1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 typedef u8 rmap_age_t;
60 
61 /**
62  * DOC: Overview
63  *
64  * A few notes about the KSM scanning process,
65  * to make it easier to understand the data structures below:
66  *
67  * In order to reduce excessive scanning, KSM sorts the memory pages by their
68  * contents into a data structure that holds pointers to the pages' locations.
69  *
70  * Since the contents of the pages may change at any moment, KSM cannot just
71  * insert the pages into a normal sorted tree and expect it to find anything.
72  * Therefore KSM uses two data structures - the stable and the unstable tree.
73  *
74  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75  * by their contents.  Because each such page is write-protected, searching on
76  * this tree is fully assured to be working (except when pages are unmapped),
77  * and therefore this tree is called the stable tree.
78  *
79  * The stable tree node includes information required for reverse
80  * mapping from a KSM page to virtual addresses that map this page.
81  *
82  * In order to avoid large latencies of the rmap walks on KSM pages,
83  * KSM maintains two types of nodes in the stable tree:
84  *
85  * * the regular nodes that keep the reverse mapping structures in a
86  *   linked list
87  * * the "chains" that link nodes ("dups") that represent the same
88  *   write protected memory content, but each "dup" corresponds to a
89  *   different KSM page copy of that content
90  *
91  * Internally, the regular nodes, "dups" and "chains" are represented
92  * using the same struct ksm_stable_node structure.
93  *
94  * In addition to the stable tree, KSM uses a second data structure called the
95  * unstable tree: this tree holds pointers to pages which have been found to
96  * be "unchanged for a period of time".  The unstable tree sorts these pages
97  * by their contents, but since they are not write-protected, KSM cannot rely
98  * upon the unstable tree to work correctly - the unstable tree is liable to
99  * be corrupted as its contents are modified, and so it is called unstable.
100  *
101  * KSM solves this problem by several techniques:
102  *
103  * 1) The unstable tree is flushed every time KSM completes scanning all
104  *    memory areas, and then the tree is rebuilt again from the beginning.
105  * 2) KSM will only insert into the unstable tree, pages whose hash value
106  *    has not changed since the previous scan of all memory areas.
107  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108  *    colors of the nodes and not on their contents, assuring that even when
109  *    the tree gets "corrupted" it won't get out of balance, so scanning time
110  *    remains the same (also, searching and inserting nodes in an rbtree uses
111  *    the same algorithm, so we have no overhead when we flush and rebuild).
112  * 4) KSM never flushes the stable tree, which means that even if it were to
113  *    take 10 attempts to find a page in the unstable tree, once it is found,
114  *    it is secured in the stable tree.  (When we scan a new page, we first
115  *    compare it against the stable tree, and then against the unstable tree.)
116  *
117  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118  * stable trees and multiple unstable trees: one of each for each NUMA node.
119  */
120 
121 /**
122  * struct ksm_mm_slot - ksm information per mm that is being scanned
123  * @slot: hash lookup from mm to mm_slot
124  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125  */
126 struct ksm_mm_slot {
127 	struct mm_slot slot;
128 	struct ksm_rmap_item *rmap_list;
129 };
130 
131 /**
132  * struct ksm_scan - cursor for scanning
133  * @mm_slot: the current mm_slot we are scanning
134  * @address: the next address inside that to be scanned
135  * @rmap_list: link to the next rmap to be scanned in the rmap_list
136  * @seqnr: count of completed full scans (needed when removing unstable node)
137  *
138  * There is only the one ksm_scan instance of this cursor structure.
139  */
140 struct ksm_scan {
141 	struct ksm_mm_slot *mm_slot;
142 	unsigned long address;
143 	struct ksm_rmap_item **rmap_list;
144 	unsigned long seqnr;
145 };
146 
147 /**
148  * struct ksm_stable_node - node of the stable rbtree
149  * @node: rb node of this ksm page in the stable tree
150  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152  * @list: linked into migrate_nodes, pending placement in the proper node tree
153  * @hlist: hlist head of rmap_items using this ksm page
154  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155  * @chain_prune_time: time of the last full garbage collection
156  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158  */
159 struct ksm_stable_node {
160 	union {
161 		struct rb_node node;	/* when node of stable tree */
162 		struct {		/* when listed for migration */
163 			struct list_head *head;
164 			struct {
165 				struct hlist_node hlist_dup;
166 				struct list_head list;
167 			};
168 		};
169 	};
170 	struct hlist_head hlist;
171 	union {
172 		unsigned long kpfn;
173 		unsigned long chain_prune_time;
174 	};
175 	/*
176 	 * STABLE_NODE_CHAIN can be any negative number in
177 	 * rmap_hlist_len negative range, but better not -1 to be able
178 	 * to reliably detect underflows.
179 	 */
180 #define STABLE_NODE_CHAIN -1024
181 	int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183 	int nid;
184 #endif
185 };
186 
187 /**
188  * struct ksm_rmap_item - reverse mapping item for virtual addresses
189  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191  * @nid: NUMA node id of unstable tree in which linked (may not match page)
192  * @mm: the memory structure this rmap_item is pointing into
193  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194  * @oldchecksum: previous checksum of the page at that virtual address
195  * @node: rb node of this rmap_item in the unstable tree
196  * @head: pointer to stable_node heading this list in the stable tree
197  * @hlist: link into hlist of rmap_items hanging off that stable_node
198  * @age: number of scan iterations since creation
199  * @remaining_skips: how many scans to skip
200  */
201 struct ksm_rmap_item {
202 	struct ksm_rmap_item *rmap_list;
203 	union {
204 		struct anon_vma *anon_vma;	/* when stable */
205 #ifdef CONFIG_NUMA
206 		int nid;		/* when node of unstable tree */
207 #endif
208 	};
209 	struct mm_struct *mm;
210 	unsigned long address;		/* + low bits used for flags below */
211 	unsigned int oldchecksum;	/* when unstable */
212 	rmap_age_t age;
213 	rmap_age_t remaining_skips;
214 	union {
215 		struct rb_node node;	/* when node of unstable tree */
216 		struct {		/* when listed from stable tree */
217 			struct ksm_stable_node *head;
218 			struct hlist_node hlist;
219 		};
220 	};
221 };
222 
223 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
225 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
226 
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232 
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236 
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239 
240 static struct ksm_mm_slot ksm_mm_head = {
241 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244 	.mm_slot = &ksm_mm_head,
245 };
246 
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250 
251 /* Default number of pages to scan per batch */
252 #define DEFAULT_PAGES_TO_SCAN 100
253 
254 /* The number of pages scanned */
255 static unsigned long ksm_pages_scanned;
256 
257 /* The number of nodes in the stable tree */
258 static unsigned long ksm_pages_shared;
259 
260 /* The number of page slots additionally sharing those nodes */
261 static unsigned long ksm_pages_sharing;
262 
263 /* The number of nodes in the unstable tree */
264 static unsigned long ksm_pages_unshared;
265 
266 /* The number of rmap_items in use: to calculate pages_volatile */
267 static unsigned long ksm_rmap_items;
268 
269 /* The number of stable_node chains */
270 static unsigned long ksm_stable_node_chains;
271 
272 /* The number of stable_node dups linked to the stable_node chains */
273 static unsigned long ksm_stable_node_dups;
274 
275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277 
278 /* Maximum number of page slots sharing a stable node */
279 static int ksm_max_page_sharing = 256;
280 
281 /* Number of pages ksmd should scan in one batch */
282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283 
284 /* Milliseconds ksmd should sleep between batches */
285 static unsigned int ksm_thread_sleep_millisecs = 20;
286 
287 /* Checksum of an empty (zeroed) page */
288 static unsigned int zero_checksum __read_mostly;
289 
290 /* Whether to merge empty (zeroed) pages with actual zero pages */
291 static bool ksm_use_zero_pages __read_mostly;
292 
293 /* Skip pages that couldn't be de-duplicated previously */
294 /* Default to true at least temporarily, for testing */
295 static bool ksm_smart_scan = true;
296 
297 /* The number of zero pages which is placed by KSM */
298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299 
300 /* The number of pages that have been skipped due to "smart scanning" */
301 static unsigned long ksm_pages_skipped;
302 
303 /* Don't scan more than max pages per batch. */
304 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305 
306 /* Min CPU for scanning pages per scan */
307 #define KSM_ADVISOR_MIN_CPU 10
308 
309 /* Max CPU for scanning pages per scan */
310 static unsigned int ksm_advisor_max_cpu =  70;
311 
312 /* Target scan time in seconds to analyze all KSM candidate pages. */
313 static unsigned long ksm_advisor_target_scan_time = 200;
314 
315 /* Exponentially weighted moving average. */
316 #define EWMA_WEIGHT 30
317 
318 /**
319  * struct advisor_ctx - metadata for KSM advisor
320  * @start_scan: start time of the current scan
321  * @scan_time: scan time of previous scan
322  * @change: change in percent to pages_to_scan parameter
323  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324  */
325 struct advisor_ctx {
326 	ktime_t start_scan;
327 	unsigned long scan_time;
328 	unsigned long change;
329 	unsigned long long cpu_time;
330 };
331 static struct advisor_ctx advisor_ctx;
332 
333 /* Define different advisor's */
334 enum ksm_advisor_type {
335 	KSM_ADVISOR_NONE,
336 	KSM_ADVISOR_SCAN_TIME,
337 };
338 static enum ksm_advisor_type ksm_advisor;
339 
340 #ifdef CONFIG_SYSFS
341 /*
342  * Only called through the sysfs control interface:
343  */
344 
345 /* At least scan this many pages per batch. */
346 static unsigned long ksm_advisor_min_pages_to_scan = 500;
347 
set_advisor_defaults(void)348 static void set_advisor_defaults(void)
349 {
350 	if (ksm_advisor == KSM_ADVISOR_NONE) {
351 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353 		advisor_ctx = (const struct advisor_ctx){ 0 };
354 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355 	}
356 }
357 #endif /* CONFIG_SYSFS */
358 
advisor_start_scan(void)359 static inline void advisor_start_scan(void)
360 {
361 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362 		advisor_ctx.start_scan = ktime_get();
363 }
364 
365 /*
366  * Use previous scan time if available, otherwise use current scan time as an
367  * approximation for the previous scan time.
368  */
prev_scan_time(struct advisor_ctx * ctx,unsigned long scan_time)369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370 					   unsigned long scan_time)
371 {
372 	return ctx->scan_time ? ctx->scan_time : scan_time;
373 }
374 
375 /* Calculate exponential weighted moving average */
ewma(unsigned long prev,unsigned long curr)376 static unsigned long ewma(unsigned long prev, unsigned long curr)
377 {
378 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379 }
380 
381 /*
382  * The scan time advisor is based on the current scan rate and the target
383  * scan rate.
384  *
385  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386  *
387  * To avoid perturbations it calculates a change factor of previous changes.
388  * A new change factor is calculated for each iteration and it uses an
389  * exponentially weighted moving average. The new pages_to_scan value is
390  * multiplied with that change factor:
391  *
392  *      new_pages_to_scan *= change facor
393  *
394  * The new_pages_to_scan value is limited by the cpu min and max values. It
395  * calculates the cpu percent for the last scan and calculates the new
396  * estimated cpu percent cost for the next scan. That value is capped by the
397  * cpu min and max setting.
398  *
399  * In addition the new pages_to_scan value is capped by the max and min
400  * limits.
401  */
scan_time_advisor(void)402 static void scan_time_advisor(void)
403 {
404 	unsigned int cpu_percent;
405 	unsigned long cpu_time;
406 	unsigned long cpu_time_diff;
407 	unsigned long cpu_time_diff_ms;
408 	unsigned long pages;
409 	unsigned long per_page_cost;
410 	unsigned long factor;
411 	unsigned long change;
412 	unsigned long last_scan_time;
413 	unsigned long scan_time;
414 
415 	/* Convert scan time to seconds */
416 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417 			    MSEC_PER_SEC);
418 	scan_time = scan_time ? scan_time : 1;
419 
420 	/* Calculate CPU consumption of ksmd background thread */
421 	cpu_time = task_sched_runtime(current);
422 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424 
425 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426 	cpu_percent = cpu_percent ? cpu_percent : 1;
427 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428 
429 	/* Calculate scan time as percentage of target scan time */
430 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
431 	factor = factor ? factor : 1;
432 
433 	/*
434 	 * Calculate scan time as percentage of last scan time and use
435 	 * exponentially weighted average to smooth it
436 	 */
437 	change = scan_time * 100 / last_scan_time;
438 	change = change ? change : 1;
439 	change = ewma(advisor_ctx.change, change);
440 
441 	/* Calculate new scan rate based on target scan rate. */
442 	pages = ksm_thread_pages_to_scan * 100 / factor;
443 	/* Update pages_to_scan by weighted change percentage. */
444 	pages = pages * change / 100;
445 
446 	/* Cap new pages_to_scan value */
447 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448 	per_page_cost = per_page_cost ? per_page_cost : 1;
449 
450 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452 	pages = min(pages, ksm_advisor_max_pages_to_scan);
453 
454 	/* Update advisor context */
455 	advisor_ctx.change = change;
456 	advisor_ctx.scan_time = scan_time;
457 	advisor_ctx.cpu_time = cpu_time;
458 
459 	ksm_thread_pages_to_scan = pages;
460 	trace_ksm_advisor(scan_time, pages, cpu_percent);
461 }
462 
advisor_stop_scan(void)463 static void advisor_stop_scan(void)
464 {
465 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466 		scan_time_advisor();
467 }
468 
469 #ifdef CONFIG_NUMA
470 /* Zeroed when merging across nodes is not allowed */
471 static unsigned int ksm_merge_across_nodes = 1;
472 static int ksm_nr_node_ids = 1;
473 #else
474 #define ksm_merge_across_nodes	1U
475 #define ksm_nr_node_ids		1
476 #endif
477 
478 #define KSM_RUN_STOP	0
479 #define KSM_RUN_MERGE	1
480 #define KSM_RUN_UNMERGE	2
481 #define KSM_RUN_OFFLINE	4
482 static unsigned long ksm_run = KSM_RUN_STOP;
483 static void wait_while_offlining(void);
484 
485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487 static DEFINE_MUTEX(ksm_thread_mutex);
488 static DEFINE_SPINLOCK(ksm_mmlist_lock);
489 
ksm_slab_init(void)490 static int __init ksm_slab_init(void)
491 {
492 	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493 	if (!rmap_item_cache)
494 		goto out;
495 
496 	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497 	if (!stable_node_cache)
498 		goto out_free1;
499 
500 	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501 	if (!mm_slot_cache)
502 		goto out_free2;
503 
504 	return 0;
505 
506 out_free2:
507 	kmem_cache_destroy(stable_node_cache);
508 out_free1:
509 	kmem_cache_destroy(rmap_item_cache);
510 out:
511 	return -ENOMEM;
512 }
513 
ksm_slab_free(void)514 static void __init ksm_slab_free(void)
515 {
516 	kmem_cache_destroy(mm_slot_cache);
517 	kmem_cache_destroy(stable_node_cache);
518 	kmem_cache_destroy(rmap_item_cache);
519 	mm_slot_cache = NULL;
520 }
521 
is_stable_node_chain(struct ksm_stable_node * chain)522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523 {
524 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525 }
526 
is_stable_node_dup(struct ksm_stable_node * dup)527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528 {
529 	return dup->head == STABLE_NODE_DUP_HEAD;
530 }
531 
stable_node_chain_add_dup(struct ksm_stable_node * dup,struct ksm_stable_node * chain)532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533 					     struct ksm_stable_node *chain)
534 {
535 	VM_BUG_ON(is_stable_node_dup(dup));
536 	dup->head = STABLE_NODE_DUP_HEAD;
537 	VM_BUG_ON(!is_stable_node_chain(chain));
538 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
539 	ksm_stable_node_dups++;
540 }
541 
__stable_node_dup_del(struct ksm_stable_node * dup)542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543 {
544 	VM_BUG_ON(!is_stable_node_dup(dup));
545 	hlist_del(&dup->hlist_dup);
546 	ksm_stable_node_dups--;
547 }
548 
stable_node_dup_del(struct ksm_stable_node * dup)549 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550 {
551 	VM_BUG_ON(is_stable_node_chain(dup));
552 	if (is_stable_node_dup(dup))
553 		__stable_node_dup_del(dup);
554 	else
555 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556 #ifdef CONFIG_DEBUG_VM
557 	dup->head = NULL;
558 #endif
559 }
560 
alloc_rmap_item(void)561 static inline struct ksm_rmap_item *alloc_rmap_item(void)
562 {
563 	struct ksm_rmap_item *rmap_item;
564 
565 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566 						__GFP_NORETRY | __GFP_NOWARN);
567 	if (rmap_item)
568 		ksm_rmap_items++;
569 	return rmap_item;
570 }
571 
free_rmap_item(struct ksm_rmap_item * rmap_item)572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573 {
574 	ksm_rmap_items--;
575 	rmap_item->mm->ksm_rmap_items--;
576 	rmap_item->mm = NULL;	/* debug safety */
577 	kmem_cache_free(rmap_item_cache, rmap_item);
578 }
579 
alloc_stable_node(void)580 static inline struct ksm_stable_node *alloc_stable_node(void)
581 {
582 	/*
583 	 * The allocation can take too long with GFP_KERNEL when memory is under
584 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
585 	 * grants access to memory reserves, helping to avoid this problem.
