when on a NUMA setup the allowed
3584 * nodes are together not big enough to reach the
3585 * global limit. The proper fix for these situations
3586 * will require awareness of nodes in the
3587 * dirty-throttling and the flusher threads.
3588 */
3589 if (ac->spread_dirty_pages) {
3590 if (last_pgdat != zone->zone_pgdat) {
3591 last_pgdat = zone->zone_pgdat;
3592 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3593 }
3594
3595 if (!last_pgdat_dirty_ok)
3596 continue;
3597 }
3598
3599 if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3600 zone != zonelist_zone(ac->preferred_zoneref)) {
3601 int local_nid;
3602
3603 /*
3604 * If moving to a remote node, retry but allow
3605 * fragmenting fallbacks. Locality is more important
3606 * than fragmentation avoidance.
3607 */
3608 local_nid = zonelist_node_idx(ac->preferred_zoneref);
3609 if (zone_to_nid(zone) != local_nid) {
3610 alloc_flags &= ~ALLOC_NOFRAGMENT;
3611 goto retry;
3612 }
3613 }
3614
3615 cond_accept_memory(zone, order, alloc_flags);
3616
3617 /*
3618 * Detect whether the number of free pages is below high
3619 * watermark. If so, we will decrease pcp->high and free
3620 * PCP pages in free path to reduce the possibility of
3621 * premature page reclaiming. Detection is done here to
3622 * avoid to do that in hotter free path.
3623 */
3624 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3625 goto check_alloc_wmark;
3626
3627 mark = high_wmark_pages(zone);
3628 if (zone_watermark_fast(zone, order, mark,
3629 ac->highest_zoneidx, alloc_flags,
3630 gfp_mask))
3631 goto try_this_zone;
3632 else
3633 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3634
3635 check_alloc_wmark:
3636 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3637 if (!zone_watermark_fast(zone, order, mark,
3638 ac->highest_zoneidx, alloc_flags,
3639 gfp_mask)) {
3640 int ret;
3641
3642 if (cond_accept_memory(zone, order, alloc_flags))
3643 goto try_this_zone;
3644
3645 /*
3646 * Watermark failed for this zone, but see if we can
3647 * grow this zone if it contains deferred pages.
3648 */
3649 if (deferred_pages_enabled()) {
3650 if (_deferred_grow_zone(zone, order))
3651 goto try_this_zone;
3652 }
3653 /* Checked here to keep the fast path fast */
3654 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3655 if (alloc_flags & ALLOC_NO_WATERMARKS)
3656 goto try_this_zone;
3657
3658 if (!node_reclaim_enabled() ||
3659 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3660 continue;
3661
3662 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3663 switch (ret) {
3664 case NODE_RECLAIM_NOSCAN:
3665 /* did not scan */
3666 continue;
3667 case NODE_RECLAIM_FULL:
3668 /* scanned but unreclaimable */
3669 continue;
3670 default:
3671 /* did we reclaim enough */
3672 if (zone_watermark_ok(zone, order, mark,
3673 ac->highest_zoneidx, alloc_flags))
3674 goto try_this_zone;
3675
3676 continue;
3677 }
3678 }
3679
3680 try_this_zone:
3681 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3682 gfp_mask, alloc_flags, ac->migratetype);
3683 if (page) {
3684 prep_new_page(page, order, gfp_mask, alloc_flags);
3685
3686 /*
3687 * If this is a high-order atomic allocation then check
3688 * if the pageblock should be reserved for the future
3689 */
3690 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3691 reserve_highatomic_pageblock(page, order, zone);
3692
3693 return page;
3694 } else {
3695 if (cond_accept_memory(zone, order, alloc_flags))
3696 goto try_this_zone;
3697
3698 /* Try again if zone has deferred pages */
3699 if (deferred_pages_enabled()) {
3700 if (_deferred_grow_zone(zone, order))
3701 goto try_this_zone;
3702 }
3703 }
3704 }
3705
3706 /*
3707 * It's possible on a UMA machine to get through all zones that are
3708 * fragmented. If avoiding fragmentation, reset and try again.
3709 */
3710 if (no_fallback && !defrag_mode) {
3711 alloc_flags &= ~ALLOC_NOFRAGMENT;
3712 goto retry;
3713 }
3714
3715 return NULL;
3716 }
3717
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3718 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3719 {
3720 unsigned int filter = SHOW_MEM_FILTER_NODES;
3721
3722 /*
3723 * This documents exceptions given to allocations in certain
3724 * contexts that are allowed to allocate outside current's set
3725 * of allowed nodes.
3726 */
3727 if (!(gfp_mask & __GFP_NOMEMALLOC))
3728 if (tsk_is_oom_victim(current) ||
3729 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3730 filter &= ~SHOW_MEM_FILTER_NODES;
3731 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3732 filter &= ~SHOW_MEM_FILTER_NODES;
3733
3734 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3735 }
3736
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3737 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3738 {
3739 struct va_format vaf;
3740 va_list args;
3741 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3742
3743 if ((gfp_mask & __GFP_NOWARN) ||
3744 !__ratelimit(&nopage_rs) ||
3745 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3746 return;
3747
3748 va_start(args, fmt);
3749 vaf.fmt = fmt;
3750 vaf.va = &args;
3751 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3752 current->comm, &vaf, gfp_mask, &gfp_mask,
3753 nodemask_pr_args(nodemask));
3754 va_end(args);
3755
3756 cpuset_print_current_mems_allowed();
3757 pr_cont("\n");
3758 dump_stack();
3759 warn_alloc_show_mem(gfp_mask, nodemask);
3760 }
3761
3762 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3763 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3764 unsigned int alloc_flags,
3765 const struct alloc_context *ac)
3766 {
3767 struct page *page;
3768
3769 page = get_page_from_freelist(gfp_mask, order,
3770 alloc_flags|ALLOC_CPUSET, ac);
3771 /*
3772 * fallback to ignore cpuset restriction if our nodes
3773 * are depleted
3774 */
3775 if (!page)
3776 page = get_page_from_freelist(gfp_mask, order,
3777 alloc_flags, ac);
3778 return page;
3779 }
3780
3781 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3782 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3783 const struct alloc_context *ac, unsigned long *did_some_progress)
3784 {
3785 struct oom_control oc = {
3786 .zonelist = ac->zonelist,
3787 .nodemask = ac->nodemask,
3788 .memcg = NULL,
3789 .gfp_mask = gfp_mask,
3790 .order = order,
3791 };
3792 struct page *page;
3793
3794 *did_some_progress = 0;
3795
3796 /*
3797 * Acquire the oom lock. If that fails, somebody else is
3798 * making progress for us.
3799 */
3800 if (!mutex_trylock(&oom_lock)) {
3801 *did_some_progress = 1;
3802 schedule_timeout_uninterruptible(1);
3803 return NULL;
3804 }
3805
3806 /*
3807 * Go through the zonelist yet one more time, keep very high watermark
3808 * here, this is only to catch a parallel oom killing, we must fail if
3809 * we're still under heavy pressure. But make sure that this reclaim
3810 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3811 * allocation which will never fail due to oom_lock already held.
3812 */
3813 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3814 ~__GFP_DIRECT_RECLAIM, order,
3815 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3816 if (page)
3817 goto out;
3818
3819 /* Coredumps can quickly deplete all memory reserves */
3820 if (current->flags & PF_DUMPCORE)
3821 goto out;
3822 /* The OOM killer will not help higher order allocs */
3823 if (order > PAGE_ALLOC_COSTLY_ORDER)
3824 goto out;
3825 /*
3826 * We have already exhausted all our reclaim opportunities without any
3827 * success so it is time to admit defeat. We will skip the OOM killer
3828 * because it is very likely that the caller has a more reasonable
3829 * fallback than shooting a random task.
3830 *
3831 * The OOM killer may not free memory on a specific node.
3832 */
3833 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3834 goto out;
3835 /* The OOM killer does not needlessly kill tasks for lowmem */
3836 if (ac->highest_zoneidx < ZONE_NORMAL)
3837 goto out;
3838 if (pm_suspended_storage())
3839 goto out;
3840 /*
3841 * XXX: GFP_NOFS allocations should rather fail than rely on
3842 * other request to make a forward progress.
3843 * We are in an unfortunate situation where out_of_memory cannot
3844 * do much for this context but let's try it to at least get
3845 * access to memory reserved if the current task is killed (see
3846 * out_of_memory). Once filesystems are ready to handle allocation
3847 * failures more gracefully we should just bail out here.
3848 */
3849
3850 /* Exhausted what can be done so it's blame time */
3851 if (out_of_memory(&oc) ||
3852 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3853 *did_some_progress = 1;
3854
3855 /*
3856 * Help non-failing allocations by giving them access to memory
3857 * reserves
3858 */
3859 if (gfp_mask & __GFP_NOFAIL)
3860 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3861 ALLOC_NO_WATERMARKS, ac);
3862 }
3863 out:
3864 mutex_unlock(&oom_lock);
3865 return page;
3866 }
3867
3868 /*
3869 * Maximum number of compaction retries with a progress before OOM
3870 * killer is consider as the only way to move forward.
3871 */
3872 #define MAX_COMPACT_RETRIES 16
3873
3874 #ifdef CONFIG_COMPACTION
3875 /* Try memory compaction for high-order allocations before reclaim */
3876 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3877 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3878 unsigned int alloc_flags, const struct alloc_context *ac,
3879 enum compact_priority prio, enum compact_result *compact_result)
3880 {
3881 struct page *page = NULL;
3882 unsigned long pflags;
3883 unsigned int noreclaim_flag;
3884
3885 if (!order)
3886 return NULL;
3887
3888 psi_memstall_enter(&pflags);
3889 delayacct_compact_start();
3890 noreclaim_flag = memalloc_noreclaim_save();
3891
3892 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3893 prio, &page);
3894
3895 memalloc_noreclaim_restore(noreclaim_flag);
3896 psi_memstall_leave(&pflags);
3897 delayacct_compact_end();
3898
3899 if (*compact_result == COMPACT_SKIPPED)
3900 return NULL;
3901 /*
3902 * At least in one zone compaction wasn't deferred or skipped, so let's
3903 * count a compaction stall
3904 */
3905 count_vm_event(COMPACTSTALL);
3906
3907 /* Prep a captured page if available */
3908 if (page)
3909 prep_new_page(page, order, gfp_mask, alloc_flags);
3910
3911 /* Try get a page from the freelist if available */
3912 if (!page)
3913 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3914
3915 if (page) {
3916 struct zone *zone = page_zone(page);
3917
3918 zone->compact_blockskip_flush = false;
3919 compaction_defer_reset(zone, order, true);
3920 count_vm_event(COMPACTSUCCESS);
3921 return page;
3922 }
3923
3924 /*
3925 * It's bad if compaction run occurs and fails. The most likely reason
3926 * is that pages exist, but not enough to satisfy watermarks.
3927 */
3928 count_vm_event(COMPACTFAIL);
3929
3930 cond_resched();
3931
3932 return NULL;
3933 }
3934
3935 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3936 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3937 enum compact_result compact_result,
3938 enum compact_priority *compact_priority,
3939 int *compaction_retries)
3940 {
3941 int max_retries = MAX_COMPACT_RETRIES;
3942 int min_priority;
3943 bool ret = false;
3944 int retries = *compaction_retries;
3945 enum compact_priority priority = *compact_priority;
3946
3947 if (!order)
3948 return false;
3949
3950 if (fatal_signal_pending(current))
3951 return false;
3952
3953 /*
3954 * Compaction was skipped due to a lack of free order-0
3955 * migration targets. Continue if reclaim can help.
3956 */
3957 if (compact_result == COMPACT_SKIPPED) {
3958 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3959 goto out;
3960 }
3961
3962 /*
3963 * Compaction managed to coalesce some page blocks, but the
3964 * allocation failed presumably due to a race. Retry some.
3965 */
3966 if (compact_result == COMPACT_SUCCESS) {
3967 /*
3968 * !costly requests are much more important than
3969 * __GFP_RETRY_MAYFAIL costly ones because they are de
3970 * facto nofail and invoke OOM killer to move on while
3971 * costly can fail and users are ready to cope with
3972 * that. 1/4 retries is rather arbitrary but we would
3973 * need much more detailed feedback from compaction to
3974 * make a better decision.
3975 */
3976 if (order > PAGE_ALLOC_COSTLY_ORDER)
3977 max_retries /= 4;
3978
3979 if (++(*compaction_retries) <= max_retries) {
3980 ret = true;
3981 goto out;
3982 }
3983 }
3984
3985 /*
3986 * Compaction failed. Retry with increasing priority.
3987 */
3988 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3989 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3990
3991 if (*compact_priority > min_priority) {
3992 (*compact_priority)--;
3993 *compaction_retries = 0;
3994 ret = true;
3995 }
3996 out:
3997 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3998 return ret;
3999 }
4000 #else
4001 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4002 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4003 unsigned int alloc_flags, const struct alloc_context *ac,
4004 enum compact_priority prio, enum compact_result *compact_result)
4005 {
4006 *compact_result = COMPACT_SKIPPED;
4007 return NULL;
4008 }
4009
4010 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4011 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4012 enum compact_result compact_result,
4013 enum compact_priority *compact_priority,
4014 int *compaction_retries)
4015 {
4016 struct zone *zone;
4017 struct zoneref *z;
4018
4019 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4020 return false;
4021
4022 /*
4023 * There are setups with compaction disabled which would prefer to loop
4024 * inside the allocator rather than hit the oom killer prematurely.
4025 * Let's give them a good hope and keep retrying while the order-0
4026 * watermarks are OK.
4027 */
4028 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4029 ac->highest_zoneidx, ac->nodemask) {
4030 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4031 ac->highest_zoneidx, alloc_flags))
4032 return true;
4033 }
4034 return false;
4035 }
4036 #endif /* CONFIG_COMPACTION */
4037
4038 #ifdef CONFIG_LOCKDEP
4039 static struct lockdep_map __fs_reclaim_map =
4040 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4041
__need_reclaim(gfp_t gfp_mask)4042 static bool __need_reclaim(gfp_t gfp_mask)
4043 {
4044 /* no reclaim without waiting on it */
4045 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4046 return false;
4047
4048 /* this guy won't enter reclaim */
4049 if (current->flags & PF_MEMALLOC)
4050 return false;
4051
4052 if (gfp_mask & __GFP_NOLOCKDEP)
4053 return false;
4054
4055 return true;
4056 }
4057
__fs_reclaim_acquire(unsigned long ip)4058 void __fs_reclaim_acquire(unsigned long ip)
4059 {
4060 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4061 }
4062
__fs_reclaim_release(unsigned long ip)4063 void __fs_reclaim_release(unsigned long ip)
4064 {
4065 lock_release(&__fs_reclaim_map, ip);
4066 }
4067
fs_reclaim_acquire(gfp_t gfp_mask)4068 void fs_reclaim_acquire(gfp_t gfp_mask)
4069 {
4070 gfp_mask = current_gfp_context(gfp_mask);
4071
4072 if (__need_reclaim(gfp_mask)) {
4073 if (gfp_mask & __GFP_FS)
4074 __fs_reclaim_acquire(_RET_IP_);
4075
4076 #ifdef CONFIG_MMU_NOTIFIER
4077 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4078 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4079 #endif
4080
4081 }
4082 }
4083 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4084
fs_reclaim_release(gfp_t gfp_mask)4085 void fs_reclaim_release(gfp_t gfp_mask)
4086 {
4087 gfp_mask = current_gfp_context(gfp_mask);
4088
4089 if (__need_reclaim(gfp_mask)) {
4090 if (gfp_mask & __GFP_FS)
4091 __fs_reclaim_release(_RET_IP_);
4092 }
4093 }
4094 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4095 #endif
4096
4097 /*
4098 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4099 * have been rebuilt so allocation retries. Reader side does not lock and
4100 * retries the allocation if zonelist changes. Writer side is protected by the
4101 * embedded spin_lock.
