1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60
61 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
62 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
63
64 /*
65 * Due to ordering constraints across the init code for various
66 * architectures, hugetlb hstate cmdline parameters can't simply
67 * be early_param. early_param might call the setup function
68 * before valid hugetlb page sizes are determined, leading to
69 * incorrect rejection of valid hugepagesz= options.
70 *
71 * So, record the parameters early and consume them whenever the
72 * init code is ready for them, by calling hugetlb_parse_params().
73 */
74
75 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
76 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
77 struct hugetlb_cmdline {
78 char *val;
79 int (*setup)(char *val);
80 };
81
82 /* for command line parsing */
83 static struct hstate * __initdata parsed_hstate;
84 static unsigned long __initdata default_hstate_max_huge_pages;
85 static bool __initdata parsed_valid_hugepagesz = true;
86 static bool __initdata parsed_default_hugepagesz;
87 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
88 static unsigned long hugepage_allocation_threads __initdata;
89
90 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
91 static int hstate_cmdline_index __initdata;
92 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
93 static int hugetlb_param_index __initdata;
94 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
95 static __init void hugetlb_parse_params(void);
96
97 #define hugetlb_early_param(str, func) \
98 static __init int func##args(char *s) \
99 { \
100 return hugetlb_add_param(s, func); \
101 } \
102 early_param(str, func##args)
103
104 /*
105 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
106 * free_huge_pages, and surplus_huge_pages.
107 */
108 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
109
110 /*
111 * Serializes faults on the same logical page. This is used to
112 * prevent spurious OOMs when the hugepage pool is fully utilized.
113 */
114 static int num_fault_mutexes __ro_after_init;
115 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
116
117 /* Forward declaration */
118 static int hugetlb_acct_memory(struct hstate *h, long delta);
119 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
120 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
121 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
122 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
123 unsigned long start, unsigned long end);
124 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
125
hugetlb_free_folio(struct folio * folio)126 static void hugetlb_free_folio(struct folio *folio)
127 {
128 if (folio_test_hugetlb_cma(folio)) {
129 hugetlb_cma_free_folio(folio);
130 return;
131 }
132
133 folio_put(folio);
134 }
135
subpool_is_free(struct hugepage_subpool * spool)136 static inline bool subpool_is_free(struct hugepage_subpool *spool)
137 {
138 if (spool->count)
139 return false;
140 if (spool->max_hpages != -1)
141 return spool->used_hpages == 0;
142 if (spool->min_hpages != -1)
143 return spool->rsv_hpages == spool->min_hpages;
144
145 return true;
146 }
147
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)148 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
149 unsigned long irq_flags)
150 {
151 spin_unlock_irqrestore(&spool->lock, irq_flags);
152
153 /* If no pages are used, and no other handles to the subpool
154 * remain, give up any reservations based on minimum size and
155 * free the subpool */
156 if (subpool_is_free(spool)) {
157 if (spool->min_hpages != -1)
158 hugetlb_acct_memory(spool->hstate,
159 -spool->min_hpages);
160 kfree(spool);
161 }
162 }
163
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)164 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
165 long min_hpages)
166 {
167 struct hugepage_subpool *spool;
168
169 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
170 if (!spool)
171 return NULL;
172
173 spin_lock_init(&spool->lock);
174 spool->count = 1;
175 spool->max_hpages = max_hpages;
176 spool->hstate = h;
177 spool->min_hpages = min_hpages;
178
179 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
180 kfree(spool);
181 return NULL;
182 }
183 spool->rsv_hpages = min_hpages;
184
185 return spool;
186 }
187
hugepage_put_subpool(struct hugepage_subpool * spool)188 void hugepage_put_subpool(struct hugepage_subpool *spool)
189 {
190 unsigned long flags;
191
192 spin_lock_irqsave(&spool->lock, flags);
193 BUG_ON(!spool->count);
194 spool->count--;
195 unlock_or_release_subpool(spool, flags);
196 }
197
198 /*
199 * Subpool accounting for allocating and reserving pages.
200 * Return -ENOMEM if there are not enough resources to satisfy the
201 * request. Otherwise, return the number of pages by which the
202 * global pools must be adjusted (upward). The returned value may
203 * only be different than the passed value (delta) in the case where
204 * a subpool minimum size must be maintained.
205 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)206 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
207 long delta)
208 {
209 long ret = delta;
210
211 if (!spool)
212 return ret;
213
214 spin_lock_irq(&spool->lock);
215
216 if (spool->max_hpages != -1) { /* maximum size accounting */
217 if ((spool->used_hpages + delta) <= spool->max_hpages)
218 spool->used_hpages += delta;
219 else {
220 ret = -ENOMEM;
221 goto unlock_ret;
222 }
223 }
224
225 /* minimum size accounting */
226 if (spool->min_hpages != -1 && spool->rsv_hpages) {
227 if (delta > spool->rsv_hpages) {
228 /*
229 * Asking for more reserves than those already taken on
230 * behalf of subpool. Return difference.
231 */
232 ret = delta - spool->rsv_hpages;
233 spool->rsv_hpages = 0;
234 } else {
235 ret = 0; /* reserves already accounted for */
236 spool->rsv_hpages -= delta;
237 }
238 }
239
240 unlock_ret:
241 spin_unlock_irq(&spool->lock);
242 return ret;
243 }
244
245 /*
246 * Subpool accounting for freeing and unreserving pages.
247 * Return the number of global page reservations that must be dropped.
248 * The return value may only be different than the passed value (delta)
249 * in the case where a subpool minimum size must be maintained.
250 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)251 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
252 long delta)
253 {
254 long ret = delta;
255 unsigned long flags;
256
257 if (!spool)
258 return delta;
259
260 spin_lock_irqsave(&spool->lock, flags);
261
262 if (spool->max_hpages != -1) /* maximum size accounting */
263 spool->used_hpages -= delta;
264
265 /* minimum size accounting */
266 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
267 if (spool->rsv_hpages + delta <= spool->min_hpages)
268 ret = 0;
269 else
270 ret = spool->rsv_hpages + delta - spool->min_hpages;
271
272 spool->rsv_hpages += delta;
273 if (spool->rsv_hpages > spool->min_hpages)
274 spool->rsv_hpages = spool->min_hpages;
275 }
276
277 /*
278 * If hugetlbfs_put_super couldn't free spool due to an outstanding
279 * quota reference, free it now.
280 */
281 unlock_or_release_subpool(spool, flags);
282
283 return ret;
284 }
285
subpool_inode(struct inode * inode)286 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
287 {
288 return HUGETLBFS_SB(inode->i_sb)->spool;
289 }
290
subpool_vma(struct vm_area_struct * vma)291 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
292 {
293 return subpool_inode(file_inode(vma->vm_file));
294 }
295
296 /*
297 * hugetlb vma_lock helper routines
298 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)299 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
300 {
301 if (__vma_shareable_lock(vma)) {
302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303
304 down_read(&vma_lock->rw_sema);
305 } else if (__vma_private_lock(vma)) {
306 struct resv_map *resv_map = vma_resv_map(vma);
307
308 down_read(&resv_map->rw_sema);
309 }
310 }
311
hugetlb_vma_unlock_read(struct vm_area_struct * vma)312 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
313 {
314 if (__vma_shareable_lock(vma)) {
315 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
316
317 up_read(&vma_lock->rw_sema);
318 } else if (__vma_private_lock(vma)) {
319 struct resv_map *resv_map = vma_resv_map(vma);
320
321 up_read(&resv_map->rw_sema);
322 }
323 }
324
hugetlb_vma_lock_write(struct vm_area_struct * vma)325 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
326 {
327 if (__vma_shareable_lock(vma)) {
328 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
329
330 down_write(&vma_lock->rw_sema);
331 } else if (__vma_private_lock(vma)) {
332 struct resv_map *resv_map = vma_resv_map(vma);
333
334 down_write(&resv_map->rw_sema);
335 }
336 }
337
hugetlb_vma_unlock_write(struct vm_area_struct * vma)338 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
339 {
340 if (__vma_shareable_lock(vma)) {
341 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
342
343 up_write(&vma_lock->rw_sema);
344 } else if (__vma_private_lock(vma)) {
345 struct resv_map *resv_map = vma_resv_map(vma);
346
347 up_write(&resv_map->rw_sema);
348 }
349 }
350
hugetlb_vma_trylock_write(struct vm_area_struct * vma)351 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
352 {
353
354 if (__vma_shareable_lock(vma)) {
355 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
356
357 return down_write_trylock(&vma_lock->rw_sema);
358 } else if (__vma_private_lock(vma)) {
359 struct resv_map *resv_map = vma_resv_map(vma);
360
361 return down_write_trylock(&resv_map->rw_sema);
362 }
363
364 return 1;
365 }
366
hugetlb_vma_assert_locked(struct vm_area_struct * vma)367 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
368 {
369 if (__vma_shareable_lock(vma)) {
370 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
371
372 lockdep_assert_held(&vma_lock->rw_sema);
373 } else if (__vma_private_lock(vma)) {
374 struct resv_map *resv_map = vma_resv_map(vma);
375
376 lockdep_assert_held(&resv_map->rw_sema);
377 }
378 }
379
hugetlb_vma_lock_release(struct kref * kref)380 void hugetlb_vma_lock_release(struct kref *kref)
381 {
382 struct hugetlb_vma_lock *vma_lock = container_of(kref,
383 struct hugetlb_vma_lock, refs);
384
385 kfree(vma_lock);
386 }
387
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)388 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
389 {
390 struct vm_area_struct *vma = vma_lock->vma;
391
392 /*
393 * vma_lock structure may or not be released as a result of put,
394 * it certainly will no longer be attached to vma so clear pointer.
395 * Semaphore synchronizes access to vma_lock->vma field.
396 */
397 vma_lock->vma = NULL;
398 vma->vm_private_data = NULL;
399 up_write(&vma_lock->rw_sema);
400 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
401 }
402
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)403 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
404 {
405 if (__vma_shareable_lock(vma)) {
406 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
407
408 __hugetlb_vma_unlock_write_put(vma_lock);
409 } else if (__vma_private_lock(vma)) {
410 struct resv_map *resv_map = vma_resv_map(vma);
411
412 /* no free for anon vmas, but still need to unlock */
413 up_write(&resv_map->rw_sema);
414 }
415 }
416
hugetlb_vma_lock_free(struct vm_area_struct * vma)417 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
418 {
419 /*
420 * Only present in sharable vmas.
421 */
422 if (!vma || !__vma_shareable_lock(vma))
423 return;
424
425 if (vma->vm_private_data) {
426 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
427
428 down_write(&vma_lock->rw_sema);
429 __hugetlb_vma_unlock_write_put(vma_lock);
430 }
431 }
432
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)433 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
434 {
435 struct hugetlb_vma_lock *vma_lock;
436
437 /* Only establish in (flags) sharable vmas */
438 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
439 return;
440
441 /* Should never get here with non-NULL vm_private_data */
442 if (vma->vm_private_data)
443 return;
444
445 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
446 if (!vma_lock) {
447 /*
448 * If we can not allocate structure, then vma can not
449 * participate in pmd sharing. This is only a possible
450 * performance enhancement and memory saving issue.
451 * However, the lock is also used to synchronize page
452 * faults with truncation. If the lock is not present,
453 * unlikely races could leave pages in a file past i_size
454 * until the file is removed. Warn in the unlikely case of
455 * allocation failure.
456 */
457 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
458 return;
459 }
460
461 kref_init(&vma_lock->refs);
462 init_rwsem(&vma_lock->rw_sema);
463 vma_lock->vma = vma;
464 vma->vm_private_data = vma_lock;
465 }
466
467 /* Helper that removes a struct file_region from the resv_map cache and returns
468 * it for use.
469 */
470 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)471 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
472 {
473 struct file_region *nrg;
474
475 VM_BUG_ON(resv->region_cache_count <= 0);
476
477 resv->region_cache_count--;
478 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
479 list_del(&nrg->link);
480
481 nrg->from = from;
482 nrg->to = to;
483
484 return nrg;
485 }
486
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)487 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
488 struct file_region *rg)
489 {
490 #ifdef CONFIG_CGROUP_HUGETLB
491 nrg->reservation_counter = rg->reservation_counter;
492 nrg->css = rg->css;
493 if (rg->css)
494 css_get(rg->css);
495 #endif
496 }
497
498 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)499 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
500 struct hstate *h,
501 struct resv_map *resv,
502 struct file_region *nrg)
503 {
504 #ifdef CONFIG_CGROUP_HUGETLB
505 if (h_cg) {
506 nrg->reservation_counter =
507 &h_cg->rsvd_hugepage[hstate_index(h)];
508 nrg->css = &h_cg->css;
509 /*
510 * The caller will hold exactly one h_cg->css reference for the
511 * whole contiguous reservation region. But this area might be
512 * scattered when there are already some file_regions reside in
513 * it. As a result, many file_regions may share only one css
514 * reference. In order to ensure that one file_region must hold
515 * exactly one h_cg->css reference, we should do css_get for
516 * each file_region and leave the reference held by caller
517 * untouched.
518 */
519 css_get(&h_cg->css);
520 if (!resv->pages_per_hpage)
521 resv->pages_per_hpage = pages_per_huge_page(h);
522 /* pages_per_hpage should be the same for all entries in
523 * a resv_map.
524 */
525 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
526 } else {
527 nrg->reservation_counter = NULL;
528 nrg->css = NULL;
529 }
530 #endif
531 }
532
put_uncharge_info(struct file_region * rg)533 static void put_uncharge_info(struct file_region *rg)
534 {
535 #ifdef CONFIG_CGROUP_HUGETLB
536 if (rg->css)
537 css_put(rg->css);
538 #endif
539 }
540
has_same_uncharge_info(struct file_region * rg,struct file_region * org)541 static bool has_same_uncharge_info(struct file_region *rg,
542 struct file_region *org)
543 {
544 #ifdef CONFIG_CGROUP_HUGETLB
545 return rg->reservation_counter == org->reservation_counter &&
546 rg->css == org->css;
547
548 #else
549 return true;
550 #endif
551 }
552
coalesce_file_region(struct resv_map * resv,struct file_region * rg)553 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
554 {
555 struct file_region *nrg, *prg;
556
557 prg = list_prev_entry(rg, link);
558 if (&prg->link != &resv->regions && prg->to == rg->from &&
559 has_same_uncharge_info(prg, rg)) {
560 prg->to = rg->to;
561
562 list_del(&rg->link);
563 put_uncharge_info(rg);
564 kfree(rg);
565
566 rg = prg;
567 }
568
569 nrg = list_next_entry(rg, link);
570 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
571 has_same_uncharge_info(nrg, rg)) {
572 nrg->from = rg->from;
573
574 list_del(&rg->link);
575 put_uncharge_info(rg);
576 kfree(rg);
577 }
578 }
579
580 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)581 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
582 long to, struct hstate *h, struct hugetlb_cgroup *cg,
583 long *regions_needed)
584 {
585 struct file_region *nrg;
586
587 if (!regions_needed) {
588 nrg = get_file_region_entry_from_cache(map, from, to);
589 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
590 list_add(&nrg->link, rg);
591 coalesce_file_region(map, nrg);
592 } else
593 *regions_needed += 1;
594
595 return to - from;
596 }
597
598 /*
599 * Must be called with resv->lock held.
600 *
601 * Calling this with regions_needed != NULL will count the number of pages
602 * to be added but will not modify the linked list. And regions_needed will
603 * indicate the number of file_regions needed in the cache to carry out to add
604 * the regions for this range.
605 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)606 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
607 struct hugetlb_cgroup *h_cg,
608 struct hstate *h, long *regions_needed)
609 {
610 long add = 0;
611 struct list_head *head = &resv->regions;
612 long last_accounted_offset = f;
613 struct file_region *iter, *trg = NULL;
614 struct list_head *rg = NULL;
615
616 if (regions_needed)
617 *regions_needed = 0;
618
619 /* In this loop, we essentially handle an entry for the range
620 * [last_accounted_offset, iter->from), at every iteration, with some
621 * bounds checking.
622 */
623 list_for_each_entry_safe(iter, trg, head, link) {
624 /* Skip irrelevant regions that start before our range. */
625 if (iter->from < f) {
626 /* If this region ends after the last accounted offset,
627 * then we need to update last_accounted_offset.
628 */
629 if (iter->to > last_accounted_offset)
630 last_accounted_offset = iter->to;
631 continue;
632 }
633
634 /* When we find a region that starts beyond our range, we've
635 * finished.
636 */
637 if (iter->from >= t) {
638 rg = iter->link.prev;
639 break;
640 }
641
642 /* Add an entry for last_accounted_offset -> iter->from, and
643 * update last_accounted_offset.
644 */
645 if (iter->from > last_accounted_offset)
646 add += hugetlb_resv_map_add(resv, iter->link.prev,
647 last_accounted_offset,
648 iter->from, h, h_cg,
649 regions_needed);
650
651 last_accounted_offset = iter->to;
652 }
653
654 /* Handle the case where our range extends beyond
655 * last_accounted_offset.
656 */
657 if (!rg)
658 rg = head->prev;
659 if (last_accounted_offset < t)
660 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
661 t, h, h_cg, regions_needed);
662
663 return add;
664 }
665
666 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
667 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)668 static int allocate_file_region_entries(struct resv_map *resv,
669 int regions_needed)
670 __must_hold(&resv->lock)
671 {
672 LIST_HEAD(allocated_regions);
673 int to_allocate = 0, i = 0;
674 struct file_region *trg = NULL, *rg = NULL;
675
676 VM_BUG_ON(regions_needed < 0);
677
678 /*
679 * Check for sufficient descriptors in the cache to accommodate
680 * the number of in progress add operations plus regions_needed.
681 *
682 * This is a while loop because when we drop the lock, some other call
683 * to region_add or region_del may have consumed some region_entries,
684 * so we keep looping here until we finally have enough entries for
685 * (adds_in_progress + regions_needed).
686 */
687 while (resv->region_cache_count <
688 (resv->adds_in_progress + regions_needed)) {
689 to_allocate = resv->adds_in_progress + regions_needed -
690 resv->region_cache_count;
691
692 /* At this point, we should have enough entries in the cache
693 * for all the existing adds_in_progress. We should only be
694 * needing to allocate for regions_needed.
695 */
696 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
697
698 spin_unlock(&resv->lock);
699 for (i = 0; i < to_allocate; i++) {
700 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
701 if (!trg)
702 goto out_of_memory;
703 list_add(&trg->link, &allocated_regions);
704 }
705
706 spin_lock(&resv->lock);
707
708 list_splice(&allocated_regions, &resv->region_cache);
709 resv->region_cache_count += to_allocate;
710 }
711
712 return 0;
713
714 out_of_memory:
715 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
716 list_del(&rg->link);
717 kfree(rg);
718 }
719 return -ENOMEM;
720 }
721
722 /*
723 * Add the huge page range represented by [f, t) to the reserve
724 * map. Regions will be taken from the cache to fill in this range.
725 * Sufficient regions should exist in the cache due to the previous
726 * call to region_chg with the same range, but in some cases the cache will not
727 * have sufficient entries due to races with other code doing region_add or
728 * region_del. The extra needed entries will be allocated.
729 *
730 * regions_needed is the out value provided by a previous call to region_chg.
731 *
732 * Return the number of new huge pages added to the map. This number is greater
733 * than or equal to zero. If file_region entries needed to be allocated for
734 * this operation and we were not able to allocate, it returns -ENOMEM.
735 * region_add of regions of length 1 never allocate file_regions and cannot
736 * fail; region_chg will always allocate at least 1 entry and a region_add for
737 * 1 page will only require at most 1 entry.
738 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)739 static long region_add(struct resv_map *resv, long f, long t,
740 long in_regions_needed, struct hstate *h,
741 struct hugetlb_cgroup *h_cg)
742 {
743 long add = 0, actual_regions_needed = 0;
744
745 spin_lock(&resv->lock);
746 retry:
747
748 /* Count how many regions are actually needed to execute this add. */
749 add_reservation_in_range(resv, f, t, NULL, NULL,
750 &actual_regions_needed);
751
752 /*
753 * Check for sufficient descriptors in the cache to accommodate
754 * this add operation. Note that actual_regions_needed may be greater
755 * than in_regions_needed, as the resv_map may have been modified since
756 * the region_chg call. In this case, we need to make sure that we
757 * allocate extra entries, such that we have enough for all the
758 * existing adds_in_progress, plus the excess needed for this
759 * operation.
760 */
761 if (actual_regions_needed > in_regions_needed &&
762 resv->region_cache_count <
763 resv->adds_in_progress +
764 (actual_regions_needed - in_regions_needed)) {
765 /* region_add operation of range 1 should never need to
766 * allocate file_region entries.
767 */
768 VM_BUG_ON(t - f <= 1);
769
770 if (allocate_file_region_entries(
771 resv, actual_regions_needed - in_regions_needed)) {
772 return -ENOMEM;
773 }
774
775 goto retry;
776 }
777
778 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
779
780 resv->adds_in_progress -= in_regions_needed;
781
782 spin_unlock(&resv->lock);
783 return add;
784 }
785
786 /*
787 * Examine the existing reserve map and determine how many
788 * huge pages in the specified range [f, t) are NOT currently
789 * represented. This routine is called before a subsequent
790 * call to region_add that will actually modify the reserve
791 * map to add the specified range [f, t). region_chg does
792 * not change the number of huge pages represented by the
793 * map. A number of new file_region structures is added to the cache as a
794 * placeholder, for the subsequent region_add call to use. At least 1
795 * file_region structure is added.
796 *
797 * out_regions_needed is the number of regions added to the
798 * resv->adds_in_progress. This value needs to be provided to a follow up call
799 * to region_add or region_abort for proper accounting.
800 *
801 * Returns the number of huge pages that need to be added to the existing
802 * reservation map for the range [f, t). This number is greater or equal to
803 * zero. -ENOMEM is returned if a new file_region structure or cache entry
804 * is needed and can not be allocated.
805 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)806 static long region_chg(struct resv_map *resv, long f, long t,
807 long *out_regions_needed)
808 {
809 long chg = 0;
810
811 spin_lock(&resv->lock);
812
813 /* Count how many hugepages in this range are NOT represented. */
814 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
815 out_regions_needed);
816
817 if (*out_regions_needed == 0)
818 *out_regions_needed = 1;
819
820 if (allocate_file_region_entries(resv, *out_regions_needed))
821 return -ENOMEM;
822
823 resv->adds_in_progress += *out_regions_needed;
824
825 spin_unlock(&resv->lock);
826 return chg;
827 }
828
829 /*
830 * Abort the in progress add operation. The adds_in_progress field
831 * of the resv_map keeps track of the operations in progress between
832 * calls to region_chg and region_add. Operations are sometimes
833 * aborted after the call to region_chg. In such cases, region_abort
834 * is called to decrement the adds_in_progress counter. regions_needed
835 * is the value returned by the region_chg call, it is used to decrement
836 * the adds_in_progress counter.
837 *
838 * NOTE: The range arguments [f, t) are not needed or used in this
839 * routine. They are kept to make reading the calling code easier as
840 * arguments will match the associated region_chg call.
841 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)842 static void region_abort(struct resv_map *resv, long f, long t,
843 long regions_needed)
844 {
845 spin_lock(&resv->lock);
846 VM_BUG_ON(!resv->region_cache_count);
847 resv->adds_in_progress -= regions_needed;
848 spin_unlock(&resv->lock);
849 }
850
851 /*
852 * Delete the specified range [f, t) from the reserve map. If the
853 * t parameter is LONG_MAX, this indicates that ALL regions after f
854 * should be deleted. Locate the regions which intersect [f, t)
855 * and either trim, delete or split the existing regions.
856 *
857 * Returns the number of huge pages deleted from the reserve map.
858 * In the normal case, the return value is zero or more. In the
859 * case where a region must be split, a new region descriptor must
860 * be allocated. If the allocation fails, -ENOMEM will be returned.
861 * NOTE: If the parameter t == LONG_MAX, then we will never split
862 * a region and possibly return -ENOMEM. Callers specifying
863 * t == LONG_MAX do not need to check for -ENOMEM error.
864 */
region_del(struct resv_map * resv,long f,long t)865 static long region_del(struct resv_map *resv, long f, long t)
866 {
867 struct list_head *head = &resv->regions;
868 struct file_region *rg, *trg;
869 struct file_region *nrg = NULL;
870 long del = 0;
871
872 retry:
873 spin_lock(&resv->lock);
874 list_for_each_entry_safe(rg, trg, head, link) {
875 /*
876 * Skip regions before the range to be deleted. file_region
877 * ranges are normally of the form [from, to). However, there
878 * may be a "placeholder" entry in the map which is of the form
879 * (from, to) with from == to. Check for placeholder entries
880 * at the beginning of the range to be deleted.
881 */
882 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
883 continue;
884
885 if (rg->from >= t)
886 break;
887
888 if (f > rg->from && t < rg->to) { /* Must split region */
889 /*
890 * Check for an entry in the cache before dropping
891 * lock and attempting allocation.
892 */
893 if (!nrg &&
894 resv->region_cache_count > resv->adds_in_progress) {
895 nrg = list_first_entry(&resv->region_cache,
896 struct file_region,
897 link);
898 list_del(&nrg->link);
899 resv->region_cache_count--;
900 }
901
902 if (!nrg) {
903 spin_unlock(&resv->lock);
904 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
905 if (!nrg)
906 return -ENOMEM;
907 goto retry;
908 }
909
910 del += t - f;
911 hugetlb_cgroup_uncharge_file_region(
912 resv, rg, t - f, false);
913
914 /* New entry for end of split region */
915 nrg->from = t;
916 nrg->to = rg->to;
917
918 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
919
920 INIT_LIST_HEAD(&nrg->link);
921
922 /* Original entry is trimmed */
923 rg->to = f;
924
925 list_add(&nrg->link, &rg->link);
926 nrg = NULL;
927 break;
928 }
929
930 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
931 del += rg->to - rg->from;
932 hugetlb_cgroup_uncharge_file_region(resv, rg,
933 rg->to - rg->from, true);
934 list_del(&rg->link);
935 kfree(rg);
936 continue;
937 }
938
939 if (f <= rg->from) { /* Trim beginning of region */
940 hugetlb_cgroup_uncharge_file_region(resv, rg,
941 t - rg->from, false);
942
943 del += t - rg->from;
944 rg->from = t;
945 } else { /* Trim end of region */
946 hugetlb_cgroup_uncharge_file_region(resv, rg,
947 rg->to - f, false);
948
949 del += rg->to - f;
950 rg->to = f;
951 }
952 }
953
954 spin_unlock(&resv->lock);
955 kfree(nrg);
956 return del;
957 }
958
959 /*
960 * A rare out of memory error was encountered which prevented removal of
961 * the reserve map region for a page. The huge page itself was free'ed
962 * and removed from the page cache. This routine will adjust the subpool
963 * usage count, and the global reserve count if needed. By incrementing
964 * these counts, the reserve map entry which could not be deleted will
965 * appear as a "reserved" entry instead of simply dangling with incorrect
966 * counts.
