1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38 #include "swap.h"
39
40 /*
41 * Maximum number of attempts we make to install guard pages before we give up
42 * and return -ERESTARTNOINTR to have userspace try again.
43 */
44 #define MAX_MADVISE_GUARD_RETRIES 3
45
46 struct madvise_walk_private {
47 struct mmu_gather *tlb;
48 bool pageout;
49 };
50
51 /*
52 * Any behaviour which results in changes to the vma->vm_flags needs to
53 * take mmap_lock for writing. Others, which simply traverse vmas, need
54 * to only take it for reading.
55 */
madvise_need_mmap_write(int behavior)56 static int madvise_need_mmap_write(int behavior)
57 {
58 switch (behavior) {
59 case MADV_REMOVE:
60 case MADV_WILLNEED:
61 case MADV_DONTNEED:
62 case MADV_DONTNEED_LOCKED:
63 case MADV_COLD:
64 case MADV_PAGEOUT:
65 case MADV_FREE:
66 case MADV_POPULATE_READ:
67 case MADV_POPULATE_WRITE:
68 case MADV_COLLAPSE:
69 case MADV_GUARD_INSTALL:
70 case MADV_GUARD_REMOVE:
71 return 0;
72 default:
73 /* be safe, default to 1. list exceptions explicitly */
74 return 1;
75 }
76 }
77
78 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)79 struct anon_vma_name *anon_vma_name_alloc(const char *name)
80 {
81 struct anon_vma_name *anon_name;
82 size_t count;
83
84 /* Add 1 for NUL terminator at the end of the anon_name->name */
85 count = strlen(name) + 1;
86 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
87 if (anon_name) {
88 kref_init(&anon_name->kref);
89 memcpy(anon_name->name, name, count);
90 }
91
92 return anon_name;
93 }
94
anon_vma_name_free(struct kref * kref)95 void anon_vma_name_free(struct kref *kref)
96 {
97 struct anon_vma_name *anon_name =
98 container_of(kref, struct anon_vma_name, kref);
99 kfree(anon_name);
100 }
101
anon_vma_name(struct vm_area_struct * vma)102 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
103 {
104 mmap_assert_locked(vma->vm_mm);
105
106 return vma->anon_name;
107 }
108
109 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)110 static int replace_anon_vma_name(struct vm_area_struct *vma,
111 struct anon_vma_name *anon_name)
112 {
113 struct anon_vma_name *orig_name = anon_vma_name(vma);
114
115 if (!anon_name) {
116 vma->anon_name = NULL;
117 anon_vma_name_put(orig_name);
118 return 0;
119 }
120
121 if (anon_vma_name_eq(orig_name, anon_name))
122 return 0;
123
124 vma->anon_name = anon_vma_name_reuse(anon_name);
125 anon_vma_name_put(orig_name);
126
127 return 0;
128 }
129 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)130 static int replace_anon_vma_name(struct vm_area_struct *vma,
131 struct anon_vma_name *anon_name)
132 {
133 if (anon_name)
134 return -EINVAL;
135
136 return 0;
137 }
138 #endif /* CONFIG_ANON_VMA_NAME */
139 /*
140 * Update the vm_flags on region of a vma, splitting it or merging it as
141 * necessary. Must be called with mmap_lock held for writing;
142 * Caller should ensure anon_name stability by raising its refcount even when
143 * anon_name belongs to a valid vma because this function might free that vma.
144 */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)145 static int madvise_update_vma(struct vm_area_struct *vma,
146 struct vm_area_struct **prev, unsigned long start,
147 unsigned long end, unsigned long new_flags,
148 struct anon_vma_name *anon_name)
149 {
150 struct mm_struct *mm = vma->vm_mm;
151 int error;
152 VMA_ITERATOR(vmi, mm, start);
153
154 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
155 *prev = vma;
156 return 0;
157 }
158
159 vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
160 anon_name);
161 if (IS_ERR(vma))
162 return PTR_ERR(vma);
163
164 *prev = vma;
165
166 /* vm_flags is protected by the mmap_lock held in write mode. */
167 vma_start_write(vma);
168 vm_flags_reset(vma, new_flags);
169 if (!vma->vm_file || vma_is_anon_shmem(vma)) {
170 error = replace_anon_vma_name(vma, anon_name);
171 if (error)
172 return error;
173 }
174
175 return 0;
176 }
177
178 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)179 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
180 unsigned long end, struct mm_walk *walk)
181 {
182 struct vm_area_struct *vma = walk->private;
183 struct swap_iocb *splug = NULL;
184 pte_t *ptep = NULL;
185 spinlock_t *ptl;
186 unsigned long addr;
187
188 for (addr = start; addr < end; addr += PAGE_SIZE) {
189 pte_t pte;
190 swp_entry_t entry;
191 struct folio *folio;
192
193 if (!ptep++) {
194 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
195 if (!ptep)
196 break;
197 }
198
199 pte = ptep_get(ptep);
200 if (!is_swap_pte(pte))
201 continue;
202 entry = pte_to_swp_entry(pte);
203 if (unlikely(non_swap_entry(entry)))
204 continue;
205
206 pte_unmap_unlock(ptep, ptl);
207 ptep = NULL;
208
209 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 vma, addr, &splug);
211 if (folio)
212 folio_put(folio);
213 }
214
215 if (ptep)
216 pte_unmap_unlock(ptep, ptl);
217 swap_read_unplug(splug);
218 cond_resched();
219
220 return 0;
221 }
222
223 static const struct mm_walk_ops swapin_walk_ops = {
224 .pmd_entry = swapin_walk_pmd_entry,
225 .walk_lock = PGWALK_RDLOCK,
226 };
227
shmem_swapin_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)228 static void shmem_swapin_range(struct vm_area_struct *vma,
229 unsigned long start, unsigned long end,
230 struct address_space *mapping)
231 {
232 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
233 pgoff_t end_index = linear_page_index(vma, end) - 1;
234 struct folio *folio;
235 struct swap_iocb *splug = NULL;
236
237 rcu_read_lock();
238 xas_for_each(&xas, folio, end_index) {
239 unsigned long addr;
240 swp_entry_t entry;
241
242 if (!xa_is_value(folio))
243 continue;
244 entry = radix_to_swp_entry(folio);
245 /* There might be swapin error entries in shmem mapping. */
246 if (non_swap_entry(entry))
247 continue;
248
249 addr = vma->vm_start +
250 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
251 xas_pause(&xas);
252 rcu_read_unlock();
253
254 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
255 vma, addr, &splug);
256 if (folio)
257 folio_put(folio);
258
259 rcu_read_lock();
260 }
261 rcu_read_unlock();
262 swap_read_unplug(splug);
263 }
264 #endif /* CONFIG_SWAP */
265
266 /*
267 * Schedule all required I/O operations. Do not wait for completion.
268 */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)269 static long madvise_willneed(struct vm_area_struct *vma,
270 struct vm_area_struct **prev,
271 unsigned long start, unsigned long end)
272 {
273 struct mm_struct *mm = vma->vm_mm;
274 struct file *file = vma->vm_file;
275 loff_t offset;
276
277 *prev = vma;
278 #ifdef CONFIG_SWAP
279 if (!file) {
280 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
281 lru_add_drain(); /* Push any new pages onto the LRU now */
282 return 0;
283 }
284
285 if (shmem_mapping(file->f_mapping)) {
286 shmem_swapin_range(vma, start, end, file->f_mapping);
287 lru_add_drain(); /* Push any new pages onto the LRU now */
288 return 0;
289 }
290 #else
291 if (!file)
292 return -EBADF;
293 #endif
294
295 if (IS_DAX(file_inode(file))) {
296 /* no bad return value, but ignore advice */
297 return 0;
298 }
299
300 /*
301 * Filesystem's fadvise may need to take various locks. We need to
302 * explicitly grab a reference because the vma (and hence the
303 * vma's reference to the file) can go away as soon as we drop
304 * mmap_lock.