4102 */
4103 static DEFINE_SEQLOCK(zonelist_update_seq);
4104
zonelist_iter_begin(void)4105 static unsigned int zonelist_iter_begin(void)
4106 {
4107 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4108 return read_seqbegin(&zonelist_update_seq);
4109
4110 return 0;
4111 }
4112
check_retry_zonelist(unsigned int seq)4113 static unsigned int check_retry_zonelist(unsigned int seq)
4114 {
4115 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4116 return read_seqretry(&zonelist_update_seq, seq);
4117
4118 return seq;
4119 }
4120
4121 /* Perform direct synchronous page reclaim */
4122 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4123 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4124 const struct alloc_context *ac)
4125 {
4126 unsigned int noreclaim_flag;
4127 unsigned long progress;
4128
4129 cond_resched();
4130
4131 /* We now go into synchronous reclaim */
4132 cpuset_memory_pressure_bump();
4133 fs_reclaim_acquire(gfp_mask);
4134 noreclaim_flag = memalloc_noreclaim_save();
4135
4136 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4137 ac->nodemask);
4138
4139 memalloc_noreclaim_restore(noreclaim_flag);
4140 fs_reclaim_release(gfp_mask);
4141
4142 cond_resched();
4143
4144 return progress;
4145 }
4146
4147 /* The really slow allocator path where we enter direct reclaim */
4148 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4149 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4150 unsigned int alloc_flags, const struct alloc_context *ac,
4151 unsigned long *did_some_progress)
4152 {
4153 struct page *page = NULL;
4154 unsigned long pflags;
4155 bool drained = false;
4156
4157 psi_memstall_enter(&pflags);
4158 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4159 if (unlikely(!(*did_some_progress)))
4160 goto out;
4161
4162 retry:
4163 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4164
4165 /*
4166 * If an allocation failed after direct reclaim, it could be because
4167 * pages are pinned on the per-cpu lists or in high alloc reserves.
4168 * Shrink them and try again
4169 */
4170 if (!page && !drained) {
4171 unreserve_highatomic_pageblock(ac, false);
4172 drain_all_pages(NULL);
4173 drained = true;
4174 goto retry;
4175 }
4176 out:
4177 psi_memstall_leave(&pflags);
4178
4179 return page;
4180 }
4181
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4182 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4183 const struct alloc_context *ac)
4184 {
4185 struct zoneref *z;
4186 struct zone *zone;
4187 pg_data_t *last_pgdat = NULL;
4188 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4189 unsigned int reclaim_order;
4190
4191 if (defrag_mode)
4192 reclaim_order = max(order, pageblock_order);
4193 else
4194 reclaim_order = order;
4195
4196 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4197 ac->nodemask) {
4198 if (!managed_zone(zone))
4199 continue;
4200 if (last_pgdat == zone->zone_pgdat)
4201 continue;
4202 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4203 last_pgdat = zone->zone_pgdat;
4204 }
4205 }
4206
4207 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)4208 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4209 {
4210 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4211
4212 /*
4213 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4214 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4215 * to save two branches.
4216 */
4217 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4218 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4219
4220 /*
4221 * The caller may dip into page reserves a bit more if the caller
4222 * cannot run direct reclaim, or if the caller has realtime scheduling
4223 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4224 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4225 */
4226 alloc_flags |= (__force int)
4227 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4228
4229 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4230 /*
4231 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4232 * if it can't schedule.
4233 */
4234 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4235 alloc_flags |= ALLOC_NON_BLOCK;
4236
4237 if (order > 0)
4238 alloc_flags |= ALLOC_HIGHATOMIC;
4239 }
4240
4241 /*
4242 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4243 * GFP_ATOMIC) rather than fail, see the comment for
4244 * cpuset_node_allowed().
4245 */
4246 if (alloc_flags & ALLOC_MIN_RESERVE)
4247 alloc_flags &= ~ALLOC_CPUSET;
4248 } else if (unlikely(rt_or_dl_task(current)) && in_task())
4249 alloc_flags |= ALLOC_MIN_RESERVE;
4250
4251 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4252
4253 if (defrag_mode)
4254 alloc_flags |= ALLOC_NOFRAGMENT;
4255
4256 return alloc_flags;
4257 }
4258
oom_reserves_allowed(struct task_struct * tsk)4259 static bool oom_reserves_allowed(struct task_struct *tsk)
4260 {
4261 if (!tsk_is_oom_victim(tsk))
4262 return false;
4263
4264 /*
4265 * !MMU doesn't have oom reaper so give access to memory reserves
4266 * only to the thread with TIF_MEMDIE set
4267 */
4268 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4269 return false;
4270
4271 return true;
4272 }
4273
4274 /*
4275 * Distinguish requests which really need access to full memory
4276 * reserves from oom victims which can live with a portion of it
4277 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4278 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4279 {
4280 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4281 return 0;
4282 if (gfp_mask & __GFP_MEMALLOC)
4283 return ALLOC_NO_WATERMARKS;
4284 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4285 return ALLOC_NO_WATERMARKS;
4286 if (!in_interrupt()) {
4287 if (current->flags & PF_MEMALLOC)
4288 return ALLOC_NO_WATERMARKS;
4289 else if (oom_reserves_allowed(current))
4290 return ALLOC_OOM;
4291 }
4292
4293 return 0;
4294 }
4295
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4296 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4297 {
4298 return !!__gfp_pfmemalloc_flags(gfp_mask);
4299 }
4300
4301 /*
4302 * Checks whether it makes sense to retry the reclaim to make a forward progress
4303 * for the given allocation request.
4304 *
4305 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4306 * without success, or when we couldn't even meet the watermark if we
4307 * reclaimed all remaining pages on the LRU lists.
4308 *
4309 * Returns true if a retry is viable or false to enter the oom path.
4310 */
4311 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4312 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4313 struct alloc_context *ac, int alloc_flags,
4314 bool did_some_progress, int *no_progress_loops)
4315 {
4316 struct zone *zone;
4317 struct zoneref *z;
4318 bool ret = false;
4319
4320 /*
4321 * Costly allocations might have made a progress but this doesn't mean
4322 * their order will become available due to high fragmentation so
4323 * always increment the no progress counter for them
4324 */
4325 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4326 *no_progress_loops = 0;
4327 else
4328 (*no_progress_loops)++;
4329
4330 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4331 goto out;
4332
4333
4334 /*
4335 * Keep reclaiming pages while there is a chance this will lead
4336 * somewhere. If none of the target zones can satisfy our allocation
4337 * request even if all reclaimable pages are considered then we are
4338 * screwed and have to go OOM.
4339 */
4340 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4341 ac->highest_zoneidx, ac->nodemask) {
4342 unsigned long available;
4343 unsigned long reclaimable;
4344 unsigned long min_wmark = min_wmark_pages(zone);
4345 bool wmark;
4346
4347 if (cpusets_enabled() &&
4348 (alloc_flags & ALLOC_CPUSET) &&
4349 !__cpuset_zone_allowed(zone, gfp_mask))
4350 continue;
4351
4352 available = reclaimable = zone_reclaimable_pages(zone);
4353 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4354
4355 /*
4356 * Would the allocation succeed if we reclaimed all
4357 * reclaimable pages?
4358 */
4359 wmark = __zone_watermark_ok(zone, order, min_wmark,
4360 ac->highest_zoneidx, alloc_flags, available);
4361 trace_reclaim_retry_zone(z, order, reclaimable,
4362 available, min_wmark, *no_progress_loops, wmark);
4363 if (wmark) {
4364 ret = true;
4365 break;
4366 }
4367 }
4368
4369 /*
4370 * Memory allocation/reclaim might be called from a WQ context and the
4371 * current implementation of the WQ concurrency control doesn't
4372 * recognize that a particular WQ is congested if the worker thread is
4373 * looping without ever sleeping. Therefore we have to do a short sleep
4374 * here rather than calling cond_resched().
4375 */
4376 if (current->flags & PF_WQ_WORKER)
4377 schedule_timeout_uninterruptible(1);
4378 else
4379 cond_resched();
4380 out:
4381 /* Before OOM, exhaust highatomic_reserve */
4382 if (!ret)
4383 return unreserve_highatomic_pageblock(ac, true);
4384
4385 return ret;
4386 }
4387
4388 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4389 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4390 {
4391 /*
4392 * It's possible that cpuset's mems_allowed and the nodemask from
4393 * mempolicy don't intersect. This should be normally dealt with by
4394 * policy_nodemask(), but it's possible to race with cpuset update in
4395 * such a way the check therein was true, and then it became false
4396 * before we got our cpuset_mems_cookie here.
4397 * This assumes that for all allocations, ac->nodemask can come only
4398 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4399 * when it does not intersect with the cpuset restrictions) or the
4400 * caller can deal with a violated nodemask.
4401 */
4402 if (cpusets_enabled() && ac->nodemask &&
4403 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4404 ac->nodemask = NULL;
4405 return true;
4406 }
4407
4408 /*
4409 * When updating a task's mems_allowed or mempolicy nodemask, it is
4410 * possible to race with parallel threads in such a way that our
4411 * allocation can fail while the mask is being updated. If we are about
4412 * to fail, check if the cpuset changed during allocation and if so,
4413 * retry.
4414 */
4415 if (read_mems_allowed_retry(cpuset_mems_cookie))
4416 return true;
4417
4418 return false;
4419 }
4420
4421 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4422 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4423 struct alloc_context *ac)
4424 {
4425 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4426 bool can_compact = gfp_compaction_allowed(gfp_mask);
4427 bool nofail = gfp_mask & __GFP_NOFAIL;
4428 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4429 struct page *page = NULL;
4430 unsigned int alloc_flags;
4431 unsigned long did_some_progress;
4432 enum compact_priority compact_priority;
4433 enum compact_result compact_result;
4434 int compaction_retries;
4435 int no_progress_loops;
4436 unsigned int cpuset_mems_cookie;
4437 unsigned int zonelist_iter_cookie;
4438 int reserve_flags;
4439
4440 if (unlikely(nofail)) {
4441 /*
4442 * We most definitely don't want callers attempting to
4443 * allocate greater than order-1 page units with __GFP_NOFAIL.
4444 */
4445 WARN_ON_ONCE(order > 1);
4446 /*
4447 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4448 * otherwise, we may result in lockup.
4449 */
4450 WARN_ON_ONCE(!can_direct_reclaim);
4451 /*
4452 * PF_MEMALLOC request from this context is rather bizarre
4453 * because we cannot reclaim anything and only can loop waiting
4454 * for somebody to do a work for us.
4455 */
4456 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4457 }
4458
4459 restart:
4460 compaction_retries = 0;
4461 no_progress_loops = 0;
4462 compact_result = COMPACT_SKIPPED;
4463 compact_priority = DEF_COMPACT_PRIORITY;
4464 cpuset_mems_cookie = read_mems_allowed_begin();
4465 zonelist_iter_cookie = zonelist_iter_begin();
4466
4467 /*
4468 * The fast path uses conservative alloc_flags to succeed only until
4469 * kswapd needs to be woken up, and to avoid the cost of setting up
4470 * alloc_flags precisely. So we do that now.
4471 */
4472 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4473
4474 /*
4475 * We need to recalculate the starting point for the zonelist iterator
4476 * because we might have used different nodemask in the fast path, or
4477 * there was a cpuset modification and we are retrying - otherwise we
4478 * could end up iterating over non-eligible zones endlessly.
4479 */
4480 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4481 ac->highest_zoneidx, ac->nodemask);
4482 if (!zonelist_zone(ac->preferred_zoneref))
4483 goto nopage;
4484
4485 /*
4486 * Check for insane configurations where the cpuset doesn't contain
4487 * any suitable zone to satisfy the request - e.g. non-movable
4488 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4489 */
4490 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4491 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4492 ac->highest_zoneidx,
4493 &cpuset_current_mems_allowed);
4494 if (!zonelist_zone(z))
4495 goto nopage;
4496 }
4497
4498 if (alloc_flags & ALLOC_KSWAPD)
4499 wake_all_kswapds(order, gfp_mask, ac);
4500
4501 /*
4502 * The adjusted alloc_flags might result in immediate success, so try
4503 * that first
4504 */
4505 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4506 if (page)
4507 goto got_pg;
4508
4509 /*
4510 * For costly allocations, try direct compaction first, as it's likely
4511 * that we have enough base pages and don't need to reclaim. For non-
4512 * movable high-order allocations, do that as well, as compaction will
4513 * try prevent permanent fragmentation by migrating from blocks of the
4514 * same migratetype.
4515 * Don't try this for allocations that are allowed to ignore
4516 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4517 */
4518 if (can_direct_reclaim && can_compact &&
4519 (costly_order ||
4520 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4521 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4522 page = __alloc_pages_direct_compact(gfp_mask, order,
4523 alloc_flags, ac,
4524 INIT_COMPACT_PRIORITY,
4525 &compact_result);
4526 if (page)
4527 goto got_pg;
4528
4529 /*
4530 * Checks for costly allocations with __GFP_NORETRY, which
4531 * includes some THP page fault allocations
4532 */
4533 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4534 /*
4535 * If allocating entire pageblock(s) and compaction
4536 * failed because all zones are below low watermarks
4537 * or is prohibited because it recently failed at this
4538 * order, fail immediately unless the allocator has
4539 * requested compaction and reclaim retry.
4540 *
4541 * Reclaim is
4542 * - potentially very expensive because zones are far
4543 * below their low watermarks or this is part of very
4544 * bursty high order allocations,
4545 * - not guaranteed to help because isolate_freepages()
4546 * may not iterate over freed pages as part of its
4547 * linear scan, and
4548 * - unlikely to make entire pageblocks free on its
4549 * own.
4550 */
4551 if (compact_result == COMPACT_SKIPPED ||
4552 compact_result == COMPACT_DEFERRED)
4553 goto nopage;
4554
4555 /*
4556 * Looks like reclaim/compaction is worth trying, but
4557 * sync compaction could be very expensive, so keep
4558 * using async compaction.
