1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 /*
41  * Maximum number of attempts we make to install guard pages before we give up
42  * and return -ERESTARTNOINTR to have userspace try again.
43  */
44 #define MAX_MADVISE_GUARD_RETRIES 3
45 
46 struct madvise_walk_private {
47 	struct mmu_gather *tlb;
48 	bool pageout;
49 };
50 
51 /*
52  * Any behaviour which results in changes to the vma->vm_flags needs to
53  * take mmap_lock for writing. Others, which simply traverse vmas, need
54  * to only take it for reading.
55  */
madvise_need_mmap_write(int behavior)56 static int madvise_need_mmap_write(int behavior)
57 {
58 	switch (behavior) {
59 	case MADV_REMOVE:
60 	case MADV_WILLNEED:
61 	case MADV_DONTNEED:
62 	case MADV_DONTNEED_LOCKED:
63 	case MADV_COLD:
64 	case MADV_PAGEOUT:
65 	case MADV_FREE:
66 	case MADV_POPULATE_READ:
67 	case MADV_POPULATE_WRITE:
68 	case MADV_COLLAPSE:
69 	case MADV_GUARD_INSTALL:
70 	case MADV_GUARD_REMOVE:
71 		return 0;
72 	default:
73 		/* be safe, default to 1. list exceptions explicitly */
74 		return 1;
75 	}
76 }
77 
78 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)79 struct anon_vma_name *anon_vma_name_alloc(const char *name)
80 {
81 	struct anon_vma_name *anon_name;
82 	size_t count;
83 
84 	/* Add 1 for NUL terminator at the end of the anon_name->name */
85 	count = strlen(name) + 1;
86 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
87 	if (anon_name) {
88 		kref_init(&anon_name->kref);
89 		memcpy(anon_name->name, name, count);
90 	}
91 
92 	return anon_name;
93 }
94 
anon_vma_name_free(struct kref * kref)95 void anon_vma_name_free(struct kref *kref)
96 {
97 	struct anon_vma_name *anon_name =
98 			container_of(kref, struct anon_vma_name, kref);
99 	kfree(anon_name);
100 }
101 
anon_vma_name(struct vm_area_struct * vma)102 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
103 {
104 	mmap_assert_locked(vma->vm_mm);
105 
106 	return vma->anon_name;
107 }
108 
109 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)110 static int replace_anon_vma_name(struct vm_area_struct *vma,
111 				 struct anon_vma_name *anon_name)
112 {
113 	struct anon_vma_name *orig_name = anon_vma_name(vma);
114 
115 	if (!anon_name) {
116 		vma->anon_name = NULL;
117 		anon_vma_name_put(orig_name);
118 		return 0;
119 	}
120 
121 	if (anon_vma_name_eq(orig_name, anon_name))
122 		return 0;
123 
124 	vma->anon_name = anon_vma_name_reuse(anon_name);
125 	anon_vma_name_put(orig_name);
126 
127 	return 0;
128 }
129 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)130 static int replace_anon_vma_name(struct vm_area_struct *vma,
131 				 struct anon_vma_name *anon_name)
132 {
133 	if (anon_name)
134 		return -EINVAL;
135 
136 	return 0;
137 }
138 #endif /* CONFIG_ANON_VMA_NAME */
139 /*
140  * Update the vm_flags on region of a vma, splitting it or merging it as
141  * necessary.  Must be called with mmap_lock held for writing;
142  * Caller should ensure anon_name stability by raising its refcount even when
143  * anon_name belongs to a valid vma because this function might free that vma.
144  */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)145 static int madvise_update_vma(struct vm_area_struct *vma,
146 			      struct vm_area_struct **prev, unsigned long start,
147 			      unsigned long end, unsigned long new_flags,
148 			      struct anon_vma_name *anon_name)
149 {
150 	struct mm_struct *mm = vma->vm_mm;
151 	int error;
152 	VMA_ITERATOR(vmi, mm, start);
153 
154 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
155 		*prev = vma;
156 		return 0;
157 	}
158 
159 	vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
160 				    anon_name);
161 	if (IS_ERR(vma))
162 		return PTR_ERR(vma);
163 
164 	*prev = vma;
165 
166 	/* vm_flags is protected by the mmap_lock held in write mode. */
167 	vma_start_write(vma);
168 	vm_flags_reset(vma, new_flags);
169 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
170 		error = replace_anon_vma_name(vma, anon_name);
171 		if (error)
172 			return error;
173 	}
174 
175 	return 0;
176 }
177 
178 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)179 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
180 		unsigned long end, struct mm_walk *walk)
181 {
182 	struct vm_area_struct *vma = walk->private;
183 	struct swap_iocb *splug = NULL;
184 	pte_t *ptep = NULL;
185 	spinlock_t *ptl;
186 	unsigned long addr;
187 
188 	for (addr = start; addr < end; addr += PAGE_SIZE) {
189 		pte_t pte;
190 		swp_entry_t entry;
191 		struct folio *folio;
192 
193 		if (!ptep++) {
194 			ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
195 			if (!ptep)
196 				break;
197 		}
198 
199 		pte = ptep_get(ptep);
200 		if (!is_swap_pte(pte))
201 			continue;
202 		entry = pte_to_swp_entry(pte);
203 		if (unlikely(non_swap_entry(entry)))
204 			continue;
205 
206 		pte_unmap_unlock(ptep, ptl);
207 		ptep = NULL;
208 
209 		folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 					     vma, addr, &splug);
211 		if (folio)
212 			folio_put(folio);
213 	}
214 
215 	if (ptep)
216 		pte_unmap_unlock(ptep, ptl);
217 	swap_read_unplug(splug);
218 	cond_resched();
219 
220 	return 0;
221 }
222 
223 static const struct mm_walk_ops swapin_walk_ops = {
224 	.pmd_entry		= swapin_walk_pmd_entry,
225 	.walk_lock		= PGWALK_RDLOCK,
226 };
227 
shmem_swapin_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)228 static void shmem_swapin_range(struct vm_area_struct *vma,
229 		unsigned long start, unsigned long end,
230 		struct address_space *mapping)
231 {
232 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
233 	pgoff_t end_index = linear_page_index(vma, end) - 1;
234 	struct folio *folio;
235 	struct swap_iocb *splug = NULL;
236 
237 	rcu_read_lock();
238 	xas_for_each(&xas, folio, end_index) {
239 		unsigned long addr;
240 		swp_entry_t entry;
241 
242 		if (!xa_is_value(folio))
243 			continue;
244 		entry = radix_to_swp_entry(folio);
245 		/* There might be swapin error entries in shmem mapping. */
246 		if (non_swap_entry(entry))
247 			continue;
248 
249 		addr = vma->vm_start +
250 			((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
251 		xas_pause(&xas);
252 		rcu_read_unlock();
253 
254 		folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
255 					     vma, addr, &splug);
256 		if (folio)
257 			folio_put(folio);
258 
259 		rcu_read_lock();
260 	}
261 	rcu_read_unlock();
262 	swap_read_unplug(splug);
263 }
264 #endif		/* CONFIG_SWAP */
265 
266 /*
267  * Schedule all required I/O operations.  Do not wait for completion.
268  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)269 static long madvise_willneed(struct vm_area_struct *vma,
270 			     struct vm_area_struct **prev,
271 			     unsigned long start, unsigned long end)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	loff_t offset;
276 
277 	*prev = vma;
278 #ifdef CONFIG_SWAP
279 	if (!file) {
280 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
281 		lru_add_drain(); /* Push any new pages onto the LRU now */
282 		return 0;
283 	}
284 
285 	if (shmem_mapping(file->f_mapping)) {
286 		shmem_swapin_range(vma, start, end, file->f_mapping);
287 		lru_add_drain(); /* Push any new pages onto the LRU now */
288 		return 0;
289 	}
290 #else
291 	if (!file)
292 		return -EBADF;
293 #endif
294 
295 	if (IS_DAX(file_inode(file))) {
296 		/* no bad return value, but ignore advice */
297 		return 0;
298 	}
299 
300 	/*
301 	 * Filesystem's fadvise may need to take various locks.  We need to
302 	 * explicitly grab a reference because the vma (and hence the
303 	 * vma's reference to the file) can go away as soon as we drop
304 	 * mmap_lock.
