1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object trees
18  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19  *   object_list is the main list holding the metadata (struct
20  *   kmemleak_object) for the allocated memory blocks. The object trees are
21  *   red black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The kmemleak_object structures are added to
23  *   the object_list and the object tree root in the create_object() function
24  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28  *   that some members of this structure may be protected by other means
29  *   (atomic or kmemleak_lock). This lock is also held when scanning the
30  *   corresponding memory block to avoid the kernel freeing it via the
31  *   kmemleak_free() callback. This is less heavyweight than holding a global
32  *   lock like kmemleak_lock during scanning.
33  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34  *   unreferenced objects at a time. The gray_list contains the objects which
35  *   are already referenced or marked as false positives and need to be
36  *   scanned. This list is only modified during a scanning episode when the
37  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38  *   Note that the kmemleak_object.use_count is incremented when an object is
39  *   added to the gray_list and therefore cannot be freed. This mutex also
40  *   prevents multiple users of the "kmemleak" debugfs file together with
41  *   modifications to the memory scanning parameters including the scan_thread
42  *   pointer
43  *
44  * Locks and mutexes are acquired/nested in the following order:
45  *
46  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47  *
48  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49  * regions.
50  *
51  * The kmemleak_object structures have a use_count incremented or decremented
52  * using the get_object()/put_object() functions. When the use_count becomes
53  * 0, this count can no longer be incremented and put_object() schedules the
54  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55  * function must be protected by rcu_read_lock() to avoid accessing a freed
56  * structure.
57  */
58 
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 	struct hlist_node node;
120 	unsigned long start;
121 	size_t size;
122 };
123 
124 #define KMEMLEAK_GREY	0
125 #define KMEMLEAK_BLACK	-1
126 
127 /*
128  * Structure holding the metadata for each allocated memory block.
129  * Modifications to such objects should be made while holding the
130  * object->lock. Insertions or deletions from object_list, gray_list or
131  * rb_node are already protected by the corresponding locks or mutex (see
132  * the notes on locking above). These objects are reference-counted
133  * (use_count) and freed using the RCU mechanism.
134  */
135 struct kmemleak_object {
136 	raw_spinlock_t lock;
137 	unsigned int flags;		/* object status flags */
138 	struct list_head object_list;
139 	struct list_head gray_list;
140 	struct rb_node rb_node;
141 	struct rcu_head rcu;		/* object_list lockless traversal */
142 	/* object usage count; object freed when use_count == 0 */
143 	atomic_t use_count;
144 	unsigned int del_state;		/* deletion state */
145 	unsigned long pointer;
146 	size_t size;
147 	/* pass surplus references to this pointer */
148 	unsigned long excess_ref;
149 	/* minimum number of a pointers found before it is considered leak */
150 	int min_count;
151 	/* the total number of pointers found pointing to this object */
152 	int count;
153 	/* checksum for detecting modified objects */
154 	u32 checksum;
155 	depot_stack_handle_t trace_handle;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long jiffies;		/* creation timestamp */
159 	pid_t pid;			/* pid of the current task */
160 	char comm[TASK_COMM_LEN];	/* executable name */
161 };
162 
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED	(1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED		(1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN		(1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN	(1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS		(1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU		(1 << 5)
175 
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED	(1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE	(1 << 1)
180 
181 #define HEX_PREFIX		"    "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE		16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE		1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII		1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES		2
190 
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207 
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211 
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a kmemleak warning was issued */
219 static int kmemleak_warning;
220 /* set if a fatal kmemleak error has occurred */
221 static int kmemleak_error;
222 
223 /* minimum and maximum address that may be valid pointers */
224 static unsigned long min_addr = ULONG_MAX;
225 static unsigned long max_addr;
226 
227 /* minimum and maximum address that may be valid per-CPU pointers */
228 static unsigned long min_percpu_addr = ULONG_MAX;
229 static unsigned long max_percpu_addr;
230 
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245 
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248 
249 static void kmemleak_disable(void);
250 
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)	do {		\
255 	pr_warn(x);				\
256 	dump_stack();				\
257 	kmemleak_warning = 1;			\
258 } while (0)
259 
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)	do {	\
266 	kmemleak_warn(x);		\
267 	kmemleak_disable();		\
268 } while (0)
269 
270 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
271 	if (seq)					\
272 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
273 	else						\
274 		pr_warn(fmt, ##__VA_ARGS__);		\
275 } while (0)
276 
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 				 int rowsize, int groupsize, const void *buf,
279 				 size_t len, bool ascii)
280 {
281 	if (seq)
282 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 			     buf, len, ascii);
284 	else
285 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 			       rowsize, groupsize, buf, len, ascii);
287 }
288 
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)295 static void hex_dump_object(struct seq_file *seq,
296 			    struct kmemleak_object *object)
297 {
298 	const u8 *ptr = (const u8 *)object->pointer;
299 	size_t len;
300 
301 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 		return;
303 
304 	if (object->flags & OBJECT_PERCPU)
305 		ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
306 
307 	/* limit the number of lines to HEX_MAX_LINES */
308 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
309 
310 	if (object->flags & OBJECT_PERCPU)
311 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
312 				   len, raw_smp_processor_id());
313 	else
314 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
315 	kasan_disable_current();
316 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
317 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
318 	kasan_enable_current();
319 }
320 
321 /*
322  * Object colors, encoded with count and min_count:
323  * - white - orphan object, not enough references to it (count < min_count)
324  * - gray  - not orphan, not marked as false positive (min_count == 0) or
325  *		sufficient references to it (count >= min_count)
326  * - black - ignore, it doesn't contain references (e.g. text section)
327  *		(min_count == -1). No function defined for this color.
328  * Newly created objects don't have any color assigned (object->count == -1)
329  * before the next memory scan when they become white.
330  */
color_white(const struct kmemleak_object * object)331 static bool color_white(const struct kmemleak_object *object)
332 {
333 	return object->count != KMEMLEAK_BLACK &&
334 		object->count < object->min_count;
335 }
336 
color_gray(const struct kmemleak_object * object)337 static bool color_gray(const struct kmemleak_object *object)
338 {
339 	return object->min_count != KMEMLEAK_BLACK &&
340 		object->count >= object->min_count;
341 }
342 
343 /*
344  * Objects are considered unreferenced only if their color is white, they have
345  * not be deleted and have a minimum age to avoid false positives caused by
346  * pointers temporarily stored in CPU registers.
347  */
unreferenced_object(struct kmemleak_object * object)348 static bool unreferenced_object(struct kmemleak_object *object)
349 {
350 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
351 		time_before_eq(object->jiffies + jiffies_min_age,
352 			       jiffies_last_scan);
353 }
354 
__object_type_str(struct kmemleak_object * object)355 static const char *__object_type_str(struct kmemleak_object *object)
356 {
357 	if (object->flags & OBJECT_PHYS)
358 		return " (phys)";
359 	if (object->flags & OBJECT_PERCPU)
360 		return " (percpu)";
361 	return "";
362 }
363 
364 /*
365  * Printing of the unreferenced objects information to the seq file. The
366  * print_unreferenced function must be called with the object->lock held.
367  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)368 static void print_unreferenced(struct seq_file *seq,
369 			       struct kmemleak_object *object)
370 {
371 	int i;
372 	unsigned long *entries;
373 	unsigned int nr_entries;
374 
375 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
376 	warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n",
377 			   __object_type_str(object),
378 			   object->pointer, object->size);
379 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
380 			   object->comm, object->pid, object->jiffies);
381 	hex_dump_object(seq, object);
382 	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
383 
384 	for (i = 0; i < nr_entries; i++) {
385 		void *ptr = (void *)entries[i];
386 		warn_or_seq_printf(seq, "    %pS\n", ptr);
387 	}
388 }
389 
390 /*
391  * Print the kmemleak_object information. This function is used mainly for
392  * debugging special cases when kmemleak operations. It must be called with
393  * the object->lock held.
394  */
dump_object_info(struct kmemleak_object * object)395 static void dump_object_info(struct kmemleak_object *object)
396 {
397 	pr_notice("Object%s 0x%08lx (size %zu):\n",
398 		  __object_type_str(object), object->pointer, object->size);
399 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
400 		  object->comm, object->pid, object->jiffies);
401 	pr_notice("  min_count = %d\n", object->min_count);
402 	pr_notice("  count = %d\n", object->count);
403 	pr_notice("  flags = 0x%x\n", object->flags);
404 	pr_notice("  checksum = %u\n", object->checksum);
405 	pr_notice("  backtrace:\n");
406 	if (object->trace_handle)
407 		stack_depot_print(object->trace_handle);
408 }
409 
object_tree(unsigned long objflags)410 static struct rb_root *object_tree(unsigned long objflags)
411 {
412 	if (objflags & OBJECT_PHYS)
413 		return &object_phys_tree_root;
414 	if (objflags & OBJECT_PERCPU)
415 		return &object_percpu_tree_root;
416 	return &object_tree_root;
417 }
418 
419 /*
420  * Look-up a memory block metadata (kmemleak_object) in the object search
421  * tree based on a pointer value. If alias is 0, only values pointing to the
422  * beginning of the memory block are allowed. The kmemleak_lock must be held
423  * when calling this function.