586 	 */
587 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588 }
589 
free_stable_node(struct ksm_stable_node * stable_node)590 static inline void free_stable_node(struct ksm_stable_node *stable_node)
591 {
592 	VM_BUG_ON(stable_node->rmap_hlist_len &&
593 		  !is_stable_node_chain(stable_node));
594 	kmem_cache_free(stable_node_cache, stable_node);
595 }
596 
597 /*
598  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599  * page tables after it has passed through ksm_exit() - which, if necessary,
600  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
601  * a special flag: they can just back out as soon as mm_users goes to zero.
602  * ksm_test_exit() is used throughout to make this test for exit: in some
603  * places for correctness, in some places just to avoid unnecessary work.
604  */
ksm_test_exit(struct mm_struct * mm)605 static inline bool ksm_test_exit(struct mm_struct *mm)
606 {
607 	return atomic_read(&mm->mm_users) == 0;
608 }
609 
610 /*
611  * We use break_ksm to break COW on a ksm page by triggering unsharing,
612  * such that the ksm page will get replaced by an exclusive anonymous page.
613  *
614  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
615  * in case the application has unmapped and remapped mm,addr meanwhile.
616  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
617  * mmap of /dev/mem, where we would not want to touch it.
618  *
619  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
620  * of the process that owns 'vma'.  We also do not want to enforce
621  * protection keys here anyway.
622  */
break_ksm(struct vm_area_struct * vma,unsigned long addr,bool lock_vma)623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
624 {
625 	vm_fault_t ret = 0;
626 
627 	if (lock_vma)
628 		vma_start_write(vma);
629 
630 	do {
631 		bool ksm_page = false;
632 		struct folio_walk fw;
633 		struct folio *folio;
634 
635 		cond_resched();
636 		folio = folio_walk_start(&fw, vma, addr,
637 					 FW_MIGRATION | FW_ZEROPAGE);
638 		if (folio) {
639 			/* Small folio implies FW_LEVEL_PTE. */
640 			if (!folio_test_large(folio) &&
641 			    (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
642 				ksm_page = true;
643 			folio_walk_end(&fw, vma);
644 		}
645 
646 		if (!ksm_page)
647 			return 0;
648 		ret = handle_mm_fault(vma, addr,
649 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
650 				      NULL);
651 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
652 	/*
653 	 * We must loop until we no longer find a KSM page because
654 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
655 	 * pte accessed bit gets updated concurrently.
656 	 *
657 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
658 	 * backing file, which also invalidates anonymous pages: that's
659 	 * okay, that truncation will have unmapped the KSM page for us.
660 	 *
661 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
662 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
663 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
664 	 * to user; and ksmd, having no mm, would never be chosen for that.
665 	 *
666 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
667 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
668 	 * even ksmd can fail in this way - though it's usually breaking ksm
669 	 * just to undo a merge it made a moment before, so unlikely to oom.
670 	 *
671 	 * That's a pity: we might therefore have more kernel pages allocated
672 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
673 	 * will retry to break_cow on each pass, so should recover the page
674 	 * in due course.  The important thing is to not let VM_MERGEABLE
675 	 * be cleared while any such pages might remain in the area.
676 	 */
677 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
678 }
679 
vma_ksm_compatible(struct vm_area_struct * vma)680 static bool vma_ksm_compatible(struct vm_area_struct *vma)
681 {
682 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
683 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
684 			     VM_MIXEDMAP| VM_DROPPABLE))
685 		return false;		/* just ignore the advice */
686 
687 	if (vma_is_dax(vma))
688 		return false;
689 
690 #ifdef VM_SAO
691 	if (vma->vm_flags & VM_SAO)
692 		return false;
693 #endif
694 #ifdef VM_SPARC_ADI
695 	if (vma->vm_flags & VM_SPARC_ADI)
696 		return false;
697 #endif
698 
699 	return true;
700 }
701 
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)702 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
703 		unsigned long addr)
704 {
705 	struct vm_area_struct *vma;
706 	if (ksm_test_exit(mm))
707 		return NULL;
708 	vma = vma_lookup(mm, addr);
709 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
710 		return NULL;
711 	return vma;
712 }
713 
break_cow(struct ksm_rmap_item * rmap_item)714 static void break_cow(struct ksm_rmap_item *rmap_item)
715 {
716 	struct mm_struct *mm = rmap_item->mm;
717 	unsigned long addr = rmap_item->address;
718 	struct vm_area_struct *vma;
719 
720 	/*
721 	 * It is not an accident that whenever we want to break COW
722 	 * to undo, we also need to drop a reference to the anon_vma.
723 	 */
724 	put_anon_vma(rmap_item->anon_vma);
725 
726 	mmap_read_lock(mm);
727 	vma = find_mergeable_vma(mm, addr);
728 	if (vma)
729 		break_ksm(vma, addr, false);
730 	mmap_read_unlock(mm);
731 }
732 
get_mergeable_page(struct ksm_rmap_item * rmap_item)733 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
734 {
735 	struct mm_struct *mm = rmap_item->mm;
736 	unsigned long addr = rmap_item->address;
737 	struct vm_area_struct *vma;
738 	struct page *page = NULL;
739 	struct folio_walk fw;
740 	struct folio *folio;
741 
742 	mmap_read_lock(mm);
743 	vma = find_mergeable_vma(mm, addr);
744 	if (!vma)
745 		goto out;
746 
747 	folio = folio_walk_start(&fw, vma, addr, 0);
748 	if (folio) {
749 		if (!folio_is_zone_device(folio) &&
750 		    folio_test_anon(folio)) {
751 			folio_get(folio);
752 			page = fw.page;
753 		}
754 		folio_walk_end(&fw, vma);
755 	}
756 out:
757 	if (page) {
758 		flush_anon_page(vma, page, addr);
759 		flush_dcache_page(page);
760 	}
761 	mmap_read_unlock(mm);
762 	return page;
763 }
764 
765 /*
766  * This helper is used for getting right index into array of tree roots.
767  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
768  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
769  * every node has its own stable and unstable tree.
770  */
get_kpfn_nid(unsigned long kpfn)771 static inline int get_kpfn_nid(unsigned long kpfn)
772 {
773 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
774 }
775 
alloc_stable_node_chain(struct ksm_stable_node * dup,struct rb_root * root)776 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
777 						   struct rb_root *root)
778 {
779 	struct ksm_stable_node *chain = alloc_stable_node();
780 	VM_BUG_ON(is_stable_node_chain(dup));
781 	if (likely(chain)) {
782 		INIT_HLIST_HEAD(&chain->hlist);
783 		chain->chain_prune_time = jiffies;
784 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
785 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
786 		chain->nid = NUMA_NO_NODE; /* debug */
787 #endif
788 		ksm_stable_node_chains++;
789 
790 		/*
791 		 * Put the stable node chain in the first dimension of
792 		 * the stable tree and at the same time remove the old
793 		 * stable node.
794 		 */
795 		rb_replace_node(&dup->node, &chain->node, root);
796 
797 		/*
798 		 * Move the old stable node to the second dimension
799 		 * queued in the hlist_dup. The invariant is that all
800 		 * dup stable_nodes in the chain->hlist point to pages
801 		 * that are write protected and have the exact same
802 		 * content.
803 		 */
804 		stable_node_chain_add_dup(dup, chain);
805 	}
806 	return chain;
807 }
808 
free_stable_node_chain(struct ksm_stable_node * chain,struct rb_root * root)809 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
810 					  struct rb_root *root)
811 {
812 	rb_erase(&chain->node, root);
813 	free_stable_node(chain);
814 	ksm_stable_node_chains--;
815 }
816 
remove_node_from_stable_tree(struct ksm_stable_node * stable_node)817 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
818 {
819 	struct ksm_rmap_item *rmap_item;
820 
821 	/* check it's not STABLE_NODE_CHAIN or negative */
822 	BUG_ON(stable_node->rmap_hlist_len < 0);
823 
824 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
825 		if (rmap_item->hlist.next) {
826 			ksm_pages_sharing--;
827 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
828 		} else {
829 			ksm_pages_shared--;
830 		}
831 
832 		rmap_item->mm->ksm_merging_pages--;
833 
834 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
835 		stable_node->rmap_hlist_len--;
836 		put_anon_vma(rmap_item->anon_vma);
837 		rmap_item->address &= PAGE_MASK;
838 		cond_resched();
839 	}
840 
841 	/*
842 	 * We need the second aligned pointer of the migrate_nodes
843 	 * list_head to stay clear from the rb_parent_color union
844 	 * (aligned and different than any node) and also different
845 	 * from &migrate_nodes. This will verify that future list.h changes
846 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
847 	 */
848 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
849 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
850 
851 	trace_ksm_remove_ksm_page(stable_node->kpfn);
852 	if (stable_node->head == &migrate_nodes)
853 		list_del(&stable_node->list);
854 	else
855 		stable_node_dup_del(stable_node);
856 	free_stable_node(stable_node);
857 }
858 
859 enum ksm_get_folio_flags {
860 	KSM_GET_FOLIO_NOLOCK,
861 	KSM_GET_FOLIO_LOCK,
862 	KSM_GET_FOLIO_TRYLOCK
863 };
864 
865 /*
866  * ksm_get_folio: checks if the page indicated by the stable node
867  * is still its ksm page, despite having held no reference to it.
868  * In which case we can trust the content of the page, and it
869  * returns the gotten page; but if the page has now been zapped,
870  * remove the stale node from the stable tree and return NULL.
871  * But beware, the stable node's page might be being migrated.
872  *
873  * You would expect the stable_node to hold a reference to the ksm page.
874  * But if it increments the page's count, swapping out has to wait for
875  * ksmd to come around again before it can free the page, which may take
876  * seconds or even minutes: much too unresponsive.  So instead we use a
877  * "keyhole reference": access to the ksm page from the stable node peeps
878  * out through its keyhole to see if that page still holds the right key,
879  * pointing back to this stable node.  This relies on freeing a PageAnon
880  * page to reset its page->mapping to NULL, and relies on no other use of
881  * a page to put something that might look like our key in page->mapping.
882  * is on its way to being freed; but it is an anomaly to bear in mind.
883  */
ksm_get_folio(struct ksm_stable_node * stable_node,enum ksm_get_folio_flags flags)884 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
885 				 enum ksm_get_folio_flags flags)
886 {
887 	struct folio *folio;
888 	void *expected_mapping;
889 	unsigned long kpfn;
890 
891 	expected_mapping = (void *)((unsigned long)stable_node |
892 					PAGE_MAPPING_KSM);
893 again:
894 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
895 	folio = pfn_folio(kpfn);
896 	if (READ_ONCE(folio->mapping) != expected_mapping)
897 		goto stale;
898 
899 	/*
900 	 * We cannot do anything with the page while its refcount is 0.
901 	 * Usually 0 means free, or tail of a higher-order page: in which
902 	 * case this node is no longer referenced, and should be freed;
903 	 * however, it might mean that the page is under page_ref_freeze().
904 	 * The __remove_mapping() case is easy, again the node is now stale;
905 	 * the same is in reuse_ksm_page() case; but if page is swapcache
906 	 * in folio_migrate_mapping(), it might still be our page,
907 	 * in which case it's essential to keep the node.
908 	 */
909 	while (!folio_try_get(folio)) {
910 		/*
911 		 * Another check for folio->mapping != expected_mapping
912 		 * would work here too.  We have chosen to test the
913 		 * swapcache flag to optimize the common case, when the
914 		 * folio is or is about to be freed: the swapcache flag
915 		 * is cleared (under spin_lock_irq) in the ref_freeze
916 		 * section of __remove_mapping(); but anon folio->mapping
917 		 * is reset to NULL later, in free_pages_prepare().
918 		 */
919 		if (!folio_test_swapcache(folio))
920 			goto stale;
921 		cpu_relax();
922 	}
923 
924 	if (READ_ONCE(folio->mapping) != expected_mapping) {
925 		folio_put(folio);
926 		goto stale;
927 	}
928 
929 	if (flags == KSM_GET_FOLIO_TRYLOCK) {
930 		if (!folio_trylock(folio)) {
931 			folio_put(folio);
932 			return ERR_PTR(-EBUSY);
933 		}
934 	} else if (flags == KSM_GET_FOLIO_LOCK)
935 		folio_lock(folio);
936 
937 	if (flags != KSM_GET_FOLIO_NOLOCK) {
938 		if (READ_ONCE(folio->mapping) != expected_mapping) {
939 			folio_unlock(folio);
940 			folio_put(folio);
941 			goto stale;
942 		}
943 	}
944 	return folio;
945 
946 stale:
947 	/*
948 	 * We come here from above when folio->mapping or the swapcache flag
949 	 * suggests that the node is stale; but it might be under migration.
950 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
951 	 * before checking whether node->kpfn has been changed.
952 	 */
953 	smp_rmb();
954 	if (READ_ONCE(stable_node->kpfn) != kpfn)
955 		goto again;
956 	remove_node_from_stable_tree(stable_node);
957 	return NULL;
958 }
959 
960 /*
961  * Removing rmap_item from stable or unstable tree.
962  * This function will clean the information from the stable/unstable tree.
963  */
remove_rmap_item_from_tree(struct ksm_rmap_item * rmap_item)964 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
965 {
966 	if (rmap_item->address & STABLE_FLAG) {
967 		struct ksm_stable_node *stable_node;
968 		struct folio *folio;
969 
970 		stable_node = rmap_item->head;
971 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
972 		if (!folio)
973 			goto out;
974 
975 		hlist_del(&rmap_item->hlist);
976 		folio_unlock(folio);
977 		folio_put(folio);
978 
979 		if (!hlist_empty(&stable_node->hlist))
980 			ksm_pages_sharing--;
981 		else
982 			ksm_pages_shared--;
983 
984 		rmap_item->mm->ksm_merging_pages--;
985 
986 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
987 		stable_node->rmap_hlist_len--;
988 
989 		put_anon_vma(rmap_item->anon_vma);
990 		rmap_item->head = NULL;
991 		rmap_item->address &= PAGE_MASK;
992 
993 	} else if (rmap_item->address & UNSTABLE_FLAG) {
994 		unsigned char age;
995 		/*
996 		 * Usually ksmd can and must skip the rb_erase, because
997 		 * root_unstable_tree was already reset to RB_ROOT.
998 		 * But be careful when an mm is exiting: do the rb_erase
999 		 * if this rmap_item was inserted by this scan, rather
1000 		 * than left over from before.