4559 */
4560 compact_priority = INIT_COMPACT_PRIORITY;
4561 }
4562 }
4563
4564 retry:
4565 /*
4566 * Deal with possible cpuset update races or zonelist updates to avoid
4567 * infinite retries.
4568 */
4569 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4570 check_retry_zonelist(zonelist_iter_cookie))
4571 goto restart;
4572
4573 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4574 if (alloc_flags & ALLOC_KSWAPD)
4575 wake_all_kswapds(order, gfp_mask, ac);
4576
4577 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4578 if (reserve_flags)
4579 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4580 (alloc_flags & ALLOC_KSWAPD);
4581
4582 /*
4583 * Reset the nodemask and zonelist iterators if memory policies can be
4584 * ignored. These allocations are high priority and system rather than
4585 * user oriented.
4586 */
4587 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4588 ac->nodemask = NULL;
4589 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4590 ac->highest_zoneidx, ac->nodemask);
4591 }
4592
4593 /* Attempt with potentially adjusted zonelist and alloc_flags */
4594 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4595 if (page)
4596 goto got_pg;
4597
4598 /* Caller is not willing to reclaim, we can't balance anything */
4599 if (!can_direct_reclaim)
4600 goto nopage;
4601
4602 /* Avoid recursion of direct reclaim */
4603 if (current->flags & PF_MEMALLOC)
4604 goto nopage;
4605
4606 /* Try direct reclaim and then allocating */
4607 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4608 &did_some_progress);
4609 if (page)
4610 goto got_pg;
4611
4612 /* Try direct compaction and then allocating */
4613 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4614 compact_priority, &compact_result);
4615 if (page)
4616 goto got_pg;
4617
4618 /* Do not loop if specifically requested */
4619 if (gfp_mask & __GFP_NORETRY)
4620 goto nopage;
4621
4622 /*
4623 * Do not retry costly high order allocations unless they are
4624 * __GFP_RETRY_MAYFAIL and we can compact
4625 */
4626 if (costly_order && (!can_compact ||
4627 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4628 goto nopage;
4629
4630 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4631 did_some_progress > 0, &no_progress_loops))
4632 goto retry;
4633
4634 /*
4635 * It doesn't make any sense to retry for the compaction if the order-0
4636 * reclaim is not able to make any progress because the current
4637 * implementation of the compaction depends on the sufficient amount
4638 * of free memory (see __compaction_suitable)
4639 */
4640 if (did_some_progress > 0 && can_compact &&
4641 should_compact_retry(ac, order, alloc_flags,
4642 compact_result, &compact_priority,
4643 &compaction_retries))
4644 goto retry;
4645
4646 /* Reclaim/compaction failed to prevent the fallback */
4647 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4648 alloc_flags &= ~ALLOC_NOFRAGMENT;
4649 goto retry;
4650 }
4651
4652 /*
4653 * Deal with possible cpuset update races or zonelist updates to avoid
4654 * a unnecessary OOM kill.
4655 */
4656 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4657 check_retry_zonelist(zonelist_iter_cookie))
4658 goto restart;
4659
4660 /* Reclaim has failed us, start killing things */
4661 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4662 if (page)
4663 goto got_pg;
4664
4665 /* Avoid allocations with no watermarks from looping endlessly */
4666 if (tsk_is_oom_victim(current) &&
4667 (alloc_flags & ALLOC_OOM ||
4668 (gfp_mask & __GFP_NOMEMALLOC)))
4669 goto nopage;
4670
4671 /* Retry as long as the OOM killer is making progress */
4672 if (did_some_progress) {
4673 no_progress_loops = 0;
4674 goto retry;
4675 }
4676
4677 nopage:
4678 /*
4679 * Deal with possible cpuset update races or zonelist updates to avoid
4680 * a unnecessary OOM kill.
4681 */
4682 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4683 check_retry_zonelist(zonelist_iter_cookie))
4684 goto restart;
4685
4686 /*
4687 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4688 * we always retry
4689 */
4690 if (unlikely(nofail)) {
4691 /*
4692 * Lacking direct_reclaim we can't do anything to reclaim memory,
4693 * we disregard these unreasonable nofail requests and still
4694 * return NULL
4695 */
4696 if (!can_direct_reclaim)
4697 goto fail;
4698
4699 /*
4700 * Help non-failing allocations by giving some access to memory
4701 * reserves normally used for high priority non-blocking
4702 * allocations but do not use ALLOC_NO_WATERMARKS because this
4703 * could deplete whole memory reserves which would just make
4704 * the situation worse.
4705 */
4706 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4707 if (page)
4708 goto got_pg;
4709
4710 cond_resched();
4711 goto retry;
4712 }
4713 fail:
4714 warn_alloc(gfp_mask, ac->nodemask,
4715 "page allocation failure: order:%u", order);
4716 got_pg:
4717 return page;
4718 }
4719
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4720 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4721 int preferred_nid, nodemask_t *nodemask,
4722 struct alloc_context *ac, gfp_t *alloc_gfp,
4723 unsigned int *alloc_flags)
4724 {
4725 ac->highest_zoneidx = gfp_zone(gfp_mask);
4726 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4727 ac->nodemask = nodemask;
4728 ac->migratetype = gfp_migratetype(gfp_mask);
4729
4730 if (cpusets_enabled()) {
4731 *alloc_gfp |= __GFP_HARDWALL;
4732 /*
4733 * When we are in the interrupt context, it is irrelevant
4734 * to the current task context. It means that any node ok.
4735 */
4736 if (in_task() && !ac->nodemask)
4737 ac->nodemask = &cpuset_current_mems_allowed;
4738 else
4739 *alloc_flags |= ALLOC_CPUSET;
4740 }
4741
4742 might_alloc(gfp_mask);
4743
4744 /*
4745 * Don't invoke should_fail logic, since it may call
4746 * get_random_u32() and printk() which need to spin_lock.
4747 */
4748 if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4749 should_fail_alloc_page(gfp_mask, order))
4750 return false;
4751
4752 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4753
4754 /* Dirty zone balancing only done in the fast path */
4755 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4756
4757 /*
4758 * The preferred zone is used for statistics but crucially it is
4759 * also used as the starting point for the zonelist iterator. It
4760 * may get reset for allocations that ignore memory policies.
4761 */
4762 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4763 ac->highest_zoneidx, ac->nodemask);
4764
4765 return true;
4766 }
4767
4768 /*
4769 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4770 * @gfp: GFP flags for the allocation
4771 * @preferred_nid: The preferred NUMA node ID to allocate from
4772 * @nodemask: Set of nodes to allocate from, may be NULL
4773 * @nr_pages: The number of pages desired in the array
4774 * @page_array: Array to store the pages
4775 *
4776 * This is a batched version of the page allocator that attempts to
4777 * allocate nr_pages quickly. Pages are added to the page_array.
4778 *
4779 * Note that only NULL elements are populated with pages and nr_pages
4780 * is the maximum number of pages that will be stored in the array.
4781 *
4782 * Returns the number of pages in the array.
4783 */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4784 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4785 nodemask_t *nodemask, int nr_pages,
4786 struct page **page_array)
4787 {
4788 struct page *page;
4789 unsigned long __maybe_unused UP_flags;
4790 struct zone *zone;
4791 struct zoneref *z;
4792 struct per_cpu_pages *pcp;
4793 struct list_head *pcp_list;
4794 struct alloc_context ac;
4795 gfp_t alloc_gfp;
4796 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4797 int nr_populated = 0, nr_account = 0;
4798
4799 /*
4800 * Skip populated array elements to determine if any pages need
4801 * to be allocated before disabling IRQs.
4802 */
4803 while (nr_populated < nr_pages && page_array[nr_populated])
4804 nr_populated++;
4805
4806 /* No pages requested? */
4807 if (unlikely(nr_pages <= 0))
4808 goto out;
4809
4810 /* Already populated array? */
4811 if (unlikely(nr_pages - nr_populated == 0))
4812 goto out;
4813
4814 /* Bulk allocator does not support memcg accounting. */
4815 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4816 goto failed;
4817
4818 /* Use the single page allocator for one page. */
4819 if (nr_pages - nr_populated == 1)
4820 goto failed;
4821
4822 #ifdef CONFIG_PAGE_OWNER
4823 /*
4824 * PAGE_OWNER may recurse into the allocator to allocate space to
4825 * save the stack with pagesets.lock held. Releasing/reacquiring
4826 * removes much of the performance benefit of bulk allocation so
4827 * force the caller to allocate one page at a time as it'll have
4828 * similar performance to added complexity to the bulk allocator.
4829 */
4830 if (static_branch_unlikely(&page_owner_inited))
4831 goto failed;
4832 #endif
4833
4834 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4835 gfp &= gfp_allowed_mask;
4836 alloc_gfp = gfp;
4837 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4838 goto out;
4839 gfp = alloc_gfp;
4840
4841 /* Find an allowed local zone that meets the low watermark. */
4842 z = ac.preferred_zoneref;
4843 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4844 unsigned long mark;
4845
4846 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4847 !__cpuset_zone_allowed(zone, gfp)) {
4848 continue;
4849 }
4850
4851 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4852 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4853 goto failed;
4854 }
4855
4856 cond_accept_memory(zone, 0, alloc_flags);
4857 retry_this_zone:
4858 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4859 if (zone_watermark_fast(zone, 0, mark,
4860 zonelist_zone_idx(ac.preferred_zoneref),
4861 alloc_flags, gfp)) {
4862 break;
4863 }
4864
4865 if (cond_accept_memory(zone, 0, alloc_flags))
4866 goto retry_this_zone;
4867
4868 /* Try again if zone has deferred pages */
4869 if (deferred_pages_enabled()) {
4870 if (_deferred_grow_zone(zone, 0))
4871 goto retry_this_zone;
4872 }
4873 }
4874
4875 /*
4876 * If there are no allowed local zones that meets the watermarks then
4877 * try to allocate a single page and reclaim if necessary.
4878 */
4879 if (unlikely(!zone))
4880 goto failed;
4881
4882 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4883 pcp_trylock_prepare(UP_flags);
4884 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4885 if (!pcp)
4886 goto failed_irq;
4887
4888 /* Attempt the batch allocation */
4889 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4890 while (nr_populated < nr_pages) {
4891
4892 /* Skip existing pages */
4893 if (page_array[nr_populated]) {
4894 nr_populated++;
4895 continue;
4896 }
4897
4898 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4899 pcp, pcp_list);
4900 if (unlikely(!page)) {
4901 /* Try and allocate at least one page */
4902 if (!nr_account) {
4903 pcp_spin_unlock(pcp);
4904 goto failed_irq;
4905 }
4906 break;
4907 }
4908 nr_account++;
4909
4910 prep_new_page(page, 0, gfp, 0);
4911 set_page_refcounted(page);
4912 page_array[nr_populated++] = page;
4913 }
4914
4915 pcp_spin_unlock(pcp);
4916 pcp_trylock_finish(UP_flags);
4917
4918 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4919 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4920
4921 out:
4922 return nr_populated;
4923
4924 failed_irq:
4925 pcp_trylock_finish(UP_flags);
4926
4927 failed:
4928 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4929 if (page)
4930 page_array[nr_populated++] = page;
4931 goto out;
4932 }
4933 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4934
4935 /*
4936 * This is the 'heart' of the zoned buddy allocator.
4937 */
__alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4938 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4939 int preferred_nid, nodemask_t *nodemask)
4940 {
4941 struct page *page;
4942 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4943 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4944 struct alloc_context ac = { };
4945
4946 /*
4947 * There are several places where we assume that the order value is sane
4948 * so bail out early if the request is out of bound.
4949 */
4950 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4951 return NULL;
4952
4953 gfp &= gfp_allowed_mask;
4954 /*
4955 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4956 * resp. GFP_NOIO which has to be inherited for all allocation requests
4957 * from a particular context which has been marked by
4958 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4959 * movable zones are not used during allocation.
4960 */
4961 gfp = current_gfp_context(gfp);
4962 alloc_gfp = gfp;
4963 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4964 &alloc_gfp, &alloc_flags))
4965 return NULL;
4966
4967 /*
4968 * Forbid the first pass from falling back to types that fragment
4969 * memory until all local zones are considered.
4970 */
4971 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4972
4973 /* First allocation attempt */
4974 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4975 if (likely(page))
4976 goto out;
4977
4978 alloc_gfp = gfp;
4979 ac.spread_dirty_pages = false;
4980
4981 /*
4982 * Restore the original nodemask if it was potentially replaced with
4983 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4984 */
4985 ac.nodemask = nodemask;
4986
4987 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4988
4989 out:
4990 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4991 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4992 free_frozen_pages(page, order);
4993 page = NULL;
4994 }
4995
4996 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4997 kmsan_alloc_page(page, order, alloc_gfp);
4998
4999 return page;
5000 }
5001 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
5002
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5003 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5004 int preferred_nid, nodemask_t *nodemask)
5005 {
5006 struct page *page;
5007
5008 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5009 if (page)
5010 set_page_refcounted(page);
5011 return page;
5012 }
5013 EXPORT_SYMBOL(__alloc_pages_noprof);
5014
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5015 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5016 nodemask_t *nodemask)
5017 {
5018 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5019 preferred_nid, nodemask);
5020 return page_rmappable_folio(page);
5021 }
5022 EXPORT_SYMBOL(__folio_alloc_noprof);
5023
5024 /*
5025 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5026 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5027 * you need to access high mem.
5028 */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)5029 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5030 {
5031 struct page *page;
5032
5033 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5034 if (!page)
5035 return 0;
5036 return (unsigned long) page_address(page);
5037 }
5038 EXPORT_SYMBOL(get_free_pages_noprof);
5039
get_zeroed_page_noprof(gfp_t gfp_mask)5040 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5041 {
5042 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5043 }
5044 EXPORT_SYMBOL(get_zeroed_page_noprof);
5045
5046 /**
5047 * ___free_pages - Free pages allocated with alloc_pages().
5048 * @page: The page pointer returned from alloc_pages().
5049 * @order: The order of the allocation.
5050 * @fpi_flags: Free Page Internal flags.
5051 *
5052 * This function can free multi-page allocations that are not compound
5053 * pages. It does not check that the @order passed in matches that of
5054 * the allocation, so it is easy to leak memory. Freeing more memory
5055 * than was allocated will probably emit a warning.
5056 *
5057 * If the last reference to this page is speculative, it will be released
5058 * by put_page() which only frees the first page of a non-compound
5059 * allocation. To prevent the remaining pages from being leaked, we free
5060 * the subsequent pages here. If you want to use the page's reference
5061 * count to decide when to free the allocation, you should allocate a
5062 * compound page, and use put_page() instead of __free_pages().
5063 *
5064 * Context: May be called in interrupt context or while holding a normal
5065 * spinlock, but not in NMI context or while holding a raw spinlock.