967 */
hugetlb_fix_reserve_counts(struct inode * inode)968 void hugetlb_fix_reserve_counts(struct inode *inode)
969 {
970 struct hugepage_subpool *spool = subpool_inode(inode);
971 long rsv_adjust;
972 bool reserved = false;
973
974 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
975 if (rsv_adjust > 0) {
976 struct hstate *h = hstate_inode(inode);
977
978 if (!hugetlb_acct_memory(h, 1))
979 reserved = true;
980 } else if (!rsv_adjust) {
981 reserved = true;
982 }
983
984 if (!reserved)
985 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
986 }
987
988 /*
989 * Count and return the number of huge pages in the reserve map
990 * that intersect with the range [f, t).
991 */
region_count(struct resv_map * resv,long f,long t)992 static long region_count(struct resv_map *resv, long f, long t)
993 {
994 struct list_head *head = &resv->regions;
995 struct file_region *rg;
996 long chg = 0;
997
998 spin_lock(&resv->lock);
999 /* Locate each segment we overlap with, and count that overlap. */
1000 list_for_each_entry(rg, head, link) {
1001 long seg_from;
1002 long seg_to;
1003
1004 if (rg->to <= f)
1005 continue;
1006 if (rg->from >= t)
1007 break;
1008
1009 seg_from = max(rg->from, f);
1010 seg_to = min(rg->to, t);
1011
1012 chg += seg_to - seg_from;
1013 }
1014 spin_unlock(&resv->lock);
1015
1016 return chg;
1017 }
1018
1019 /*
1020 * Convert the address within this vma to the page offset within
1021 * the mapping, huge page units here.
1022 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1023 static pgoff_t vma_hugecache_offset(struct hstate *h,
1024 struct vm_area_struct *vma, unsigned long address)
1025 {
1026 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1027 (vma->vm_pgoff >> huge_page_order(h));
1028 }
1029
1030 /**
1031 * vma_kernel_pagesize - Page size granularity for this VMA.
1032 * @vma: The user mapping.
1033 *
1034 * Folios in this VMA will be aligned to, and at least the size of the
1035 * number of bytes returned by this function.
1036 *
1037 * Return: The default size of the folios allocated when backing a VMA.
1038 */
vma_kernel_pagesize(struct vm_area_struct * vma)1039 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1040 {
1041 if (vma->vm_ops && vma->vm_ops->pagesize)
1042 return vma->vm_ops->pagesize(vma);
1043 return PAGE_SIZE;
1044 }
1045 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1046
1047 /*
1048 * Return the page size being used by the MMU to back a VMA. In the majority
1049 * of cases, the page size used by the kernel matches the MMU size. On
1050 * architectures where it differs, an architecture-specific 'strong'
1051 * version of this symbol is required.
1052 */
vma_mmu_pagesize(struct vm_area_struct * vma)1053 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1054 {
1055 return vma_kernel_pagesize(vma);
1056 }
1057
1058 /*
1059 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1060 * bits of the reservation map pointer, which are always clear due to
1061 * alignment.
1062 */
1063 #define HPAGE_RESV_OWNER (1UL << 0)
1064 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1065 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1066
1067 /*
1068 * These helpers are used to track how many pages are reserved for
1069 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1070 * is guaranteed to have their future faults succeed.
1071 *
1072 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1073 * the reserve counters are updated with the hugetlb_lock held. It is safe
1074 * to reset the VMA at fork() time as it is not in use yet and there is no
1075 * chance of the global counters getting corrupted as a result of the values.
1076 *
1077 * The private mapping reservation is represented in a subtly different
1078 * manner to a shared mapping. A shared mapping has a region map associated
1079 * with the underlying file, this region map represents the backing file
1080 * pages which have ever had a reservation assigned which this persists even
1081 * after the page is instantiated. A private mapping has a region map
1082 * associated with the original mmap which is attached to all VMAs which
1083 * reference it, this region map represents those offsets which have consumed
1084 * reservation ie. where pages have been instantiated.
1085 */
get_vma_private_data(struct vm_area_struct * vma)1086 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1087 {
1088 return (unsigned long)vma->vm_private_data;
1089 }
1090
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1091 static void set_vma_private_data(struct vm_area_struct *vma,
1092 unsigned long value)
1093 {
1094 vma->vm_private_data = (void *)value;
1095 }
1096
1097 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1098 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1099 struct hugetlb_cgroup *h_cg,
1100 struct hstate *h)
1101 {
1102 #ifdef CONFIG_CGROUP_HUGETLB
1103 if (!h_cg || !h) {
1104 resv_map->reservation_counter = NULL;
1105 resv_map->pages_per_hpage = 0;
1106 resv_map->css = NULL;
1107 } else {
1108 resv_map->reservation_counter =
1109 &h_cg->rsvd_hugepage[hstate_index(h)];
1110 resv_map->pages_per_hpage = pages_per_huge_page(h);
1111 resv_map->css = &h_cg->css;
1112 }
1113 #endif
1114 }
1115
resv_map_alloc(void)1116 struct resv_map *resv_map_alloc(void)
1117 {
1118 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1119 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1120
1121 if (!resv_map || !rg) {
1122 kfree(resv_map);
1123 kfree(rg);
1124 return NULL;
1125 }
1126
1127 kref_init(&resv_map->refs);
1128 spin_lock_init(&resv_map->lock);
1129 INIT_LIST_HEAD(&resv_map->regions);
1130 init_rwsem(&resv_map->rw_sema);
1131
1132 resv_map->adds_in_progress = 0;
1133 /*
1134 * Initialize these to 0. On shared mappings, 0's here indicate these
1135 * fields don't do cgroup accounting. On private mappings, these will be
1136 * re-initialized to the proper values, to indicate that hugetlb cgroup
1137 * reservations are to be un-charged from here.
1138 */
1139 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1140
1141 INIT_LIST_HEAD(&resv_map->region_cache);
1142 list_add(&rg->link, &resv_map->region_cache);
1143 resv_map->region_cache_count = 1;
1144
1145 return resv_map;
1146 }
1147
resv_map_release(struct kref * ref)1148 void resv_map_release(struct kref *ref)
1149 {
1150 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1151 struct list_head *head = &resv_map->region_cache;
1152 struct file_region *rg, *trg;
1153
1154 /* Clear out any active regions before we release the map. */
1155 region_del(resv_map, 0, LONG_MAX);
1156
1157 /* ... and any entries left in the cache */
1158 list_for_each_entry_safe(rg, trg, head, link) {
1159 list_del(&rg->link);
1160 kfree(rg);
1161 }
1162
1163 VM_BUG_ON(resv_map->adds_in_progress);
1164
1165 kfree(resv_map);
1166 }
1167
inode_resv_map(struct inode * inode)1168 static inline struct resv_map *inode_resv_map(struct inode *inode)
1169 {
1170 /*
1171 * At inode evict time, i_mapping may not point to the original
1172 * address space within the inode. This original address space
1173 * contains the pointer to the resv_map. So, always use the
1174 * address space embedded within the inode.
1175 * The VERY common case is inode->mapping == &inode->i_data but,
1176 * this may not be true for device special inodes.
1177 */
1178 return (struct resv_map *)(&inode->i_data)->i_private_data;
1179 }
1180
vma_resv_map(struct vm_area_struct * vma)1181 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1182 {
1183 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1184 if (vma->vm_flags & VM_MAYSHARE) {
1185 struct address_space *mapping = vma->vm_file->f_mapping;
1186 struct inode *inode = mapping->host;
1187
1188 return inode_resv_map(inode);
1189
1190 } else {
1191 return (struct resv_map *)(get_vma_private_data(vma) &
1192 ~HPAGE_RESV_MASK);
1193 }
1194 }
1195
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1196 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1197 {
1198 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1199 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1200
1201 set_vma_private_data(vma, (unsigned long)map);
1202 }
1203
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1204 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1205 {
1206 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1207 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1208
1209 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1210 }
1211
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1212 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1213 {
1214 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1215
1216 return (get_vma_private_data(vma) & flag) != 0;
1217 }
1218
__vma_private_lock(struct vm_area_struct * vma)1219 bool __vma_private_lock(struct vm_area_struct *vma)
1220 {
1221 return !(vma->vm_flags & VM_MAYSHARE) &&
1222 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1223 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1224 }
1225
hugetlb_dup_vma_private(struct vm_area_struct * vma)1226 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1227 {
1228 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1229 /*
1230 * Clear vm_private_data
1231 * - For shared mappings this is a per-vma semaphore that may be
1232 * allocated in a subsequent call to hugetlb_vm_op_open.
1233 * Before clearing, make sure pointer is not associated with vma
1234 * as this will leak the structure. This is the case when called
1235 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1236 * been called to allocate a new structure.
1237 * - For MAP_PRIVATE mappings, this is the reserve map which does
1238 * not apply to children. Faults generated by the children are
1239 * not guaranteed to succeed, even if read-only.
1240 */
1241 if (vma->vm_flags & VM_MAYSHARE) {
1242 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1243
1244 if (vma_lock && vma_lock->vma != vma)
1245 vma->vm_private_data = NULL;
1246 } else
1247 vma->vm_private_data = NULL;
1248 }
1249
1250 /*
1251 * Reset and decrement one ref on hugepage private reservation.
1252 * Called with mm->mmap_lock writer semaphore held.
1253 * This function should be only used by mremap and operate on
1254 * same sized vma. It should never come here with last ref on the
1255 * reservation.
1256 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1257 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1258 {
1259 /*
1260 * Clear the old hugetlb private page reservation.
1261 * It has already been transferred to new_vma.
1262 *
1263 * During a mremap() operation of a hugetlb vma we call move_vma()
1264 * which copies vma into new_vma and unmaps vma. After the copy
1265 * operation both new_vma and vma share a reference to the resv_map
1266 * struct, and at that point vma is about to be unmapped. We don't
1267 * want to return the reservation to the pool at unmap of vma because
1268 * the reservation still lives on in new_vma, so simply decrement the
1269 * ref here and remove the resv_map reference from this vma.
1270 */
1271 struct resv_map *reservations = vma_resv_map(vma);
1272
1273 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1274 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1275 kref_put(&reservations->refs, resv_map_release);
1276 }
1277
1278 hugetlb_dup_vma_private(vma);
1279 }
1280
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1281 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1282 {
1283 int nid = folio_nid(folio);
1284
1285 lockdep_assert_held(&hugetlb_lock);
1286 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1287
1288 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1289 h->free_huge_pages++;
1290 h->free_huge_pages_node[nid]++;
1291 folio_set_hugetlb_freed(folio);
1292 }
1293
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1294 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1295 int nid)
1296 {
1297 struct folio *folio;
1298 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1299
1300 lockdep_assert_held(&hugetlb_lock);
1301 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1302 if (pin && !folio_is_longterm_pinnable(folio))
1303 continue;
1304
1305 if (folio_test_hwpoison(folio))
1306 continue;
1307
1308 if (is_migrate_isolate_page(&folio->page))
1309 continue;
1310
1311 list_move(&folio->lru, &h->hugepage_activelist);
1312 folio_ref_unfreeze(folio, 1);
1313 folio_clear_hugetlb_freed(folio);
1314 h->free_huge_pages--;
1315 h->free_huge_pages_node[nid]--;
1316 return folio;
1317 }
1318
1319 return NULL;
1320 }
1321
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1322 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1323 int nid, nodemask_t *nmask)
1324 {
1325 unsigned int cpuset_mems_cookie;
1326 struct zonelist *zonelist;
1327 struct zone *zone;
1328 struct zoneref *z;
1329 int node = NUMA_NO_NODE;
1330
1331 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1332 if (nid == NUMA_NO_NODE)
1333 nid = numa_node_id();
1334
1335 zonelist = node_zonelist(nid, gfp_mask);
1336
1337 retry_cpuset:
1338 cpuset_mems_cookie = read_mems_allowed_begin();
1339 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1340 struct folio *folio;
1341
1342 if (!cpuset_zone_allowed(zone, gfp_mask))
1343 continue;
1344 /*
1345 * no need to ask again on the same node. Pool is node rather than
1346 * zone aware
1347 */
1348 if (zone_to_nid(zone) == node)
1349 continue;
1350 node = zone_to_nid(zone);
1351
1352 folio = dequeue_hugetlb_folio_node_exact(h, node);
1353 if (folio)
1354 return folio;
1355 }
1356 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1357 goto retry_cpuset;
1358
1359 return NULL;
1360 }
1361
available_huge_pages(struct hstate * h)1362 static unsigned long available_huge_pages(struct hstate *h)
1363 {
1364 return h->free_huge_pages - h->resv_huge_pages;
1365 }
1366
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1367 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1368 struct vm_area_struct *vma,
1369 unsigned long address, long gbl_chg)
1370 {
1371 struct folio *folio = NULL;
1372 struct mempolicy *mpol;
1373 gfp_t gfp_mask;
1374 nodemask_t *nodemask;
1375 int nid;
1376
1377 /*
1378 * gbl_chg==1 means the allocation requires a new page that was not
1379 * reserved before. Making sure there's at least one free page.
1380 */
1381 if (gbl_chg && !available_huge_pages(h))
1382 goto err;
1383
1384 gfp_mask = htlb_alloc_mask(h);
1385 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1386
1387 if (mpol_is_preferred_many(mpol)) {
1388 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 nid, nodemask);
1390
1391 /* Fallback to all nodes if page==NULL */
1392 nodemask = NULL;
1393 }
1394
1395 if (!folio)
1396 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1397 nid, nodemask);
1398
1399 mpol_cond_put(mpol);
1400 return folio;
1401
1402 err:
1403 return NULL;
1404 }
1405
1406 /*
1407 * common helper functions for hstate_next_node_to_{alloc|free}.
1408 * We may have allocated or freed a huge page based on a different
1409 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1410 * be outside of *nodes_allowed. Ensure that we use an allowed
1411 * node for alloc or free.
1412 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1413 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1414 {
1415 nid = next_node_in(nid, *nodes_allowed);
1416 VM_BUG_ON(nid >= MAX_NUMNODES);
1417
1418 return nid;
1419 }
1420
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1421 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1422 {
1423 if (!node_isset(nid, *nodes_allowed))
1424 nid = next_node_allowed(nid, nodes_allowed);
1425 return nid;
1426 }
1427
1428 /*
1429 * returns the previously saved node ["this node"] from which to
1430 * allocate a persistent huge page for the pool and advance the
1431 * next node from which to allocate, handling wrap at end of node
1432 * mask.
1433 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1434 static int hstate_next_node_to_alloc(int *next_node,
1435 nodemask_t *nodes_allowed)
1436 {
1437 int nid;
1438
1439 VM_BUG_ON(!nodes_allowed);
1440
1441 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1442 *next_node = next_node_allowed(nid, nodes_allowed);
1443
1444 return nid;
1445 }
1446
1447 /*
1448 * helper for remove_pool_hugetlb_folio() - return the previously saved
1449 * node ["this node"] from which to free a huge page. Advance the
1450 * next node id whether or not we find a free huge page to free so
1451 * that the next attempt to free addresses the next node.
1452 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1453 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1454 {
1455 int nid;
1456
1457 VM_BUG_ON(!nodes_allowed);
1458
1459 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1460 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1461
1462 return nid;
1463 }
1464
1465 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1466 for (nr_nodes = nodes_weight(*mask); \
1467 nr_nodes > 0 && \
1468 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1469 nr_nodes--)
1470
1471 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1472 for (nr_nodes = nodes_weight(*mask); \
1473 nr_nodes > 0 && \
1474 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1475 nr_nodes--)
1476
1477 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1478 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1479 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1480 int nid, nodemask_t *nodemask)
1481 {
1482 struct folio *folio;
1483 int order = huge_page_order(h);
1484 bool retried = false;
1485
1486 if (nid == NUMA_NO_NODE)
1487 nid = numa_mem_id();
1488 retry:
1489 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1490 if (!folio) {
1491 if (hugetlb_cma_exclusive_alloc())
1492 return NULL;
1493
1494 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1495 if (!folio)
1496 return NULL;
1497 }
1498
1499 if (folio_ref_freeze(folio, 1))
1500 return folio;
1501
1502 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1503 hugetlb_free_folio(folio);
1504 if (!retried) {
1505 retried = true;
1506 goto retry;
1507 }
1508 return NULL;
1509 }
1510
1511 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1512 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1513 int nid, nodemask_t *nodemask)
1514 {
1515 return NULL;
1516 }
1517 #endif /* CONFIG_CONTIG_ALLOC */
1518
1519 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1520 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1521 int nid, nodemask_t *nodemask)
1522 {
1523 return NULL;
1524 }
1525 #endif
1526
1527 /*
1528 * Remove hugetlb folio from lists.
1529 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1530 * folio appears as just a compound page. Otherwise, wait until after
1531 * allocating vmemmap to clear the flag.
1532 *
1533 * Must be called with hugetlb lock held.
1534 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1535 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1536 bool adjust_surplus)
1537 {
1538 int nid = folio_nid(folio);
1539
1540 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1542
1543 lockdep_assert_held(&hugetlb_lock);
1544 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1545 return;
1546
1547 list_del(&folio->lru);
1548
1549 if (folio_test_hugetlb_freed(folio)) {
1550 folio_clear_hugetlb_freed(folio);
1551 h->free_huge_pages--;
1552 h->free_huge_pages_node[nid]--;
1553 }
1554 if (adjust_surplus) {
1555 h->surplus_huge_pages--;
1556 h->surplus_huge_pages_node[nid]--;
1557 }
1558
1559 /*
1560 * We can only clear the hugetlb flag after allocating vmemmap
1561 * pages. Otherwise, someone (memory error handling) may try to write
1562 * to tail struct pages.
1563 */
1564 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1565 __folio_clear_hugetlb(folio);
1566
1567 h->nr_huge_pages--;
1568 h->nr_huge_pages_node[nid]--;
1569 }
1570
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1571 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1572 bool adjust_surplus)
1573 {
1574 int nid = folio_nid(folio);
1575
1576 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1577
1578 lockdep_assert_held(&hugetlb_lock);
1579
1580 INIT_LIST_HEAD(&folio->lru);
1581 h->nr_huge_pages++;
1582 h->nr_huge_pages_node[nid]++;
1583
1584 if (adjust_surplus) {
1585 h->surplus_huge_pages++;
1586 h->surplus_huge_pages_node[nid]++;
1587 }
1588
1589 __folio_set_hugetlb(folio);
1590 folio_change_private(folio, NULL);
1591 /*
1592 * We have to set hugetlb_vmemmap_optimized again as above
1593 * folio_change_private(folio, NULL) cleared it.
1594 */
1595 folio_set_hugetlb_vmemmap_optimized(folio);
1596
1597 arch_clear_hugetlb_flags(folio);
1598 enqueue_hugetlb_folio(h, folio);
1599 }
1600
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1601 static void __update_and_free_hugetlb_folio(struct hstate *h,
1602 struct folio *folio)
1603 {
1604 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1605
1606 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1607 return;
1608
1609 /*
1610 * If we don't know which subpages are hwpoisoned, we can't free
1611 * the hugepage, so it's leaked intentionally.
1612 */
1613 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1614 return;
1615
1616 /*
1617 * If folio is not vmemmap optimized (!clear_flag), then the folio
1618 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1619 * can only be passed hugetlb pages and will BUG otherwise.
1620 */
1621 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1622 spin_lock_irq(&hugetlb_lock);
1623 /*
1624 * If we cannot allocate vmemmap pages, just refuse to free the
1625 * page and put the page back on the hugetlb free list and treat
1626 * as a surplus page.
1627 */
1628 add_hugetlb_folio(h, folio, true);
1629 spin_unlock_irq(&hugetlb_lock);
1630 return;
1631 }
1632
1633 /*
1634 * If vmemmap pages were allocated above, then we need to clear the
1635 * hugetlb flag under the hugetlb lock.
1636 */
1637 if (folio_test_hugetlb(folio)) {
1638 spin_lock_irq(&hugetlb_lock);
1639 __folio_clear_hugetlb(folio);
1640 spin_unlock_irq(&hugetlb_lock);
1641 }
1642
1643 /*
1644 * Move PageHWPoison flag from head page to the raw error pages,
1645 * which makes any healthy subpages reusable.
1646 */
1647 if (unlikely(folio_test_hwpoison(folio)))
1648 folio_clear_hugetlb_hwpoison(folio);
1649
1650 folio_ref_unfreeze(folio, 1);
1651
1652 hugetlb_free_folio(folio);
1653 }
1654
1655 /*
1656 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1657 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1658 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1659 * the vmemmap pages.
1660 *
1661 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1662 * freed and frees them one-by-one. As the page->mapping pointer is going
1663 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1664 * structure of a lockless linked list of huge pages to be freed.
1665 */
1666 static LLIST_HEAD(hpage_freelist);
1667
free_hpage_workfn(struct work_struct * work)1668 static void free_hpage_workfn(struct work_struct *work)
1669 {
1670 struct llist_node *node;
1671
1672 node = llist_del_all(&hpage_freelist);
1673
1674 while (node) {
1675 struct folio *folio;
1676 struct hstate *h;
1677
1678 folio = container_of((struct address_space **)node,
1679 struct folio, mapping);
1680 node = node->next;
1681 folio->mapping = NULL;
1682 /*
1683 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1684 * folio_hstate() is going to trigger because a previous call to
1685 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1686 * not use folio_hstate() directly.
1687 */
1688 h = size_to_hstate(folio_size(folio));
1689
1690 __update_and_free_hugetlb_folio(h, folio);
1691
1692 cond_resched();
1693 }
1694 }
1695 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1696
flush_free_hpage_work(struct hstate * h)1697 static inline void flush_free_hpage_work(struct hstate *h)
1698 {
1699 if (hugetlb_vmemmap_optimizable(h))
1700 flush_work(&free_hpage_work);
1701 }
1702
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1703 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1704 bool atomic)
1705 {
1706 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1707 __update_and_free_hugetlb_folio(h, folio);
1708 return;
1709 }
1710
1711 /*
1712 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1713 *
1714 * Only call schedule_work() if hpage_freelist is previously
1715 * empty. Otherwise, schedule_work() had been called but the workfn
1716 * hasn't retrieved the list yet.
1717 */
1718 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1719 schedule_work(&free_hpage_work);
1720 }
1721
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1722 static void bulk_vmemmap_restore_error(struct hstate *h,
1723 struct list_head *folio_list,
1724 struct list_head *non_hvo_folios)
1725 {
1726 struct folio *folio, *t_folio;
1727
1728 if (!list_empty(non_hvo_folios)) {
1729 /*
1730 * Free any restored hugetlb pages so that restore of the
1731 * entire list can be retried.
1732 * The idea is that in the common case of ENOMEM errors freeing
1733 * hugetlb pages with vmemmap we will free up memory so that we
1734 * can allocate vmemmap for more hugetlb pages.
1735 */
1736 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1737 list_del(&folio->lru);
1738 spin_lock_irq(&hugetlb_lock);
1739 __folio_clear_hugetlb(folio);
1740 spin_unlock_irq(&hugetlb_lock);
1741 update_and_free_hugetlb_folio(h, folio, false);
1742 cond_resched();
1743 }
1744 } else {
1745 /*
1746 * In the case where there are no folios which can be
1747 * immediately freed, we loop through the list trying to restore
1748 * vmemmap individually in the hope that someone elsewhere may
1749 * have done something to cause success (such as freeing some
1750 * memory). If unable to restore a hugetlb page, the hugetlb
1751 * page is made a surplus page and removed from the list.
1752 * If are able to restore vmemmap and free one hugetlb page, we
1753 * quit processing the list to retry the bulk operation.
1754 */
1755 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1756 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1757 list_del(&folio->lru);
1758 spin_lock_irq(&hugetlb_lock);
1759 add_hugetlb_folio(h, folio, true);
1760 spin_unlock_irq(&hugetlb_lock);
1761 } else {
1762 list_del(&folio->lru);
1763 spin_lock_irq(&hugetlb_lock);
1764 __folio_clear_hugetlb(folio);
1765 spin_unlock_irq(&hugetlb_lock);
1766 update_and_free_hugetlb_folio(h, folio, false);
1767 cond_resched();
1768 break;
1769 }
1770 }
1771 }
1772
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1773 static void update_and_free_pages_bulk(struct hstate *h,
1774 struct list_head *folio_list)
1775 {
1776 long ret;
1777 struct folio *folio, *t_folio;
1778 LIST_HEAD(non_hvo_folios);
1779
1780 /*
1781 * First allocate required vmemmmap (if necessary) for all folios.
1782 * Carefully handle errors and free up any available hugetlb pages
1783 * in an effort to make forward progress.
1784 */
1785 retry:
1786 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1787 if (ret < 0) {
1788 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1789 goto retry;
1790 }
1791
1792 /*
1793 * At this point, list should be empty, ret should be >= 0 and there
1794 * should only be pages on the non_hvo_folios list.
1795 * Do note that the non_hvo_folios list could be empty.
1796 * Without HVO enabled, ret will be 0 and there is no need to call
1797 * __folio_clear_hugetlb as this was done previously.
1798 */
1799 VM_WARN_ON(!list_empty(folio_list));
1800 VM_WARN_ON(ret < 0);
1801 if (!list_empty(&non_hvo_folios) && ret) {
1802 spin_lock_irq(&hugetlb_lock);
1803 list_for_each_entry(folio, &non_hvo_folios, lru)
1804 __folio_clear_hugetlb(folio);
1805 spin_unlock_irq(&hugetlb_lock);
1806 }
1807
1808 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1809 update_and_free_hugetlb_folio(h, folio, false);
1810 cond_resched();
1811 }
1812 }
1813
size_to_hstate(unsigned long size)1814 struct hstate *size_to_hstate(unsigned long size)
1815 {
1816 struct hstate *h;
1817
1818 for_each_hstate(h) {
1819 if (huge_page_size(h) == size)
1820 return h;
1821 }
1822 return NULL;
1823 }
1824
free_huge_folio(struct folio * folio)1825 void free_huge_folio(struct folio *folio)
1826 {
1827 /*
1828 * Can't pass hstate in here because it is called from the
1829 * generic mm code.