1001 		 */
1002 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1003 		BUG_ON(age > 1);
1004 		if (!age)
1005 			rb_erase(&rmap_item->node,
1006 				 root_unstable_tree + NUMA(rmap_item->nid));
1007 		ksm_pages_unshared--;
1008 		rmap_item->address &= PAGE_MASK;
1009 	}
1010 out:
1011 	cond_resched();		/* we're called from many long loops */
1012 }
1013 
remove_trailing_rmap_items(struct ksm_rmap_item ** rmap_list)1014 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1015 {
1016 	while (*rmap_list) {
1017 		struct ksm_rmap_item *rmap_item = *rmap_list;
1018 		*rmap_list = rmap_item->rmap_list;
1019 		remove_rmap_item_from_tree(rmap_item);
1020 		free_rmap_item(rmap_item);
1021 	}
1022 }
1023 
1024 /*
1025  * Though it's very tempting to unmerge rmap_items from stable tree rather
1026  * than check every pte of a given vma, the locking doesn't quite work for
1027  * that - an rmap_item is assigned to the stable tree after inserting ksm
1028  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1029  * rmap_items from parent to child at fork time (so as not to waste time
1030  * if exit comes before the next scan reaches it).
1031  *
1032  * Similarly, although we'd like to remove rmap_items (so updating counts
1033  * and freeing memory) when unmerging an area, it's easier to leave that
1034  * to the next pass of ksmd - consider, for example, how ksmd might be
1035  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1036  */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool lock_vma)1037 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1038 			     unsigned long start, unsigned long end, bool lock_vma)
1039 {
1040 	unsigned long addr;
1041 	int err = 0;
1042 
1043 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1044 		if (ksm_test_exit(vma->vm_mm))
1045 			break;
1046 		if (signal_pending(current))
1047 			err = -ERESTARTSYS;
1048 		else
1049 			err = break_ksm(vma, addr, lock_vma);
1050 	}
1051 	return err;
1052 }
1053 
1054 static inline
folio_stable_node(const struct folio * folio)1055 struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1056 {
1057 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1058 }
1059 
page_stable_node(struct page * page)1060 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1061 {
1062 	return folio_stable_node(page_folio(page));
1063 }
1064 
folio_set_stable_node(struct folio * folio,struct ksm_stable_node * stable_node)1065 static inline void folio_set_stable_node(struct folio *folio,
1066 					 struct ksm_stable_node *stable_node)
1067 {
1068 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1069 	folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1070 }
1071 
1072 #ifdef CONFIG_SYSFS
1073 /*
1074  * Only called through the sysfs control interface:
1075  */
remove_stable_node(struct ksm_stable_node * stable_node)1076 static int remove_stable_node(struct ksm_stable_node *stable_node)
1077 {
1078 	struct folio *folio;
1079 	int err;
1080 
1081 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1082 	if (!folio) {
1083 		/*
1084 		 * ksm_get_folio did remove_node_from_stable_tree itself.
1085 		 */
1086 		return 0;
1087 	}
1088 
1089 	/*
1090 	 * Page could be still mapped if this races with __mmput() running in
1091 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1092 	 * merge_across_nodes/max_page_sharing be switched.
1093 	 */
1094 	err = -EBUSY;
1095 	if (!folio_mapped(folio)) {
1096 		/*
1097 		 * The stable node did not yet appear stale to ksm_get_folio(),
1098 		 * since that allows for an unmapped ksm folio to be recognized
1099 		 * right up until it is freed; but the node is safe to remove.
1100 		 * This folio might be in an LRU cache waiting to be freed,
1101 		 * or it might be in the swapcache (perhaps under writeback),
1102 		 * or it might have been removed from swapcache a moment ago.
1103 		 */
1104 		folio_set_stable_node(folio, NULL);
1105 		remove_node_from_stable_tree(stable_node);
1106 		err = 0;
1107 	}
1108 
1109 	folio_unlock(folio);
1110 	folio_put(folio);
1111 	return err;
1112 }
1113 
remove_stable_node_chain(struct ksm_stable_node * stable_node,struct rb_root * root)1114 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1115 				    struct rb_root *root)
1116 {
1117 	struct ksm_stable_node *dup;
1118 	struct hlist_node *hlist_safe;
1119 
1120 	if (!is_stable_node_chain(stable_node)) {
1121 		VM_BUG_ON(is_stable_node_dup(stable_node));
1122 		if (remove_stable_node(stable_node))
1123 			return true;
1124 		else
1125 			return false;
1126 	}
1127 
1128 	hlist_for_each_entry_safe(dup, hlist_safe,
1129 				  &stable_node->hlist, hlist_dup) {
1130 		VM_BUG_ON(!is_stable_node_dup(dup));
1131 		if (remove_stable_node(dup))
1132 			return true;
1133 	}
1134 	BUG_ON(!hlist_empty(&stable_node->hlist));
1135 	free_stable_node_chain(stable_node, root);
1136 	return false;
1137 }
1138 
remove_all_stable_nodes(void)1139 static int remove_all_stable_nodes(void)
1140 {
1141 	struct ksm_stable_node *stable_node, *next;
1142 	int nid;
1143 	int err = 0;
1144 
1145 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1146 		while (root_stable_tree[nid].rb_node) {
1147 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1148 						struct ksm_stable_node, node);
1149 			if (remove_stable_node_chain(stable_node,
1150 						     root_stable_tree + nid)) {
1151 				err = -EBUSY;
1152 				break;	/* proceed to next nid */
1153 			}
1154 			cond_resched();
1155 		}
1156 	}
1157 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1158 		if (remove_stable_node(stable_node))
1159 			err = -EBUSY;
1160 		cond_resched();
1161 	}
1162 	return err;
1163 }
1164 
unmerge_and_remove_all_rmap_items(void)1165 static int unmerge_and_remove_all_rmap_items(void)
1166 {
1167 	struct ksm_mm_slot *mm_slot;
1168 	struct mm_slot *slot;
1169 	struct mm_struct *mm;
1170 	struct vm_area_struct *vma;
1171 	int err = 0;
1172 
1173 	spin_lock(&ksm_mmlist_lock);
1174 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1175 			  struct mm_slot, mm_node);
1176 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1177 	spin_unlock(&ksm_mmlist_lock);
1178 
1179 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1180 	     mm_slot = ksm_scan.mm_slot) {
1181 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1182 
1183 		mm = mm_slot->slot.mm;
1184 		mmap_read_lock(mm);
1185 
1186 		/*
1187 		 * Exit right away if mm is exiting to avoid lockdep issue in
1188 		 * the maple tree
1189 		 */
1190 		if (ksm_test_exit(mm))
1191 			goto mm_exiting;
1192 
1193 		for_each_vma(vmi, vma) {
1194 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1195 				continue;
1196 			err = unmerge_ksm_pages(vma,
1197 						vma->vm_start, vma->vm_end, false);
1198 			if (err)
1199 				goto error;
1200 		}
1201 
1202 mm_exiting:
1203 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1204 		mmap_read_unlock(mm);
1205 
1206 		spin_lock(&ksm_mmlist_lock);
1207 		slot = list_entry(mm_slot->slot.mm_node.next,
1208 				  struct mm_slot, mm_node);
1209 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1210 		if (ksm_test_exit(mm)) {
1211 			hash_del(&mm_slot->slot.hash);
1212 			list_del(&mm_slot->slot.mm_node);
1213 			spin_unlock(&ksm_mmlist_lock);
1214 
1215 			mm_slot_free(mm_slot_cache, mm_slot);
1216 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1217 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1218 			mmdrop(mm);
1219 		} else
1220 			spin_unlock(&ksm_mmlist_lock);
1221 	}
1222 
1223 	/* Clean up stable nodes, but don't worry if some are still busy */
1224 	remove_all_stable_nodes();
1225 	ksm_scan.seqnr = 0;
1226 	return 0;
1227 
1228 error:
1229 	mmap_read_unlock(mm);
1230 	spin_lock(&ksm_mmlist_lock);
1231 	ksm_scan.mm_slot = &ksm_mm_head;
1232 	spin_unlock(&ksm_mmlist_lock);
1233 	return err;
1234 }
1235 #endif /* CONFIG_SYSFS */
1236 
calc_checksum(struct page * page)1237 static u32 calc_checksum(struct page *page)
1238 {
1239 	u32 checksum;
1240 	void *addr = kmap_local_page(page);
1241 	checksum = xxhash(addr, PAGE_SIZE, 0);
1242 	kunmap_local(addr);
1243 	return checksum;
1244 }
1245 
write_protect_page(struct vm_area_struct * vma,struct folio * folio,pte_t * orig_pte)1246 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1247 			      pte_t *orig_pte)
1248 {
1249 	struct mm_struct *mm = vma->vm_mm;
1250 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1251 	int swapped;
1252 	int err = -EFAULT;
1253 	struct mmu_notifier_range range;
1254 	bool anon_exclusive;
1255 	pte_t entry;
1256 
1257 	if (WARN_ON_ONCE(folio_test_large(folio)))
1258 		return err;
1259 
1260 	pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1261 	if (pvmw.address == -EFAULT)
1262 		goto out;
1263 
1264 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1265 				pvmw.address + PAGE_SIZE);
1266 	mmu_notifier_invalidate_range_start(&range);
1267 
1268 	if (!page_vma_mapped_walk(&pvmw))
1269 		goto out_mn;
1270 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1271 		goto out_unlock;
1272 
1273 	entry = ptep_get(pvmw.pte);
1274 	/*
1275 	 * Handle PFN swap PTEs, such as device-exclusive ones, that actually
1276 	 * map pages: give up just like the next folio_walk would.
1277 	 */
1278 	if (unlikely(!pte_present(entry)))
1279 		goto out_unlock;
1280 
1281 	anon_exclusive = PageAnonExclusive(&folio->page);
1282 	if (pte_write(entry) || pte_dirty(entry) ||
1283 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1284 		swapped = folio_test_swapcache(folio);
1285 		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1286 		/*
1287 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1288 		 * take any lock, therefore the check that we are going to make
1289 		 * with the pagecount against the mapcount is racy and
1290 		 * O_DIRECT can happen right after the check.
1291 		 * So we clear the pte and flush the tlb before the check
1292 		 * this assure us that no O_DIRECT can happen after the check
1293 		 * or in the middle of the check.
1294 		 *
1295 		 * No need to notify as we are downgrading page table to read
1296 		 * only not changing it to point to a new page.
1297 		 *
1298 		 * See Documentation/mm/mmu_notifier.rst
1299 		 */
1300 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1301 		/*
1302 		 * Check that no O_DIRECT or similar I/O is in progress on the
1303 		 * page
1304 		 */
1305 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1306 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1307 			goto out_unlock;
1308 		}
1309 
1310 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1311 		if (anon_exclusive &&
1312 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1313 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1314 			goto out_unlock;
1315 		}
1316 
1317 		if (pte_dirty(entry))
1318 			folio_mark_dirty(folio);
1319 		entry = pte_mkclean(entry);
1320 
1321 		if (pte_write(entry))
1322 			entry = pte_wrprotect(entry);
1323 
1324 		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1325 	}
1326 	*orig_pte = entry;
1327 	err = 0;
1328 
1329 out_unlock:
1330 	page_vma_mapped_walk_done(&pvmw);
1331 out_mn:
1332 	mmu_notifier_invalidate_range_end(&range);
1333 out:
1334 	return err;
1335 }
1336 
1337 /**
1338  * replace_page - replace page in vma by new ksm page
1339  * @vma:      vma that holds the pte pointing to page
1340  * @page:     the page we are replacing by kpage
1341  * @kpage:    the ksm page we replace page by
1342  * @orig_pte: the original value of the pte
1343  *
1344  * Returns 0 on success, -EFAULT on failure.
1345  */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1346 static int replace_page(struct vm_area_struct *vma, struct page *page,
1347 			struct page *kpage, pte_t orig_pte)
1348 {
1349 	struct folio *kfolio = page_folio(kpage);
1350 	struct mm_struct *mm = vma->vm_mm;
1351 	struct folio *folio = page_folio(page);
1352 	pmd_t *pmd;
1353 	pmd_t pmde;
1354 	pte_t *ptep;
1355 	pte_t newpte;
1356 	spinlock_t *ptl;
1357 	unsigned long addr;
1358 	int err = -EFAULT;
1359 	struct mmu_notifier_range range;
1360 
1361 	addr = page_address_in_vma(folio, page, vma);
1362 	if (addr == -EFAULT)
1363 		goto out;
1364 
1365 	pmd = mm_find_pmd(mm, addr);
1366 	if (!pmd)
1367 		goto out;
1368 	/*
1369 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1370 	 * without holding anon_vma lock for write.  So when looking for a
1371 	 * genuine pmde (in which to find pte), test present and !THP together.
1372 	 */
1373 	pmde = pmdp_get_lockless(pmd);
1374 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1375 		goto out;
1376 
1377 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1378 				addr + PAGE_SIZE);
1379 	mmu_notifier_invalidate_range_start(&range);
1380 
1381 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1382 	if (!ptep)
1383 		goto out_mn;
1384 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1385 		pte_unmap_unlock(ptep, ptl);
1386 		goto out_mn;
1387 	}
1388 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1389 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1390 			kfolio);
1391 
1392 	/*
1393 	 * No need to check ksm_use_zero_pages here: we can only have a
1394 	 * zero_page here if ksm_use_zero_pages was enabled already.
1395 	 */
1396 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1397 		folio_get(kfolio);
1398 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1399 		newpte = mk_pte(kpage, vma->vm_page_prot);
1400 	} else {
1401 		/*
1402 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1403 		 * we can easily track all KSM-placed zero pages by checking if
1404 		 * the dirty bit in zero page's PTE is set.
1405 		 */
1406 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1407 		ksm_map_zero_page(mm);
1408 		/*
1409 		 * We're replacing an anonymous page with a zero page, which is
1410 		 * not anonymous. We need to do proper accounting otherwise we
1411 		 * will get wrong values in /proc, and a BUG message in dmesg
1412 		 * when tearing down the mm.
1413 		 */
1414 		dec_mm_counter(mm, MM_ANONPAGES);
1415 	}
1416 
1417 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1418 	/*
1419 	 * No need to notify as we are replacing a read only page with another
1420 	 * read only page with the same content.
1421 	 *
1422 	 * See Documentation/mm/mmu_notifier.rst
1423 	 */
1424 	ptep_clear_flush(vma, addr, ptep);
1425 	set_pte_at(mm, addr, ptep, newpte);
1426 
1427 	folio_remove_rmap_pte(folio, page, vma);
1428 	if (!folio_mapped(folio))
1429 		folio_free_swap(folio);
1430 	folio_put(folio);
1431 
1432 	pte_unmap_unlock(ptep, ptl);
1433 	err = 0;
1434 out_mn:
1435 	mmu_notifier_invalidate_range_end(&range);
1436 out:
1437 	return err;
1438 }
1439 
1440 /*
1441  * try_to_merge_one_page - take two pages and merge them into one
1442  * @vma: the vma that holds the pte pointing to page
1443  * @page: the PageAnon page that we want to replace with kpage
1444  * @kpage: the KSM page that we want to map instead of page,
1445  *         or NULL the first time when we want to use page as kpage.
1446  *
1447  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1448  */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1449 static int try_to_merge_one_page(struct vm_area_struct *vma,
1450 				 struct page *page, struct page *kpage)
1451 {
1452 	struct folio *folio = page_folio(page);
1453 	pte_t orig_pte = __pte(0);
1454 	int err = -EFAULT;
1455 
1456 	if (page == kpage)			/* ksm page forked */
1457 		return 0;
1458 
1459 	if (!folio_test_anon(folio))
1460 		goto out;
1461 
1462 	/*
1463 	 * We need the folio lock to read a stable swapcache flag in
1464 	 * write_protect_page().  We trylock because we don't want to wait
1465 	 * here - we prefer to continue scanning and merging different
1466 	 * pages, then come back to this page when it is unlocked.
1467 	 */
1468 	if (!folio_trylock(folio))
1469 		goto out;
1470 
1471 	if (folio_test_large(folio)) {
1472 		if (split_huge_page(page))
1473 			goto out_unlock;
1474 		folio = page_folio(page);
1475 	}
1476 
1477 	/*
1478 	 * If this anonymous page is mapped only here, its pte may need
1479 	 * to be write-protected.  If it's mapped elsewhere, all of its
1480 	 * ptes are necessarily already write-protected.  But in either
1481 	 * case, we need to lock and check page_count is not raised.
1482 	 */
1483 	if (write_protect_page(vma, folio, &orig_pte) == 0) {
1484 		if (!kpage) {
1485 			/*
1486 			 * While we hold folio lock, upgrade folio from
1487 			 * anon to a NULL stable_node with the KSM flag set:
1488 			 * stable_tree_insert() will update stable_node.