305 */
306 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
307 get_file(file);
308 offset = (loff_t)(start - vma->vm_start)
309 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
310 mmap_read_unlock(mm);
311 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
312 fput(file);
313 mmap_read_lock(mm);
314 return 0;
315 }
316
can_do_file_pageout(struct vm_area_struct * vma)317 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
318 {
319 if (!vma->vm_file)
320 return false;
321 /*
322 * paging out pagecache only for non-anonymous mappings that correspond
323 * to the files the calling process could (if tried) open for writing;
324 * otherwise we'd be including shared non-exclusive mappings, which
325 * opens a side channel.
326 */
327 return inode_owner_or_capable(&nop_mnt_idmap,
328 file_inode(vma->vm_file)) ||
329 file_permission(vma->vm_file, MAY_WRITE) == 0;
330 }
331
madvise_folio_pte_batch(unsigned long addr,unsigned long end,struct folio * folio,pte_t * ptep,pte_t pte,bool * any_young,bool * any_dirty)332 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
333 struct folio *folio, pte_t *ptep,
334 pte_t pte, bool *any_young,
335 bool *any_dirty)
336 {
337 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
338 int max_nr = (end - addr) / PAGE_SIZE;
339
340 return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
341 any_young, any_dirty);
342 }
343
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)344 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
345 unsigned long addr, unsigned long end,
346 struct mm_walk *walk)
347 {
348 struct madvise_walk_private *private = walk->private;
349 struct mmu_gather *tlb = private->tlb;
350 bool pageout = private->pageout;
351 struct mm_struct *mm = tlb->mm;
352 struct vm_area_struct *vma = walk->vma;
353 pte_t *start_pte, *pte, ptent;
354 spinlock_t *ptl;
355 struct folio *folio = NULL;
356 LIST_HEAD(folio_list);
357 bool pageout_anon_only_filter;
358 unsigned int batch_count = 0;
359 int nr;
360
361 if (fatal_signal_pending(current))
362 return -EINTR;
363
364 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
365 !can_do_file_pageout(vma);
366
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 if (pmd_trans_huge(*pmd)) {
369 pmd_t orig_pmd;
370 unsigned long next = pmd_addr_end(addr, end);
371
372 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
373 ptl = pmd_trans_huge_lock(pmd, vma);
374 if (!ptl)
375 return 0;
376
377 orig_pmd = *pmd;
378 if (is_huge_zero_pmd(orig_pmd))
379 goto huge_unlock;
380
381 if (unlikely(!pmd_present(orig_pmd))) {
382 VM_BUG_ON(thp_migration_supported() &&
383 !is_pmd_migration_entry(orig_pmd));
384 goto huge_unlock;
385 }
386
387 folio = pmd_folio(orig_pmd);
388
389 /* Do not interfere with other mappings of this folio */
390 if (folio_maybe_mapped_shared(folio))
391 goto huge_unlock;
392
393 if (pageout_anon_only_filter && !folio_test_anon(folio))
394 goto huge_unlock;
395
396 if (next - addr != HPAGE_PMD_SIZE) {
397 int err;
398
399 folio_get(folio);
400 spin_unlock(ptl);
401 folio_lock(folio);
402 err = split_folio(folio);
403 folio_unlock(folio);
404 folio_put(folio);
405 if (!err)
406 goto regular_folio;
407 return 0;
408 }
409
410 if (!pageout && pmd_young(orig_pmd)) {
411 pmdp_invalidate(vma, addr, pmd);
412 orig_pmd = pmd_mkold(orig_pmd);
413
414 set_pmd_at(mm, addr, pmd, orig_pmd);
415 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
416 }
417
418 folio_clear_referenced(folio);
419 folio_test_clear_young(folio);
420 if (folio_test_active(folio))
421 folio_set_workingset(folio);
422 if (pageout) {
423 if (folio_isolate_lru(folio)) {
424 if (folio_test_unevictable(folio))
425 folio_putback_lru(folio);
426 else
427 list_add(&folio->lru, &folio_list);
428 }
429 } else
430 folio_deactivate(folio);
431 huge_unlock:
432 spin_unlock(ptl);
433 if (pageout)
434 reclaim_pages(&folio_list);
435 return 0;
436 }
437
438 regular_folio:
439 #endif
440 tlb_change_page_size(tlb, PAGE_SIZE);
441 restart:
442 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
443 if (!start_pte)
444 return 0;
445 flush_tlb_batched_pending(mm);
446 arch_enter_lazy_mmu_mode();
447 for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
448 nr = 1;
449 ptent = ptep_get(pte);
450
451 if (++batch_count == SWAP_CLUSTER_MAX) {
452 batch_count = 0;
453 if (need_resched()) {
454 arch_leave_lazy_mmu_mode();
455 pte_unmap_unlock(start_pte, ptl);
456 cond_resched();
457 goto restart;
458 }
459 }
460
461 if (pte_none(ptent))
462 continue;
463
464 if (!pte_present(ptent))
465 continue;
466
467 folio = vm_normal_folio(vma, addr, ptent);
468 if (!folio || folio_is_zone_device(folio))
469 continue;
470
471 /*
472 * If we encounter a large folio, only split it if it is not
473 * fully mapped within the range we are operating on. Otherwise
474 * leave it as is so that it can be swapped out whole. If we
475 * fail to split a folio, leave it in place and advance to the
476 * next pte in the range.
477 */
478 if (folio_test_large(folio)) {
479 bool any_young;
480
481 nr = madvise_folio_pte_batch(addr, end, folio, pte,
482 ptent, &any_young, NULL);
483 if (any_young)
484 ptent = pte_mkyoung(ptent);
485
486 if (nr < folio_nr_pages(folio)) {
487 int err;
488
489 if (folio_maybe_mapped_shared(folio))
490 continue;
491 if (pageout_anon_only_filter && !folio_test_anon(folio))
492 continue;
493 if (!folio_trylock(folio))
494 continue;
495 folio_get(folio);
496 arch_leave_lazy_mmu_mode();
497 pte_unmap_unlock(start_pte, ptl);
498 start_pte = NULL;
499 err = split_folio(folio);
500 folio_unlock(folio);
501 folio_put(folio);
502 start_pte = pte =
503 pte_offset_map_lock(mm, pmd, addr, &ptl);
504 if (!start_pte)
505 break;
506 arch_enter_lazy_mmu_mode();
507 if (!err)
508 nr = 0;
509 continue;
510 }
511 }
512
513 /*
514 * Do not interfere with other mappings of this folio and
515 * non-LRU folio. If we have a large folio at this point, we
516 * know it is fully mapped so if its mapcount is the same as its
517 * number of pages, it must be exclusive.