305 	 */
306 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
307 	get_file(file);
308 	offset = (loff_t)(start - vma->vm_start)
309 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
310 	mmap_read_unlock(mm);
311 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
312 	fput(file);
313 	mmap_read_lock(mm);
314 	return 0;
315 }
316 
can_do_file_pageout(struct vm_area_struct * vma)317 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
318 {
319 	if (!vma->vm_file)
320 		return false;
321 	/*
322 	 * paging out pagecache only for non-anonymous mappings that correspond
323 	 * to the files the calling process could (if tried) open for writing;
324 	 * otherwise we'd be including shared non-exclusive mappings, which
325 	 * opens a side channel.
326 	 */
327 	return inode_owner_or_capable(&nop_mnt_idmap,
328 				      file_inode(vma->vm_file)) ||
329 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
330 }
331 
madvise_folio_pte_batch(unsigned long addr,unsigned long end,struct folio * folio,pte_t * ptep,pte_t pte,bool * any_young,bool * any_dirty)332 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
333 					  struct folio *folio, pte_t *ptep,
334 					  pte_t pte, bool *any_young,
335 					  bool *any_dirty)
336 {
337 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
338 	int max_nr = (end - addr) / PAGE_SIZE;
339 
340 	return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
341 			       any_young, any_dirty);
342 }
343 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)344 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
345 				unsigned long addr, unsigned long end,
346 				struct mm_walk *walk)
347 {
348 	struct madvise_walk_private *private = walk->private;
349 	struct mmu_gather *tlb = private->tlb;
350 	bool pageout = private->pageout;
351 	struct mm_struct *mm = tlb->mm;
352 	struct vm_area_struct *vma = walk->vma;
353 	pte_t *start_pte, *pte, ptent;
354 	spinlock_t *ptl;
355 	struct folio *folio = NULL;
356 	LIST_HEAD(folio_list);
357 	bool pageout_anon_only_filter;
358 	unsigned int batch_count = 0;
359 	int nr;
360 
361 	if (fatal_signal_pending(current))
362 		return -EINTR;
363 
364 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
365 					!can_do_file_pageout(vma);
366 
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 	if (pmd_trans_huge(*pmd)) {
369 		pmd_t orig_pmd;
370 		unsigned long next = pmd_addr_end(addr, end);
371 
372 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
373 		ptl = pmd_trans_huge_lock(pmd, vma);
374 		if (!ptl)
375 			return 0;
376 
377 		orig_pmd = *pmd;
378 		if (is_huge_zero_pmd(orig_pmd))
379 			goto huge_unlock;
380 
381 		if (unlikely(!pmd_present(orig_pmd))) {
382 			VM_BUG_ON(thp_migration_supported() &&
383 					!is_pmd_migration_entry(orig_pmd));
384 			goto huge_unlock;
385 		}
386 
387 		folio = pmd_folio(orig_pmd);
388 
389 		/* Do not interfere with other mappings of this folio */
390 		if (folio_maybe_mapped_shared(folio))
391 			goto huge_unlock;
392 
393 		if (pageout_anon_only_filter && !folio_test_anon(folio))
394 			goto huge_unlock;
395 
396 		if (next - addr != HPAGE_PMD_SIZE) {
397 			int err;
398 
399 			folio_get(folio);
400 			spin_unlock(ptl);
401 			folio_lock(folio);
402 			err = split_folio(folio);
403 			folio_unlock(folio);
404 			folio_put(folio);
405 			if (!err)
406 				goto regular_folio;
407 			return 0;
408 		}
409 
410 		if (!pageout && pmd_young(orig_pmd)) {
411 			pmdp_invalidate(vma, addr, pmd);
412 			orig_pmd = pmd_mkold(orig_pmd);
413 
414 			set_pmd_at(mm, addr, pmd, orig_pmd);
415 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
416 		}
417 
418 		folio_clear_referenced(folio);
419 		folio_test_clear_young(folio);
420 		if (folio_test_active(folio))
421 			folio_set_workingset(folio);
422 		if (pageout) {
423 			if (folio_isolate_lru(folio)) {
424 				if (folio_test_unevictable(folio))
425 					folio_putback_lru(folio);
426 				else
427 					list_add(&folio->lru, &folio_list);
428 			}
429 		} else
430 			folio_deactivate(folio);
431 huge_unlock:
432 		spin_unlock(ptl);
433 		if (pageout)
434 			reclaim_pages(&folio_list);
435 		return 0;
436 	}
437 
438 regular_folio:
439 #endif
440 	tlb_change_page_size(tlb, PAGE_SIZE);
441 restart:
442 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
443 	if (!start_pte)
444 		return 0;
445 	flush_tlb_batched_pending(mm);
446 	arch_enter_lazy_mmu_mode();
447 	for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
448 		nr = 1;
449 		ptent = ptep_get(pte);
450 
451 		if (++batch_count == SWAP_CLUSTER_MAX) {
452 			batch_count = 0;
453 			if (need_resched()) {
454 				arch_leave_lazy_mmu_mode();
455 				pte_unmap_unlock(start_pte, ptl);
456 				cond_resched();
457 				goto restart;
458 			}
459 		}
460 
461 		if (pte_none(ptent))
462 			continue;
463 
464 		if (!pte_present(ptent))
465 			continue;
466 
467 		folio = vm_normal_folio(vma, addr, ptent);
468 		if (!folio || folio_is_zone_device(folio))
469 			continue;
470 
471 		/*
472 		 * If we encounter a large folio, only split it if it is not
473 		 * fully mapped within the range we are operating on. Otherwise
474 		 * leave it as is so that it can be swapped out whole. If we
475 		 * fail to split a folio, leave it in place and advance to the
476 		 * next pte in the range.
477 		 */
478 		if (folio_test_large(folio)) {
479 			bool any_young;
480 
481 			nr = madvise_folio_pte_batch(addr, end, folio, pte,
482 						     ptent, &any_young, NULL);
483 			if (any_young)
484 				ptent = pte_mkyoung(ptent);
485 
486 			if (nr < folio_nr_pages(folio)) {
487 				int err;
488 
489 				if (folio_maybe_mapped_shared(folio))
490 					continue;
491 				if (pageout_anon_only_filter && !folio_test_anon(folio))
492 					continue;
493 				if (!folio_trylock(folio))
494 					continue;
495 				folio_get(folio);
496 				arch_leave_lazy_mmu_mode();
497 				pte_unmap_unlock(start_pte, ptl);
498 				start_pte = NULL;
499 				err = split_folio(folio);
500 				folio_unlock(folio);
501 				folio_put(folio);
502 				start_pte = pte =
503 					pte_offset_map_lock(mm, pmd, addr, &ptl);
504 				if (!start_pte)
505 					break;
506 				arch_enter_lazy_mmu_mode();
507 				if (!err)
508 					nr = 0;
509 				continue;
510 			}
511 		}
512 
513 		/*
514 		 * Do not interfere with other mappings of this folio and
515 		 * non-LRU folio. If we have a large folio at this point, we
516 		 * know it is fully mapped so if its mapcount is the same as its
517 		 * number of pages, it must be exclusive.
518 		 */
519 		if (!folio_test_lru(folio) ||
520 		    folio_mapcount(folio) != folio_nr_pages(folio))
521 			continue;
522 
523 		if (pageout_anon_only_filter && !folio_test_anon(folio))
524 			continue;
525 
526 		if (!pageout && pte_young(ptent)) {
527 			clear_young_dirty_ptes(vma, addr, pte, nr,
528 					       CYDP_CLEAR_YOUNG);
529 			tlb_remove_tlb_entries(tlb, pte, nr, addr);
530 		}
531 
532 		/*
533 		 * We are deactivating a folio for accelerating reclaiming.