424  */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)425 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
426 					       unsigned int objflags)
427 {
428 	struct rb_node *rb = object_tree(objflags)->rb_node;
429 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
430 
431 	while (rb) {
432 		struct kmemleak_object *object;
433 		unsigned long untagged_objp;
434 
435 		object = rb_entry(rb, struct kmemleak_object, rb_node);
436 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
437 
438 		if (untagged_ptr < untagged_objp)
439 			rb = object->rb_node.rb_left;
440 		else if (untagged_objp + object->size <= untagged_ptr)
441 			rb = object->rb_node.rb_right;
442 		else if (untagged_objp == untagged_ptr || alias)
443 			return object;
444 		else {
445 			kmemleak_warn("Found object by alias at 0x%08lx\n",
446 				      ptr);
447 			dump_object_info(object);
448 			break;
449 		}
450 	}
451 	return NULL;
452 }
453 
454 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)455 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
456 {
457 	return __lookup_object(ptr, alias, 0);
458 }
459 
460 /*
461  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
462  * that once an object's use_count reached 0, the RCU freeing was already
463  * registered and the object should no longer be used. This function must be
464  * called under the protection of rcu_read_lock().
465  */
get_object(struct kmemleak_object * object)466 static int get_object(struct kmemleak_object *object)
467 {
468 	return atomic_inc_not_zero(&object->use_count);
469 }
470 
471 /*
472  * Memory pool allocation and freeing. kmemleak_lock must not be held.
473  */
mem_pool_alloc(gfp_t gfp)474 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
475 {
476 	unsigned long flags;
477 	struct kmemleak_object *object;
478 
479 	/* try the slab allocator first */
480 	if (object_cache) {
481 		object = kmem_cache_alloc_noprof(object_cache,
482 						 gfp_nested_mask(gfp));
483 		if (object)
484 			return object;
485 	}
486 
487 	/* slab allocation failed, try the memory pool */
488 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
489 	object = list_first_entry_or_null(&mem_pool_free_list,
490 					  typeof(*object), object_list);
491 	if (object)
492 		list_del(&object->object_list);
493 	else if (mem_pool_free_count)
494 		object = &mem_pool[--mem_pool_free_count];
495 	else
496 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
497 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
498 
499 	return object;
500 }
501 
502 /*
503  * Return the object to either the slab allocator or the memory pool.
504  */
mem_pool_free(struct kmemleak_object * object)505 static void mem_pool_free(struct kmemleak_object *object)
506 {
507 	unsigned long flags;
508 
509 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
510 		kmem_cache_free(object_cache, object);
511 		return;
512 	}
513 
514 	/* add the object to the memory pool free list */
515 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
516 	list_add(&object->object_list, &mem_pool_free_list);
517 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
518 }
519 
520 /*
521  * RCU callback to free a kmemleak_object.
522  */
free_object_rcu(struct rcu_head * rcu)523 static void free_object_rcu(struct rcu_head *rcu)
524 {
525 	struct hlist_node *tmp;
526 	struct kmemleak_scan_area *area;
527 	struct kmemleak_object *object =
528 		container_of(rcu, struct kmemleak_object, rcu);
529 
530 	/*
531 	 * Once use_count is 0 (guaranteed by put_object), there is no other
532 	 * code accessing this object, hence no need for locking.
533 	 */
534 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
535 		hlist_del(&area->node);
536 		kmem_cache_free(scan_area_cache, area);
537 	}
538 	mem_pool_free(object);
539 }
540 
541 /*
542  * Decrement the object use_count. Once the count is 0, free the object using
543  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
544  * delete_object() path, the delayed RCU freeing ensures that there is no
545  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
546  * is also possible.
547  */
put_object(struct kmemleak_object * object)548 static void put_object(struct kmemleak_object *object)
549 {
550 	if (!atomic_dec_and_test(&object->use_count))
551 		return;
552 
553 	/* should only get here after delete_object was called */
554 	WARN_ON(object->flags & OBJECT_ALLOCATED);
555 
556 	/*
557 	 * It may be too early for the RCU callbacks, however, there is no
558 	 * concurrent object_list traversal when !object_cache and all objects
559 	 * came from the memory pool. Free the object directly.
560 	 */
561 	if (object_cache)
562 		call_rcu(&object->rcu, free_object_rcu);
563 	else
564 		free_object_rcu(&object->rcu);
565 }
566 
567 /*
568  * Look up an object in the object search tree and increase its use_count.
569  */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)570 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
571 						     unsigned int objflags)
572 {
573 	unsigned long flags;
574 	struct kmemleak_object *object;
575 
576 	rcu_read_lock();
577 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
578 	object = __lookup_object(ptr, alias, objflags);
579 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
580 
581 	/* check whether the object is still available */
582 	if (object && !get_object(object))
583 		object = NULL;
584 	rcu_read_unlock();
585 
586 	return object;
587 }
588 
589 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)590 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
591 {
592 	return __find_and_get_object(ptr, alias, 0);
593 }
594 
595 /*
596  * Remove an object from its object tree and object_list. Must be called with
597  * the kmemleak_lock held _if_ kmemleak is still enabled.
598  */
__remove_object(struct kmemleak_object * object)599 static void __remove_object(struct kmemleak_object *object)
600 {
601 	rb_erase(&object->rb_node, object_tree(object->flags));
602 	if (!(object->del_state & DELSTATE_NO_DELETE))
603 		list_del_rcu(&object->object_list);
604 	object->del_state |= DELSTATE_REMOVED;
605 }
606 
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)607 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
608 							int alias,
609 							unsigned int objflags)
610 {
611 	struct kmemleak_object *object;
612 
613 	object = __lookup_object(ptr, alias, objflags);
614 	if (object)
615 		__remove_object(object);
616 
617 	return object;
618 }
619 
620 /*
621  * Look up an object in the object search tree and remove it from both object
622  * tree root and object_list. The returned object's use_count should be at
623  * least 1, as initially set by create_object().
624  */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)625 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
626 						      unsigned int objflags)
627 {
628 	unsigned long flags;
629 	struct kmemleak_object *object;
630 
631 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
632 	object = __find_and_remove_object(ptr, alias, objflags);
633 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
634 
635 	return object;
636 }
637 
set_track_prepare(void)638 static noinline depot_stack_handle_t set_track_prepare(void)
639 {
640 	depot_stack_handle_t trace_handle;
641 	unsigned long entries[MAX_TRACE];
642 	unsigned int nr_entries;
643 
644 	/*
645 	 * Use object_cache to determine whether kmemleak_init() has
646 	 * been invoked. stack_depot_early_init() is called before
647 	 * kmemleak_init() in mm_core_init().
648 	 */
649 	if (!object_cache)
650 		return 0;
651 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
652 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
653 
654 	return trace_handle;
655 }
656 
__alloc_object(gfp_t gfp)657 static struct kmemleak_object *__alloc_object(gfp_t gfp)
658 {
659 	struct kmemleak_object *object;
660 
661 	object = mem_pool_alloc(gfp);
662 	if (!object) {
663 		pr_warn("Cannot allocate a kmemleak_object structure\n");
664 		kmemleak_disable();
665 		return NULL;
666 	}
667 
668 	INIT_LIST_HEAD(&object->object_list);
669 	INIT_LIST_HEAD(&object->gray_list);
670 	INIT_HLIST_HEAD(&object->area_list);
671 	raw_spin_lock_init(&object->lock);
672 	atomic_set(&object->use_count, 1);
673 	object->excess_ref = 0;
674 	object->count = 0;			/* white color initially */
675 	object->checksum = 0;
676 	object->del_state = 0;
677 
678 	/* task information */
679 	if (in_hardirq()) {
680 		object->pid = 0;
681 		strscpy(object->comm, "hardirq");
682 	} else if (in_serving_softirq()) {
683 		object->pid = 0;
684 		strscpy(object->comm, "softirq");
685 	} else {
686 		object->pid = current->pid;
687 		/*
688 		 * There is a small chance of a race with set_task_comm(),
689 		 * however using get_task_comm() here may cause locking
690 		 * dependency issues with current->alloc_lock. In the worst
691 		 * case, the command line is not correct.
