1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/hugetlb.h>
34 #include "internal.h"
35 #include "slab.h"
36 #include "shuffle.h"
37 
38 #include <asm/setup.h>
39 
40 #ifndef CONFIG_NUMA
41 unsigned long max_mapnr;
42 EXPORT_SYMBOL(max_mapnr);
43 
44 struct page *mem_map;
45 EXPORT_SYMBOL(mem_map);
46 #endif
47 
48 /*
49  * high_memory defines the upper bound on direct map memory, then end
50  * of ZONE_NORMAL.
51  */
52 void *high_memory;
53 EXPORT_SYMBOL(high_memory);
54 
55 #ifdef CONFIG_DEBUG_MEMORY_INIT
56 int __meminitdata mminit_loglevel;
57 
58 /* The zonelists are simply reported, validation is manual. */
mminit_verify_zonelist(void)59 void __init mminit_verify_zonelist(void)
60 {
61 	int nid;
62 
63 	if (mminit_loglevel < MMINIT_VERIFY)
64 		return;
65 
66 	for_each_online_node(nid) {
67 		pg_data_t *pgdat = NODE_DATA(nid);
68 		struct zone *zone;
69 		struct zoneref *z;
70 		struct zonelist *zonelist;
71 		int i, listid, zoneid;
72 
73 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
74 
75 			/* Identify the zone and nodelist */
76 			zoneid = i % MAX_NR_ZONES;
77 			listid = i / MAX_NR_ZONES;
78 			zonelist = &pgdat->node_zonelists[listid];
79 			zone = &pgdat->node_zones[zoneid];
80 			if (!populated_zone(zone))
81 				continue;
82 
83 			/* Print information about the zonelist */
84 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
85 				listid > 0 ? "thisnode" : "general", nid,
86 				zone->name);
87 
88 			/* Iterate the zonelist */
89 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
90 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
91 			pr_cont("\n");
92 		}
93 	}
94 }
95 
mminit_verify_pageflags_layout(void)96 void __init mminit_verify_pageflags_layout(void)
97 {
98 	int shift, width;
99 	unsigned long or_mask, add_mask;
100 
101 	shift = BITS_PER_LONG;
102 	width = shift - NR_NON_PAGEFLAG_BITS;
103 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
104 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
105 		SECTIONS_WIDTH,
106 		NODES_WIDTH,
107 		ZONES_WIDTH,
108 		LAST_CPUPID_WIDTH,
109 		KASAN_TAG_WIDTH,
110 		LRU_GEN_WIDTH,
111 		LRU_REFS_WIDTH,
112 		NR_PAGEFLAGS);
113 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
114 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
115 		SECTIONS_SHIFT,
116 		NODES_SHIFT,
117 		ZONES_SHIFT,
118 		LAST_CPUPID_SHIFT,
119 		KASAN_TAG_WIDTH);
120 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
121 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
122 		(unsigned long)SECTIONS_PGSHIFT,
123 		(unsigned long)NODES_PGSHIFT,
124 		(unsigned long)ZONES_PGSHIFT,
125 		(unsigned long)LAST_CPUPID_PGSHIFT,
126 		(unsigned long)KASAN_TAG_PGSHIFT);
127 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
128 		"Node/Zone ID: %lu -> %lu\n",
129 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
130 		(unsigned long)ZONEID_PGOFF);
131 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
132 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
133 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
134 #ifdef NODE_NOT_IN_PAGE_FLAGS
135 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
136 		"Node not in page flags");
137 #endif
138 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
139 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
140 		"Last cpupid not in page flags");
141 #endif
142 
143 	if (SECTIONS_WIDTH) {
144 		shift -= SECTIONS_WIDTH;
145 		BUG_ON(shift != SECTIONS_PGSHIFT);
146 	}
147 	if (NODES_WIDTH) {
148 		shift -= NODES_WIDTH;
149 		BUG_ON(shift != NODES_PGSHIFT);
150 	}
151 	if (ZONES_WIDTH) {
152 		shift -= ZONES_WIDTH;
153 		BUG_ON(shift != ZONES_PGSHIFT);
154 	}
155 
156 	/* Check for bitmask overlaps */
157 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
158 			(NODES_MASK << NODES_PGSHIFT) |
159 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
160 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
161 			(NODES_MASK << NODES_PGSHIFT) +
162 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
163 	BUG_ON(or_mask != add_mask);
164 }
165 
set_mminit_loglevel(char * str)166 static __init int set_mminit_loglevel(char *str)
167 {
168 	get_option(&str, &mminit_loglevel);
169 	return 0;
170 }
171 early_param("mminit_loglevel", set_mminit_loglevel);
172 #endif /* CONFIG_DEBUG_MEMORY_INIT */
173 
174 struct kobject *mm_kobj;
175 
176 #ifdef CONFIG_SMP
177 s32 vm_committed_as_batch = 32;
178 
mm_compute_batch(int overcommit_policy)179 void mm_compute_batch(int overcommit_policy)
180 {
181 	u64 memsized_batch;
182 	s32 nr = num_present_cpus();
183 	s32 batch = max_t(s32, nr*2, 32);
184 	unsigned long ram_pages = totalram_pages();
185 
186 	/*
187 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
188 	 * (total memory/#cpus), and lift it to 25% for other policies
189 	 * to easy the possible lock contention for percpu_counter
190 	 * vm_committed_as, while the max limit is INT_MAX
191 	 */
192 	if (overcommit_policy == OVERCOMMIT_NEVER)
193 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
194 	else
195 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
196 
197 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
198 }
199 
mm_compute_batch_notifier(struct notifier_block * self,unsigned long action,void * arg)200 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
201 					unsigned long action, void *arg)
202 {
203 	switch (action) {
204 	case MEM_ONLINE:
205 	case MEM_OFFLINE:
206 		mm_compute_batch(sysctl_overcommit_memory);
207 		break;
208 	default:
209 		break;
210 	}
211 	return NOTIFY_OK;
212 }
213 
mm_compute_batch_init(void)214 static int __init mm_compute_batch_init(void)
215 {
216 	mm_compute_batch(sysctl_overcommit_memory);
217 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
218 	return 0;
219 }
220 
221 __initcall(mm_compute_batch_init);
222 
223 #endif
224 
mm_sysfs_init(void)225 static int __init mm_sysfs_init(void)
226 {
227 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
228 	if (!mm_kobj)
229 		return -ENOMEM;
230 
231 	return 0;
232 }
233 postcore_initcall(mm_sysfs_init);
234 
235 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
236 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
238 
239 static unsigned long required_kernelcore __initdata;
240 static unsigned long required_kernelcore_percent __initdata;
241 static unsigned long required_movablecore __initdata;
242 static unsigned long required_movablecore_percent __initdata;
243 
244 static unsigned long nr_kernel_pages __initdata;
245 static unsigned long nr_all_pages __initdata;
246 
247 static bool deferred_struct_pages __meminitdata;
248 
249 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
250 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)251 static int __init cmdline_parse_core(char *p, unsigned long *core,
252 				     unsigned long *percent)
253 {
254 	unsigned long long coremem;
255 	char *endptr;
256 
257 	if (!p)
258 		return -EINVAL;
259 
260 	/* Value may be a percentage of total memory, otherwise bytes */
261 	coremem = simple_strtoull(p, &endptr, 0);
262 	if (*endptr == '%') {
263 		/* Paranoid check for percent values greater than 100 */
264 		WARN_ON(coremem > 100);
265 
266 		*percent = coremem;
267 	} else {
268 		coremem = memparse(p, &p);
269 		/* Paranoid check that UL is enough for the coremem value */
270 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
271 
272 		*core = coremem >> PAGE_SHIFT;
273 		*percent = 0UL;
274 	}
275 	return 0;
276 }
277 
278 bool mirrored_kernelcore __initdata_memblock;
279 
280 /*
281  * kernelcore=size sets the amount of memory for use for allocations that
282  * cannot be reclaimed or migrated.
283  */
cmdline_parse_kernelcore(char * p)284 static int __init cmdline_parse_kernelcore(char *p)
285 {
286 	/* parse kernelcore=mirror */
287 	if (parse_option_str(p, "mirror")) {
288 		mirrored_kernelcore = true;
289 		return 0;
290 	}
291 
292 	return cmdline_parse_core(p, &required_kernelcore,
293 				  &required_kernelcore_percent);
294 }
295 early_param("kernelcore", cmdline_parse_kernelcore);
296 
297 /*
298  * movablecore=size sets the amount of memory for use for allocations that
299  * can be reclaimed or migrated.
300  */
cmdline_parse_movablecore(char * p)301 static int __init cmdline_parse_movablecore(char *p)
302 {
303 	return cmdline_parse_core(p, &required_movablecore,
304 				  &required_movablecore_percent);
305 }
306 early_param("movablecore", cmdline_parse_movablecore);
307 
308 /*
309  * early_calculate_totalpages()
310  * Sum pages in active regions for movable zone.
311  * Populate N_MEMORY for calculating usable_nodes.
312  */
early_calculate_totalpages(void)313 static unsigned long __init early_calculate_totalpages(void)
314 {
315 	unsigned long totalpages = 0;
316 	unsigned long start_pfn, end_pfn;
317 	int i, nid;
318 
319 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
320 		unsigned long pages = end_pfn - start_pfn;
321 
322 		totalpages += pages;
323 		if (pages)
324 			node_set_state(nid, N_MEMORY);
325 	}
326 	return totalpages;
327 }
328 
329 /*
330  * This finds a zone that can be used for ZONE_MOVABLE pages. The
331  * assumption is made that zones within a node are ordered in monotonic
332  * increasing memory addresses so that the "highest" populated zone is used
333  */
find_usable_zone_for_movable(void)334 static void __init find_usable_zone_for_movable(void)
335 {
336 	int zone_index;
337 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
338 		if (zone_index == ZONE_MOVABLE)
339 			continue;
340 
341 		if (arch_zone_highest_possible_pfn[zone_index] >
342 				arch_zone_lowest_possible_pfn[zone_index])
343 			break;
344 	}
345 
346 	VM_BUG_ON(zone_index == -1);
347 	movable_zone = zone_index;
348 }
349 
350 /*
351  * Find the PFN the Movable zone begins in each node. Kernel memory
352  * is spread evenly between nodes as long as the nodes have enough
353  * memory. When they don't, some nodes will have more kernelcore than
354  * others
355  */
find_zone_movable_pfns_for_nodes(void)356 static void __init find_zone_movable_pfns_for_nodes(void)
357 {
358 	int i, nid;
359 	unsigned long usable_startpfn;
360 	unsigned long kernelcore_node, kernelcore_remaining;
361 	/* save the state before borrow the nodemask */
362 	nodemask_t saved_node_state = node_states[N_MEMORY];
363 	unsigned long totalpages = early_calculate_totalpages();
364 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
365 	struct memblock_region *r;
366 
367 	/* Need to find movable_zone earlier when movable_node is specified. */
368 	find_usable_zone_for_movable();
369 
370 	/*
371 	 * If movable_node is specified, ignore kernelcore and movablecore
372 	 * options.