534 		 * VM couldn't reclaim the folio unless we clear PG_young.
535 		 * As a side effect, it makes confuse idle-page tracking
536 		 * because they will miss recent referenced history.
537 		 */
538 		folio_clear_referenced(folio);
539 		folio_test_clear_young(folio);
540 		if (folio_test_active(folio))
541 			folio_set_workingset(folio);
542 		if (pageout) {
543 			if (folio_isolate_lru(folio)) {
544 				if (folio_test_unevictable(folio))
545 					folio_putback_lru(folio);
546 				else
547 					list_add(&folio->lru, &folio_list);
548 			}
549 		} else
550 			folio_deactivate(folio);
551 	}
552 
553 	if (start_pte) {
554 		arch_leave_lazy_mmu_mode();
555 		pte_unmap_unlock(start_pte, ptl);
556 	}
557 	if (pageout)
558 		reclaim_pages(&folio_list);
559 	cond_resched();
560 
561 	return 0;
562 }
563 
564 static const struct mm_walk_ops cold_walk_ops = {
565 	.pmd_entry = madvise_cold_or_pageout_pte_range,
566 	.walk_lock = PGWALK_RDLOCK,
567 };
568 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)569 static void madvise_cold_page_range(struct mmu_gather *tlb,
570 			     struct vm_area_struct *vma,
571 			     unsigned long addr, unsigned long end)
572 {
573 	struct madvise_walk_private walk_private = {
574 		.pageout = false,
575 		.tlb = tlb,
576 	};
577 
578 	tlb_start_vma(tlb, vma);
579 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
580 	tlb_end_vma(tlb, vma);
581 }
582 
can_madv_lru_vma(struct vm_area_struct * vma)583 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
584 {
585 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
586 }
587 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)588 static long madvise_cold(struct vm_area_struct *vma,
589 			struct vm_area_struct **prev,
590 			unsigned long start_addr, unsigned long end_addr)
591 {
592 	struct mm_struct *mm = vma->vm_mm;
593 	struct mmu_gather tlb;
594 
595 	*prev = vma;
596 	if (!can_madv_lru_vma(vma))
597 		return -EINVAL;
598 
599 	lru_add_drain();
600 	tlb_gather_mmu(&tlb, mm);
601 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
602 	tlb_finish_mmu(&tlb);
603 
604 	return 0;
605 }
606 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)607 static void madvise_pageout_page_range(struct mmu_gather *tlb,
608 			     struct vm_area_struct *vma,
609 			     unsigned long addr, unsigned long end)
610 {
611 	struct madvise_walk_private walk_private = {
612 		.pageout = true,
613 		.tlb = tlb,
614 	};
615 
616 	tlb_start_vma(tlb, vma);
617 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
618 	tlb_end_vma(tlb, vma);
619 }
620 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)621 static long madvise_pageout(struct vm_area_struct *vma,
622 			struct vm_area_struct **prev,
623 			unsigned long start_addr, unsigned long end_addr)
624 {
625 	struct mm_struct *mm = vma->vm_mm;
626 	struct mmu_gather tlb;
627 
628 	*prev = vma;
629 	if (!can_madv_lru_vma(vma))
630 		return -EINVAL;
631 
632 	/*
633 	 * If the VMA belongs to a private file mapping, there can be private
634 	 * dirty pages which can be paged out if even this process is neither
635 	 * owner nor write capable of the file. We allow private file mappings
636 	 * further to pageout dirty anon pages.
637 	 */
638 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
639 				(vma->vm_flags & VM_MAYSHARE)))
640 		return 0;
641 
642 	lru_add_drain();
643 	tlb_gather_mmu(&tlb, mm);
644 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
645 	tlb_finish_mmu(&tlb);
646 
647 	return 0;
648 }
649 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)650 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
651 				unsigned long end, struct mm_walk *walk)
652 
653 {
654 	const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
655 	struct mmu_gather *tlb = walk->private;
656 	struct mm_struct *mm = tlb->mm;
657 	struct vm_area_struct *vma = walk->vma;
658 	spinlock_t *ptl;
659 	pte_t *start_pte, *pte, ptent;
660 	struct folio *folio;
661 	int nr_swap = 0;
662 	unsigned long next;
663 	int nr, max_nr;
664 
665 	next = pmd_addr_end(addr, end);
666 	if (pmd_trans_huge(*pmd))
667 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
668 			return 0;
669 
670 	tlb_change_page_size(tlb, PAGE_SIZE);
671 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
672 	if (!start_pte)
673 		return 0;
674 	flush_tlb_batched_pending(mm);
675 	arch_enter_lazy_mmu_mode();
676 	for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
677 		nr = 1;
678 		ptent = ptep_get(pte);
679 
680 		if (pte_none(ptent))
681 			continue;
682 		/*
683 		 * If the pte has swp_entry, just clear page table to
684 		 * prevent swap-in which is more expensive rather than
685 		 * (page allocation + zeroing).
686 		 */
687 		if (!pte_present(ptent)) {
688 			swp_entry_t entry;
689 
690 			entry = pte_to_swp_entry(ptent);
691 			if (!non_swap_entry(entry)) {
692 				max_nr = (end - addr) / PAGE_SIZE;
693 				nr = swap_pte_batch(pte, max_nr, ptent);
694 				nr_swap -= nr;
695 				free_swap_and_cache_nr(entry, nr);
696 				clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
697 			} else if (is_hwpoison_entry(entry) ||
698 				   is_poisoned_swp_entry(entry)) {
699 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
700 			}
701 			continue;
702 		}
703 
704 		folio = vm_normal_folio(vma, addr, ptent);
705 		if (!folio || folio_is_zone_device(folio))
706 			continue;
707 
708 		/*
709 		 * If we encounter a large folio, only split it if it is not
710 		 * fully mapped within the range we are operating on. Otherwise
711 		 * leave it as is so that it can be marked as lazyfree. If we
712 		 * fail to split a folio, leave it in place and advance to the
713 		 * next pte in the range.
714 		 */
715 		if (folio_test_large(folio)) {
716 			bool any_young, any_dirty;
717 
718 			nr = madvise_folio_pte_batch(addr, end, folio, pte,
719 						     ptent, &any_young, &any_dirty);
720 
721 			if (nr < folio_nr_pages(folio)) {
722 				int err;
723 
724 				if (folio_maybe_mapped_shared(folio))
725 					continue;
726 				if (!folio_trylock(folio))
727 					continue;
728 				folio_get(folio);
729 				arch_leave_lazy_mmu_mode();
730 				pte_unmap_unlock(start_pte, ptl);
731 				start_pte = NULL;
732 				err = split_folio(folio);
733 				folio_unlock(folio);
734 				folio_put(folio);
735 				pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
736 				start_pte = pte;
737 				if (!start_pte)
738 					break;
739 				arch_enter_lazy_mmu_mode();
740 				if (!err)
741 					nr = 0;
742 				continue;
743 			}
744 
745 			if (any_young)
746 				ptent = pte_mkyoung(ptent);
747 			if (any_dirty)
748 				ptent = pte_mkdirty(ptent);
749 		}
750 
751 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
752 			if (!folio_trylock(folio))
753 				continue;
754 			/*
755 			 * If we have a large folio at this point, we know it is
756 			 * fully mapped so if its mapcount is the same as its
757 			 * number of pages, it must be exclusive.