1489 			 */
1490 			folio_set_stable_node(folio, NULL);
1491 			folio_mark_accessed(folio);
1492 			/*
1493 			 * Page reclaim just frees a clean folio with no dirty
1494 			 * ptes: make sure that the ksm page would be swapped.
1495 			 */
1496 			if (!folio_test_dirty(folio))
1497 				folio_mark_dirty(folio);
1498 			err = 0;
1499 		} else if (pages_identical(page, kpage))
1500 			err = replace_page(vma, page, kpage, orig_pte);
1501 	}
1502 
1503 out_unlock:
1504 	folio_unlock(folio);
1505 out:
1506 	return err;
1507 }
1508 
1509 /*
1510  * This function returns 0 if the pages were merged or if they are
1511  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1512  */
try_to_merge_with_zero_page(struct ksm_rmap_item * rmap_item,struct page * page)1513 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1514 				       struct page *page)
1515 {
1516 	struct mm_struct *mm = rmap_item->mm;
1517 	int err = -EFAULT;
1518 
1519 	/*
1520 	 * Same checksum as an empty page. We attempt to merge it with the
1521 	 * appropriate zero page if the user enabled this via sysfs.
1522 	 */
1523 	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1524 		struct vm_area_struct *vma;
1525 
1526 		mmap_read_lock(mm);
1527 		vma = find_mergeable_vma(mm, rmap_item->address);
1528 		if (vma) {
1529 			err = try_to_merge_one_page(vma, page,
1530 					ZERO_PAGE(rmap_item->address));
1531 			trace_ksm_merge_one_page(
1532 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
1533 				rmap_item, mm, err);
1534 		} else {
1535 			/*
1536 			 * If the vma is out of date, we do not need to
1537 			 * continue.
1538 			 */
1539 			err = 0;
1540 		}
1541 		mmap_read_unlock(mm);
1542 	}
1543 
1544 	return err;
1545 }
1546 
1547 /*
1548  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1549  * but no new kernel page is allocated: kpage must already be a ksm page.
1550  *
1551  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1552  */
try_to_merge_with_ksm_page(struct ksm_rmap_item * rmap_item,struct page * page,struct page * kpage)1553 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1554 				      struct page *page, struct page *kpage)
1555 {
1556 	struct mm_struct *mm = rmap_item->mm;
1557 	struct vm_area_struct *vma;
1558 	int err = -EFAULT;
1559 
1560 	mmap_read_lock(mm);
1561 	vma = find_mergeable_vma(mm, rmap_item->address);
1562 	if (!vma)
1563 		goto out;
1564 
1565 	err = try_to_merge_one_page(vma, page, kpage);
1566 	if (err)
1567 		goto out;
1568 
1569 	/* Unstable nid is in union with stable anon_vma: remove first */
1570 	remove_rmap_item_from_tree(rmap_item);
1571 
1572 	/* Must get reference to anon_vma while still holding mmap_lock */
1573 	rmap_item->anon_vma = vma->anon_vma;
1574 	get_anon_vma(vma->anon_vma);
1575 out:
1576 	mmap_read_unlock(mm);
1577 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1578 				rmap_item, mm, err);
1579 	return err;
1580 }
1581 
1582 /*
1583  * try_to_merge_two_pages - take two identical pages and prepare them
1584  * to be merged into one page.
1585  *
1586  * This function returns the kpage if we successfully merged two identical
1587  * pages into one ksm page, NULL otherwise.
1588  *
1589  * Note that this function upgrades page to ksm page: if one of the pages
1590  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1591  */
try_to_merge_two_pages(struct ksm_rmap_item * rmap_item,struct page * page,struct ksm_rmap_item * tree_rmap_item,struct page * tree_page)1592 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1593 					   struct page *page,
1594 					   struct ksm_rmap_item *tree_rmap_item,
1595 					   struct page *tree_page)
1596 {
1597 	int err;
1598 
1599 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1600 	if (!err) {
1601 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1602 							tree_page, page);
1603 		/*
1604 		 * If that fails, we have a ksm page with only one pte
1605 		 * pointing to it: so break it.
1606 		 */
1607 		if (err)
1608 			break_cow(rmap_item);
1609 	}
1610 	return err ? NULL : page_folio(page);
1611 }
1612 
1613 static __always_inline
__is_page_sharing_candidate(struct ksm_stable_node * stable_node,int offset)1614 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1615 {
1616 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1617 	/*
1618 	 * Check that at least one mapping still exists, otherwise
1619 	 * there's no much point to merge and share with this
1620 	 * stable_node, as the underlying tree_page of the other
1621 	 * sharer is going to be freed soon.
1622 	 */
1623 	return stable_node->rmap_hlist_len &&
1624 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1625 }
1626 
1627 static __always_inline
is_page_sharing_candidate(struct ksm_stable_node * stable_node)1628 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1629 {
1630 	return __is_page_sharing_candidate(stable_node, 0);
1631 }
1632 
stable_node_dup(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1633 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1634 				     struct ksm_stable_node **_stable_node,
1635 				     struct rb_root *root,
1636 				     bool prune_stale_stable_nodes)
1637 {
1638 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1639 	struct hlist_node *hlist_safe;
1640 	struct folio *folio, *tree_folio = NULL;
1641 	int found_rmap_hlist_len;
1642 
1643 	if (!prune_stale_stable_nodes ||
1644 	    time_before(jiffies, stable_node->chain_prune_time +
1645 			msecs_to_jiffies(
1646 				ksm_stable_node_chains_prune_millisecs)))
1647 		prune_stale_stable_nodes = false;
1648 	else
1649 		stable_node->chain_prune_time = jiffies;
1650 
1651 	hlist_for_each_entry_safe(dup, hlist_safe,
1652 				  &stable_node->hlist, hlist_dup) {
1653 		cond_resched();
1654 		/*
1655 		 * We must walk all stable_node_dup to prune the stale
1656 		 * stable nodes during lookup.
1657 		 *
1658 		 * ksm_get_folio can drop the nodes from the
1659 		 * stable_node->hlist if they point to freed pages
1660 		 * (that's why we do a _safe walk). The "dup"
1661 		 * stable_node parameter itself will be freed from
1662 		 * under us if it returns NULL.
1663 		 */
1664 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1665 		if (!folio)
1666 			continue;
1667 		/* Pick the best candidate if possible. */
1668 		if (!found || (is_page_sharing_candidate(dup) &&
1669 		    (!is_page_sharing_candidate(found) ||
1670 		     dup->rmap_hlist_len > found_rmap_hlist_len))) {
1671 			if (found)
1672 				folio_put(tree_folio);
1673 			found = dup;
1674 			found_rmap_hlist_len = found->rmap_hlist_len;
1675 			tree_folio = folio;
1676 			/* skip put_page for found candidate */
1677 			if (!prune_stale_stable_nodes &&
1678 			    is_page_sharing_candidate(found))
1679 				break;
1680 			continue;
1681 		}
1682 		folio_put(folio);
1683 	}
1684 
1685 	if (found) {
1686 		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1687 			/*
1688 			 * If there's not just one entry it would
1689 			 * corrupt memory, better BUG_ON. In KSM
1690 			 * context with no lock held it's not even
1691 			 * fatal.
1692 			 */
1693 			BUG_ON(stable_node->hlist.first->next);
1694 
1695 			/*
1696 			 * There's just one entry and it is below the
1697 			 * deduplication limit so drop the chain.
1698 			 */
1699 			rb_replace_node(&stable_node->node, &found->node,
1700 					root);
1701 			free_stable_node(stable_node);
1702 			ksm_stable_node_chains--;
1703 			ksm_stable_node_dups--;
1704 			/*
1705 			 * NOTE: the caller depends on the stable_node
1706 			 * to be equal to stable_node_dup if the chain
1707 			 * was collapsed.
1708 			 */
1709 			*_stable_node = found;
1710 			/*
1711 			 * Just for robustness, as stable_node is
1712 			 * otherwise left as a stable pointer, the
1713 			 * compiler shall optimize it away at build
1714 			 * time.
1715 			 */
1716 			stable_node = NULL;
1717 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1718 			   __is_page_sharing_candidate(found, 1)) {
1719 			/*
1720 			 * If the found stable_node dup can accept one
1721 			 * more future merge (in addition to the one
1722 			 * that is underway) and is not at the head of
1723 			 * the chain, put it there so next search will
1724 			 * be quicker in the !prune_stale_stable_nodes
1725 			 * case.
1726 			 *
1727 			 * NOTE: it would be inaccurate to use nr > 1
1728 			 * instead of checking the hlist.first pointer
1729 			 * directly, because in the
1730 			 * prune_stale_stable_nodes case "nr" isn't
1731 			 * the position of the found dup in the chain,
1732 			 * but the total number of dups in the chain.
1733 			 */
1734 			hlist_del(&found->hlist_dup);
1735 			hlist_add_head(&found->hlist_dup,
1736 				       &stable_node->hlist);
1737 		}
1738 	} else {
1739 		/* Its hlist must be empty if no one found. */
1740 		free_stable_node_chain(stable_node, root);
1741 	}
1742 
1743 	*_stable_node_dup = found;
1744 	return tree_folio;
1745 }
1746 
1747 /*
1748  * Like for ksm_get_folio, this function can free the *_stable_node and
1749  * *_stable_node_dup if the returned tree_page is NULL.
1750  *
1751  * It can also free and overwrite *_stable_node with the found
1752  * stable_node_dup if the chain is collapsed (in which case
1753  * *_stable_node will be equal to *_stable_node_dup like if the chain
1754  * never existed). It's up to the caller to verify tree_page is not
1755  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1756  *
1757  * *_stable_node_dup is really a second output parameter of this
1758  * function and will be overwritten in all cases, the caller doesn't
1759  * need to initialize it.
1760  */
__stable_node_chain(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1761 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1762 					 struct ksm_stable_node **_stable_node,
1763 					 struct rb_root *root,
1764 					 bool prune_stale_stable_nodes)
1765 {
1766 	struct ksm_stable_node *stable_node = *_stable_node;
1767 
1768 	if (!is_stable_node_chain(stable_node)) {
1769 		*_stable_node_dup = stable_node;
1770 		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1771 	}
1772 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1773 			       prune_stale_stable_nodes);
1774 }
1775 
chain_prune(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1776 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1777 						 struct ksm_stable_node **s_n,
1778 						 struct rb_root *root)
1779 {
1780 	return __stable_node_chain(s_n_d, s_n, root, true);
1781 }
1782 
chain(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1783 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1784 					   struct ksm_stable_node **s_n,
1785 					   struct rb_root *root)
1786 {
1787 	return __stable_node_chain(s_n_d, s_n, root, false);
1788 }
1789 
1790 /*
1791  * stable_tree_search - search for page inside the stable tree
1792  *
1793  * This function checks if there is a page inside the stable tree
1794  * with identical content to the page that we are scanning right now.
1795  *
1796  * This function returns the stable tree node of identical content if found,
1797  * -EBUSY if the stable node's page is being migrated, NULL otherwise.
1798  */
stable_tree_search(struct page * page)1799 static struct folio *stable_tree_search(struct page *page)
1800 {
1801 	int nid;
1802 	struct rb_root *root;
1803 	struct rb_node **new;
1804 	struct rb_node *parent;
1805 	struct ksm_stable_node *stable_node, *stable_node_dup;
1806 	struct ksm_stable_node *page_node;
1807 	struct folio *folio;
1808 
1809 	folio = page_folio(page);
1810 	page_node = folio_stable_node(folio);
1811 	if (page_node && page_node->head != &migrate_nodes) {
1812 		/* ksm page forked */
1813 		folio_get(folio);
1814 		return folio;
1815 	}
1816 
1817 	nid = get_kpfn_nid(folio_pfn(folio));
1818 	root = root_stable_tree + nid;
1819 again:
1820 	new = &root->rb_node;
1821 	parent = NULL;
1822 
1823 	while (*new) {
1824 		struct folio *tree_folio;
1825 		int ret;
1826 
1827 		cond_resched();
1828 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1829 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1830 		if (!tree_folio) {
1831 			/*
1832 			 * If we walked over a stale stable_node,
1833 			 * ksm_get_folio() will call rb_erase() and it
1834 			 * may rebalance the tree from under us. So
1835 			 * restart the search from scratch. Returning
1836 			 * NULL would be safe too, but we'd generate
1837 			 * false negative insertions just because some
1838 			 * stable_node was stale.
1839 			 */
1840 			goto again;
1841 		}
1842 
1843 		ret = memcmp_pages(page, &tree_folio->page);
1844 		folio_put(tree_folio);
1845 
1846 		parent = *new;
1847 		if (ret < 0)
1848 			new = &parent->rb_left;
1849 		else if (ret > 0)
1850 			new = &parent->rb_right;
1851 		else {
1852 			if (page_node) {
1853 				VM_BUG_ON(page_node->head != &migrate_nodes);
1854 				/*
1855 				 * If the mapcount of our migrated KSM folio is
1856 				 * at most 1, we can merge it with another
1857 				 * KSM folio where we know that we have space
1858 				 * for one more mapping without exceeding the
1859 				 * ksm_max_page_sharing limit: see
1860 				 * chain_prune(). This way, we can avoid adding
1861 				 * this stable node to the chain.
1862 				 */
1863 				if (folio_mapcount(folio) > 1)
1864 					goto chain_append;
1865 			}
1866 
1867 			if (!is_page_sharing_candidate(stable_node_dup)) {
1868 				/*
1869 				 * If the stable_node is a chain and
1870 				 * we got a payload match in memcmp
1871 				 * but we cannot merge the scanned
1872 				 * page in any of the existing
1873 				 * stable_node dups because they're
1874 				 * all full, we need to wait the
1875 				 * scanned page to find itself a match
1876 				 * in the unstable tree to create a
1877 				 * brand new KSM page to add later to
1878 				 * the dups of this stable_node.
1879 				 */
1880 				return NULL;
1881 			}
1882 
1883 			/*
1884 			 * Lock and unlock the stable_node's page (which
1885 			 * might already have been migrated) so that page
1886 			 * migration is sure to notice its raised count.
1887 			 * It would be more elegant to return stable_node
1888 			 * than kpage, but that involves more changes.
1889 			 */
1890 			tree_folio = ksm_get_folio(stable_node_dup,
1891 						   KSM_GET_FOLIO_TRYLOCK);
1892 
1893 			if (PTR_ERR(tree_folio) == -EBUSY)
1894 				return ERR_PTR(-EBUSY);
1895 
1896 			if (unlikely(!tree_folio))
1897 				/*
1898 				 * The tree may have been rebalanced,
1899 				 * so re-evaluate parent and new.
1900 				 */
1901 				goto again;
1902 			folio_unlock(tree_folio);
1903 
1904 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1905 			    NUMA(stable_node_dup->nid)) {
1906 				folio_put(tree_folio);
1907 				goto replace;
1908 			}
1909 			return tree_folio;
1910 		}
1911 	}
1912 
1913 	if (!page_node)
1914 		return NULL;
1915 
1916 	list_del(&page_node->list);
1917 	DO_NUMA(page_node->nid = nid);
1918 	rb_link_node(&page_node->node, parent, new);
1919 	rb_insert_color(&page_node->node, root);
1920 out:
1921 	if (is_page_sharing_candidate(page_node)) {
1922 		folio_get(folio);
1923 		return folio;
1924 	} else
1925 		return NULL;
1926 
1927 replace:
1928 	/*
1929 	 * If stable_node was a chain and chain_prune collapsed it,
1930 	 * stable_node has been updated to be the new regular
1931 	 * stable_node. A collapse of the chain is indistinguishable
1932 	 * from the case there was no chain in the stable
1933 	 * rbtree. Otherwise stable_node is the chain and
1934 	 * stable_node_dup is the dup to replace.