373 	 */
374 	if (movable_node_is_enabled()) {
375 		for_each_mem_region(r) {
376 			if (!memblock_is_hotpluggable(r))
377 				continue;
378 
379 			nid = memblock_get_region_node(r);
380 
381 			usable_startpfn = memblock_region_memory_base_pfn(r);
382 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
383 				min(usable_startpfn, zone_movable_pfn[nid]) :
384 				usable_startpfn;
385 		}
386 
387 		goto out2;
388 	}
389 
390 	/*
391 	 * If kernelcore=mirror is specified, ignore movablecore option
392 	 */
393 	if (mirrored_kernelcore) {
394 		bool mem_below_4gb_not_mirrored = false;
395 
396 		if (!memblock_has_mirror()) {
397 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
398 			goto out;
399 		}
400 
401 		if (is_kdump_kernel()) {
402 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
403 			goto out;
404 		}
405 
406 		for_each_mem_region(r) {
407 			if (memblock_is_mirror(r))
408 				continue;
409 
410 			nid = memblock_get_region_node(r);
411 
412 			usable_startpfn = memblock_region_memory_base_pfn(r);
413 
414 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
415 				mem_below_4gb_not_mirrored = true;
416 				continue;
417 			}
418 
419 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
420 				min(usable_startpfn, zone_movable_pfn[nid]) :
421 				usable_startpfn;
422 		}
423 
424 		if (mem_below_4gb_not_mirrored)
425 			pr_warn("This configuration results in unmirrored kernel memory.\n");
426 
427 		goto out2;
428 	}
429 
430 	/*
431 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
432 	 * amount of necessary memory.
433 	 */
434 	if (required_kernelcore_percent)
435 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
436 				       10000UL;
437 	if (required_movablecore_percent)
438 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
439 					10000UL;
440 
441 	/*
442 	 * If movablecore= was specified, calculate what size of
443 	 * kernelcore that corresponds so that memory usable for
444 	 * any allocation type is evenly spread. If both kernelcore
445 	 * and movablecore are specified, then the value of kernelcore
446 	 * will be used for required_kernelcore if it's greater than
447 	 * what movablecore would have allowed.
448 	 */
449 	if (required_movablecore) {
450 		unsigned long corepages;
451 
452 		/*
453 		 * Round-up so that ZONE_MOVABLE is at least as large as what
454 		 * was requested by the user
455 		 */
456 		required_movablecore =
457 			round_up(required_movablecore, MAX_ORDER_NR_PAGES);
458 		required_movablecore = min(totalpages, required_movablecore);
459 		corepages = totalpages - required_movablecore;
460 
461 		required_kernelcore = max(required_kernelcore, corepages);
462 	}
463 
464 	/*
465 	 * If kernelcore was not specified or kernelcore size is larger
466 	 * than totalpages, there is no ZONE_MOVABLE.
467 	 */
468 	if (!required_kernelcore || required_kernelcore >= totalpages)
469 		goto out;
470 
471 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
472 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
473 
474 restart:
475 	/* Spread kernelcore memory as evenly as possible throughout nodes */
476 	kernelcore_node = required_kernelcore / usable_nodes;
477 	for_each_node_state(nid, N_MEMORY) {
478 		unsigned long start_pfn, end_pfn;
479 
480 		/*
481 		 * Recalculate kernelcore_node if the division per node
482 		 * now exceeds what is necessary to satisfy the requested
483 		 * amount of memory for the kernel
484 		 */
485 		if (required_kernelcore < kernelcore_node)
486 			kernelcore_node = required_kernelcore / usable_nodes;
487 
488 		/*
489 		 * As the map is walked, we track how much memory is usable
490 		 * by the kernel using kernelcore_remaining. When it is
491 		 * 0, the rest of the node is usable by ZONE_MOVABLE
492 		 */
493 		kernelcore_remaining = kernelcore_node;
494 
495 		/* Go through each range of PFNs within this node */
496 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
497 			unsigned long size_pages;
498 
499 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
500 			if (start_pfn >= end_pfn)
501 				continue;
502 
503 			/* Account for what is only usable for kernelcore */
504 			if (start_pfn < usable_startpfn) {
505 				unsigned long kernel_pages;
506 				kernel_pages = min(end_pfn, usable_startpfn)
507 								- start_pfn;
508 
509 				kernelcore_remaining -= min(kernel_pages,
510 							kernelcore_remaining);
511 				required_kernelcore -= min(kernel_pages,
512 							required_kernelcore);
513 
514 				/* Continue if range is now fully accounted */
515 				if (end_pfn <= usable_startpfn) {
516 
517 					/*
518 					 * Push zone_movable_pfn to the end so
519 					 * that if we have to rebalance
520 					 * kernelcore across nodes, we will
521 					 * not double account here
522 					 */
523 					zone_movable_pfn[nid] = end_pfn;
524 					continue;
525 				}
526 				start_pfn = usable_startpfn;
527 			}
528 
529 			/*
530 			 * The usable PFN range for ZONE_MOVABLE is from
531 			 * start_pfn->end_pfn. Calculate size_pages as the
532 			 * number of pages used as kernelcore
533 			 */
534 			size_pages = end_pfn - start_pfn;
535 			if (size_pages > kernelcore_remaining)
536 				size_pages = kernelcore_remaining;
537 			zone_movable_pfn[nid] = start_pfn + size_pages;
538 
539 			/*
540 			 * Some kernelcore has been met, update counts and
541 			 * break if the kernelcore for this node has been
542 			 * satisfied
543 			 */
544 			required_kernelcore -= min(required_kernelcore,
545 								size_pages);
546 			kernelcore_remaining -= size_pages;
547 			if (!kernelcore_remaining)
548 				break;
549 		}
550 	}
551 
552 	/*
553 	 * If there is still required_kernelcore, we do another pass with one
554 	 * less node in the count. This will push zone_movable_pfn[nid] further
555 	 * along on the nodes that still have memory until kernelcore is
556 	 * satisfied
557 	 */
558 	usable_nodes--;
559 	if (usable_nodes && required_kernelcore > usable_nodes)
560 		goto restart;
561 
562 out2:
563 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
564 	for_each_node_state(nid, N_MEMORY) {
565 		unsigned long start_pfn, end_pfn;
566 
567 		zone_movable_pfn[nid] =
568 			round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
569 
570 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
571 		if (zone_movable_pfn[nid] >= end_pfn)
572 			zone_movable_pfn[nid] = 0;
573 	}
574 
575 out:
576 	/* restore the node_state */
577 	node_states[N_MEMORY] = saved_node_state;
578 }
579 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)580 void __meminit __init_single_page(struct page *page, unsigned long pfn,
581 				unsigned long zone, int nid)
582 {
583 	mm_zero_struct_page(page);
584 	set_page_links(page, zone, nid, pfn);
585 	init_page_count(page);
586 	atomic_set(&page->_mapcount, -1);
587 	page_cpupid_reset_last(page);
588 	page_kasan_tag_reset(page);
589 
590 	INIT_LIST_HEAD(&page->lru);
591 #ifdef WANT_PAGE_VIRTUAL
592 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
593 	if (!is_highmem_idx(zone))
594 		set_page_address(page, __va(pfn << PAGE_SHIFT));
595 #endif
596 }
597 
598 #ifdef CONFIG_NUMA
599 /*
600  * During memory init memblocks map pfns to nids. The search is expensive and
601  * this caches recent lookups. The implementation of __early_pfn_to_nid
602  * treats start/end as pfns.
603  */
604 struct mminit_pfnnid_cache {
605 	unsigned long last_start;
606 	unsigned long last_end;
607 	int last_nid;
608 };
609 
610 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
611 
612 /*
613  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
614  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)615 static int __meminit __early_pfn_to_nid(unsigned long pfn,
616 					struct mminit_pfnnid_cache *state)
617 {
618 	unsigned long start_pfn, end_pfn;
619 	int nid;
620 
621 	if (state->last_start <= pfn && pfn < state->last_end)
622 		return state->last_nid;
623 
624 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
625 	if (nid != NUMA_NO_NODE) {
626 		state->last_start = start_pfn;
627 		state->last_end = end_pfn;
628 		state->last_nid = nid;
629 	}
630 
631 	return nid;
632 }
633 
early_pfn_to_nid(unsigned long pfn)634 int __meminit early_pfn_to_nid(unsigned long pfn)
635 {
636 	static DEFINE_SPINLOCK(early_pfn_lock);
637 	int nid;
638 
639 	spin_lock(&early_pfn_lock);
640 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
641 	if (nid < 0)
642 		nid = first_online_node;
643 	spin_unlock(&early_pfn_lock);
644 
645 	return nid;
646 }
647 
648 int hashdist = HASHDIST_DEFAULT;
649 
set_hashdist(char * str)650 static int __init set_hashdist(char *str)
651 {
652 	if (!str)
653 		return 0;
654 	hashdist = simple_strtoul(str, &str, 0);
655 	return 1;
656 }
657 __setup("hashdist=", set_hashdist);
658 
fixup_hashdist(void)659 static inline void fixup_hashdist(void)
660 {
661 	if (num_node_state(N_MEMORY) == 1)
662 		hashdist = 0;
663 }
664 #else
fixup_hashdist(void)665 static inline void fixup_hashdist(void) {}
666 #endif /* CONFIG_NUMA */
667 
668 /*
669  * Initialize a reserved page unconditionally, finding its zone first.
670  */
__init_page_from_nid(unsigned long pfn,int nid)671 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
672 {
673 	pg_data_t *pgdat;
674 	int zid;
675 
676 	pgdat = NODE_DATA(nid);
677 
678 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
679 		struct zone *zone = &pgdat->node_zones[zid];
680 
681 		if (zone_spans_pfn(zone, pfn))
682 			break;
683 	}
684 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
685 
686 	if (pageblock_aligned(pfn))
687 		set_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE);
688 }
689 
690 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)691 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
692 {
693 	pgdat->first_deferred_pfn = ULONG_MAX;
694 }
695 
696 /* Returns true if the struct page for the pfn is initialised */
early_page_initialised(unsigned long pfn,int nid)697 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
698 {
699 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
700 		return false;
701 
702 	return true;
703 }
704 
705 /*
706  * Returns true when the remaining initialisation should be deferred until
707  * later in the boot cycle when it can be parallelised.
708  */
709 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)710 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
711 {
712 	static unsigned long prev_end_pfn, nr_initialised;
713 
714 	if (early_page_ext_enabled())
715 		return false;
716 
717 	/* Always populate low zones for address-constrained allocations */
718 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
719 		return false;
720 
721 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
722 		return true;
723 
724 	/*
725 	 * prev_end_pfn static that contains the end of previous zone
726 	 * No need to protect because called very early in boot before smp_init.
727 	 */
728 	if (prev_end_pfn != end_pfn) {
729 		prev_end_pfn = end_pfn;
730 		nr_initialised = 0;
731 	}
732 
733 	/*
734 	 * We start only with one section of pages, more pages are added as
735 	 * needed until the rest of deferred pages are initialized.