758 			 */
759 			if (folio_mapcount(folio) != folio_nr_pages(folio)) {
760 				folio_unlock(folio);
761 				continue;
762 			}
763 
764 			if (folio_test_swapcache(folio) &&
765 			    !folio_free_swap(folio)) {
766 				folio_unlock(folio);
767 				continue;
768 			}
769 
770 			folio_clear_dirty(folio);
771 			folio_unlock(folio);
772 		}
773 
774 		if (pte_young(ptent) || pte_dirty(ptent)) {
775 			clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
776 			tlb_remove_tlb_entries(tlb, pte, nr, addr);
777 		}
778 		folio_mark_lazyfree(folio);
779 	}
780 
781 	if (nr_swap)
782 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
783 	if (start_pte) {
784 		arch_leave_lazy_mmu_mode();
785 		pte_unmap_unlock(start_pte, ptl);
786 	}
787 	cond_resched();
788 
789 	return 0;
790 }
791 
792 static const struct mm_walk_ops madvise_free_walk_ops = {
793 	.pmd_entry		= madvise_free_pte_range,
794 	.walk_lock		= PGWALK_RDLOCK,
795 };
796 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)797 static int madvise_free_single_vma(struct vm_area_struct *vma,
798 			unsigned long start_addr, unsigned long end_addr)
799 {
800 	struct mm_struct *mm = vma->vm_mm;
801 	struct mmu_notifier_range range;
802 	struct mmu_gather tlb;
803 
804 	/* MADV_FREE works for only anon vma at the moment */
805 	if (!vma_is_anonymous(vma))
806 		return -EINVAL;
807 
808 	range.start = max(vma->vm_start, start_addr);
809 	if (range.start >= vma->vm_end)
810 		return -EINVAL;
811 	range.end = min(vma->vm_end, end_addr);
812 	if (range.end <= vma->vm_start)
813 		return -EINVAL;
814 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
815 				range.start, range.end);
816 
817 	lru_add_drain();
818 	tlb_gather_mmu(&tlb, mm);
819 	update_hiwater_rss(mm);
820 
821 	mmu_notifier_invalidate_range_start(&range);
822 	tlb_start_vma(&tlb, vma);
823 	walk_page_range(vma->vm_mm, range.start, range.end,
824 			&madvise_free_walk_ops, &tlb);
825 	tlb_end_vma(&tlb, vma);
826 	mmu_notifier_invalidate_range_end(&range);
827 	tlb_finish_mmu(&tlb);
828 
829 	return 0;
830 }
831 
832 /*
833  * Application no longer needs these pages.  If the pages are dirty,
834  * it's OK to just throw them away.  The app will be more careful about
835  * data it wants to keep.  Be sure to free swap resources too.  The
836  * zap_page_range_single call sets things up for shrink_active_list to actually
837  * free these pages later if no one else has touched them in the meantime,
838  * although we could add these pages to a global reuse list for
839  * shrink_active_list to pick up before reclaiming other pages.
840  *
841  * NB: This interface discards data rather than pushes it out to swap,
842  * as some implementations do.  This has performance implications for
843  * applications like large transactional databases which want to discard
844  * pages in anonymous maps after committing to backing store the data
845  * that was kept in them.  There is no reason to write this data out to
846  * the swap area if the application is discarding it.
847  *
848  * An interface that causes the system to free clean pages and flush
849  * dirty pages is already available as msync(MS_INVALIDATE).
850  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)851 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
852 					unsigned long start, unsigned long end)
853 {
854 	struct zap_details details = {
855 		.reclaim_pt = true,
856 		.even_cows = true,
857 	};
858 
859 	zap_page_range_single(vma, start, end - start, &details);
860 	return 0;
861 }
862 
madvise_dontneed_free_valid_vma(struct vm_area_struct * vma,unsigned long start,unsigned long * end,int behavior)863 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
864 					    unsigned long start,
865 					    unsigned long *end,
866 					    int behavior)
867 {
868 	if (!is_vm_hugetlb_page(vma)) {
869 		unsigned int forbidden = VM_PFNMAP;
870 
871 		if (behavior != MADV_DONTNEED_LOCKED)
872 			forbidden |= VM_LOCKED;
873 
874 		return !(vma->vm_flags & forbidden);
875 	}
876 
877 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
878 		return false;
879 	if (start & ~huge_page_mask(hstate_vma(vma)))
880 		return false;
881 
882 	/*
883 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
884 	 * boundaries, and may be unaware that this VMA uses huge pages.
885 	 * Avoid unexpected data loss by rounding down the number of
886 	 * huge pages freed.
887 	 */
888 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
889 
890 	return true;
891 }
892 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)893 static long madvise_dontneed_free(struct vm_area_struct *vma,
894 				  struct vm_area_struct **prev,
895 				  unsigned long start, unsigned long end,
896 				  int behavior)
897 {
898 	struct mm_struct *mm = vma->vm_mm;
899 
900 	*prev = vma;
901 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
902 		return -EINVAL;
903 
904 	if (start == end)
905 		return 0;
906 
907 	if (!userfaultfd_remove(vma, start, end)) {
908 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
909 
910 		mmap_read_lock(mm);
911 		vma = vma_lookup(mm, start);
912 		if (!vma)
913 			return -ENOMEM;
914 		/*
915 		 * Potential end adjustment for hugetlb vma is OK as
916 		 * the check below keeps end within vma.
917 		 */
918 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
919 						     behavior))
920 			return -EINVAL;
921 		if (end > vma->vm_end) {
922 			/*
923 			 * Don't fail if end > vma->vm_end. If the old
924 			 * vma was split while the mmap_lock was
925 			 * released the effect of the concurrent
926 			 * operation may not cause madvise() to
927 			 * have an undefined result. There may be an
928 			 * adjacent next vma that we'll walk
929 			 * next. userfaultfd_remove() will generate an
930 			 * UFFD_EVENT_REMOVE repetition on the
931 			 * end-vma->vm_end range, but the manager can
932 			 * handle a repetition fine.
933 			 */
934 			end = vma->vm_end;
935 		}
936 		/*
937 		 * If the memory region between start and end was
938 		 * originally backed by 4kB pages and then remapped to
939 		 * be backed by hugepages while mmap_lock was dropped,
940 		 * the adjustment for hugetlb vma above may have rounded
941 		 * end down to the start address.
942 		 */
943 		if (start == end)
944 			return 0;
945 		VM_WARN_ON(start > end);
946 	}
947 
948 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
949 		return madvise_dontneed_single_vma(vma, start, end);
950 	else if (behavior == MADV_FREE)
951 		return madvise_free_single_vma(vma, start, end);
952 	else
953 		return -EINVAL;
954 }
955 
madvise_populate(struct mm_struct * mm,unsigned long start,unsigned long end,int behavior)956 static long madvise_populate(struct mm_struct *mm, unsigned long start,
957 		unsigned long end, int behavior)
958 {
959 	const bool write = behavior == MADV_POPULATE_WRITE;
960 	int locked = 1;
961 	long pages;
962 
963 	while (start < end) {
964 		/* Populate (prefault) page tables readable/writable. */
965 		pages = faultin_page_range(mm, start, end, write, &locked);
966 		if (!locked) {
967 			mmap_read_lock(mm);
968 			locked = 1;
969 		}
970 		if (pages < 0) {
971 			switch (pages) {
972 			case -EINTR:
973 				return -EINTR;
974 			case -EINVAL: /* Incompatible mappings / permissions. */
975 				return -EINVAL;
976 			case -EHWPOISON:
977 				return -EHWPOISON;
978 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
979 				return -EFAULT;
980 			default:
981 				pr_warn_once("%s: unhandled return value: %ld\n",
982 					     __func__, pages);
983 				fallthrough;
984 			case -ENOMEM: /* No VMA or out of memory. */
985 				return -ENOMEM;
986 			}
987 		}
988 		start += pages * PAGE_SIZE;
989 	}
990 	return 0;
991 }
992 
993 /*
994  * Application wants to free up the pages and associated backing store.
995  * This is effectively punching a hole into the middle of a file.