1830 */
1831 struct hstate *h = folio_hstate(folio);
1832 int nid = folio_nid(folio);
1833 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1834 bool restore_reserve;
1835 unsigned long flags;
1836
1837 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1838 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1839
1840 hugetlb_set_folio_subpool(folio, NULL);
1841 if (folio_test_anon(folio))
1842 __ClearPageAnonExclusive(&folio->page);
1843 folio->mapping = NULL;
1844 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1845 folio_clear_hugetlb_restore_reserve(folio);
1846
1847 /*
1848 * If HPageRestoreReserve was set on page, page allocation consumed a
1849 * reservation. If the page was associated with a subpool, there
1850 * would have been a page reserved in the subpool before allocation
1851 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1852 * reservation, do not call hugepage_subpool_put_pages() as this will
1853 * remove the reserved page from the subpool.
1854 */
1855 if (!restore_reserve) {
1856 /*
1857 * A return code of zero implies that the subpool will be
1858 * under its minimum size if the reservation is not restored
1859 * after page is free. Therefore, force restore_reserve
1860 * operation.
1861 */
1862 if (hugepage_subpool_put_pages(spool, 1) == 0)
1863 restore_reserve = true;
1864 }
1865
1866 spin_lock_irqsave(&hugetlb_lock, flags);
1867 folio_clear_hugetlb_migratable(folio);
1868 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1869 pages_per_huge_page(h), folio);
1870 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1871 pages_per_huge_page(h), folio);
1872 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1873 mem_cgroup_uncharge(folio);
1874 if (restore_reserve)
1875 h->resv_huge_pages++;
1876
1877 if (folio_test_hugetlb_temporary(folio)) {
1878 remove_hugetlb_folio(h, folio, false);
1879 spin_unlock_irqrestore(&hugetlb_lock, flags);
1880 update_and_free_hugetlb_folio(h, folio, true);
1881 } else if (h->surplus_huge_pages_node[nid]) {
1882 /* remove the page from active list */
1883 remove_hugetlb_folio(h, folio, true);
1884 spin_unlock_irqrestore(&hugetlb_lock, flags);
1885 update_and_free_hugetlb_folio(h, folio, true);
1886 } else {
1887 arch_clear_hugetlb_flags(folio);
1888 enqueue_hugetlb_folio(h, folio);
1889 spin_unlock_irqrestore(&hugetlb_lock, flags);
1890 }
1891 }
1892
1893 /*
1894 * Must be called with the hugetlb lock held
1895 */
__prep_account_new_huge_page(struct hstate * h,int nid)1896 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1897 {
1898 lockdep_assert_held(&hugetlb_lock);
1899 h->nr_huge_pages++;
1900 h->nr_huge_pages_node[nid]++;
1901 }
1902
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1903 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1904 {
1905 __folio_set_hugetlb(folio);
1906 INIT_LIST_HEAD(&folio->lru);
1907 hugetlb_set_folio_subpool(folio, NULL);
1908 set_hugetlb_cgroup(folio, NULL);
1909 set_hugetlb_cgroup_rsvd(folio, NULL);
1910 }
1911
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1912 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1913 {
1914 init_new_hugetlb_folio(h, folio);
1915 hugetlb_vmemmap_optimize_folio(h, folio);
1916 }
1917
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1918 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1919 {
1920 __prep_new_hugetlb_folio(h, folio);
1921 spin_lock_irq(&hugetlb_lock);
1922 __prep_account_new_huge_page(h, nid);
1923 spin_unlock_irq(&hugetlb_lock);
1924 }
1925
1926 /*
1927 * Find and lock address space (mapping) in write mode.
1928 *
1929 * Upon entry, the folio is locked which means that folio_mapping() is
1930 * stable. Due to locking order, we can only trylock_write. If we can
1931 * not get the lock, simply return NULL to caller.
1932 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1933 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1934 {
1935 struct address_space *mapping = folio_mapping(folio);
1936
1937 if (!mapping)
1938 return mapping;
1939
1940 if (i_mmap_trylock_write(mapping))
1941 return mapping;
1942
1943 return NULL;
1944 }
1945
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1946 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1947 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948 nodemask_t *node_alloc_noretry)
1949 {
1950 int order = huge_page_order(h);
1951 struct folio *folio;
1952 bool alloc_try_hard = true;
1953 bool retry = true;
1954
1955 /*
1956 * By default we always try hard to allocate the folio with
1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1958 * a loop (to adjust global huge page counts) and previous allocation
1959 * failed, do not continue to try hard on the same node. Use the
1960 * node_alloc_noretry bitmap to manage this state information.
1961 */
1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 alloc_try_hard = false;
1964 if (alloc_try_hard)
1965 gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 if (nid == NUMA_NO_NODE)
1967 nid = numa_mem_id();
1968 retry:
1969 folio = __folio_alloc(gfp_mask, order, nid, nmask);
1970 /* Ensure hugetlb folio won't have large_rmappable flag set. */
1971 if (folio)
1972 folio_clear_large_rmappable(folio);
1973
1974 if (folio && !folio_ref_freeze(folio, 1)) {
1975 folio_put(folio);
1976 if (retry) { /* retry once */
1977 retry = false;
1978 goto retry;
1979 }
1980 /* WOW! twice in a row. */
1981 pr_warn("HugeTLB unexpected inflated folio ref count\n");
1982 folio = NULL;
1983 }
1984
1985 /*
1986 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1987 * folio this indicates an overall state change. Clear bit so
1988 * that we resume normal 'try hard' allocations.
1989 */
1990 if (node_alloc_noretry && folio && !alloc_try_hard)
1991 node_clear(nid, *node_alloc_noretry);
1992
1993 /*
1994 * If we tried hard to get a folio but failed, set bit so that
1995 * subsequent attempts will not try as hard until there is an
1996 * overall state change.
1997 */
1998 if (node_alloc_noretry && !folio && alloc_try_hard)
1999 node_set(nid, *node_alloc_noretry);
2000
2001 if (!folio) {
2002 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2003 return NULL;
2004 }
2005
2006 __count_vm_event(HTLB_BUDDY_PGALLOC);
2007 return folio;
2008 }
2009
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2010 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2011 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2012 nodemask_t *node_alloc_noretry)
2013 {
2014 struct folio *folio;
2015
2016 if (hstate_is_gigantic(h))
2017 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2018 else
2019 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2020 if (folio)
2021 init_new_hugetlb_folio(h, folio);
2022 return folio;
2023 }
2024
2025 /*
2026 * Common helper to allocate a fresh hugetlb page. All specific allocators
2027 * should use this function to get new hugetlb pages
2028 *
2029 * Note that returned page is 'frozen': ref count of head page and all tail
2030 * pages is zero.
2031 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2032 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2033 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2034 {
2035 struct folio *folio;
2036
2037 if (hstate_is_gigantic(h))
2038 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2039 else
2040 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2041 if (!folio)
2042 return NULL;
2043
2044 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2045 return folio;
2046 }
2047
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2048 static void prep_and_add_allocated_folios(struct hstate *h,
2049 struct list_head *folio_list)
2050 {
2051 unsigned long flags;
2052 struct folio *folio, *tmp_f;
2053
2054 /* Send list for bulk vmemmap optimization processing */
2055 hugetlb_vmemmap_optimize_folios(h, folio_list);
2056
2057 /* Add all new pool pages to free lists in one lock cycle */
2058 spin_lock_irqsave(&hugetlb_lock, flags);
2059 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2060 __prep_account_new_huge_page(h, folio_nid(folio));
2061 enqueue_hugetlb_folio(h, folio);
2062 }
2063 spin_unlock_irqrestore(&hugetlb_lock, flags);
2064 }
2065
2066 /*
2067 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2068 * will later be added to the appropriate hugetlb pool.
2069 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2070 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2071 nodemask_t *nodes_allowed,
2072 nodemask_t *node_alloc_noretry,
2073 int *next_node)
2074 {
2075 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2076 int nr_nodes, node;
2077
2078 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2079 struct folio *folio;
2080
2081 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2082 nodes_allowed, node_alloc_noretry);
2083 if (folio)
2084 return folio;
2085 }
2086
2087 return NULL;
2088 }
2089
2090 /*
2091 * Remove huge page from pool from next node to free. Attempt to keep
2092 * persistent huge pages more or less balanced over allowed nodes.
2093 * This routine only 'removes' the hugetlb page. The caller must make
2094 * an additional call to free the page to low level allocators.
2095 * Called with hugetlb_lock locked.
2096 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2097 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2098 nodemask_t *nodes_allowed, bool acct_surplus)
2099 {
2100 int nr_nodes, node;
2101 struct folio *folio = NULL;
2102
2103 lockdep_assert_held(&hugetlb_lock);
2104 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2105 /*
2106 * If we're returning unused surplus pages, only examine
2107 * nodes with surplus pages.
2108 */
2109 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2110 !list_empty(&h->hugepage_freelists[node])) {
2111 folio = list_entry(h->hugepage_freelists[node].next,
2112 struct folio, lru);
2113 remove_hugetlb_folio(h, folio, acct_surplus);
2114 break;
2115 }
2116 }
2117
2118 return folio;
2119 }
2120
2121 /*
2122 * Dissolve a given free hugetlb folio into free buddy pages. This function
2123 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2124 * This function returns values like below:
2125 *
2126 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2127 * when the system is under memory pressure and the feature of
2128 * freeing unused vmemmap pages associated with each hugetlb page
2129 * is enabled.
2130 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2131 * (allocated or reserved.)
2132 * 0: successfully dissolved free hugepages or the page is not a
2133 * hugepage (considered as already dissolved)
2134 */
dissolve_free_hugetlb_folio(struct folio * folio)2135 int dissolve_free_hugetlb_folio(struct folio *folio)
2136 {
2137 int rc = -EBUSY;
2138
2139 retry:
2140 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2141 if (!folio_test_hugetlb(folio))
2142 return 0;
2143
2144 spin_lock_irq(&hugetlb_lock);
2145 if (!folio_test_hugetlb(folio)) {
2146 rc = 0;
2147 goto out;
2148 }
2149
2150 if (!folio_ref_count(folio)) {
2151 struct hstate *h = folio_hstate(folio);
2152 bool adjust_surplus = false;
2153
2154 if (!available_huge_pages(h))
2155 goto out;
2156
2157 /*
2158 * We should make sure that the page is already on the free list
2159 * when it is dissolved.
2160 */
2161 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2162 spin_unlock_irq(&hugetlb_lock);
2163 cond_resched();
2164
2165 /*
2166 * Theoretically, we should return -EBUSY when we
2167 * encounter this race. In fact, we have a chance
2168 * to successfully dissolve the page if we do a
2169 * retry. Because the race window is quite small.
2170 * If we seize this opportunity, it is an optimization
2171 * for increasing the success rate of dissolving page.
2172 */
2173 goto retry;
2174 }
2175
2176 if (h->surplus_huge_pages_node[folio_nid(folio)])
2177 adjust_surplus = true;
2178 remove_hugetlb_folio(h, folio, adjust_surplus);
2179 h->max_huge_pages--;
2180 spin_unlock_irq(&hugetlb_lock);
2181
2182 /*
2183 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2184 * before freeing the page. update_and_free_hugtlb_folio will fail to
2185 * free the page if it can not allocate required vmemmap. We
2186 * need to adjust max_huge_pages if the page is not freed.
2187 * Attempt to allocate vmemmmap here so that we can take
2188 * appropriate action on failure.
2189 *
2190 * The folio_test_hugetlb check here is because
2191 * remove_hugetlb_folio will clear hugetlb folio flag for
2192 * non-vmemmap optimized hugetlb folios.
2193 */
2194 if (folio_test_hugetlb(folio)) {
2195 rc = hugetlb_vmemmap_restore_folio(h, folio);
2196 if (rc) {
2197 spin_lock_irq(&hugetlb_lock);
2198 add_hugetlb_folio(h, folio, adjust_surplus);
2199 h->max_huge_pages++;
2200 goto out;
2201 }
2202 } else
2203 rc = 0;
2204
2205 update_and_free_hugetlb_folio(h, folio, false);
2206 return rc;
2207 }
2208 out:
2209 spin_unlock_irq(&hugetlb_lock);
2210 return rc;
2211 }
2212
2213 /*
2214 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2215 * make specified memory blocks removable from the system.
2216 * Note that this will dissolve a free gigantic hugepage completely, if any
2217 * part of it lies within the given range.
2218 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2219 * free hugetlb folios that were dissolved before that error are lost.
2220 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2221 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2222 {
2223 unsigned long pfn;
2224 struct folio *folio;
2225 int rc = 0;
2226 unsigned int order;
2227 struct hstate *h;
2228
2229 if (!hugepages_supported())
2230 return rc;
2231
2232 order = huge_page_order(&default_hstate);
2233 for_each_hstate(h)
2234 order = min(order, huge_page_order(h));
2235
2236 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2237 folio = pfn_folio(pfn);
2238 rc = dissolve_free_hugetlb_folio(folio);
2239 if (rc)
2240 break;
2241 }
2242
2243 return rc;
2244 }
2245
2246 /*
2247 * Allocates a fresh surplus page from the page allocator.
2248 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2249 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2250 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2251 {
2252 struct folio *folio = NULL;
2253
2254 if (hstate_is_gigantic(h))
2255 return NULL;
2256
2257 spin_lock_irq(&hugetlb_lock);
2258 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2259 goto out_unlock;
2260 spin_unlock_irq(&hugetlb_lock);
2261
2262 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2263 if (!folio)
2264 return NULL;
2265
2266 hugetlb_vmemmap_optimize_folio(h, folio);
2267
2268 spin_lock_irq(&hugetlb_lock);
2269 /*
2270 * nr_huge_pages needs to be adjusted within the same lock cycle
2271 * as surplus_pages, otherwise it might confuse
2272 * persistent_huge_pages() momentarily.
2273 */
2274 __prep_account_new_huge_page(h, folio_nid(folio));
2275
2276 /*
2277 * We could have raced with the pool size change.
2278 * Double check that and simply deallocate the new page
2279 * if we would end up overcommiting the surpluses. Abuse
2280 * temporary page to workaround the nasty free_huge_folio
2281 * codeflow
2282 */
2283 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2284 folio_set_hugetlb_temporary(folio);
2285 spin_unlock_irq(&hugetlb_lock);
2286 free_huge_folio(folio);
2287 return NULL;
2288 }
2289
2290 h->surplus_huge_pages++;
2291 h->surplus_huge_pages_node[folio_nid(folio)]++;
2292
2293 out_unlock:
2294 spin_unlock_irq(&hugetlb_lock);
2295
2296 return folio;
2297 }
2298
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2299 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2300 int nid, nodemask_t *nmask)
2301 {
2302 struct folio *folio;
2303
2304 if (hstate_is_gigantic(h))
2305 return NULL;
2306
2307 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2308 if (!folio)
2309 return NULL;
2310
2311 /* fresh huge pages are frozen */
2312 folio_ref_unfreeze(folio, 1);
2313 /*
2314 * We do not account these pages as surplus because they are only
2315 * temporary and will be released properly on the last reference
2316 */
2317 folio_set_hugetlb_temporary(folio);
2318
2319 return folio;
2320 }
2321
2322 /*
2323 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2324 */
2325 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2326 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2327 struct vm_area_struct *vma, unsigned long addr)
2328 {
2329 struct folio *folio = NULL;
2330 struct mempolicy *mpol;
2331 gfp_t gfp_mask = htlb_alloc_mask(h);
2332 int nid;
2333 nodemask_t *nodemask;
2334
2335 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2336 if (mpol_is_preferred_many(mpol)) {
2337 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2338
2339 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2340
2341 /* Fallback to all nodes if page==NULL */
2342 nodemask = NULL;
2343 }
2344
2345 if (!folio)
2346 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2347 mpol_cond_put(mpol);
2348 return folio;
2349 }
2350
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2351 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2352 nodemask_t *nmask, gfp_t gfp_mask)
2353 {
2354 struct folio *folio;
2355
2356 spin_lock_irq(&hugetlb_lock);
2357 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2358 nmask);
2359 if (folio) {
2360 VM_BUG_ON(!h->resv_huge_pages);
2361 h->resv_huge_pages--;
2362 }
2363
2364 spin_unlock_irq(&hugetlb_lock);
2365 return folio;
2366 }
2367
2368 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2369 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2370 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2371 {
2372 spin_lock_irq(&hugetlb_lock);
2373 if (available_huge_pages(h)) {
2374 struct folio *folio;
2375
2376 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2377 preferred_nid, nmask);
2378 if (folio) {
2379 spin_unlock_irq(&hugetlb_lock);
2380 return folio;
2381 }
2382 }
2383 spin_unlock_irq(&hugetlb_lock);
2384
2385 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2386 if (!allow_alloc_fallback)
2387 gfp_mask |= __GFP_THISNODE;
2388
2389 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2390 }
2391
policy_mbind_nodemask(gfp_t gfp)2392 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2393 {
2394 #ifdef CONFIG_NUMA
2395 struct mempolicy *mpol = get_task_policy(current);
2396
2397 /*
2398 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2399 * (from policy_nodemask) specifically for hugetlb case
2400 */
2401 if (mpol->mode == MPOL_BIND &&
2402 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2403 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2404 return &mpol->nodes;
2405 #endif
2406 return NULL;
2407 }
2408
2409 /*
2410 * Increase the hugetlb pool such that it can accommodate a reservation
2411 * of size 'delta'.
2412 */
gather_surplus_pages(struct hstate * h,long delta)2413 static int gather_surplus_pages(struct hstate *h, long delta)
2414 __must_hold(&hugetlb_lock)
2415 {
2416 LIST_HEAD(surplus_list);
2417 struct folio *folio, *tmp;
2418 int ret;
2419 long i;
2420 long needed, allocated;
2421 bool alloc_ok = true;
2422 int node;
2423 nodemask_t *mbind_nodemask, alloc_nodemask;
2424
2425 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2426 if (mbind_nodemask)
2427 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2428 else
2429 alloc_nodemask = cpuset_current_mems_allowed;
2430
2431 lockdep_assert_held(&hugetlb_lock);
2432 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2433 if (needed <= 0) {
2434 h->resv_huge_pages += delta;
2435 return 0;
2436 }
2437
2438 allocated = 0;
2439
2440 ret = -ENOMEM;
2441 retry:
2442 spin_unlock_irq(&hugetlb_lock);
2443 for (i = 0; i < needed; i++) {
2444 folio = NULL;
2445
2446 /* Prioritize current node */
2447 if (node_isset(numa_mem_id(), alloc_nodemask))
2448 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2449 numa_mem_id(), NULL);
2450
2451 if (!folio) {
2452 for_each_node_mask(node, alloc_nodemask) {
2453 if (node == numa_mem_id())
2454 continue;
2455 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2456 node, NULL);
2457 if (folio)
2458 break;
2459 }
2460 }
2461 if (!folio) {
2462 alloc_ok = false;
2463 break;
2464 }
2465 list_add(&folio->lru, &surplus_list);
2466 cond_resched();
2467 }
2468 allocated += i;
2469
2470 /*
2471 * After retaking hugetlb_lock, we need to recalculate 'needed'
2472 * because either resv_huge_pages or free_huge_pages may have changed.
2473 */
2474 spin_lock_irq(&hugetlb_lock);
2475 needed = (h->resv_huge_pages + delta) -
2476 (h->free_huge_pages + allocated);
2477 if (needed > 0) {
2478 if (alloc_ok)
2479 goto retry;
2480 /*
2481 * We were not able to allocate enough pages to
2482 * satisfy the entire reservation so we free what
2483 * we've allocated so far.
2484 */
2485 goto free;
2486 }
2487 /*
2488 * The surplus_list now contains _at_least_ the number of extra pages
2489 * needed to accommodate the reservation. Add the appropriate number
2490 * of pages to the hugetlb pool and free the extras back to the buddy
2491 * allocator. Commit the entire reservation here to prevent another
2492 * process from stealing the pages as they are added to the pool but
2493 * before they are reserved.
2494 */
2495 needed += allocated;
2496 h->resv_huge_pages += delta;
2497 ret = 0;
2498
2499 /* Free the needed pages to the hugetlb pool */
2500 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2501 if ((--needed) < 0)
2502 break;
2503 /* Add the page to the hugetlb allocator */
2504 enqueue_hugetlb_folio(h, folio);
2505 }
2506 free:
2507 spin_unlock_irq(&hugetlb_lock);
2508
2509 /*
2510 * Free unnecessary surplus pages to the buddy allocator.
2511 * Pages have no ref count, call free_huge_folio directly.
2512 */
2513 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2514 free_huge_folio(folio);
2515 spin_lock_irq(&hugetlb_lock);
2516
2517 return ret;
2518 }
2519
2520 /*
2521 * This routine has two main purposes:
2522 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2523 * in unused_resv_pages. This corresponds to the prior adjustments made
2524 * to the associated reservation map.
2525 * 2) Free any unused surplus pages that may have been allocated to satisfy
2526 * the reservation. As many as unused_resv_pages may be freed.
2527 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2528 static void return_unused_surplus_pages(struct hstate *h,
2529 unsigned long unused_resv_pages)
2530 {
2531 unsigned long nr_pages;
2532 LIST_HEAD(page_list);
2533
2534 lockdep_assert_held(&hugetlb_lock);
2535 /* Uncommit the reservation */
2536 h->resv_huge_pages -= unused_resv_pages;
2537
2538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2539 goto out;
2540
2541 /*
2542 * Part (or even all) of the reservation could have been backed
2543 * by pre-allocated pages. Only free surplus pages.
2544 */
2545 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2546
2547 /*
2548 * We want to release as many surplus pages as possible, spread
2549 * evenly across all nodes with memory. Iterate across these nodes
2550 * until we can no longer free unreserved surplus pages. This occurs
2551 * when the nodes with surplus pages have no free pages.
2552 * remove_pool_hugetlb_folio() will balance the freed pages across the
2553 * on-line nodes with memory and will handle the hstate accounting.
2554 */
2555 while (nr_pages--) {
2556 struct folio *folio;
2557
2558 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2559 if (!folio)
2560 goto out;
2561
2562 list_add(&folio->lru, &page_list);
2563 }
2564
2565 out:
2566 spin_unlock_irq(&hugetlb_lock);
2567 update_and_free_pages_bulk(h, &page_list);
2568 spin_lock_irq(&hugetlb_lock);
2569 }
2570
2571
2572 /*
2573 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2574 * are used by the huge page allocation routines to manage reservations.
2575 *
2576 * vma_needs_reservation is called to determine if the huge page at addr
2577 * within the vma has an associated reservation. If a reservation is
2578 * needed, the value 1 is returned. The caller is then responsible for
2579 * managing the global reservation and subpool usage counts. After
2580 * the huge page has been allocated, vma_commit_reservation is called
2581 * to add the page to the reservation map. If the page allocation fails,
2582 * the reservation must be ended instead of committed. vma_end_reservation
2583 * is called in such cases.
2584 *
2585 * In the normal case, vma_commit_reservation returns the same value
2586 * as the preceding vma_needs_reservation call. The only time this
2587 * is not the case is if a reserve map was changed between calls. It
2588 * is the responsibility of the caller to notice the difference and
2589 * take appropriate action.
2590 *
2591 * vma_add_reservation is used in error paths where a reservation must
2592 * be restored when a newly allocated huge page must be freed. It is
2593 * to be called after calling vma_needs_reservation to determine if a
2594 * reservation exists.
2595 *
2596 * vma_del_reservation is used in error paths where an entry in the reserve
2597 * map was created during huge page allocation and must be removed. It is to
2598 * be called after calling vma_needs_reservation to determine if a reservation
2599 * exists.
2600 */
2601 enum vma_resv_mode {
2602 VMA_NEEDS_RESV,
2603 VMA_COMMIT_RESV,
2604 VMA_END_RESV,
2605 VMA_ADD_RESV,
2606 VMA_DEL_RESV,
2607 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2608 static long __vma_reservation_common(struct hstate *h,
2609 struct vm_area_struct *vma, unsigned long addr,
2610 enum vma_resv_mode mode)
2611 {
2612 struct resv_map *resv;
2613 pgoff_t idx;
2614 long ret;
2615 long dummy_out_regions_needed;
2616
2617 resv = vma_resv_map(vma);
2618 if (!resv)
2619 return 1;
2620
2621 idx = vma_hugecache_offset(h, vma, addr);
2622 switch (mode) {
2623 case VMA_NEEDS_RESV:
2624 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2625 /* We assume that vma_reservation_* routines always operate on
2626 * 1 page, and that adding to resv map a 1 page entry can only
2627 * ever require 1 region.
2628 */
2629 VM_BUG_ON(dummy_out_regions_needed != 1);
2630 break;
2631 case VMA_COMMIT_RESV:
2632 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2633 /* region_add calls of range 1 should never fail. */
2634 VM_BUG_ON(ret < 0);
2635 break;
2636 case VMA_END_RESV:
2637 region_abort(resv, idx, idx + 1, 1);
2638 ret = 0;
2639 break;
2640 case VMA_ADD_RESV:
2641 if (vma->vm_flags & VM_MAYSHARE) {
2642 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2643 /* region_add calls of range 1 should never fail. */
2644 VM_BUG_ON(ret < 0);
2645 } else {
2646 region_abort(resv, idx, idx + 1, 1);
2647 ret = region_del(resv, idx, idx + 1);
2648 }
2649 break;
2650 case VMA_DEL_RESV:
2651 if (vma->vm_flags & VM_MAYSHARE) {
2652 region_abort(resv, idx, idx + 1, 1);
2653 ret = region_del(resv, idx, idx + 1);
2654 } else {
2655 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2656 /* region_add calls of range 1 should never fail. */
2657 VM_BUG_ON(ret < 0);
2658 }
2659 break;
2660 default:
2661 BUG();
2662 }
2663
2664 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2665 return ret;
2666 /*
2667 * We know private mapping must have HPAGE_RESV_OWNER set.
2668 *
2669 * In most cases, reserves always exist for private mappings.
2670 * However, a file associated with mapping could have been
2671 * hole punched or truncated after reserves were consumed.
2672 * As subsequent fault on such a range will not use reserves.
2673 * Subtle - The reserve map for private mappings has the
2674 * opposite meaning than that of shared mappings. If NO
2675 * entry is in the reserve map, it means a reservation exists.