692 		 */
693 		strscpy(object->comm, current->comm);
694 	}
695 
696 	/* kernel backtrace */
697 	object->trace_handle = set_track_prepare();
698 
699 	return object;
700 }
701 
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)702 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
703 			 size_t size, int min_count, unsigned int objflags)
704 {
705 
706 	struct kmemleak_object *parent;
707 	struct rb_node **link, *rb_parent;
708 	unsigned long untagged_ptr;
709 	unsigned long untagged_objp;
710 
711 	object->flags = OBJECT_ALLOCATED | objflags;
712 	object->pointer = ptr;
713 	object->size = kfence_ksize((void *)ptr) ?: size;
714 	object->min_count = min_count;
715 	object->jiffies = jiffies;
716 
717 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
718 	/*
719 	 * Only update min_addr and max_addr with object storing virtual
720 	 * address. And update min_percpu_addr max_percpu_addr for per-CPU
721 	 * objects.
722 	 */
723 	if (objflags & OBJECT_PERCPU) {
724 		min_percpu_addr = min(min_percpu_addr, untagged_ptr);
725 		max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
726 	} else if (!(objflags & OBJECT_PHYS)) {
727 		min_addr = min(min_addr, untagged_ptr);
728 		max_addr = max(max_addr, untagged_ptr + size);
729 	}
730 	link = &object_tree(objflags)->rb_node;
731 	rb_parent = NULL;
732 	while (*link) {
733 		rb_parent = *link;
734 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
735 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
736 		if (untagged_ptr + size <= untagged_objp)
737 			link = &parent->rb_node.rb_left;
738 		else if (untagged_objp + parent->size <= untagged_ptr)
739 			link = &parent->rb_node.rb_right;
740 		else {
741 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
742 				      ptr);
743 			/*
744 			 * No need for parent->lock here since "parent" cannot
745 			 * be freed while the kmemleak_lock is held.
746 			 */
747 			dump_object_info(parent);
748 			return -EEXIST;
749 		}
750 	}
751 	rb_link_node(&object->rb_node, rb_parent, link);
752 	rb_insert_color(&object->rb_node, object_tree(objflags));
753 	list_add_tail_rcu(&object->object_list, &object_list);
754 
755 	return 0;
756 }
757 
758 /*
759  * Create the metadata (struct kmemleak_object) corresponding to an allocated
760  * memory block and add it to the object_list and object tree.
761  */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)762 static void __create_object(unsigned long ptr, size_t size,
763 				int min_count, gfp_t gfp, unsigned int objflags)
764 {
765 	struct kmemleak_object *object;
766 	unsigned long flags;
767 	int ret;
768 
769 	object = __alloc_object(gfp);
770 	if (!object)
771 		return;
772 
773 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
774 	ret = __link_object(object, ptr, size, min_count, objflags);
775 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
776 	if (ret)
777 		mem_pool_free(object);
778 }
779 
780 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)781 static void create_object(unsigned long ptr, size_t size,
782 			  int min_count, gfp_t gfp)
783 {
784 	__create_object(ptr, size, min_count, gfp, 0);
785 }
786 
787 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)788 static void create_object_phys(unsigned long ptr, size_t size,
789 			       int min_count, gfp_t gfp)
790 {
791 	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
792 }
793 
794 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)795 static void create_object_percpu(unsigned long ptr, size_t size,
796 				 int min_count, gfp_t gfp)
797 {
798 	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
799 }
800 
801 /*
802  * Mark the object as not allocated and schedule RCU freeing via put_object().
803  */
__delete_object(struct kmemleak_object * object)804 static void __delete_object(struct kmemleak_object *object)
805 {
806 	unsigned long flags;
807 
808 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
809 	WARN_ON(atomic_read(&object->use_count) < 1);
810 
811 	/*
812 	 * Locking here also ensures that the corresponding memory block
813 	 * cannot be freed when it is being scanned.
814 	 */
815 	raw_spin_lock_irqsave(&object->lock, flags);
816 	object->flags &= ~OBJECT_ALLOCATED;
817 	raw_spin_unlock_irqrestore(&object->lock, flags);
818 	put_object(object);
819 }
820 
821 /*
822  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
823  * delete it.
824  */
delete_object_full(unsigned long ptr,unsigned int objflags)825 static void delete_object_full(unsigned long ptr, unsigned int objflags)
826 {
827 	struct kmemleak_object *object;
828 
829 	object = find_and_remove_object(ptr, 0, objflags);
830 	if (!object) {
831 #ifdef DEBUG
832 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
833 			      ptr);
834 #endif
835 		return;
836 	}
837 	__delete_object(object);
838 }
839 
840 /*
841  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
842  * delete it. If the memory block is partially freed, the function may create
843  * additional metadata for the remaining parts of the block.
844  */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)845 static void delete_object_part(unsigned long ptr, size_t size,
846 			       unsigned int objflags)
847 {
848 	struct kmemleak_object *object, *object_l, *object_r;
849 	unsigned long start, end, flags;
850 
851 	object_l = __alloc_object(GFP_KERNEL);
852 	if (!object_l)
853 		return;
854 
855 	object_r = __alloc_object(GFP_KERNEL);
856 	if (!object_r)
857 		goto out;
858 
859 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
860 	object = __find_and_remove_object(ptr, 1, objflags);
861 	if (!object) {
862 #ifdef DEBUG
863 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
864 			      ptr, size);
865 #endif
866 		goto unlock;
867 	}
868 
869 	/*
870 	 * Create one or two objects that may result from the memory block
871 	 * split. Note that partial freeing is only done by free_bootmem() and
872 	 * this happens before kmemleak_init() is called.
873 	 */
874 	start = object->pointer;
875 	end = object->pointer + object->size;
876 	if ((ptr > start) &&
877 	    !__link_object(object_l, start, ptr - start,
878 			   object->min_count, objflags))
879 		object_l = NULL;
880 	if ((ptr + size < end) &&
881 	    !__link_object(object_r, ptr + size, end - ptr - size,
882 			   object->min_count, objflags))
883 		object_r = NULL;
884 
885 unlock:
886 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
887 	if (object)
888 		__delete_object(object);
889 
890 out:
891 	if (object_l)
892 		mem_pool_free(object_l);
893 	if (object_r)
894 		mem_pool_free(object_r);
895 }
896 
__paint_it(struct kmemleak_object * object,int color)897 static void __paint_it(struct kmemleak_object *object, int color)
898 {
899 	object->min_count = color;
900 	if (color == KMEMLEAK_BLACK)
901 		object->flags |= OBJECT_NO_SCAN;
902 }
903 
paint_it(struct kmemleak_object * object,int color)904 static void paint_it(struct kmemleak_object *object, int color)
905 {
906 	unsigned long flags;
907 
908 	raw_spin_lock_irqsave(&object->lock, flags);
909 	__paint_it(object, color);
910 	raw_spin_unlock_irqrestore(&object->lock, flags);
911 }
912 
paint_ptr(unsigned long ptr,int color,unsigned int objflags)913 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
914 {
915 	struct kmemleak_object *object;
916 
917 	object = __find_and_get_object(ptr, 0, objflags);
918 	if (!object) {
919 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
920 			      ptr,
921 			      (color == KMEMLEAK_GREY) ? "Grey" :
922 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
923 		return;
924 	}
925 	paint_it(object, color);
926 	put_object(object);
927 }
928 
929 /*
930  * Mark an object permanently as gray-colored so that it can no longer be
931  * reported as a leak. This is used in general to mark a false positive.
932  */
make_gray_object(unsigned long ptr)933 static void make_gray_object(unsigned long ptr)
934 {
935 	paint_ptr(ptr, KMEMLEAK_GREY, 0);
936 }
937 
938 /*
939  * Mark the object as black-colored so that it is ignored from scans and
940  * reporting.
941  */
make_black_object(unsigned long ptr,unsigned int objflags)942 static void make_black_object(unsigned long ptr, unsigned int objflags)
943 {
944 	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
945 }
946 
947 /*
948  * Reset the checksum of an object. The immediate effect is that it will not
949  * be reported as a leak during the next scan until its checksum is updated.
950  */
reset_checksum(unsigned long ptr)951 static void reset_checksum(unsigned long ptr)
952 {
953 	unsigned long flags;
954 	struct kmemleak_object *object;
955 
956 	object = find_and_get_object(ptr, 0);
957 	if (!object) {
958 		kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
959 			      ptr);
960 		return;
961 	}
962 
963 	raw_spin_lock_irqsave(&object->lock, flags);
964 	object->checksum = 0;
965 	raw_spin_unlock_irqrestore(&object->lock, flags);
966 	put_object(object);
967 }
968 
969 /*
970  * Add a scanning area to the object. If at least one such area is added,
971  * kmemleak will only scan these ranges rather than the whole memory block.