736 	 */
737 	nr_initialised++;
738 	if ((nr_initialised > PAGES_PER_SECTION) &&
739 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
740 		NODE_DATA(nid)->first_deferred_pfn = pfn;
741 		return true;
742 	}
743 	return false;
744 }
745 
init_deferred_page(unsigned long pfn,int nid)746 static void __meminit init_deferred_page(unsigned long pfn, int nid)
747 {
748 	if (early_page_initialised(pfn, nid))
749 		return;
750 
751 	__init_page_from_nid(pfn, nid);
752 }
753 #else
pgdat_set_deferred_range(pg_data_t * pgdat)754 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
755 
early_page_initialised(unsigned long pfn,int nid)756 static inline bool early_page_initialised(unsigned long pfn, int nid)
757 {
758 	return true;
759 }
760 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)761 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
762 {
763 	return false;
764 }
765 
init_deferred_page(unsigned long pfn,int nid)766 static inline void init_deferred_page(unsigned long pfn, int nid)
767 {
768 }
769 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
770 
771 /*
772  * Initialised pages do not have PageReserved set. This function is
773  * called for each range allocated by the bootmem allocator and
774  * marks the pages PageReserved. The remaining valid pages are later
775  * sent to the buddy page allocator.
776  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end,int nid)777 void __meminit reserve_bootmem_region(phys_addr_t start,
778 				      phys_addr_t end, int nid)
779 {
780 	unsigned long start_pfn = PFN_DOWN(start);
781 	unsigned long end_pfn = PFN_UP(end);
782 
783 	for (; start_pfn < end_pfn; start_pfn++) {
784 		if (pfn_valid(start_pfn)) {
785 			struct page *page = pfn_to_page(start_pfn);
786 
787 			init_deferred_page(start_pfn, nid);
788 
789 			/*
790 			 * no need for atomic set_bit because the struct
791 			 * page is not visible yet so nobody should
792 			 * access it yet.
793 			 */
794 			__SetPageReserved(page);
795 		}
796 	}
797 }
798 
799 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
800 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)801 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
802 {
803 	static struct memblock_region *r;
804 
805 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
806 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
807 			for_each_mem_region(r) {
808 				if (*pfn < memblock_region_memory_end_pfn(r))
809 					break;
810 			}
811 		}
812 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
813 		    memblock_is_mirror(r)) {
814 			*pfn = memblock_region_memory_end_pfn(r);
815 			return true;
816 		}
817 	}
818 	return false;
819 }
820 
821 /*
822  * Only struct pages that correspond to ranges defined by memblock.memory
823  * are zeroed and initialized by going through __init_single_page() during
824  * memmap_init_zone_range().
825  *
826  * But, there could be struct pages that correspond to holes in
827  * memblock.memory. This can happen because of the following reasons:
828  * - physical memory bank size is not necessarily the exact multiple of the
829  *   arbitrary section size
830  * - early reserved memory may not be listed in memblock.memory
831  * - non-memory regions covered by the contigious flatmem mapping
832  * - memory layouts defined with memmap= kernel parameter may not align
833  *   nicely with memmap sections
834  *
835  * Explicitly initialize those struct pages so that:
836  * - PG_Reserved is set
837  * - zone and node links point to zone and node that span the page if the
838  *   hole is in the middle of a zone
839  * - zone and node links point to adjacent zone/node if the hole falls on
840  *   the zone boundary; the pages in such holes will be prepended to the
841  *   zone/node above the hole except for the trailing pages in the last
842  *   section that will be appended to the zone/node below.
843  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)844 static void __init init_unavailable_range(unsigned long spfn,
845 					  unsigned long epfn,
846 					  int zone, int node)
847 {
848 	unsigned long pfn;
849 	u64 pgcnt = 0;
850 
851 	for (pfn = spfn; pfn < epfn; pfn++) {
852 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
853 			pfn = pageblock_end_pfn(pfn) - 1;
854 			continue;
855 		}
856 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
857 		__SetPageReserved(pfn_to_page(pfn));
858 		pgcnt++;
859 	}
860 
861 	if (pgcnt)
862 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
863 			node, zone_names[zone], pgcnt);
864 }
865 
866 /*
867  * Initially all pages are reserved - free ones are freed
868  * up by memblock_free_all() once the early boot process is
869  * done. Non-atomic initialization, single-pass.
870  *
871  * All aligned pageblocks are initialized to the specified migratetype
872  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
873  * zone stats (e.g., nr_isolate_pageblock) are touched.
874  */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)875 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
876 		unsigned long start_pfn, unsigned long zone_end_pfn,
877 		enum meminit_context context,
878 		struct vmem_altmap *altmap, int migratetype)
879 {
880 	unsigned long pfn, end_pfn = start_pfn + size;
881 	struct page *page;
882 
883 	if (highest_memmap_pfn < end_pfn - 1)
884 		highest_memmap_pfn = end_pfn - 1;
885 
886 #ifdef CONFIG_ZONE_DEVICE
887 	/*
888 	 * Honor reservation requested by the driver for this ZONE_DEVICE
889 	 * memory. We limit the total number of pages to initialize to just
890 	 * those that might contain the memory mapping. We will defer the
891 	 * ZONE_DEVICE page initialization until after we have released
892 	 * the hotplug lock.
893 	 */
894 	if (zone == ZONE_DEVICE) {
895 		if (!altmap)
896 			return;
897 
898 		if (start_pfn == altmap->base_pfn)
899 			start_pfn += altmap->reserve;
900 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
901 	}
902 #endif
903 
904 	for (pfn = start_pfn; pfn < end_pfn; ) {
905 		/*
906 		 * There can be holes in boot-time mem_map[]s handed to this
907 		 * function.  They do not exist on hotplugged memory.
908 		 */
909 		if (context == MEMINIT_EARLY) {
910 			if (overlap_memmap_init(zone, &pfn))
911 				continue;
912 			if (defer_init(nid, pfn, zone_end_pfn)) {
913 				deferred_struct_pages = true;
914 				break;
915 			}
916 		}
917 
918 		page = pfn_to_page(pfn);
919 		__init_single_page(page, pfn, zone, nid);
920 		if (context == MEMINIT_HOTPLUG) {
921 #ifdef CONFIG_ZONE_DEVICE
922 			if (zone == ZONE_DEVICE)
923 				__SetPageReserved(page);
924 			else
925 #endif
926 				__SetPageOffline(page);
927 		}
928 
929 		/*
930 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
931 		 * such that unmovable allocations won't be scattered all
932 		 * over the place during system boot.
933 		 */
934 		if (pageblock_aligned(pfn)) {
935 			set_pageblock_migratetype(page, migratetype);
936 			cond_resched();
937 		}
938 		pfn++;
939 	}
940 }
941 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)942 static void __init memmap_init_zone_range(struct zone *zone,
943 					  unsigned long start_pfn,
944 					  unsigned long end_pfn,
945 					  unsigned long *hole_pfn)
946 {
947 	unsigned long zone_start_pfn = zone->zone_start_pfn;
948 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
949 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
950 
951 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
952 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
953 
954 	if (start_pfn >= end_pfn)
955 		return;
956 
957 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
958 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
959 
960 	if (*hole_pfn < start_pfn)
961 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
962 
963 	*hole_pfn = end_pfn;
964 }
965 
memmap_init(void)966 static void __init memmap_init(void)
967 {
968 	unsigned long start_pfn, end_pfn;
969 	unsigned long hole_pfn = 0;
970 	int i, j, zone_id = 0, nid;
971 
972 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
973 		struct pglist_data *node = NODE_DATA(nid);
974 
975 		for (j = 0; j < MAX_NR_ZONES; j++) {
976 			struct zone *zone = node->node_zones + j;
977 
978 			if (!populated_zone(zone))
979 				continue;
980 
981 			memmap_init_zone_range(zone, start_pfn, end_pfn,
982 					       &hole_pfn);
983 			zone_id = j;
984 		}
985 	}
986 
987 	/*
988 	 * Initialize the memory map for hole in the range [memory_end,
989 	 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
990 	 * for FLATMEM.
991 	 * Append the pages in this hole to the highest zone in the last
992 	 * node.
993 	 */
994 #ifdef CONFIG_SPARSEMEM
995 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
996 #else
997 	end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
998 #endif
999 	if (hole_pfn < end_pfn)
1000 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1001 }
1002 
1003 #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)1004 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1005 					  unsigned long zone_idx, int nid,
1006 					  struct dev_pagemap *pgmap)
1007 {
1008 
1009 	__init_single_page(page, pfn, zone_idx, nid);
1010 
1011 	/*
1012 	 * Mark page reserved as it will need to wait for onlining
1013 	 * phase for it to be fully associated with a zone.
1014 	 *
1015 	 * We can use the non-atomic __set_bit operation for setting
1016 	 * the flag as we are still initializing the pages.
1017 	 */
1018 	__SetPageReserved(page);
1019 
1020 	/*
1021 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1022 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
1023 	 * ever freed or placed on a driver-private list.
1024 	 */
1025 	page_folio(page)->pgmap = pgmap;
1026 	page->zone_device_data = NULL;
1027 
1028 	/*
1029 	 * Mark the block movable so that blocks are reserved for
1030 	 * movable at startup. This will force kernel allocations
1031 	 * to reserve their blocks rather than leaking throughout
1032 	 * the address space during boot when many long-lived
1033 	 * kernel allocations are made.
1034 	 *
1035 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1036 	 * because this is done early in section_activate()
1037 	 */
1038 	if (pageblock_aligned(pfn)) {
1039 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1040 		cond_resched();
1041 	}
1042 
1043 	/*
1044 	 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1045 	 * directly to the driver page allocator which will set the page count
1046 	 * to 1 when allocating the page.
1047 	 *
1048 	 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1049 	 * their refcount reset to one whenever they are freed (ie. after
1050 	 * their refcount drops to 0).
1051 	 */
1052 	switch (pgmap->type) {
1053 	case MEMORY_DEVICE_FS_DAX:
1054 	case MEMORY_DEVICE_PRIVATE:
1055 	case MEMORY_DEVICE_COHERENT:
1056 	case MEMORY_DEVICE_PCI_P2PDMA:
1057 		set_page_count(page, 0);
1058 		break;
1059 
1060 	case MEMORY_DEVICE_GENERIC:
1061 		break;
1062 	}
1063 }
1064 
1065 /*
1066  * With compound page geometry and when struct pages are stored in ram most
1067  * tail pages are reused. Consequently, the amount of unique struct pages to
1068  * initialize is a lot smaller that the total amount of struct pages being
1069  * mapped. This is a paired / mild layering violation with explicit knowledge
1070  * of how the sparse_vmemmap internals handle compound pages in the lack
1071  * of an altmap. See vmemmap_populate_compound_pages().