996  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)997 static long madvise_remove(struct vm_area_struct *vma,
998 				struct vm_area_struct **prev,
999 				unsigned long start, unsigned long end)
1000 {
1001 	loff_t offset;
1002 	int error;
1003 	struct file *f;
1004 	struct mm_struct *mm = vma->vm_mm;
1005 
1006 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
1007 
1008 	if (vma->vm_flags & VM_LOCKED)
1009 		return -EINVAL;
1010 
1011 	f = vma->vm_file;
1012 
1013 	if (!f || !f->f_mapping || !f->f_mapping->host) {
1014 			return -EINVAL;
1015 	}
1016 
1017 	if (!vma_is_shared_maywrite(vma))
1018 		return -EACCES;
1019 
1020 	offset = (loff_t)(start - vma->vm_start)
1021 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1022 
1023 	/*
1024 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
1025 	 * explicitly grab a reference because the vma (and hence the
1026 	 * vma's reference to the file) can go away as soon as we drop
1027 	 * mmap_lock.
1028 	 */
1029 	get_file(f);
1030 	if (userfaultfd_remove(vma, start, end)) {
1031 		/* mmap_lock was not released by userfaultfd_remove() */
1032 		mmap_read_unlock(mm);
1033 	}
1034 	error = vfs_fallocate(f,
1035 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1036 				offset, end - start);
1037 	fput(f);
1038 	mmap_read_lock(mm);
1039 	return error;
1040 }
1041 
is_valid_guard_vma(struct vm_area_struct * vma,bool allow_locked)1042 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1043 {
1044 	vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1045 
1046 	/*
1047 	 * A user could lock after setting a guard range but that's fine, as
1048 	 * they'd not be able to fault in. The issue arises when we try to zap
1049 	 * existing locked VMAs. We don't want to do that.
1050 	 */
1051 	if (!allow_locked)
1052 		disallowed |= VM_LOCKED;
1053 
1054 	return !(vma->vm_flags & disallowed);
1055 }
1056 
is_guard_pte_marker(pte_t ptent)1057 static bool is_guard_pte_marker(pte_t ptent)
1058 {
1059 	return is_pte_marker(ptent) &&
1060 		is_guard_swp_entry(pte_to_swp_entry(ptent));
1061 }
1062 
guard_install_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1063 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1064 				   unsigned long next, struct mm_walk *walk)
1065 {
1066 	pud_t pudval = pudp_get(pud);
1067 
1068 	/* If huge return >0 so we abort the operation + zap. */
1069 	return pud_trans_huge(pudval) || pud_devmap(pudval);
1070 }
1071 
guard_install_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1072 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1073 				   unsigned long next, struct mm_walk *walk)
1074 {
1075 	pmd_t pmdval = pmdp_get(pmd);
1076 
1077 	/* If huge return >0 so we abort the operation + zap. */
1078 	return pmd_trans_huge(pmdval) || pmd_devmap(pmdval);
1079 }
1080 
guard_install_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1081 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1082 				   unsigned long next, struct mm_walk *walk)
1083 {
1084 	pte_t pteval = ptep_get(pte);
1085 	unsigned long *nr_pages = (unsigned long *)walk->private;
1086 
1087 	/* If there is already a guard page marker, we have nothing to do. */
1088 	if (is_guard_pte_marker(pteval)) {
1089 		(*nr_pages)++;
1090 
1091 		return 0;
1092 	}
1093 
1094 	/* If populated return >0 so we abort the operation + zap. */
1095 	return 1;
1096 }
1097 
guard_install_set_pte(unsigned long addr,unsigned long next,pte_t * ptep,struct mm_walk * walk)1098 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1099 				 pte_t *ptep, struct mm_walk *walk)
1100 {
1101 	unsigned long *nr_pages = (unsigned long *)walk->private;
1102 
1103 	/* Simply install a PTE marker, this causes segfault on access. */
1104 	*ptep = make_pte_marker(PTE_MARKER_GUARD);
1105 	(*nr_pages)++;
1106 
1107 	return 0;
1108 }
1109 
1110 static const struct mm_walk_ops guard_install_walk_ops = {
1111 	.pud_entry		= guard_install_pud_entry,
1112 	.pmd_entry		= guard_install_pmd_entry,
1113 	.pte_entry		= guard_install_pte_entry,
1114 	.install_pte		= guard_install_set_pte,
1115 	.walk_lock		= PGWALK_RDLOCK,
1116 };
1117 
madvise_guard_install(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)1118 static long madvise_guard_install(struct vm_area_struct *vma,
1119 				 struct vm_area_struct **prev,
1120 				 unsigned long start, unsigned long end)
1121 {
1122 	long err;
1123 	int i;
1124 
1125 	*prev = vma;
1126 	if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1127 		return -EINVAL;
1128 
1129 	/*
1130 	 * If we install guard markers, then the range is no longer
1131 	 * empty from a page table perspective and therefore it's
1132 	 * appropriate to have an anon_vma.
1133 	 *
1134 	 * This ensures that on fork, we copy page tables correctly.
1135 	 */
1136 	err = anon_vma_prepare(vma);
1137 	if (err)
1138 		return err;
1139 
1140 	/*
1141 	 * Optimistically try to install the guard marker pages first. If any
1142 	 * non-guard pages are encountered, give up and zap the range before
1143 	 * trying again.
1144 	 *
1145 	 * We try a few times before giving up and releasing back to userland to
1146 	 * loop around, releasing locks in the process to avoid contention. This
1147 	 * would only happen if there was a great many racing page faults.
1148 	 *
1149 	 * In most cases we should simply install the guard markers immediately
1150 	 * with no zap or looping.
1151 	 */
1152 	for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1153 		unsigned long nr_pages = 0;
1154 
1155 		/* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1156 		err = walk_page_range_mm(vma->vm_mm, start, end,
1157 					 &guard_install_walk_ops, &nr_pages);
1158 		if (err < 0)
1159 			return err;
1160 
1161 		if (err == 0) {
1162 			unsigned long nr_expected_pages = PHYS_PFN(end - start);
1163 
1164 			VM_WARN_ON(nr_pages != nr_expected_pages);
1165 			return 0;
1166 		}
1167 
1168 		/*
1169 		 * OK some of the range have non-guard pages mapped, zap
1170 		 * them. This leaves existing guard pages in place.
1171 		 */
1172 		zap_page_range_single(vma, start, end - start, NULL);
1173 	}
1174 
1175 	/*
1176 	 * We were unable to install the guard pages due to being raced by page
1177 	 * faults. This should not happen ordinarily. We return to userspace and
1178 	 * immediately retry, relieving lock contention.
1179 	 */
1180 	return restart_syscall();
1181 }
1182 
guard_remove_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1183 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1184 				  unsigned long next, struct mm_walk *walk)
1185 {
1186 	pud_t pudval = pudp_get(pud);
1187 
1188 	/* If huge, cannot have guard pages present, so no-op - skip. */
1189 	if (pud_trans_huge(pudval) || pud_devmap(pudval))
1190 		walk->action = ACTION_CONTINUE;
1191 
1192 	return 0;
1193 }
1194 
guard_remove_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1195 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1196 				  unsigned long next, struct mm_walk *walk)
1197 {
1198 	pmd_t pmdval = pmdp_get(pmd);
1199 
1200 	/* If huge, cannot have guard pages present, so no-op - skip. */
1201 	if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
1202 		walk->action = ACTION_CONTINUE;
1203 
1204 	return 0;
1205 }
1206 
guard_remove_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1207 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1208 				  unsigned long next, struct mm_walk *walk)
1209 {
1210 	pte_t ptent = ptep_get(pte);
1211 
1212 	if (is_guard_pte_marker(ptent)) {
1213 		/* Simply clear the PTE marker. */
1214 		pte_clear_not_present_full(walk->mm, addr, pte, false);
1215 		update_mmu_cache(walk->vma, addr, pte);
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static const struct mm_walk_ops guard_remove_walk_ops = {
1222 	.pud_entry		= guard_remove_pud_entry,
1223 	.pmd_entry		= guard_remove_pmd_entry,
1224 	.pte_entry		= guard_remove_pte_entry,
1225 	.walk_lock		= PGWALK_RDLOCK,
1226 };
1227 
madvise_guard_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)1228 static long madvise_guard_remove(struct vm_area_struct *vma,
1229 				 struct vm_area_struct **prev,
1230 				 unsigned long start, unsigned long end)
1231 {
1232 	*prev = vma;
1233 	/*
1234 	 * We're ok with removing guards in mlock()'d ranges, as this is a
1235 	 * non-destructive action.