518 */
519 if (!folio_test_lru(folio) ||
520 folio_mapcount(folio) != folio_nr_pages(folio))
521 continue;
522
523 if (pageout_anon_only_filter && !folio_test_anon(folio))
524 continue;
525
526 if (!pageout && pte_young(ptent)) {
527 clear_young_dirty_ptes(vma, addr, pte, nr,
528 CYDP_CLEAR_YOUNG);
529 tlb_remove_tlb_entries(tlb, pte, nr, addr);
530 }
531
532 /*
533 * We are deactivating a folio for accelerating reclaiming.
534 * VM couldn't reclaim the folio unless we clear PG_young.
535 * As a side effect, it makes confuse idle-page tracking
536 * because they will miss recent referenced history.
537 */
538 folio_clear_referenced(folio);
539 folio_test_clear_young(folio);
540 if (folio_test_active(folio))
541 folio_set_workingset(folio);
542 if (pageout) {
543 if (folio_isolate_lru(folio)) {
544 if (folio_test_unevictable(folio))
545 folio_putback_lru(folio);
546 else
547 list_add(&folio->lru, &folio_list);
548 }
549 } else
550 folio_deactivate(folio);
551 }
552
553 if (start_pte) {
554 arch_leave_lazy_mmu_mode();
555 pte_unmap_unlock(start_pte, ptl);
556 }
557 if (pageout)
558 reclaim_pages(&folio_list);
559 cond_resched();
560
561 return 0;
562 }
563
564 static const struct mm_walk_ops cold_walk_ops = {
565 .pmd_entry = madvise_cold_or_pageout_pte_range,
566 .walk_lock = PGWALK_RDLOCK,
567 };
568
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)569 static void madvise_cold_page_range(struct mmu_gather *tlb,
570 struct vm_area_struct *vma,
571 unsigned long addr, unsigned long end)
572 {
573 struct madvise_walk_private walk_private = {
574 .pageout = false,
575 .tlb = tlb,
576 };
577
578 tlb_start_vma(tlb, vma);
579 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
580 tlb_end_vma(tlb, vma);
581 }
582
can_madv_lru_vma(struct vm_area_struct * vma)583 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
584 {
585 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
586 }
587
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)588 static long madvise_cold(struct vm_area_struct *vma,
589 struct vm_area_struct **prev,
590 unsigned long start_addr, unsigned long end_addr)
591 {
592 struct mm_struct *mm = vma->vm_mm;
593 struct mmu_gather tlb;
594
595 *prev = vma;
596 if (!can_madv_lru_vma(vma))
597 return -EINVAL;
598
599 lru_add_drain();
600 tlb_gather_mmu(&tlb, mm);
601 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
602 tlb_finish_mmu(&tlb);
603
604 return 0;
605 }
606
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)607 static void madvise_pageout_page_range(struct mmu_gather *tlb,
608 struct vm_area_struct *vma,
609 unsigned long addr, unsigned long end)
610 {
611 struct madvise_walk_private walk_private = {
612 .pageout = true,
613 .tlb = tlb,
614 };
615
616 tlb_start_vma(tlb, vma);
617 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
618 tlb_end_vma(tlb, vma);
619 }
620
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)621 static long madvise_pageout(struct vm_area_struct *vma,
622 struct vm_area_struct **prev,
623 unsigned long start_addr, unsigned long end_addr)
624 {
625 struct mm_struct *mm = vma->vm_mm;
626 struct mmu_gather tlb;
627
628 *prev = vma;
629 if (!can_madv_lru_vma(vma))
630 return -EINVAL;
631
632 /*
633 * If the VMA belongs to a private file mapping, there can be private
634 * dirty pages which can be paged out if even this process is neither
635 * owner nor write capable of the file. We allow private file mappings
636 * further to pageout dirty anon pages.
637 */
638 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
639 (vma->vm_flags & VM_MAYSHARE)))
640 return 0;
641
642 lru_add_drain();
643 tlb_gather_mmu(&tlb, mm);
644 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
645 tlb_finish_mmu(&tlb);
646
647 return 0;
648 }
649
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)650 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
651 unsigned long end, struct mm_walk *walk)
652
653 {
654 const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
655 struct mmu_gather *tlb = walk->private;
656 struct mm_struct *mm = tlb->mm;
657 struct vm_area_struct *vma = walk->vma;
658 spinlock_t *ptl;
659 pte_t *start_pte, *pte, ptent;
660 struct folio *folio;
661 int nr_swap = 0;
662 unsigned long next;
663 int nr, max_nr;
664
665 next = pmd_addr_end(addr, end);
666 if (pmd_trans_huge(*pmd))
667 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
668 return 0;
669
670 tlb_change_page_size(tlb, PAGE_SIZE);
671 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
672 if (!start_pte)
673 return 0;
674 flush_tlb_batched_pending(mm);
675 arch_enter_lazy_mmu_mode();
676 for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
677 nr = 1;
678 ptent = ptep_get(pte);
679
680 if (pte_none(ptent))
681 continue;
682 /*
683 * If the pte has swp_entry, just clear page table to
684 * prevent swap-in which is more expensive rather than
685 * (page allocation + zeroing).
686 */
687 if (!pte_present(ptent)) {
688 swp_entry_t entry;
689
690 entry = pte_to_swp_entry(ptent);
691 if (!non_swap_entry(entry)) {
692 max_nr = (end - addr) / PAGE_SIZE;
693 nr = swap_pte_batch(pte, max_nr, ptent);
694 nr_swap -= nr;
695 free_swap_and_cache_nr(entry, nr);
696 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
697 } else if (is_hwpoison_entry(entry) ||
698 is_poisoned_swp_entry(entry)) {
699 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
700 }
701 continue;
702 }
703
704 folio = vm_normal_folio(vma, addr, ptent);
705 if (!folio || folio_is_zone_device(folio))
706 continue;
707
708 /*
709 * If we encounter a large folio, only split it if it is not
710 * fully mapped within the range we are operating on. Otherwise
711 * leave it as is so that it can be marked as lazyfree. If we
712 * fail to split a folio, leave it in place and advance to the
713 * next pte in the range.
714 */
715 if (folio_test_large(folio)) {
716 bool any_young, any_dirty;
717
718 nr = madvise_folio_pte_batch(addr, end, folio, pte,
719 ptent, &any_young, &any_dirty);
720
721 if (nr < folio_nr_pages(folio)) {
722 int err;
723
724 if (folio_maybe_mapped_shared(folio))
725 continue;
726 if (!folio_trylock(folio))
727 continue;
728 folio_get(folio);
729 arch_leave_lazy_mmu_mode();
730 pte_unmap_unlock(start_pte, ptl);
731 start_pte = NULL;
732 err = split_folio(folio);
733 folio_unlock(folio);
734 folio_put(folio);
735 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
736 start_pte = pte;
737 if (!start_pte)
738 break;
739 arch_enter_lazy_mmu_mode();
740 if (!err)
741 nr = 0;
742 continue;
743 }
744
745 if (any_young)
746 ptent = pte_mkyoung(ptent);
747 if (any_dirty)
748 ptent = pte_mkdirty(ptent);
749 }
750
751 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
752 if (!folio_trylock(folio))
753 continue;
754 /*
755 * If we have a large folio at this point, we know it is
756 * fully mapped so if its mapcount is the same as its
757 * number of pages, it must be exclusive.