1072  */
compound_nr_pages(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)1073 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1074 					      struct dev_pagemap *pgmap)
1075 {
1076 	if (!vmemmap_can_optimize(altmap, pgmap))
1077 		return pgmap_vmemmap_nr(pgmap);
1078 
1079 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1080 }
1081 
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)1082 static void __ref memmap_init_compound(struct page *head,
1083 				       unsigned long head_pfn,
1084 				       unsigned long zone_idx, int nid,
1085 				       struct dev_pagemap *pgmap,
1086 				       unsigned long nr_pages)
1087 {
1088 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1089 	unsigned int order = pgmap->vmemmap_shift;
1090 
1091 	__SetPageHead(head);
1092 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1093 		struct page *page = pfn_to_page(pfn);
1094 
1095 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1096 		prep_compound_tail(head, pfn - head_pfn);
1097 		set_page_count(page, 0);
1098 
1099 		/*
1100 		 * The first tail page stores important compound page info.
1101 		 * Call prep_compound_head() after the first tail page has
1102 		 * been initialized, to not have the data overwritten.
1103 		 */
1104 		if (pfn == head_pfn + 1)
1105 			prep_compound_head(head, order);
1106 	}
1107 }
1108 
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)1109 void __ref memmap_init_zone_device(struct zone *zone,
1110 				   unsigned long start_pfn,
1111 				   unsigned long nr_pages,
1112 				   struct dev_pagemap *pgmap)
1113 {
1114 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1115 	struct pglist_data *pgdat = zone->zone_pgdat;
1116 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1117 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1118 	unsigned long zone_idx = zone_idx(zone);
1119 	unsigned long start = jiffies;
1120 	int nid = pgdat->node_id;
1121 
1122 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1123 		return;
1124 
1125 	/*
1126 	 * The call to memmap_init should have already taken care
1127 	 * of the pages reserved for the memmap, so we can just jump to
1128 	 * the end of that region and start processing the device pages.
1129 	 */
1130 	if (altmap) {
1131 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1132 		nr_pages = end_pfn - start_pfn;
1133 	}
1134 
1135 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1136 		struct page *page = pfn_to_page(pfn);
1137 
1138 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1139 
1140 		if (pfns_per_compound == 1)
1141 			continue;
1142 
1143 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1144 				     compound_nr_pages(altmap, pgmap));
1145 	}
1146 
1147 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1148 		nr_pages, jiffies_to_msecs(jiffies - start));
1149 }
1150 #endif
1151 
1152 /*
1153  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1154  * because it is sized independent of architecture. Unlike the other zones,
1155  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1156  * in each node depending on the size of each node and how evenly kernelcore
1157  * is distributed. This helper function adjusts the zone ranges
1158  * provided by the architecture for a given node by using the end of the
1159  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1160  * zones within a node are in order of monotonic increases memory addresses
1161  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1162 static void __init adjust_zone_range_for_zone_movable(int nid,
1163 					unsigned long zone_type,
1164 					unsigned long node_end_pfn,
1165 					unsigned long *zone_start_pfn,
1166 					unsigned long *zone_end_pfn)
1167 {
1168 	/* Only adjust if ZONE_MOVABLE is on this node */
1169 	if (zone_movable_pfn[nid]) {
1170 		/* Size ZONE_MOVABLE */
1171 		if (zone_type == ZONE_MOVABLE) {
1172 			*zone_start_pfn = zone_movable_pfn[nid];
1173 			*zone_end_pfn = min(node_end_pfn,
1174 				arch_zone_highest_possible_pfn[movable_zone]);
1175 
1176 		/* Adjust for ZONE_MOVABLE starting within this range */
1177 		} else if (!mirrored_kernelcore &&
1178 			*zone_start_pfn < zone_movable_pfn[nid] &&
1179 			*zone_end_pfn > zone_movable_pfn[nid]) {
1180 			*zone_end_pfn = zone_movable_pfn[nid];
1181 
1182 		/* Check if this whole range is within ZONE_MOVABLE */
1183 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1184 			*zone_start_pfn = *zone_end_pfn;
1185 	}
1186 }
1187 
1188 /*
1189  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1190  * then all holes in the requested range will be accounted for.
1191  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)1192 static unsigned long __init __absent_pages_in_range(int nid,
1193 				unsigned long range_start_pfn,
1194 				unsigned long range_end_pfn)
1195 {
1196 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1197 	unsigned long start_pfn, end_pfn;
1198 	int i;
1199 
1200 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1201 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1202 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1203 		nr_absent -= end_pfn - start_pfn;
1204 	}
1205 	return nr_absent;
1206 }
1207 
1208 /**
1209  * absent_pages_in_range - Return number of page frames in holes within a range
1210  * @start_pfn: The start PFN to start searching for holes
1211  * @end_pfn: The end PFN to stop searching for holes
1212  *
1213  * Return: the number of pages frames in memory holes within a range.
1214  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)1215 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1216 							unsigned long end_pfn)
1217 {
1218 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1219 }
1220 
1221 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long zone_start_pfn,unsigned long zone_end_pfn)1222 static unsigned long __init zone_absent_pages_in_node(int nid,
1223 					unsigned long zone_type,
1224 					unsigned long zone_start_pfn,
1225 					unsigned long zone_end_pfn)
1226 {
1227 	unsigned long nr_absent;
1228 
1229 	/* zone is empty, we don't have any absent pages */
1230 	if (zone_start_pfn == zone_end_pfn)
1231 		return 0;
1232 
1233 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1234 
1235 	/*
1236 	 * ZONE_MOVABLE handling.
1237 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1238 	 * and vice versa.
1239 	 */
1240 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1241 		unsigned long start_pfn, end_pfn;
1242 		struct memblock_region *r;
1243 
1244 		for_each_mem_region(r) {
1245 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1246 					  zone_start_pfn, zone_end_pfn);
1247 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1248 					zone_start_pfn, zone_end_pfn);
1249 
1250 			if (zone_type == ZONE_MOVABLE &&
1251 			    memblock_is_mirror(r))
1252 				nr_absent += end_pfn - start_pfn;
1253 
1254 			if (zone_type == ZONE_NORMAL &&
1255 			    !memblock_is_mirror(r))
1256 				nr_absent += end_pfn - start_pfn;
1257 		}
1258 	}
1259 
1260 	return nr_absent;
1261 }
1262 
1263 /*
1264  * Return the number of pages a zone spans in a node, including holes
1265  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1266  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1267 static unsigned long __init zone_spanned_pages_in_node(int nid,
1268 					unsigned long zone_type,
1269 					unsigned long node_start_pfn,
1270 					unsigned long node_end_pfn,
1271 					unsigned long *zone_start_pfn,
1272 					unsigned long *zone_end_pfn)
1273 {
1274 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1275 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1276 
1277 	/* Get the start and end of the zone */
1278 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1279 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1280 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1281 					   zone_start_pfn, zone_end_pfn);
1282 
1283 	/* Check that this node has pages within the zone's required range */
1284 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1285 		return 0;
1286 
1287 	/* Move the zone boundaries inside the node if necessary */
1288 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1289 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1290 
1291 	/* Return the spanned pages */
1292 	return *zone_end_pfn - *zone_start_pfn;
1293 }
1294 
reset_memoryless_node_totalpages(struct pglist_data * pgdat)1295 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1296 {
1297 	struct zone *z;
1298 
1299 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1300 		z->zone_start_pfn = 0;
1301 		z->spanned_pages = 0;
1302 		z->present_pages = 0;
1303 #if defined(CONFIG_MEMORY_HOTPLUG)
1304 		z->present_early_pages = 0;
1305 #endif
1306 	}
1307 
1308 	pgdat->node_spanned_pages = 0;
1309 	pgdat->node_present_pages = 0;
1310 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1311 }
1312 
calc_nr_kernel_pages(void)1313 static void __init calc_nr_kernel_pages(void)
1314 {
1315 	unsigned long start_pfn, end_pfn;
1316 	phys_addr_t start_addr, end_addr;
1317 	u64 u;
1318 #ifdef CONFIG_HIGHMEM
1319 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1320 #endif
1321 
1322 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1323 		start_pfn = PFN_UP(start_addr);
1324 		end_pfn   = PFN_DOWN(end_addr);
1325 
1326 		if (start_pfn < end_pfn) {
1327 			nr_all_pages += end_pfn - start_pfn;
1328 #ifdef CONFIG_HIGHMEM
1329 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1330 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1331 #endif
1332 			nr_kernel_pages += end_pfn - start_pfn;
1333 		}
1334 	}
1335 }
1336 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)1337 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1338 						unsigned long node_start_pfn,
1339 						unsigned long node_end_pfn)
1340 {
1341 	unsigned long realtotalpages = 0, totalpages = 0;
1342 	enum zone_type i;
1343 
1344 	for (i = 0; i < MAX_NR_ZONES; i++) {
1345 		struct zone *zone = pgdat->node_zones + i;
1346 		unsigned long zone_start_pfn, zone_end_pfn;
1347 		unsigned long spanned, absent;
1348 		unsigned long real_size;
1349 
1350 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1351 						     node_start_pfn,
1352 						     node_end_pfn,
1353 						     &zone_start_pfn,
1354 						     &zone_end_pfn);
1355 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1356 						   zone_start_pfn,
1357 						   zone_end_pfn);
1358 
1359 		real_size = spanned - absent;
1360 
1361 		if (spanned)
1362 			zone->zone_start_pfn = zone_start_pfn;
1363 		else
1364 			zone->zone_start_pfn = 0;
1365 		zone->spanned_pages = spanned;
1366 		zone->present_pages = real_size;
1367 #if defined(CONFIG_MEMORY_HOTPLUG)
1368 		zone->present_early_pages = real_size;
1369 #endif
1370 
1371 		totalpages += spanned;
1372 		realtotalpages += real_size;
1373 	}
1374 
1375 	pgdat->node_spanned_pages = totalpages;
1376 	pgdat->node_present_pages = realtotalpages;
1377 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1378 }
1379 
1380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)1381 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1382 {
1383 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1384 
1385 	spin_lock_init(&ds_queue->split_queue_lock);
1386 	INIT_LIST_HEAD(&ds_queue->split_queue);
1387 	ds_queue->split_queue_len = 0;
1388 }
1389 #else
pgdat_init_split_queue(struct pglist_data * pgdat)1390 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1391 #endif
1392 
1393 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)1394 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1395 {
1396 	init_waitqueue_head(&pgdat->kcompactd_wait);
1397 }
1398 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)1399 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1400 #endif
1401 
pgdat_init_internals(struct pglist_data * pgdat)1402 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1403 {
1404 	int i;
1405 
1406 	pgdat_resize_init(pgdat);
1407 	pgdat_kswapd_lock_init(pgdat);
1408 
1409 	pgdat_init_split_queue(pgdat);
1410 	pgdat_init_kcompactd(pgdat);
1411 
1412 	init_waitqueue_head(&pgdat->kswapd_wait);
1413 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1414 
1415 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1416 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1417 
1418 	pgdat_page_ext_init(pgdat);
1419 	lruvec_init(&pgdat->__lruvec);
1420 }
1421 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)1422 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1423 							unsigned long remaining_pages)
1424 {
1425 	atomic_long_set(&zone->managed_pages, remaining_pages);
1426 	zone_set_nid(zone, nid);
1427 	zone->name = zone_names[idx];
1428 	zone->zone_pgdat = NODE_DATA(nid);
1429 	spin_lock_init(&zone->lock);
1430 	zone_seqlock_init(zone);
1431 	zone_pcp_init(zone);
1432 }
1433 
zone_init_free_lists(struct zone * zone)1434 static void __meminit zone_init_free_lists(struct zone *zone)
1435 {
1436 	unsigned int order, t;
1437 	for_each_migratetype_order(order, t) {
1438 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1439 		zone->free_area[order].nr_free = 0;
1440 	}
1441 
1442 #ifdef CONFIG_UNACCEPTED_MEMORY
1443 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1444 #endif
1445 }
1446 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)1447 void __meminit init_currently_empty_zone(struct zone *zone,
1448 					unsigned long zone_start_pfn,
1449 					unsigned long size)
1450 {
1451 	struct pglist_data *pgdat = zone->zone_pgdat;
1452 	int zone_idx = zone_idx(zone) + 1;
1453 
1454 	if (zone_idx > pgdat->nr_zones)
1455 		pgdat->nr_zones = zone_idx;
1456 
1457 	zone->zone_start_pfn = zone_start_pfn;
1458 
1459 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1460 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1461 			pgdat->node_id,
1462 			(unsigned long)zone_idx(zone),
1463 			zone_start_pfn, (zone_start_pfn + size));
1464 
1465 	zone_init_free_lists(zone);
1466 	zone->initialized = 1;
1467 }
1468 
1469 #ifndef CONFIG_SPARSEMEM
1470 /*
1471  * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1472  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1473  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1474  * round what is now in bits to nearest long in bits, then return it in
1475  * bytes.