2676 * If an entry exists in the reserve map, it means the
2677 * reservation has already been consumed. As a result, the
2678 * return value of this routine is the opposite of the
2679 * value returned from reserve map manipulation routines above.
2680 */
2681 if (ret > 0)
2682 return 0;
2683 if (ret == 0)
2684 return 1;
2685 return ret;
2686 }
2687
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2688 static long vma_needs_reservation(struct hstate *h,
2689 struct vm_area_struct *vma, unsigned long addr)
2690 {
2691 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2692 }
2693
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2694 static long vma_commit_reservation(struct hstate *h,
2695 struct vm_area_struct *vma, unsigned long addr)
2696 {
2697 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2698 }
2699
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2700 static void vma_end_reservation(struct hstate *h,
2701 struct vm_area_struct *vma, unsigned long addr)
2702 {
2703 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2704 }
2705
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2706 static long vma_add_reservation(struct hstate *h,
2707 struct vm_area_struct *vma, unsigned long addr)
2708 {
2709 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2710 }
2711
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2712 static long vma_del_reservation(struct hstate *h,
2713 struct vm_area_struct *vma, unsigned long addr)
2714 {
2715 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2716 }
2717
2718 /*
2719 * This routine is called to restore reservation information on error paths.
2720 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2721 * and the hugetlb mutex should remain held when calling this routine.
2722 *
2723 * It handles two specific cases:
2724 * 1) A reservation was in place and the folio consumed the reservation.
2725 * hugetlb_restore_reserve is set in the folio.
2726 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2727 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2728 *
2729 * In case 1, free_huge_folio later in the error path will increment the
2730 * global reserve count. But, free_huge_folio does not have enough context
2731 * to adjust the reservation map. This case deals primarily with private
2732 * mappings. Adjust the reserve map here to be consistent with global
2733 * reserve count adjustments to be made by free_huge_folio. Make sure the
2734 * reserve map indicates there is a reservation present.
2735 *
2736 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2737 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2738 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2739 unsigned long address, struct folio *folio)
2740 {
2741 long rc = vma_needs_reservation(h, vma, address);
2742
2743 if (folio_test_hugetlb_restore_reserve(folio)) {
2744 if (unlikely(rc < 0))
2745 /*
2746 * Rare out of memory condition in reserve map
2747 * manipulation. Clear hugetlb_restore_reserve so
2748 * that global reserve count will not be incremented
2749 * by free_huge_folio. This will make it appear
2750 * as though the reservation for this folio was
2751 * consumed. This may prevent the task from
2752 * faulting in the folio at a later time. This
2753 * is better than inconsistent global huge page
2754 * accounting of reserve counts.
2755 */
2756 folio_clear_hugetlb_restore_reserve(folio);
2757 else if (rc)
2758 (void)vma_add_reservation(h, vma, address);
2759 else
2760 vma_end_reservation(h, vma, address);
2761 } else {
2762 if (!rc) {
2763 /*
2764 * This indicates there is an entry in the reserve map
2765 * not added by alloc_hugetlb_folio. We know it was added
2766 * before the alloc_hugetlb_folio call, otherwise
2767 * hugetlb_restore_reserve would be set on the folio.
2768 * Remove the entry so that a subsequent allocation
2769 * does not consume a reservation.
2770 */
2771 rc = vma_del_reservation(h, vma, address);
2772 if (rc < 0)
2773 /*
2774 * VERY rare out of memory condition. Since
2775 * we can not delete the entry, set
2776 * hugetlb_restore_reserve so that the reserve
2777 * count will be incremented when the folio
2778 * is freed. This reserve will be consumed
2779 * on a subsequent allocation.
2780 */
2781 folio_set_hugetlb_restore_reserve(folio);
2782 } else if (rc < 0) {
2783 /*
2784 * Rare out of memory condition from
2785 * vma_needs_reservation call. Memory allocation is
2786 * only attempted if a new entry is needed. Therefore,
2787 * this implies there is not an entry in the
2788 * reserve map.
2789 *
2790 * For shared mappings, no entry in the map indicates
2791 * no reservation. We are done.
2792 */
2793 if (!(vma->vm_flags & VM_MAYSHARE))
2794 /*
2795 * For private mappings, no entry indicates
2796 * a reservation is present. Since we can
2797 * not add an entry, set hugetlb_restore_reserve
2798 * on the folio so reserve count will be
2799 * incremented when freed. This reserve will
2800 * be consumed on a subsequent allocation.
2801 */
2802 folio_set_hugetlb_restore_reserve(folio);
2803 } else
2804 /*
2805 * No reservation present, do nothing
2806 */
2807 vma_end_reservation(h, vma, address);
2808 }
2809 }
2810
2811 /*
2812 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2813 * the old one
2814 * @h: struct hstate old page belongs to
2815 * @old_folio: Old folio to dissolve
2816 * @list: List to isolate the page in case we need to
2817 * Returns 0 on success, otherwise negated error.
2818 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2819 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2820 struct folio *old_folio, struct list_head *list)
2821 {
2822 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2823 int nid = folio_nid(old_folio);
2824 struct folio *new_folio = NULL;
2825 int ret = 0;
2826
2827 retry:
2828 spin_lock_irq(&hugetlb_lock);
2829 if (!folio_test_hugetlb(old_folio)) {
2830 /*
2831 * Freed from under us. Drop new_folio too.
2832 */
2833 goto free_new;
2834 } else if (folio_ref_count(old_folio)) {
2835 bool isolated;
2836
2837 /*
2838 * Someone has grabbed the folio, try to isolate it here.
2839 * Fail with -EBUSY if not possible.
2840 */
2841 spin_unlock_irq(&hugetlb_lock);
2842 isolated = folio_isolate_hugetlb(old_folio, list);
2843 ret = isolated ? 0 : -EBUSY;
2844 spin_lock_irq(&hugetlb_lock);
2845 goto free_new;
2846 } else if (!folio_test_hugetlb_freed(old_folio)) {
2847 /*
2848 * Folio's refcount is 0 but it has not been enqueued in the
2849 * freelist yet. Race window is small, so we can succeed here if
2850 * we retry.
2851 */
2852 spin_unlock_irq(&hugetlb_lock);
2853 cond_resched();
2854 goto retry;
2855 } else {
2856 if (!new_folio) {
2857 spin_unlock_irq(&hugetlb_lock);
2858 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2859 NULL, NULL);
2860 if (!new_folio)
2861 return -ENOMEM;
2862 __prep_new_hugetlb_folio(h, new_folio);
2863 goto retry;
2864 }
2865
2866 /*
2867 * Ok, old_folio is still a genuine free hugepage. Remove it from
2868 * the freelist and decrease the counters. These will be
2869 * incremented again when calling __prep_account_new_huge_page()
2870 * and enqueue_hugetlb_folio() for new_folio. The counters will
2871 * remain stable since this happens under the lock.
2872 */
2873 remove_hugetlb_folio(h, old_folio, false);
2874
2875 /*
2876 * Ref count on new_folio is already zero as it was dropped
2877 * earlier. It can be directly added to the pool free list.
2878 */
2879 __prep_account_new_huge_page(h, nid);
2880 enqueue_hugetlb_folio(h, new_folio);
2881
2882 /*
2883 * Folio has been replaced, we can safely free the old one.
2884 */
2885 spin_unlock_irq(&hugetlb_lock);
2886 update_and_free_hugetlb_folio(h, old_folio, false);
2887 }
2888
2889 return ret;
2890
2891 free_new:
2892 spin_unlock_irq(&hugetlb_lock);
2893 if (new_folio)
2894 update_and_free_hugetlb_folio(h, new_folio, false);
2895
2896 return ret;
2897 }
2898
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2899 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2900 {
2901 struct hstate *h;
2902 struct folio *folio = page_folio(page);
2903 int ret = -EBUSY;
2904
2905 /*
2906 * The page might have been dissolved from under our feet, so make sure
2907 * to carefully check the state under the lock.
2908 * Return success when racing as if we dissolved the page ourselves.
2909 */
2910 spin_lock_irq(&hugetlb_lock);
2911 if (folio_test_hugetlb(folio)) {
2912 h = folio_hstate(folio);
2913 } else {
2914 spin_unlock_irq(&hugetlb_lock);
2915 return 0;
2916 }
2917 spin_unlock_irq(&hugetlb_lock);
2918
2919 /*
2920 * Fence off gigantic pages as there is a cyclic dependency between
2921 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2922 * of bailing out right away without further retrying.
2923 */
2924 if (hstate_is_gigantic(h))
2925 return -ENOMEM;
2926
2927 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2928 ret = 0;
2929 else if (!folio_ref_count(folio))
2930 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2931
2932 return ret;
2933 }
2934
2935 /*
2936 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2937 * range with new folios.
2938 * @start_pfn: start pfn of the given pfn range
2939 * @end_pfn: end pfn of the given pfn range
2940 * Returns 0 on success, otherwise negated error.
2941 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2942 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2943 {
2944 struct hstate *h;
2945 struct folio *folio;
2946 int ret = 0;
2947
2948 LIST_HEAD(isolate_list);
2949
2950 while (start_pfn < end_pfn) {
2951 folio = pfn_folio(start_pfn);
2952
2953 /*
2954 * The folio might have been dissolved from under our feet, so make sure
2955 * to carefully check the state under the lock.
2956 */
2957 spin_lock_irq(&hugetlb_lock);
2958 if (folio_test_hugetlb(folio)) {
2959 h = folio_hstate(folio);
2960 } else {
2961 spin_unlock_irq(&hugetlb_lock);
2962 start_pfn++;
2963 continue;
2964 }
2965 spin_unlock_irq(&hugetlb_lock);
2966
2967 if (!folio_ref_count(folio)) {
2968 ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2969 &isolate_list);
2970 if (ret)
2971 break;
2972
2973 putback_movable_pages(&isolate_list);
2974 }
2975 start_pfn++;
2976 }
2977
2978 return ret;
2979 }
2980
wait_for_freed_hugetlb_folios(void)2981 void wait_for_freed_hugetlb_folios(void)
2982 {
2983 if (llist_empty(&hpage_freelist))
2984 return;
2985
2986 flush_work(&free_hpage_work);
2987 }
2988
2989 typedef enum {
2990 /*
2991 * For either 0/1: we checked the per-vma resv map, and one resv
2992 * count either can be reused (0), or an extra needed (1).
2993 */
2994 MAP_CHG_REUSE = 0,
2995 MAP_CHG_NEEDED = 1,
2996 /*
2997 * Cannot use per-vma resv count can be used, hence a new resv
2998 * count is enforced.
2999 *
3000 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
3001 * that currently vma_needs_reservation() has an unwanted side
3002 * effect to either use end() or commit() to complete the
3003 * transaction. Hence it needs to differenciate from NEEDED.
3004 */
3005 MAP_CHG_ENFORCED = 2,
3006 } map_chg_state;
3007
3008 /*
3009 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
3010 * faults of hugetlb private mappings on top of a non-page-cache folio (in
3011 * which case even if there's a private vma resv map it won't cover such
3012 * allocation). New call sites should (probably) never set it to true!!
3013 * When it's set, the allocation will bypass all vma level reservations.
3014 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)3015 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3016 unsigned long addr, bool cow_from_owner)
3017 {
3018 struct hugepage_subpool *spool = subpool_vma(vma);
3019 struct hstate *h = hstate_vma(vma);
3020 struct folio *folio;
3021 long retval, gbl_chg, gbl_reserve;
3022 map_chg_state map_chg;
3023 int ret, idx;
3024 struct hugetlb_cgroup *h_cg = NULL;
3025 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3026
3027 idx = hstate_index(h);
3028
3029 /* Whether we need a separate per-vma reservation? */
3030 if (cow_from_owner) {
3031 /*
3032 * Special case! Since it's a CoW on top of a reserved
3033 * page, the private resv map doesn't count. So it cannot
3034 * consume the per-vma resv map even if it's reserved.
3035 */
3036 map_chg = MAP_CHG_ENFORCED;
3037 } else {
3038 /*
3039 * Examine the region/reserve map to determine if the process
3040 * has a reservation for the page to be allocated. A return
3041 * code of zero indicates a reservation exists (no change).
3042 */
3043 retval = vma_needs_reservation(h, vma, addr);
3044 if (retval < 0)
3045 return ERR_PTR(-ENOMEM);
3046 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3047 }
3048
3049 /*
3050 * Whether we need a separate global reservation?
3051 *
3052 * Processes that did not create the mapping will have no
3053 * reserves as indicated by the region/reserve map. Check
3054 * that the allocation will not exceed the subpool limit.
3055 * Or if it can get one from the pool reservation directly.
3056 */
3057 if (map_chg) {
3058 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3059 if (gbl_chg < 0)
3060 goto out_end_reservation;
3061 } else {
3062 /*
3063 * If we have the vma reservation ready, no need for extra
3064 * global reservation.
3065 */
3066 gbl_chg = 0;
3067 }
3068
3069 /*
3070 * If this allocation is not consuming a per-vma reservation,
3071 * charge the hugetlb cgroup now.
3072 */
3073 if (map_chg) {
3074 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3075 idx, pages_per_huge_page(h), &h_cg);
3076 if (ret)
3077 goto out_subpool_put;
3078 }
3079
3080 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3081 if (ret)
3082 goto out_uncharge_cgroup_reservation;
3083
3084 spin_lock_irq(&hugetlb_lock);
3085 /*
3086 * glb_chg is passed to indicate whether or not a page must be taken
3087 * from the global free pool (global change). gbl_chg == 0 indicates
3088 * a reservation exists for the allocation.
3089 */
3090 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3091 if (!folio) {
3092 spin_unlock_irq(&hugetlb_lock);
3093 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3094 if (!folio)
3095 goto out_uncharge_cgroup;
3096 spin_lock_irq(&hugetlb_lock);
3097 list_add(&folio->lru, &h->hugepage_activelist);
3098 folio_ref_unfreeze(folio, 1);
3099 /* Fall through */
3100 }
3101
3102 /*
3103 * Either dequeued or buddy-allocated folio needs to add special
3104 * mark to the folio when it consumes a global reservation.
3105 */
3106 if (!gbl_chg) {
3107 folio_set_hugetlb_restore_reserve(folio);
3108 h->resv_huge_pages--;
3109 }
3110
3111 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3112 /* If allocation is not consuming a reservation, also store the
3113 * hugetlb_cgroup pointer on the page.
3114 */
3115 if (map_chg) {
3116 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3117 h_cg, folio);
3118 }
3119
3120 spin_unlock_irq(&hugetlb_lock);
3121
3122 hugetlb_set_folio_subpool(folio, spool);
3123
3124 if (map_chg != MAP_CHG_ENFORCED) {
3125 /* commit() is only needed if the map_chg is not enforced */
3126 retval = vma_commit_reservation(h, vma, addr);
3127 /*
3128 * Check for possible race conditions. When it happens..
3129 * The page was added to the reservation map between
3130 * vma_needs_reservation and vma_commit_reservation.
3131 * This indicates a race with hugetlb_reserve_pages.
3132 * Adjust for the subpool count incremented above AND
3133 * in hugetlb_reserve_pages for the same page. Also,
3134 * the reservation count added in hugetlb_reserve_pages
3135 * no longer applies.
3136 */
3137 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3138 long rsv_adjust;
3139
3140 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3141 hugetlb_acct_memory(h, -rsv_adjust);
3142 if (map_chg) {
3143 spin_lock_irq(&hugetlb_lock);
3144 hugetlb_cgroup_uncharge_folio_rsvd(
3145 hstate_index(h), pages_per_huge_page(h),
3146 folio);
3147 spin_unlock_irq(&hugetlb_lock);
3148 }
3149 }
3150 }
3151
3152 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3153 /*
3154 * Unconditionally increment NR_HUGETLB here. If it turns out that
3155 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3156 * decrement NR_HUGETLB.
3157 */
3158 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3159
3160 if (ret == -ENOMEM) {
3161 free_huge_folio(folio);
3162 return ERR_PTR(-ENOMEM);
3163 }
3164
3165 return folio;
3166
3167 out_uncharge_cgroup:
3168 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3169 out_uncharge_cgroup_reservation:
3170 if (map_chg)
3171 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3172 h_cg);
3173 out_subpool_put:
3174 /*
3175 * put page to subpool iff the quota of subpool's rsv_hpages is used
3176 * during hugepage_subpool_get_pages.
3177 */
3178 if (map_chg && !gbl_chg) {
3179 gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3180 hugetlb_acct_memory(h, -gbl_reserve);
3181 }
3182
3183
3184 out_end_reservation:
3185 if (map_chg != MAP_CHG_ENFORCED)
3186 vma_end_reservation(h, vma, addr);
3187 return ERR_PTR(-ENOSPC);
3188 }
3189
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3190 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3191 {
3192 struct huge_bootmem_page *m;
3193 int listnode = nid;
3194
3195 if (hugetlb_early_cma(h))
3196 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3197 else {
3198 if (node_exact)
3199 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3200 huge_page_size(h), 0,
3201 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3202 else {
3203 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3204 huge_page_size(h), 0,
3205 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3206 /*
3207 * For pre-HVO to work correctly, pages need to be on
3208 * the list for the node they were actually allocated
3209 * from. That node may be different in the case of
3210 * fallback by memblock_alloc_try_nid_raw. So,
3211 * extract the actual node first.
3212 */
3213 if (m)
3214 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3215 }
3216
3217 if (m) {
3218 m->flags = 0;
3219 m->cma = NULL;
3220 }
3221 }
3222
3223 if (m) {
3224 /*
3225 * Use the beginning of the huge page to store the
3226 * huge_bootmem_page struct (until gather_bootmem
3227 * puts them into the mem_map).
3228 *
3229 * Put them into a private list first because mem_map
3230 * is not up yet.
3231 */
3232 INIT_LIST_HEAD(&m->list);
3233 list_add(&m->list, &huge_boot_pages[listnode]);
3234 m->hstate = h;
3235 }
3236
3237 return m;
3238 }
3239
3240 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3241 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3242 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3243 {
3244 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3245 int nr_nodes, node = nid;
3246
3247 /* do node specific alloc */
3248 if (nid != NUMA_NO_NODE) {
3249 m = alloc_bootmem(h, node, true);
3250 if (!m)
3251 return 0;
3252 goto found;
3253 }
3254
3255 /* allocate from next node when distributing huge pages */
3256 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) {
3257 m = alloc_bootmem(h, node, false);
3258 if (!m)
3259 return 0;
3260 goto found;
3261 }
3262
3263 found:
3264
3265 /*
3266 * Only initialize the head struct page in memmap_init_reserved_pages,
3267 * rest of the struct pages will be initialized by the HugeTLB
3268 * subsystem itself.
3269 * The head struct page is used to get folio information by the HugeTLB
3270 * subsystem like zone id and node id.
3271 */
3272 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3273 huge_page_size(h) - PAGE_SIZE);
3274
3275 return 1;
3276 }
3277
3278 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3279 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3280 unsigned long start_page_number,
3281 unsigned long end_page_number)
3282 {
3283 enum zone_type zone = zone_idx(folio_zone(folio));
3284 int nid = folio_nid(folio);
3285 unsigned long head_pfn = folio_pfn(folio);
3286 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3287 int ret;
3288
3289 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3290 struct page *page = pfn_to_page(pfn);
3291
3292 __init_single_page(page, pfn, zone, nid);
3293 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3294 ret = page_ref_freeze(page, 1);
3295 VM_BUG_ON(!ret);
3296 }
3297 }
3298
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3299 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3300 struct hstate *h,
3301 unsigned long nr_pages)
3302 {
3303 int ret;
3304
3305 /* Prepare folio head */
3306 __folio_clear_reserved(folio);
3307 __folio_set_head(folio);
3308 ret = folio_ref_freeze(folio, 1);
3309 VM_BUG_ON(!ret);
3310 /* Initialize the necessary tail struct pages */
3311 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3312 prep_compound_head((struct page *)folio, huge_page_order(h));
3313 }
3314
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3315 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3316 {
3317 return m->flags & HUGE_BOOTMEM_HVO;
3318 }
3319
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3320 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3321 {
3322 return m->flags & HUGE_BOOTMEM_CMA;
3323 }
3324
3325 /*
3326 * memblock-allocated pageblocks might not have the migrate type set
3327 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3328 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3329 * reservation.
3330 *
3331 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3332 * read-only, but that's ok - for sparse vmemmap this does not write to
3333 * the page structure.
3334 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3335 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3336 struct hstate *h)
3337 {
3338 unsigned long nr_pages = pages_per_huge_page(h), i;
3339
3340 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3341
3342 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3343 if (folio_test_hugetlb_cma(folio))
3344 init_cma_pageblock(folio_page(folio, i));
3345 else
3346 set_pageblock_migratetype(folio_page(folio, i),
3347 MIGRATE_MOVABLE);
3348 }
3349 }
3350
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3351 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3352 struct list_head *folio_list)
3353 {
3354 unsigned long flags;
3355 struct folio *folio, *tmp_f;
3356
3357 /* Send list for bulk vmemmap optimization processing */
3358 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3359
3360 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3361 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3362 /*
3363 * If HVO fails, initialize all tail struct pages
3364 * We do not worry about potential long lock hold
3365 * time as this is early in boot and there should
3366 * be no contention.
3367 */
3368 hugetlb_folio_init_tail_vmemmap(folio,
3369 HUGETLB_VMEMMAP_RESERVE_PAGES,
3370 pages_per_huge_page(h));
3371 }
3372 hugetlb_bootmem_init_migratetype(folio, h);
3373 /* Subdivide locks to achieve better parallel performance */
3374 spin_lock_irqsave(&hugetlb_lock, flags);
3375 __prep_account_new_huge_page(h, folio_nid(folio));
3376 enqueue_hugetlb_folio(h, folio);
3377 spin_unlock_irqrestore(&hugetlb_lock, flags);
3378 }
3379 }
3380
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3381 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3382 struct huge_bootmem_page *m)
3383 {
3384 unsigned long start_pfn;
3385 bool valid;
3386
3387 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3388 /*
3389 * Already validated, skip check.
3390 */
3391 return true;
3392 }
3393
3394 if (hugetlb_bootmem_page_earlycma(m)) {
3395 valid = cma_validate_zones(m->cma);
3396 goto out;
3397 }
3398
3399 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3400
3401 valid = !pfn_range_intersects_zones(nid, start_pfn,
3402 pages_per_huge_page(m->hstate));
3403 out:
3404 if (!valid)
3405 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3406
3407 return valid;
3408 }
3409
3410 /*
3411 * Free a bootmem page that was found to be invalid (intersecting with
3412 * multiple zones).
3413 *
3414 * Since it intersects with multiple zones, we can't just do a free
3415 * operation on all pages at once, but instead have to walk all
3416 * pages, freeing them one by one.
3417 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3418 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3419 struct hstate *h)
3420 {
3421 unsigned long npages = pages_per_huge_page(h);
3422 unsigned long pfn;
3423
3424 while (npages--) {
3425 pfn = page_to_pfn(page);
3426 __init_page_from_nid(pfn, nid);
3427 free_reserved_page(page);
3428 page++;
3429 }
3430 }
3431
3432 /*
3433 * Put bootmem huge pages into the standard lists after mem_map is up.
3434 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3435 */
gather_bootmem_prealloc_node(unsigned long nid)3436 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3437 {
3438 LIST_HEAD(folio_list);
3439 struct huge_bootmem_page *m, *tm;
3440 struct hstate *h = NULL, *prev_h = NULL;
3441
3442 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3443 struct page *page = virt_to_page(m);
3444 struct folio *folio = (void *)page;
3445
3446 h = m->hstate;
3447 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3448 /*
3449 * Can't use this page. Initialize the
3450 * page structures if that hasn't already
3451 * been done, and give them to the page
3452 * allocator.
3453 */
3454 hugetlb_bootmem_free_invalid_page(nid, page, h);
3455 continue;
3456 }
3457
3458 /*
3459 * It is possible to have multiple huge page sizes (hstates)
3460 * in this list. If so, process each size separately.
3461 */
3462 if (h != prev_h && prev_h != NULL)
3463 prep_and_add_bootmem_folios(prev_h, &folio_list);
3464 prev_h = h;
3465
3466 VM_BUG_ON(!hstate_is_gigantic(h));
3467 WARN_ON(folio_ref_count(folio) != 1);
3468
3469 hugetlb_folio_init_vmemmap(folio, h,
3470 HUGETLB_VMEMMAP_RESERVE_PAGES);
3471 init_new_hugetlb_folio(h, folio);
3472
3473 if (hugetlb_bootmem_page_prehvo(m))
3474 /*
3475 * If pre-HVO was done, just set the
3476 * flag, the HVO code will then skip
3477 * this folio.
3478 */
3479 folio_set_hugetlb_vmemmap_optimized(folio);
3480
3481 if (hugetlb_bootmem_page_earlycma(m))
3482 folio_set_hugetlb_cma(folio);
3483
3484 list_add(&folio->lru, &folio_list);
3485
3486 /*
3487 * We need to restore the 'stolen' pages to totalram_pages
3488 * in order to fix confusing memory reports from free(1) and
3489 * other side-effects, like CommitLimit going negative.