972  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)973 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
974 {
975 	unsigned long flags;
976 	struct kmemleak_object *object;
977 	struct kmemleak_scan_area *area = NULL;
978 	unsigned long untagged_ptr;
979 	unsigned long untagged_objp;
980 
981 	object = find_and_get_object(ptr, 1);
982 	if (!object) {
983 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
984 			      ptr);
985 		return;
986 	}
987 
988 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
989 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
990 
991 	if (scan_area_cache)
992 		area = kmem_cache_alloc_noprof(scan_area_cache,
993 					       gfp_nested_mask(gfp));
994 
995 	raw_spin_lock_irqsave(&object->lock, flags);
996 	if (!area) {
997 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
998 		/* mark the object for full scan to avoid false positives */
999 		object->flags |= OBJECT_FULL_SCAN;
1000 		goto out_unlock;
1001 	}
1002 	if (size == SIZE_MAX) {
1003 		size = untagged_objp + object->size - untagged_ptr;
1004 	} else if (untagged_ptr + size > untagged_objp + object->size) {
1005 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
1006 		dump_object_info(object);
1007 		kmem_cache_free(scan_area_cache, area);
1008 		goto out_unlock;
1009 	}
1010 
1011 	INIT_HLIST_NODE(&area->node);
1012 	area->start = ptr;
1013 	area->size = size;
1014 
1015 	hlist_add_head(&area->node, &object->area_list);
1016 out_unlock:
1017 	raw_spin_unlock_irqrestore(&object->lock, flags);
1018 	put_object(object);
1019 }
1020 
1021 /*
1022  * Any surplus references (object already gray) to 'ptr' are passed to
1023  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1024  * vm_struct may be used as an alternative reference to the vmalloc'ed object
1025  * (see free_thread_stack()).
1026  */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)1027 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1028 {
1029 	unsigned long flags;
1030 	struct kmemleak_object *object;
1031 
1032 	object = find_and_get_object(ptr, 0);
1033 	if (!object) {
1034 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1035 			      ptr);
1036 		return;
1037 	}
1038 
1039 	raw_spin_lock_irqsave(&object->lock, flags);
1040 	object->excess_ref = excess_ref;
1041 	raw_spin_unlock_irqrestore(&object->lock, flags);
1042 	put_object(object);
1043 }
1044 
1045 /*
1046  * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1047  * pointer. Such object will not be scanned by kmemleak but references to it
1048  * are searched.
1049  */
object_no_scan(unsigned long ptr)1050 static void object_no_scan(unsigned long ptr)
1051 {
1052 	unsigned long flags;
1053 	struct kmemleak_object *object;
1054 
1055 	object = find_and_get_object(ptr, 0);
1056 	if (!object) {
1057 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1058 		return;
1059 	}
1060 
1061 	raw_spin_lock_irqsave(&object->lock, flags);
1062 	object->flags |= OBJECT_NO_SCAN;
1063 	raw_spin_unlock_irqrestore(&object->lock, flags);
1064 	put_object(object);
1065 }
1066 
1067 /**
1068  * kmemleak_alloc - register a newly allocated object
1069  * @ptr:	pointer to beginning of the object
1070  * @size:	size of the object
1071  * @min_count:	minimum number of references to this object. If during memory
1072  *		scanning a number of references less than @min_count is found,
1073  *		the object is reported as a memory leak. If @min_count is 0,
1074  *		the object is never reported as a leak. If @min_count is -1,
1075  *		the object is ignored (not scanned and not reported as a leak)
1076  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1077  *
1078  * This function is called from the kernel allocators when a new object
1079  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1080  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1081 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1082 			  gfp_t gfp)
1083 {
1084 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1085 
1086 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1087 		create_object((unsigned long)ptr, size, min_count, gfp);
1088 }
1089 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1090 
1091 /**
1092  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1093  * @ptr:	__percpu pointer to beginning of the object
1094  * @size:	size of the object
1095  * @gfp:	flags used for kmemleak internal memory allocations
1096  *
1097  * This function is called from the kernel percpu allocator when a new object
1098  * (memory block) is allocated (alloc_percpu).
1099  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1100 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1101 				 gfp_t gfp)
1102 {
1103 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1104 
1105 	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1106 		create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
1107 }
1108 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1109 
1110 /**
1111  * kmemleak_vmalloc - register a newly vmalloc'ed object
1112  * @area:	pointer to vm_struct
1113  * @size:	size of the object
1114  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1115  *
1116  * This function is called from the vmalloc() kernel allocator when a new
1117  * object (memory block) is allocated.
1118  */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1119 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1120 {
1121 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1122 
1123 	/*
1124 	 * A min_count = 2 is needed because vm_struct contains a reference to
1125 	 * the virtual address of the vmalloc'ed block.
1126 	 */
1127 	if (kmemleak_enabled) {
1128 		create_object((unsigned long)area->addr, size, 2, gfp);
1129 		object_set_excess_ref((unsigned long)area,
1130 				      (unsigned long)area->addr);
1131 	}
1132 }
1133 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1134 
1135 /**
1136  * kmemleak_free - unregister a previously registered object
1137  * @ptr:	pointer to beginning of the object
1138  *
1139  * This function is called from the kernel allocators when an object (memory
1140  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1141  */
kmemleak_free(const void * ptr)1142 void __ref kmemleak_free(const void *ptr)
1143 {
1144 	pr_debug("%s(0x%px)\n", __func__, ptr);
1145 
1146 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1147 		delete_object_full((unsigned long)ptr, 0);
1148 }
1149 EXPORT_SYMBOL_GPL(kmemleak_free);
1150 
1151 /**
1152  * kmemleak_free_part - partially unregister a previously registered object
1153  * @ptr:	pointer to the beginning or inside the object. This also
1154  *		represents the start of the range to be freed
1155  * @size:	size to be unregistered
1156  *
1157  * This function is called when only a part of a memory block is freed
1158  * (usually from the bootmem allocator).
1159  */
kmemleak_free_part(const void * ptr,size_t size)1160 void __ref kmemleak_free_part(const void *ptr, size_t size)
1161 {
1162 	pr_debug("%s(0x%px)\n", __func__, ptr);
1163 
1164 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1165 		delete_object_part((unsigned long)ptr, size, 0);
1166 }
1167 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1168 
1169 /**
1170  * kmemleak_free_percpu - unregister a previously registered __percpu object
1171  * @ptr:	__percpu pointer to beginning of the object
1172  *
1173  * This function is called from the kernel percpu allocator when an object
1174  * (memory block) is freed (free_percpu).
1175  */
kmemleak_free_percpu(const void __percpu * ptr)1176 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1177 {
1178 	pr_debug("%s(0x%px)\n", __func__, ptr);
1179 
1180 	if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1181 		delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1182 }
1183 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1184 
1185 /**
1186  * kmemleak_update_trace - update object allocation stack trace
1187  * @ptr:	pointer to beginning of the object
1188  *
1189  * Override the object allocation stack trace for cases where the actual
1190  * allocation place is not always useful.
1191  */
kmemleak_update_trace(const void * ptr)1192 void __ref kmemleak_update_trace(const void *ptr)
1193 {
1194 	struct kmemleak_object *object;
1195 	depot_stack_handle_t trace_handle;
1196 	unsigned long flags;
1197 
1198 	pr_debug("%s(0x%px)\n", __func__, ptr);
1199 
1200 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1201 		return;
1202 
1203 	object = find_and_get_object((unsigned long)ptr, 1);
1204 	if (!object) {
1205 #ifdef DEBUG
1206 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1207 			      ptr);
1208 #endif
1209 		return;
1210 	}
1211 
1212 	trace_handle = set_track_prepare();
1213 	raw_spin_lock_irqsave(&object->lock, flags);
1214 	object->trace_handle = trace_handle;
1215 	raw_spin_unlock_irqrestore(&object->lock, flags);
1216 
1217 	put_object(object);
1218 }
1219 EXPORT_SYMBOL(kmemleak_update_trace);
1220 
1221 /**
1222  * kmemleak_not_leak - mark an allocated object as false positive
1223  * @ptr:	pointer to beginning of the object
1224  *
1225  * Calling this function on an object will cause the memory block to no longer
1226  * be reported as leak and always be scanned.
1227  */
kmemleak_not_leak(const void * ptr)1228 void __ref kmemleak_not_leak(const void *ptr)
1229 {
1230 	pr_debug("%s(0x%px)\n", __func__, ptr);
1231 
1232 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1233 		make_gray_object((unsigned long)ptr);
1234 }
1235 EXPORT_SYMBOL(kmemleak_not_leak);
1236 
1237 /**
1238  * kmemleak_transient_leak - mark an allocated object as transient false positive
1239  * @ptr:	pointer to beginning of the object
1240  *
1241  * Calling this function on an object will cause the memory block to not be
1242  * reported as a leak temporarily. This may happen, for example, if the object
1243  * is part of a singly linked list and the ->next reference to it is changed.
1244  */
kmemleak_transient_leak(const void * ptr)1245 void __ref kmemleak_transient_leak(const void *ptr)
1246 {
1247 	pr_debug("%s(0x%px)\n", __func__, ptr);
1248 
1249 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1250 		reset_checksum((unsigned long)ptr);
1251 }
1252 EXPORT_SYMBOL(kmemleak_transient_leak);
1253 
1254 /**
1255  * kmemleak_ignore - ignore an allocated object
1256  * @ptr:	pointer to beginning of the object
1257  *
1258  * Calling this function on an object will cause the memory block to be
1259  * ignored (not scanned and not reported as a leak). This is usually done when
1260  * it is known that the corresponding block is not a leak and does not contain
1261  * any references to other allocated memory blocks.