758 */
759 if (folio_mapcount(folio) != folio_nr_pages(folio)) {
760 folio_unlock(folio);
761 continue;
762 }
763
764 if (folio_test_swapcache(folio) &&
765 !folio_free_swap(folio)) {
766 folio_unlock(folio);
767 continue;
768 }
769
770 folio_clear_dirty(folio);
771 folio_unlock(folio);
772 }
773
774 if (pte_young(ptent) || pte_dirty(ptent)) {
775 clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
776 tlb_remove_tlb_entries(tlb, pte, nr, addr);
777 }
778 folio_mark_lazyfree(folio);
779 }
780
781 if (nr_swap)
782 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
783 if (start_pte) {
784 arch_leave_lazy_mmu_mode();
785 pte_unmap_unlock(start_pte, ptl);
786 }
787 cond_resched();
788
789 return 0;
790 }
791
792 static const struct mm_walk_ops madvise_free_walk_ops = {
793 .pmd_entry = madvise_free_pte_range,
794 .walk_lock = PGWALK_RDLOCK,
795 };
796
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)797 static int madvise_free_single_vma(struct vm_area_struct *vma,
798 unsigned long start_addr, unsigned long end_addr)
799 {
800 struct mm_struct *mm = vma->vm_mm;
801 struct mmu_notifier_range range;
802 struct mmu_gather tlb;
803
804 /* MADV_FREE works for only anon vma at the moment */
805 if (!vma_is_anonymous(vma))
806 return -EINVAL;
807
808 range.start = max(vma->vm_start, start_addr);
809 if (range.start >= vma->vm_end)
810 return -EINVAL;
811 range.end = min(vma->vm_end, end_addr);
812 if (range.end <= vma->vm_start)
813 return -EINVAL;
814 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
815 range.start, range.end);
816
817 lru_add_drain();
818 tlb_gather_mmu(&tlb, mm);
819 update_hiwater_rss(mm);
820
821 mmu_notifier_invalidate_range_start(&range);
822 tlb_start_vma(&tlb, vma);
823 walk_page_range(vma->vm_mm, range.start, range.end,
824 &madvise_free_walk_ops, &tlb);
825 tlb_end_vma(&tlb, vma);
826 mmu_notifier_invalidate_range_end(&range);
827 tlb_finish_mmu(&tlb);
828
829 return 0;
830 }
831
832 /*
833 * Application no longer needs these pages. If the pages are dirty,
834 * it's OK to just throw them away. The app will be more careful about
835 * data it wants to keep. Be sure to free swap resources too. The
836 * zap_page_range_single call sets things up for shrink_active_list to actually
837 * free these pages later if no one else has touched them in the meantime,
838 * although we could add these pages to a global reuse list for
839 * shrink_active_list to pick up before reclaiming other pages.
840 *
841 * NB: This interface discards data rather than pushes it out to swap,
842 * as some implementations do. This has performance implications for
843 * applications like large transactional databases which want to discard
844 * pages in anonymous maps after committing to backing store the data
845 * that was kept in them. There is no reason to write this data out to
846 * the swap area if the application is discarding it.
847 *
848 * An interface that causes the system to free clean pages and flush
849 * dirty pages is already available as msync(MS_INVALIDATE).
850 */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)851 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
852 unsigned long start, unsigned long end)
853 {
854 struct zap_details details = {
855 .reclaim_pt = true,
856 .even_cows = true,
857 };
858
859 zap_page_range_single(vma, start, end - start, &details);
860 return 0;
861 }
862
madvise_dontneed_free_valid_vma(struct vm_area_struct * vma,unsigned long start,unsigned long * end,int behavior)863 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
864 unsigned long start,
865 unsigned long *end,
866 int behavior)
867 {
868 if (!is_vm_hugetlb_page(vma)) {
869 unsigned int forbidden = VM_PFNMAP;
870
871 if (behavior != MADV_DONTNEED_LOCKED)
872 forbidden |= VM_LOCKED;
873
874 return !(vma->vm_flags & forbidden);
875 }
876
877 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
878 return false;
879 if (start & ~huge_page_mask(hstate_vma(vma)))
880 return false;
881
882 /*
883 * Madvise callers expect the length to be rounded up to PAGE_SIZE
884 * boundaries, and may be unaware that this VMA uses huge pages.
885 * Avoid unexpected data loss by rounding down the number of
886 * huge pages freed.
887 */
888 *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
889
890 return true;
891 }
892
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)893 static long madvise_dontneed_free(struct vm_area_struct *vma,
894 struct vm_area_struct **prev,
895 unsigned long start, unsigned long end,
896 int behavior)
897 {
898 struct mm_struct *mm = vma->vm_mm;
899
900 *prev = vma;
901 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
902 return -EINVAL;
903
904 if (start == end)
905 return 0;
906
907 if (!userfaultfd_remove(vma, start, end)) {
908 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
909
910 mmap_read_lock(mm);
911 vma = vma_lookup(mm, start);
912 if (!vma)
913 return -ENOMEM;
914 /*
915 * Potential end adjustment for hugetlb vma is OK as
916 * the check below keeps end within vma.
917 */
918 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
919 behavior))
920 return -EINVAL;
921 if (end > vma->vm_end) {
922 /*
923 * Don't fail if end > vma->vm_end. If the old
924 * vma was split while the mmap_lock was
925 * released the effect of the concurrent
926 * operation may not cause madvise() to
927 * have an undefined result. There may be an
928 * adjacent next vma that we'll walk
929 * next. userfaultfd_remove() will generate an
930 * UFFD_EVENT_REMOVE repetition on the
931 * end-vma->vm_end range, but the manager can
932 * handle a repetition fine.
933 */
934 end = vma->vm_end;
935 }
936 /*
937 * If the memory region between start and end was
938 * originally backed by 4kB pages and then remapped to
939 * be backed by hugepages while mmap_lock was dropped,
940 * the adjustment for hugetlb vma above may have rounded
941 * end down to the start address.
942 */
943 if (start == end)
944 return 0;
945 VM_WARN_ON(start > end);
946 }
947
948 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
949 return madvise_dontneed_single_vma(vma, start, end);
950 else if (behavior == MADV_FREE)
951 return madvise_free_single_vma(vma, start, end);
952 else
953 return -EINVAL;
954 }
955
madvise_populate(struct mm_struct * mm,unsigned long start,unsigned long end,int behavior)956 static long madvise_populate(struct mm_struct *mm, unsigned long start,
957 unsigned long end, int behavior)
958 {
959 const bool write = behavior == MADV_POPULATE_WRITE;
960 int locked = 1;
961 long pages;
962
963 while (start < end) {
964 /* Populate (prefault) page tables readable/writable. */
965 pages = faultin_page_range(mm, start, end, write, &locked);
966 if (!locked) {
967 mmap_read_lock(mm);
968 locked = 1;
969 }
970 if (pages < 0) {
971 switch (pages) {
972 case -EINTR:
973 return -EINTR;
974 case -EINVAL: /* Incompatible mappings / permissions. */
975 return -EINVAL;
976 case -EHWPOISON:
977 return -EHWPOISON;
978 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
979 return -EFAULT;
980 default:
981 pr_warn_once("%s: unhandled return value: %ld\n",
982 __func__, pages);
983 fallthrough;
984 case -ENOMEM: /* No VMA or out of memory. */
985 return -ENOMEM;
986 }
987 }
988 start += pages * PAGE_SIZE;
989 }
990 return 0;
991 }
992
993 /*
994 * Application wants to free up the pages and associated backing store.
995 * This is effectively punching a hole into the middle of a file.