1236 	 */
1237 	if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1238 		return -EINVAL;
1239 
1240 	return walk_page_range(vma->vm_mm, start, end,
1241 			       &guard_remove_walk_ops, NULL);
1242 }
1243 
1244 /*
1245  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1246  * will handle splitting a vm area into separate areas, each area with its own
1247  * behavior.
1248  */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)1249 static int madvise_vma_behavior(struct vm_area_struct *vma,
1250 				struct vm_area_struct **prev,
1251 				unsigned long start, unsigned long end,
1252 				unsigned long behavior)
1253 {
1254 	int error;
1255 	struct anon_vma_name *anon_name;
1256 	unsigned long new_flags = vma->vm_flags;
1257 
1258 	if (unlikely(!can_modify_vma_madv(vma, behavior)))
1259 		return -EPERM;
1260 
1261 	switch (behavior) {
1262 	case MADV_REMOVE:
1263 		return madvise_remove(vma, prev, start, end);
1264 	case MADV_WILLNEED:
1265 		return madvise_willneed(vma, prev, start, end);
1266 	case MADV_COLD:
1267 		return madvise_cold(vma, prev, start, end);
1268 	case MADV_PAGEOUT:
1269 		return madvise_pageout(vma, prev, start, end);
1270 	case MADV_FREE:
1271 	case MADV_DONTNEED:
1272 	case MADV_DONTNEED_LOCKED:
1273 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1274 	case MADV_NORMAL:
1275 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1276 		break;
1277 	case MADV_SEQUENTIAL:
1278 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1279 		break;
1280 	case MADV_RANDOM:
1281 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1282 		break;
1283 	case MADV_DONTFORK:
1284 		new_flags |= VM_DONTCOPY;
1285 		break;
1286 	case MADV_DOFORK:
1287 		if (vma->vm_flags & VM_IO)
1288 			return -EINVAL;
1289 		new_flags &= ~VM_DONTCOPY;
1290 		break;
1291 	case MADV_WIPEONFORK:
1292 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1293 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1294 			return -EINVAL;
1295 		new_flags |= VM_WIPEONFORK;
1296 		break;
1297 	case MADV_KEEPONFORK:
1298 		if (vma->vm_flags & VM_DROPPABLE)
1299 			return -EINVAL;
1300 		new_flags &= ~VM_WIPEONFORK;
1301 		break;
1302 	case MADV_DONTDUMP:
1303 		new_flags |= VM_DONTDUMP;
1304 		break;
1305 	case MADV_DODUMP:
1306 		if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
1307 		    (vma->vm_flags & VM_DROPPABLE))
1308 			return -EINVAL;
1309 		new_flags &= ~VM_DONTDUMP;
1310 		break;
1311 	case MADV_MERGEABLE:
1312 	case MADV_UNMERGEABLE:
1313 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1314 		if (error)
1315 			goto out;
1316 		break;
1317 	case MADV_HUGEPAGE:
1318 	case MADV_NOHUGEPAGE:
1319 		error = hugepage_madvise(vma, &new_flags, behavior);
1320 		if (error)
1321 			goto out;
1322 		break;
1323 	case MADV_COLLAPSE:
1324 		return madvise_collapse(vma, prev, start, end);
1325 	case MADV_GUARD_INSTALL:
1326 		return madvise_guard_install(vma, prev, start, end);
1327 	case MADV_GUARD_REMOVE:
1328 		return madvise_guard_remove(vma, prev, start, end);
1329 	}
1330 
1331 	anon_name = anon_vma_name(vma);
1332 	anon_vma_name_get(anon_name);
1333 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1334 				   anon_name);
1335 	anon_vma_name_put(anon_name);
1336 
1337 out:
1338 	/*
1339 	 * madvise() returns EAGAIN if kernel resources, such as
1340 	 * slab, are temporarily unavailable.
1341 	 */
1342 	if (error == -ENOMEM)
1343 		error = -EAGAIN;
1344 	return error;
1345 }
1346 
1347 #ifdef CONFIG_MEMORY_FAILURE
1348 /*
1349  * Error injection support for memory error handling.
1350  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1351 static int madvise_inject_error(int behavior,
1352 		unsigned long start, unsigned long end)
1353 {
1354 	unsigned long size;
1355 
1356 	if (!capable(CAP_SYS_ADMIN))
1357 		return -EPERM;
1358 
1359 
1360 	for (; start < end; start += size) {
1361 		unsigned long pfn;
1362 		struct page *page;
1363 		int ret;
1364 
1365 		ret = get_user_pages_fast(start, 1, 0, &page);
1366 		if (ret != 1)
1367 			return ret;
1368 		pfn = page_to_pfn(page);
1369 
1370 		/*
1371 		 * When soft offlining hugepages, after migrating the page
1372 		 * we dissolve it, therefore in the second loop "page" will
1373 		 * no longer be a compound page.
1374 		 */
1375 		size = page_size(compound_head(page));
1376 
1377 		if (behavior == MADV_SOFT_OFFLINE) {
1378 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1379 				 pfn, start);
1380 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1381 		} else {
1382 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1383 				 pfn, start);
1384 			ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1385 			if (ret == -EOPNOTSUPP)
1386 				ret = 0;
1387 		}
1388 
1389 		if (ret)
1390 			return ret;
1391 	}
1392 
1393 	return 0;
1394 }
1395 
is_memory_failure(int behavior)1396 static bool is_memory_failure(int behavior)
1397 {
1398 	switch (behavior) {
1399 	case MADV_HWPOISON:
1400 	case MADV_SOFT_OFFLINE:
1401 		return true;
1402 	default:
1403 		return false;
1404 	}
1405 }
1406 
1407 #else
1408 
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1409 static int madvise_inject_error(int behavior,
1410 		unsigned long start, unsigned long end)
1411 {
1412 	return 0;
1413 }
1414 
is_memory_failure(int behavior)1415 static bool is_memory_failure(int behavior)
1416 {
1417 	return false;
1418 }
1419 
1420 #endif	/* CONFIG_MEMORY_FAILURE */
1421 
1422 static bool
madvise_behavior_valid(int behavior)1423 madvise_behavior_valid(int behavior)
1424 {
1425 	switch (behavior) {
1426 	case MADV_DOFORK:
1427 	case MADV_DONTFORK:
1428 	case MADV_NORMAL:
1429 	case MADV_SEQUENTIAL:
1430 	case MADV_RANDOM:
1431 	case MADV_REMOVE:
1432 	case MADV_WILLNEED:
1433 	case MADV_DONTNEED:
1434 	case MADV_DONTNEED_LOCKED:
1435 	case MADV_FREE:
1436 	case MADV_COLD:
1437 	case MADV_PAGEOUT:
1438 	case MADV_POPULATE_READ:
1439 	case MADV_POPULATE_WRITE:
1440 #ifdef CONFIG_KSM
1441 	case MADV_MERGEABLE:
1442 	case MADV_UNMERGEABLE:
1443 #endif
1444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1445 	case MADV_HUGEPAGE:
1446 	case MADV_NOHUGEPAGE:
1447 	case MADV_COLLAPSE:
1448 #endif
1449 	case MADV_DONTDUMP:
1450 	case MADV_DODUMP:
1451 	case MADV_WIPEONFORK:
1452 	case MADV_KEEPONFORK:
1453 	case MADV_GUARD_INSTALL:
1454 	case MADV_GUARD_REMOVE:
1455 #ifdef CONFIG_MEMORY_FAILURE
1456 	case MADV_SOFT_OFFLINE:
1457 	case MADV_HWPOISON:
1458 #endif
1459 		return true;
1460 
1461 	default:
1462 		return false;
1463 	}
1464 }
1465 
1466 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
process_madvise_remote_valid(int behavior)1467 static bool process_madvise_remote_valid(int behavior)
1468 {
1469 	switch (behavior) {
1470 	case MADV_COLD:
1471 	case MADV_PAGEOUT:
1472 	case MADV_WILLNEED:
1473 	case MADV_COLLAPSE:
1474 		return true;
1475 	default:
1476 		return false;
1477 	}
1478 }
1479 
1480 /*
1481  * Walk the vmas in range [start,end), and call the visit function on each one.