3490 *
3491 * For CMA pages, this is done in init_cma_pageblock
3492 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3493 */
3494 if (!folio_test_hugetlb_cma(folio))
3495 adjust_managed_page_count(page, pages_per_huge_page(h));
3496 cond_resched();
3497 }
3498
3499 prep_and_add_bootmem_folios(h, &folio_list);
3500 }
3501
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3502 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3503 unsigned long end, void *arg)
3504 {
3505 int nid;
3506
3507 for (nid = start; nid < end; nid++)
3508 gather_bootmem_prealloc_node(nid);
3509 }
3510
gather_bootmem_prealloc(void)3511 static void __init gather_bootmem_prealloc(void)
3512 {
3513 struct padata_mt_job job = {
3514 .thread_fn = gather_bootmem_prealloc_parallel,
3515 .fn_arg = NULL,
3516 .start = 0,
3517 .size = nr_node_ids,
3518 .align = 1,
3519 .min_chunk = 1,
3520 .max_threads = num_node_state(N_MEMORY),
3521 .numa_aware = true,
3522 };
3523
3524 padata_do_multithreaded(&job);
3525 }
3526
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3527 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3528 {
3529 unsigned long i;
3530 char buf[32];
3531 LIST_HEAD(folio_list);
3532
3533 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3534 if (hstate_is_gigantic(h)) {
3535 if (!alloc_bootmem_huge_page(h, nid))
3536 break;
3537 } else {
3538 struct folio *folio;
3539 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3540
3541 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3542 &node_states[N_MEMORY], NULL);
3543 if (!folio)
3544 break;
3545 list_add(&folio->lru, &folio_list);
3546 }
3547 cond_resched();
3548 }
3549
3550 if (!list_empty(&folio_list))
3551 prep_and_add_allocated_folios(h, &folio_list);
3552
3553 if (i == h->max_huge_pages_node[nid])
3554 return;
3555
3556 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3557 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3558 h->max_huge_pages_node[nid], buf, nid, i);
3559 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3560 h->max_huge_pages_node[nid] = i;
3561 }
3562
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3563 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3564 {
3565 int i;
3566 bool node_specific_alloc = false;
3567
3568 for_each_online_node(i) {
3569 if (h->max_huge_pages_node[i] > 0) {
3570 hugetlb_hstate_alloc_pages_onenode(h, i);
3571 node_specific_alloc = true;
3572 }
3573 }
3574
3575 return node_specific_alloc;
3576 }
3577
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3578 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3579 {
3580 if (allocated < h->max_huge_pages) {
3581 char buf[32];
3582
3583 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3584 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3585 h->max_huge_pages, buf, allocated);
3586 h->max_huge_pages = allocated;
3587 }
3588 }
3589
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3590 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3591 {
3592 struct hstate *h = (struct hstate *)arg;
3593 int i, num = end - start;
3594 nodemask_t node_alloc_noretry;
3595 LIST_HEAD(folio_list);
3596 int next_node = first_online_node;
3597
3598 /* Bit mask controlling how hard we retry per-node allocations.*/
3599 nodes_clear(node_alloc_noretry);
3600
3601 for (i = 0; i < num; ++i) {
3602 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3603 &node_alloc_noretry, &next_node);
3604 if (!folio)
3605 break;
3606
3607 list_move(&folio->lru, &folio_list);
3608 cond_resched();
3609 }
3610
3611 prep_and_add_allocated_folios(h, &folio_list);
3612 }
3613
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3614 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3615 {
3616 unsigned long i;
3617
3618 for (i = 0; i < h->max_huge_pages; ++i) {
3619 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3620 break;
3621 cond_resched();
3622 }
3623
3624 return i;
3625 }
3626
hugetlb_pages_alloc_boot(struct hstate * h)3627 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3628 {
3629 struct padata_mt_job job = {
3630 .fn_arg = h,
3631 .align = 1,
3632 .numa_aware = true
3633 };
3634
3635 unsigned long jiffies_start;
3636 unsigned long jiffies_end;
3637
3638 job.thread_fn = hugetlb_pages_alloc_boot_node;
3639 job.start = 0;
3640 job.size = h->max_huge_pages;
3641
3642 /*
3643 * job.max_threads is 25% of the available cpu threads by default.
3644 *
3645 * On large servers with terabytes of memory, huge page allocation
3646 * can consume a considerably amount of time.
3647 *
3648 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3649 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3650 *
3651 * +-----------------------+-------+-------+-------+-------+-------+
3652 * | threads | 8 | 16 | 32 | 64 | 128 |
3653 * +-----------------------+-------+-------+-------+-------+-------+
3654 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3655 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3656 * +-----------------------+-------+-------+-------+-------+-------+
3657 */
3658 if (hugepage_allocation_threads == 0) {
3659 hugepage_allocation_threads = num_online_cpus() / 4;
3660 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3661 }
3662
3663 job.max_threads = hugepage_allocation_threads;
3664 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads;
3665
3666 jiffies_start = jiffies;
3667 padata_do_multithreaded(&job);
3668 jiffies_end = jiffies;
3669
3670 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3671 jiffies_to_msecs(jiffies_end - jiffies_start),
3672 hugepage_allocation_threads);
3673
3674 return h->nr_huge_pages;
3675 }
3676
3677 /*
3678 * NOTE: this routine is called in different contexts for gigantic and
3679 * non-gigantic pages.
3680 * - For gigantic pages, this is called early in the boot process and
3681 * pages are allocated from memblock allocated or something similar.
3682 * Gigantic pages are actually added to pools later with the routine
3683 * gather_bootmem_prealloc.
3684 * - For non-gigantic pages, this is called later in the boot process after
3685 * all of mm is up and functional. Pages are allocated from buddy and
3686 * then added to hugetlb pools.
3687 */
hugetlb_hstate_alloc_pages(struct hstate * h)3688 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3689 {
3690 unsigned long allocated;
3691
3692 /*
3693 * Skip gigantic hugepages allocation if early CMA
3694 * reservations are not available.
3695 */
3696 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3697 !hugetlb_early_cma(h)) {
3698 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3699 return;
3700 }
3701
3702 /* do node specific alloc */
3703 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3704 return;
3705
3706 /* below will do all node balanced alloc */
3707 if (hstate_is_gigantic(h))
3708 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3709 else
3710 allocated = hugetlb_pages_alloc_boot(h);
3711
3712 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3713 }
3714
hugetlb_init_hstates(void)3715 static void __init hugetlb_init_hstates(void)
3716 {
3717 struct hstate *h, *h2;
3718
3719 for_each_hstate(h) {
3720 /* oversize hugepages were init'ed in early boot */
3721 if (!hstate_is_gigantic(h))
3722 hugetlb_hstate_alloc_pages(h);
3723
3724 /*
3725 * Set demote order for each hstate. Note that
3726 * h->demote_order is initially 0.
3727 * - We can not demote gigantic pages if runtime freeing
3728 * is not supported, so skip this.
3729 * - If CMA allocation is possible, we can not demote
3730 * HUGETLB_PAGE_ORDER or smaller size pages.
3731 */
3732 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3733 continue;
3734 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3735 continue;
3736 for_each_hstate(h2) {
3737 if (h2 == h)
3738 continue;
3739 if (h2->order < h->order &&
3740 h2->order > h->demote_order)
3741 h->demote_order = h2->order;
3742 }
3743 }
3744 }
3745
report_hugepages(void)3746 static void __init report_hugepages(void)
3747 {
3748 struct hstate *h;
3749 unsigned long nrinvalid;
3750
3751 for_each_hstate(h) {
3752 char buf[32];
3753
3754 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3755 h->max_huge_pages -= nrinvalid;
3756
3757 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3758 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3759 buf, h->free_huge_pages);
3760 if (nrinvalid)
3761 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3762 buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3763 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3764 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3765 }
3766 }
3767
3768 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3769 static void try_to_free_low(struct hstate *h, unsigned long count,
3770 nodemask_t *nodes_allowed)
3771 {
3772 int i;
3773 LIST_HEAD(page_list);
3774
3775 lockdep_assert_held(&hugetlb_lock);
3776 if (hstate_is_gigantic(h))
3777 return;
3778
3779 /*
3780 * Collect pages to be freed on a list, and free after dropping lock
3781 */
3782 for_each_node_mask(i, *nodes_allowed) {
3783 struct folio *folio, *next;
3784 struct list_head *freel = &h->hugepage_freelists[i];
3785 list_for_each_entry_safe(folio, next, freel, lru) {
3786 if (count >= h->nr_huge_pages)
3787 goto out;
3788 if (folio_test_highmem(folio))
3789 continue;
3790 remove_hugetlb_folio(h, folio, false);
3791 list_add(&folio->lru, &page_list);
3792 }
3793 }
3794
3795 out:
3796 spin_unlock_irq(&hugetlb_lock);
3797 update_and_free_pages_bulk(h, &page_list);
3798 spin_lock_irq(&hugetlb_lock);
3799 }
3800 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3801 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3802 nodemask_t *nodes_allowed)
3803 {
3804 }
3805 #endif
3806
3807 /*
3808 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3809 * balanced by operating on them in a round-robin fashion.
3810 * Returns 1 if an adjustment was made.
3811 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3812 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3813 int delta)
3814 {
3815 int nr_nodes, node;
3816
3817 lockdep_assert_held(&hugetlb_lock);
3818 VM_BUG_ON(delta != -1 && delta != 1);
3819
3820 if (delta < 0) {
3821 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3822 if (h->surplus_huge_pages_node[node])
3823 goto found;
3824 }
3825 } else {
3826 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3827 if (h->surplus_huge_pages_node[node] <
3828 h->nr_huge_pages_node[node])
3829 goto found;
3830 }
3831 }
3832 return 0;
3833
3834 found:
3835 h->surplus_huge_pages += delta;
3836 h->surplus_huge_pages_node[node] += delta;
3837 return 1;
3838 }
3839
3840 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3841 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3842 nodemask_t *nodes_allowed)
3843 {
3844 unsigned long persistent_free_count;
3845 unsigned long min_count;
3846 unsigned long allocated;
3847 struct folio *folio;
3848 LIST_HEAD(page_list);
3849 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3850
3851 /*
3852 * Bit mask controlling how hard we retry per-node allocations.
3853 * If we can not allocate the bit mask, do not attempt to allocate
3854 * the requested huge pages.
3855 */
3856 if (node_alloc_noretry)
3857 nodes_clear(*node_alloc_noretry);
3858 else
3859 return -ENOMEM;
3860
3861 /*
3862 * resize_lock mutex prevents concurrent adjustments to number of
3863 * pages in hstate via the proc/sysfs interfaces.
3864 */
3865 mutex_lock(&h->resize_lock);
3866 flush_free_hpage_work(h);
3867 spin_lock_irq(&hugetlb_lock);
3868
3869 /*
3870 * Check for a node specific request.
3871 * Changing node specific huge page count may require a corresponding
3872 * change to the global count. In any case, the passed node mask
3873 * (nodes_allowed) will restrict alloc/free to the specified node.
3874 */
3875 if (nid != NUMA_NO_NODE) {
3876 unsigned long old_count = count;
3877
3878 count += persistent_huge_pages(h) -
3879 (h->nr_huge_pages_node[nid] -
3880 h->surplus_huge_pages_node[nid]);
3881 /*
3882 * User may have specified a large count value which caused the
3883 * above calculation to overflow. In this case, they wanted
3884 * to allocate as many huge pages as possible. Set count to
3885 * largest possible value to align with their intention.
3886 */
3887 if (count < old_count)
3888 count = ULONG_MAX;
3889 }
3890
3891 /*
3892 * Gigantic pages runtime allocation depend on the capability for large
3893 * page range allocation.
3894 * If the system does not provide this feature, return an error when
3895 * the user tries to allocate gigantic pages but let the user free the
3896 * boottime allocated gigantic pages.
3897 */
3898 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3899 if (count > persistent_huge_pages(h)) {
3900 spin_unlock_irq(&hugetlb_lock);
3901 mutex_unlock(&h->resize_lock);
3902 NODEMASK_FREE(node_alloc_noretry);
3903 return -EINVAL;
3904 }
3905 /* Fall through to decrease pool */
3906 }
3907
3908 /*
3909 * Increase the pool size
3910 * First take pages out of surplus state. Then make up the
3911 * remaining difference by allocating fresh huge pages.
3912 *
3913 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3914 * to convert a surplus huge page to a normal huge page. That is
3915 * not critical, though, it just means the overall size of the
3916 * pool might be one hugepage larger than it needs to be, but
3917 * within all the constraints specified by the sysctls.
3918 */
3919 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3920 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3921 break;
3922 }
3923
3924 allocated = 0;
3925 while (count > (persistent_huge_pages(h) + allocated)) {
3926 /*
3927 * If this allocation races such that we no longer need the
3928 * page, free_huge_folio will handle it by freeing the page
3929 * and reducing the surplus.
3930 */
3931 spin_unlock_irq(&hugetlb_lock);
3932
3933 /* yield cpu to avoid soft lockup */
3934 cond_resched();
3935
3936 folio = alloc_pool_huge_folio(h, nodes_allowed,
3937 node_alloc_noretry,
3938 &h->next_nid_to_alloc);
3939 if (!folio) {
3940 prep_and_add_allocated_folios(h, &page_list);
3941 spin_lock_irq(&hugetlb_lock);
3942 goto out;
3943 }
3944
3945 list_add(&folio->lru, &page_list);
3946 allocated++;
3947
3948 /* Bail for signals. Probably ctrl-c from user */
3949 if (signal_pending(current)) {
3950 prep_and_add_allocated_folios(h, &page_list);
3951 spin_lock_irq(&hugetlb_lock);
3952 goto out;
3953 }
3954
3955 spin_lock_irq(&hugetlb_lock);
3956 }
3957
3958 /* Add allocated pages to the pool */
3959 if (!list_empty(&page_list)) {
3960 spin_unlock_irq(&hugetlb_lock);
3961 prep_and_add_allocated_folios(h, &page_list);
3962 spin_lock_irq(&hugetlb_lock);
3963 }
3964
3965 /*
3966 * Decrease the pool size
3967 * First return free pages to the buddy allocator (being careful
3968 * to keep enough around to satisfy reservations). Then place
3969 * pages into surplus state as needed so the pool will shrink
3970 * to the desired size as pages become free.
3971 *
3972 * By placing pages into the surplus state independent of the
3973 * overcommit value, we are allowing the surplus pool size to
3974 * exceed overcommit. There are few sane options here. Since
3975 * alloc_surplus_hugetlb_folio() is checking the global counter,
3976 * though, we'll note that we're not allowed to exceed surplus
3977 * and won't grow the pool anywhere else. Not until one of the
3978 * sysctls are changed, or the surplus pages go out of use.
3979 *
3980 * min_count is the expected number of persistent pages, we
3981 * shouldn't calculate min_count by using
3982 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3983 * because there may exist free surplus huge pages, and this will
3984 * lead to subtracting twice. Free surplus huge pages come from HVO
3985 * failing to restore vmemmap, see comments in the callers of
3986 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3987 * persistent free count first.
3988 */
3989 persistent_free_count = h->free_huge_pages;
3990 if (h->free_huge_pages > persistent_huge_pages(h)) {
3991 if (h->free_huge_pages > h->surplus_huge_pages)
3992 persistent_free_count -= h->surplus_huge_pages;
3993 else
3994 persistent_free_count = 0;
3995 }
3996 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3997 min_count = max(count, min_count);
3998 try_to_free_low(h, min_count, nodes_allowed);
3999
4000 /*
4001 * Collect pages to be removed on list without dropping lock
4002 */
4003 while (min_count < persistent_huge_pages(h)) {
4004 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
4005 if (!folio)
4006 break;
4007
4008 list_add(&folio->lru, &page_list);
4009 }
4010 /* free the pages after dropping lock */
4011 spin_unlock_irq(&hugetlb_lock);
4012 update_and_free_pages_bulk(h, &page_list);
4013 flush_free_hpage_work(h);
4014 spin_lock_irq(&hugetlb_lock);
4015
4016 while (count < persistent_huge_pages(h)) {
4017 if (!adjust_pool_surplus(h, nodes_allowed, 1))
4018 break;
4019 }
4020 out:
4021 h->max_huge_pages = persistent_huge_pages(h);
4022 spin_unlock_irq(&hugetlb_lock);
4023 mutex_unlock(&h->resize_lock);
4024
4025 NODEMASK_FREE(node_alloc_noretry);
4026
4027 return 0;
4028 }
4029
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)4030 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
4031 struct list_head *src_list)
4032 {
4033 long rc;
4034 struct folio *folio, *next;
4035 LIST_HEAD(dst_list);
4036 LIST_HEAD(ret_list);
4037
4038 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4039 list_splice_init(&ret_list, src_list);
4040
4041 /*
4042 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4043 * Without the mutex, pages added to target hstate could be marked
4044 * as surplus.
4045 *
4046 * Note that we already hold src->resize_lock. To prevent deadlock,
4047 * use the convention of always taking larger size hstate mutex first.
4048 */
4049 mutex_lock(&dst->resize_lock);
4050
4051 list_for_each_entry_safe(folio, next, src_list, lru) {
4052 int i;
4053 bool cma;
4054
4055 if (folio_test_hugetlb_vmemmap_optimized(folio))
4056 continue;
4057
4058 cma = folio_test_hugetlb_cma(folio);
4059
4060 list_del(&folio->lru);
4061
4062 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4063 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4064
4065 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4066 struct page *page = folio_page(folio, i);
4067 /* Careful: see __split_huge_page_tail() */
4068 struct folio *new_folio = (struct folio *)page;
4069
4070 clear_compound_head(page);
4071 prep_compound_page(page, dst->order);
4072
4073 new_folio->mapping = NULL;
4074 init_new_hugetlb_folio(dst, new_folio);
4075 /* Copy the CMA flag so that it is freed correctly */
4076 if (cma)
4077 folio_set_hugetlb_cma(new_folio);
4078 list_add(&new_folio->lru, &dst_list);
4079 }
4080 }
4081
4082 prep_and_add_allocated_folios(dst, &dst_list);
4083
4084 mutex_unlock(&dst->resize_lock);
4085
4086 return rc;
4087 }
4088
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4089 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4090 unsigned long nr_to_demote)
4091 __must_hold(&hugetlb_lock)
4092 {
4093 int nr_nodes, node;
4094 struct hstate *dst;
4095 long rc = 0;
4096 long nr_demoted = 0;
4097
4098 lockdep_assert_held(&hugetlb_lock);
4099
4100 /* We should never get here if no demote order */
4101 if (!src->demote_order) {
4102 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4103 return -EINVAL; /* internal error */
4104 }
4105 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4106
4107 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4108 LIST_HEAD(list);
4109 struct folio *folio, *next;
4110
4111 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4112 if (folio_test_hwpoison(folio))
4113 continue;
4114
4115 remove_hugetlb_folio(src, folio, false);
4116 list_add(&folio->lru, &list);
4117
4118 if (++nr_demoted == nr_to_demote)
4119 break;
4120 }
4121
4122 spin_unlock_irq(&hugetlb_lock);
4123
4124 rc = demote_free_hugetlb_folios(src, dst, &list);
4125
4126 spin_lock_irq(&hugetlb_lock);
4127
4128 list_for_each_entry_safe(folio, next, &list, lru) {
4129 list_del(&folio->lru);
4130 add_hugetlb_folio(src, folio, false);
4131
4132 nr_demoted--;
4133 }
4134
4135 if (rc < 0 || nr_demoted == nr_to_demote)
4136 break;
4137 }
4138
4139 /*
4140 * Not absolutely necessary, but for consistency update max_huge_pages
4141 * based on pool changes for the demoted page.
4142 */
4143 src->max_huge_pages -= nr_demoted;
4144 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4145
4146 if (rc < 0)
4147 return rc;
4148
4149 if (nr_demoted)
4150 return nr_demoted;
4151 /*
4152 * Only way to get here is if all pages on free lists are poisoned.
4153 * Return -EBUSY so that caller will not retry.
4154 */
4155 return -EBUSY;
4156 }
4157
4158 #define HSTATE_ATTR_RO(_name) \
4159 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4160
4161 #define HSTATE_ATTR_WO(_name) \
4162 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4163
4164 #define HSTATE_ATTR(_name) \
4165 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4166
4167 static struct kobject *hugepages_kobj;
4168 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4169
4170 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4171
kobj_to_hstate(struct kobject * kobj,int * nidp)4172 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4173 {
4174 int i;
4175
4176 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4177 if (hstate_kobjs[i] == kobj) {
4178 if (nidp)
4179 *nidp = NUMA_NO_NODE;
4180 return &hstates[i];
4181 }
4182
4183 return kobj_to_node_hstate(kobj, nidp);
4184 }
4185
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4186 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4187 struct kobj_attribute *attr, char *buf)
4188 {
4189 struct hstate *h;
4190 unsigned long nr_huge_pages;
4191 int nid;
4192
4193 h = kobj_to_hstate(kobj, &nid);
4194 if (nid == NUMA_NO_NODE)
4195 nr_huge_pages = h->nr_huge_pages;
4196 else
4197 nr_huge_pages = h->nr_huge_pages_node[nid];
4198
4199 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4200 }
4201
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4202 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4203 struct hstate *h, int nid,
4204 unsigned long count, size_t len)
4205 {
4206 int err;
4207 nodemask_t nodes_allowed, *n_mask;
4208
4209 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4210 return -EINVAL;
4211
4212 if (nid == NUMA_NO_NODE) {
4213 /*
4214 * global hstate attribute
4215 */
4216 if (!(obey_mempolicy &&
4217 init_nodemask_of_mempolicy(&nodes_allowed)))
4218 n_mask = &node_states[N_MEMORY];
4219 else
4220 n_mask = &nodes_allowed;
4221 } else {
4222 /*
4223 * Node specific request. count adjustment happens in
4224 * set_max_huge_pages() after acquiring hugetlb_lock.
4225 */
4226 init_nodemask_of_node(&nodes_allowed, nid);
4227 n_mask = &nodes_allowed;
4228 }
4229
4230 err = set_max_huge_pages(h, count, nid, n_mask);
4231
4232 return err ? err : len;
4233 }
4234
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4235 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4236 struct kobject *kobj, const char *buf,
4237 size_t len)
4238 {
4239 struct hstate *h;
4240 unsigned long count;
4241 int nid;
4242 int err;
4243
4244 err = kstrtoul(buf, 10, &count);
4245 if (err)
4246 return err;
4247
4248 h = kobj_to_hstate(kobj, &nid);
4249 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4250 }
4251
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4252 static ssize_t nr_hugepages_show(struct kobject *kobj,
4253 struct kobj_attribute *attr, char *buf)
4254 {
4255 return nr_hugepages_show_common(kobj, attr, buf);
4256 }
4257
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4258 static ssize_t nr_hugepages_store(struct kobject *kobj,
4259 struct kobj_attribute *attr, const char *buf, size_t len)
4260 {
4261 return nr_hugepages_store_common(false, kobj, buf, len);
4262 }
4263 HSTATE_ATTR(nr_hugepages);
4264
4265 #ifdef CONFIG_NUMA
4266
4267 /*
4268 * hstate attribute for optionally mempolicy-based constraint on persistent
4269 * huge page alloc/free.
4270 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4271 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4272 struct kobj_attribute *attr,
4273 char *buf)
4274 {
4275 return nr_hugepages_show_common(kobj, attr, buf);
4276 }
4277
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4278 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4279 struct kobj_attribute *attr, const char *buf, size_t len)
4280 {
4281 return nr_hugepages_store_common(true, kobj, buf, len);
4282 }
4283 HSTATE_ATTR(nr_hugepages_mempolicy);
4284 #endif
4285
4286
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4287 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4288 struct kobj_attribute *attr, char *buf)
4289 {
4290 struct hstate *h = kobj_to_hstate(kobj, NULL);
4291 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4292 }
4293
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4294 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4295 struct kobj_attribute *attr, const char *buf, size_t count)
4296 {
4297 int err;
4298 unsigned long input;
4299 struct hstate *h = kobj_to_hstate(kobj, NULL);
4300
4301 if (hstate_is_gigantic(h))
4302 return -EINVAL;
4303
4304 err = kstrtoul(buf, 10, &input);
4305 if (err)
4306 return err;
4307
4308 spin_lock_irq(&hugetlb_lock);
4309 h->nr_overcommit_huge_pages = input;
4310 spin_unlock_irq(&hugetlb_lock);
4311
4312 return count;
4313 }
4314 HSTATE_ATTR(nr_overcommit_hugepages);
4315
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4316 static ssize_t free_hugepages_show(struct kobject *kobj,
4317 struct kobj_attribute *attr, char *buf)
4318 {
4319 struct hstate *h;
4320 unsigned long free_huge_pages;
4321 int nid;
4322
4323 h = kobj_to_hstate(kobj, &nid);
4324 if (nid == NUMA_NO_NODE)
4325 free_huge_pages = h->free_huge_pages;
4326 else
4327 free_huge_pages = h->free_huge_pages_node[nid];
4328
4329 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4330 }
4331 HSTATE_ATTR_RO(free_hugepages);
4332
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4333 static ssize_t resv_hugepages_show(struct kobject *kobj,
4334 struct kobj_attribute *attr, char *buf)
4335 {
4336 struct hstate *h = kobj_to_hstate(kobj, NULL);
4337 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4338 }
4339 HSTATE_ATTR_RO(resv_hugepages);
4340
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4341 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4342 struct kobj_attribute *attr, char *buf)
4343 {
4344 struct hstate *h;
4345 unsigned long surplus_huge_pages;
4346 int nid;
4347
4348 h = kobj_to_hstate(kobj, &nid);
4349 if (nid == NUMA_NO_NODE)
4350 surplus_huge_pages = h->surplus_huge_pages;
4351 else
4352 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4353
4354 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4355 }
4356 HSTATE_ATTR_RO(surplus_hugepages);
4357
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4358 static ssize_t demote_store(struct kobject *kobj,
4359 struct kobj_attribute *attr, const char *buf, size_t len)
4360 {
4361 unsigned long nr_demote;
4362 unsigned long nr_available;
4363 nodemask_t nodes_allowed, *n_mask;
4364 struct hstate *h;
4365 int err;
4366 int nid;
4367
4368 err = kstrtoul(buf, 10, &nr_demote);
4369 if (err)
4370 return err;
4371 h = kobj_to_hstate(kobj, &nid);
4372
4373 if (nid != NUMA_NO_NODE) {
4374 init_nodemask_of_node(&nodes_allowed, nid);
4375 n_mask = &nodes_allowed;
4376 } else {
4377 n_mask = &node_states[N_MEMORY];
4378 }
4379
4380 /* Synchronize with other sysfs operations modifying huge pages */
4381 mutex_lock(&h->resize_lock);
4382 spin_lock_irq(&hugetlb_lock);
4383
4384 while (nr_demote) {
4385 long rc;
4386
4387 /*
4388 * Check for available pages to demote each time thorough the
4389 * loop as demote_pool_huge_page will drop hugetlb_lock.