1262  */
kmemleak_ignore(const void * ptr)1263 void __ref kmemleak_ignore(const void *ptr)
1264 {
1265 	pr_debug("%s(0x%px)\n", __func__, ptr);
1266 
1267 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1268 		make_black_object((unsigned long)ptr, 0);
1269 }
1270 EXPORT_SYMBOL(kmemleak_ignore);
1271 
1272 /**
1273  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1274  * @ptr:	pointer to beginning or inside the object. This also
1275  *		represents the start of the scan area
1276  * @size:	size of the scan area
1277  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1278  *
1279  * This function is used when it is known that only certain parts of an object
1280  * contain references to other objects. Kmemleak will only scan these areas
1281  * reducing the number false negatives.
1282  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1283 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1284 {
1285 	pr_debug("%s(0x%px)\n", __func__, ptr);
1286 
1287 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1288 		add_scan_area((unsigned long)ptr, size, gfp);
1289 }
1290 EXPORT_SYMBOL(kmemleak_scan_area);
1291 
1292 /**
1293  * kmemleak_no_scan - do not scan an allocated object
1294  * @ptr:	pointer to beginning of the object
1295  *
1296  * This function notifies kmemleak not to scan the given memory block. Useful
1297  * in situations where it is known that the given object does not contain any
1298  * references to other objects. Kmemleak will not scan such objects reducing
1299  * the number of false negatives.
1300  */
kmemleak_no_scan(const void * ptr)1301 void __ref kmemleak_no_scan(const void *ptr)
1302 {
1303 	pr_debug("%s(0x%px)\n", __func__, ptr);
1304 
1305 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1306 		object_no_scan((unsigned long)ptr);
1307 }
1308 EXPORT_SYMBOL(kmemleak_no_scan);
1309 
1310 /**
1311  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1312  *			 address argument
1313  * @phys:	physical address of the object
1314  * @size:	size of the object
1315  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1316  */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1317 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1318 {
1319 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1320 
1321 	if (kmemleak_enabled)
1322 		/*
1323 		 * Create object with OBJECT_PHYS flag and
1324 		 * assume min_count 0.
1325 		 */
1326 		create_object_phys((unsigned long)phys, size, 0, gfp);
1327 }
1328 EXPORT_SYMBOL(kmemleak_alloc_phys);
1329 
1330 /**
1331  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1332  *			     physical address argument
1333  * @phys:	physical address if the beginning or inside an object. This
1334  *		also represents the start of the range to be freed
1335  * @size:	size to be unregistered
1336  */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1337 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1338 {
1339 	pr_debug("%s(0x%px)\n", __func__, &phys);
1340 
1341 	if (kmemleak_enabled)
1342 		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1343 }
1344 EXPORT_SYMBOL(kmemleak_free_part_phys);
1345 
1346 /**
1347  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1348  *			  address argument
1349  * @phys:	physical address of the object
1350  */
kmemleak_ignore_phys(phys_addr_t phys)1351 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1352 {
1353 	pr_debug("%s(0x%px)\n", __func__, &phys);
1354 
1355 	if (kmemleak_enabled)
1356 		make_black_object((unsigned long)phys, OBJECT_PHYS);
1357 }
1358 EXPORT_SYMBOL(kmemleak_ignore_phys);
1359 
1360 /*
1361  * Update an object's checksum and return true if it was modified.
1362  */
update_checksum(struct kmemleak_object * object)1363 static bool update_checksum(struct kmemleak_object *object)
1364 {
1365 	u32 old_csum = object->checksum;
1366 
1367 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1368 		return false;
1369 
1370 	kasan_disable_current();
1371 	kcsan_disable_current();
1372 	if (object->flags & OBJECT_PERCPU) {
1373 		unsigned int cpu;
1374 
1375 		object->checksum = 0;
1376 		for_each_possible_cpu(cpu) {
1377 			void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1378 
1379 			object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1380 		}
1381 	} else {
1382 		object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1383 	}
1384 	kasan_enable_current();
1385 	kcsan_enable_current();
1386 
1387 	return object->checksum != old_csum;
1388 }
1389 
1390 /*
1391  * Update an object's references. object->lock must be held by the caller.
1392  */
update_refs(struct kmemleak_object * object)1393 static void update_refs(struct kmemleak_object *object)
1394 {
1395 	if (!color_white(object)) {
1396 		/* non-orphan, ignored or new */
1397 		return;
1398 	}
1399 
1400 	/*
1401 	 * Increase the object's reference count (number of pointers to the
1402 	 * memory block). If this count reaches the required minimum, the
1403 	 * object's color will become gray and it will be added to the
1404 	 * gray_list.
1405 	 */
1406 	object->count++;
1407 	if (color_gray(object)) {
1408 		/* put_object() called when removing from gray_list */
1409 		WARN_ON(!get_object(object));
1410 		list_add_tail(&object->gray_list, &gray_list);
1411 	}
1412 }
1413 
pointer_update_refs(struct kmemleak_object * scanned,unsigned long pointer,unsigned int objflags)1414 static void pointer_update_refs(struct kmemleak_object *scanned,
1415 			 unsigned long pointer, unsigned int objflags)
1416 {
1417 	struct kmemleak_object *object;
1418 	unsigned long untagged_ptr;
1419 	unsigned long excess_ref;
1420 
1421 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1422 	if (objflags & OBJECT_PERCPU) {
1423 		if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1424 			return;
1425 	} else {
1426 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1427 			return;
1428 	}
1429 
1430 	/*
1431 	 * No need for get_object() here since we hold kmemleak_lock.
1432 	 * object->use_count cannot be dropped to 0 while the object
1433 	 * is still present in object_tree_root and object_list
1434 	 * (with updates protected by kmemleak_lock).
1435 	 */
1436 	object = __lookup_object(pointer, 1, objflags);
1437 	if (!object)
1438 		return;
1439 	if (object == scanned)
1440 		/* self referenced, ignore */
1441 		return;
1442 
1443 	/*
1444 	 * Avoid the lockdep recursive warning on object->lock being
1445 	 * previously acquired in scan_object(). These locks are
1446 	 * enclosed by scan_mutex.
1447 	 */
1448 	raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1449 	/* only pass surplus references (object already gray) */
1450 	if (color_gray(object)) {
1451 		excess_ref = object->excess_ref;
1452 		/* no need for update_refs() if object already gray */
1453 	} else {
1454 		excess_ref = 0;
1455 		update_refs(object);
1456 	}
1457 	raw_spin_unlock(&object->lock);
1458 
1459 	if (excess_ref) {
1460 		object = lookup_object(excess_ref, 0);
1461 		if (!object)
1462 			return;
1463 		if (object == scanned)
1464 			/* circular reference, ignore */
1465 			return;
1466 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1467 		update_refs(object);
1468 		raw_spin_unlock(&object->lock);
1469 	}
1470 }
1471 
1472 /*
1473  * Memory scanning is a long process and it needs to be interruptible. This
1474  * function checks whether such interrupt condition occurred.
1475  */
scan_should_stop(void)1476 static int scan_should_stop(void)
1477 {
1478 	if (!kmemleak_enabled)
1479 		return 1;
1480 
1481 	/*
1482 	 * This function may be called from either process or kthread context,
1483 	 * hence the need to check for both stop conditions.
1484 	 */
1485 	if (current->mm)
1486 		return signal_pending(current);
1487 	else
1488 		return kthread_should_stop();
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Scan a memory block (exclusive range) for valid pointers and add those
1495  * found to the gray list.
1496  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1497 static void scan_block(void *_start, void *_end,
1498 		       struct kmemleak_object *scanned)
1499 {
1500 	unsigned long *ptr;
1501 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1502 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1503 	unsigned long flags;
1504 
1505 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1506 	for (ptr = start; ptr < end; ptr++) {
1507 		unsigned long pointer;
1508 
1509 		if (scan_should_stop())
1510 			break;
1511 
1512 		kasan_disable_current();
1513 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1514 		kasan_enable_current();
1515 
1516 		pointer_update_refs(scanned, pointer, 0);
1517 		pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1518 	}
1519 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1520 }
1521 
1522 /*
1523  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1524  */
1525 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1526 static void scan_large_block(void *start, void *end)
1527 {
1528 	void *next;
1529 
1530 	while (start < end) {
1531 		next = min(start + MAX_SCAN_SIZE, end);
1532 		scan_block(start, next, NULL);
1533 		start = next;
1534 		cond_resched();
1535 	}
1536 }
1537 #endif
1538 
1539 /*
1540  * Scan a memory block corresponding to a kmemleak_object. A condition is
1541  * that object->use_count >= 1.