996 */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)997 static long madvise_remove(struct vm_area_struct *vma,
998 struct vm_area_struct **prev,
999 unsigned long start, unsigned long end)
1000 {
1001 loff_t offset;
1002 int error;
1003 struct file *f;
1004 struct mm_struct *mm = vma->vm_mm;
1005
1006 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
1007
1008 if (vma->vm_flags & VM_LOCKED)
1009 return -EINVAL;
1010
1011 f = vma->vm_file;
1012
1013 if (!f || !f->f_mapping || !f->f_mapping->host) {
1014 return -EINVAL;
1015 }
1016
1017 if (!vma_is_shared_maywrite(vma))
1018 return -EACCES;
1019
1020 offset = (loff_t)(start - vma->vm_start)
1021 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1022
1023 /*
1024 * Filesystem's fallocate may need to take i_rwsem. We need to
1025 * explicitly grab a reference because the vma (and hence the
1026 * vma's reference to the file) can go away as soon as we drop
1027 * mmap_lock.
1028 */
1029 get_file(f);
1030 if (userfaultfd_remove(vma, start, end)) {
1031 /* mmap_lock was not released by userfaultfd_remove() */
1032 mmap_read_unlock(mm);
1033 }
1034 error = vfs_fallocate(f,
1035 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1036 offset, end - start);
1037 fput(f);
1038 mmap_read_lock(mm);
1039 return error;
1040 }
1041
is_valid_guard_vma(struct vm_area_struct * vma,bool allow_locked)1042 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1043 {
1044 vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1045
1046 /*
1047 * A user could lock after setting a guard range but that's fine, as
1048 * they'd not be able to fault in. The issue arises when we try to zap
1049 * existing locked VMAs. We don't want to do that.
1050 */
1051 if (!allow_locked)
1052 disallowed |= VM_LOCKED;
1053
1054 return !(vma->vm_flags & disallowed);
1055 }
1056
is_guard_pte_marker(pte_t ptent)1057 static bool is_guard_pte_marker(pte_t ptent)
1058 {
1059 return is_pte_marker(ptent) &&
1060 is_guard_swp_entry(pte_to_swp_entry(ptent));
1061 }
1062
guard_install_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1063 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1064 unsigned long next, struct mm_walk *walk)
1065 {
1066 pud_t pudval = pudp_get(pud);
1067
1068 /* If huge return >0 so we abort the operation + zap. */
1069 return pud_trans_huge(pudval) || pud_devmap(pudval);
1070 }
1071
guard_install_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1072 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1073 unsigned long next, struct mm_walk *walk)
1074 {
1075 pmd_t pmdval = pmdp_get(pmd);
1076
1077 /* If huge return >0 so we abort the operation + zap. */
1078 return pmd_trans_huge(pmdval) || pmd_devmap(pmdval);
1079 }
1080
guard_install_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1081 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1082 unsigned long next, struct mm_walk *walk)
1083 {
1084 pte_t pteval = ptep_get(pte);
1085 unsigned long *nr_pages = (unsigned long *)walk->private;
1086
1087 /* If there is already a guard page marker, we have nothing to do. */
1088 if (is_guard_pte_marker(pteval)) {
1089 (*nr_pages)++;
1090
1091 return 0;
1092 }
1093
1094 /* If populated return >0 so we abort the operation + zap. */
1095 return 1;
1096 }
1097
guard_install_set_pte(unsigned long addr,unsigned long next,pte_t * ptep,struct mm_walk * walk)1098 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1099 pte_t *ptep, struct mm_walk *walk)
1100 {
1101 unsigned long *nr_pages = (unsigned long *)walk->private;
1102
1103 /* Simply install a PTE marker, this causes segfault on access. */
1104 *ptep = make_pte_marker(PTE_MARKER_GUARD);
1105 (*nr_pages)++;
1106
1107 return 0;
1108 }
1109
1110 static const struct mm_walk_ops guard_install_walk_ops = {
1111 .pud_entry = guard_install_pud_entry,
1112 .pmd_entry = guard_install_pmd_entry,
1113 .pte_entry = guard_install_pte_entry,
1114 .install_pte = guard_install_set_pte,
1115 .walk_lock = PGWALK_RDLOCK,
1116 };
1117
madvise_guard_install(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)1118 static long madvise_guard_install(struct vm_area_struct *vma,
1119 struct vm_area_struct **prev,
1120 unsigned long start, unsigned long end)
1121 {
1122 long err;
1123 int i;
1124
1125 *prev = vma;
1126 if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1127 return -EINVAL;
1128
1129 /*
1130 * If we install guard markers, then the range is no longer
1131 * empty from a page table perspective and therefore it's
1132 * appropriate to have an anon_vma.
1133 *
1134 * This ensures that on fork, we copy page tables correctly.
1135 */
1136 err = anon_vma_prepare(vma);
1137 if (err)
1138 return err;
1139
1140 /*
1141 * Optimistically try to install the guard marker pages first. If any
1142 * non-guard pages are encountered, give up and zap the range before
1143 * trying again.
1144 *
1145 * We try a few times before giving up and releasing back to userland to
1146 * loop around, releasing locks in the process to avoid contention. This
1147 * would only happen if there was a great many racing page faults.
1148 *
1149 * In most cases we should simply install the guard markers immediately
1150 * with no zap or looping.
1151 */
1152 for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1153 unsigned long nr_pages = 0;
1154
1155 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1156 err = walk_page_range_mm(vma->vm_mm, start, end,
1157 &guard_install_walk_ops, &nr_pages);
1158 if (err < 0)
1159 return err;
1160
1161 if (err == 0) {
1162 unsigned long nr_expected_pages = PHYS_PFN(end - start);
1163
1164 VM_WARN_ON(nr_pages != nr_expected_pages);
1165 return 0;
1166 }
1167
1168 /*
1169 * OK some of the range have non-guard pages mapped, zap
1170 * them. This leaves existing guard pages in place.
1171 */
1172 zap_page_range_single(vma, start, end - start, NULL);
1173 }
1174
1175 /*
1176 * We were unable to install the guard pages due to being raced by page
1177 * faults. This should not happen ordinarily. We return to userspace and
1178 * immediately retry, relieving lock contention.
1179 */
1180 return restart_syscall();
1181 }
1182
guard_remove_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1183 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1184 unsigned long next, struct mm_walk *walk)
1185 {
1186 pud_t pudval = pudp_get(pud);
1187
1188 /* If huge, cannot have guard pages present, so no-op - skip. */
1189 if (pud_trans_huge(pudval) || pud_devmap(pudval))
1190 walk->action = ACTION_CONTINUE;
1191
1192 return 0;
1193 }
1194
guard_remove_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1195 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1196 unsigned long next, struct mm_walk *walk)
1197 {
1198 pmd_t pmdval = pmdp_get(pmd);
1199
1200 /* If huge, cannot have guard pages present, so no-op - skip. */
1201 if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
1202 walk->action = ACTION_CONTINUE;
1203
1204 return 0;
1205 }
1206
guard_remove_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1207 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1208 unsigned long next, struct mm_walk *walk)
1209 {
1210 pte_t ptent = ptep_get(pte);
1211
1212 if (is_guard_pte_marker(ptent)) {
1213 /* Simply clear the PTE marker. */
1214 pte_clear_not_present_full(walk->mm, addr, pte, false);
1215 update_mmu_cache(walk->vma, addr, pte);
1216 }
1217
1218 return 0;
1219 }
1220
1221 static const struct mm_walk_ops guard_remove_walk_ops = {
1222 .pud_entry = guard_remove_pud_entry,
1223 .pmd_entry = guard_remove_pmd_entry,
1224 .pte_entry = guard_remove_pte_entry,
1225 .walk_lock = PGWALK_RDLOCK,
1226 };
1227
madvise_guard_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)1228 static long madvise_guard_remove(struct vm_area_struct *vma,
1229 struct vm_area_struct **prev,
1230 unsigned long start, unsigned long end)
1231 {
1232 *prev = vma;
1233 /*
1234 * We're ok with removing guards in mlock()'d ranges, as this is a
1235 * non-destructive action.