5066 */
___free_pages(struct page * page,unsigned int order,fpi_t fpi_flags)5067 static void ___free_pages(struct page *page, unsigned int order,
5068 fpi_t fpi_flags)
5069 {
5070 /* get PageHead before we drop reference */
5071 int head = PageHead(page);
5072 /* get alloc tag in case the page is released by others */
5073 struct alloc_tag *tag = pgalloc_tag_get(page);
5074
5075 if (put_page_testzero(page))
5076 __free_frozen_pages(page, order, fpi_flags);
5077 else if (!head) {
5078 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5079 while (order-- > 0)
5080 __free_frozen_pages(page + (1 << order), order,
5081 fpi_flags);
5082 }
5083 }
__free_pages(struct page * page,unsigned int order)5084 void __free_pages(struct page *page, unsigned int order)
5085 {
5086 ___free_pages(page, order, FPI_NONE);
5087 }
5088 EXPORT_SYMBOL(__free_pages);
5089
5090 /*
5091 * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5092 * page type (not only those that came from try_alloc_pages)
5093 */
free_pages_nolock(struct page * page,unsigned int order)5094 void free_pages_nolock(struct page *page, unsigned int order)
5095 {
5096 ___free_pages(page, order, FPI_TRYLOCK);
5097 }
5098
free_pages(unsigned long addr,unsigned int order)5099 void free_pages(unsigned long addr, unsigned int order)
5100 {
5101 if (addr != 0) {
5102 VM_BUG_ON(!virt_addr_valid((void *)addr));
5103 __free_pages(virt_to_page((void *)addr), order);
5104 }
5105 }
5106
5107 EXPORT_SYMBOL(free_pages);
5108
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5109 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5110 size_t size)
5111 {
5112 if (addr) {
5113 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5114 struct page *page = virt_to_page((void *)addr);
5115 struct page *last = page + nr;
5116
5117 split_page_owner(page, order, 0);
5118 pgalloc_tag_split(page_folio(page), order, 0);
5119 split_page_memcg(page, order);
5120 while (page < --last)
5121 set_page_refcounted(last);
5122
5123 last = page + (1UL << order);
5124 for (page += nr; page < last; page++)
5125 __free_pages_ok(page, 0, FPI_TO_TAIL);
5126 }
5127 return (void *)addr;
5128 }
5129
5130 /**
5131 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5132 * @size: the number of bytes to allocate
5133 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5134 *
5135 * This function is similar to alloc_pages(), except that it allocates the
5136 * minimum number of pages to satisfy the request. alloc_pages() can only
5137 * allocate memory in power-of-two pages.
5138 *
5139 * This function is also limited by MAX_PAGE_ORDER.
5140 *
5141 * Memory allocated by this function must be released by free_pages_exact().
5142 *
5143 * Return: pointer to the allocated area or %NULL in case of error.
5144 */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5145 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5146 {
5147 unsigned int order = get_order(size);
5148 unsigned long addr;
5149
5150 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5151 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5152
5153 addr = get_free_pages_noprof(gfp_mask, order);
5154 return make_alloc_exact(addr, order, size);
5155 }
5156 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5157
5158 /**
5159 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5160 * pages on a node.
5161 * @nid: the preferred node ID where memory should be allocated
5162 * @size: the number of bytes to allocate
5163 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5164 *
5165 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5166 * back.
5167 *
5168 * Return: pointer to the allocated area or %NULL in case of error.
5169 */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5170 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5171 {
5172 unsigned int order = get_order(size);
5173 struct page *p;
5174
5175 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5176 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5177
5178 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5179 if (!p)
5180 return NULL;
5181 return make_alloc_exact((unsigned long)page_address(p), order, size);
5182 }
5183
5184 /**
5185 * free_pages_exact - release memory allocated via alloc_pages_exact()
5186 * @virt: the value returned by alloc_pages_exact.
5187 * @size: size of allocation, same value as passed to alloc_pages_exact().
5188 *
5189 * Release the memory allocated by a previous call to alloc_pages_exact.
5190 */
free_pages_exact(void * virt,size_t size)5191 void free_pages_exact(void *virt, size_t size)
5192 {
5193 unsigned long addr = (unsigned long)virt;
5194 unsigned long end = addr + PAGE_ALIGN(size);
5195
5196 while (addr < end) {
5197 free_page(addr);
5198 addr += PAGE_SIZE;
5199 }
5200 }
5201 EXPORT_SYMBOL(free_pages_exact);
5202
5203 /**
5204 * nr_free_zone_pages - count number of pages beyond high watermark
5205 * @offset: The zone index of the highest zone
5206 *
5207 * nr_free_zone_pages() counts the number of pages which are beyond the
5208 * high watermark within all zones at or below a given zone index. For each
5209 * zone, the number of pages is calculated as:
5210 *
5211 * nr_free_zone_pages = managed_pages - high_pages
5212 *
5213 * Return: number of pages beyond high watermark.
5214 */
nr_free_zone_pages(int offset)5215 static unsigned long nr_free_zone_pages(int offset)
5216 {
5217 struct zoneref *z;
5218 struct zone *zone;
5219
5220 /* Just pick one node, since fallback list is circular */
5221 unsigned long sum = 0;
5222
5223 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5224
5225 for_each_zone_zonelist(zone, z, zonelist, offset) {
5226 unsigned long size = zone_managed_pages(zone);
5227 unsigned long high = high_wmark_pages(zone);
5228 if (size > high)
5229 sum += size - high;
5230 }
5231
5232 return sum;
5233 }
5234
5235 /**
5236 * nr_free_buffer_pages - count number of pages beyond high watermark
5237 *
5238 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5239 * watermark within ZONE_DMA and ZONE_NORMAL.
5240 *
5241 * Return: number of pages beyond high watermark within ZONE_DMA and
5242 * ZONE_NORMAL.
5243 */
nr_free_buffer_pages(void)5244 unsigned long nr_free_buffer_pages(void)
5245 {
5246 return nr_free_zone_pages(gfp_zone(GFP_USER));
5247 }
5248 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5249
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5250 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5251 {
5252 zoneref->zone = zone;
5253 zoneref->zone_idx = zone_idx(zone);
5254 }
5255
5256 /*
5257 * Builds allocation fallback zone lists.
5258 *
5259 * Add all populated zones of a node to the zonelist.
5260 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5261 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5262 {
5263 struct zone *zone;
5264 enum zone_type zone_type = MAX_NR_ZONES;
5265 int nr_zones = 0;
5266
5267 do {
5268 zone_type--;
5269 zone = pgdat->node_zones + zone_type;
5270 if (populated_zone(zone)) {
5271 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5272 check_highest_zone(zone_type);
5273 }
5274 } while (zone_type);
5275
5276 return nr_zones;
5277 }
5278
5279 #ifdef CONFIG_NUMA
5280
__parse_numa_zonelist_order(char * s)5281 static int __parse_numa_zonelist_order(char *s)
5282 {
5283 /*
5284 * We used to support different zonelists modes but they turned
5285 * out to be just not useful. Let's keep the warning in place
5286 * if somebody still use the cmd line parameter so that we do
5287 * not fail it silently
5288 */
5289 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5290 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5291 return -EINVAL;
5292 }
5293 return 0;
5294 }
5295
5296 static char numa_zonelist_order[] = "Node";
5297 #define NUMA_ZONELIST_ORDER_LEN 16
5298 /*
5299 * sysctl handler for numa_zonelist_order
5300 */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5301 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5302 void *buffer, size_t *length, loff_t *ppos)
5303 {
5304 if (write)
5305 return __parse_numa_zonelist_order(buffer);
5306 return proc_dostring(table, write, buffer, length, ppos);
5307 }
5308
5309 static int node_load[MAX_NUMNODES];
5310
5311 /**
5312 * find_next_best_node - find the next node that should appear in a given node's fallback list
5313 * @node: node whose fallback list we're appending
5314 * @used_node_mask: nodemask_t of already used nodes
5315 *
5316 * We use a number of factors to determine which is the next node that should
5317 * appear on a given node's fallback list. The node should not have appeared
5318 * already in @node's fallback list, and it should be the next closest node
5319 * according to the distance array (which contains arbitrary distance values
5320 * from each node to each node in the system), and should also prefer nodes
5321 * with no CPUs, since presumably they'll have very little allocation pressure
5322 * on them otherwise.
5323 *
5324 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5325 */
find_next_best_node(int node,nodemask_t * used_node_mask)5326 int find_next_best_node(int node, nodemask_t *used_node_mask)
5327 {
5328 int n, val;
5329 int min_val = INT_MAX;
5330 int best_node = NUMA_NO_NODE;
5331
5332 /*
5333 * Use the local node if we haven't already, but for memoryless local
5334 * node, we should skip it and fall back to other nodes.
5335 */
5336 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5337 node_set(node, *used_node_mask);
5338 return node;
5339 }
5340
5341 for_each_node_state(n, N_MEMORY) {
5342
5343 /* Don't want a node to appear more than once */
5344 if (node_isset(n, *used_node_mask))
5345 continue;
5346
5347 /* Use the distance array to find the distance */
5348 val = node_distance(node, n);
5349
5350 /* Penalize nodes under us ("prefer the next node") */
5351 val += (n < node);
5352
5353 /* Give preference to headless and unused nodes */
5354 if (!cpumask_empty(cpumask_of_node(n)))
5355 val += PENALTY_FOR_NODE_WITH_CPUS;
5356
5357 /* Slight preference for less loaded node */
5358 val *= MAX_NUMNODES;
5359 val += node_load[n];
5360
5361 if (val < min_val) {
5362 min_val = val;
5363 best_node = n;
5364 }
5365 }
5366
5367 if (best_node >= 0)
5368 node_set(best_node, *used_node_mask);
5369
5370 return best_node;
5371 }
5372
5373
5374 /*
5375 * Build zonelists ordered by node and zones within node.
5376 * This results in maximum locality--normal zone overflows into local
5377 * DMA zone, if any--but risks exhausting DMA zone.
5378 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5379 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5380 unsigned nr_nodes)
5381 {
5382 struct zoneref *zonerefs;
5383 int i;
5384
5385 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5386
5387 for (i = 0; i < nr_nodes; i++) {
5388 int nr_zones;
5389
5390 pg_data_t *node = NODE_DATA(node_order[i]);
5391
5392 nr_zones = build_zonerefs_node(node, zonerefs);
5393 zonerefs += nr_zones;
5394 }
5395 zonerefs->zone = NULL;
5396 zonerefs->zone_idx = 0;
5397 }
5398
5399 /*
5400 * Build __GFP_THISNODE zonelists
5401 */
build_thisnode_zonelists(pg_data_t * pgdat)5402 static void build_thisnode_zonelists(pg_data_t *pgdat)
5403 {
5404 struct zoneref *zonerefs;
5405 int nr_zones;
5406
5407 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5408 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5409 zonerefs += nr_zones;
5410 zonerefs->zone = NULL;
5411 zonerefs->zone_idx = 0;
5412 }
5413
build_zonelists(pg_data_t * pgdat)5414 static void build_zonelists(pg_data_t *pgdat)
5415 {
5416 static int node_order[MAX_NUMNODES];
5417 int node, nr_nodes = 0;
5418 nodemask_t used_mask = NODE_MASK_NONE;
5419 int local_node, prev_node;
5420
5421 /* NUMA-aware ordering of nodes */
5422 local_node = pgdat->node_id;
5423 prev_node = local_node;
5424
5425 memset(node_order, 0, sizeof(node_order));
5426 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5427 /*
5428 * We don't want to pressure a particular node.
5429 * So adding penalty to the first node in same
5430 * distance group to make it round-robin.
5431 */
5432 if (node_distance(local_node, node) !=
5433 node_distance(local_node, prev_node))
5434 node_load[node] += 1;
5435
5436 node_order[nr_nodes++] = node;
5437 prev_node = node;
5438 }
5439
5440 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5441 build_thisnode_zonelists(pgdat);
5442 pr_info("Fallback order for Node %d: ", local_node);
5443 for (node = 0; node < nr_nodes; node++)
5444 pr_cont("%d ", node_order[node]);
5445 pr_cont("\n");
5446 }
5447
5448 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5449 /*
5450 * Return node id of node used for "local" allocations.
5451 * I.e., first node id of first zone in arg node's generic zonelist.
5452 * Used for initializing percpu 'numa_mem', which is used primarily
5453 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5454 */
local_memory_node(int node)5455 int local_memory_node(int node)
5456 {
5457 struct zoneref *z;
5458
5459 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5460 gfp_zone(GFP_KERNEL),
5461 NULL);
5462 return zonelist_node_idx(z);
5463 }
5464 #endif
5465
5466 static void setup_min_unmapped_ratio(void);
5467 static void setup_min_slab_ratio(void);
5468 #else /* CONFIG_NUMA */
5469
build_zonelists(pg_data_t * pgdat)5470 static void build_zonelists(pg_data_t *pgdat)
5471 {
5472 struct zoneref *zonerefs;
5473 int nr_zones;
5474
5475 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5476 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5477 zonerefs += nr_zones;
5478
5479 zonerefs->zone = NULL;
5480 zonerefs->zone_idx = 0;
5481 }
5482
5483 #endif /* CONFIG_NUMA */
5484
5485 /*
5486 * Boot pageset table. One per cpu which is going to be used for all
5487 * zones and all nodes. The parameters will be set in such a way
5488 * that an item put on a list will immediately be handed over to
5489 * the buddy list. This is safe since pageset manipulation is done
5490 * with interrupts disabled.
5491 *
5492 * The boot_pagesets must be kept even after bootup is complete for
5493 * unused processors and/or zones. They do play a role for bootstrapping
5494 * hotplugged processors.
5495 *
5496 * zoneinfo_show() and maybe other functions do
5497 * not check if the processor is online before following the pageset pointer.
5498 * Other parts of the kernel may not check if the zone is available.
5499 */
5500 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5501 /* These effectively disable the pcplists in the boot pageset completely */
5502 #define BOOT_PAGESET_HIGH 0
5503 #define BOOT_PAGESET_BATCH 1
5504 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5505 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5506
__build_all_zonelists(void * data)5507 static void __build_all_zonelists(void *data)
5508 {
5509 int nid;
5510 int __maybe_unused cpu;
5511 pg_data_t *self = data;
5512 unsigned long flags;
5513
5514 /*
5515 * The zonelist_update_seq must be acquired with irqsave because the
5516 * reader can be invoked from IRQ with GFP_ATOMIC.
5517 */
5518 write_seqlock_irqsave(&zonelist_update_seq, flags);
5519 /*
5520 * Also disable synchronous printk() to prevent any printk() from
5521 * trying to hold port->lock, for
5522 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5523 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5524 */
5525 printk_deferred_enter();
5526
5527 #ifdef CONFIG_NUMA
5528 memset(node_load, 0, sizeof(node_load));
5529 #endif
5530
5531 /*
5532 * This node is hotadded and no memory is yet present. So just
5533 * building zonelists is fine - no need to touch other nodes.