1542  */
scan_object(struct kmemleak_object * object)1543 static void scan_object(struct kmemleak_object *object)
1544 {
1545 	struct kmemleak_scan_area *area;
1546 	unsigned long flags;
1547 
1548 	/*
1549 	 * Once the object->lock is acquired, the corresponding memory block
1550 	 * cannot be freed (the same lock is acquired in delete_object).
1551 	 */
1552 	raw_spin_lock_irqsave(&object->lock, flags);
1553 	if (object->flags & OBJECT_NO_SCAN)
1554 		goto out;
1555 	if (!(object->flags & OBJECT_ALLOCATED))
1556 		/* already freed object */
1557 		goto out;
1558 
1559 	if (object->flags & OBJECT_PERCPU) {
1560 		unsigned int cpu;
1561 
1562 		for_each_possible_cpu(cpu) {
1563 			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1564 			void *end = start + object->size;
1565 
1566 			scan_block(start, end, object);
1567 
1568 			raw_spin_unlock_irqrestore(&object->lock, flags);
1569 			cond_resched();
1570 			raw_spin_lock_irqsave(&object->lock, flags);
1571 			if (!(object->flags & OBJECT_ALLOCATED))
1572 				break;
1573 		}
1574 	} else if (hlist_empty(&object->area_list) ||
1575 	    object->flags & OBJECT_FULL_SCAN) {
1576 		void *start = object->flags & OBJECT_PHYS ?
1577 				__va((phys_addr_t)object->pointer) :
1578 				(void *)object->pointer;
1579 		void *end = start + object->size;
1580 		void *next;
1581 
1582 		do {
1583 			next = min(start + MAX_SCAN_SIZE, end);
1584 			scan_block(start, next, object);
1585 
1586 			start = next;
1587 			if (start >= end)
1588 				break;
1589 
1590 			raw_spin_unlock_irqrestore(&object->lock, flags);
1591 			cond_resched();
1592 			raw_spin_lock_irqsave(&object->lock, flags);
1593 		} while (object->flags & OBJECT_ALLOCATED);
1594 	} else {
1595 		hlist_for_each_entry(area, &object->area_list, node)
1596 			scan_block((void *)area->start,
1597 				   (void *)(area->start + area->size),
1598 				   object);
1599 	}
1600 out:
1601 	raw_spin_unlock_irqrestore(&object->lock, flags);
1602 }
1603 
1604 /*
1605  * Scan the objects already referenced (gray objects). More objects will be
1606  * referenced and, if there are no memory leaks, all the objects are scanned.
1607  */
scan_gray_list(void)1608 static void scan_gray_list(void)
1609 {
1610 	struct kmemleak_object *object, *tmp;
1611 
1612 	/*
1613 	 * The list traversal is safe for both tail additions and removals
1614 	 * from inside the loop. The kmemleak objects cannot be freed from
1615 	 * outside the loop because their use_count was incremented.
1616 	 */
1617 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1618 	while (&object->gray_list != &gray_list) {
1619 		cond_resched();
1620 
1621 		/* may add new objects to the list */
1622 		if (!scan_should_stop())
1623 			scan_object(object);
1624 
1625 		tmp = list_entry(object->gray_list.next, typeof(*object),
1626 				 gray_list);
1627 
1628 		/* remove the object from the list and release it */
1629 		list_del(&object->gray_list);
1630 		put_object(object);
1631 
1632 		object = tmp;
1633 	}
1634 	WARN_ON(!list_empty(&gray_list));
1635 }
1636 
1637 /*
1638  * Conditionally call resched() in an object iteration loop while making sure
1639  * that the given object won't go away without RCU read lock by performing a
1640  * get_object() if necessaary.
1641  */
kmemleak_cond_resched(struct kmemleak_object * object)1642 static void kmemleak_cond_resched(struct kmemleak_object *object)
1643 {
1644 	if (!get_object(object))
1645 		return;	/* Try next object */
1646 
1647 	raw_spin_lock_irq(&kmemleak_lock);
1648 	if (object->del_state & DELSTATE_REMOVED)
1649 		goto unlock_put;	/* Object removed */
1650 	object->del_state |= DELSTATE_NO_DELETE;
1651 	raw_spin_unlock_irq(&kmemleak_lock);
1652 
1653 	rcu_read_unlock();
1654 	cond_resched();
1655 	rcu_read_lock();
1656 
1657 	raw_spin_lock_irq(&kmemleak_lock);
1658 	if (object->del_state & DELSTATE_REMOVED)
1659 		list_del_rcu(&object->object_list);
1660 	object->del_state &= ~DELSTATE_NO_DELETE;
1661 unlock_put:
1662 	raw_spin_unlock_irq(&kmemleak_lock);
1663 	put_object(object);
1664 }
1665 
1666 /*
1667  * Scan data sections and all the referenced memory blocks allocated via the
1668  * kernel's standard allocators. This function must be called with the
1669  * scan_mutex held.
1670  */
kmemleak_scan(void)1671 static void kmemleak_scan(void)
1672 {
1673 	struct kmemleak_object *object;
1674 	struct zone *zone;
1675 	int __maybe_unused i;
1676 	int new_leaks = 0;
1677 
1678 	jiffies_last_scan = jiffies;
1679 
1680 	/* prepare the kmemleak_object's */
1681 	rcu_read_lock();
1682 	list_for_each_entry_rcu(object, &object_list, object_list) {
1683 		raw_spin_lock_irq(&object->lock);
1684 #ifdef DEBUG
1685 		/*
1686 		 * With a few exceptions there should be a maximum of
1687 		 * 1 reference to any object at this point.
1688 		 */
1689 		if (atomic_read(&object->use_count) > 1) {
1690 			pr_debug("object->use_count = %d\n",
1691 				 atomic_read(&object->use_count));
1692 			dump_object_info(object);
1693 		}
1694 #endif
1695 
1696 		/* ignore objects outside lowmem (paint them black) */
1697 		if ((object->flags & OBJECT_PHYS) &&
1698 		   !(object->flags & OBJECT_NO_SCAN)) {
1699 			unsigned long phys = object->pointer;
1700 
1701 			if (PHYS_PFN(phys) < min_low_pfn ||
1702 			    PHYS_PFN(phys + object->size) > max_low_pfn)
1703 				__paint_it(object, KMEMLEAK_BLACK);
1704 		}
1705 
1706 		/* reset the reference count (whiten the object) */
1707 		object->count = 0;
1708 		if (color_gray(object) && get_object(object))
1709 			list_add_tail(&object->gray_list, &gray_list);
1710 
1711 		raw_spin_unlock_irq(&object->lock);
1712 
1713 		if (need_resched())
1714 			kmemleak_cond_resched(object);
1715 	}
1716 	rcu_read_unlock();
1717 
1718 #ifdef CONFIG_SMP
1719 	/* per-cpu sections scanning */
1720 	for_each_possible_cpu(i)
1721 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1722 				 __per_cpu_end + per_cpu_offset(i));
1723 #endif
1724 
1725 	/*
1726 	 * Struct page scanning for each node.
1727 	 */
1728 	get_online_mems();
1729 	for_each_populated_zone(zone) {
1730 		unsigned long start_pfn = zone->zone_start_pfn;
1731 		unsigned long end_pfn = zone_end_pfn(zone);
1732 		unsigned long pfn;
1733 
1734 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1735 			struct page *page = pfn_to_online_page(pfn);
1736 
1737 			if (!(pfn & 63))
1738 				cond_resched();
1739 
1740 			if (!page)
1741 				continue;
1742 
1743 			/* only scan pages belonging to this zone */
1744 			if (page_zone(page) != zone)
1745 				continue;
1746 			/* only scan if page is in use */
1747 			if (page_count(page) == 0)
1748 				continue;
1749 			scan_block(page, page + 1, NULL);
1750 		}
1751 	}
1752 	put_online_mems();
1753 
1754 	/*
1755 	 * Scanning the task stacks (may introduce false negatives).
1756 	 */
1757 	if (kmemleak_stack_scan) {
1758 		struct task_struct *p, *g;
1759 
1760 		rcu_read_lock();
1761 		for_each_process_thread(g, p) {
1762 			void *stack = try_get_task_stack(p);
1763 			if (stack) {
1764 				scan_block(stack, stack + THREAD_SIZE, NULL);
1765 				put_task_stack(p);
1766 			}
1767 		}
1768 		rcu_read_unlock();
1769 	}
1770 
1771 	/*
1772 	 * Scan the objects already referenced from the sections scanned
1773 	 * above.
1774 	 */
1775 	scan_gray_list();
1776 
1777 	/*
1778 	 * Check for new or unreferenced objects modified since the previous
1779 	 * scan and color them gray until the next scan.