1935 	 */
1936 	if (stable_node_dup == stable_node) {
1937 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1938 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1939 		/* there is no chain */
1940 		if (page_node) {
1941 			VM_BUG_ON(page_node->head != &migrate_nodes);
1942 			list_del(&page_node->list);
1943 			DO_NUMA(page_node->nid = nid);
1944 			rb_replace_node(&stable_node_dup->node,
1945 					&page_node->node,
1946 					root);
1947 			if (is_page_sharing_candidate(page_node))
1948 				folio_get(folio);
1949 			else
1950 				folio = NULL;
1951 		} else {
1952 			rb_erase(&stable_node_dup->node, root);
1953 			folio = NULL;
1954 		}
1955 	} else {
1956 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1957 		__stable_node_dup_del(stable_node_dup);
1958 		if (page_node) {
1959 			VM_BUG_ON(page_node->head != &migrate_nodes);
1960 			list_del(&page_node->list);
1961 			DO_NUMA(page_node->nid = nid);
1962 			stable_node_chain_add_dup(page_node, stable_node);
1963 			if (is_page_sharing_candidate(page_node))
1964 				folio_get(folio);
1965 			else
1966 				folio = NULL;
1967 		} else {
1968 			folio = NULL;
1969 		}
1970 	}
1971 	stable_node_dup->head = &migrate_nodes;
1972 	list_add(&stable_node_dup->list, stable_node_dup->head);
1973 	return folio;
1974 
1975 chain_append:
1976 	/*
1977 	 * If stable_node was a chain and chain_prune collapsed it,
1978 	 * stable_node has been updated to be the new regular
1979 	 * stable_node. A collapse of the chain is indistinguishable
1980 	 * from the case there was no chain in the stable
1981 	 * rbtree. Otherwise stable_node is the chain and
1982 	 * stable_node_dup is the dup to replace.
1983 	 */
1984 	if (stable_node_dup == stable_node) {
1985 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1986 		/* chain is missing so create it */
1987 		stable_node = alloc_stable_node_chain(stable_node_dup,
1988 						      root);
1989 		if (!stable_node)
1990 			return NULL;
1991 	}
1992 	/*
1993 	 * Add this stable_node dup that was
1994 	 * migrated to the stable_node chain
1995 	 * of the current nid for this page
1996 	 * content.
1997 	 */
1998 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1999 	VM_BUG_ON(page_node->head != &migrate_nodes);
2000 	list_del(&page_node->list);
2001 	DO_NUMA(page_node->nid = nid);
2002 	stable_node_chain_add_dup(page_node, stable_node);
2003 	goto out;
2004 }
2005 
2006 /*
2007  * stable_tree_insert - insert stable tree node pointing to new ksm page
2008  * into the stable tree.
2009  *
2010  * This function returns the stable tree node just allocated on success,
2011  * NULL otherwise.
2012  */
stable_tree_insert(struct folio * kfolio)2013 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2014 {
2015 	int nid;
2016 	unsigned long kpfn;
2017 	struct rb_root *root;
2018 	struct rb_node **new;
2019 	struct rb_node *parent;
2020 	struct ksm_stable_node *stable_node, *stable_node_dup;
2021 	bool need_chain = false;
2022 
2023 	kpfn = folio_pfn(kfolio);
2024 	nid = get_kpfn_nid(kpfn);
2025 	root = root_stable_tree + nid;
2026 again:
2027 	parent = NULL;
2028 	new = &root->rb_node;
2029 
2030 	while (*new) {
2031 		struct folio *tree_folio;
2032 		int ret;
2033 
2034 		cond_resched();
2035 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2036 		tree_folio = chain(&stable_node_dup, &stable_node, root);
2037 		if (!tree_folio) {
2038 			/*
2039 			 * If we walked over a stale stable_node,
2040 			 * ksm_get_folio() will call rb_erase() and it
2041 			 * may rebalance the tree from under us. So
2042 			 * restart the search from scratch. Returning
2043 			 * NULL would be safe too, but we'd generate
2044 			 * false negative insertions just because some
2045 			 * stable_node was stale.
2046 			 */
2047 			goto again;
2048 		}
2049 
2050 		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2051 		folio_put(tree_folio);
2052 
2053 		parent = *new;
2054 		if (ret < 0)
2055 			new = &parent->rb_left;
2056 		else if (ret > 0)
2057 			new = &parent->rb_right;
2058 		else {
2059 			need_chain = true;
2060 			break;
2061 		}
2062 	}
2063 
2064 	stable_node_dup = alloc_stable_node();
2065 	if (!stable_node_dup)
2066 		return NULL;
2067 
2068 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2069 	stable_node_dup->kpfn = kpfn;
2070 	stable_node_dup->rmap_hlist_len = 0;
2071 	DO_NUMA(stable_node_dup->nid = nid);
2072 	if (!need_chain) {
2073 		rb_link_node(&stable_node_dup->node, parent, new);
2074 		rb_insert_color(&stable_node_dup->node, root);
2075 	} else {
2076 		if (!is_stable_node_chain(stable_node)) {
2077 			struct ksm_stable_node *orig = stable_node;
2078 			/* chain is missing so create it */
2079 			stable_node = alloc_stable_node_chain(orig, root);
2080 			if (!stable_node) {
2081 				free_stable_node(stable_node_dup);
2082 				return NULL;
2083 			}
2084 		}
2085 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2086 	}
2087 
2088 	folio_set_stable_node(kfolio, stable_node_dup);
2089 
2090 	return stable_node_dup;
2091 }
2092 
2093 /*
2094  * unstable_tree_search_insert - search for identical page,
2095  * else insert rmap_item into the unstable tree.
2096  *
2097  * This function searches for a page in the unstable tree identical to the
2098  * page currently being scanned; and if no identical page is found in the
2099  * tree, we insert rmap_item as a new object into the unstable tree.
2100  *
2101  * This function returns pointer to rmap_item found to be identical
2102  * to the currently scanned page, NULL otherwise.
2103  *
2104  * This function does both searching and inserting, because they share
2105  * the same walking algorithm in an rbtree.
2106  */
2107 static
unstable_tree_search_insert(struct ksm_rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)2108 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2109 					      struct page *page,
2110 					      struct page **tree_pagep)
2111 {
2112 	struct rb_node **new;
2113 	struct rb_root *root;
2114 	struct rb_node *parent = NULL;
2115 	int nid;
2116 
2117 	nid = get_kpfn_nid(page_to_pfn(page));
2118 	root = root_unstable_tree + nid;
2119 	new = &root->rb_node;
2120 
2121 	while (*new) {
2122 		struct ksm_rmap_item *tree_rmap_item;
2123 		struct page *tree_page;
2124 		int ret;
2125 
2126 		cond_resched();
2127 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2128 		tree_page = get_mergeable_page(tree_rmap_item);
2129 		if (!tree_page)
2130 			return NULL;
2131 
2132 		/*
2133 		 * Don't substitute a ksm page for a forked page.
2134 		 */
2135 		if (page == tree_page) {
2136 			put_page(tree_page);
2137 			return NULL;
2138 		}
2139 
2140 		ret = memcmp_pages(page, tree_page);
2141 
2142 		parent = *new;
2143 		if (ret < 0) {
2144 			put_page(tree_page);
2145 			new = &parent->rb_left;
2146 		} else if (ret > 0) {
2147 			put_page(tree_page);
2148 			new = &parent->rb_right;
2149 		} else if (!ksm_merge_across_nodes &&
2150 			   page_to_nid(tree_page) != nid) {
2151 			/*
2152 			 * If tree_page has been migrated to another NUMA node,
2153 			 * it will be flushed out and put in the right unstable
2154 			 * tree next time: only merge with it when across_nodes.
2155 			 */
2156 			put_page(tree_page);
2157 			return NULL;
2158 		} else {
2159 			*tree_pagep = tree_page;
2160 			return tree_rmap_item;
2161 		}
2162 	}
2163 
2164 	rmap_item->address |= UNSTABLE_FLAG;
2165 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2166 	DO_NUMA(rmap_item->nid = nid);
2167 	rb_link_node(&rmap_item->node, parent, new);
2168 	rb_insert_color(&rmap_item->node, root);
2169 
2170 	ksm_pages_unshared++;
2171 	return NULL;
2172 }
2173 
2174 /*
2175  * stable_tree_append - add another rmap_item to the linked list of
2176  * rmap_items hanging off a given node of the stable tree, all sharing
2177  * the same ksm page.
2178  */
stable_tree_append(struct ksm_rmap_item * rmap_item,struct ksm_stable_node * stable_node,bool max_page_sharing_bypass)2179 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2180 			       struct ksm_stable_node *stable_node,
2181 			       bool max_page_sharing_bypass)
2182 {
2183 	/*
2184 	 * rmap won't find this mapping if we don't insert the
2185 	 * rmap_item in the right stable_node
2186 	 * duplicate. page_migration could break later if rmap breaks,
2187 	 * so we can as well crash here. We really need to check for
2188 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2189 	 * for other negative values as an underflow if detected here
2190 	 * for the first time (and not when decreasing rmap_hlist_len)
2191 	 * would be sign of memory corruption in the stable_node.
2192 	 */
2193 	BUG_ON(stable_node->rmap_hlist_len < 0);
2194 
2195 	stable_node->rmap_hlist_len++;
2196 	if (!max_page_sharing_bypass)
2197 		/* possibly non fatal but unexpected overflow, only warn */
2198 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2199 			     ksm_max_page_sharing);
2200 
2201 	rmap_item->head = stable_node;
2202 	rmap_item->address |= STABLE_FLAG;
2203 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2204 
2205 	if (rmap_item->hlist.next)
2206 		ksm_pages_sharing++;
2207 	else
2208 		ksm_pages_shared++;
2209 
2210 	rmap_item->mm->ksm_merging_pages++;
2211 }
2212 
2213 /*
2214  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2215  * if not, compare checksum to previous and if it's the same, see if page can
2216  * be inserted into the unstable tree, or merged with a page already there and
2217  * both transferred to the stable tree.
2218  *
2219  * @page: the page that we are searching identical page to.
2220  * @rmap_item: the reverse mapping into the virtual address of this page
2221  */
cmp_and_merge_page(struct page * page,struct ksm_rmap_item * rmap_item)2222 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2223 {
2224 	struct ksm_rmap_item *tree_rmap_item;
2225 	struct page *tree_page = NULL;
2226 	struct ksm_stable_node *stable_node;
2227 	struct folio *kfolio;
2228 	unsigned int checksum;
2229 	int err;
2230 	bool max_page_sharing_bypass = false;
2231 
2232 	stable_node = page_stable_node(page);
2233 	if (stable_node) {
2234 		if (stable_node->head != &migrate_nodes &&
2235 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2236 		    NUMA(stable_node->nid)) {
2237 			stable_node_dup_del(stable_node);
2238 			stable_node->head = &migrate_nodes;
2239 			list_add(&stable_node->list, stable_node->head);
2240 		}
2241 		if (stable_node->head != &migrate_nodes &&
2242 		    rmap_item->head == stable_node)
2243 			return;
2244 		/*
2245 		 * If it's a KSM fork, allow it to go over the sharing limit
2246 		 * without warnings.
2247 		 */
2248 		if (!is_page_sharing_candidate(stable_node))
2249 			max_page_sharing_bypass = true;
2250 	} else {
2251 		remove_rmap_item_from_tree(rmap_item);
2252 
2253 		/*
2254 		 * If the hash value of the page has changed from the last time
2255 		 * we calculated it, this page is changing frequently: therefore we
2256 		 * don't want to insert it in the unstable tree, and we don't want
2257 		 * to waste our time searching for something identical to it there.
2258 		 */
2259 		checksum = calc_checksum(page);
2260 		if (rmap_item->oldchecksum != checksum) {
2261 			rmap_item->oldchecksum = checksum;
2262 			return;
2263 		}
2264 
2265 		if (!try_to_merge_with_zero_page(rmap_item, page))
2266 			return;
2267 	}
2268 
2269 	/* Start by searching for the folio in the stable tree */
2270 	kfolio = stable_tree_search(page);
2271 	if (&kfolio->page == page && rmap_item->head == stable_node) {
2272 		folio_put(kfolio);
2273 		return;
2274 	}
2275 
2276 	remove_rmap_item_from_tree(rmap_item);
2277 
2278 	if (kfolio) {
2279 		if (kfolio == ERR_PTR(-EBUSY))
2280 			return;
2281 
2282 		err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2283 		if (!err) {
2284 			/*
2285 			 * The page was successfully merged:
2286 			 * add its rmap_item to the stable tree.
2287 			 */
2288 			folio_lock(kfolio);
2289 			stable_tree_append(rmap_item, folio_stable_node(kfolio),
2290 					   max_page_sharing_bypass);
2291 			folio_unlock(kfolio);
2292 		}
2293 		folio_put(kfolio);
2294 		return;
2295 	}
2296 
2297 	tree_rmap_item =
2298 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2299 	if (tree_rmap_item) {
2300 		bool split;
2301 
2302 		kfolio = try_to_merge_two_pages(rmap_item, page,
2303 						tree_rmap_item, tree_page);
2304 		/*
2305 		 * If both pages we tried to merge belong to the same compound
2306 		 * page, then we actually ended up increasing the reference
2307 		 * count of the same compound page twice, and split_huge_page
2308 		 * failed.
2309 		 * Here we set a flag if that happened, and we use it later to
2310 		 * try split_huge_page again. Since we call put_page right
2311 		 * afterwards, the reference count will be correct and
2312 		 * split_huge_page should succeed.
2313 		 */
2314 		split = PageTransCompound(page)
2315 			&& compound_head(page) == compound_head(tree_page);
2316 		put_page(tree_page);
2317 		if (kfolio) {
2318 			/*
2319 			 * The pages were successfully merged: insert new
2320 			 * node in the stable tree and add both rmap_items.
2321 			 */
2322 			folio_lock(kfolio);
2323 			stable_node = stable_tree_insert(kfolio);
2324 			if (stable_node) {
2325 				stable_tree_append(tree_rmap_item, stable_node,
2326 						   false);
2327 				stable_tree_append(rmap_item, stable_node,
2328 						   false);
2329 			}
2330 			folio_unlock(kfolio);
2331 
2332 			/*
2333 			 * If we fail to insert the page into the stable tree,
2334 			 * we will have 2 virtual addresses that are pointing
2335 			 * to a ksm page left outside the stable tree,
2336 			 * in which case we need to break_cow on both.
2337 			 */
2338 			if (!stable_node) {
2339 				break_cow(tree_rmap_item);
2340 				break_cow(rmap_item);
2341 			}
2342 		} else if (split) {
2343 			/*
2344 			 * We are here if we tried to merge two pages and
2345 			 * failed because they both belonged to the same
2346 			 * compound page. We will split the page now, but no
2347 			 * merging will take place.
2348 			 * We do not want to add the cost of a full lock; if
2349 			 * the page is locked, it is better to skip it and
2350 			 * perhaps try again later.
2351 			 */
2352 			if (!trylock_page(page))
2353 				return;
2354 			split_huge_page(page);
2355 			unlock_page(page);
2356 		}
2357 	}
2358 }
2359 
get_next_rmap_item(struct ksm_mm_slot * mm_slot,struct ksm_rmap_item ** rmap_list,unsigned long addr)2360 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2361 					    struct ksm_rmap_item **rmap_list,
2362 					    unsigned long addr)
2363 {
2364 	struct ksm_rmap_item *rmap_item;
2365 
2366 	while (*rmap_list) {
2367 		rmap_item = *rmap_list;
2368 		if ((rmap_item->address & PAGE_MASK) == addr)
2369 			return rmap_item;
2370 		if (rmap_item->address > addr)
2371 			break;
2372 		*rmap_list = rmap_item->rmap_list;
2373 		remove_rmap_item_from_tree(rmap_item);
2374 		free_rmap_item(rmap_item);
2375 	}
2376 
2377 	rmap_item = alloc_rmap_item();
2378 	if (rmap_item) {
2379 		/* It has already been zeroed */
2380 		rmap_item->mm = mm_slot->slot.mm;
2381 		rmap_item->mm->ksm_rmap_items++;
2382 		rmap_item->address = addr;
2383 		rmap_item->rmap_list = *rmap_list;
2384 		*rmap_list = rmap_item;
2385 	}
2386 	return rmap_item;
2387 }
2388 
2389 /*
2390  * Calculate skip age for the ksm page age. The age determines how often
2391  * de-duplicating has already been tried unsuccessfully. If the age is
2392  * smaller, the scanning of this page is skipped for less scans.