1236 */
1237 if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1238 return -EINVAL;
1239
1240 return walk_page_range(vma->vm_mm, start, end,
1241 &guard_remove_walk_ops, NULL);
1242 }
1243
1244 /*
1245 * Apply an madvise behavior to a region of a vma. madvise_update_vma
1246 * will handle splitting a vm area into separate areas, each area with its own
1247 * behavior.
1248 */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)1249 static int madvise_vma_behavior(struct vm_area_struct *vma,
1250 struct vm_area_struct **prev,
1251 unsigned long start, unsigned long end,
1252 unsigned long behavior)
1253 {
1254 int error;
1255 struct anon_vma_name *anon_name;
1256 unsigned long new_flags = vma->vm_flags;
1257
1258 if (unlikely(!can_modify_vma_madv(vma, behavior)))
1259 return -EPERM;
1260
1261 switch (behavior) {
1262 case MADV_REMOVE:
1263 return madvise_remove(vma, prev, start, end);
1264 case MADV_WILLNEED:
1265 return madvise_willneed(vma, prev, start, end);
1266 case MADV_COLD:
1267 return madvise_cold(vma, prev, start, end);
1268 case MADV_PAGEOUT:
1269 return madvise_pageout(vma, prev, start, end);
1270 case MADV_FREE:
1271 case MADV_DONTNEED:
1272 case MADV_DONTNEED_LOCKED:
1273 return madvise_dontneed_free(vma, prev, start, end, behavior);
1274 case MADV_NORMAL:
1275 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1276 break;
1277 case MADV_SEQUENTIAL:
1278 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1279 break;
1280 case MADV_RANDOM:
1281 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1282 break;
1283 case MADV_DONTFORK:
1284 new_flags |= VM_DONTCOPY;
1285 break;
1286 case MADV_DOFORK:
1287 if (vma->vm_flags & VM_IO)
1288 return -EINVAL;
1289 new_flags &= ~VM_DONTCOPY;
1290 break;
1291 case MADV_WIPEONFORK:
1292 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1293 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1294 return -EINVAL;
1295 new_flags |= VM_WIPEONFORK;
1296 break;
1297 case MADV_KEEPONFORK:
1298 if (vma->vm_flags & VM_DROPPABLE)
1299 return -EINVAL;
1300 new_flags &= ~VM_WIPEONFORK;
1301 break;
1302 case MADV_DONTDUMP:
1303 new_flags |= VM_DONTDUMP;
1304 break;
1305 case MADV_DODUMP:
1306 if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
1307 (vma->vm_flags & VM_DROPPABLE))
1308 return -EINVAL;
1309 new_flags &= ~VM_DONTDUMP;
1310 break;
1311 case MADV_MERGEABLE:
1312 case MADV_UNMERGEABLE:
1313 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1314 if (error)
1315 goto out;
1316 break;
1317 case MADV_HUGEPAGE:
1318 case MADV_NOHUGEPAGE:
1319 error = hugepage_madvise(vma, &new_flags, behavior);
1320 if (error)
1321 goto out;
1322 break;
1323 case MADV_COLLAPSE:
1324 return madvise_collapse(vma, prev, start, end);
1325 case MADV_GUARD_INSTALL:
1326 return madvise_guard_install(vma, prev, start, end);
1327 case MADV_GUARD_REMOVE:
1328 return madvise_guard_remove(vma, prev, start, end);
1329 }
1330
1331 anon_name = anon_vma_name(vma);
1332 anon_vma_name_get(anon_name);
1333 error = madvise_update_vma(vma, prev, start, end, new_flags,
1334 anon_name);
1335 anon_vma_name_put(anon_name);
1336
1337 out:
1338 /*
1339 * madvise() returns EAGAIN if kernel resources, such as
1340 * slab, are temporarily unavailable.
1341 */
1342 if (error == -ENOMEM)
1343 error = -EAGAIN;
1344 return error;
1345 }
1346
1347 #ifdef CONFIG_MEMORY_FAILURE
1348 /*
1349 * Error injection support for memory error handling.
1350 */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1351 static int madvise_inject_error(int behavior,
1352 unsigned long start, unsigned long end)
1353 {
1354 unsigned long size;
1355
1356 if (!capable(CAP_SYS_ADMIN))
1357 return -EPERM;
1358
1359
1360 for (; start < end; start += size) {
1361 unsigned long pfn;
1362 struct page *page;
1363 int ret;
1364
1365 ret = get_user_pages_fast(start, 1, 0, &page);
1366 if (ret != 1)
1367 return ret;
1368 pfn = page_to_pfn(page);
1369
1370 /*
1371 * When soft offlining hugepages, after migrating the page
1372 * we dissolve it, therefore in the second loop "page" will
1373 * no longer be a compound page.
1374 */
1375 size = page_size(compound_head(page));
1376
1377 if (behavior == MADV_SOFT_OFFLINE) {
1378 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1379 pfn, start);
1380 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1381 } else {
1382 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1383 pfn, start);
1384 ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1385 if (ret == -EOPNOTSUPP)
1386 ret = 0;
1387 }
1388
1389 if (ret)
1390 return ret;
1391 }
1392
1393 return 0;
1394 }
1395
is_memory_failure(int behavior)1396 static bool is_memory_failure(int behavior)
1397 {
1398 switch (behavior) {
1399 case MADV_HWPOISON:
1400 case MADV_SOFT_OFFLINE:
1401 return true;
1402 default:
1403 return false;
1404 }
1405 }
1406
1407 #else
1408
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1409 static int madvise_inject_error(int behavior,
1410 unsigned long start, unsigned long end)
1411 {
1412 return 0;
1413 }
1414
is_memory_failure(int behavior)1415 static bool is_memory_failure(int behavior)
1416 {
1417 return false;
1418 }
1419
1420 #endif /* CONFIG_MEMORY_FAILURE */
1421
1422 static bool
madvise_behavior_valid(int behavior)1423 madvise_behavior_valid(int behavior)
1424 {
1425 switch (behavior) {
1426 case MADV_DOFORK:
1427 case MADV_DONTFORK:
1428 case MADV_NORMAL:
1429 case MADV_SEQUENTIAL:
1430 case MADV_RANDOM:
1431 case MADV_REMOVE:
1432 case MADV_WILLNEED:
1433 case MADV_DONTNEED:
1434 case MADV_DONTNEED_LOCKED:
1435 case MADV_FREE:
1436 case MADV_COLD:
1437 case MADV_PAGEOUT:
1438 case MADV_POPULATE_READ:
1439 case MADV_POPULATE_WRITE:
1440 #ifdef CONFIG_KSM
1441 case MADV_MERGEABLE:
1442 case MADV_UNMERGEABLE:
1443 #endif
1444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1445 case MADV_HUGEPAGE:
1446 case MADV_NOHUGEPAGE:
1447 case MADV_COLLAPSE:
1448 #endif
1449 case MADV_DONTDUMP:
1450 case MADV_DODUMP:
1451 case MADV_WIPEONFORK:
1452 case MADV_KEEPONFORK:
1453 case MADV_GUARD_INSTALL:
1454 case MADV_GUARD_REMOVE:
1455 #ifdef CONFIG_MEMORY_FAILURE
1456 case MADV_SOFT_OFFLINE:
1457 case MADV_HWPOISON:
1458 #endif
1459 return true;
1460
1461 default:
1462 return false;
1463 }
1464 }
1465
1466 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
process_madvise_remote_valid(int behavior)1467 static bool process_madvise_remote_valid(int behavior)
1468 {
1469 switch (behavior) {
1470 case MADV_COLD:
1471 case MADV_PAGEOUT:
1472 case MADV_WILLNEED:
1473 case MADV_COLLAPSE:
1474 return true;
1475 default:
1476 return false;
1477 }
1478 }
1479
1480 /*
1481 * Walk the vmas in range [start,end), and call the visit function on each one.