1476  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)1477 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1478 {
1479 	unsigned long usemapsize;
1480 
1481 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1482 	usemapsize = round_up(zonesize, pageblock_nr_pages);
1483 	usemapsize = usemapsize >> pageblock_order;
1484 	usemapsize *= NR_PAGEBLOCK_BITS;
1485 	usemapsize = round_up(usemapsize, BITS_PER_LONG);
1486 
1487 	return usemapsize / BITS_PER_BYTE;
1488 }
1489 
setup_usemap(struct zone * zone)1490 static void __ref setup_usemap(struct zone *zone)
1491 {
1492 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1493 					       zone->spanned_pages);
1494 	zone->pageblock_flags = NULL;
1495 	if (usemapsize) {
1496 		zone->pageblock_flags =
1497 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1498 					    zone_to_nid(zone));
1499 		if (!zone->pageblock_flags)
1500 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1501 			      usemapsize, zone->name, zone_to_nid(zone));
1502 	}
1503 }
1504 #else
setup_usemap(struct zone * zone)1505 static inline void setup_usemap(struct zone *zone) {}
1506 #endif /* CONFIG_SPARSEMEM */
1507 
1508 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1509 
1510 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)1511 void __init set_pageblock_order(void)
1512 {
1513 	unsigned int order = MAX_PAGE_ORDER;
1514 
1515 	/* Check that pageblock_nr_pages has not already been setup */
1516 	if (pageblock_order)
1517 		return;
1518 
1519 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1520 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1521 		order = HUGETLB_PAGE_ORDER;
1522 
1523 	/*
1524 	 * Assume the largest contiguous order of interest is a huge page.
1525 	 * This value may be variable depending on boot parameters on powerpc.
1526 	 */
1527 	pageblock_order = order;
1528 }
1529 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1530 
1531 /*
1532  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1533  * is unused as pageblock_order is set at compile-time. See
1534  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1535  * the kernel config
1536  */
set_pageblock_order(void)1537 void __init set_pageblock_order(void)
1538 {
1539 }
1540 
1541 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1542 
1543 /*
1544  * Set up the zone data structures
1545  * - init pgdat internals
1546  * - init all zones belonging to this node
1547  *
1548  * NOTE: this function is only called during memory hotplug
1549  */
1550 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)1551 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1552 {
1553 	int nid = pgdat->node_id;
1554 	enum zone_type z;
1555 	int cpu;
1556 
1557 	pgdat_init_internals(pgdat);
1558 
1559 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1560 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1561 
1562 	/*
1563 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1564 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1565 	 * when it starts in the near future.
1566 	 */
1567 	pgdat->nr_zones = 0;
1568 	pgdat->kswapd_order = 0;
1569 	pgdat->kswapd_highest_zoneidx = 0;
1570 	pgdat->node_start_pfn = 0;
1571 	pgdat->node_present_pages = 0;
1572 
1573 	for_each_online_cpu(cpu) {
1574 		struct per_cpu_nodestat *p;
1575 
1576 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1577 		memset(p, 0, sizeof(*p));
1578 	}
1579 
1580 	/*
1581 	 * When memory is hot-added, all the memory is in offline state. So
1582 	 * clear all zones' present_pages and managed_pages because they will
1583 	 * be updated in online_pages() and offline_pages().
1584 	 */
1585 	for (z = 0; z < MAX_NR_ZONES; z++) {
1586 		struct zone *zone = pgdat->node_zones + z;
1587 
1588 		zone->present_pages = 0;
1589 		zone_init_internals(zone, z, nid, 0);
1590 	}
1591 }
1592 #endif
1593 
free_area_init_core(struct pglist_data * pgdat)1594 static void __init free_area_init_core(struct pglist_data *pgdat)
1595 {
1596 	enum zone_type j;
1597 	int nid = pgdat->node_id;
1598 
1599 	pgdat_init_internals(pgdat);
1600 	pgdat->per_cpu_nodestats = &boot_nodestats;
1601 
1602 	for (j = 0; j < MAX_NR_ZONES; j++) {
1603 		struct zone *zone = pgdat->node_zones + j;
1604 		unsigned long size = zone->spanned_pages;
1605 
1606 		/*
1607 		 * Initialize zone->managed_pages as 0 , it will be reset
1608 		 * when memblock allocator frees pages into buddy system.
1609 		 */
1610 		zone_init_internals(zone, j, nid, zone->present_pages);
1611 
1612 		if (!size)
1613 			continue;
1614 
1615 		setup_usemap(zone);
1616 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1617 	}
1618 }
1619 
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)1620 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1621 			  phys_addr_t min_addr, int nid, bool exact_nid)
1622 {
1623 	void *ptr;
1624 
1625 	/*
1626 	 * Kmemleak will explicitly scan mem_map by traversing all valid
1627 	 * `struct *page`,so memblock does not need to be added to the scan list.
1628 	 */
1629 	if (exact_nid)
1630 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1631 						   MEMBLOCK_ALLOC_NOLEAKTRACE,
1632 						   nid);
1633 	else
1634 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1635 						 MEMBLOCK_ALLOC_NOLEAKTRACE,
1636 						 nid);
1637 
1638 	if (ptr && size > 0)
1639 		page_init_poison(ptr, size);
1640 
1641 	return ptr;
1642 }
1643 
1644 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)1645 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1646 {
1647 	unsigned long start, offset, size, end;
1648 	struct page *map;
1649 
1650 	/* Skip empty nodes */
1651 	if (!pgdat->node_spanned_pages)
1652 		return;
1653 
1654 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1655 	offset = pgdat->node_start_pfn - start;
1656 	/*
1657 	 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1658 	 * aligned but the node_mem_map endpoints must be in order
1659 	 * for the buddy allocator to function correctly.
1660 	 */
1661 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1662 	size =  (end - start) * sizeof(struct page);
1663 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1664 			   pgdat->node_id, false);
1665 	if (!map)
1666 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1667 		      size, pgdat->node_id);
1668 	pgdat->node_mem_map = map + offset;
1669 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1670 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1671 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1672 		 (unsigned long)pgdat->node_mem_map);
1673 
1674 	/* the global mem_map is just set as node 0's */
1675 	WARN_ON(pgdat != NODE_DATA(0));
1676 
1677 	mem_map = pgdat->node_mem_map;
1678 	if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1679 		mem_map -= offset;
1680 
1681 	max_mapnr = end - start;
1682 }
1683 #else
alloc_node_mem_map(struct pglist_data * pgdat)1684 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1685 #endif /* CONFIG_FLATMEM */
1686 
1687 /**
1688  * get_pfn_range_for_nid - Return the start and end page frames for a node
1689  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1690  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1691  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1692  *
1693  * It returns the start and end page frame of a node based on information
1694  * provided by memblock_set_node(). If called for a node
1695  * with no available memory, the start and end PFNs will be 0.
1696  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)1697 void __init get_pfn_range_for_nid(unsigned int nid,
1698 			unsigned long *start_pfn, unsigned long *end_pfn)
1699 {
1700 	unsigned long this_start_pfn, this_end_pfn;
1701 	int i;
1702 
1703 	*start_pfn = -1UL;
1704 	*end_pfn = 0;
1705 
1706 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1707 		*start_pfn = min(*start_pfn, this_start_pfn);
1708 		*end_pfn = max(*end_pfn, this_end_pfn);
1709 	}
1710 
1711 	if (*start_pfn == -1UL)
1712 		*start_pfn = 0;
1713 }
1714 
free_area_init_node(int nid)1715 static void __init free_area_init_node(int nid)
1716 {
1717 	pg_data_t *pgdat = NODE_DATA(nid);
1718 	unsigned long start_pfn = 0;
1719 	unsigned long end_pfn = 0;
1720 
1721 	/* pg_data_t should be reset to zero when it's allocated */
1722 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1723 
1724 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1725 
1726 	pgdat->node_id = nid;
1727 	pgdat->node_start_pfn = start_pfn;
1728 	pgdat->per_cpu_nodestats = NULL;
1729 
1730 	if (start_pfn != end_pfn) {
1731 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1732 			(u64)start_pfn << PAGE_SHIFT,
1733 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1734 
1735 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1736 	} else {
1737 		pr_info("Initmem setup node %d as memoryless\n", nid);
1738 
1739 		reset_memoryless_node_totalpages(pgdat);
1740 	}
1741 
1742 	alloc_node_mem_map(pgdat);
1743 	pgdat_set_deferred_range(pgdat);
1744 
1745 	free_area_init_core(pgdat);
1746 	lru_gen_init_pgdat(pgdat);
1747 }
1748 
1749 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat)1750 static void __init check_for_memory(pg_data_t *pgdat)
1751 {
1752 	enum zone_type zone_type;
1753 
1754 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1755 		struct zone *zone = &pgdat->node_zones[zone_type];
1756 		if (populated_zone(zone)) {
1757 			if (IS_ENABLED(CONFIG_HIGHMEM))
1758 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1759 			if (zone_type <= ZONE_NORMAL)
1760 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1761 			break;
1762 		}
1763 	}
1764 }
1765 
1766 #if MAX_NUMNODES > 1
1767 /*
1768  * Figure out the number of possible node ids.