2393  *
2394  * @age: rmap_item age of page
2395  */
skip_age(rmap_age_t age)2396 static unsigned int skip_age(rmap_age_t age)
2397 {
2398 	if (age <= 3)
2399 		return 1;
2400 	if (age <= 5)
2401 		return 2;
2402 	if (age <= 8)
2403 		return 4;
2404 
2405 	return 8;
2406 }
2407 
2408 /*
2409  * Determines if a page should be skipped for the current scan.
2410  *
2411  * @folio: folio containing the page to check
2412  * @rmap_item: associated rmap_item of page
2413  */
should_skip_rmap_item(struct folio * folio,struct ksm_rmap_item * rmap_item)2414 static bool should_skip_rmap_item(struct folio *folio,
2415 				  struct ksm_rmap_item *rmap_item)
2416 {
2417 	rmap_age_t age;
2418 
2419 	if (!ksm_smart_scan)
2420 		return false;
2421 
2422 	/*
2423 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2424 	 * will essentially ignore them, but we still have to process them
2425 	 * properly.
2426 	 */
2427 	if (folio_test_ksm(folio))
2428 		return false;
2429 
2430 	age = rmap_item->age;
2431 	if (age != U8_MAX)
2432 		rmap_item->age++;
2433 
2434 	/*
2435 	 * Smaller ages are not skipped, they need to get a chance to go
2436 	 * through the different phases of the KSM merging.
2437 	 */
2438 	if (age < 3)
2439 		return false;
2440 
2441 	/*
2442 	 * Are we still allowed to skip? If not, then don't skip it
2443 	 * and determine how much more often we are allowed to skip next.
2444 	 */
2445 	if (!rmap_item->remaining_skips) {
2446 		rmap_item->remaining_skips = skip_age(age);
2447 		return false;
2448 	}
2449 
2450 	/* Skip this page */
2451 	ksm_pages_skipped++;
2452 	rmap_item->remaining_skips--;
2453 	remove_rmap_item_from_tree(rmap_item);
2454 	return true;
2455 }
2456 
scan_get_next_rmap_item(struct page ** page)2457 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2458 {
2459 	struct mm_struct *mm;
2460 	struct ksm_mm_slot *mm_slot;
2461 	struct mm_slot *slot;
2462 	struct vm_area_struct *vma;
2463 	struct ksm_rmap_item *rmap_item;
2464 	struct vma_iterator vmi;
2465 	int nid;
2466 
2467 	if (list_empty(&ksm_mm_head.slot.mm_node))
2468 		return NULL;
2469 
2470 	mm_slot = ksm_scan.mm_slot;
2471 	if (mm_slot == &ksm_mm_head) {
2472 		advisor_start_scan();
2473 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2474 
2475 		/*
2476 		 * A number of pages can hang around indefinitely in per-cpu
2477 		 * LRU cache, raised page count preventing write_protect_page
2478 		 * from merging them.  Though it doesn't really matter much,
2479 		 * it is puzzling to see some stuck in pages_volatile until
2480 		 * other activity jostles them out, and they also prevented
2481 		 * LTP's KSM test from succeeding deterministically; so drain
2482 		 * them here (here rather than on entry to ksm_do_scan(),
2483 		 * so we don't IPI too often when pages_to_scan is set low).
2484 		 */
2485 		lru_add_drain_all();
2486 
2487 		/*
2488 		 * Whereas stale stable_nodes on the stable_tree itself
2489 		 * get pruned in the regular course of stable_tree_search(),
2490 		 * those moved out to the migrate_nodes list can accumulate:
2491 		 * so prune them once before each full scan.
2492 		 */
2493 		if (!ksm_merge_across_nodes) {
2494 			struct ksm_stable_node *stable_node, *next;
2495 			struct folio *folio;
2496 
2497 			list_for_each_entry_safe(stable_node, next,
2498 						 &migrate_nodes, list) {
2499 				folio = ksm_get_folio(stable_node,
2500 						      KSM_GET_FOLIO_NOLOCK);
2501 				if (folio)
2502 					folio_put(folio);
2503 				cond_resched();
2504 			}
2505 		}
2506 
2507 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2508 			root_unstable_tree[nid] = RB_ROOT;
2509 
2510 		spin_lock(&ksm_mmlist_lock);
2511 		slot = list_entry(mm_slot->slot.mm_node.next,
2512 				  struct mm_slot, mm_node);
2513 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2514 		ksm_scan.mm_slot = mm_slot;
2515 		spin_unlock(&ksm_mmlist_lock);
2516 		/*
2517 		 * Although we tested list_empty() above, a racing __ksm_exit
2518 		 * of the last mm on the list may have removed it since then.
2519 		 */
2520 		if (mm_slot == &ksm_mm_head)
2521 			return NULL;
2522 next_mm:
2523 		ksm_scan.address = 0;
2524 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2525 	}
2526 
2527 	slot = &mm_slot->slot;
2528 	mm = slot->mm;
2529 	vma_iter_init(&vmi, mm, ksm_scan.address);
2530 
2531 	mmap_read_lock(mm);
2532 	if (ksm_test_exit(mm))
2533 		goto no_vmas;
2534 
2535 	for_each_vma(vmi, vma) {
2536 		if (!(vma->vm_flags & VM_MERGEABLE))
2537 			continue;
2538 		if (ksm_scan.address < vma->vm_start)
2539 			ksm_scan.address = vma->vm_start;
2540 		if (!vma->anon_vma)
2541 			ksm_scan.address = vma->vm_end;
2542 
2543 		while (ksm_scan.address < vma->vm_end) {
2544 			struct page *tmp_page = NULL;
2545 			struct folio_walk fw;
2546 			struct folio *folio;
2547 
2548 			if (ksm_test_exit(mm))
2549 				break;
2550 
2551 			folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2552 			if (folio) {
2553 				if (!folio_is_zone_device(folio) &&
2554 				     folio_test_anon(folio)) {
2555 					folio_get(folio);
2556 					tmp_page = fw.page;
2557 				}
2558 				folio_walk_end(&fw, vma);
2559 			}
2560 
2561 			if (tmp_page) {
2562 				flush_anon_page(vma, tmp_page, ksm_scan.address);
2563 				flush_dcache_page(tmp_page);
2564 				rmap_item = get_next_rmap_item(mm_slot,
2565 					ksm_scan.rmap_list, ksm_scan.address);
2566 				if (rmap_item) {
2567 					ksm_scan.rmap_list =
2568 							&rmap_item->rmap_list;
2569 
2570 					if (should_skip_rmap_item(folio, rmap_item)) {
2571 						folio_put(folio);
2572 						goto next_page;
2573 					}
2574 
2575 					ksm_scan.address += PAGE_SIZE;
2576 					*page = tmp_page;
2577 				} else {
2578 					folio_put(folio);
2579 				}
2580 				mmap_read_unlock(mm);
2581 				return rmap_item;
2582 			}
2583 next_page:
2584 			ksm_scan.address += PAGE_SIZE;
2585 			cond_resched();
2586 		}
2587 	}
2588 
2589 	if (ksm_test_exit(mm)) {
2590 no_vmas:
2591 		ksm_scan.address = 0;
2592 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2593 	}
2594 	/*
2595 	 * Nuke all the rmap_items that are above this current rmap:
2596 	 * because there were no VM_MERGEABLE vmas with such addresses.
2597 	 */
2598 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2599 
2600 	spin_lock(&ksm_mmlist_lock);
2601 	slot = list_entry(mm_slot->slot.mm_node.next,
2602 			  struct mm_slot, mm_node);
2603 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2604 	if (ksm_scan.address == 0) {
2605 		/*
2606 		 * We've completed a full scan of all vmas, holding mmap_lock
2607 		 * throughout, and found no VM_MERGEABLE: so do the same as
2608 		 * __ksm_exit does to remove this mm from all our lists now.
2609 		 * This applies either when cleaning up after __ksm_exit
2610 		 * (but beware: we can reach here even before __ksm_exit),
2611 		 * or when all VM_MERGEABLE areas have been unmapped (and
2612 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2613 		 */
2614 		hash_del(&mm_slot->slot.hash);
2615 		list_del(&mm_slot->slot.mm_node);
2616 		spin_unlock(&ksm_mmlist_lock);
2617 
2618 		mm_slot_free(mm_slot_cache, mm_slot);
2619 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2620 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2621 		mmap_read_unlock(mm);
2622 		mmdrop(mm);
2623 	} else {
2624 		mmap_read_unlock(mm);
2625 		/*
2626 		 * mmap_read_unlock(mm) first because after
2627 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2628 		 * already have been freed under us by __ksm_exit()
2629 		 * because the "mm_slot" is still hashed and
2630 		 * ksm_scan.mm_slot doesn't point to it anymore.
2631 		 */
2632 		spin_unlock(&ksm_mmlist_lock);
2633 	}
2634 
2635 	/* Repeat until we've completed scanning the whole list */
2636 	mm_slot = ksm_scan.mm_slot;
2637 	if (mm_slot != &ksm_mm_head)
2638 		goto next_mm;
2639 
2640 	advisor_stop_scan();
2641 
2642 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2643 	ksm_scan.seqnr++;
2644 	return NULL;
2645 }
2646 
2647 /**
2648  * ksm_do_scan  - the ksm scanner main worker function.
2649  * @scan_npages:  number of pages we want to scan before we return.
2650  */
ksm_do_scan(unsigned int scan_npages)2651 static void ksm_do_scan(unsigned int scan_npages)
2652 {
2653 	struct ksm_rmap_item *rmap_item;
2654 	struct page *page;
2655 
2656 	while (scan_npages-- && likely(!freezing(current))) {
2657 		cond_resched();
2658 		rmap_item = scan_get_next_rmap_item(&page);
2659 		if (!rmap_item)
2660 			return;
2661 		cmp_and_merge_page(page, rmap_item);
2662 		put_page(page);
2663 		ksm_pages_scanned++;
2664 	}
2665 }
2666 
ksmd_should_run(void)2667 static int ksmd_should_run(void)
2668 {
2669 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2670 }
2671 
ksm_scan_thread(void * nothing)2672 static int ksm_scan_thread(void *nothing)
2673 {
2674 	unsigned int sleep_ms;
2675 
2676 	set_freezable();
2677 	set_user_nice(current, 5);
2678 
2679 	while (!kthread_should_stop()) {
2680 		mutex_lock(&ksm_thread_mutex);
2681 		wait_while_offlining();
2682 		if (ksmd_should_run())
2683 			ksm_do_scan(ksm_thread_pages_to_scan);
2684 		mutex_unlock(&ksm_thread_mutex);
2685 
2686 		if (ksmd_should_run()) {
2687 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2688 			wait_event_freezable_timeout(ksm_iter_wait,
2689 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2690 				msecs_to_jiffies(sleep_ms));
2691 		} else {
2692 			wait_event_freezable(ksm_thread_wait,
2693 				ksmd_should_run() || kthread_should_stop());
2694 		}
2695 	}
2696 	return 0;
2697 }
2698 
__ksm_add_vma(struct vm_area_struct * vma)2699 static void __ksm_add_vma(struct vm_area_struct *vma)
2700 {
2701 	unsigned long vm_flags = vma->vm_flags;
2702 
2703 	if (vm_flags & VM_MERGEABLE)
2704 		return;
2705 
2706 	if (vma_ksm_compatible(vma))
2707 		vm_flags_set(vma, VM_MERGEABLE);
2708 }
2709 
__ksm_del_vma(struct vm_area_struct * vma)2710 static int __ksm_del_vma(struct vm_area_struct *vma)
2711 {
2712 	int err;
2713 
2714 	if (!(vma->vm_flags & VM_MERGEABLE))
2715 		return 0;
2716 
2717 	if (vma->anon_vma) {
2718 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2719 		if (err)
2720 			return err;
2721 	}
2722 
2723 	vm_flags_clear(vma, VM_MERGEABLE);
2724 	return 0;
2725 }
2726 /**
2727  * ksm_add_vma - Mark vma as mergeable if compatible
2728  *
2729  * @vma:  Pointer to vma
2730  */
ksm_add_vma(struct vm_area_struct * vma)2731 void ksm_add_vma(struct vm_area_struct *vma)
2732 {
2733 	struct mm_struct *mm = vma->vm_mm;
2734 
2735 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2736 		__ksm_add_vma(vma);
2737 }
2738 
ksm_add_vmas(struct mm_struct * mm)2739 static void ksm_add_vmas(struct mm_struct *mm)
2740 {
2741 	struct vm_area_struct *vma;
2742 
2743 	VMA_ITERATOR(vmi, mm, 0);
2744 	for_each_vma(vmi, vma)
2745 		__ksm_add_vma(vma);
2746 }
2747 
ksm_del_vmas(struct mm_struct * mm)2748 static int ksm_del_vmas(struct mm_struct *mm)
2749 {
2750 	struct vm_area_struct *vma;
2751 	int err;
2752 
2753 	VMA_ITERATOR(vmi, mm, 0);
2754 	for_each_vma(vmi, vma) {
2755 		err = __ksm_del_vma(vma);
2756 		if (err)
2757 			return err;
2758 	}
2759 	return 0;
2760 }
2761 
2762 /**
2763  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2764  *                        compatible VMA's
2765  *
2766  * @mm:  Pointer to mm
2767  *
2768  * Returns 0 on success, otherwise error code
2769  */
ksm_enable_merge_any(struct mm_struct * mm)2770 int ksm_enable_merge_any(struct mm_struct *mm)
2771 {
2772 	int err;
2773 
2774 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2775 		return 0;
2776 
2777 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2778 		err = __ksm_enter(mm);
2779 		if (err)
2780 			return err;
2781 	}
2782 
2783 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2784 	ksm_add_vmas(mm);
2785 
2786 	return 0;
2787 }
2788 
2789 /**
2790  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2791  *			   previously enabled via ksm_enable_merge_any().
2792  *
2793  * Disabling merging implies unmerging any merged pages, like setting
2794  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2795  * merging on all compatible VMA's remains enabled.
2796  *
2797  * @mm: Pointer to mm
2798  *
2799  * Returns 0 on success, otherwise error code
2800  */
ksm_disable_merge_any(struct mm_struct * mm)2801 int ksm_disable_merge_any(struct mm_struct *mm)
2802 {
2803 	int err;
2804 
2805 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2806 		return 0;
2807 
2808 	err = ksm_del_vmas(mm);
2809 	if (err) {
2810 		ksm_add_vmas(mm);
2811 		return err;
2812 	}
2813 
2814 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2815 	return 0;
2816 }
2817 
ksm_disable(struct mm_struct * mm)2818 int ksm_disable(struct mm_struct *mm)
2819 {
2820 	mmap_assert_write_locked(mm);
2821 
2822 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2823 		return 0;
2824 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2825 		return ksm_disable_merge_any(mm);
2826 	return ksm_del_vmas(mm);
2827 }
2828 
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2829 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2830 		unsigned long end, int advice, unsigned long *vm_flags)
2831 {
2832 	struct mm_struct *mm = vma->vm_mm;
2833 	int err;
2834 
2835 	switch (advice) {
2836 	case MADV_MERGEABLE:
2837 		if (vma->vm_flags & VM_MERGEABLE)
2838 			return 0;
2839 		if (!vma_ksm_compatible(vma))
2840 			return 0;
2841 
2842 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2843 			err = __ksm_enter(mm);
2844 			if (err)
2845 				return err;
2846 		}
2847 
2848 		*vm_flags |= VM_MERGEABLE;
2849 		break;
2850 
2851 	case MADV_UNMERGEABLE:
2852 		if (!(*vm_flags & VM_MERGEABLE))
2853 			return 0;		/* just ignore the advice */
2854 
2855 		if (vma->anon_vma) {
2856 			err = unmerge_ksm_pages(vma, start, end, true);
2857 			if (err)
2858 				return err;
2859 		}
2860 
2861 		*vm_flags &= ~VM_MERGEABLE;
2862 		break;
2863 	}
2864 
2865 	return 0;
2866 }
2867 EXPORT_SYMBOL_GPL(ksm_madvise);
2868 
__ksm_enter(struct mm_struct * mm)2869 int __ksm_enter(struct mm_struct *mm)
2870 {
2871 	struct ksm_mm_slot *mm_slot;
2872 	struct mm_slot *slot;
2873 	int needs_wakeup;
2874 
2875 	mm_slot = mm_slot_alloc(mm_slot_cache);
2876 	if (!mm_slot)
2877 		return -ENOMEM;
2878 
2879 	slot = &mm_slot->slot;
2880 
2881 	/* Check ksm_run too?  Would need tighter locking */
2882 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2883 
2884 	spin_lock(&ksm_mmlist_lock);
2885 	mm_slot_insert(mm_slots_hash, mm, slot);
2886 	/*
2887 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2888 	 * insert just behind the scanning cursor, to let the area settle
2889 	 * down a little; when fork is followed by immediate exec, we don't
2890 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2891 	 *
2892 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2893 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2894 	 * missed: then we might as well insert at the end of the list.