1780 	 */
1781 	rcu_read_lock();
1782 	list_for_each_entry_rcu(object, &object_list, object_list) {
1783 		if (need_resched())
1784 			kmemleak_cond_resched(object);
1785 
1786 		/*
1787 		 * This is racy but we can save the overhead of lock/unlock
1788 		 * calls. The missed objects, if any, should be caught in
1789 		 * the next scan.
1790 		 */
1791 		if (!color_white(object))
1792 			continue;
1793 		raw_spin_lock_irq(&object->lock);
1794 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1795 		    && update_checksum(object) && get_object(object)) {
1796 			/* color it gray temporarily */
1797 			object->count = object->min_count;
1798 			list_add_tail(&object->gray_list, &gray_list);
1799 		}
1800 		raw_spin_unlock_irq(&object->lock);
1801 	}
1802 	rcu_read_unlock();
1803 
1804 	/*
1805 	 * Re-scan the gray list for modified unreferenced objects.
1806 	 */
1807 	scan_gray_list();
1808 
1809 	/*
1810 	 * If scanning was stopped do not report any new unreferenced objects.
1811 	 */
1812 	if (scan_should_stop())
1813 		return;
1814 
1815 	/*
1816 	 * Scanning result reporting.
1817 	 */
1818 	rcu_read_lock();
1819 	list_for_each_entry_rcu(object, &object_list, object_list) {
1820 		if (need_resched())
1821 			kmemleak_cond_resched(object);
1822 
1823 		/*
1824 		 * This is racy but we can save the overhead of lock/unlock
1825 		 * calls. The missed objects, if any, should be caught in
1826 		 * the next scan.
1827 		 */
1828 		if (!color_white(object))
1829 			continue;
1830 		raw_spin_lock_irq(&object->lock);
1831 		if (unreferenced_object(object) &&
1832 		    !(object->flags & OBJECT_REPORTED)) {
1833 			object->flags |= OBJECT_REPORTED;
1834 
1835 			if (kmemleak_verbose)
1836 				print_unreferenced(NULL, object);
1837 
1838 			new_leaks++;
1839 		}
1840 		raw_spin_unlock_irq(&object->lock);
1841 	}
1842 	rcu_read_unlock();
1843 
1844 	if (new_leaks) {
1845 		kmemleak_found_leaks = true;
1846 
1847 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1848 			new_leaks);
1849 	}
1850 
1851 }
1852 
1853 /*
1854  * Thread function performing automatic memory scanning. Unreferenced objects
1855  * at the end of a memory scan are reported but only the first time.
1856  */
kmemleak_scan_thread(void * arg)1857 static int kmemleak_scan_thread(void *arg)
1858 {
1859 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1860 
1861 	pr_info("Automatic memory scanning thread started\n");
1862 	set_user_nice(current, 10);
1863 
1864 	/*
1865 	 * Wait before the first scan to allow the system to fully initialize.
1866 	 */
1867 	if (first_run) {
1868 		signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN);
1869 		first_run = 0;
1870 		while (timeout && !kthread_should_stop())
1871 			timeout = schedule_timeout_interruptible(timeout);
1872 	}
1873 
1874 	while (!kthread_should_stop()) {
1875 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1876 
1877 		mutex_lock(&scan_mutex);
1878 		kmemleak_scan();
1879 		mutex_unlock(&scan_mutex);
1880 
1881 		/* wait before the next scan */
1882 		while (timeout && !kthread_should_stop())
1883 			timeout = schedule_timeout_interruptible(timeout);
1884 	}
1885 
1886 	pr_info("Automatic memory scanning thread ended\n");
1887 
1888 	return 0;
1889 }
1890 
1891 /*
1892  * Start the automatic memory scanning thread. This function must be called
1893  * with the scan_mutex held.
1894  */
start_scan_thread(void)1895 static void start_scan_thread(void)
1896 {
1897 	if (scan_thread)
1898 		return;
1899 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1900 	if (IS_ERR(scan_thread)) {
1901 		pr_warn("Failed to create the scan thread\n");
1902 		scan_thread = NULL;
1903 	}
1904 }
1905 
1906 /*
1907  * Stop the automatic memory scanning thread.
1908  */
stop_scan_thread(void)1909 static void stop_scan_thread(void)
1910 {
1911 	if (scan_thread) {
1912 		kthread_stop(scan_thread);
1913 		scan_thread = NULL;
1914 	}
1915 }
1916 
1917 /*
1918  * Iterate over the object_list and return the first valid object at or after
1919  * the required position with its use_count incremented. The function triggers
1920  * a memory scanning when the pos argument points to the first position.
1921  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1922 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1923 {
1924 	struct kmemleak_object *object;
1925 	loff_t n = *pos;
1926 	int err;
1927 
1928 	err = mutex_lock_interruptible(&scan_mutex);
1929 	if (err < 0)
1930 		return ERR_PTR(err);
1931 
1932 	rcu_read_lock();
1933 	list_for_each_entry_rcu(object, &object_list, object_list) {
1934 		if (n-- > 0)
1935 			continue;
1936 		if (get_object(object))
1937 			goto out;
1938 	}
1939 	object = NULL;
1940 out:
1941 	return object;
1942 }
1943 
1944 /*
1945  * Return the next object in the object_list. The function decrements the
1946  * use_count of the previous object and increases that of the next one.
1947  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1948 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1949 {
1950 	struct kmemleak_object *prev_obj = v;
1951 	struct kmemleak_object *next_obj = NULL;
1952 	struct kmemleak_object *obj = prev_obj;
1953 
1954 	++(*pos);
1955 
1956 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1957 		if (get_object(obj)) {
1958 			next_obj = obj;
1959 			break;
1960 		}
1961 	}
1962 
1963 	put_object(prev_obj);
1964 	return next_obj;
1965 }
1966 
1967 /*
1968  * Decrement the use_count of the last object required, if any.
1969  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1970 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1971 {
1972 	if (!IS_ERR(v)) {
1973 		/*
1974 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1975 		 * waiting was interrupted, so only release it if !IS_ERR.
1976 		 */
1977 		rcu_read_unlock();
1978 		mutex_unlock(&scan_mutex);
1979 		if (v)
1980 			put_object(v);
1981 	}
1982 }
1983 
1984 /*
1985  * Print the information for an unreferenced object to the seq file.
1986  */
kmemleak_seq_show(struct seq_file * seq,void * v)1987 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1988 {
1989 	struct kmemleak_object *object = v;
1990 	unsigned long flags;
1991 
1992 	raw_spin_lock_irqsave(&object->lock, flags);
1993 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1994 		print_unreferenced(seq, object);
1995 	raw_spin_unlock_irqrestore(&object->lock, flags);
1996 	return 0;
1997 }
1998 
1999 static const struct seq_operations kmemleak_seq_ops = {
2000 	.start = kmemleak_seq_start,
2001 	.next  = kmemleak_seq_next,
2002 	.stop  = kmemleak_seq_stop,
2003 	.show  = kmemleak_seq_show,
2004 };
2005 
kmemleak_open(struct inode * inode,struct file * file)2006 static int kmemleak_open(struct inode *inode, struct file *file)
2007 {
2008 	return seq_open(file, &kmemleak_seq_ops);
2009 }
2010 
__dump_str_object_info(unsigned long addr,unsigned int objflags)2011 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags)
2012 {
2013 	unsigned long flags;
2014 	struct kmemleak_object *object;
2015 
2016 	object = __find_and_get_object(addr, 1, objflags);
2017 	if (!object)
2018 		return false;
2019 
2020 	raw_spin_lock_irqsave(&object->lock, flags);
2021 	dump_object_info(object);
2022 	raw_spin_unlock_irqrestore(&object->lock, flags);
2023 
2024 	put_object(object);
2025 
2026 	return true;
2027 }
2028 
dump_str_object_info(const char * str)2029 static int dump_str_object_info(const char *str)
2030 {
2031 	unsigned long addr;
2032 	bool found = false;
2033 
2034 	if (kstrtoul(str, 0, &addr))
2035 		return -EINVAL;
2036 
2037 	found |= __dump_str_object_info(addr, 0);
2038 	found |= __dump_str_object_info(addr, OBJECT_PHYS);
2039 	found |= __dump_str_object_info(addr, OBJECT_PERCPU);
2040 
2041 	if (!found) {
2042 		pr_info("Unknown object at 0x%08lx\n", addr);
2043 		return -EINVAL;
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 /*
2050  * We use grey instead of black to ensure we can do future scans on the same
2051  * objects. If we did not do future scans these black objects could
2052  * potentially contain references to newly allocated objects in the future and
2053  * we'd end up with false positives.