1769  */
setup_nr_node_ids(void)1770 void __init setup_nr_node_ids(void)
1771 {
1772 	unsigned int highest;
1773 
1774 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1775 	nr_node_ids = highest + 1;
1776 }
1777 #endif
1778 
1779 /*
1780  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1781  * such cases we allow max_zone_pfn sorted in the descending order
1782  */
arch_has_descending_max_zone_pfns(void)1783 static bool arch_has_descending_max_zone_pfns(void)
1784 {
1785 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1786 }
1787 
set_high_memory(void)1788 static void __init set_high_memory(void)
1789 {
1790 	phys_addr_t highmem = memblock_end_of_DRAM();
1791 
1792 	/*
1793 	 * Some architectures (e.g. ARM) set high_memory very early and
1794 	 * use it in arch setup code.
1795 	 * If an architecture already set high_memory don't overwrite it
1796 	 */
1797 	if (high_memory)
1798 		return;
1799 
1800 #ifdef CONFIG_HIGHMEM
1801 	if (arch_has_descending_max_zone_pfns() ||
1802 	    highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1803 		highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1804 #endif
1805 
1806 	high_memory = phys_to_virt(highmem - 1) + 1;
1807 }
1808 
1809 /**
1810  * free_area_init - Initialise all pg_data_t and zone data
1811  * @max_zone_pfn: an array of max PFNs for each zone
1812  *
1813  * This will call free_area_init_node() for each active node in the system.
1814  * Using the page ranges provided by memblock_set_node(), the size of each
1815  * zone in each node and their holes is calculated. If the maximum PFN
1816  * between two adjacent zones match, it is assumed that the zone is empty.
1817  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1818  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1819  * starts where the previous one ended. For example, ZONE_DMA32 starts
1820  * at arch_max_dma_pfn.
1821  */
free_area_init(unsigned long * max_zone_pfn)1822 void __init free_area_init(unsigned long *max_zone_pfn)
1823 {
1824 	unsigned long start_pfn, end_pfn;
1825 	int i, nid, zone;
1826 	bool descending;
1827 
1828 	/* Record where the zone boundaries are */
1829 	memset(arch_zone_lowest_possible_pfn, 0,
1830 				sizeof(arch_zone_lowest_possible_pfn));
1831 	memset(arch_zone_highest_possible_pfn, 0,
1832 				sizeof(arch_zone_highest_possible_pfn));
1833 
1834 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1835 	descending = arch_has_descending_max_zone_pfns();
1836 
1837 	for (i = 0; i < MAX_NR_ZONES; i++) {
1838 		if (descending)
1839 			zone = MAX_NR_ZONES - i - 1;
1840 		else
1841 			zone = i;
1842 
1843 		if (zone == ZONE_MOVABLE)
1844 			continue;
1845 
1846 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1847 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1848 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1849 
1850 		start_pfn = end_pfn;
1851 	}
1852 
1853 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1854 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1855 	find_zone_movable_pfns_for_nodes();
1856 
1857 	/* Print out the zone ranges */
1858 	pr_info("Zone ranges:\n");
1859 	for (i = 0; i < MAX_NR_ZONES; i++) {
1860 		if (i == ZONE_MOVABLE)
1861 			continue;
1862 		pr_info("  %-8s ", zone_names[i]);
1863 		if (arch_zone_lowest_possible_pfn[i] ==
1864 				arch_zone_highest_possible_pfn[i])
1865 			pr_cont("empty\n");
1866 		else
1867 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1868 				(u64)arch_zone_lowest_possible_pfn[i]
1869 					<< PAGE_SHIFT,
1870 				((u64)arch_zone_highest_possible_pfn[i]
1871 					<< PAGE_SHIFT) - 1);
1872 	}
1873 
1874 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1875 	pr_info("Movable zone start for each node\n");
1876 	for (i = 0; i < MAX_NUMNODES; i++) {
1877 		if (zone_movable_pfn[i])
1878 			pr_info("  Node %d: %#018Lx\n", i,
1879 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1880 	}
1881 
1882 	/*
1883 	 * Print out the early node map, and initialize the
1884 	 * subsection-map relative to active online memory ranges to
1885 	 * enable future "sub-section" extensions of the memory map.
1886 	 */
1887 	pr_info("Early memory node ranges\n");
1888 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1889 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1890 			(u64)start_pfn << PAGE_SHIFT,
1891 			((u64)end_pfn << PAGE_SHIFT) - 1);
1892 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1893 	}
1894 
1895 	/* Initialise every node */
1896 	mminit_verify_pageflags_layout();
1897 	setup_nr_node_ids();
1898 	set_pageblock_order();
1899 
1900 	for_each_node(nid) {
1901 		pg_data_t *pgdat;
1902 
1903 		if (!node_online(nid))
1904 			alloc_offline_node_data(nid);
1905 
1906 		pgdat = NODE_DATA(nid);
1907 		free_area_init_node(nid);
1908 
1909 		/*
1910 		 * No sysfs hierarcy will be created via register_one_node()
1911 		 *for memory-less node because here it's not marked as N_MEMORY
1912 		 *and won't be set online later. The benefit is userspace
1913 		 *program won't be confused by sysfs files/directories of
1914 		 *memory-less node. The pgdat will get fully initialized by
1915 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1916 		 */
1917 		if (pgdat->node_present_pages) {
1918 			node_set_state(nid, N_MEMORY);
1919 			check_for_memory(pgdat);
1920 		}
1921 	}
1922 
1923 	for_each_node_state(nid, N_MEMORY)
1924 		sparse_vmemmap_init_nid_late(nid);
1925 
1926 	calc_nr_kernel_pages();
1927 	memmap_init();
1928 
1929 	/* disable hash distribution for systems with a single node */
1930 	fixup_hashdist();
1931 
1932 	set_high_memory();
1933 }
1934 
1935 /**
1936  * node_map_pfn_alignment - determine the maximum internode alignment
1937  *
1938  * This function should be called after node map is populated and sorted.
1939  * It calculates the maximum power of two alignment which can distinguish
1940  * all the nodes.
1941  *
1942  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1943  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1944  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1945  * shifted, 1GiB is enough and this function will indicate so.
1946  *
1947  * This is used to test whether pfn -> nid mapping of the chosen memory
1948  * model has fine enough granularity to avoid incorrect mapping for the
1949  * populated node map.
1950  *
1951  * Return: the determined alignment in pfn's.  0 if there is no alignment
1952  * requirement (single node).
1953  */
node_map_pfn_alignment(void)1954 unsigned long __init node_map_pfn_alignment(void)
1955 {
1956 	unsigned long accl_mask = 0, last_end = 0;
1957 	unsigned long start, end, mask;
1958 	int last_nid = NUMA_NO_NODE;
1959 	int i, nid;
1960 
1961 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1962 		if (!start || last_nid < 0 || last_nid == nid) {
1963 			last_nid = nid;
1964 			last_end = end;
1965 			continue;
1966 		}
1967 
1968 		/*
1969 		 * Start with a mask granular enough to pin-point to the
1970 		 * start pfn and tick off bits one-by-one until it becomes
1971 		 * too coarse to separate the current node from the last.
1972 		 */
1973 		mask = ~((1 << __ffs(start)) - 1);
1974 		while (mask && last_end <= (start & (mask << 1)))
1975 			mask <<= 1;
1976 
1977 		/* accumulate all internode masks */
1978 		accl_mask |= mask;
1979 	}
1980 
1981 	/* convert mask to number of pages */
1982 	return ~accl_mask + 1;
1983 }
1984 
1985 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_pages(unsigned long pfn,unsigned long nr_pages)1986 static void __init deferred_free_pages(unsigned long pfn,
1987 		unsigned long nr_pages)
1988 {
1989 	struct page *page;
1990 	unsigned long i;
1991 
1992 	if (!nr_pages)
1993 		return;
1994 
1995 	page = pfn_to_page(pfn);
1996 
1997 	/* Free a large naturally-aligned chunk if possible */
1998 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1999 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
2000 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
2001 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
2002 		return;
2003 	}
2004 
2005 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2006 	accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2007 
2008 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
2009 		if (pageblock_aligned(pfn))
2010 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2011 		__free_pages_core(page, 0, MEMINIT_EARLY);
2012 	}
2013 }
2014 
2015 /* Completion tracking for deferred_init_memmap() threads */
2016 static atomic_t pgdat_init_n_undone __initdata;
2017 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2018 
pgdat_init_report_one_done(void)2019 static inline void __init pgdat_init_report_one_done(void)
2020 {
2021 	if (atomic_dec_and_test(&pgdat_init_n_undone))
2022 		complete(&pgdat_init_all_done_comp);
2023 }
2024 
2025 /*
2026  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2027  * by performing it only once every MAX_ORDER_NR_PAGES.
2028  * Return number of pages initialized.
2029  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2030 static unsigned long __init deferred_init_pages(struct zone *zone,
2031 		unsigned long pfn, unsigned long end_pfn)
2032 {
2033 	int nid = zone_to_nid(zone);
2034 	unsigned long nr_pages = end_pfn - pfn;
2035 	int zid = zone_idx(zone);
2036 	struct page *page = pfn_to_page(pfn);
2037 
2038 	for (; pfn < end_pfn; pfn++, page++)
2039 		__init_single_page(page, pfn, zid, nid);
2040 	return nr_pages;
2041 }
2042 
2043 /*
2044  * This function is meant to pre-load the iterator for the zone init from
2045  * a given point.
2046  * Specifically it walks through the ranges starting with initial index
2047  * passed to it until we are caught up to the first_init_pfn value and
2048  * exits there. If we never encounter the value we return false indicating
2049  * there are no valid ranges left.
2050  */
2051 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2052 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2053 				    unsigned long *spfn, unsigned long *epfn,
2054 				    unsigned long first_init_pfn)
2055 {
2056 	u64 j = *i;
2057 
2058 	if (j == 0)
2059 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2060 
2061 	/*
2062 	 * Start out by walking through the ranges in this zone that have
2063 	 * already been initialized. We don't need to do anything with them
2064 	 * so we just need to flush them out of the system.
2065 	 */
2066 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2067 		if (*epfn <= first_init_pfn)
2068 			continue;
2069 		if (*spfn < first_init_pfn)
2070 			*spfn = first_init_pfn;
2071 		*i = j;
2072 		return true;
2073 	}
2074 
2075 	return false;
2076 }
2077 
2078 /*
2079  * Initialize and free pages. We do it in two loops: first we initialize
2080  * struct page, then free to buddy allocator, because while we are
2081  * freeing pages we can access pages that are ahead (computing buddy
2082  * page in __free_one_page()).
2083  *
2084  * In order to try and keep some memory in the cache we have the loop
2085  * broken along max page order boundaries. This way we will not cause
2086  * any issues with the buddy page computation.