2895 	 */
2896 	if (ksm_run & KSM_RUN_UNMERGE)
2897 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2898 	else
2899 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2900 	spin_unlock(&ksm_mmlist_lock);
2901 
2902 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2903 	mmgrab(mm);
2904 
2905 	if (needs_wakeup)
2906 		wake_up_interruptible(&ksm_thread_wait);
2907 
2908 	trace_ksm_enter(mm);
2909 	return 0;
2910 }
2911 
__ksm_exit(struct mm_struct * mm)2912 void __ksm_exit(struct mm_struct *mm)
2913 {
2914 	struct ksm_mm_slot *mm_slot;
2915 	struct mm_slot *slot;
2916 	int easy_to_free = 0;
2917 
2918 	/*
2919 	 * This process is exiting: if it's straightforward (as is the
2920 	 * case when ksmd was never running), free mm_slot immediately.
2921 	 * But if it's at the cursor or has rmap_items linked to it, use
2922 	 * mmap_lock to synchronize with any break_cows before pagetables
2923 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2924 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2925 	 */
2926 
2927 	spin_lock(&ksm_mmlist_lock);
2928 	slot = mm_slot_lookup(mm_slots_hash, mm);
2929 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2930 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2931 		if (!mm_slot->rmap_list) {
2932 			hash_del(&slot->hash);
2933 			list_del(&slot->mm_node);
2934 			easy_to_free = 1;
2935 		} else {
2936 			list_move(&slot->mm_node,
2937 				  &ksm_scan.mm_slot->slot.mm_node);
2938 		}
2939 	}
2940 	spin_unlock(&ksm_mmlist_lock);
2941 
2942 	if (easy_to_free) {
2943 		mm_slot_free(mm_slot_cache, mm_slot);
2944 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2945 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2946 		mmdrop(mm);
2947 	} else if (mm_slot) {
2948 		mmap_write_lock(mm);
2949 		mmap_write_unlock(mm);
2950 	}
2951 
2952 	trace_ksm_exit(mm);
2953 }
2954 
ksm_might_need_to_copy(struct folio * folio,struct vm_area_struct * vma,unsigned long addr)2955 struct folio *ksm_might_need_to_copy(struct folio *folio,
2956 			struct vm_area_struct *vma, unsigned long addr)
2957 {
2958 	struct page *page = folio_page(folio, 0);
2959 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2960 	struct folio *new_folio;
2961 
2962 	if (folio_test_large(folio))
2963 		return folio;
2964 
2965 	if (folio_test_ksm(folio)) {
2966 		if (folio_stable_node(folio) &&
2967 		    !(ksm_run & KSM_RUN_UNMERGE))
2968 			return folio;	/* no need to copy it */
2969 	} else if (!anon_vma) {
2970 		return folio;		/* no need to copy it */
2971 	} else if (folio->index == linear_page_index(vma, addr) &&
2972 			anon_vma->root == vma->anon_vma->root) {
2973 		return folio;		/* still no need to copy it */
2974 	}
2975 	if (PageHWPoison(page))
2976 		return ERR_PTR(-EHWPOISON);
2977 	if (!folio_test_uptodate(folio))
2978 		return folio;		/* let do_swap_page report the error */
2979 
2980 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
2981 	if (new_folio &&
2982 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2983 		folio_put(new_folio);
2984 		new_folio = NULL;
2985 	}
2986 	if (new_folio) {
2987 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2988 								addr, vma)) {
2989 			folio_put(new_folio);
2990 			return ERR_PTR(-EHWPOISON);
2991 		}
2992 		folio_set_dirty(new_folio);
2993 		__folio_mark_uptodate(new_folio);
2994 		__folio_set_locked(new_folio);
2995 #ifdef CONFIG_SWAP
2996 		count_vm_event(KSM_SWPIN_COPY);
2997 #endif
2998 	}
2999 
3000 	return new_folio;
3001 }
3002 
rmap_walk_ksm(struct folio * folio,struct rmap_walk_control * rwc)3003 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3004 {
3005 	struct ksm_stable_node *stable_node;
3006 	struct ksm_rmap_item *rmap_item;
3007 	int search_new_forks = 0;
3008 
3009 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3010 
3011 	/*
3012 	 * Rely on the page lock to protect against concurrent modifications
3013 	 * to that page's node of the stable tree.
3014 	 */
3015 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3016 
3017 	stable_node = folio_stable_node(folio);
3018 	if (!stable_node)
3019 		return;
3020 again:
3021 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3022 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3023 		struct anon_vma_chain *vmac;
3024 		struct vm_area_struct *vma;
3025 
3026 		cond_resched();
3027 		if (!anon_vma_trylock_read(anon_vma)) {
3028 			if (rwc->try_lock) {
3029 				rwc->contended = true;
3030 				return;
3031 			}
3032 			anon_vma_lock_read(anon_vma);
3033 		}
3034 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3035 					       0, ULONG_MAX) {
3036 			unsigned long addr;
3037 
3038 			cond_resched();
3039 			vma = vmac->vma;
3040 
3041 			/* Ignore the stable/unstable/sqnr flags */
3042 			addr = rmap_item->address & PAGE_MASK;
3043 
3044 			if (addr < vma->vm_start || addr >= vma->vm_end)
3045 				continue;
3046 			/*
3047 			 * Initially we examine only the vma which covers this
3048 			 * rmap_item; but later, if there is still work to do,
3049 			 * we examine covering vmas in other mms: in case they
3050 			 * were forked from the original since ksmd passed.
3051 			 */
3052 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3053 				continue;
3054 
3055 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3056 				continue;
3057 
3058 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3059 				anon_vma_unlock_read(anon_vma);
3060 				return;
3061 			}
3062 			if (rwc->done && rwc->done(folio)) {
3063 				anon_vma_unlock_read(anon_vma);
3064 				return;
3065 			}
3066 		}
3067 		anon_vma_unlock_read(anon_vma);
3068 	}
3069 	if (!search_new_forks++)
3070 		goto again;
3071 }
3072 
3073 #ifdef CONFIG_MEMORY_FAILURE
3074 /*
3075  * Collect processes when the error hit an ksm page.
3076  */
collect_procs_ksm(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)3077 void collect_procs_ksm(const struct folio *folio, const struct page *page,
3078 		struct list_head *to_kill, int force_early)
3079 {
3080 	struct ksm_stable_node *stable_node;
3081 	struct ksm_rmap_item *rmap_item;
3082 	struct vm_area_struct *vma;
3083 	struct task_struct *tsk;
3084 
3085 	stable_node = folio_stable_node(folio);
3086 	if (!stable_node)
3087 		return;
3088 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3089 		struct anon_vma *av = rmap_item->anon_vma;
3090 
3091 		anon_vma_lock_read(av);
3092 		rcu_read_lock();
3093 		for_each_process(tsk) {
3094 			struct anon_vma_chain *vmac;
3095 			unsigned long addr;
3096 			struct task_struct *t =
3097 				task_early_kill(tsk, force_early);
3098 			if (!t)
3099 				continue;
3100 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3101 						       ULONG_MAX)
3102 			{
3103 				vma = vmac->vma;
3104 				if (vma->vm_mm == t->mm) {
3105 					addr = rmap_item->address & PAGE_MASK;
3106 					add_to_kill_ksm(t, page, vma, to_kill,
3107 							addr);
3108 				}
3109 			}
3110 		}
3111 		rcu_read_unlock();
3112 		anon_vma_unlock_read(av);
3113 	}
3114 }
3115 #endif
3116 
3117 #ifdef CONFIG_MIGRATION
folio_migrate_ksm(struct folio * newfolio,struct folio * folio)3118 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3119 {
3120 	struct ksm_stable_node *stable_node;
3121 
3122 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3123 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3124 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3125 
3126 	stable_node = folio_stable_node(folio);
3127 	if (stable_node) {
3128 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3129 		stable_node->kpfn = folio_pfn(newfolio);
3130 		/*
3131 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3132 		 * to make sure that the new stable_node->kpfn is visible
3133 		 * to ksm_get_folio() before it can see that folio->mapping
3134 		 * has gone stale (or that the swapcache flag has been cleared).
3135 		 */
3136 		smp_wmb();
3137 		folio_set_stable_node(folio, NULL);
3138 	}
3139 }
3140 #endif /* CONFIG_MIGRATION */
3141 
3142 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)3143 static void wait_while_offlining(void)
3144 {
3145 	while (ksm_run & KSM_RUN_OFFLINE) {
3146 		mutex_unlock(&ksm_thread_mutex);
3147 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3148 			    TASK_UNINTERRUPTIBLE);
3149 		mutex_lock(&ksm_thread_mutex);
3150 	}
3151 }
3152 
stable_node_dup_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)3153 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3154 					 unsigned long start_pfn,
3155 					 unsigned long end_pfn)
3156 {
3157 	if (stable_node->kpfn >= start_pfn &&
3158 	    stable_node->kpfn < end_pfn) {
3159 		/*
3160 		 * Don't ksm_get_folio, page has already gone:
3161 		 * which is why we keep kpfn instead of page*
3162 		 */
3163 		remove_node_from_stable_tree(stable_node);
3164 		return true;
3165 	}
3166 	return false;
3167 }
3168 
stable_node_chain_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)3169 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3170 					   unsigned long start_pfn,
3171 					   unsigned long end_pfn,
3172 					   struct rb_root *root)
3173 {
3174 	struct ksm_stable_node *dup;
3175 	struct hlist_node *hlist_safe;
3176 
3177 	if (!is_stable_node_chain(stable_node)) {
3178 		VM_BUG_ON(is_stable_node_dup(stable_node));
3179 		return stable_node_dup_remove_range(stable_node, start_pfn,
3180 						    end_pfn);
3181 	}
3182 
3183 	hlist_for_each_entry_safe(dup, hlist_safe,
3184 				  &stable_node->hlist, hlist_dup) {
3185 		VM_BUG_ON(!is_stable_node_dup(dup));
3186 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3187 	}
3188 	if (hlist_empty(&stable_node->hlist)) {
3189 		free_stable_node_chain(stable_node, root);
3190 		return true; /* notify caller that tree was rebalanced */
3191 	} else
3192 		return false;
3193 }
3194 
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)3195 static void ksm_check_stable_tree(unsigned long start_pfn,
3196 				  unsigned long end_pfn)
3197 {
3198 	struct ksm_stable_node *stable_node, *next;
3199 	struct rb_node *node;
3200 	int nid;
3201 
3202 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3203 		node = rb_first(root_stable_tree + nid);
3204 		while (node) {
3205 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3206 			if (stable_node_chain_remove_range(stable_node,
3207 							   start_pfn, end_pfn,
3208 							   root_stable_tree +
3209 							   nid))
3210 				node = rb_first(root_stable_tree + nid);
3211 			else
3212 				node = rb_next(node);
3213 			cond_resched();
3214 		}
3215 	}
3216 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3217 		if (stable_node->kpfn >= start_pfn &&
3218 		    stable_node->kpfn < end_pfn)
3219 			remove_node_from_stable_tree(stable_node);
3220 		cond_resched();
3221 	}
3222 }
3223 
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)3224 static int ksm_memory_callback(struct notifier_block *self,
3225 			       unsigned long action, void *arg)
3226 {
3227 	struct memory_notify *mn = arg;
3228 
3229 	switch (action) {
3230 	case MEM_GOING_OFFLINE:
3231 		/*
3232 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3233 		 * and remove_all_stable_nodes() while memory is going offline:
3234 		 * it is unsafe for them to touch the stable tree at this time.
3235 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3236 		 * which do not need the ksm_thread_mutex are all safe.
3237 		 */
3238 		mutex_lock(&ksm_thread_mutex);
3239 		ksm_run |= KSM_RUN_OFFLINE;
3240 		mutex_unlock(&ksm_thread_mutex);
3241 		break;
3242 
3243 	case MEM_OFFLINE:
3244 		/*
3245 		 * Most of the work is done by page migration; but there might
3246 		 * be a few stable_nodes left over, still pointing to struct
3247 		 * pages which have been offlined: prune those from the tree,
3248 		 * otherwise ksm_get_folio() might later try to access a
3249 		 * non-existent struct page.
3250 		 */
3251 		ksm_check_stable_tree(mn->start_pfn,
3252 				      mn->start_pfn + mn->nr_pages);
3253 		fallthrough;
3254 	case MEM_CANCEL_OFFLINE:
3255 		mutex_lock(&ksm_thread_mutex);
3256 		ksm_run &= ~KSM_RUN_OFFLINE;
3257 		mutex_unlock(&ksm_thread_mutex);
3258 
3259 		smp_mb();	/* wake_up_bit advises this */
3260 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3261 		break;
3262 	}
3263 	return NOTIFY_OK;
3264 }
3265 #else
wait_while_offlining(void)3266 static void wait_while_offlining(void)
3267 {
3268 }
3269 #endif /* CONFIG_MEMORY_HOTREMOVE */
3270 
3271 #ifdef CONFIG_PROC_FS
3272 /*
3273  * The process is mergeable only if any VMA is currently
3274  * applicable to KSM.
3275  *
3276  * The mmap lock must be held in read mode.
3277  */
ksm_process_mergeable(struct mm_struct * mm)3278 bool ksm_process_mergeable(struct mm_struct *mm)
3279 {
3280 	struct vm_area_struct *vma;
3281 
3282 	mmap_assert_locked(mm);
3283 	VMA_ITERATOR(vmi, mm, 0);
3284 	for_each_vma(vmi, vma)
3285 		if (vma->vm_flags & VM_MERGEABLE)
3286 			return true;
3287 
3288 	return false;
3289 }
3290 
ksm_process_profit(struct mm_struct * mm)3291 long ksm_process_profit(struct mm_struct *mm)
3292 {
3293 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3294 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3295 }
3296 #endif /* CONFIG_PROC_FS */
3297 
3298 #ifdef CONFIG_SYSFS
3299 /*
3300  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3301  */
3302 
3303 #define KSM_ATTR_RO(_name) \
3304 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3305 #define KSM_ATTR(_name) \
3306 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3307 
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3308 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3309 				    struct kobj_attribute *attr, char *buf)
3310 {
3311 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3312 }
3313 
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3314 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3315 				     struct kobj_attribute *attr,
3316 				     const char *buf, size_t count)
3317 {
3318 	unsigned int msecs;
3319 	int err;
3320 
3321 	err = kstrtouint(buf, 10, &msecs);
3322 	if (err)
3323 		return -EINVAL;
3324 
3325 	ksm_thread_sleep_millisecs = msecs;
3326 	wake_up_interruptible(&ksm_iter_wait);
3327 
3328 	return count;
3329 }
3330 KSM_ATTR(sleep_millisecs);
3331 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3332 static ssize_t pages_to_scan_show(struct kobject *kobj,
3333 				  struct kobj_attribute *attr, char *buf)
3334 {
3335 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3336 }
3337 
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3338 static ssize_t pages_to_scan_store(struct kobject *kobj,
3339 				   struct kobj_attribute *attr,
3340 				   const char *buf, size_t count)
3341 {
3342 	unsigned int nr_pages;
3343 	int err;
3344 
3345 	if (ksm_advisor != KSM_ADVISOR_NONE)
3346 		return -EINVAL;
3347 
3348 	err = kstrtouint(buf, 10, &nr_pages);
3349 	if (err)
3350 		return -EINVAL;
3351 
3352 	ksm_thread_pages_to_scan = nr_pages;
3353 
3354 	return count;
3355 }
3356 KSM_ATTR(pages_to_scan);
3357 
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3358 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3359 			char *buf)
3360 {
3361 	return sysfs_emit(buf, "%lu\n", ksm_run);
3362 }
3363 
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3364 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3365 			 const char *buf, size_t count)
3366 {
3367 	unsigned int flags;
3368 	int err;
3369 
3370 	err = kstrtouint(buf, 10, &flags);
3371 	if (err)
3372 		return -EINVAL;
3373 	if (flags > KSM_RUN_UNMERGE)
3374 		return -EINVAL;
3375 
3376 	/*
3377 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3378 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3379 	 * breaking COW to free the pages_shared (but leaves mm_slots
3380 	 * on the list for when ksmd may be set running again).