1482  * The visit function will get start and end parameters that cover the overlap
1483  * between the current vma and the original range.  Any unmapped regions in the
1484  * original range will result in this function returning -ENOMEM while still
1485  * calling the visit function on all of the existing vmas in the range.
1486  * Must be called with the mmap_lock held for reading or writing.
1487  */
1488 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1489 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1490 		      unsigned long end, unsigned long arg,
1491 		      int (*visit)(struct vm_area_struct *vma,
1492 				   struct vm_area_struct **prev, unsigned long start,
1493 				   unsigned long end, unsigned long arg))
1494 {
1495 	struct vm_area_struct *vma;
1496 	struct vm_area_struct *prev;
1497 	unsigned long tmp;
1498 	int unmapped_error = 0;
1499 
1500 	/*
1501 	 * If the interval [start,end) covers some unmapped address
1502 	 * ranges, just ignore them, but return -ENOMEM at the end.
1503 	 * - different from the way of handling in mlock etc.
1504 	 */
1505 	vma = find_vma_prev(mm, start, &prev);
1506 	if (vma && start > vma->vm_start)
1507 		prev = vma;
1508 
1509 	for (;;) {
1510 		int error;
1511 
1512 		/* Still start < end. */
1513 		if (!vma)
1514 			return -ENOMEM;
1515 
1516 		/* Here start < (end|vma->vm_end). */
1517 		if (start < vma->vm_start) {
1518 			unmapped_error = -ENOMEM;
1519 			start = vma->vm_start;
1520 			if (start >= end)
1521 				break;
1522 		}
1523 
1524 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1525 		tmp = vma->vm_end;
1526 		if (end < tmp)
1527 			tmp = end;
1528 
1529 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1530 		error = visit(vma, &prev, start, tmp, arg);
1531 		if (error)
1532 			return error;
1533 		start = tmp;
1534 		if (prev && start < prev->vm_end)
1535 			start = prev->vm_end;
1536 		if (start >= end)
1537 			break;
1538 		if (prev)
1539 			vma = find_vma(mm, prev->vm_end);
1540 		else	/* madvise_remove dropped mmap_lock */
1541 			vma = find_vma(mm, start);
1542 	}
1543 
1544 	return unmapped_error;
1545 }
1546 
1547 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long anon_name)1548 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1549 				 struct vm_area_struct **prev,
1550 				 unsigned long start, unsigned long end,
1551 				 unsigned long anon_name)
1552 {
1553 	int error;
1554 
1555 	/* Only anonymous mappings can be named */
1556 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1557 		return -EBADF;
1558 
1559 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1560 				   (struct anon_vma_name *)anon_name);
1561 
1562 	/*
1563 	 * madvise() returns EAGAIN if kernel resources, such as
1564 	 * slab, are temporarily unavailable.
1565 	 */
1566 	if (error == -ENOMEM)
1567 		error = -EAGAIN;
1568 	return error;
1569 }
1570 
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1571 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1572 			  unsigned long len_in, struct anon_vma_name *anon_name)
1573 {
1574 	unsigned long end;
1575 	unsigned long len;
1576 
1577 	if (start & ~PAGE_MASK)
1578 		return -EINVAL;
1579 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1580 
1581 	/* Check to see whether len was rounded up from small -ve to zero */
1582 	if (len_in && !len)
1583 		return -EINVAL;
1584 
1585 	end = start + len;
1586 	if (end < start)
1587 		return -EINVAL;
1588 
1589 	if (end == start)
1590 		return 0;
1591 
1592 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1593 				 madvise_vma_anon_name);
1594 }
1595 #endif /* CONFIG_ANON_VMA_NAME */
1596 
madvise_lock(struct mm_struct * mm,int behavior)1597 static int madvise_lock(struct mm_struct *mm, int behavior)
1598 {
1599 	if (is_memory_failure(behavior))
1600 		return 0;
1601 
1602 	if (madvise_need_mmap_write(behavior)) {
1603 		if (mmap_write_lock_killable(mm))
1604 			return -EINTR;
1605 	} else {
1606 		mmap_read_lock(mm);
1607 	}
1608 	return 0;
1609 }
1610 
madvise_unlock(struct mm_struct * mm,int behavior)1611 static void madvise_unlock(struct mm_struct *mm, int behavior)
1612 {
1613 	if (is_memory_failure(behavior))
1614 		return;
1615 
1616 	if (madvise_need_mmap_write(behavior))
1617 		mmap_write_unlock(mm);
1618 	else
1619 		mmap_read_unlock(mm);
1620 }
1621 
is_valid_madvise(unsigned long start,size_t len_in,int behavior)1622 static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior)
1623 {
1624 	size_t len;
1625 
1626 	if (!madvise_behavior_valid(behavior))
1627 		return false;
1628 
1629 	if (!PAGE_ALIGNED(start))
1630 		return false;
1631 	len = PAGE_ALIGN(len_in);
1632 
1633 	/* Check to see whether len was rounded up from small -ve to zero */
1634 	if (len_in && !len)
1635 		return false;
1636 
1637 	if (start + len < start)
1638 		return false;
1639 
1640 	return true;
1641 }
1642 
1643 /*
1644  * madvise_should_skip() - Return if the request is invalid or nothing.
1645  * @start:	Start address of madvise-requested address range.
1646  * @len_in:	Length of madvise-requested address range.
1647  * @behavior:	Requested madvise behavor.
1648  * @err:	Pointer to store an error code from the check.
1649  *
1650  * If the specified behaviour is invalid or nothing would occur, we skip the
1651  * operation.  This function returns true in the cases, otherwise false.  In
1652  * the former case we store an error on @err.
1653  */
madvise_should_skip(unsigned long start,size_t len_in,int behavior,int * err)1654 static bool madvise_should_skip(unsigned long start, size_t len_in,
1655 		int behavior, int *err)
1656 {
1657 	if (!is_valid_madvise(start, len_in, behavior)) {
1658 		*err = -EINVAL;
1659 		return true;
1660 	}
1661 	if (start + PAGE_ALIGN(len_in) == start) {
1662 		*err = 0;
1663 		return true;
1664 	}
1665 	return false;
1666 }
1667 
is_madvise_populate(int behavior)1668 static bool is_madvise_populate(int behavior)
1669 {
1670 	switch (behavior) {
1671 	case MADV_POPULATE_READ:
1672 	case MADV_POPULATE_WRITE:
1673 		return true;
1674 	default:
1675 		return false;
1676 	}
1677 }
1678 
madvise_do_behavior(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1679 static int madvise_do_behavior(struct mm_struct *mm,
1680 		unsigned long start, size_t len_in, int behavior)
1681 {
1682 	struct blk_plug plug;
1683 	unsigned long end;
1684 	int error;
1685 
1686 	if (is_memory_failure(behavior))
1687 		return madvise_inject_error(behavior, start, start + len_in);
1688 	start = untagged_addr_remote(mm, start);
1689 	end = start + PAGE_ALIGN(len_in);
1690 
1691 	blk_start_plug(&plug);
1692 	if (is_madvise_populate(behavior))
1693 		error = madvise_populate(mm, start, end, behavior);
1694 	else
1695 		error = madvise_walk_vmas(mm, start, end, behavior,
1696 					  madvise_vma_behavior);
1697 	blk_finish_plug(&plug);
1698 	return error;
1699 }
1700 
1701 /*
1702  * The madvise(2) system call.