4390 */
4391 if (nid != NUMA_NO_NODE)
4392 nr_available = h->free_huge_pages_node[nid];
4393 else
4394 nr_available = h->free_huge_pages;
4395 nr_available -= h->resv_huge_pages;
4396 if (!nr_available)
4397 break;
4398
4399 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4400 if (rc < 0) {
4401 err = rc;
4402 break;
4403 }
4404
4405 nr_demote -= rc;
4406 }
4407
4408 spin_unlock_irq(&hugetlb_lock);
4409 mutex_unlock(&h->resize_lock);
4410
4411 if (err)
4412 return err;
4413 return len;
4414 }
4415 HSTATE_ATTR_WO(demote);
4416
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4417 static ssize_t demote_size_show(struct kobject *kobj,
4418 struct kobj_attribute *attr, char *buf)
4419 {
4420 struct hstate *h = kobj_to_hstate(kobj, NULL);
4421 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4422
4423 return sysfs_emit(buf, "%lukB\n", demote_size);
4424 }
4425
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4426 static ssize_t demote_size_store(struct kobject *kobj,
4427 struct kobj_attribute *attr,
4428 const char *buf, size_t count)
4429 {
4430 struct hstate *h, *demote_hstate;
4431 unsigned long demote_size;
4432 unsigned int demote_order;
4433
4434 demote_size = (unsigned long)memparse(buf, NULL);
4435
4436 demote_hstate = size_to_hstate(demote_size);
4437 if (!demote_hstate)
4438 return -EINVAL;
4439 demote_order = demote_hstate->order;
4440 if (demote_order < HUGETLB_PAGE_ORDER)
4441 return -EINVAL;
4442
4443 /* demote order must be smaller than hstate order */
4444 h = kobj_to_hstate(kobj, NULL);
4445 if (demote_order >= h->order)
4446 return -EINVAL;
4447
4448 /* resize_lock synchronizes access to demote size and writes */
4449 mutex_lock(&h->resize_lock);
4450 h->demote_order = demote_order;
4451 mutex_unlock(&h->resize_lock);
4452
4453 return count;
4454 }
4455 HSTATE_ATTR(demote_size);
4456
4457 static struct attribute *hstate_attrs[] = {
4458 &nr_hugepages_attr.attr,
4459 &nr_overcommit_hugepages_attr.attr,
4460 &free_hugepages_attr.attr,
4461 &resv_hugepages_attr.attr,
4462 &surplus_hugepages_attr.attr,
4463 #ifdef CONFIG_NUMA
4464 &nr_hugepages_mempolicy_attr.attr,
4465 #endif
4466 NULL,
4467 };
4468
4469 static const struct attribute_group hstate_attr_group = {
4470 .attrs = hstate_attrs,
4471 };
4472
4473 static struct attribute *hstate_demote_attrs[] = {
4474 &demote_size_attr.attr,
4475 &demote_attr.attr,
4476 NULL,
4477 };
4478
4479 static const struct attribute_group hstate_demote_attr_group = {
4480 .attrs = hstate_demote_attrs,
4481 };
4482
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4483 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4484 struct kobject **hstate_kobjs,
4485 const struct attribute_group *hstate_attr_group)
4486 {
4487 int retval;
4488 int hi = hstate_index(h);
4489
4490 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4491 if (!hstate_kobjs[hi])
4492 return -ENOMEM;
4493
4494 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4495 if (retval) {
4496 kobject_put(hstate_kobjs[hi]);
4497 hstate_kobjs[hi] = NULL;
4498 return retval;
4499 }
4500
4501 if (h->demote_order) {
4502 retval = sysfs_create_group(hstate_kobjs[hi],
4503 &hstate_demote_attr_group);
4504 if (retval) {
4505 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4506 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4507 kobject_put(hstate_kobjs[hi]);
4508 hstate_kobjs[hi] = NULL;
4509 return retval;
4510 }
4511 }
4512
4513 return 0;
4514 }
4515
4516 #ifdef CONFIG_NUMA
4517 static bool hugetlb_sysfs_initialized __ro_after_init;
4518
4519 /*
4520 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4521 * with node devices in node_devices[] using a parallel array. The array
4522 * index of a node device or _hstate == node id.
4523 * This is here to avoid any static dependency of the node device driver, in
4524 * the base kernel, on the hugetlb module.
4525 */
4526 struct node_hstate {
4527 struct kobject *hugepages_kobj;
4528 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4529 };
4530 static struct node_hstate node_hstates[MAX_NUMNODES];
4531
4532 /*
4533 * A subset of global hstate attributes for node devices
4534 */
4535 static struct attribute *per_node_hstate_attrs[] = {
4536 &nr_hugepages_attr.attr,
4537 &free_hugepages_attr.attr,
4538 &surplus_hugepages_attr.attr,
4539 NULL,
4540 };
4541
4542 static const struct attribute_group per_node_hstate_attr_group = {
4543 .attrs = per_node_hstate_attrs,
4544 };
4545
4546 /*
4547 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4548 * Returns node id via non-NULL nidp.
4549 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4550 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4551 {
4552 int nid;
4553
4554 for (nid = 0; nid < nr_node_ids; nid++) {
4555 struct node_hstate *nhs = &node_hstates[nid];
4556 int i;
4557 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4558 if (nhs->hstate_kobjs[i] == kobj) {
4559 if (nidp)
4560 *nidp = nid;
4561 return &hstates[i];
4562 }
4563 }
4564
4565 BUG();
4566 return NULL;
4567 }
4568
4569 /*
4570 * Unregister hstate attributes from a single node device.
4571 * No-op if no hstate attributes attached.
4572 */
hugetlb_unregister_node(struct node * node)4573 void hugetlb_unregister_node(struct node *node)
4574 {
4575 struct hstate *h;
4576 struct node_hstate *nhs = &node_hstates[node->dev.id];
4577
4578 if (!nhs->hugepages_kobj)
4579 return; /* no hstate attributes */
4580
4581 for_each_hstate(h) {
4582 int idx = hstate_index(h);
4583 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4584
4585 if (!hstate_kobj)
4586 continue;
4587 if (h->demote_order)
4588 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4589 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4590 kobject_put(hstate_kobj);
4591 nhs->hstate_kobjs[idx] = NULL;
4592 }
4593
4594 kobject_put(nhs->hugepages_kobj);
4595 nhs->hugepages_kobj = NULL;
4596 }
4597
4598
4599 /*
4600 * Register hstate attributes for a single node device.
4601 * No-op if attributes already registered.
4602 */
hugetlb_register_node(struct node * node)4603 void hugetlb_register_node(struct node *node)
4604 {
4605 struct hstate *h;
4606 struct node_hstate *nhs = &node_hstates[node->dev.id];
4607 int err;
4608
4609 if (!hugetlb_sysfs_initialized)
4610 return;
4611
4612 if (nhs->hugepages_kobj)
4613 return; /* already allocated */
4614
4615 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4616 &node->dev.kobj);
4617 if (!nhs->hugepages_kobj)
4618 return;
4619
4620 for_each_hstate(h) {
4621 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4622 nhs->hstate_kobjs,
4623 &per_node_hstate_attr_group);
4624 if (err) {
4625 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4626 h->name, node->dev.id);
4627 hugetlb_unregister_node(node);
4628 break;
4629 }
4630 }
4631 }
4632
4633 /*
4634 * hugetlb init time: register hstate attributes for all registered node
4635 * devices of nodes that have memory. All on-line nodes should have
4636 * registered their associated device by this time.
4637 */
hugetlb_register_all_nodes(void)4638 static void __init hugetlb_register_all_nodes(void)
4639 {
4640 int nid;
4641
4642 for_each_online_node(nid)
4643 hugetlb_register_node(node_devices[nid]);
4644 }
4645 #else /* !CONFIG_NUMA */
4646
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4647 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4648 {
4649 BUG();
4650 if (nidp)
4651 *nidp = -1;
4652 return NULL;
4653 }
4654
hugetlb_register_all_nodes(void)4655 static void hugetlb_register_all_nodes(void) { }
4656
4657 #endif
4658
hugetlb_sysfs_init(void)4659 static void __init hugetlb_sysfs_init(void)
4660 {
4661 struct hstate *h;
4662 int err;
4663
4664 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4665 if (!hugepages_kobj)
4666 return;
4667
4668 for_each_hstate(h) {
4669 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4670 hstate_kobjs, &hstate_attr_group);
4671 if (err)
4672 pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4673 }
4674
4675 #ifdef CONFIG_NUMA
4676 hugetlb_sysfs_initialized = true;
4677 #endif
4678 hugetlb_register_all_nodes();
4679 }
4680
4681 #ifdef CONFIG_SYSCTL
4682 static void hugetlb_sysctl_init(void);
4683 #else
hugetlb_sysctl_init(void)4684 static inline void hugetlb_sysctl_init(void) { }
4685 #endif
4686
hugetlb_init(void)4687 static int __init hugetlb_init(void)
4688 {
4689 int i;
4690
4691 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4692 __NR_HPAGEFLAGS);
4693
4694 if (!hugepages_supported()) {
4695 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4696 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4697 return 0;
4698 }
4699
4700 /*
4701 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4702 * architectures depend on setup being done here.
4703 */
4704 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4705 if (!parsed_default_hugepagesz) {
4706 /*
4707 * If we did not parse a default huge page size, set
4708 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4709 * number of huge pages for this default size was implicitly
4710 * specified, set that here as well.
4711 * Note that the implicit setting will overwrite an explicit
4712 * setting. A warning will be printed in this case.
4713 */
4714 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4715 if (default_hstate_max_huge_pages) {
4716 if (default_hstate.max_huge_pages) {
4717 char buf[32];
4718
4719 string_get_size(huge_page_size(&default_hstate),
4720 1, STRING_UNITS_2, buf, 32);
4721 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4722 default_hstate.max_huge_pages, buf);
4723 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4724 default_hstate_max_huge_pages);
4725 }
4726 default_hstate.max_huge_pages =
4727 default_hstate_max_huge_pages;
4728
4729 for_each_online_node(i)
4730 default_hstate.max_huge_pages_node[i] =
4731 default_hugepages_in_node[i];
4732 }
4733 }
4734
4735 hugetlb_cma_check();
4736 hugetlb_init_hstates();
4737 gather_bootmem_prealloc();
4738 report_hugepages();
4739
4740 hugetlb_sysfs_init();
4741 hugetlb_cgroup_file_init();
4742 hugetlb_sysctl_init();
4743
4744 #ifdef CONFIG_SMP
4745 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4746 #else
4747 num_fault_mutexes = 1;
4748 #endif
4749 hugetlb_fault_mutex_table =
4750 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4751 GFP_KERNEL);
4752 BUG_ON(!hugetlb_fault_mutex_table);
4753
4754 for (i = 0; i < num_fault_mutexes; i++)
4755 mutex_init(&hugetlb_fault_mutex_table[i]);
4756 return 0;
4757 }
4758 subsys_initcall(hugetlb_init);
4759
4760 /* Overwritten by architectures with more huge page sizes */
__init(weak)4761 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4762 {
4763 return size == HPAGE_SIZE;
4764 }
4765
hugetlb_add_hstate(unsigned int order)4766 void __init hugetlb_add_hstate(unsigned int order)
4767 {
4768 struct hstate *h;
4769 unsigned long i;
4770
4771 if (size_to_hstate(PAGE_SIZE << order)) {
4772 return;
4773 }
4774 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4775 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4776 h = &hstates[hugetlb_max_hstate++];
4777 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4778 h->order = order;
4779 h->mask = ~(huge_page_size(h) - 1);
4780 for (i = 0; i < MAX_NUMNODES; ++i)
4781 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4782 INIT_LIST_HEAD(&h->hugepage_activelist);
4783 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4784 huge_page_size(h)/SZ_1K);
4785
4786 parsed_hstate = h;
4787 }
4788
hugetlb_node_alloc_supported(void)4789 bool __init __weak hugetlb_node_alloc_supported(void)
4790 {
4791 return true;
4792 }
4793
hugepages_clear_pages_in_node(void)4794 static void __init hugepages_clear_pages_in_node(void)
4795 {
4796 if (!hugetlb_max_hstate) {
4797 default_hstate_max_huge_pages = 0;
4798 memset(default_hugepages_in_node, 0,
4799 sizeof(default_hugepages_in_node));
4800 } else {
4801 parsed_hstate->max_huge_pages = 0;
4802 memset(parsed_hstate->max_huge_pages_node, 0,
4803 sizeof(parsed_hstate->max_huge_pages_node));
4804 }
4805 }
4806
hugetlb_add_param(char * s,int (* setup)(char *))4807 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4808 {
4809 size_t len;
4810 char *p;
4811
4812 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4813 return -EINVAL;
4814
4815 len = strlen(s) + 1;
4816 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4817 return -EINVAL;
4818
4819 p = &hstate_cmdline_buf[hstate_cmdline_index];
4820 memcpy(p, s, len);
4821 hstate_cmdline_index += len;
4822
4823 hugetlb_params[hugetlb_param_index].val = p;
4824 hugetlb_params[hugetlb_param_index].setup = setup;
4825
4826 hugetlb_param_index++;
4827
4828 return 0;
4829 }
4830
hugetlb_parse_params(void)4831 static __init void hugetlb_parse_params(void)
4832 {
4833 int i;
4834 struct hugetlb_cmdline *hcp;
4835
4836 for (i = 0; i < hugetlb_param_index; i++) {
4837 hcp = &hugetlb_params[i];
4838
4839 hcp->setup(hcp->val);
4840 }
4841
4842 hugetlb_cma_validate_params();
4843 }
4844
4845 /*
4846 * hugepages command line processing
4847 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4848 * specification. If not, ignore the hugepages value. hugepages can also
4849 * be the first huge page command line option in which case it implicitly
4850 * specifies the number of huge pages for the default size.
4851 */
hugepages_setup(char * s)4852 static int __init hugepages_setup(char *s)
4853 {
4854 unsigned long *mhp;
4855 static unsigned long *last_mhp;
4856 int node = NUMA_NO_NODE;
4857 int count;
4858 unsigned long tmp;
4859 char *p = s;
4860
4861 if (!parsed_valid_hugepagesz) {
4862 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4863 parsed_valid_hugepagesz = true;
4864 return -EINVAL;
4865 }
4866
4867 /*
4868 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4869 * yet, so this hugepages= parameter goes to the "default hstate".
4870 * Otherwise, it goes with the previously parsed hugepagesz or
4871 * default_hugepagesz.
4872 */
4873 else if (!hugetlb_max_hstate)
4874 mhp = &default_hstate_max_huge_pages;
4875 else
4876 mhp = &parsed_hstate->max_huge_pages;
4877
4878 if (mhp == last_mhp) {
4879 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4880 return 1;
4881 }
4882
4883 while (*p) {
4884 count = 0;
4885 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4886 goto invalid;
4887 /* Parameter is node format */
4888 if (p[count] == ':') {
4889 if (!hugetlb_node_alloc_supported()) {
4890 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4891 return 1;
4892 }
4893 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4894 goto invalid;
4895 node = array_index_nospec(tmp, MAX_NUMNODES);
4896 p += count + 1;
4897 /* Parse hugepages */
4898 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4899 goto invalid;
4900 if (!hugetlb_max_hstate)
4901 default_hugepages_in_node[node] = tmp;
4902 else
4903 parsed_hstate->max_huge_pages_node[node] = tmp;
4904 *mhp += tmp;
4905 /* Go to parse next node*/
4906 if (p[count] == ',')
4907 p += count + 1;
4908 else
4909 break;
4910 } else {
4911 if (p != s)
4912 goto invalid;
4913 *mhp = tmp;
4914 break;
4915 }
4916 }
4917
4918 last_mhp = mhp;
4919
4920 return 0;
4921
4922 invalid:
4923 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4924 hugepages_clear_pages_in_node();
4925 return -EINVAL;
4926 }
4927 hugetlb_early_param("hugepages", hugepages_setup);
4928
4929 /*
4930 * hugepagesz command line processing
4931 * A specific huge page size can only be specified once with hugepagesz.
4932 * hugepagesz is followed by hugepages on the command line. The global
4933 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4934 * hugepagesz argument was valid.
4935 */
hugepagesz_setup(char * s)4936 static int __init hugepagesz_setup(char *s)
4937 {
4938 unsigned long size;
4939 struct hstate *h;
4940
4941 parsed_valid_hugepagesz = false;
4942 size = (unsigned long)memparse(s, NULL);
4943
4944 if (!arch_hugetlb_valid_size(size)) {
4945 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4946 return -EINVAL;
4947 }
4948
4949 h = size_to_hstate(size);
4950 if (h) {
4951 /*
4952 * hstate for this size already exists. This is normally
4953 * an error, but is allowed if the existing hstate is the
4954 * default hstate. More specifically, it is only allowed if
4955 * the number of huge pages for the default hstate was not
4956 * previously specified.
4957 */
4958 if (!parsed_default_hugepagesz || h != &default_hstate ||
4959 default_hstate.max_huge_pages) {
4960 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4961 return -EINVAL;
4962 }
4963
4964 /*
4965 * No need to call hugetlb_add_hstate() as hstate already
4966 * exists. But, do set parsed_hstate so that a following
4967 * hugepages= parameter will be applied to this hstate.
4968 */
4969 parsed_hstate = h;
4970 parsed_valid_hugepagesz = true;
4971 return 0;
4972 }
4973
4974 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4975 parsed_valid_hugepagesz = true;
4976 return 0;
4977 }
4978 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4979
4980 /*
4981 * default_hugepagesz command line input
4982 * Only one instance of default_hugepagesz allowed on command line.
4983 */
default_hugepagesz_setup(char * s)4984 static int __init default_hugepagesz_setup(char *s)
4985 {
4986 unsigned long size;
4987 int i;
4988
4989 parsed_valid_hugepagesz = false;
4990 if (parsed_default_hugepagesz) {
4991 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4992 return -EINVAL;
4993 }
4994
4995 size = (unsigned long)memparse(s, NULL);
4996
4997 if (!arch_hugetlb_valid_size(size)) {
4998 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4999 return -EINVAL;
5000 }
5001
5002 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
5003 parsed_valid_hugepagesz = true;
5004 parsed_default_hugepagesz = true;
5005 default_hstate_idx = hstate_index(size_to_hstate(size));
5006
5007 /*
5008 * The number of default huge pages (for this size) could have been
5009 * specified as the first hugetlb parameter: hugepages=X. If so,
5010 * then default_hstate_max_huge_pages is set. If the default huge
5011 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
5012 * allocated here from bootmem allocator.
5013 */
5014 if (default_hstate_max_huge_pages) {
5015 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
5016 /*
5017 * Since this is an early parameter, we can't check
5018 * NUMA node state yet, so loop through MAX_NUMNODES.
5019 */
5020 for (i = 0; i < MAX_NUMNODES; i++) {
5021 if (default_hugepages_in_node[i] != 0)
5022 default_hstate.max_huge_pages_node[i] =
5023 default_hugepages_in_node[i];
5024 }
5025 default_hstate_max_huge_pages = 0;
5026 }
5027
5028 return 0;
5029 }
5030 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
5031
5032 static bool __hugetlb_bootmem_allocated __initdata;
5033
hugetlb_bootmem_allocated(void)5034 bool __init hugetlb_bootmem_allocated(void)
5035 {
5036 return __hugetlb_bootmem_allocated;
5037 }
5038
hugetlb_bootmem_alloc(void)5039 void __init hugetlb_bootmem_alloc(void)
5040 {
5041 struct hstate *h;
5042 int i;
5043
5044 if (__hugetlb_bootmem_allocated)
5045 return;
5046
5047 for (i = 0; i < MAX_NUMNODES; i++)
5048 INIT_LIST_HEAD(&huge_boot_pages[i]);
5049
5050 hugetlb_parse_params();
5051
5052 for_each_hstate(h) {
5053 h->next_nid_to_alloc = first_online_node;
5054 h->next_nid_to_free = first_online_node;
5055
5056 if (hstate_is_gigantic(h))
5057 hugetlb_hstate_alloc_pages(h);
5058 }
5059
5060 __hugetlb_bootmem_allocated = true;
5061 }
5062
5063 /*
5064 * hugepage_alloc_threads command line parsing.
5065 *
5066 * When set, use this specific number of threads for the boot
5067 * allocation of hugepages.
5068 */
hugepage_alloc_threads_setup(char * s)5069 static int __init hugepage_alloc_threads_setup(char *s)
5070 {
5071 unsigned long allocation_threads;
5072
5073 if (kstrtoul(s, 0, &allocation_threads) != 0)
5074 return 1;
5075
5076 if (allocation_threads == 0)
5077 return 1;
5078
5079 hugepage_allocation_threads = allocation_threads;
5080
5081 return 1;
5082 }
5083 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5084
allowed_mems_nr(struct hstate * h)5085 static unsigned int allowed_mems_nr(struct hstate *h)
5086 {
5087 int node;
5088 unsigned int nr = 0;
5089 nodemask_t *mbind_nodemask;
5090 unsigned int *array = h->free_huge_pages_node;
5091 gfp_t gfp_mask = htlb_alloc_mask(h);
5092
5093 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5094 for_each_node_mask(node, cpuset_current_mems_allowed) {
5095 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5096 nr += array[node];
5097 }
5098
5099 return nr;
5100 }
5101
5102 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5103 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5104 void *buffer, size_t *length,
5105 loff_t *ppos, unsigned long *out)
5106 {
5107 struct ctl_table dup_table;
5108
5109 /*
5110 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5111 * can duplicate the @table and alter the duplicate of it.
5112 */
5113 dup_table = *table;
5114 dup_table.data = out;
5115
5116 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5117 }
5118
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5119 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5120 const struct ctl_table *table, int write,
5121 void *buffer, size_t *length, loff_t *ppos)
5122 {
5123 struct hstate *h = &default_hstate;
5124 unsigned long tmp = h->max_huge_pages;
5125 int ret;
5126
5127 if (!hugepages_supported())
5128 return -EOPNOTSUPP;
5129
5130 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5131 &tmp);
5132 if (ret)
5133 goto out;
5134
5135 if (write)
5136 ret = __nr_hugepages_store_common(obey_mempolicy, h,
5137 NUMA_NO_NODE, tmp, *length);
5138 out:
5139 return ret;
5140 }
5141
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5142 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5143 void *buffer, size_t *length, loff_t *ppos)
5144 {
5145
5146 return hugetlb_sysctl_handler_common(false, table, write,
5147 buffer, length, ppos);
5148 }
5149
5150 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5151 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5152 void *buffer, size_t *length, loff_t *ppos)
5153 {
5154 return hugetlb_sysctl_handler_common(true, table, write,
5155 buffer, length, ppos);
5156 }
5157 #endif /* CONFIG_NUMA */
5158
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5159 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5160 void *buffer, size_t *length, loff_t *ppos)
5161 {
5162 struct hstate *h = &default_hstate;
5163 unsigned long tmp;
5164 int ret;
5165
5166 if (!hugepages_supported())
5167 return -EOPNOTSUPP;
5168
5169 tmp = h->nr_overcommit_huge_pages;
5170
5171 if (write && hstate_is_gigantic(h))
5172 return -EINVAL;
5173
5174 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5175 &tmp);
5176 if (ret)
5177 goto out;
5178
5179 if (write) {
5180 spin_lock_irq(&hugetlb_lock);
5181 h->nr_overcommit_huge_pages = tmp;
5182 spin_unlock_irq(&hugetlb_lock);
5183 }
5184 out:
5185 return ret;
5186 }
5187
5188 static const struct ctl_table hugetlb_table[] = {
5189 {
5190 .procname = "nr_hugepages",
5191 .data = NULL,
5192 .maxlen = sizeof(unsigned long),
5193 .mode = 0644,
5194 .proc_handler = hugetlb_sysctl_handler,
5195 },
5196 #ifdef CONFIG_NUMA
5197 {
5198 .procname = "nr_hugepages_mempolicy",
5199 .data = NULL,
5200 .maxlen = sizeof(unsigned long),
5201 .mode = 0644,
5202 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5203 },
5204 #endif
5205 {
5206 .procname = "hugetlb_shm_group",
5207 .data = &sysctl_hugetlb_shm_group,
5208 .maxlen = sizeof(gid_t),
5209 .mode = 0644,
5210 .proc_handler = proc_dointvec,
5211 },
5212 {
5213 .procname = "nr_overcommit_hugepages",
5214 .data = NULL,
5215 .maxlen = sizeof(unsigned long),
5216 .mode = 0644,
5217 .proc_handler = hugetlb_overcommit_handler,
5218 },
5219 };
5220
hugetlb_sysctl_init(void)5221 static void __init hugetlb_sysctl_init(void)
5222 {
5223 register_sysctl_init("vm", hugetlb_table);
5224 }
5225 #endif /* CONFIG_SYSCTL */
5226
hugetlb_report_meminfo(struct seq_file * m)5227 void hugetlb_report_meminfo(struct seq_file *m)
5228 {
5229 struct hstate *h;
5230 unsigned long total = 0;
5231
5232 if (!hugepages_supported())
5233 return;
5234
5235 for_each_hstate(h) {
5236 unsigned long count = h->nr_huge_pages;
5237
5238 total += huge_page_size(h) * count;
5239
5240 if (h == &default_hstate)
5241 seq_printf(m,
5242 "HugePages_Total: %5lu\n"
5243 "HugePages_Free: %5lu\n"
5244 "HugePages_Rsvd: %5lu\n"
5245 "HugePages_Surp: %5lu\n"
5246 "Hugepagesize: %8lu kB\n",
5247 count,
5248 h->free_huge_pages,
5249 h->resv_huge_pages,
5250 h->surplus_huge_pages,
5251 huge_page_size(h) / SZ_1K);
5252 }
5253
5254 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5255 }
5256
hugetlb_report_node_meminfo(char * buf,int len,int nid)5257 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5258 {
5259 struct hstate *h = &default_hstate;
5260
5261 if (!hugepages_supported())
5262 return 0;
5263
5264 return sysfs_emit_at(buf, len,
5265 "Node %d HugePages_Total: %5u\n"
5266 "Node %d HugePages_Free: %5u\n"
5267 "Node %d HugePages_Surp: %5u\n",
5268 nid, h->nr_huge_pages_node[nid],
5269 nid, h->free_huge_pages_node[nid],
5270 nid, h->surplus_huge_pages_node[nid]);
5271 }
5272
hugetlb_show_meminfo_node(int nid)5273 void hugetlb_show_meminfo_node(int nid)
5274 {
5275 struct hstate *h;
5276
5277 if (!hugepages_supported())
5278 return;
5279
5280 for_each_hstate(h)
5281 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5282 nid,
5283 h->nr_huge_pages_node[nid],
5284 h->free_huge_pages_node[nid],
5285 h->surplus_huge_pages_node[nid],
5286 huge_page_size(h) / SZ_1K);
5287 }
5288
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5289 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5290 {
5291 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5292 K(atomic_long_read(&mm->hugetlb_usage)));
5293 }
5294
5295 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5296 unsigned long hugetlb_total_pages(void)
5297 {
5298 struct hstate *h;
5299 unsigned long nr_total_pages = 0;
5300
5301 for_each_hstate(h)
5302 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5303 return nr_total_pages;
5304 }
5305
hugetlb_acct_memory(struct hstate * h,long delta)5306 static int hugetlb_acct_memory(struct hstate *h, long delta)
5307 {
5308 int ret = -ENOMEM;
5309
5310 if (!delta)
5311 return 0;
5312
5313 spin_lock_irq(&hugetlb_lock);
5314 /*
5315 * When cpuset is configured, it breaks the strict hugetlb page
5316 * reservation as the accounting is done on a global variable. Such
5317 * reservation is completely rubbish in the presence of cpuset because
5318 * the reservation is not checked against page availability for the
5319 * current cpuset. Application can still potentially OOM'ed by kernel
5320 * with lack of free htlb page in cpuset that the task is in.