1482 * The visit function will get start and end parameters that cover the overlap
1483 * between the current vma and the original range. Any unmapped regions in the
1484 * original range will result in this function returning -ENOMEM while still
1485 * calling the visit function on all of the existing vmas in the range.
1486 * Must be called with the mmap_lock held for reading or writing.
1487 */
1488 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1489 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1490 unsigned long end, unsigned long arg,
1491 int (*visit)(struct vm_area_struct *vma,
1492 struct vm_area_struct **prev, unsigned long start,
1493 unsigned long end, unsigned long arg))
1494 {
1495 struct vm_area_struct *vma;
1496 struct vm_area_struct *prev;
1497 unsigned long tmp;
1498 int unmapped_error = 0;
1499
1500 /*
1501 * If the interval [start,end) covers some unmapped address
1502 * ranges, just ignore them, but return -ENOMEM at the end.
1503 * - different from the way of handling in mlock etc.
1504 */
1505 vma = find_vma_prev(mm, start, &prev);
1506 if (vma && start > vma->vm_start)
1507 prev = vma;
1508
1509 for (;;) {
1510 int error;
1511
1512 /* Still start < end. */
1513 if (!vma)
1514 return -ENOMEM;
1515
1516 /* Here start < (end|vma->vm_end). */
1517 if (start < vma->vm_start) {
1518 unmapped_error = -ENOMEM;
1519 start = vma->vm_start;
1520 if (start >= end)
1521 break;
1522 }
1523
1524 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1525 tmp = vma->vm_end;
1526 if (end < tmp)
1527 tmp = end;
1528
1529 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1530 error = visit(vma, &prev, start, tmp, arg);
1531 if (error)
1532 return error;
1533 start = tmp;
1534 if (prev && start < prev->vm_end)
1535 start = prev->vm_end;
1536 if (start >= end)
1537 break;
1538 if (prev)
1539 vma = find_vma(mm, prev->vm_end);
1540 else /* madvise_remove dropped mmap_lock */
1541 vma = find_vma(mm, start);
1542 }
1543
1544 return unmapped_error;
1545 }
1546
1547 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long anon_name)1548 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1549 struct vm_area_struct **prev,
1550 unsigned long start, unsigned long end,
1551 unsigned long anon_name)
1552 {
1553 int error;
1554
1555 /* Only anonymous mappings can be named */
1556 if (vma->vm_file && !vma_is_anon_shmem(vma))
1557 return -EBADF;
1558
1559 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1560 (struct anon_vma_name *)anon_name);
1561
1562 /*
1563 * madvise() returns EAGAIN if kernel resources, such as
1564 * slab, are temporarily unavailable.
1565 */
1566 if (error == -ENOMEM)
1567 error = -EAGAIN;
1568 return error;
1569 }
1570
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1571 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1572 unsigned long len_in, struct anon_vma_name *anon_name)
1573 {
1574 unsigned long end;
1575 unsigned long len;
1576
1577 if (start & ~PAGE_MASK)
1578 return -EINVAL;
1579 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1580
1581 /* Check to see whether len was rounded up from small -ve to zero */
1582 if (len_in && !len)
1583 return -EINVAL;
1584
1585 end = start + len;
1586 if (end < start)
1587 return -EINVAL;
1588
1589 if (end == start)
1590 return 0;
1591
1592 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1593 madvise_vma_anon_name);
1594 }
1595 #endif /* CONFIG_ANON_VMA_NAME */
1596
madvise_lock(struct mm_struct * mm,int behavior)1597 static int madvise_lock(struct mm_struct *mm, int behavior)
1598 {
1599 if (is_memory_failure(behavior))
1600 return 0;
1601
1602 if (madvise_need_mmap_write(behavior)) {
1603 if (mmap_write_lock_killable(mm))
1604 return -EINTR;
1605 } else {
1606 mmap_read_lock(mm);
1607 }
1608 return 0;
1609 }
1610
madvise_unlock(struct mm_struct * mm,int behavior)1611 static void madvise_unlock(struct mm_struct *mm, int behavior)
1612 {
1613 if (is_memory_failure(behavior))
1614 return;
1615
1616 if (madvise_need_mmap_write(behavior))
1617 mmap_write_unlock(mm);
1618 else
1619 mmap_read_unlock(mm);
1620 }
1621
is_valid_madvise(unsigned long start,size_t len_in,int behavior)1622 static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior)
1623 {
1624 size_t len;
1625
1626 if (!madvise_behavior_valid(behavior))
1627 return false;
1628
1629 if (!PAGE_ALIGNED(start))
1630 return false;
1631 len = PAGE_ALIGN(len_in);
1632
1633 /* Check to see whether len was rounded up from small -ve to zero */
1634 if (len_in && !len)
1635 return false;
1636
1637 if (start + len < start)
1638 return false;
1639
1640 return true;
1641 }
1642
1643 /*
1644 * madvise_should_skip() - Return if the request is invalid or nothing.
1645 * @start: Start address of madvise-requested address range.
1646 * @len_in: Length of madvise-requested address range.
1647 * @behavior: Requested madvise behavor.
1648 * @err: Pointer to store an error code from the check.
1649 *
1650 * If the specified behaviour is invalid or nothing would occur, we skip the
1651 * operation. This function returns true in the cases, otherwise false. In
1652 * the former case we store an error on @err.
1653 */
madvise_should_skip(unsigned long start,size_t len_in,int behavior,int * err)1654 static bool madvise_should_skip(unsigned long start, size_t len_in,
1655 int behavior, int *err)
1656 {
1657 if (!is_valid_madvise(start, len_in, behavior)) {
1658 *err = -EINVAL;
1659 return true;
1660 }
1661 if (start + PAGE_ALIGN(len_in) == start) {
1662 *err = 0;
1663 return true;
1664 }
1665 return false;
1666 }
1667
is_madvise_populate(int behavior)1668 static bool is_madvise_populate(int behavior)
1669 {
1670 switch (behavior) {
1671 case MADV_POPULATE_READ:
1672 case MADV_POPULATE_WRITE:
1673 return true;
1674 default:
1675 return false;
1676 }
1677 }
1678
madvise_do_behavior(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1679 static int madvise_do_behavior(struct mm_struct *mm,
1680 unsigned long start, size_t len_in, int behavior)
1681 {
1682 struct blk_plug plug;
1683 unsigned long end;
1684 int error;
1685
1686 if (is_memory_failure(behavior))
1687 return madvise_inject_error(behavior, start, start + len_in);
1688 start = untagged_addr_remote(mm, start);
1689 end = start + PAGE_ALIGN(len_in);
1690
1691 blk_start_plug(&plug);
1692 if (is_madvise_populate(behavior))
1693 error = madvise_populate(mm, start, end, behavior);
1694 else
1695 error = madvise_walk_vmas(mm, start, end, behavior,
1696 madvise_vma_behavior);
1697 blk_finish_plug(&plug);
1698 return error;
1699 }
1700
1701 /*
1702 * The madvise(2) system call.