2087  */
2088 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2089 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2090 		       unsigned long *end_pfn)
2091 {
2092 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2093 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2094 	unsigned long nr_pages = 0;
2095 	u64 j = *i;
2096 
2097 	/* First we loop through and initialize the page values */
2098 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2099 		unsigned long t;
2100 
2101 		if (mo_pfn <= *start_pfn)
2102 			break;
2103 
2104 		t = min(mo_pfn, *end_pfn);
2105 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2106 
2107 		if (mo_pfn < *end_pfn) {
2108 			*start_pfn = mo_pfn;
2109 			break;
2110 		}
2111 	}
2112 
2113 	/* Reset values and now loop through freeing pages as needed */
2114 	swap(j, *i);
2115 
2116 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2117 		unsigned long t;
2118 
2119 		if (mo_pfn <= spfn)
2120 			break;
2121 
2122 		t = min(mo_pfn, epfn);
2123 		deferred_free_pages(spfn, t - spfn);
2124 
2125 		if (mo_pfn <= epfn)
2126 			break;
2127 	}
2128 
2129 	return nr_pages;
2130 }
2131 
2132 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2133 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2134 			   void *arg)
2135 {
2136 	unsigned long spfn, epfn;
2137 	struct zone *zone = arg;
2138 	u64 i = 0;
2139 
2140 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2141 
2142 	/*
2143 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2144 	 * we can avoid introducing any issues with the buddy allocator.
2145 	 */
2146 	while (spfn < end_pfn) {
2147 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2148 		cond_resched();
2149 	}
2150 }
2151 
2152 static unsigned int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2153 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2154 {
2155 	return max(cpumask_weight(node_cpumask), 1U);
2156 }
2157 
2158 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2159 static int __init deferred_init_memmap(void *data)
2160 {
2161 	pg_data_t *pgdat = data;
2162 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2163 	unsigned long spfn = 0, epfn = 0;
2164 	unsigned long first_init_pfn, flags;
2165 	unsigned long start = jiffies;
2166 	struct zone *zone;
2167 	int max_threads;
2168 	u64 i = 0;
2169 
2170 	/* Bind memory initialisation thread to a local node if possible */
2171 	if (!cpumask_empty(cpumask))
2172 		set_cpus_allowed_ptr(current, cpumask);
2173 
2174 	pgdat_resize_lock(pgdat, &flags);
2175 	first_init_pfn = pgdat->first_deferred_pfn;
2176 	if (first_init_pfn == ULONG_MAX) {
2177 		pgdat_resize_unlock(pgdat, &flags);
2178 		pgdat_init_report_one_done();
2179 		return 0;
2180 	}
2181 
2182 	/* Sanity check boundaries */
2183 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2184 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2185 	pgdat->first_deferred_pfn = ULONG_MAX;
2186 
2187 	/*
2188 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2189 	 * interrupt thread must allocate this early in boot, zone must be
2190 	 * pre-grown prior to start of deferred page initialization.
2191 	 */
2192 	pgdat_resize_unlock(pgdat, &flags);
2193 
2194 	/* Only the highest zone is deferred */
2195 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2196 
2197 	max_threads = deferred_page_init_max_threads(cpumask);
2198 
2199 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2200 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2201 		struct padata_mt_job job = {
2202 			.thread_fn   = deferred_init_memmap_chunk,
2203 			.fn_arg      = zone,
2204 			.start       = spfn,
2205 			.size        = first_init_pfn - spfn,
2206 			.align       = PAGES_PER_SECTION,
2207 			.min_chunk   = PAGES_PER_SECTION,
2208 			.max_threads = max_threads,
2209 			.numa_aware  = false,
2210 		};
2211 
2212 		padata_do_multithreaded(&job);
2213 	}
2214 
2215 	/* Sanity check that the next zone really is unpopulated */
2216 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2217 
2218 	pr_info("node %d deferred pages initialised in %ums\n",
2219 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2220 
2221 	pgdat_init_report_one_done();
2222 	return 0;
2223 }
2224 
2225 /*
2226  * If this zone has deferred pages, try to grow it by initializing enough
2227  * deferred pages to satisfy the allocation specified by order, rounded up to
2228  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2229  * of SECTION_SIZE bytes by initializing struct pages in increments of
2230  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2231  *
2232  * Return true when zone was grown, otherwise return false. We return true even
2233  * when we grow less than requested, to let the caller decide if there are
2234  * enough pages to satisfy the allocation.
2235  */
deferred_grow_zone(struct zone * zone,unsigned int order)2236 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2237 {
2238 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2239 	pg_data_t *pgdat = zone->zone_pgdat;
2240 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2241 	unsigned long spfn, epfn, flags;
2242 	unsigned long nr_pages = 0;
2243 	u64 i = 0;
2244 
2245 	/* Only the last zone may have deferred pages */
2246 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2247 		return false;
2248 
2249 	pgdat_resize_lock(pgdat, &flags);
2250 
2251 	/*
2252 	 * If someone grew this zone while we were waiting for spinlock, return
2253 	 * true, as there might be enough pages already.
2254 	 */
2255 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2256 		pgdat_resize_unlock(pgdat, &flags);
2257 		return true;
2258 	}
2259 
2260 	/* If the zone is empty somebody else may have cleared out the zone */
2261 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2262 						 first_deferred_pfn)) {
2263 		pgdat->first_deferred_pfn = ULONG_MAX;
2264 		pgdat_resize_unlock(pgdat, &flags);
2265 		/* Retry only once. */
2266 		return first_deferred_pfn != ULONG_MAX;
2267 	}
2268 
2269 	/*
2270 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2271 	 * that we can avoid introducing any issues with the buddy
2272 	 * allocator.
2273 	 */
2274 	while (spfn < epfn) {
2275 		/* update our first deferred PFN for this section */
2276 		first_deferred_pfn = spfn;
2277 
2278 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2279 		touch_nmi_watchdog();
2280 
2281 		/* We should only stop along section boundaries */
2282 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2283 			continue;
2284 
2285 		/* If our quota has been met we can stop here */
2286 		if (nr_pages >= nr_pages_needed)
2287 			break;
2288 	}
2289 
2290 	pgdat->first_deferred_pfn = spfn;
2291 	pgdat_resize_unlock(pgdat, &flags);
2292 
2293 	return nr_pages > 0;
2294 }
2295 
2296 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2297 
2298 #ifdef CONFIG_CMA
init_cma_reserved_pageblock(struct page * page)2299 void __init init_cma_reserved_pageblock(struct page *page)
2300 {
2301 	unsigned i = pageblock_nr_pages;
2302 	struct page *p = page;
2303 
2304 	do {
2305 		__ClearPageReserved(p);
2306 		set_page_count(p, 0);
2307 	} while (++p, --i);
2308 
2309 	set_pageblock_migratetype(page, MIGRATE_CMA);
2310 	set_page_refcounted(page);
2311 	/* pages were reserved and not allocated */
2312 	clear_page_tag_ref(page);
2313 	__free_pages(page, pageblock_order);
2314 
2315 	adjust_managed_page_count(page, pageblock_nr_pages);
2316 	page_zone(page)->cma_pages += pageblock_nr_pages;
2317 }
2318 /*
2319  * Similar to above, but only set the migrate type and stats.
2320  */
init_cma_pageblock(struct page * page)2321 void __init init_cma_pageblock(struct page *page)
2322 {
2323 	set_pageblock_migratetype(page, MIGRATE_CMA);
2324 	adjust_managed_page_count(page, pageblock_nr_pages);
2325 	page_zone(page)->cma_pages += pageblock_nr_pages;
2326 }
2327 #endif
2328 
set_zone_contiguous(struct zone * zone)2329 void set_zone_contiguous(struct zone *zone)
2330 {
2331 	unsigned long block_start_pfn = zone->zone_start_pfn;
2332 	unsigned long block_end_pfn;
2333 
2334 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2335 	for (; block_start_pfn < zone_end_pfn(zone);
2336 			block_start_pfn = block_end_pfn,
2337 			 block_end_pfn += pageblock_nr_pages) {
2338 
2339 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2340 
2341 		if (!__pageblock_pfn_to_page(block_start_pfn,
2342 					     block_end_pfn, zone))
2343 			return;
2344 		cond_resched();
2345 	}
2346 
2347 	/* We confirm that there is no hole */
2348 	zone->contiguous = true;
2349 }
2350 
2351 /*
2352  * Check if a PFN range intersects multiple zones on one or more
2353  * NUMA nodes. Specify the @nid argument if it is known that this
2354  * PFN range is on one node, NUMA_NO_NODE otherwise.
2355  */
pfn_range_intersects_zones(int nid,unsigned long start_pfn,unsigned long nr_pages)2356 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2357 			   unsigned long nr_pages)
2358 {
2359 	struct zone *zone, *izone = NULL;
2360 
2361 	for_each_zone(zone) {
2362 		if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2363 			continue;
2364 
2365 		if (zone_intersects(zone, start_pfn, nr_pages)) {
2366 			if (izone != NULL)
2367 				return true;
2368 			izone = zone;
2369 		}
2370 
2371 	}
2372 
2373 	return false;
2374 }
2375 
2376 static void __init mem_init_print_info(void);
page_alloc_init_late(void)2377 void __init page_alloc_init_late(void)
2378 {
2379 	struct zone *zone;
2380 	int nid;
2381 
2382 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2383 
2384 	/* There will be num_node_state(N_MEMORY) threads */
2385 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2386 	for_each_node_state(nid, N_MEMORY) {
2387 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2388 	}
2389 
2390 	/* Block until all are initialised */
2391 	wait_for_completion(&pgdat_init_all_done_comp);
2392 
2393 	/*
2394 	 * We initialized the rest of the deferred pages.  Permanently disable
2395 	 * on-demand struct page initialization.
2396 	 */
2397 	static_branch_disable(&deferred_pages);
2398 
2399 	/* Reinit limits that are based on free pages after the kernel is up */
2400 	files_maxfiles_init();
2401 #endif
2402 
2403 	/* Accounting of total+free memory is stable at this point. */
2404 	mem_init_print_info();
2405 	buffer_init();
2406 
2407 	/* Discard memblock private memory */
2408 	memblock_discard();
2409 
2410 	for_each_node_state(nid, N_MEMORY)
2411 		shuffle_free_memory(NODE_DATA(nid));
2412 
2413 	for_each_populated_zone(zone)
2414 		set_zone_contiguous(zone);
2415 
2416 	/* Initialize page ext after all struct pages are initialized. */
2417 	if (deferred_struct_pages)
2418 		page_ext_init();
2419 
2420 	page_alloc_sysctl_init();
2421 }
2422 
2423 /*
2424  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2425  * machines. As memory size is increased the scale is also increased but at
2426  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2427  * quadruples the scale is increased by one, which means the size of hash table
2428  * only doubles, instead of quadrupling as well.
2429  * Because 32-bit systems cannot have large physical memory, where this scaling
2430  * makes sense, it is disabled on such platforms.