1703  *
1704  * Applications can use madvise() to advise the kernel how it should
1705  * handle paging I/O in this VM area.  The idea is to help the kernel
1706  * use appropriate read-ahead and caching techniques.  The information
1707  * provided is advisory only, and can be safely disregarded by the
1708  * kernel without affecting the correct operation of the application.
1709  *
1710  * behavior values:
1711  *  MADV_NORMAL - the default behavior is to read clusters.  This
1712  *		results in some read-ahead and read-behind.
1713  *  MADV_RANDOM - the system should read the minimum amount of data
1714  *		on any access, since it is unlikely that the appli-
1715  *		cation will need more than what it asks for.
1716  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1717  *		once, so they can be aggressively read ahead, and
1718  *		can be freed soon after they are accessed.
1719  *  MADV_WILLNEED - the application is notifying the system to read
1720  *		some pages ahead.
1721  *  MADV_DONTNEED - the application is finished with the given range,
1722  *		so the kernel can free resources associated with it.
1723  *  MADV_FREE - the application marks pages in the given range as lazy free,
1724  *		where actual purges are postponed until memory pressure happens.
1725  *  MADV_REMOVE - the application wants to free up the given range of
1726  *		pages and associated backing store.
1727  *  MADV_DONTFORK - omit this area from child's address space when forking:
1728  *		typically, to avoid COWing pages pinned by get_user_pages().
1729  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1730  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1731  *              range after a fork.
1732  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1733  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1734  *		were corrupted by unrecoverable hardware memory failure.
1735  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1736  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1737  *		this area with pages of identical content from other such areas.
1738  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1739  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1740  *		huge pages in the future. Existing pages might be coalesced and
1741  *		new pages might be allocated as THP.
1742  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1743  *		transparent huge pages so the existing pages will not be
1744  *		coalesced into THP and new pages will not be allocated as THP.
1745  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1746  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1747  *		from being included in its core dump.
1748  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1749  *  MADV_COLD - the application is not expected to use this memory soon,
1750  *		deactivate pages in this range so that they can be reclaimed
1751  *		easily if memory pressure happens.
1752  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1753  *		page out the pages in this range immediately.
1754  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1755  *		triggering read faults if required
1756  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1757  *		triggering write faults if required
1758  *
1759  * return values:
1760  *  zero    - success
1761  *  -EINVAL - start + len < 0, start is not page-aligned,
1762  *		"behavior" is not a valid value, or application
1763  *		is attempting to release locked or shared pages,
1764  *		or the specified address range includes file, Huge TLB,
1765  *		MAP_SHARED or VMPFNMAP range.
1766  *  -ENOMEM - addresses in the specified range are not currently
1767  *		mapped, or are outside the AS of the process.
1768  *  -EIO    - an I/O error occurred while paging in data.
1769  *  -EBADF  - map exists, but area maps something that isn't a file.
1770  *  -EAGAIN - a kernel resource was temporarily unavailable.
1771  *  -EPERM  - memory is sealed.
1772  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1773 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1774 {
1775 	int error;
1776 
1777 	if (madvise_should_skip(start, len_in, behavior, &error))
1778 		return error;
1779 	error = madvise_lock(mm, behavior);
1780 	if (error)
1781 		return error;
1782 	error = madvise_do_behavior(mm, start, len_in, behavior);
1783 	madvise_unlock(mm, behavior);
1784 
1785 	return error;
1786 }
1787 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1788 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1789 {
1790 	return do_madvise(current->mm, start, len_in, behavior);
1791 }
1792 
1793 /* Perform an madvise operation over a vector of addresses and lengths. */
vector_madvise(struct mm_struct * mm,struct iov_iter * iter,int behavior)1794 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
1795 			      int behavior)
1796 {
1797 	ssize_t ret = 0;
1798 	size_t total_len;
1799 
1800 	total_len = iov_iter_count(iter);
1801 
1802 	ret = madvise_lock(mm, behavior);
1803 	if (ret)
1804 		return ret;
1805 
1806 	while (iov_iter_count(iter)) {
1807 		unsigned long start = (unsigned long)iter_iov_addr(iter);
1808 		size_t len_in = iter_iov_len(iter);
1809 		int error;
1810 
1811 		if (madvise_should_skip(start, len_in, behavior, &error))
1812 			ret = error;
1813 		else
1814 			ret = madvise_do_behavior(mm, start, len_in, behavior);
1815 		/*
1816 		 * An madvise operation is attempting to restart the syscall,
1817 		 * but we cannot proceed as it would not be correct to repeat
1818 		 * the operation in aggregate, and would be surprising to the
1819 		 * user.
1820 		 *
1821 		 * We drop and reacquire locks so it is safe to just loop and
1822 		 * try again. We check for fatal signals in case we need exit
1823 		 * early anyway.
1824 		 */
1825 		if (ret == -ERESTARTNOINTR) {
1826 			if (fatal_signal_pending(current)) {
1827 				ret = -EINTR;
1828 				break;
1829 			}
1830 
1831 			/* Drop and reacquire lock to unwind race. */
1832 			madvise_unlock(mm, behavior);
1833 			madvise_lock(mm, behavior);
1834 			continue;
1835 		}
1836 		if (ret < 0)
1837 			break;
1838 		iov_iter_advance(iter, iter_iov_len(iter));
1839 	}
1840 	madvise_unlock(mm, behavior);
1841 
1842 	ret = (total_len - iov_iter_count(iter)) ? : ret;
1843 
1844 	return ret;
1845 }
1846 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1847 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1848 		size_t, vlen, int, behavior, unsigned int, flags)
1849 {
1850 	ssize_t ret;
1851 	struct iovec iovstack[UIO_FASTIOV];
1852 	struct iovec *iov = iovstack;
1853 	struct iov_iter iter;
1854 	struct task_struct *task;
1855 	struct mm_struct *mm;
1856 	unsigned int f_flags;
1857 
1858 	if (flags != 0) {
1859 		ret = -EINVAL;
1860 		goto out;
1861 	}
1862 
1863 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1864 	if (ret < 0)
1865 		goto out;
1866 
1867 	task = pidfd_get_task(pidfd, &f_flags);
1868 	if (IS_ERR(task)) {
1869 		ret = PTR_ERR(task);
1870 		goto free_iov;
1871 	}
1872 
1873 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1874 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1875 	if (IS_ERR(mm)) {
1876 		ret = PTR_ERR(mm);
1877 		goto release_task;
1878 	}
1879 
1880 	/*
1881 	 * We need only perform this check if we are attempting to manipulate a
1882 	 * remote process's address space.
1883 	 */
1884 	if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
1885 		ret = -EINVAL;
1886 		goto release_mm;
1887 	}
1888 
1889 	/*
1890 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1891 	 * only non-destructive hints are currently supported for remote
1892 	 * processes.
1893 	 */
1894 	if (mm != current->mm && !capable(CAP_SYS_NICE)) {
1895 		ret = -EPERM;
1896 		goto release_mm;
1897 	}
1898 
1899 	ret = vector_madvise(mm, &iter, behavior);
1900 
1901 release_mm:
1902 	mmput(mm);
1903 release_task:
1904 	put_task_struct(task);
1905 free_iov:
1906 	kfree(iov);
1907 out:
1908 	return ret;
1909 }
1910