5534 */
5535 if (self && !node_online(self->node_id)) {
5536 build_zonelists(self);
5537 } else {
5538 /*
5539 * All possible nodes have pgdat preallocated
5540 * in free_area_init
5541 */
5542 for_each_node(nid) {
5543 pg_data_t *pgdat = NODE_DATA(nid);
5544
5545 build_zonelists(pgdat);
5546 }
5547
5548 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5549 /*
5550 * We now know the "local memory node" for each node--
5551 * i.e., the node of the first zone in the generic zonelist.
5552 * Set up numa_mem percpu variable for on-line cpus. During
5553 * boot, only the boot cpu should be on-line; we'll init the
5554 * secondary cpus' numa_mem as they come on-line. During
5555 * node/memory hotplug, we'll fixup all on-line cpus.
5556 */
5557 for_each_online_cpu(cpu)
5558 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5559 #endif
5560 }
5561
5562 printk_deferred_exit();
5563 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5564 }
5565
5566 static noinline void __init
build_all_zonelists_init(void)5567 build_all_zonelists_init(void)
5568 {
5569 int cpu;
5570
5571 __build_all_zonelists(NULL);
5572
5573 /*
5574 * Initialize the boot_pagesets that are going to be used
5575 * for bootstrapping processors. The real pagesets for
5576 * each zone will be allocated later when the per cpu
5577 * allocator is available.
5578 *
5579 * boot_pagesets are used also for bootstrapping offline
5580 * cpus if the system is already booted because the pagesets
5581 * are needed to initialize allocators on a specific cpu too.
5582 * F.e. the percpu allocator needs the page allocator which
5583 * needs the percpu allocator in order to allocate its pagesets
5584 * (a chicken-egg dilemma).
5585 */
5586 for_each_possible_cpu(cpu)
5587 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5588
5589 mminit_verify_zonelist();
5590 cpuset_init_current_mems_allowed();
5591 }
5592
5593 /*
5594 * unless system_state == SYSTEM_BOOTING.
5595 *
5596 * __ref due to call of __init annotated helper build_all_zonelists_init
5597 * [protected by SYSTEM_BOOTING].
5598 */
build_all_zonelists(pg_data_t * pgdat)5599 void __ref build_all_zonelists(pg_data_t *pgdat)
5600 {
5601 unsigned long vm_total_pages;
5602
5603 if (system_state == SYSTEM_BOOTING) {
5604 build_all_zonelists_init();
5605 } else {
5606 __build_all_zonelists(pgdat);
5607 /* cpuset refresh routine should be here */
5608 }
5609 /* Get the number of free pages beyond high watermark in all zones. */
5610 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5611 /*
5612 * Disable grouping by mobility if the number of pages in the
5613 * system is too low to allow the mechanism to work. It would be
5614 * more accurate, but expensive to check per-zone. This check is
5615 * made on memory-hotadd so a system can start with mobility
5616 * disabled and enable it later
5617 */
5618 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5619 page_group_by_mobility_disabled = 1;
5620 else
5621 page_group_by_mobility_disabled = 0;
5622
5623 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5624 nr_online_nodes,
5625 str_off_on(page_group_by_mobility_disabled),
5626 vm_total_pages);
5627 #ifdef CONFIG_NUMA
5628 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5629 #endif
5630 }
5631
zone_batchsize(struct zone * zone)5632 static int zone_batchsize(struct zone *zone)
5633 {
5634 #ifdef CONFIG_MMU
5635 int batch;
5636
5637 /*
5638 * The number of pages to batch allocate is either ~0.1%
5639 * of the zone or 1MB, whichever is smaller. The batch
5640 * size is striking a balance between allocation latency
5641 * and zone lock contention.
5642 */
5643 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5644 batch /= 4; /* We effectively *= 4 below */
5645 if (batch < 1)
5646 batch = 1;
5647
5648 /*
5649 * Clamp the batch to a 2^n - 1 value. Having a power
5650 * of 2 value was found to be more likely to have
5651 * suboptimal cache aliasing properties in some cases.
5652 *
5653 * For example if 2 tasks are alternately allocating
5654 * batches of pages, one task can end up with a lot
5655 * of pages of one half of the possible page colors
5656 * and the other with pages of the other colors.
5657 */
5658 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5659
5660 return batch;
5661
5662 #else
5663 /* The deferral and batching of frees should be suppressed under NOMMU
5664 * conditions.
5665 *
5666 * The problem is that NOMMU needs to be able to allocate large chunks
5667 * of contiguous memory as there's no hardware page translation to
5668 * assemble apparent contiguous memory from discontiguous pages.
5669 *
5670 * Queueing large contiguous runs of pages for batching, however,
5671 * causes the pages to actually be freed in smaller chunks. As there
5672 * can be a significant delay between the individual batches being
5673 * recycled, this leads to the once large chunks of space being
5674 * fragmented and becoming unavailable for high-order allocations.
5675 */
5676 return 0;
5677 #endif
5678 }
5679
5680 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5681 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5682 int high_fraction)
5683 {
5684 #ifdef CONFIG_MMU
5685 int high;
5686 int nr_split_cpus;
5687 unsigned long total_pages;
5688
5689 if (!high_fraction) {
5690 /*
5691 * By default, the high value of the pcp is based on the zone
5692 * low watermark so that if they are full then background
5693 * reclaim will not be started prematurely.
5694 */
5695 total_pages = low_wmark_pages(zone);
5696 } else {
5697 /*
5698 * If percpu_pagelist_high_fraction is configured, the high
5699 * value is based on a fraction of the managed pages in the
5700 * zone.
5701 */
5702 total_pages = zone_managed_pages(zone) / high_fraction;
5703 }
5704
5705 /*
5706 * Split the high value across all online CPUs local to the zone. Note
5707 * that early in boot that CPUs may not be online yet and that during
5708 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5709 * onlined. For memory nodes that have no CPUs, split the high value
5710 * across all online CPUs to mitigate the risk that reclaim is triggered
5711 * prematurely due to pages stored on pcp lists.
5712 */
5713 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5714 if (!nr_split_cpus)
5715 nr_split_cpus = num_online_cpus();
5716 high = total_pages / nr_split_cpus;
5717
5718 /*
5719 * Ensure high is at least batch*4. The multiple is based on the
5720 * historical relationship between high and batch.
5721 */
5722 high = max(high, batch << 2);
5723
5724 return high;
5725 #else
5726 return 0;
5727 #endif
5728 }
5729
5730 /*
5731 * pcp->high and pcp->batch values are related and generally batch is lower
5732 * than high. They are also related to pcp->count such that count is lower
5733 * than high, and as soon as it reaches high, the pcplist is flushed.
5734 *
5735 * However, guaranteeing these relations at all times would require e.g. write
5736 * barriers here but also careful usage of read barriers at the read side, and
5737 * thus be prone to error and bad for performance. Thus the update only prevents
5738 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5739 * should ensure they can cope with those fields changing asynchronously, and
5740 * fully trust only the pcp->count field on the local CPU with interrupts
5741 * disabled.
5742 *
5743 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5744 * outside of boot time (or some other assurance that no concurrent updaters
5745 * exist).
5746 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5747 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5748 unsigned long high_max, unsigned long batch)
5749 {
5750 WRITE_ONCE(pcp->batch, batch);
5751 WRITE_ONCE(pcp->high_min, high_min);
5752 WRITE_ONCE(pcp->high_max, high_max);
5753 }
5754
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5755 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5756 {
5757 int pindex;
5758
5759 memset(pcp, 0, sizeof(*pcp));
5760 memset(pzstats, 0, sizeof(*pzstats));
5761
5762 spin_lock_init(&pcp->lock);
5763 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5764 INIT_LIST_HEAD(&pcp->lists[pindex]);
5765
5766 /*
5767 * Set batch and high values safe for a boot pageset. A true percpu
5768 * pageset's initialization will update them subsequently. Here we don't
5769 * need to be as careful as pageset_update() as nobody can access the
5770 * pageset yet.
5771 */
5772 pcp->high_min = BOOT_PAGESET_HIGH;
5773 pcp->high_max = BOOT_PAGESET_HIGH;
5774 pcp->batch = BOOT_PAGESET_BATCH;
5775 pcp->free_count = 0;
5776 }
5777
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5778 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5779 unsigned long high_max, unsigned long batch)
5780 {
5781 struct per_cpu_pages *pcp;
5782 int cpu;
5783
5784 for_each_possible_cpu(cpu) {
5785 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5786 pageset_update(pcp, high_min, high_max, batch);
5787 }
5788 }
5789
5790 /*
5791 * Calculate and set new high and batch values for all per-cpu pagesets of a
5792 * zone based on the zone's size.
5793 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5794 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5795 {
5796 int new_high_min, new_high_max, new_batch;
5797
5798 new_batch = max(1, zone_batchsize(zone));
5799 if (percpu_pagelist_high_fraction) {
5800 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5801 percpu_pagelist_high_fraction);
5802 /*
5803 * PCP high is tuned manually, disable auto-tuning via
5804 * setting high_min and high_max to the manual value.
5805 */
5806 new_high_max = new_high_min;
5807 } else {
5808 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5809 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5810 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5811 }
5812
5813 if (zone->pageset_high_min == new_high_min &&
5814 zone->pageset_high_max == new_high_max &&
5815 zone->pageset_batch == new_batch)
5816 return;
5817
5818 zone->pageset_high_min = new_high_min;
5819 zone->pageset_high_max = new_high_max;
5820 zone->pageset_batch = new_batch;
5821
5822 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5823 new_batch);
5824 }
5825
setup_zone_pageset(struct zone * zone)5826 void __meminit setup_zone_pageset(struct zone *zone)
5827 {
5828 int cpu;
5829
5830 /* Size may be 0 on !SMP && !NUMA */
5831 if (sizeof(struct per_cpu_zonestat) > 0)
5832 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5833
5834 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5835 for_each_possible_cpu(cpu) {
5836 struct per_cpu_pages *pcp;
5837 struct per_cpu_zonestat *pzstats;
5838
5839 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5840 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5841 per_cpu_pages_init(pcp, pzstats);
5842 }
5843
5844 zone_set_pageset_high_and_batch(zone, 0);
5845 }
5846
5847 /*
5848 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5849 * page high values need to be recalculated.
5850 */
zone_pcp_update(struct zone * zone,int cpu_online)5851 static void zone_pcp_update(struct zone *zone, int cpu_online)
5852 {
5853 mutex_lock(&pcp_batch_high_lock);
5854 zone_set_pageset_high_and_batch(zone, cpu_online);
5855 mutex_unlock(&pcp_batch_high_lock);
5856 }
5857
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5858 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5859 {
5860 struct per_cpu_pages *pcp;
5861 struct cpu_cacheinfo *cci;
5862
5863 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5864 cci = get_cpu_cacheinfo(cpu);
5865 /*
5866 * If data cache slice of CPU is large enough, "pcp->batch"
5867 * pages can be preserved in PCP before draining PCP for
5868 * consecutive high-order pages freeing without allocation.
5869 * This can reduce zone lock contention without hurting
5870 * cache-hot pages sharing.
5871 */
5872 spin_lock(&pcp->lock);
5873 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5874 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5875 else
5876 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5877 spin_unlock(&pcp->lock);
5878 }
5879
setup_pcp_cacheinfo(unsigned int cpu)5880 void setup_pcp_cacheinfo(unsigned int cpu)
5881 {
5882 struct zone *zone;
5883
5884 for_each_populated_zone(zone)
5885 zone_pcp_update_cacheinfo(zone, cpu);
5886 }
5887
5888 /*
5889 * Allocate per cpu pagesets and initialize them.
5890 * Before this call only boot pagesets were available.
5891 */
setup_per_cpu_pageset(void)5892 void __init setup_per_cpu_pageset(void)
5893 {
5894 struct pglist_data *pgdat;
5895 struct zone *zone;
5896 int __maybe_unused cpu;
5897
5898 for_each_populated_zone(zone)
5899 setup_zone_pageset(zone);
5900
5901 #ifdef CONFIG_NUMA
5902 /*
5903 * Unpopulated zones continue using the boot pagesets.
5904 * The numa stats for these pagesets need to be reset.
5905 * Otherwise, they will end up skewing the stats of
5906 * the nodes these zones are associated with.
5907 */
5908 for_each_possible_cpu(cpu) {
5909 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5910 memset(pzstats->vm_numa_event, 0,
5911 sizeof(pzstats->vm_numa_event));
5912 }
5913 #endif
5914
5915 for_each_online_pgdat(pgdat)
5916 pgdat->per_cpu_nodestats =
5917 alloc_percpu(struct per_cpu_nodestat);
5918 }
5919
zone_pcp_init(struct zone * zone)5920 __meminit void zone_pcp_init(struct zone *zone)
5921 {
5922 /*
5923 * per cpu subsystem is not up at this point. The following code
5924 * relies on the ability of the linker to provide the
5925 * offset of a (static) per cpu variable into the per cpu area.
5926 */
5927 zone->per_cpu_pageset = &boot_pageset;
5928 zone->per_cpu_zonestats = &boot_zonestats;
5929 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5930 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5931 zone->pageset_batch = BOOT_PAGESET_BATCH;
5932
5933 if (populated_zone(zone))
5934 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5935 zone->present_pages, zone_batchsize(zone));
5936 }
5937
5938 static void setup_per_zone_lowmem_reserve(void);
5939
adjust_managed_page_count(struct page * page,long count)5940 void adjust_managed_page_count(struct page *page, long count)
5941 {
5942 atomic_long_add(count, &page_zone(page)->managed_pages);
5943 totalram_pages_add(count);
5944 setup_per_zone_lowmem_reserve();
5945 }
5946 EXPORT_SYMBOL(adjust_managed_page_count);
5947
free_reserved_area(void * start,void * end,int poison,const char * s)5948 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5949 {
5950 void *pos;
5951 unsigned long pages = 0;
5952
5953 start = (void *)PAGE_ALIGN((unsigned long)start);
5954 end = (void *)((unsigned long)end & PAGE_MASK);
5955 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5956 struct page *page = virt_to_page(pos);
5957 void *direct_map_addr;
5958
5959 /*
5960 * 'direct_map_addr' might be different from 'pos'
5961 * because some architectures' virt_to_page()
5962 * work with aliases. Getting the direct map
5963 * address ensures that we get a _writeable_
5964 * alias for the memset().
5965 */
5966 direct_map_addr = page_address(page);
5967 /*
5968 * Perform a kasan-unchecked memset() since this memory
5969 * has not been initialized.