5321 * Attempt to enforce strict accounting with cpuset is almost
5322 * impossible (or too ugly) because cpuset is too fluid that
5323 * task or memory node can be dynamically moved between cpusets.
5324 *
5325 * The change of semantics for shared hugetlb mapping with cpuset is
5326 * undesirable. However, in order to preserve some of the semantics,
5327 * we fall back to check against current free page availability as
5328 * a best attempt and hopefully to minimize the impact of changing
5329 * semantics that cpuset has.
5330 *
5331 * Apart from cpuset, we also have memory policy mechanism that
5332 * also determines from which node the kernel will allocate memory
5333 * in a NUMA system. So similar to cpuset, we also should consider
5334 * the memory policy of the current task. Similar to the description
5335 * above.
5336 */
5337 if (delta > 0) {
5338 if (gather_surplus_pages(h, delta) < 0)
5339 goto out;
5340
5341 if (delta > allowed_mems_nr(h)) {
5342 return_unused_surplus_pages(h, delta);
5343 goto out;
5344 }
5345 }
5346
5347 ret = 0;
5348 if (delta < 0)
5349 return_unused_surplus_pages(h, (unsigned long) -delta);
5350
5351 out:
5352 spin_unlock_irq(&hugetlb_lock);
5353 return ret;
5354 }
5355
hugetlb_vm_op_open(struct vm_area_struct * vma)5356 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5357 {
5358 struct resv_map *resv = vma_resv_map(vma);
5359
5360 /*
5361 * HPAGE_RESV_OWNER indicates a private mapping.
5362 * This new VMA should share its siblings reservation map if present.
5363 * The VMA will only ever have a valid reservation map pointer where
5364 * it is being copied for another still existing VMA. As that VMA
5365 * has a reference to the reservation map it cannot disappear until
5366 * after this open call completes. It is therefore safe to take a
5367 * new reference here without additional locking.
5368 */
5369 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5370 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5371 kref_get(&resv->refs);
5372 }
5373
5374 /*
5375 * vma_lock structure for sharable mappings is vma specific.
5376 * Clear old pointer (if copied via vm_area_dup) and allocate
5377 * new structure. Before clearing, make sure vma_lock is not
5378 * for this vma.
5379 */
5380 if (vma->vm_flags & VM_MAYSHARE) {
5381 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5382
5383 if (vma_lock) {
5384 if (vma_lock->vma != vma) {
5385 vma->vm_private_data = NULL;
5386 hugetlb_vma_lock_alloc(vma);
5387 } else
5388 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5389 } else
5390 hugetlb_vma_lock_alloc(vma);
5391 }
5392 }
5393
hugetlb_vm_op_close(struct vm_area_struct * vma)5394 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5395 {
5396 struct hstate *h = hstate_vma(vma);
5397 struct resv_map *resv;
5398 struct hugepage_subpool *spool = subpool_vma(vma);
5399 unsigned long reserve, start, end;
5400 long gbl_reserve;
5401
5402 hugetlb_vma_lock_free(vma);
5403
5404 resv = vma_resv_map(vma);
5405 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5406 return;
5407
5408 start = vma_hugecache_offset(h, vma, vma->vm_start);
5409 end = vma_hugecache_offset(h, vma, vma->vm_end);
5410
5411 reserve = (end - start) - region_count(resv, start, end);
5412 hugetlb_cgroup_uncharge_counter(resv, start, end);
5413 if (reserve) {
5414 /*
5415 * Decrement reserve counts. The global reserve count may be
5416 * adjusted if the subpool has a minimum size.
5417 */
5418 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5419 hugetlb_acct_memory(h, -gbl_reserve);
5420 }
5421
5422 kref_put(&resv->refs, resv_map_release);
5423 }
5424
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5425 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5426 {
5427 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5428 return -EINVAL;
5429
5430 /*
5431 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5432 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5433 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5434 */
5435 if (addr & ~PUD_MASK) {
5436 /*
5437 * hugetlb_vm_op_split is called right before we attempt to
5438 * split the VMA. We will need to unshare PMDs in the old and
5439 * new VMAs, so let's unshare before we split.
5440 */
5441 unsigned long floor = addr & PUD_MASK;
5442 unsigned long ceil = floor + PUD_SIZE;
5443
5444 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5445 hugetlb_unshare_pmds(vma, floor, ceil);
5446 }
5447
5448 return 0;
5449 }
5450
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5451 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5452 {
5453 return huge_page_size(hstate_vma(vma));
5454 }
5455
5456 /*
5457 * We cannot handle pagefaults against hugetlb pages at all. They cause
5458 * handle_mm_fault() to try to instantiate regular-sized pages in the
5459 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5460 * this far.
5461 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5462 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5463 {
5464 BUG();
5465 return 0;
5466 }
5467
5468 /*
5469 * When a new function is introduced to vm_operations_struct and added
5470 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5471 * This is because under System V memory model, mappings created via
5472 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5473 * their original vm_ops are overwritten with shm_vm_ops.
5474 */
5475 const struct vm_operations_struct hugetlb_vm_ops = {
5476 .fault = hugetlb_vm_op_fault,
5477 .open = hugetlb_vm_op_open,
5478 .close = hugetlb_vm_op_close,
5479 .may_split = hugetlb_vm_op_split,
5480 .pagesize = hugetlb_vm_op_pagesize,
5481 };
5482
make_huge_pte(struct vm_area_struct * vma,struct page * page,bool try_mkwrite)5483 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5484 bool try_mkwrite)
5485 {
5486 pte_t entry;
5487 unsigned int shift = huge_page_shift(hstate_vma(vma));
5488
5489 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5490 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5491 vma->vm_page_prot)));
5492 } else {
5493 entry = huge_pte_wrprotect(mk_huge_pte(page,
5494 vma->vm_page_prot));
5495 }
5496 entry = pte_mkyoung(entry);
5497 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5498
5499 return entry;
5500 }
5501
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5502 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5503 unsigned long address, pte_t *ptep)
5504 {
5505 pte_t entry;
5506
5507 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5508 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5509 update_mmu_cache(vma, address, ptep);
5510 }
5511
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5512 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5513 unsigned long address, pte_t *ptep)
5514 {
5515 if (vma->vm_flags & VM_WRITE)
5516 set_huge_ptep_writable(vma, address, ptep);
5517 }
5518
is_hugetlb_entry_migration(pte_t pte)5519 bool is_hugetlb_entry_migration(pte_t pte)
5520 {
5521 swp_entry_t swp;
5522
5523 if (huge_pte_none(pte) || pte_present(pte))
5524 return false;
5525 swp = pte_to_swp_entry(pte);
5526 if (is_migration_entry(swp))
5527 return true;
5528 else
5529 return false;
5530 }
5531
is_hugetlb_entry_hwpoisoned(pte_t pte)5532 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5533 {
5534 swp_entry_t swp;
5535
5536 if (huge_pte_none(pte) || pte_present(pte))
5537 return false;
5538 swp = pte_to_swp_entry(pte);
5539 if (is_hwpoison_entry(swp))
5540 return true;
5541 else
5542 return false;
5543 }
5544
5545 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5546 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5547 struct folio *new_folio, pte_t old, unsigned long sz)
5548 {
5549 pte_t newpte = make_huge_pte(vma, &new_folio->page, true);
5550
5551 __folio_mark_uptodate(new_folio);
5552 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5553 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5554 newpte = huge_pte_mkuffd_wp(newpte);
5555 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5556 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5557 folio_set_hugetlb_migratable(new_folio);
5558 }
5559
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5560 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5561 struct vm_area_struct *dst_vma,
5562 struct vm_area_struct *src_vma)
5563 {
5564 pte_t *src_pte, *dst_pte, entry;
5565 struct folio *pte_folio;
5566 unsigned long addr;
5567 bool cow = is_cow_mapping(src_vma->vm_flags);
5568 struct hstate *h = hstate_vma(src_vma);
5569 unsigned long sz = huge_page_size(h);
5570 unsigned long npages = pages_per_huge_page(h);
5571 struct mmu_notifier_range range;
5572 unsigned long last_addr_mask;
5573 int ret = 0;
5574
5575 if (cow) {
5576 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5577 src_vma->vm_start,
5578 src_vma->vm_end);
5579 mmu_notifier_invalidate_range_start(&range);
5580 vma_assert_write_locked(src_vma);
5581 raw_write_seqcount_begin(&src->write_protect_seq);
5582 } else {
5583 /*
5584 * For shared mappings the vma lock must be held before
5585 * calling hugetlb_walk() in the src vma. Otherwise, the
5586 * returned ptep could go away if part of a shared pmd and
5587 * another thread calls huge_pmd_unshare.
5588 */
5589 hugetlb_vma_lock_read(src_vma);
5590 }
5591
5592 last_addr_mask = hugetlb_mask_last_page(h);
5593 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5594 spinlock_t *src_ptl, *dst_ptl;
5595 src_pte = hugetlb_walk(src_vma, addr, sz);
5596 if (!src_pte) {
5597 addr |= last_addr_mask;
5598 continue;
5599 }
5600 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5601 if (!dst_pte) {
5602 ret = -ENOMEM;
5603 break;
5604 }
5605
5606 /*
5607 * If the pagetables are shared don't copy or take references.
5608 *
5609 * dst_pte == src_pte is the common case of src/dest sharing.
5610 * However, src could have 'unshared' and dst shares with
5611 * another vma. So page_count of ptep page is checked instead
5612 * to reliably determine whether pte is shared.
5613 */
5614 if (page_count(virt_to_page(dst_pte)) > 1) {
5615 addr |= last_addr_mask;
5616 continue;
5617 }
5618
5619 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5620 src_ptl = huge_pte_lockptr(h, src, src_pte);
5621 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5622 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5623 again:
5624 if (huge_pte_none(entry)) {
5625 /*
5626 * Skip if src entry none.
5627 */
5628 ;
5629 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5630 if (!userfaultfd_wp(dst_vma))
5631 entry = huge_pte_clear_uffd_wp(entry);
5632 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5633 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5634 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5635 bool uffd_wp = pte_swp_uffd_wp(entry);
5636
5637 if (!is_readable_migration_entry(swp_entry) && cow) {
5638 /*
5639 * COW mappings require pages in both
5640 * parent and child to be set to read.
5641 */
5642 swp_entry = make_readable_migration_entry(
5643 swp_offset(swp_entry));
5644 entry = swp_entry_to_pte(swp_entry);
5645 if (userfaultfd_wp(src_vma) && uffd_wp)
5646 entry = pte_swp_mkuffd_wp(entry);
5647 set_huge_pte_at(src, addr, src_pte, entry, sz);
5648 }
5649 if (!userfaultfd_wp(dst_vma))
5650 entry = huge_pte_clear_uffd_wp(entry);
5651 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5652 } else if (unlikely(is_pte_marker(entry))) {
5653 pte_marker marker = copy_pte_marker(
5654 pte_to_swp_entry(entry), dst_vma);
5655
5656 if (marker)
5657 set_huge_pte_at(dst, addr, dst_pte,
5658 make_pte_marker(marker), sz);
5659 } else {
5660 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5661 pte_folio = page_folio(pte_page(entry));
5662 folio_get(pte_folio);
5663
5664 /*
5665 * Failing to duplicate the anon rmap is a rare case
5666 * where we see pinned hugetlb pages while they're
5667 * prone to COW. We need to do the COW earlier during
5668 * fork.
5669 *
5670 * When pre-allocating the page or copying data, we
5671 * need to be without the pgtable locks since we could
5672 * sleep during the process.
5673 */
5674 if (!folio_test_anon(pte_folio)) {
5675 hugetlb_add_file_rmap(pte_folio);
5676 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5677 pte_t src_pte_old = entry;
5678 struct folio *new_folio;
5679
5680 spin_unlock(src_ptl);
5681 spin_unlock(dst_ptl);
5682 /* Do not use reserve as it's private owned */
5683 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5684 if (IS_ERR(new_folio)) {
5685 folio_put(pte_folio);
5686 ret = PTR_ERR(new_folio);
5687 break;
5688 }
5689 ret = copy_user_large_folio(new_folio, pte_folio,
5690 addr, dst_vma);
5691 folio_put(pte_folio);
5692 if (ret) {
5693 folio_put(new_folio);
5694 break;
5695 }
5696
5697 /* Install the new hugetlb folio if src pte stable */
5698 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5699 src_ptl = huge_pte_lockptr(h, src, src_pte);
5700 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5701 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5702 if (!pte_same(src_pte_old, entry)) {
5703 restore_reserve_on_error(h, dst_vma, addr,
5704 new_folio);
5705 folio_put(new_folio);
5706 /* huge_ptep of dst_pte won't change as in child */
5707 goto again;
5708 }
5709 hugetlb_install_folio(dst_vma, dst_pte, addr,
5710 new_folio, src_pte_old, sz);
5711 spin_unlock(src_ptl);
5712 spin_unlock(dst_ptl);
5713 continue;
5714 }
5715
5716 if (cow) {
5717 /*
5718 * No need to notify as we are downgrading page
5719 * table protection not changing it to point
5720 * to a new page.
5721 *
5722 * See Documentation/mm/mmu_notifier.rst
5723 */
5724 huge_ptep_set_wrprotect(src, addr, src_pte);
5725 entry = huge_pte_wrprotect(entry);
5726 }
5727
5728 if (!userfaultfd_wp(dst_vma))
5729 entry = huge_pte_clear_uffd_wp(entry);
5730
5731 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5732 hugetlb_count_add(npages, dst);
5733 }
5734 spin_unlock(src_ptl);
5735 spin_unlock(dst_ptl);
5736 }
5737
5738 if (cow) {
5739 raw_write_seqcount_end(&src->write_protect_seq);
5740 mmu_notifier_invalidate_range_end(&range);
5741 } else {
5742 hugetlb_vma_unlock_read(src_vma);
5743 }
5744
5745 return ret;
5746 }
5747
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5748 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5749 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5750 unsigned long sz)
5751 {
5752 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5753 struct hstate *h = hstate_vma(vma);
5754 struct mm_struct *mm = vma->vm_mm;
5755 spinlock_t *src_ptl, *dst_ptl;
5756 pte_t pte;
5757
5758 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5759 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5760
5761 /*
5762 * We don't have to worry about the ordering of src and dst ptlocks
5763 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5764 */
5765 if (src_ptl != dst_ptl)
5766 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5767
5768 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5769
5770 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5771 huge_pte_clear(mm, new_addr, dst_pte, sz);
5772 else {
5773 if (need_clear_uffd_wp) {
5774 if (pte_present(pte))
5775 pte = huge_pte_clear_uffd_wp(pte);
5776 else if (is_swap_pte(pte))
5777 pte = pte_swp_clear_uffd_wp(pte);
5778 }
5779 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5780 }
5781
5782 if (src_ptl != dst_ptl)
5783 spin_unlock(src_ptl);
5784 spin_unlock(dst_ptl);
5785 }
5786
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5787 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5788 struct vm_area_struct *new_vma,
5789 unsigned long old_addr, unsigned long new_addr,
5790 unsigned long len)
5791 {
5792 struct hstate *h = hstate_vma(vma);
5793 struct address_space *mapping = vma->vm_file->f_mapping;
5794 unsigned long sz = huge_page_size(h);
5795 struct mm_struct *mm = vma->vm_mm;
5796 unsigned long old_end = old_addr + len;
5797 unsigned long last_addr_mask;
5798 pte_t *src_pte, *dst_pte;
5799 struct mmu_notifier_range range;
5800 bool shared_pmd = false;
5801
5802 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5803 old_end);
5804 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5805 /*
5806 * In case of shared PMDs, we should cover the maximum possible
5807 * range.
5808 */
5809 flush_cache_range(vma, range.start, range.end);
5810
5811 mmu_notifier_invalidate_range_start(&range);
5812 last_addr_mask = hugetlb_mask_last_page(h);
5813 /* Prevent race with file truncation */
5814 hugetlb_vma_lock_write(vma);
5815 i_mmap_lock_write(mapping);
5816 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5817 src_pte = hugetlb_walk(vma, old_addr, sz);
5818 if (!src_pte) {
5819 old_addr |= last_addr_mask;
5820 new_addr |= last_addr_mask;
5821 continue;
5822 }
5823 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5824 continue;
5825
5826 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5827 shared_pmd = true;
5828 old_addr |= last_addr_mask;
5829 new_addr |= last_addr_mask;
5830 continue;
5831 }
5832
5833 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5834 if (!dst_pte)
5835 break;
5836
5837 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5838 }
5839
5840 if (shared_pmd)
5841 flush_hugetlb_tlb_range(vma, range.start, range.end);
5842 else
5843 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5844 mmu_notifier_invalidate_range_end(&range);
5845 i_mmap_unlock_write(mapping);
5846 hugetlb_vma_unlock_write(vma);
5847
5848 return len + old_addr - old_end;
5849 }
5850
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5851 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5852 unsigned long start, unsigned long end,
5853 struct page *ref_page, zap_flags_t zap_flags)
5854 {
5855 struct mm_struct *mm = vma->vm_mm;
5856 unsigned long address;
5857 pte_t *ptep;
5858 pte_t pte;
5859 spinlock_t *ptl;
5860 struct page *page;
5861 struct hstate *h = hstate_vma(vma);
5862 unsigned long sz = huge_page_size(h);
5863 bool adjust_reservation = false;
5864 unsigned long last_addr_mask;
5865 bool force_flush = false;
5866
5867 WARN_ON(!is_vm_hugetlb_page(vma));
5868 BUG_ON(start & ~huge_page_mask(h));
5869 BUG_ON(end & ~huge_page_mask(h));
5870
5871 /*
5872 * This is a hugetlb vma, all the pte entries should point
5873 * to huge page.
5874 */
5875 tlb_change_page_size(tlb, sz);
5876 tlb_start_vma(tlb, vma);
5877
5878 last_addr_mask = hugetlb_mask_last_page(h);
5879 address = start;
5880 for (; address < end; address += sz) {
5881 ptep = hugetlb_walk(vma, address, sz);
5882 if (!ptep) {
5883 address |= last_addr_mask;
5884 continue;
5885 }
5886
5887 ptl = huge_pte_lock(h, mm, ptep);
5888 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5889 spin_unlock(ptl);
5890 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5891 force_flush = true;
5892 address |= last_addr_mask;
5893 continue;
5894 }
5895
5896 pte = huge_ptep_get(mm, address, ptep);
5897 if (huge_pte_none(pte)) {
5898 spin_unlock(ptl);
5899 continue;
5900 }
5901
5902 /*
5903 * Migrating hugepage or HWPoisoned hugepage is already
5904 * unmapped and its refcount is dropped, so just clear pte here.
5905 */
5906 if (unlikely(!pte_present(pte))) {
5907 /*
5908 * If the pte was wr-protected by uffd-wp in any of the
5909 * swap forms, meanwhile the caller does not want to
5910 * drop the uffd-wp bit in this zap, then replace the
5911 * pte with a marker.
5912 */
5913 if (pte_swp_uffd_wp_any(pte) &&
5914 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5915 set_huge_pte_at(mm, address, ptep,
5916 make_pte_marker(PTE_MARKER_UFFD_WP),
5917 sz);
5918 else
5919 huge_pte_clear(mm, address, ptep, sz);
5920 spin_unlock(ptl);
5921 continue;
5922 }
5923
5924 page = pte_page(pte);
5925 /*
5926 * If a reference page is supplied, it is because a specific
5927 * page is being unmapped, not a range. Ensure the page we
5928 * are about to unmap is the actual page of interest.
5929 */
5930 if (ref_page) {
5931 if (page != ref_page) {
5932 spin_unlock(ptl);
5933 continue;
5934 }
5935 /*
5936 * Mark the VMA as having unmapped its page so that
5937 * future faults in this VMA will fail rather than
5938 * looking like data was lost
5939 */
5940 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5941 }
5942
5943 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5944 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5945 if (huge_pte_dirty(pte))
5946 set_page_dirty(page);
5947 /* Leave a uffd-wp pte marker if needed */
5948 if (huge_pte_uffd_wp(pte) &&
5949 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5950 set_huge_pte_at(mm, address, ptep,
5951 make_pte_marker(PTE_MARKER_UFFD_WP),
5952 sz);
5953 hugetlb_count_sub(pages_per_huge_page(h), mm);
5954 hugetlb_remove_rmap(page_folio(page));
5955
5956 /*
5957 * Restore the reservation for anonymous page, otherwise the
5958 * backing page could be stolen by someone.
5959 * If there we are freeing a surplus, do not set the restore
5960 * reservation bit.
5961 */
5962 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5963 folio_test_anon(page_folio(page))) {
5964 folio_set_hugetlb_restore_reserve(page_folio(page));
5965 /* Reservation to be adjusted after the spin lock */
5966 adjust_reservation = true;
5967 }
5968
5969 spin_unlock(ptl);
5970
5971 /*
5972 * Adjust the reservation for the region that will have the
5973 * reserve restored. Keep in mind that vma_needs_reservation() changes
5974 * resv->adds_in_progress if it succeeds. If this is not done,
5975 * do_exit() will not see it, and will keep the reservation
5976 * forever.
5977 */
5978 if (adjust_reservation) {
5979 int rc = vma_needs_reservation(h, vma, address);
5980
5981 if (rc < 0)
5982 /* Pressumably allocate_file_region_entries failed
5983 * to allocate a file_region struct. Clear
5984 * hugetlb_restore_reserve so that global reserve
5985 * count will not be incremented by free_huge_folio.
5986 * Act as if we consumed the reservation.
5987 */
5988 folio_clear_hugetlb_restore_reserve(page_folio(page));
5989 else if (rc)
5990 vma_add_reservation(h, vma, address);
5991 }
5992
5993 tlb_remove_page_size(tlb, page, huge_page_size(h));
5994 /*
5995 * Bail out after unmapping reference page if supplied
5996 */
5997 if (ref_page)
5998 break;
5999 }
6000 tlb_end_vma(tlb, vma);
6001
6002 /*
6003 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
6004 * could defer the flush until now, since by holding i_mmap_rwsem we
6005 * guaranteed that the last refernece would not be dropped. But we must
6006 * do the flushing before we return, as otherwise i_mmap_rwsem will be
6007 * dropped and the last reference to the shared PMDs page might be
6008 * dropped as well.
6009 *
6010 * In theory we could defer the freeing of the PMD pages as well, but
6011 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6012 * detect sharing, so we cannot defer the release of the page either.
6013 * Instead, do flush now.
6014 */
6015 if (force_flush)
6016 tlb_flush_mmu_tlbonly(tlb);
6017 }
6018
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6019 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6020 unsigned long *start, unsigned long *end)
6021 {
6022 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6023 return;
6024
6025 adjust_range_if_pmd_sharing_possible(vma, start, end);
6026 hugetlb_vma_lock_write(vma);
6027 if (vma->vm_file)
6028 i_mmap_lock_write(vma->vm_file->f_mapping);
6029 }
6030
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)6031 void __hugetlb_zap_end(struct vm_area_struct *vma,
6032 struct zap_details *details)
6033 {
6034 zap_flags_t zap_flags = details ? details->zap_flags : 0;
6035
6036 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6037 return;
6038
6039 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
6040 /*
6041 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6042 * When the vma_lock is freed, this makes the vma ineligible
6043 * for pmd sharing. And, i_mmap_rwsem is required to set up
6044 * pmd sharing. This is important as page tables for this
6045 * unmapped range will be asynchrously deleted. If the page
6046 * tables are shared, there will be issues when accessed by
6047 * someone else.
6048 */
6049 __hugetlb_vma_unlock_write_free(vma);
6050 } else {
6051 hugetlb_vma_unlock_write(vma);
6052 }
6053
6054 if (vma->vm_file)
6055 i_mmap_unlock_write(vma->vm_file->f_mapping);
6056 }
6057
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)6058 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6059 unsigned long end, struct page *ref_page,
6060 zap_flags_t zap_flags)
6061 {
6062 struct mmu_notifier_range range;
6063 struct mmu_gather tlb;
6064
6065 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6066 start, end);
6067 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6068 mmu_notifier_invalidate_range_start(&range);
6069 tlb_gather_mmu(&tlb, vma->vm_mm);
6070
6071 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
6072
6073 mmu_notifier_invalidate_range_end(&range);
6074 tlb_finish_mmu(&tlb);
6075 }
6076
6077 /*
6078 * This is called when the original mapper is failing to COW a MAP_PRIVATE
6079 * mapping it owns the reserve page for. The intention is to unmap the page
6080 * from other VMAs and let the children be SIGKILLed if they are faulting the
6081 * same region.
6082 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)6083 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6084 struct page *page, unsigned long address)
6085 {
6086 struct hstate *h = hstate_vma(vma);
6087 struct vm_area_struct *iter_vma;
6088 struct address_space *mapping;
6089 pgoff_t pgoff;
6090
6091 /*
6092 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6093 * from page cache lookup which is in HPAGE_SIZE units.
6094 */
6095 address = address & huge_page_mask(h);
6096 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6097 vma->vm_pgoff;
6098 mapping = vma->vm_file->f_mapping;
6099
6100 /*
6101 * Take the mapping lock for the duration of the table walk. As
6102 * this mapping should be shared between all the VMAs,
6103 * __unmap_hugepage_range() is called as the lock is already held
6104 */
6105 i_mmap_lock_write(mapping);
6106 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6107 /* Do not unmap the current VMA */
6108 if (iter_vma == vma)
6109 continue;
6110
6111 /*
6112 * Shared VMAs have their own reserves and do not affect
6113 * MAP_PRIVATE accounting but it is possible that a shared
6114 * VMA is using the same page so check and skip such VMAs.
6115 */
6116 if (iter_vma->vm_flags & VM_MAYSHARE)
6117 continue;
6118
6119 /*
6120 * Unmap the page from other VMAs without their own reserves.