2054  */
kmemleak_clear(void)2055 static void kmemleak_clear(void)
2056 {
2057 	struct kmemleak_object *object;
2058 
2059 	rcu_read_lock();
2060 	list_for_each_entry_rcu(object, &object_list, object_list) {
2061 		raw_spin_lock_irq(&object->lock);
2062 		if ((object->flags & OBJECT_REPORTED) &&
2063 		    unreferenced_object(object))
2064 			__paint_it(object, KMEMLEAK_GREY);
2065 		raw_spin_unlock_irq(&object->lock);
2066 	}
2067 	rcu_read_unlock();
2068 
2069 	kmemleak_found_leaks = false;
2070 }
2071 
2072 static void __kmemleak_do_cleanup(void);
2073 
2074 /*
2075  * File write operation to configure kmemleak at run-time. The following
2076  * commands can be written to the /sys/kernel/debug/kmemleak file:
2077  *   off	- disable kmemleak (irreversible)
2078  *   stack=on	- enable the task stacks scanning
2079  *   stack=off	- disable the tasks stacks scanning
2080  *   scan=on	- start the automatic memory scanning thread
2081  *   scan=off	- stop the automatic memory scanning thread
2082  *   scan=...	- set the automatic memory scanning period in seconds (0 to
2083  *		  disable it)
2084  *   scan	- trigger a memory scan
2085  *   clear	- mark all current reported unreferenced kmemleak objects as
2086  *		  grey to ignore printing them, or free all kmemleak objects
2087  *		  if kmemleak has been disabled.
2088  *   dump=...	- dump information about the object found at the given address
2089  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)2090 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2091 			      size_t size, loff_t *ppos)
2092 {
2093 	char buf[64];
2094 	int buf_size;
2095 	int ret;
2096 
2097 	buf_size = min(size, (sizeof(buf) - 1));
2098 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2099 		return -EFAULT;
2100 	buf[buf_size] = 0;
2101 
2102 	ret = mutex_lock_interruptible(&scan_mutex);
2103 	if (ret < 0)
2104 		return ret;
2105 
2106 	if (strncmp(buf, "clear", 5) == 0) {
2107 		if (kmemleak_enabled)
2108 			kmemleak_clear();
2109 		else
2110 			__kmemleak_do_cleanup();
2111 		goto out;
2112 	}
2113 
2114 	if (!kmemleak_enabled) {
2115 		ret = -EPERM;
2116 		goto out;
2117 	}
2118 
2119 	if (strncmp(buf, "off", 3) == 0)
2120 		kmemleak_disable();
2121 	else if (strncmp(buf, "stack=on", 8) == 0)
2122 		kmemleak_stack_scan = 1;
2123 	else if (strncmp(buf, "stack=off", 9) == 0)
2124 		kmemleak_stack_scan = 0;
2125 	else if (strncmp(buf, "scan=on", 7) == 0)
2126 		start_scan_thread();
2127 	else if (strncmp(buf, "scan=off", 8) == 0)
2128 		stop_scan_thread();
2129 	else if (strncmp(buf, "scan=", 5) == 0) {
2130 		unsigned secs;
2131 		unsigned long msecs;
2132 
2133 		ret = kstrtouint(buf + 5, 0, &secs);
2134 		if (ret < 0)
2135 			goto out;
2136 
2137 		msecs = secs * MSEC_PER_SEC;
2138 		if (msecs > UINT_MAX)
2139 			msecs = UINT_MAX;
2140 
2141 		stop_scan_thread();
2142 		if (msecs) {
2143 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2144 			start_scan_thread();
2145 		}
2146 	} else if (strncmp(buf, "scan", 4) == 0)
2147 		kmemleak_scan();
2148 	else if (strncmp(buf, "dump=", 5) == 0)
2149 		ret = dump_str_object_info(buf + 5);
2150 	else
2151 		ret = -EINVAL;
2152 
2153 out:
2154 	mutex_unlock(&scan_mutex);
2155 	if (ret < 0)
2156 		return ret;
2157 
2158 	/* ignore the rest of the buffer, only one command at a time */
2159 	*ppos += size;
2160 	return size;
2161 }
2162 
2163 static const struct file_operations kmemleak_fops = {
2164 	.owner		= THIS_MODULE,
2165 	.open		= kmemleak_open,
2166 	.read		= seq_read,
2167 	.write		= kmemleak_write,
2168 	.llseek		= seq_lseek,
2169 	.release	= seq_release,
2170 };
2171 
__kmemleak_do_cleanup(void)2172 static void __kmemleak_do_cleanup(void)
2173 {
2174 	struct kmemleak_object *object, *tmp;
2175 
2176 	/*
2177 	 * Kmemleak has already been disabled, no need for RCU list traversal
2178 	 * or kmemleak_lock held.
2179 	 */
2180 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2181 		__remove_object(object);
2182 		__delete_object(object);
2183 	}
2184 }
2185 
2186 /*
2187  * Stop the memory scanning thread and free the kmemleak internal objects if
2188  * no previous scan thread (otherwise, kmemleak may still have some useful
2189  * information on memory leaks).
2190  */
kmemleak_do_cleanup(struct work_struct * work)2191 static void kmemleak_do_cleanup(struct work_struct *work)
2192 {
2193 	stop_scan_thread();
2194 
2195 	mutex_lock(&scan_mutex);
2196 	/*
2197 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2198 	 * longer track object freeing. Ordering of the scan thread stopping and
2199 	 * the memory accesses below is guaranteed by the kthread_stop()
2200 	 * function.
2201 	 */
2202 	kmemleak_free_enabled = 0;
2203 	mutex_unlock(&scan_mutex);
2204 
2205 	if (!kmemleak_found_leaks)
2206 		__kmemleak_do_cleanup();
2207 	else
2208 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2209 }
2210 
2211 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2212 
2213 /*
2214  * Disable kmemleak. No memory allocation/freeing will be traced once this
2215  * function is called. Disabling kmemleak is an irreversible operation.
2216  */
kmemleak_disable(void)2217 static void kmemleak_disable(void)
2218 {
2219 	/* atomically check whether it was already invoked */
2220 	if (cmpxchg(&kmemleak_error, 0, 1))
2221 		return;
2222 
2223 	/* stop any memory operation tracing */
2224 	kmemleak_enabled = 0;
2225 
2226 	/* check whether it is too early for a kernel thread */
2227 	if (kmemleak_late_initialized)
2228 		schedule_work(&cleanup_work);
2229 	else
2230 		kmemleak_free_enabled = 0;
2231 
2232 	pr_info("Kernel memory leak detector disabled\n");
2233 }
2234 
2235 /*
2236  * Allow boot-time kmemleak disabling (enabled by default).
2237  */
kmemleak_boot_config(char * str)2238 static int __init kmemleak_boot_config(char *str)
2239 {
2240 	if (!str)
2241 		return -EINVAL;
2242 	if (strcmp(str, "off") == 0)
2243 		kmemleak_disable();
2244 	else if (strcmp(str, "on") == 0) {
2245 		kmemleak_skip_disable = 1;
2246 		stack_depot_request_early_init();
2247 	}
2248 	else
2249 		return -EINVAL;
2250 	return 0;
2251 }
2252 early_param("kmemleak", kmemleak_boot_config);
2253 
2254 /*
2255  * Kmemleak initialization.
2256  */
kmemleak_init(void)2257 void __init kmemleak_init(void)
2258 {
2259 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2260 	if (!kmemleak_skip_disable) {
2261 		kmemleak_disable();
2262 		return;
2263 	}
2264 #endif
2265 
2266 	if (kmemleak_error)
2267 		return;
2268 
2269 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2270 	jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT);
2271 
2272 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2273 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2274 
2275 	/* register the data/bss sections */
2276 	create_object((unsigned long)_sdata, _edata - _sdata,
2277 		      KMEMLEAK_GREY, GFP_ATOMIC);
2278 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2279 		      KMEMLEAK_GREY, GFP_ATOMIC);
2280 	/* only register .data..ro_after_init if not within .data */
2281 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2282 		create_object((unsigned long)__start_ro_after_init,
2283 			      __end_ro_after_init - __start_ro_after_init,
2284 			      KMEMLEAK_GREY, GFP_ATOMIC);
2285 }
2286 
2287 /*
2288  * Late initialization function.
2289  */
kmemleak_late_init(void)2290 static int __init kmemleak_late_init(void)
2291 {
2292 	kmemleak_late_initialized = 1;
2293 
2294 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2295 
2296 	if (kmemleak_error) {
2297 		/*
2298 		 * Some error occurred and kmemleak was disabled. There is a
2299 		 * small chance that kmemleak_disable() was called immediately
2300 		 * after setting kmemleak_late_initialized and we may end up with
2301 		 * two clean-up threads but serialized by scan_mutex.
2302 		 */
2303 		schedule_work(&cleanup_work);
2304 		return -ENOMEM;
2305 	}
2306 
2307 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2308 		mutex_lock(&scan_mutex);
2309 		start_scan_thread();
2310 		mutex_unlock(&scan_mutex);
2311 	}
2312 
2313 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2314 		mem_pool_free_count);
2315 
2316 	return 0;
2317 }
2318 late_initcall(kmemleak_late_init);
2319