5970 */
5971 direct_map_addr = kasan_reset_tag(direct_map_addr);
5972 if ((unsigned int)poison <= 0xFF)
5973 memset(direct_map_addr, poison, PAGE_SIZE);
5974
5975 free_reserved_page(page);
5976 }
5977
5978 if (pages && s)
5979 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5980
5981 return pages;
5982 }
5983
free_reserved_page(struct page * page)5984 void free_reserved_page(struct page *page)
5985 {
5986 clear_page_tag_ref(page);
5987 ClearPageReserved(page);
5988 init_page_count(page);
5989 __free_page(page);
5990 adjust_managed_page_count(page, 1);
5991 }
5992 EXPORT_SYMBOL(free_reserved_page);
5993
page_alloc_cpu_dead(unsigned int cpu)5994 static int page_alloc_cpu_dead(unsigned int cpu)
5995 {
5996 struct zone *zone;
5997
5998 lru_add_drain_cpu(cpu);
5999 mlock_drain_remote(cpu);
6000 drain_pages(cpu);
6001
6002 /*
6003 * Spill the event counters of the dead processor
6004 * into the current processors event counters.
6005 * This artificially elevates the count of the current
6006 * processor.
6007 */
6008 vm_events_fold_cpu(cpu);
6009
6010 /*
6011 * Zero the differential counters of the dead processor
6012 * so that the vm statistics are consistent.
6013 *
6014 * This is only okay since the processor is dead and cannot
6015 * race with what we are doing.
6016 */
6017 cpu_vm_stats_fold(cpu);
6018
6019 for_each_populated_zone(zone)
6020 zone_pcp_update(zone, 0);
6021
6022 return 0;
6023 }
6024
page_alloc_cpu_online(unsigned int cpu)6025 static int page_alloc_cpu_online(unsigned int cpu)
6026 {
6027 struct zone *zone;
6028
6029 for_each_populated_zone(zone)
6030 zone_pcp_update(zone, 1);
6031 return 0;
6032 }
6033
page_alloc_init_cpuhp(void)6034 void __init page_alloc_init_cpuhp(void)
6035 {
6036 int ret;
6037
6038 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6039 "mm/page_alloc:pcp",
6040 page_alloc_cpu_online,
6041 page_alloc_cpu_dead);
6042 WARN_ON(ret < 0);
6043 }
6044
6045 /*
6046 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6047 * or min_free_kbytes changes.
6048 */
calculate_totalreserve_pages(void)6049 static void calculate_totalreserve_pages(void)
6050 {
6051 struct pglist_data *pgdat;
6052 unsigned long reserve_pages = 0;
6053 enum zone_type i, j;
6054
6055 for_each_online_pgdat(pgdat) {
6056
6057 pgdat->totalreserve_pages = 0;
6058
6059 for (i = 0; i < MAX_NR_ZONES; i++) {
6060 struct zone *zone = pgdat->node_zones + i;
6061 long max = 0;
6062 unsigned long managed_pages = zone_managed_pages(zone);
6063
6064 /* Find valid and maximum lowmem_reserve in the zone */
6065 for (j = i; j < MAX_NR_ZONES; j++) {
6066 if (zone->lowmem_reserve[j] > max)
6067 max = zone->lowmem_reserve[j];
6068 }
6069
6070 /* we treat the high watermark as reserved pages. */
6071 max += high_wmark_pages(zone);
6072
6073 if (max > managed_pages)
6074 max = managed_pages;
6075
6076 pgdat->totalreserve_pages += max;
6077
6078 reserve_pages += max;
6079 }
6080 }
6081 totalreserve_pages = reserve_pages;
6082 trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6083 }
6084
6085 /*
6086 * setup_per_zone_lowmem_reserve - called whenever
6087 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6088 * has a correct pages reserved value, so an adequate number of
6089 * pages are left in the zone after a successful __alloc_pages().
6090 */
setup_per_zone_lowmem_reserve(void)6091 static void setup_per_zone_lowmem_reserve(void)
6092 {
6093 struct pglist_data *pgdat;
6094 enum zone_type i, j;
6095
6096 for_each_online_pgdat(pgdat) {
6097 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6098 struct zone *zone = &pgdat->node_zones[i];
6099 int ratio = sysctl_lowmem_reserve_ratio[i];
6100 bool clear = !ratio || !zone_managed_pages(zone);
6101 unsigned long managed_pages = 0;
6102
6103 for (j = i + 1; j < MAX_NR_ZONES; j++) {
6104 struct zone *upper_zone = &pgdat->node_zones[j];
6105
6106 managed_pages += zone_managed_pages(upper_zone);
6107
6108 if (clear)
6109 zone->lowmem_reserve[j] = 0;
6110 else
6111 zone->lowmem_reserve[j] = managed_pages / ratio;
6112 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6113 zone->lowmem_reserve[j]);
6114 }
6115 }
6116 }
6117
6118 /* update totalreserve_pages */
6119 calculate_totalreserve_pages();
6120 }
6121
__setup_per_zone_wmarks(void)6122 static void __setup_per_zone_wmarks(void)
6123 {
6124 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6125 unsigned long lowmem_pages = 0;
6126 struct zone *zone;
6127 unsigned long flags;
6128
6129 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6130 for_each_zone(zone) {
6131 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6132 lowmem_pages += zone_managed_pages(zone);
6133 }
6134
6135 for_each_zone(zone) {
6136 u64 tmp;
6137
6138 spin_lock_irqsave(&zone->lock, flags);
6139 tmp = (u64)pages_min * zone_managed_pages(zone);
6140 tmp = div64_ul(tmp, lowmem_pages);
6141 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6142 /*
6143 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6144 * need highmem and movable zones pages, so cap pages_min
6145 * to a small value here.
6146 *
6147 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6148 * deltas control async page reclaim, and so should
6149 * not be capped for highmem and movable zones.
6150 */
6151 unsigned long min_pages;
6152
6153 min_pages = zone_managed_pages(zone) / 1024;
6154 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6155 zone->_watermark[WMARK_MIN] = min_pages;
6156 } else {
6157 /*
6158 * If it's a lowmem zone, reserve a number of pages
6159 * proportionate to the zone's size.
6160 */
6161 zone->_watermark[WMARK_MIN] = tmp;
6162 }
6163
6164 /*
6165 * Set the kswapd watermarks distance according to the
6166 * scale factor in proportion to available memory, but
6167 * ensure a minimum size on small systems.
6168 */
6169 tmp = max_t(u64, tmp >> 2,
6170 mult_frac(zone_managed_pages(zone),
6171 watermark_scale_factor, 10000));
6172
6173 zone->watermark_boost = 0;
6174 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6175 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6176 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6177 trace_mm_setup_per_zone_wmarks(zone);
6178
6179 spin_unlock_irqrestore(&zone->lock, flags);
6180 }
6181
6182 /* update totalreserve_pages */
6183 calculate_totalreserve_pages();
6184 }
6185
6186 /**
6187 * setup_per_zone_wmarks - called when min_free_kbytes changes
6188 * or when memory is hot-{added|removed}
6189 *
6190 * Ensures that the watermark[min,low,high] values for each zone are set
6191 * correctly with respect to min_free_kbytes.
6192 */
setup_per_zone_wmarks(void)6193 void setup_per_zone_wmarks(void)
6194 {
6195 struct zone *zone;
6196 static DEFINE_SPINLOCK(lock);
6197
6198 spin_lock(&lock);
6199 __setup_per_zone_wmarks();
6200 spin_unlock(&lock);
6201
6202 /*
6203 * The watermark size have changed so update the pcpu batch
6204 * and high limits or the limits may be inappropriate.
6205 */
6206 for_each_zone(zone)
6207 zone_pcp_update(zone, 0);
6208 }
6209
6210 /*
6211 * Initialise min_free_kbytes.
6212 *
6213 * For small machines we want it small (128k min). For large machines
6214 * we want it large (256MB max). But it is not linear, because network
6215 * bandwidth does not increase linearly with machine size. We use
6216 *
6217 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6218 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6219 *
6220 * which yields
6221 *
6222 * 16MB: 512k
6223 * 32MB: 724k
6224 * 64MB: 1024k
6225 * 128MB: 1448k
6226 * 256MB: 2048k
6227 * 512MB: 2896k
6228 * 1024MB: 4096k
6229 * 2048MB: 5792k
6230 * 4096MB: 8192k
6231 * 8192MB: 11584k
6232 * 16384MB: 16384k
6233 */
calculate_min_free_kbytes(void)6234 void calculate_min_free_kbytes(void)
6235 {
6236 unsigned long lowmem_kbytes;
6237 int new_min_free_kbytes;
6238
6239 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6240 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6241
6242 if (new_min_free_kbytes > user_min_free_kbytes)
6243 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6244 else
6245 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6246 new_min_free_kbytes, user_min_free_kbytes);
6247
6248 }
6249
init_per_zone_wmark_min(void)6250 int __meminit init_per_zone_wmark_min(void)
6251 {
6252 calculate_min_free_kbytes();
6253 setup_per_zone_wmarks();
6254 refresh_zone_stat_thresholds();
6255 setup_per_zone_lowmem_reserve();
6256
6257 #ifdef CONFIG_NUMA
6258 setup_min_unmapped_ratio();
6259 setup_min_slab_ratio();
6260 #endif
6261
6262 khugepaged_min_free_kbytes_update();
6263
6264 return 0;
6265 }
postcore_initcall(init_per_zone_wmark_min)6266 postcore_initcall(init_per_zone_wmark_min)
6267
6268 /*
6269 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6270 * that we can call two helper functions whenever min_free_kbytes
6271 * changes.
6272 */
6273 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6274 void *buffer, size_t *length, loff_t *ppos)
6275 {
6276 int rc;
6277
6278 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6279 if (rc)
6280 return rc;
6281
6282 if (write) {
6283 user_min_free_kbytes = min_free_kbytes;
6284 setup_per_zone_wmarks();
6285 }
6286 return 0;
6287 }
6288
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6289 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6290 void *buffer, size_t *length, loff_t *ppos)
6291 {
6292 int rc;
6293
6294 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6295 if (rc)
6296 return rc;
6297
6298 if (write)
6299 setup_per_zone_wmarks();
6300
6301 return 0;
6302 }
6303
6304 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6305 static void setup_min_unmapped_ratio(void)
6306 {
6307 pg_data_t *pgdat;
6308 struct zone *zone;
6309
6310 for_each_online_pgdat(pgdat)
6311 pgdat->min_unmapped_pages = 0;
6312
6313 for_each_zone(zone)
6314 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6315 sysctl_min_unmapped_ratio) / 100;
6316 }
6317
6318
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6319 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6320 void *buffer, size_t *length, loff_t *ppos)
6321 {
6322 int rc;
6323
6324 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6325 if (rc)
6326 return rc;
6327
6328 setup_min_unmapped_ratio();
6329
6330 return 0;
6331 }
6332
setup_min_slab_ratio(void)6333 static void setup_min_slab_ratio(void)
6334 {
6335 pg_data_t *pgdat;
6336 struct zone *zone;
6337
6338 for_each_online_pgdat(pgdat)
6339 pgdat->min_slab_pages = 0;
6340
6341 for_each_zone(zone)
6342 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6343 sysctl_min_slab_ratio) / 100;
6344 }
6345
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6346 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6347 void *buffer, size_t *length, loff_t *ppos)
6348 {
6349 int rc;
6350
6351 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6352 if (rc)
6353 return rc;
6354
6355 setup_min_slab_ratio();
6356
6357 return 0;
6358 }
6359 #endif
6360
6361 /*
6362 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6363 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6364 * whenever sysctl_lowmem_reserve_ratio changes.
6365 *
6366 * The reserve ratio obviously has absolutely no relation with the
6367 * minimum watermarks. The lowmem reserve ratio can only make sense
6368 * if in function of the boot time zone sizes.
6369 */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6370 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6371 int write, void *buffer, size_t *length, loff_t *ppos)
6372 {
6373 int i;
6374
6375 proc_dointvec_minmax(table, write, buffer, length, ppos);
6376
6377 for (i = 0; i < MAX_NR_ZONES; i++) {
6378 if (sysctl_lowmem_reserve_ratio[i] < 1)
6379 sysctl_lowmem_reserve_ratio[i] = 0;
6380 }
6381
6382 setup_per_zone_lowmem_reserve();
6383 return 0;
6384 }
6385
6386 /*
6387 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6388 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6389 * pagelist can have before it gets flushed back to buddy allocator.
6390 */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6391 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6392 int write, void *buffer, size_t *length, loff_t *ppos)
6393 {
6394 struct zone *zone;
6395 int old_percpu_pagelist_high_fraction;
6396 int ret;
6397
6398 mutex_lock(&pcp_batch_high_lock);
6399 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6400
6401 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6402 if (!write || ret < 0)
6403 goto out;
6404
6405 /* Sanity checking to avoid pcp imbalance */
6406 if (percpu_pagelist_high_fraction &&
6407 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6408 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6409 ret = -EINVAL;
6410 goto out;
6411 }
6412
6413 /* No change? */
6414 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6415 goto out;
6416
6417 for_each_populated_zone(zone)
6418 zone_set_pageset_high_and_batch(zone, 0);
6419 out:
6420 mutex_unlock(&pcp_batch_high_lock);
6421 return ret;
6422 }
6423
6424 static const struct ctl_table page_alloc_sysctl_table[] = {
6425 {
6426 .procname = "min_free_kbytes",
6427 .data = &min_free_kbytes,
6428 .maxlen = sizeof(min_free_kbytes),
6429 .mode = 0644,
6430 .proc_handler = min_free_kbytes_sysctl_handler,
6431 .extra1 = SYSCTL_ZERO,
6432 },
6433 {
6434 .procname = "watermark_boost_factor",
6435 .data = &watermark_boost_factor,
6436 .maxlen = sizeof(watermark_boost_factor),
6437 .mode = 0644,
6438 .proc_handler = proc_dointvec_minmax,
6439 .extra1 = SYSCTL_ZERO,
6440 },
6441 {
6442 .procname = "watermark_scale_factor",
6443 .data = &watermark_scale_factor,
6444 .maxlen = sizeof(watermark_scale_factor),
6445 .mode = 0644,
6446 .proc_handler = watermark_scale_factor_sysctl_handler,
6447 .extra1 = SYSCTL_ONE,
6448 .extra2 = SYSCTL_THREE_THOUSAND,
6449 },
6450 {
6451 .procname = "defrag_mode",
6452 .data = &defrag_mode,
6453 .maxlen = sizeof(defrag_mode),
6454 .mode = 0644,
6455 .proc_handler = proc_dointvec_minmax,
6456 .extra1 = SYSCTL_ZERO,
6457 .extra2 = SYSCTL_ONE,
6458 },
6459 {
6460 .procname = "percpu_pagelist_high_fraction",
6461 .data = &percpu_pagelist_high_fraction,
6462 .maxlen = sizeof(percpu_pagelist_high_fraction),
6463 .mode = 0644,
6464 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6465 .extra1 = SYSCTL_ZERO,
6466 },
6467 {
6468 .procname = "lowmem_reserve_ratio",
6469 .data = &sysctl_lowmem_reserve_ratio,
6470 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6471 .mode = 0644,
6472 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6473 },
6474 #ifdef CONFIG_NUMA
6475 {
6476 .procname = "numa_zonelist_order",
6477 .data = &numa_zonelist_order,
6478 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6479 .mode = 0644,
6480 .proc_handler = numa_zonelist_order_handler,
6481 },
6482 {
6483 .procname = "min_unmapped_ratio",
6484 .data = &sysctl_min_unmapped_ratio,
6485 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6486 .mode = 0644,
6487 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6488 .extra1 = SYSCTL_ZERO,
6489 .extra2 = SYSCTL_ONE_HUNDRED,
6490 },
6491 {
6492 .procname = "min_slab_ratio",
6493 .data = &sysctl_min_slab_ratio,
6494 .maxlen = sizeof(sysctl_min_slab_ratio),
6495 .mode = 0644,
6496 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6497 .extra1 = SYSCTL_ZERO,
6498 .extra2 = SYSCTL_ONE_HUNDRED,
6499 },
6500 #endif
6501 };
6502
page_alloc_sysctl_init(void)6503 void __init page_alloc_sysctl_init(void)
6504 {
6505 register_sysctl_init("vm", page_alloc_sysctl_table);
6506 }
6507
6508 #ifdef CONFIG_CONTIG_ALLOC
6509 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6510 static void alloc_contig_dump_pages(struct list_head *page_list)
6511 {
6512 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6513
6514 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6515 struct page *page;
6516
6517 dump_stack();
6518 list_for_each_entry(page, page_list, lru)
6519 dump_page(page, "migration failure");
6520 }
6521 }
6522
6523 /*
6524 * [start, end) must belong to a single zone.