1703 *
1704 * Applications can use madvise() to advise the kernel how it should
1705 * handle paging I/O in this VM area. The idea is to help the kernel
1706 * use appropriate read-ahead and caching techniques. The information
1707 * provided is advisory only, and can be safely disregarded by the
1708 * kernel without affecting the correct operation of the application.
1709 *
1710 * behavior values:
1711 * MADV_NORMAL - the default behavior is to read clusters. This
1712 * results in some read-ahead and read-behind.
1713 * MADV_RANDOM - the system should read the minimum amount of data
1714 * on any access, since it is unlikely that the appli-
1715 * cation will need more than what it asks for.
1716 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1717 * once, so they can be aggressively read ahead, and
1718 * can be freed soon after they are accessed.
1719 * MADV_WILLNEED - the application is notifying the system to read
1720 * some pages ahead.
1721 * MADV_DONTNEED - the application is finished with the given range,
1722 * so the kernel can free resources associated with it.
1723 * MADV_FREE - the application marks pages in the given range as lazy free,
1724 * where actual purges are postponed until memory pressure happens.
1725 * MADV_REMOVE - the application wants to free up the given range of
1726 * pages and associated backing store.
1727 * MADV_DONTFORK - omit this area from child's address space when forking:
1728 * typically, to avoid COWing pages pinned by get_user_pages().
1729 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1730 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1731 * range after a fork.
1732 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1733 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1734 * were corrupted by unrecoverable hardware memory failure.
1735 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1736 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1737 * this area with pages of identical content from other such areas.
1738 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1739 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1740 * huge pages in the future. Existing pages might be coalesced and
1741 * new pages might be allocated as THP.
1742 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1743 * transparent huge pages so the existing pages will not be
1744 * coalesced into THP and new pages will not be allocated as THP.
1745 * MADV_COLLAPSE - synchronously coalesce pages into new THP.
1746 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1747 * from being included in its core dump.
1748 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1749 * MADV_COLD - the application is not expected to use this memory soon,
1750 * deactivate pages in this range so that they can be reclaimed
1751 * easily if memory pressure happens.
1752 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1753 * page out the pages in this range immediately.
1754 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1755 * triggering read faults if required
1756 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1757 * triggering write faults if required
1758 *
1759 * return values:
1760 * zero - success
1761 * -EINVAL - start + len < 0, start is not page-aligned,
1762 * "behavior" is not a valid value, or application
1763 * is attempting to release locked or shared pages,
1764 * or the specified address range includes file, Huge TLB,
1765 * MAP_SHARED or VMPFNMAP range.
1766 * -ENOMEM - addresses in the specified range are not currently
1767 * mapped, or are outside the AS of the process.
1768 * -EIO - an I/O error occurred while paging in data.
1769 * -EBADF - map exists, but area maps something that isn't a file.
1770 * -EAGAIN - a kernel resource was temporarily unavailable.
1771 * -EPERM - memory is sealed.
1772 */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1773 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1774 {
1775 int error;
1776
1777 if (madvise_should_skip(start, len_in, behavior, &error))
1778 return error;
1779 error = madvise_lock(mm, behavior);
1780 if (error)
1781 return error;
1782 error = madvise_do_behavior(mm, start, len_in, behavior);
1783 madvise_unlock(mm, behavior);
1784
1785 return error;
1786 }
1787
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1788 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1789 {
1790 return do_madvise(current->mm, start, len_in, behavior);
1791 }
1792
1793 /* Perform an madvise operation over a vector of addresses and lengths. */
vector_madvise(struct mm_struct * mm,struct iov_iter * iter,int behavior)1794 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
1795 int behavior)
1796 {
1797 ssize_t ret = 0;
1798 size_t total_len;
1799
1800 total_len = iov_iter_count(iter);
1801
1802 ret = madvise_lock(mm, behavior);
1803 if (ret)
1804 return ret;
1805
1806 while (iov_iter_count(iter)) {
1807 unsigned long start = (unsigned long)iter_iov_addr(iter);
1808 size_t len_in = iter_iov_len(iter);
1809 int error;
1810
1811 if (madvise_should_skip(start, len_in, behavior, &error))
1812 ret = error;
1813 else
1814 ret = madvise_do_behavior(mm, start, len_in, behavior);
1815 /*
1816 * An madvise operation is attempting to restart the syscall,
1817 * but we cannot proceed as it would not be correct to repeat
1818 * the operation in aggregate, and would be surprising to the
1819 * user.
1820 *
1821 * We drop and reacquire locks so it is safe to just loop and
1822 * try again. We check for fatal signals in case we need exit
1823 * early anyway.
1824 */
1825 if (ret == -ERESTARTNOINTR) {
1826 if (fatal_signal_pending(current)) {
1827 ret = -EINTR;
1828 break;
1829 }
1830
1831 /* Drop and reacquire lock to unwind race. */
1832 madvise_unlock(mm, behavior);
1833 madvise_lock(mm, behavior);
1834 continue;
1835 }
1836 if (ret < 0)
1837 break;
1838 iov_iter_advance(iter, iter_iov_len(iter));
1839 }
1840 madvise_unlock(mm, behavior);
1841
1842 ret = (total_len - iov_iter_count(iter)) ? : ret;
1843
1844 return ret;
1845 }
1846
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1847 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1848 size_t, vlen, int, behavior, unsigned int, flags)
1849 {
1850 ssize_t ret;
1851 struct iovec iovstack[UIO_FASTIOV];
1852 struct iovec *iov = iovstack;
1853 struct iov_iter iter;
1854 struct task_struct *task;
1855 struct mm_struct *mm;
1856 unsigned int f_flags;
1857
1858 if (flags != 0) {
1859 ret = -EINVAL;
1860 goto out;
1861 }
1862
1863 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1864 if (ret < 0)
1865 goto out;
1866
1867 task = pidfd_get_task(pidfd, &f_flags);
1868 if (IS_ERR(task)) {
1869 ret = PTR_ERR(task);
1870 goto free_iov;
1871 }
1872
1873 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1874 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1875 if (IS_ERR(mm)) {
1876 ret = PTR_ERR(mm);
1877 goto release_task;
1878 }
1879
1880 /*
1881 * We need only perform this check if we are attempting to manipulate a
1882 * remote process's address space.
1883 */
1884 if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
1885 ret = -EINVAL;
1886 goto release_mm;
1887 }
1888
1889 /*
1890 * Require CAP_SYS_NICE for influencing process performance. Note that
1891 * only non-destructive hints are currently supported for remote
1892 * processes.
1893 */
1894 if (mm != current->mm && !capable(CAP_SYS_NICE)) {
1895 ret = -EPERM;
1896 goto release_mm;
1897 }
1898
1899 ret = vector_madvise(mm, &iter, behavior);
1900
1901 release_mm:
1902 mmput(mm);
1903 release_task:
1904 put_task_struct(task);
1905 free_iov:
1906 kfree(iov);
1907 out:
1908 return ret;
1909 }
1910