3381 	 */
3382 
3383 	mutex_lock(&ksm_thread_mutex);
3384 	wait_while_offlining();
3385 	if (ksm_run != flags) {
3386 		ksm_run = flags;
3387 		if (flags & KSM_RUN_UNMERGE) {
3388 			set_current_oom_origin();
3389 			err = unmerge_and_remove_all_rmap_items();
3390 			clear_current_oom_origin();
3391 			if (err) {
3392 				ksm_run = KSM_RUN_STOP;
3393 				count = err;
3394 			}
3395 		}
3396 	}
3397 	mutex_unlock(&ksm_thread_mutex);
3398 
3399 	if (flags & KSM_RUN_MERGE)
3400 		wake_up_interruptible(&ksm_thread_wait);
3401 
3402 	return count;
3403 }
3404 KSM_ATTR(run);
3405 
3406 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3407 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3408 				       struct kobj_attribute *attr, char *buf)
3409 {
3410 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3411 }
3412 
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3413 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3414 				   struct kobj_attribute *attr,
3415 				   const char *buf, size_t count)
3416 {
3417 	int err;
3418 	unsigned long knob;
3419 
3420 	err = kstrtoul(buf, 10, &knob);
3421 	if (err)
3422 		return err;
3423 	if (knob > 1)
3424 		return -EINVAL;
3425 
3426 	mutex_lock(&ksm_thread_mutex);
3427 	wait_while_offlining();
3428 	if (ksm_merge_across_nodes != knob) {
3429 		if (ksm_pages_shared || remove_all_stable_nodes())
3430 			err = -EBUSY;
3431 		else if (root_stable_tree == one_stable_tree) {
3432 			struct rb_root *buf;
3433 			/*
3434 			 * This is the first time that we switch away from the
3435 			 * default of merging across nodes: must now allocate
3436 			 * a buffer to hold as many roots as may be needed.
3437 			 * Allocate stable and unstable together:
3438 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3439 			 */
3440 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3441 				      GFP_KERNEL);
3442 			/* Let us assume that RB_ROOT is NULL is zero */
3443 			if (!buf)
3444 				err = -ENOMEM;
3445 			else {
3446 				root_stable_tree = buf;
3447 				root_unstable_tree = buf + nr_node_ids;
3448 				/* Stable tree is empty but not the unstable */
3449 				root_unstable_tree[0] = one_unstable_tree[0];
3450 			}
3451 		}
3452 		if (!err) {
3453 			ksm_merge_across_nodes = knob;
3454 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3455 		}
3456 	}
3457 	mutex_unlock(&ksm_thread_mutex);
3458 
3459 	return err ? err : count;
3460 }
3461 KSM_ATTR(merge_across_nodes);
3462 #endif
3463 
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3464 static ssize_t use_zero_pages_show(struct kobject *kobj,
3465 				   struct kobj_attribute *attr, char *buf)
3466 {
3467 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3468 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3469 static ssize_t use_zero_pages_store(struct kobject *kobj,
3470 				   struct kobj_attribute *attr,
3471 				   const char *buf, size_t count)
3472 {
3473 	int err;
3474 	bool value;
3475 
3476 	err = kstrtobool(buf, &value);
3477 	if (err)
3478 		return -EINVAL;
3479 
3480 	ksm_use_zero_pages = value;
3481 
3482 	return count;
3483 }
3484 KSM_ATTR(use_zero_pages);
3485 
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3486 static ssize_t max_page_sharing_show(struct kobject *kobj,
3487 				     struct kobj_attribute *attr, char *buf)
3488 {
3489 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3490 }
3491 
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3492 static ssize_t max_page_sharing_store(struct kobject *kobj,
3493 				      struct kobj_attribute *attr,
3494 				      const char *buf, size_t count)
3495 {
3496 	int err;
3497 	int knob;
3498 
3499 	err = kstrtoint(buf, 10, &knob);
3500 	if (err)
3501 		return err;
3502 	/*
3503 	 * When a KSM page is created it is shared by 2 mappings. This
3504 	 * being a signed comparison, it implicitly verifies it's not
3505 	 * negative.
3506 	 */
3507 	if (knob < 2)
3508 		return -EINVAL;
3509 
3510 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3511 		return count;
3512 
3513 	mutex_lock(&ksm_thread_mutex);
3514 	wait_while_offlining();
3515 	if (ksm_max_page_sharing != knob) {
3516 		if (ksm_pages_shared || remove_all_stable_nodes())
3517 			err = -EBUSY;
3518 		else
3519 			ksm_max_page_sharing = knob;
3520 	}
3521 	mutex_unlock(&ksm_thread_mutex);
3522 
3523 	return err ? err : count;
3524 }
3525 KSM_ATTR(max_page_sharing);
3526 
pages_scanned_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3527 static ssize_t pages_scanned_show(struct kobject *kobj,
3528 				  struct kobj_attribute *attr, char *buf)
3529 {
3530 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3531 }
3532 KSM_ATTR_RO(pages_scanned);
3533 
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3534 static ssize_t pages_shared_show(struct kobject *kobj,
3535 				 struct kobj_attribute *attr, char *buf)
3536 {
3537 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3538 }
3539 KSM_ATTR_RO(pages_shared);
3540 
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3541 static ssize_t pages_sharing_show(struct kobject *kobj,
3542 				  struct kobj_attribute *attr, char *buf)
3543 {
3544 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3545 }
3546 KSM_ATTR_RO(pages_sharing);
3547 
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3548 static ssize_t pages_unshared_show(struct kobject *kobj,
3549 				   struct kobj_attribute *attr, char *buf)
3550 {
3551 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3552 }
3553 KSM_ATTR_RO(pages_unshared);
3554 
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3555 static ssize_t pages_volatile_show(struct kobject *kobj,
3556 				   struct kobj_attribute *attr, char *buf)
3557 {
3558 	long ksm_pages_volatile;
3559 
3560 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3561 				- ksm_pages_sharing - ksm_pages_unshared;
3562 	/*
3563 	 * It was not worth any locking to calculate that statistic,
3564 	 * but it might therefore sometimes be negative: conceal that.
3565 	 */
3566 	if (ksm_pages_volatile < 0)
3567 		ksm_pages_volatile = 0;
3568 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3569 }
3570 KSM_ATTR_RO(pages_volatile);
3571 
pages_skipped_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3572 static ssize_t pages_skipped_show(struct kobject *kobj,
3573 				  struct kobj_attribute *attr, char *buf)
3574 {
3575 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3576 }
3577 KSM_ATTR_RO(pages_skipped);
3578 
ksm_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3579 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3580 				struct kobj_attribute *attr, char *buf)
3581 {
3582 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3583 }
3584 KSM_ATTR_RO(ksm_zero_pages);
3585 
general_profit_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3586 static ssize_t general_profit_show(struct kobject *kobj,
3587 				   struct kobj_attribute *attr, char *buf)
3588 {
3589 	long general_profit;
3590 
3591 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3592 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3593 
3594 	return sysfs_emit(buf, "%ld\n", general_profit);
3595 }
3596 KSM_ATTR_RO(general_profit);
3597 
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3598 static ssize_t stable_node_dups_show(struct kobject *kobj,
3599 				     struct kobj_attribute *attr, char *buf)
3600 {
3601 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3602 }
3603 KSM_ATTR_RO(stable_node_dups);
3604 
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3605 static ssize_t stable_node_chains_show(struct kobject *kobj,
3606 				       struct kobj_attribute *attr, char *buf)
3607 {
3608 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3609 }
3610 KSM_ATTR_RO(stable_node_chains);
3611 
3612 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3613 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3614 					struct kobj_attribute *attr,
3615 					char *buf)
3616 {
3617 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3618 }
3619 
3620 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3621 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3622 					 struct kobj_attribute *attr,
3623 					 const char *buf, size_t count)
3624 {
3625 	unsigned int msecs;
3626 	int err;
3627 
3628 	err = kstrtouint(buf, 10, &msecs);
3629 	if (err)
3630 		return -EINVAL;
3631 
3632 	ksm_stable_node_chains_prune_millisecs = msecs;
3633 
3634 	return count;
3635 }
3636 KSM_ATTR(stable_node_chains_prune_millisecs);
3637 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3638 static ssize_t full_scans_show(struct kobject *kobj,
3639 			       struct kobj_attribute *attr, char *buf)
3640 {
3641 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3642 }
3643 KSM_ATTR_RO(full_scans);
3644 
smart_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3645 static ssize_t smart_scan_show(struct kobject *kobj,
3646 			       struct kobj_attribute *attr, char *buf)
3647 {
3648 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3649 }
3650 
smart_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3651 static ssize_t smart_scan_store(struct kobject *kobj,
3652 				struct kobj_attribute *attr,
3653 				const char *buf, size_t count)
3654 {
3655 	int err;
3656 	bool value;
3657 
3658 	err = kstrtobool(buf, &value);
3659 	if (err)
3660 		return -EINVAL;
3661 
3662 	ksm_smart_scan = value;
3663 	return count;
3664 }
3665 KSM_ATTR(smart_scan);
3666 
advisor_mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3667 static ssize_t advisor_mode_show(struct kobject *kobj,
3668 				 struct kobj_attribute *attr, char *buf)
3669 {
3670 	const char *output;
3671 
3672 	if (ksm_advisor == KSM_ADVISOR_NONE)
3673 		output = "[none] scan-time";
3674 	else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3675 		output = "none [scan-time]";
3676 
3677 	return sysfs_emit(buf, "%s\n", output);
3678 }
3679 
advisor_mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3680 static ssize_t advisor_mode_store(struct kobject *kobj,
3681 				  struct kobj_attribute *attr, const char *buf,
3682 				  size_t count)
3683 {
3684 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3685 
3686 	if (sysfs_streq("scan-time", buf))
3687 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3688 	else if (sysfs_streq("none", buf))
3689 		ksm_advisor = KSM_ADVISOR_NONE;
3690 	else
3691 		return -EINVAL;
3692 
3693 	/* Set advisor default values */
3694 	if (curr_advisor != ksm_advisor)
3695 		set_advisor_defaults();
3696 
3697 	return count;
3698 }
3699 KSM_ATTR(advisor_mode);
3700 
advisor_max_cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3701 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3702 				    struct kobj_attribute *attr, char *buf)
3703 {
3704 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3705 }
3706 
advisor_max_cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3707 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3708 				     struct kobj_attribute *attr,
3709 				     const char *buf, size_t count)
3710 {
3711 	int err;
3712 	unsigned long value;
3713 
3714 	err = kstrtoul(buf, 10, &value);
3715 	if (err)
3716 		return -EINVAL;
3717 
3718 	ksm_advisor_max_cpu = value;
3719 	return count;
3720 }
3721 KSM_ATTR(advisor_max_cpu);
3722 
advisor_min_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3723 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3724 					struct kobj_attribute *attr, char *buf)
3725 {
3726 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3727 }
3728 
advisor_min_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3729 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3730 					struct kobj_attribute *attr,
3731 					const char *buf, size_t count)
3732 {
3733 	int err;
3734 	unsigned long value;
3735 
3736 	err = kstrtoul(buf, 10, &value);
3737 	if (err)
3738 		return -EINVAL;
3739 
3740 	ksm_advisor_min_pages_to_scan = value;
3741 	return count;
3742 }
3743 KSM_ATTR(advisor_min_pages_to_scan);
3744 
advisor_max_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3745 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3746 					struct kobj_attribute *attr, char *buf)
3747 {
3748 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3749 }
3750 
advisor_max_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3751 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3752 					struct kobj_attribute *attr,
3753 					const char *buf, size_t count)
3754 {
3755 	int err;
3756 	unsigned long value;
3757 
3758 	err = kstrtoul(buf, 10, &value);
3759 	if (err)
3760 		return -EINVAL;
3761 
3762 	ksm_advisor_max_pages_to_scan = value;
3763 	return count;
3764 }
3765 KSM_ATTR(advisor_max_pages_to_scan);
3766 
advisor_target_scan_time_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3767 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3768 					     struct kobj_attribute *attr, char *buf)
3769 {
3770 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3771 }
3772 
advisor_target_scan_time_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3773 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3774 					      struct kobj_attribute *attr,
3775 					      const char *buf, size_t count)
3776 {
3777 	int err;
3778 	unsigned long value;
3779 
3780 	err = kstrtoul(buf, 10, &value);
3781 	if (err)
3782 		return -EINVAL;
3783 	if (value < 1)
3784 		return -EINVAL;
3785 
3786 	ksm_advisor_target_scan_time = value;
3787 	return count;
3788 }
3789 KSM_ATTR(advisor_target_scan_time);
3790 
3791 static struct attribute *ksm_attrs[] = {
3792 	&sleep_millisecs_attr.attr,
3793 	&pages_to_scan_attr.attr,
3794 	&run_attr.attr,
3795 	&pages_scanned_attr.attr,
3796 	&pages_shared_attr.attr,
3797 	&pages_sharing_attr.attr,
3798 	&pages_unshared_attr.attr,
3799 	&pages_volatile_attr.attr,
3800 	&pages_skipped_attr.attr,
3801 	&ksm_zero_pages_attr.attr,
3802 	&full_scans_attr.attr,
3803 #ifdef CONFIG_NUMA
3804 	&merge_across_nodes_attr.attr,
3805 #endif
3806 	&max_page_sharing_attr.attr,
3807 	&stable_node_chains_attr.attr,
3808 	&stable_node_dups_attr.attr,
3809 	&stable_node_chains_prune_millisecs_attr.attr,
3810 	&use_zero_pages_attr.attr,
3811 	&general_profit_attr.attr,
3812 	&smart_scan_attr.attr,
3813 	&advisor_mode_attr.attr,
3814 	&advisor_max_cpu_attr.attr,
3815 	&advisor_min_pages_to_scan_attr.attr,
3816 	&advisor_max_pages_to_scan_attr.attr,
3817 	&advisor_target_scan_time_attr.attr,
3818 	NULL,
3819 };
3820 
3821 static const struct attribute_group ksm_attr_group = {
3822 	.attrs = ksm_attrs,
3823 	.name = "ksm",
3824 };
3825 #endif /* CONFIG_SYSFS */
3826 
ksm_init(void)3827 static int __init ksm_init(void)
3828 {
3829 	struct task_struct *ksm_thread;
3830 	int err;
3831 
3832 	/* The correct value depends on page size and endianness */
3833 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3834 	/* Default to false for backwards compatibility */
3835 	ksm_use_zero_pages = false;
3836 
3837 	err = ksm_slab_init();
3838 	if (err)
3839 		goto out;
3840 
3841 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3842 	if (IS_ERR(ksm_thread)) {
3843 		pr_err("ksm: creating kthread failed\n");
3844 		err = PTR_ERR(ksm_thread);
3845 		goto out_free;
3846 	}
3847 
3848 #ifdef CONFIG_SYSFS
3849 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3850 	if (err) {
3851 		pr_err("ksm: register sysfs failed\n");
3852 		kthread_stop(ksm_thread);
3853 		goto out_free;
3854 	}
3855 #else
3856 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3857 
3858 #endif /* CONFIG_SYSFS */
3859 
3860 #ifdef CONFIG_MEMORY_HOTREMOVE
3861 	/* There is no significance to this priority 100 */
3862 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3863 #endif
3864 	return 0;
3865 
3866 out_free:
3867 	ksm_slab_free();
3868 out:
3869 	return err;
3870 }
3871 subsys_initcall(ksm_init);
3872