6525 * @migratetype: using migratetype to filter the type of migration in
6526 * trace_mm_alloc_contig_migrate_range_info.
6527 */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6528 static int __alloc_contig_migrate_range(struct compact_control *cc,
6529 unsigned long start, unsigned long end, int migratetype)
6530 {
6531 /* This function is based on compact_zone() from compaction.c. */
6532 unsigned int nr_reclaimed;
6533 unsigned long pfn = start;
6534 unsigned int tries = 0;
6535 int ret = 0;
6536 struct migration_target_control mtc = {
6537 .nid = zone_to_nid(cc->zone),
6538 .gfp_mask = cc->gfp_mask,
6539 .reason = MR_CONTIG_RANGE,
6540 };
6541 struct page *page;
6542 unsigned long total_mapped = 0;
6543 unsigned long total_migrated = 0;
6544 unsigned long total_reclaimed = 0;
6545
6546 lru_cache_disable();
6547
6548 while (pfn < end || !list_empty(&cc->migratepages)) {
6549 if (fatal_signal_pending(current)) {
6550 ret = -EINTR;
6551 break;
6552 }
6553
6554 if (list_empty(&cc->migratepages)) {
6555 cc->nr_migratepages = 0;
6556 ret = isolate_migratepages_range(cc, pfn, end);
6557 if (ret && ret != -EAGAIN)
6558 break;
6559 pfn = cc->migrate_pfn;
6560 tries = 0;
6561 } else if (++tries == 5) {
6562 ret = -EBUSY;
6563 break;
6564 }
6565
6566 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6567 &cc->migratepages);
6568 cc->nr_migratepages -= nr_reclaimed;
6569
6570 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6571 total_reclaimed += nr_reclaimed;
6572 list_for_each_entry(page, &cc->migratepages, lru) {
6573 struct folio *folio = page_folio(page);
6574
6575 total_mapped += folio_mapped(folio) *
6576 folio_nr_pages(folio);
6577 }
6578 }
6579
6580 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6581 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6582
6583 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6584 total_migrated += cc->nr_migratepages;
6585
6586 /*
6587 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6588 * to retry again over this error, so do the same here.
6589 */
6590 if (ret == -ENOMEM)
6591 break;
6592 }
6593
6594 lru_cache_enable();
6595 if (ret < 0) {
6596 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6597 alloc_contig_dump_pages(&cc->migratepages);
6598 putback_movable_pages(&cc->migratepages);
6599 }
6600
6601 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6602 total_migrated,
6603 total_reclaimed,
6604 total_mapped);
6605 return (ret < 0) ? ret : 0;
6606 }
6607
split_free_pages(struct list_head * list,gfp_t gfp_mask)6608 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6609 {
6610 int order;
6611
6612 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6613 struct page *page, *next;
6614 int nr_pages = 1 << order;
6615
6616 list_for_each_entry_safe(page, next, &list[order], lru) {
6617 int i;
6618
6619 post_alloc_hook(page, order, gfp_mask);
6620 set_page_refcounted(page);
6621 if (!order)
6622 continue;
6623
6624 split_page(page, order);
6625
6626 /* Add all subpages to the order-0 head, in sequence. */
6627 list_del(&page->lru);
6628 for (i = 0; i < nr_pages; i++)
6629 list_add_tail(&page[i].lru, &list[0]);
6630 }
6631 }
6632 }
6633
__alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6634 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6635 {
6636 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6637 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6638 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6639 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6640
6641 /*
6642 * We are given the range to allocate; node, mobility and placement
6643 * hints are irrelevant at this point. We'll simply ignore them.
6644 */
6645 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6646 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6647
6648 /*
6649 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6650 * selected action flags.
6651 */
6652 if (gfp_mask & ~(reclaim_mask | action_mask))
6653 return -EINVAL;
6654
6655 /*
6656 * Flags to control page compaction/migration/reclaim, to free up our
6657 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6658 * for them.
6659 *
6660 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6661 * to not degrade callers.
6662 */
6663 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6664 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6665 return 0;
6666 }
6667
6668 /**
6669 * alloc_contig_range() -- tries to allocate given range of pages
6670 * @start: start PFN to allocate
6671 * @end: one-past-the-last PFN to allocate
6672 * @migratetype: migratetype of the underlying pageblocks (either
6673 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6674 * in range must have the same migratetype and it must
6675 * be either of the two.
6676 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some
6677 * action and reclaim modifiers are supported. Reclaim modifiers
6678 * control allocation behavior during compaction/migration/reclaim.
6679 *
6680 * The PFN range does not have to be pageblock aligned. The PFN range must
6681 * belong to a single zone.
6682 *
6683 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6684 * pageblocks in the range. Once isolated, the pageblocks should not
6685 * be modified by others.
6686 *
6687 * Return: zero on success or negative error code. On success all
6688 * pages which PFN is in [start, end) are allocated for the caller and
6689 * need to be freed with free_contig_range().
6690 */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6691 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6692 unsigned migratetype, gfp_t gfp_mask)
6693 {
6694 unsigned long outer_start, outer_end;
6695 int ret = 0;
6696
6697 struct compact_control cc = {
6698 .nr_migratepages = 0,
6699 .order = -1,
6700 .zone = page_zone(pfn_to_page(start)),
6701 .mode = MIGRATE_SYNC,
6702 .ignore_skip_hint = true,
6703 .no_set_skip_hint = true,
6704 .alloc_contig = true,
6705 };
6706 INIT_LIST_HEAD(&cc.migratepages);
6707
6708 gfp_mask = current_gfp_context(gfp_mask);
6709 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6710 return -EINVAL;
6711
6712 /*
6713 * What we do here is we mark all pageblocks in range as
6714 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6715 * have different sizes, and due to the way page allocator
6716 * work, start_isolate_page_range() has special handlings for this.
6717 *
6718 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6719 * migrate the pages from an unaligned range (ie. pages that
6720 * we are interested in). This will put all the pages in
6721 * range back to page allocator as MIGRATE_ISOLATE.
6722 *
6723 * When this is done, we take the pages in range from page
6724 * allocator removing them from the buddy system. This way
6725 * page allocator will never consider using them.
6726 *
6727 * This lets us mark the pageblocks back as
6728 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6729 * aligned range but not in the unaligned, original range are
6730 * put back to page allocator so that buddy can use them.
6731 */
6732
6733 ret = start_isolate_page_range(start, end, migratetype, 0);
6734 if (ret)
6735 goto done;
6736
6737 drain_all_pages(cc.zone);
6738
6739 /*
6740 * In case of -EBUSY, we'd like to know which page causes problem.
6741 * So, just fall through. test_pages_isolated() has a tracepoint
6742 * which will report the busy page.
6743 *
6744 * It is possible that busy pages could become available before
6745 * the call to test_pages_isolated, and the range will actually be
6746 * allocated. So, if we fall through be sure to clear ret so that
6747 * -EBUSY is not accidentally used or returned to caller.
6748 */
6749 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6750 if (ret && ret != -EBUSY)
6751 goto done;
6752
6753 /*
6754 * When in-use hugetlb pages are migrated, they may simply be released
6755 * back into the free hugepage pool instead of being returned to the
6756 * buddy system. After the migration of in-use huge pages is completed,
6757 * we will invoke replace_free_hugepage_folios() to ensure that these
6758 * hugepages are properly released to the buddy system.
6759 */
6760 ret = replace_free_hugepage_folios(start, end);
6761 if (ret)
6762 goto done;
6763
6764 /*
6765 * Pages from [start, end) are within a pageblock_nr_pages
6766 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6767 * more, all pages in [start, end) are free in page allocator.
6768 * What we are going to do is to allocate all pages from
6769 * [start, end) (that is remove them from page allocator).
6770 *
6771 * The only problem is that pages at the beginning and at the
6772 * end of interesting range may be not aligned with pages that
6773 * page allocator holds, ie. they can be part of higher order
6774 * pages. Because of this, we reserve the bigger range and
6775 * once this is done free the pages we are not interested in.
6776 *
6777 * We don't have to hold zone->lock here because the pages are
6778 * isolated thus they won't get removed from buddy.
6779 */
6780 outer_start = find_large_buddy(start);
6781
6782 /* Make sure the range is really isolated. */
6783 if (test_pages_isolated(outer_start, end, 0)) {
6784 ret = -EBUSY;
6785 goto done;
6786 }
6787
6788 /* Grab isolated pages from freelists. */
6789 outer_end = isolate_freepages_range(&cc, outer_start, end);
6790 if (!outer_end) {
6791 ret = -EBUSY;
6792 goto done;
6793 }
6794
6795 if (!(gfp_mask & __GFP_COMP)) {
6796 split_free_pages(cc.freepages, gfp_mask);
6797
6798 /* Free head and tail (if any) */
6799 if (start != outer_start)
6800 free_contig_range(outer_start, start - outer_start);
6801 if (end != outer_end)
6802 free_contig_range(end, outer_end - end);
6803 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6804 struct page *head = pfn_to_page(start);
6805 int order = ilog2(end - start);
6806
6807 check_new_pages(head, order);
6808 prep_new_page(head, order, gfp_mask, 0);
6809 set_page_refcounted(head);
6810 } else {
6811 ret = -EINVAL;
6812 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6813 start, end, outer_start, outer_end);
6814 }
6815 done:
6816 undo_isolate_page_range(start, end, migratetype);
6817 return ret;
6818 }
6819 EXPORT_SYMBOL(alloc_contig_range_noprof);
6820
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6821 static int __alloc_contig_pages(unsigned long start_pfn,
6822 unsigned long nr_pages, gfp_t gfp_mask)
6823 {
6824 unsigned long end_pfn = start_pfn + nr_pages;
6825
6826 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6827 gfp_mask);
6828 }
6829
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6830 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6831 unsigned long nr_pages)
6832 {
6833 unsigned long i, end_pfn = start_pfn + nr_pages;
6834 struct page *page;
6835
6836 for (i = start_pfn; i < end_pfn; i++) {
6837 page = pfn_to_online_page(i);
6838 if (!page)
6839 return false;
6840
6841 if (page_zone(page) != z)
6842 return false;
6843
6844 if (PageReserved(page))
6845 return false;
6846
6847 if (PageHuge(page))
6848 return false;
6849 }
6850 return true;
6851 }
6852
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6853 static bool zone_spans_last_pfn(const struct zone *zone,
6854 unsigned long start_pfn, unsigned long nr_pages)
6855 {
6856 unsigned long last_pfn = start_pfn + nr_pages - 1;
6857
6858 return zone_spans_pfn(zone, last_pfn);
6859 }
6860
6861 /**
6862 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6863 * @nr_pages: Number of contiguous pages to allocate
6864 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some
6865 * action and reclaim modifiers are supported. Reclaim modifiers
6866 * control allocation behavior during compaction/migration/reclaim.
6867 * @nid: Target node
6868 * @nodemask: Mask for other possible nodes
6869 *
6870 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6871 * on an applicable zonelist to find a contiguous pfn range which can then be
6872 * tried for allocation with alloc_contig_range(). This routine is intended
6873 * for allocation requests which can not be fulfilled with the buddy allocator.
6874 *
6875 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6876 * power of two, then allocated range is also guaranteed to be aligned to same
6877 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6878 *
6879 * Allocated pages can be freed with free_contig_range() or by manually calling
6880 * __free_page() on each allocated page.
6881 *
6882 * Return: pointer to contiguous pages on success, or NULL if not successful.
6883 */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6884 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6885 int nid, nodemask_t *nodemask)
6886 {
6887 unsigned long ret, pfn, flags;
6888 struct zonelist *zonelist;
6889 struct zone *zone;
6890 struct zoneref *z;
6891
6892 zonelist = node_zonelist(nid, gfp_mask);
6893 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6894 gfp_zone(gfp_mask), nodemask) {
6895 spin_lock_irqsave(&zone->lock, flags);
6896
6897 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6898 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6899 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6900 /*
6901 * We release the zone lock here because
6902 * alloc_contig_range() will also lock the zone
6903 * at some point. If there's an allocation
6904 * spinning on this lock, it may win the race
6905 * and cause alloc_contig_range() to fail...
6906 */
6907 spin_unlock_irqrestore(&zone->lock, flags);
6908 ret = __alloc_contig_pages(pfn, nr_pages,
6909 gfp_mask);
6910 if (!ret)
6911 return pfn_to_page(pfn);
6912 spin_lock_irqsave(&zone->lock, flags);
6913 }
6914 pfn += nr_pages;
6915 }
6916 spin_unlock_irqrestore(&zone->lock, flags);
6917 }
6918 return NULL;
6919 }
6920 #endif /* CONFIG_CONTIG_ALLOC */
6921
free_contig_range(unsigned long pfn,unsigned long nr_pages)6922 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6923 {
6924 unsigned long count = 0;
6925 struct folio *folio = pfn_folio(pfn);
6926
6927 if (folio_test_large(folio)) {
6928 int expected = folio_nr_pages(folio);
6929
6930 if (nr_pages == expected)
6931 folio_put(folio);
6932 else
6933 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6934 pfn, nr_pages, expected);
6935 return;
6936 }
6937
6938 for (; nr_pages--; pfn++) {
6939 struct page *page = pfn_to_page(pfn);
6940
6941 count += page_count(page) != 1;
6942 __free_page(page);
6943 }
6944 WARN(count != 0, "%lu pages are still in use!\n", count);
6945 }
6946 EXPORT_SYMBOL(free_contig_range);
6947
6948 /*
6949 * Effectively disable pcplists for the zone by setting the high limit to 0
6950 * and draining all cpus. A concurrent page freeing on another CPU that's about
6951 * to put the page on pcplist will either finish before the drain and the page
6952 * will be drained, or observe the new high limit and skip the pcplist.