2431  */
2432 #if __BITS_PER_LONG > 32
2433 #define ADAPT_SCALE_BASE	(64ul << 30)
2434 #define ADAPT_SCALE_SHIFT	2
2435 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2436 #endif
2437 
2438 /*
2439  * allocate a large system hash table from bootmem
2440  * - it is assumed that the hash table must contain an exact power-of-2
2441  *   quantity of entries
2442  * - limit is the number of hash buckets, not the total allocation size
2443  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)2444 void *__init alloc_large_system_hash(const char *tablename,
2445 				     unsigned long bucketsize,
2446 				     unsigned long numentries,
2447 				     int scale,
2448 				     int flags,
2449 				     unsigned int *_hash_shift,
2450 				     unsigned int *_hash_mask,
2451 				     unsigned long low_limit,
2452 				     unsigned long high_limit)
2453 {
2454 	unsigned long long max = high_limit;
2455 	unsigned long log2qty, size;
2456 	void *table;
2457 	gfp_t gfp_flags;
2458 	bool virt;
2459 	bool huge;
2460 
2461 	/* allow the kernel cmdline to have a say */
2462 	if (!numentries) {
2463 		/* round applicable memory size up to nearest megabyte */
2464 		numentries = nr_kernel_pages;
2465 
2466 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2467 		if (PAGE_SIZE < SZ_1M)
2468 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2469 
2470 #if __BITS_PER_LONG > 32
2471 		if (!high_limit) {
2472 			unsigned long adapt;
2473 
2474 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2475 			     adapt <<= ADAPT_SCALE_SHIFT)
2476 				scale++;
2477 		}
2478 #endif
2479 
2480 		/* limit to 1 bucket per 2^scale bytes of low memory */
2481 		if (scale > PAGE_SHIFT)
2482 			numentries >>= (scale - PAGE_SHIFT);
2483 		else
2484 			numentries <<= (PAGE_SHIFT - scale);
2485 
2486 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2487 			numentries = PAGE_SIZE / bucketsize;
2488 	}
2489 	numentries = roundup_pow_of_two(numentries);
2490 
2491 	/* limit allocation size to 1/16 total memory by default */
2492 	if (max == 0) {
2493 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2494 		do_div(max, bucketsize);
2495 	}
2496 	max = min(max, 0x80000000ULL);
2497 
2498 	if (numentries < low_limit)
2499 		numentries = low_limit;
2500 	if (numentries > max)
2501 		numentries = max;
2502 
2503 	log2qty = ilog2(numentries);
2504 
2505 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2506 	do {
2507 		virt = false;
2508 		size = bucketsize << log2qty;
2509 		if (flags & HASH_EARLY) {
2510 			if (flags & HASH_ZERO)
2511 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2512 			else
2513 				table = memblock_alloc_raw(size,
2514 							   SMP_CACHE_BYTES);
2515 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2516 			table = vmalloc_huge(size, gfp_flags);
2517 			virt = true;
2518 			if (table)
2519 				huge = is_vm_area_hugepages(table);
2520 		} else {
2521 			/*
2522 			 * If bucketsize is not a power-of-two, we may free
2523 			 * some pages at the end of hash table which
2524 			 * alloc_pages_exact() automatically does
2525 			 */
2526 			table = alloc_pages_exact(size, gfp_flags);
2527 			kmemleak_alloc(table, size, 1, gfp_flags);
2528 		}
2529 	} while (!table && size > PAGE_SIZE && --log2qty);
2530 
2531 	if (!table)
2532 		panic("Failed to allocate %s hash table\n", tablename);
2533 
2534 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2535 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2536 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2537 
2538 	if (_hash_shift)
2539 		*_hash_shift = log2qty;
2540 	if (_hash_mask)
2541 		*_hash_mask = (1 << log2qty) - 1;
2542 
2543 	return table;
2544 }
2545 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)2546 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2547 							unsigned int order)
2548 {
2549 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2550 		int nid = early_pfn_to_nid(pfn);
2551 
2552 		if (!early_page_initialised(pfn, nid))
2553 			return;
2554 	}
2555 
2556 	if (!kmsan_memblock_free_pages(page, order)) {
2557 		/* KMSAN will take care of these pages. */
2558 		return;
2559 	}
2560 
2561 	/* pages were reserved and not allocated */
2562 	clear_page_tag_ref(page);
2563 	__free_pages_core(page, order, MEMINIT_EARLY);
2564 }
2565 
2566 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2567 EXPORT_SYMBOL(init_on_alloc);
2568 
2569 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2570 EXPORT_SYMBOL(init_on_free);
2571 
2572 static bool _init_on_alloc_enabled_early __read_mostly
2573 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)2574 static int __init early_init_on_alloc(char *buf)
2575 {
2576 
2577 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2578 }
2579 early_param("init_on_alloc", early_init_on_alloc);
2580 
2581 static bool _init_on_free_enabled_early __read_mostly
2582 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)2583 static int __init early_init_on_free(char *buf)
2584 {
2585 	return kstrtobool(buf, &_init_on_free_enabled_early);
2586 }
2587 early_param("init_on_free", early_init_on_free);
2588 
2589 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2590 
2591 /*
2592  * Enable static keys related to various memory debugging and hardening options.
2593  * Some override others, and depend on early params that are evaluated in the
2594  * order of appearance. So we need to first gather the full picture of what was
2595  * enabled, and then make decisions.
2596  */
mem_debugging_and_hardening_init(void)2597 static void __init mem_debugging_and_hardening_init(void)
2598 {
2599 	bool page_poisoning_requested = false;
2600 	bool want_check_pages = false;
2601 
2602 #ifdef CONFIG_PAGE_POISONING
2603 	/*
2604 	 * Page poisoning is debug page alloc for some arches. If
2605 	 * either of those options are enabled, enable poisoning.
2606 	 */
2607 	if (page_poisoning_enabled() ||
2608 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2609 	      debug_pagealloc_enabled())) {
2610 		static_branch_enable(&_page_poisoning_enabled);
2611 		page_poisoning_requested = true;
2612 		want_check_pages = true;
2613 	}
2614 #endif
2615 
2616 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2617 	    page_poisoning_requested) {
2618 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2619 			"will take precedence over init_on_alloc and init_on_free\n");
2620 		_init_on_alloc_enabled_early = false;
2621 		_init_on_free_enabled_early = false;
2622 	}
2623 
2624 	if (_init_on_alloc_enabled_early) {
2625 		want_check_pages = true;
2626 		static_branch_enable(&init_on_alloc);
2627 	} else {
2628 		static_branch_disable(&init_on_alloc);
2629 	}
2630 
2631 	if (_init_on_free_enabled_early) {
2632 		want_check_pages = true;
2633 		static_branch_enable(&init_on_free);
2634 	} else {
2635 		static_branch_disable(&init_on_free);
2636 	}
2637 
2638 	if (IS_ENABLED(CONFIG_KMSAN) &&
2639 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2640 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2641 
2642 #ifdef CONFIG_DEBUG_PAGEALLOC
2643 	if (debug_pagealloc_enabled()) {
2644 		want_check_pages = true;
2645 		static_branch_enable(&_debug_pagealloc_enabled);
2646 
2647 		if (debug_guardpage_minorder())
2648 			static_branch_enable(&_debug_guardpage_enabled);
2649 	}
2650 #endif
2651 
2652 	/*
2653 	 * Any page debugging or hardening option also enables sanity checking
2654 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2655 	 * enabled already.
2656 	 */
2657 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2658 		static_branch_enable(&check_pages_enabled);
2659 }
2660 
2661 /* Report memory auto-initialization states for this boot. */
report_meminit(void)2662 static void __init report_meminit(void)
2663 {
2664 	const char *stack;
2665 
2666 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2667 		stack = "all(pattern)";
2668 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2669 		stack = "all(zero)";
2670 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2671 		stack = "byref_all(zero)";
2672 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2673 		stack = "byref(zero)";
2674 	else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2675 		stack = "__user(zero)";
2676 	else
2677 		stack = "off";
2678 
2679 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2680 		stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2681 		str_on_off(want_init_on_free()));
2682 	if (want_init_on_free())
2683 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2684 }
2685 
mem_init_print_info(void)2686 static void __init mem_init_print_info(void)
2687 {
2688 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2689 	unsigned long init_code_size, init_data_size;
2690 
2691 	physpages = get_num_physpages();
2692 	codesize = _etext - _stext;
2693 	datasize = _edata - _sdata;
2694 	rosize = __end_rodata - __start_rodata;
2695 	bss_size = __bss_stop - __bss_start;
2696 	init_data_size = __init_end - __init_begin;
2697 	init_code_size = _einittext - _sinittext;
2698 
2699 	/*
2700 	 * Detect special cases and adjust section sizes accordingly:
2701 	 * 1) .init.* may be embedded into .data sections
2702 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2703 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2704 	 * 3) .rodata.* may be embedded into .text or .data sections.
2705 	 */
2706 #define adj_init_size(start, end, size, pos, adj) \
2707 	do { \
2708 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2709 			size -= adj; \
2710 	} while (0)
2711 
2712 	adj_init_size(__init_begin, __init_end, init_data_size,
2713 		     _sinittext, init_code_size);
2714 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2715 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2716 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2717 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2718 
2719 #undef	adj_init_size
2720 
2721 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2722 #ifdef	CONFIG_HIGHMEM
2723 		", %luK highmem"
2724 #endif
2725 		")\n",
2726 		K(nr_free_pages()), K(physpages),
2727 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2728 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2729 		K(physpages - totalram_pages() - totalcma_pages),
2730 		K(totalcma_pages)
2731 #ifdef	CONFIG_HIGHMEM
2732 		, K(totalhigh_pages())
2733 #endif
2734 		);
2735 }
2736 
arch_mm_preinit(void)2737 void __init __weak arch_mm_preinit(void)
2738 {
2739 }
2740 
mem_init(void)2741 void __init __weak mem_init(void)
2742 {
2743 }
2744 
2745 /*
2746  * Set up kernel memory allocators
2747  */
mm_core_init(void)2748 void __init mm_core_init(void)
2749 {
2750 	arch_mm_preinit();
2751 	hugetlb_bootmem_alloc();
2752 
2753 	/* Initializations relying on SMP setup */
2754 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2755 	build_all_zonelists(NULL);
2756 	page_alloc_init_cpuhp();
2757 	alloc_tag_sec_init();
2758 	/*
2759 	 * page_ext requires contiguous pages,
2760 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2761 	 */
2762 	page_ext_init_flatmem();
2763 	mem_debugging_and_hardening_init();
2764 	kfence_alloc_pool_and_metadata();
2765 	report_meminit();
2766 	kmsan_init_shadow();
2767 	stack_depot_early_init();
2768 	memblock_free_all();
2769 	mem_init();
2770 	kmem_cache_init();
2771 	/*
2772 	 * page_owner must be initialized after buddy is ready, and also after
2773 	 * slab is ready so that stack_depot_init() works properly
2774 	 */
2775 	page_ext_init_flatmem_late();
2776 	kmemleak_init();
2777 	ptlock_cache_init();
2778 	pgtable_cache_init();
2779 	debug_objects_mem_init();
2780 	vmalloc_init();
2781 	/* If no deferred init page_ext now, as vmap is fully initialized */
2782 	if (!deferred_struct_pages)
2783 		page_ext_init();
2784 	/* Should be run before the first non-init thread is created */
2785 	init_espfix_bsp();
2786 	/* Should be run after espfix64 is set up. */
2787 	pti_init();
2788 	kmsan_init_runtime();
2789 	mm_cache_init();
2790 	execmem_init();
2791 }
2792