6953 *
6954 * Must be paired with a call to zone_pcp_enable().
6955 */
zone_pcp_disable(struct zone * zone)6956 void zone_pcp_disable(struct zone *zone)
6957 {
6958 mutex_lock(&pcp_batch_high_lock);
6959 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6960 __drain_all_pages(zone, true);
6961 }
6962
zone_pcp_enable(struct zone * zone)6963 void zone_pcp_enable(struct zone *zone)
6964 {
6965 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6966 zone->pageset_high_max, zone->pageset_batch);
6967 mutex_unlock(&pcp_batch_high_lock);
6968 }
6969
zone_pcp_reset(struct zone * zone)6970 void zone_pcp_reset(struct zone *zone)
6971 {
6972 int cpu;
6973 struct per_cpu_zonestat *pzstats;
6974
6975 if (zone->per_cpu_pageset != &boot_pageset) {
6976 for_each_online_cpu(cpu) {
6977 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6978 drain_zonestat(zone, pzstats);
6979 }
6980 free_percpu(zone->per_cpu_pageset);
6981 zone->per_cpu_pageset = &boot_pageset;
6982 if (zone->per_cpu_zonestats != &boot_zonestats) {
6983 free_percpu(zone->per_cpu_zonestats);
6984 zone->per_cpu_zonestats = &boot_zonestats;
6985 }
6986 }
6987 }
6988
6989 #ifdef CONFIG_MEMORY_HOTREMOVE
6990 /*
6991 * All pages in the range must be in a single zone, must not contain holes,
6992 * must span full sections, and must be isolated before calling this function.
6993 *
6994 * Returns the number of managed (non-PageOffline()) pages in the range: the
6995 * number of pages for which memory offlining code must adjust managed page
6996 * counters using adjust_managed_page_count().
6997 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6998 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6999 unsigned long end_pfn)
7000 {
7001 unsigned long already_offline = 0, flags;
7002 unsigned long pfn = start_pfn;
7003 struct page *page;
7004 struct zone *zone;
7005 unsigned int order;
7006
7007 offline_mem_sections(pfn, end_pfn);
7008 zone = page_zone(pfn_to_page(pfn));
7009 spin_lock_irqsave(&zone->lock, flags);
7010 while (pfn < end_pfn) {
7011 page = pfn_to_page(pfn);
7012 /*
7013 * The HWPoisoned page may be not in buddy system, and
7014 * page_count() is not 0.
7015 */
7016 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7017 pfn++;
7018 continue;
7019 }
7020 /*
7021 * At this point all remaining PageOffline() pages have a
7022 * reference count of 0 and can simply be skipped.
7023 */
7024 if (PageOffline(page)) {
7025 BUG_ON(page_count(page));
7026 BUG_ON(PageBuddy(page));
7027 already_offline++;
7028 pfn++;
7029 continue;
7030 }
7031
7032 BUG_ON(page_count(page));
7033 BUG_ON(!PageBuddy(page));
7034 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7035 order = buddy_order(page);
7036 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7037 pfn += (1 << order);
7038 }
7039 spin_unlock_irqrestore(&zone->lock, flags);
7040
7041 return end_pfn - start_pfn - already_offline;
7042 }
7043 #endif
7044
7045 /*
7046 * This function returns a stable result only if called under zone lock.
7047 */
is_free_buddy_page(const struct page * page)7048 bool is_free_buddy_page(const struct page *page)
7049 {
7050 unsigned long pfn = page_to_pfn(page);
7051 unsigned int order;
7052
7053 for (order = 0; order < NR_PAGE_ORDERS; order++) {
7054 const struct page *head = page - (pfn & ((1 << order) - 1));
7055
7056 if (PageBuddy(head) &&
7057 buddy_order_unsafe(head) >= order)
7058 break;
7059 }
7060
7061 return order <= MAX_PAGE_ORDER;
7062 }
7063 EXPORT_SYMBOL(is_free_buddy_page);
7064
7065 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)7066 static inline void add_to_free_list(struct page *page, struct zone *zone,
7067 unsigned int order, int migratetype,
7068 bool tail)
7069 {
7070 __add_to_free_list(page, zone, order, migratetype, tail);
7071 account_freepages(zone, 1 << order, migratetype);
7072 }
7073
7074 /*
7075 * Break down a higher-order page in sub-pages, and keep our target out of
7076 * buddy allocator.
7077 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)7078 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7079 struct page *target, int low, int high,
7080 int migratetype)
7081 {
7082 unsigned long size = 1 << high;
7083 struct page *current_buddy;
7084
7085 while (high > low) {
7086 high--;
7087 size >>= 1;
7088
7089 if (target >= &page[size]) {
7090 current_buddy = page;
7091 page = page + size;
7092 } else {
7093 current_buddy = page + size;
7094 }
7095
7096 if (set_page_guard(zone, current_buddy, high))
7097 continue;
7098
7099 add_to_free_list(current_buddy, zone, high, migratetype, false);
7100 set_buddy_order(current_buddy, high);
7101 }
7102 }
7103
7104 /*
7105 * Take a page that will be marked as poisoned off the buddy allocator.
7106 */
take_page_off_buddy(struct page * page)7107 bool take_page_off_buddy(struct page *page)
7108 {
7109 struct zone *zone = page_zone(page);
7110 unsigned long pfn = page_to_pfn(page);
7111 unsigned long flags;
7112 unsigned int order;
7113 bool ret = false;
7114
7115 spin_lock_irqsave(&zone->lock, flags);
7116 for (order = 0; order < NR_PAGE_ORDERS; order++) {
7117 struct page *page_head = page - (pfn & ((1 << order) - 1));
7118 int page_order = buddy_order(page_head);
7119
7120 if (PageBuddy(page_head) && page_order >= order) {
7121 unsigned long pfn_head = page_to_pfn(page_head);
7122 int migratetype = get_pfnblock_migratetype(page_head,
7123 pfn_head);
7124
7125 del_page_from_free_list(page_head, zone, page_order,
7126 migratetype);
7127 break_down_buddy_pages(zone, page_head, page, 0,
7128 page_order, migratetype);
7129 SetPageHWPoisonTakenOff(page);
7130 ret = true;
7131 break;
7132 }
7133 if (page_count(page_head) > 0)
7134 break;
7135 }
7136 spin_unlock_irqrestore(&zone->lock, flags);
7137 return ret;
7138 }
7139
7140 /*
7141 * Cancel takeoff done by take_page_off_buddy().
7142 */
put_page_back_buddy(struct page * page)7143 bool put_page_back_buddy(struct page *page)
7144 {
7145 struct zone *zone = page_zone(page);
7146 unsigned long flags;
7147 bool ret = false;
7148
7149 spin_lock_irqsave(&zone->lock, flags);
7150 if (put_page_testzero(page)) {
7151 unsigned long pfn = page_to_pfn(page);
7152 int migratetype = get_pfnblock_migratetype(page, pfn);
7153
7154 ClearPageHWPoisonTakenOff(page);
7155 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7156 if (TestClearPageHWPoison(page)) {
7157 ret = true;
7158 }
7159 }
7160 spin_unlock_irqrestore(&zone->lock, flags);
7161
7162 return ret;
7163 }
7164 #endif
7165
7166 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)7167 bool has_managed_dma(void)
7168 {
7169 struct pglist_data *pgdat;
7170
7171 for_each_online_pgdat(pgdat) {
7172 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7173
7174 if (managed_zone(zone))
7175 return true;
7176 }
7177 return false;
7178 }
7179 #endif /* CONFIG_ZONE_DMA */
7180
7181 #ifdef CONFIG_UNACCEPTED_MEMORY
7182
7183 static bool lazy_accept = true;
7184
accept_memory_parse(char * p)7185 static int __init accept_memory_parse(char *p)
7186 {
7187 if (!strcmp(p, "lazy")) {
7188 lazy_accept = true;
7189 return 0;
7190 } else if (!strcmp(p, "eager")) {
7191 lazy_accept = false;
7192 return 0;
7193 } else {
7194 return -EINVAL;
7195 }
7196 }
7197 early_param("accept_memory", accept_memory_parse);
7198
page_contains_unaccepted(struct page * page,unsigned int order)7199 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7200 {
7201 phys_addr_t start = page_to_phys(page);
7202
7203 return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7204 }
7205
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7206 static void __accept_page(struct zone *zone, unsigned long *flags,
7207 struct page *page)
7208 {
7209 list_del(&page->lru);
7210 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7211 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7212 __ClearPageUnaccepted(page);
7213 spin_unlock_irqrestore(&zone->lock, *flags);
7214
7215 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7216
7217 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7218 }
7219
accept_page(struct page * page)7220 void accept_page(struct page *page)
7221 {
7222 struct zone *zone = page_zone(page);
7223 unsigned long flags;
7224
7225 spin_lock_irqsave(&zone->lock, flags);
7226 if (!PageUnaccepted(page)) {
7227 spin_unlock_irqrestore(&zone->lock, flags);
7228 return;
7229 }
7230
7231 /* Unlocks zone->lock */
7232 __accept_page(zone, &flags, page);
7233 }
7234
try_to_accept_memory_one(struct zone * zone)7235 static bool try_to_accept_memory_one(struct zone *zone)
7236 {
7237 unsigned long flags;
7238 struct page *page;
7239
7240 spin_lock_irqsave(&zone->lock, flags);
7241 page = list_first_entry_or_null(&zone->unaccepted_pages,
7242 struct page, lru);
7243 if (!page) {
7244 spin_unlock_irqrestore(&zone->lock, flags);
7245 return false;
7246 }
7247
7248 /* Unlocks zone->lock */
7249 __accept_page(zone, &flags, page);
7250
7251 return true;
7252 }
7253
cond_accept_memory(struct zone * zone,unsigned int order,int alloc_flags)7254 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7255 int alloc_flags)
7256 {
7257 long to_accept, wmark;
7258 bool ret = false;
7259
7260 if (list_empty(&zone->unaccepted_pages))
7261 return false;
7262
7263 /* Bailout, since try_to_accept_memory_one() needs to take a lock */
7264 if (alloc_flags & ALLOC_TRYLOCK)
7265 return false;
7266
7267 wmark = promo_wmark_pages(zone);
7268
7269 /*
7270 * Watermarks have not been initialized yet.
7271 *
7272 * Accepting one MAX_ORDER page to ensure progress.
7273 */
7274 if (!wmark)
7275 return try_to_accept_memory_one(zone);
7276
7277 /* How much to accept to get to promo watermark? */
7278 to_accept = wmark -
7279 (zone_page_state(zone, NR_FREE_PAGES) -
7280 __zone_watermark_unusable_free(zone, order, 0) -
7281 zone_page_state(zone, NR_UNACCEPTED));
7282
7283 while (to_accept > 0) {
7284 if (!try_to_accept_memory_one(zone))
7285 break;
7286 ret = true;
7287 to_accept -= MAX_ORDER_NR_PAGES;
7288 }
7289
7290 return ret;
7291 }
7292
__free_unaccepted(struct page * page)7293 static bool __free_unaccepted(struct page *page)
7294 {
7295 struct zone *zone = page_zone(page);
7296 unsigned long flags;
7297
7298 if (!lazy_accept)
7299 return false;
7300
7301 spin_lock_irqsave(&zone->lock, flags);
7302 list_add_tail(&page->lru, &zone->unaccepted_pages);
7303 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7304 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7305 __SetPageUnaccepted(page);
7306 spin_unlock_irqrestore(&zone->lock, flags);
7307
7308 return true;
7309 }
7310
7311 #else
7312
page_contains_unaccepted(struct page * page,unsigned int order)7313 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7314 {
7315 return false;
7316 }
7317
cond_accept_memory(struct zone * zone,unsigned int order,int alloc_flags)7318 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7319 int alloc_flags)
7320 {
7321 return false;
7322 }
7323
__free_unaccepted(struct page * page)7324 static bool __free_unaccepted(struct page *page)
7325 {
7326 BUILD_BUG();
7327 return false;
7328 }
7329
7330 #endif /* CONFIG_UNACCEPTED_MEMORY */
7331
7332 /**
7333 * try_alloc_pages - opportunistic reentrant allocation from any context
7334 * @nid: node to allocate from
7335 * @order: allocation order size
7336 *
7337 * Allocates pages of a given order from the given node. This is safe to
7338 * call from any context (from atomic, NMI, and also reentrant
7339 * allocator -> tracepoint -> try_alloc_pages_noprof).
7340 * Allocation is best effort and to be expected to fail easily so nobody should
7341 * rely on the success. Failures are not reported via warn_alloc().
7342 * See always fail conditions below.
7343 *
7344 * Return: allocated page or NULL on failure.
7345 */
try_alloc_pages_noprof(int nid,unsigned int order)7346 struct page *try_alloc_pages_noprof(int nid, unsigned int order)
7347 {
7348 /*
7349 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7350 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7351 * is not safe in arbitrary context.
7352 *
7353 * These two are the conditions for gfpflags_allow_spinning() being true.
7354 *
7355 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason
7356 * to warn. Also warn would trigger printk() which is unsafe from
7357 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7358 * since the running context is unknown.
7359 *
7360 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7361 * is safe in any context. Also zeroing the page is mandatory for
7362 * BPF use cases.
7363 *
7364 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7365 * specify it here to highlight that try_alloc_pages()
7366 * doesn't want to deplete reserves.
7367 */
7368 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7369 | __GFP_ACCOUNT;
7370 unsigned int alloc_flags = ALLOC_TRYLOCK;
7371 struct alloc_context ac = { };
7372 struct page *page;
7373
7374 /*
7375 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7376 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7377 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7378 * mark the task as the owner of another rt_spin_lock which will
7379 * confuse PI logic, so return immediately if called form hard IRQ or
7380 * NMI.
7381 *
7382 * Note, irqs_disabled() case is ok. This function can be called
7383 * from raw_spin_lock_irqsave region.
7384 */
7385 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7386 return NULL;
7387 if (!pcp_allowed_order(order))
7388 return NULL;
7389
7390 /* Bailout, since _deferred_grow_zone() needs to take a lock */
7391 if (deferred_pages_enabled())
7392 return NULL;
7393
7394 if (nid == NUMA_NO_NODE)
7395 nid = numa_node_id();
7396
7397 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7398 &alloc_gfp, &alloc_flags);
7399
7400 /*
7401 * Best effort allocation from percpu free list.
7402 * If it's empty attempt to spin_trylock zone->lock.
7403 */
7404 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7405
7406 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7407
7408 if (page)
7409 set_page_refcounted(page);
7410
7411 if (memcg_kmem_online() && page &&
7412 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7413 free_pages_nolock(page, order);
7414 page = NULL;
7415 }
7416 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7417 kmsan_alloc_page(page, order, alloc_gfp);
7418 return page;
7419 }
7420