6121 * They get marked to be SIGKILLed if they fault in these
6122 * areas. This is because a future no-page fault on this VMA
6123 * could insert a zeroed page instead of the data existing
6124 * from the time of fork. This would look like data corruption
6125 */
6126 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6127 unmap_hugepage_range(iter_vma, address,
6128 address + huge_page_size(h), page, 0);
6129 }
6130 i_mmap_unlock_write(mapping);
6131 }
6132
6133 /*
6134 * hugetlb_wp() should be called with page lock of the original hugepage held.
6135 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6136 * cannot race with other handlers or page migration.
6137 * Keep the pte_same checks anyway to make transition from the mutex easier.
6138 */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)6139 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6140 struct vm_fault *vmf)
6141 {
6142 struct vm_area_struct *vma = vmf->vma;
6143 struct mm_struct *mm = vma->vm_mm;
6144 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6145 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6146 struct hstate *h = hstate_vma(vma);
6147 struct folio *old_folio;
6148 struct folio *new_folio;
6149 bool cow_from_owner = 0;
6150 vm_fault_t ret = 0;
6151 struct mmu_notifier_range range;
6152
6153 /*
6154 * Never handle CoW for uffd-wp protected pages. It should be only
6155 * handled when the uffd-wp protection is removed.
6156 *
6157 * Note that only the CoW optimization path (in hugetlb_no_page())
6158 * can trigger this, because hugetlb_fault() will always resolve
6159 * uffd-wp bit first.
6160 */
6161 if (!unshare && huge_pte_uffd_wp(pte))
6162 return 0;
6163
6164 /* Let's take out MAP_SHARED mappings first. */
6165 if (vma->vm_flags & VM_MAYSHARE) {
6166 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6167 return 0;
6168 }
6169
6170 old_folio = page_folio(pte_page(pte));
6171
6172 delayacct_wpcopy_start();
6173
6174 retry_avoidcopy:
6175 /*
6176 * If no-one else is actually using this page, we're the exclusive
6177 * owner and can reuse this page.
6178 *
6179 * Note that we don't rely on the (safer) folio refcount here, because
6180 * copying the hugetlb folio when there are unexpected (temporary)
6181 * folio references could harm simple fork()+exit() users when
6182 * we run out of free hugetlb folios: we would have to kill processes
6183 * in scenarios that used to work. As a side effect, there can still
6184 * be leaks between processes, for example, with FOLL_GET users.
6185 */
6186 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6187 if (!PageAnonExclusive(&old_folio->page)) {
6188 folio_move_anon_rmap(old_folio, vma);
6189 SetPageAnonExclusive(&old_folio->page);
6190 }
6191 if (likely(!unshare))
6192 set_huge_ptep_maybe_writable(vma, vmf->address,
6193 vmf->pte);
6194
6195 delayacct_wpcopy_end();
6196 return 0;
6197 }
6198 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6199 PageAnonExclusive(&old_folio->page), &old_folio->page);
6200
6201 /*
6202 * If the process that created a MAP_PRIVATE mapping is about to
6203 * perform a COW due to a shared page count, attempt to satisfy
6204 * the allocation without using the existing reserves. The pagecache
6205 * page is used to determine if the reserve at this address was
6206 * consumed or not. If reserves were used, a partial faulted mapping
6207 * at the time of fork() could consume its reserves on COW instead
6208 * of the full address range.
6209 */
6210 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6211 old_folio != pagecache_folio)
6212 cow_from_owner = true;
6213
6214 folio_get(old_folio);
6215
6216 /*
6217 * Drop page table lock as buddy allocator may be called. It will
6218 * be acquired again before returning to the caller, as expected.
6219 */
6220 spin_unlock(vmf->ptl);
6221 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6222
6223 if (IS_ERR(new_folio)) {
6224 /*
6225 * If a process owning a MAP_PRIVATE mapping fails to COW,
6226 * it is due to references held by a child and an insufficient
6227 * huge page pool. To guarantee the original mappers
6228 * reliability, unmap the page from child processes. The child
6229 * may get SIGKILLed if it later faults.
6230 */
6231 if (cow_from_owner) {
6232 struct address_space *mapping = vma->vm_file->f_mapping;
6233 pgoff_t idx;
6234 u32 hash;
6235
6236 folio_put(old_folio);
6237 /*
6238 * Drop hugetlb_fault_mutex and vma_lock before
6239 * unmapping. unmapping needs to hold vma_lock
6240 * in write mode. Dropping vma_lock in read mode
6241 * here is OK as COW mappings do not interact with
6242 * PMD sharing.
6243 *
6244 * Reacquire both after unmap operation.
6245 */
6246 idx = vma_hugecache_offset(h, vma, vmf->address);
6247 hash = hugetlb_fault_mutex_hash(mapping, idx);
6248 hugetlb_vma_unlock_read(vma);
6249 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6250
6251 unmap_ref_private(mm, vma, &old_folio->page,
6252 vmf->address);
6253
6254 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6255 hugetlb_vma_lock_read(vma);
6256 spin_lock(vmf->ptl);
6257 vmf->pte = hugetlb_walk(vma, vmf->address,
6258 huge_page_size(h));
6259 if (likely(vmf->pte &&
6260 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6261 goto retry_avoidcopy;
6262 /*
6263 * race occurs while re-acquiring page table
6264 * lock, and our job is done.
6265 */
6266 delayacct_wpcopy_end();
6267 return 0;
6268 }
6269
6270 ret = vmf_error(PTR_ERR(new_folio));
6271 goto out_release_old;
6272 }
6273
6274 /*
6275 * When the original hugepage is shared one, it does not have
6276 * anon_vma prepared.
6277 */
6278 ret = __vmf_anon_prepare(vmf);
6279 if (unlikely(ret))
6280 goto out_release_all;
6281
6282 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6283 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6284 goto out_release_all;
6285 }
6286 __folio_mark_uptodate(new_folio);
6287
6288 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6289 vmf->address + huge_page_size(h));
6290 mmu_notifier_invalidate_range_start(&range);
6291
6292 /*
6293 * Retake the page table lock to check for racing updates
6294 * before the page tables are altered
6295 */
6296 spin_lock(vmf->ptl);
6297 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6298 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6299 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6300
6301 /* Break COW or unshare */
6302 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6303 hugetlb_remove_rmap(old_folio);
6304 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6305 if (huge_pte_uffd_wp(pte))
6306 newpte = huge_pte_mkuffd_wp(newpte);
6307 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6308 huge_page_size(h));
6309 folio_set_hugetlb_migratable(new_folio);
6310 /* Make the old page be freed below */
6311 new_folio = old_folio;
6312 }
6313 spin_unlock(vmf->ptl);
6314 mmu_notifier_invalidate_range_end(&range);
6315 out_release_all:
6316 /*
6317 * No restore in case of successful pagetable update (Break COW or
6318 * unshare)
6319 */
6320 if (new_folio != old_folio)
6321 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6322 folio_put(new_folio);
6323 out_release_old:
6324 folio_put(old_folio);
6325
6326 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6327
6328 delayacct_wpcopy_end();
6329 return ret;
6330 }
6331
6332 /*
6333 * Return whether there is a pagecache page to back given address within VMA.
6334 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6335 bool hugetlbfs_pagecache_present(struct hstate *h,
6336 struct vm_area_struct *vma, unsigned long address)
6337 {
6338 struct address_space *mapping = vma->vm_file->f_mapping;
6339 pgoff_t idx = linear_page_index(vma, address);
6340 struct folio *folio;
6341
6342 folio = filemap_get_folio(mapping, idx);
6343 if (IS_ERR(folio))
6344 return false;
6345 folio_put(folio);
6346 return true;
6347 }
6348
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6349 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6350 pgoff_t idx)
6351 {
6352 struct inode *inode = mapping->host;
6353 struct hstate *h = hstate_inode(inode);
6354 int err;
6355
6356 idx <<= huge_page_order(h);
6357 __folio_set_locked(folio);
6358 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6359
6360 if (unlikely(err)) {
6361 __folio_clear_locked(folio);
6362 return err;
6363 }
6364 folio_clear_hugetlb_restore_reserve(folio);
6365
6366 /*
6367 * mark folio dirty so that it will not be removed from cache/file
6368 * by non-hugetlbfs specific code paths.
6369 */
6370 folio_mark_dirty(folio);
6371
6372 spin_lock(&inode->i_lock);
6373 inode->i_blocks += blocks_per_huge_page(h);
6374 spin_unlock(&inode->i_lock);
6375 return 0;
6376 }
6377
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6378 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6379 struct address_space *mapping,
6380 unsigned long reason)
6381 {
6382 u32 hash;
6383
6384 /*
6385 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6386 * userfault. Also mmap_lock could be dropped due to handling
6387 * userfault, any vma operation should be careful from here.
6388 */
6389 hugetlb_vma_unlock_read(vmf->vma);
6390 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6391 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6392 return handle_userfault(vmf, reason);
6393 }
6394
6395 /*
6396 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6397 * false if pte changed or is changing.
6398 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6399 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6400 pte_t *ptep, pte_t old_pte)
6401 {
6402 spinlock_t *ptl;
6403 bool same;
6404
6405 ptl = huge_pte_lock(h, mm, ptep);
6406 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6407 spin_unlock(ptl);
6408
6409 return same;
6410 }
6411
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6412 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6413 struct vm_fault *vmf)
6414 {
6415 struct vm_area_struct *vma = vmf->vma;
6416 struct mm_struct *mm = vma->vm_mm;
6417 struct hstate *h = hstate_vma(vma);
6418 vm_fault_t ret = VM_FAULT_SIGBUS;
6419 int anon_rmap = 0;
6420 unsigned long size;
6421 struct folio *folio;
6422 pte_t new_pte;
6423 bool new_folio, new_pagecache_folio = false;
6424 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6425
6426 /*
6427 * Currently, we are forced to kill the process in the event the
6428 * original mapper has unmapped pages from the child due to a failed
6429 * COW/unsharing. Warn that such a situation has occurred as it may not
6430 * be obvious.
6431 */
6432 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6433 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6434 current->pid);
6435 goto out;
6436 }
6437
6438 /*
6439 * Use page lock to guard against racing truncation
6440 * before we get page_table_lock.
6441 */
6442 new_folio = false;
6443 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6444 if (IS_ERR(folio)) {
6445 size = i_size_read(mapping->host) >> huge_page_shift(h);
6446 if (vmf->pgoff >= size)
6447 goto out;
6448 /* Check for page in userfault range */
6449 if (userfaultfd_missing(vma)) {
6450 /*
6451 * Since hugetlb_no_page() was examining pte
6452 * without pgtable lock, we need to re-test under
6453 * lock because the pte may not be stable and could
6454 * have changed from under us. Try to detect
6455 * either changed or during-changing ptes and retry
6456 * properly when needed.
6457 *
6458 * Note that userfaultfd is actually fine with
6459 * false positives (e.g. caused by pte changed),
6460 * but not wrong logical events (e.g. caused by
6461 * reading a pte during changing). The latter can
6462 * confuse the userspace, so the strictness is very
6463 * much preferred. E.g., MISSING event should
6464 * never happen on the page after UFFDIO_COPY has
6465 * correctly installed the page and returned.
6466 */
6467 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6468 ret = 0;
6469 goto out;
6470 }
6471
6472 return hugetlb_handle_userfault(vmf, mapping,
6473 VM_UFFD_MISSING);
6474 }
6475
6476 if (!(vma->vm_flags & VM_MAYSHARE)) {
6477 ret = __vmf_anon_prepare(vmf);
6478 if (unlikely(ret))
6479 goto out;
6480 }
6481
6482 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6483 if (IS_ERR(folio)) {
6484 /*
6485 * Returning error will result in faulting task being
6486 * sent SIGBUS. The hugetlb fault mutex prevents two
6487 * tasks from racing to fault in the same page which
6488 * could result in false unable to allocate errors.
6489 * Page migration does not take the fault mutex, but
6490 * does a clear then write of pte's under page table
6491 * lock. Page fault code could race with migration,
6492 * notice the clear pte and try to allocate a page
6493 * here. Before returning error, get ptl and make
6494 * sure there really is no pte entry.
6495 */
6496 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6497 ret = vmf_error(PTR_ERR(folio));
6498 else
6499 ret = 0;
6500 goto out;
6501 }
6502 folio_zero_user(folio, vmf->real_address);
6503 __folio_mark_uptodate(folio);
6504 new_folio = true;
6505
6506 if (vma->vm_flags & VM_MAYSHARE) {
6507 int err = hugetlb_add_to_page_cache(folio, mapping,
6508 vmf->pgoff);
6509 if (err) {
6510 /*
6511 * err can't be -EEXIST which implies someone
6512 * else consumed the reservation since hugetlb
6513 * fault mutex is held when add a hugetlb page
6514 * to the page cache. So it's safe to call
6515 * restore_reserve_on_error() here.
6516 */
6517 restore_reserve_on_error(h, vma, vmf->address,
6518 folio);
6519 folio_put(folio);
6520 ret = VM_FAULT_SIGBUS;
6521 goto out;
6522 }
6523 new_pagecache_folio = true;
6524 } else {
6525 folio_lock(folio);
6526 anon_rmap = 1;
6527 }
6528 } else {
6529 /*
6530 * If memory error occurs between mmap() and fault, some process
6531 * don't have hwpoisoned swap entry for errored virtual address.
6532 * So we need to block hugepage fault by PG_hwpoison bit check.
6533 */
6534 if (unlikely(folio_test_hwpoison(folio))) {
6535 ret = VM_FAULT_HWPOISON_LARGE |
6536 VM_FAULT_SET_HINDEX(hstate_index(h));
6537 goto backout_unlocked;
6538 }
6539
6540 /* Check for page in userfault range. */
6541 if (userfaultfd_minor(vma)) {
6542 folio_unlock(folio);
6543 folio_put(folio);
6544 /* See comment in userfaultfd_missing() block above */
6545 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6546 ret = 0;
6547 goto out;
6548 }
6549 return hugetlb_handle_userfault(vmf, mapping,
6550 VM_UFFD_MINOR);
6551 }
6552 }
6553
6554 /*
6555 * If we are going to COW a private mapping later, we examine the
6556 * pending reservations for this page now. This will ensure that
6557 * any allocations necessary to record that reservation occur outside
6558 * the spinlock.
6559 */
6560 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6561 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6562 ret = VM_FAULT_OOM;
6563 goto backout_unlocked;
6564 }
6565 /* Just decrements count, does not deallocate */
6566 vma_end_reservation(h, vma, vmf->address);
6567 }
6568
6569 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6570 ret = 0;
6571 /* If pte changed from under us, retry */
6572 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6573 goto backout;
6574
6575 if (anon_rmap)
6576 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6577 else
6578 hugetlb_add_file_rmap(folio);
6579 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED);
6580 /*
6581 * If this pte was previously wr-protected, keep it wr-protected even
6582 * if populated.
6583 */
6584 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6585 new_pte = huge_pte_mkuffd_wp(new_pte);
6586 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6587
6588 hugetlb_count_add(pages_per_huge_page(h), mm);
6589 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6590 /* Optimization, do the COW without a second fault */
6591 ret = hugetlb_wp(folio, vmf);
6592 }
6593
6594 spin_unlock(vmf->ptl);
6595
6596 /*
6597 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6598 * found in the pagecache may not have hugetlb_migratable if they have
6599 * been isolated for migration.
6600 */
6601 if (new_folio)
6602 folio_set_hugetlb_migratable(folio);
6603
6604 folio_unlock(folio);
6605 out:
6606 hugetlb_vma_unlock_read(vma);
6607
6608 /*
6609 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6610 * the only way ret can be set to VM_FAULT_RETRY.
6611 */
6612 if (unlikely(ret & VM_FAULT_RETRY))
6613 vma_end_read(vma);
6614
6615 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6616 return ret;
6617
6618 backout:
6619 spin_unlock(vmf->ptl);
6620 backout_unlocked:
6621 if (new_folio && !new_pagecache_folio)
6622 restore_reserve_on_error(h, vma, vmf->address, folio);
6623
6624 folio_unlock(folio);
6625 folio_put(folio);
6626 goto out;
6627 }
6628
6629 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6630 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6631 {
6632 unsigned long key[2];
6633 u32 hash;
6634
6635 key[0] = (unsigned long) mapping;
6636 key[1] = idx;
6637
6638 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6639
6640 return hash & (num_fault_mutexes - 1);
6641 }
6642 #else
6643 /*
6644 * For uniprocessor systems we always use a single mutex, so just
6645 * return 0 and avoid the hashing overhead.
6646 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6647 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6648 {
6649 return 0;
6650 }
6651 #endif
6652
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6653 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6654 unsigned long address, unsigned int flags)
6655 {
6656 vm_fault_t ret;
6657 u32 hash;
6658 struct folio *folio = NULL;
6659 struct folio *pagecache_folio = NULL;
6660 struct hstate *h = hstate_vma(vma);
6661 struct address_space *mapping;
6662 int need_wait_lock = 0;
6663 struct vm_fault vmf = {
6664 .vma = vma,
6665 .address = address & huge_page_mask(h),
6666 .real_address = address,
6667 .flags = flags,
6668 .pgoff = vma_hugecache_offset(h, vma,
6669 address & huge_page_mask(h)),
6670 /* TODO: Track hugetlb faults using vm_fault */
6671
6672 /*
6673 * Some fields may not be initialized, be careful as it may
6674 * be hard to debug if called functions make assumptions
6675 */
6676 };
6677
6678 /*
6679 * Serialize hugepage allocation and instantiation, so that we don't
6680 * get spurious allocation failures if two CPUs race to instantiate
6681 * the same page in the page cache.
6682 */
6683 mapping = vma->vm_file->f_mapping;
6684 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6685 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6686
6687 /*
6688 * Acquire vma lock before calling huge_pte_alloc and hold
6689 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6690 * being called elsewhere and making the vmf.pte no longer valid.
6691 */
6692 hugetlb_vma_lock_read(vma);
6693 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6694 if (!vmf.pte) {
6695 hugetlb_vma_unlock_read(vma);
6696 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6697 return VM_FAULT_OOM;
6698 }
6699
6700 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6701 if (huge_pte_none_mostly(vmf.orig_pte)) {
6702 if (is_pte_marker(vmf.orig_pte)) {
6703 pte_marker marker =
6704 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6705
6706 if (marker & PTE_MARKER_POISONED) {
6707 ret = VM_FAULT_HWPOISON_LARGE |
6708 VM_FAULT_SET_HINDEX(hstate_index(h));
6709 goto out_mutex;
6710 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6711 /* This isn't supported in hugetlb. */
6712 ret = VM_FAULT_SIGSEGV;
6713 goto out_mutex;
6714 }
6715 }
6716
6717 /*
6718 * Other PTE markers should be handled the same way as none PTE.
6719 *
6720 * hugetlb_no_page will drop vma lock and hugetlb fault
6721 * mutex internally, which make us return immediately.
6722 */
6723 return hugetlb_no_page(mapping, &vmf);
6724 }
6725
6726 ret = 0;
6727
6728 /*
6729 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6730 * point, so this check prevents the kernel from going below assuming
6731 * that we have an active hugepage in pagecache. This goto expects
6732 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6733 * check will properly handle it.
6734 */
6735 if (!pte_present(vmf.orig_pte)) {
6736 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6737 /*
6738 * Release the hugetlb fault lock now, but retain
6739 * the vma lock, because it is needed to guard the
6740 * huge_pte_lockptr() later in
6741 * migration_entry_wait_huge(). The vma lock will
6742 * be released there.
6743 */
6744 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6745 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6746 return 0;
6747 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6748 ret = VM_FAULT_HWPOISON_LARGE |
6749 VM_FAULT_SET_HINDEX(hstate_index(h));
6750 goto out_mutex;
6751 }
6752
6753 /*
6754 * If we are going to COW/unshare the mapping later, we examine the
6755 * pending reservations for this page now. This will ensure that any
6756 * allocations necessary to record that reservation occur outside the
6757 * spinlock. Also lookup the pagecache page now as it is used to
6758 * determine if a reservation has been consumed.
6759 */
6760 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6761 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6762 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6763 ret = VM_FAULT_OOM;
6764 goto out_mutex;
6765 }
6766 /* Just decrements count, does not deallocate */
6767 vma_end_reservation(h, vma, vmf.address);
6768
6769 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6770 vmf.pgoff);
6771 if (IS_ERR(pagecache_folio))
6772 pagecache_folio = NULL;
6773 }
6774
6775 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6776
6777 /* Check for a racing update before calling hugetlb_wp() */
6778 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6779 goto out_ptl;
6780
6781 /* Handle userfault-wp first, before trying to lock more pages */
6782 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6783 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6784 if (!userfaultfd_wp_async(vma)) {
6785 spin_unlock(vmf.ptl);
6786 if (pagecache_folio) {
6787 folio_unlock(pagecache_folio);
6788 folio_put(pagecache_folio);
6789 }
6790 hugetlb_vma_unlock_read(vma);
6791 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6792 return handle_userfault(&vmf, VM_UFFD_WP);
6793 }
6794
6795 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6796 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6797 huge_page_size(hstate_vma(vma)));
6798 /* Fallthrough to CoW */
6799 }
6800
6801 /*
6802 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6803 * pagecache_folio, so here we need take the former one
6804 * when folio != pagecache_folio or !pagecache_folio.
6805 */
6806 folio = page_folio(pte_page(vmf.orig_pte));
6807 if (folio != pagecache_folio)
6808 if (!folio_trylock(folio)) {
6809 need_wait_lock = 1;
6810 goto out_ptl;
6811 }
6812
6813 folio_get(folio);
6814
6815 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6816 if (!huge_pte_write(vmf.orig_pte)) {
6817 ret = hugetlb_wp(pagecache_folio, &vmf);
6818 goto out_put_page;
6819 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6820 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6821 }
6822 }
6823 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6824 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6825 flags & FAULT_FLAG_WRITE))
6826 update_mmu_cache(vma, vmf.address, vmf.pte);
6827 out_put_page:
6828 if (folio != pagecache_folio)
6829 folio_unlock(folio);
6830 folio_put(folio);
6831 out_ptl:
6832 spin_unlock(vmf.ptl);
6833
6834 if (pagecache_folio) {
6835 folio_unlock(pagecache_folio);
6836 folio_put(pagecache_folio);
6837 }
6838 out_mutex:
6839 hugetlb_vma_unlock_read(vma);
6840
6841 /*
6842 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6843 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6844 */
6845 if (unlikely(ret & VM_FAULT_RETRY))
6846 vma_end_read(vma);
6847
6848 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6849 /*
6850 * Generally it's safe to hold refcount during waiting page lock. But
6851 * here we just wait to defer the next page fault to avoid busy loop and
6852 * the page is not used after unlocked before returning from the current
6853 * page fault. So we are safe from accessing freed page, even if we wait
6854 * here without taking refcount.
6855 */
6856 if (need_wait_lock)
6857 folio_wait_locked(folio);
6858 return ret;
6859 }
6860
6861 #ifdef CONFIG_USERFAULTFD
6862 /*
6863 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6864 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6865 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6866 struct vm_area_struct *vma, unsigned long address)
6867 {
6868 struct mempolicy *mpol;
6869 nodemask_t *nodemask;
6870 struct folio *folio;
6871 gfp_t gfp_mask;
6872 int node;
6873
6874 gfp_mask = htlb_alloc_mask(h);
6875 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6876 /*
6877 * This is used to allocate a temporary hugetlb to hold the copied
6878 * content, which will then be copied again to the final hugetlb
6879 * consuming a reservation. Set the alloc_fallback to false to indicate
6880 * that breaking the per-node hugetlb pool is not allowed in this case.
6881 */
6882 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6883 mpol_cond_put(mpol);
6884
6885 return folio;
6886 }
6887
6888 /*
6889 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6890 * with modifications for hugetlb pages.
6891 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6892 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6893 struct vm_area_struct *dst_vma,
6894 unsigned long dst_addr,
6895 unsigned long src_addr,
6896 uffd_flags_t flags,
6897 struct folio **foliop)
6898 {
6899 struct mm_struct *dst_mm = dst_vma->vm_mm;
6900 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6901 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6902 struct hstate *h = hstate_vma(dst_vma);
6903 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6904 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6905 unsigned long size = huge_page_size(h);
6906 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6907 pte_t _dst_pte;
6908 spinlock_t *ptl;
6909 int ret = -ENOMEM;
6910 struct folio *folio;
6911 bool folio_in_pagecache = false;
6912
6913 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6914 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6915
6916 /* Don't overwrite any existing PTEs (even markers) */
6917 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6918 spin_unlock(ptl);
6919 return -EEXIST;
6920 }
6921
6922 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6923 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6924
6925 /* No need to invalidate - it was non-present before */
6926 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6927
6928 spin_unlock(ptl);
6929 return 0;
6930 }
6931
6932 if (is_continue) {
6933 ret = -EFAULT;
6934 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6935 if (IS_ERR(folio))
6936 goto out;
6937 folio_in_pagecache = true;
6938 } else if (!*foliop) {
6939 /* If a folio already exists, then it's UFFDIO_COPY for
6940 * a non-missing case. Return -EEXIST.
6941 */
6942 if (vm_shared &&
6943 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6944 ret = -EEXIST;
6945 goto out;
6946 }
6947
6948 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6949 if (IS_ERR(folio)) {
6950 ret = -ENOMEM;
6951 goto out;
6952 }
6953
6954 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6955 false);
6956
6957 /* fallback to copy_from_user outside mmap_lock */
6958 if (unlikely(ret)) {
6959 ret = -ENOENT;
6960 /* Free the allocated folio which may have
6961 * consumed a reservation.
6962 */
6963 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6964 folio_put(folio);
6965
6966 /* Allocate a temporary folio to hold the copied
6967 * contents.
6968 */
6969 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6970 if (!folio) {
6971 ret = -ENOMEM;
6972 goto out;
6973 }
6974 *foliop = folio;
6975 /* Set the outparam foliop and return to the caller to
6976 * copy the contents outside the lock. Don't free the
6977 * folio.
6978 */
6979 goto out;
6980 }
6981 } else {
6982 if (vm_shared &&
6983 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6984 folio_put(*foliop);
6985 ret = -EEXIST;
6986 *foliop = NULL;
6987 goto out;
6988 }
6989
6990 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6991 if (IS_ERR(folio)) {
6992 folio_put(*foliop);
6993 ret = -ENOMEM;
6994 *foliop = NULL;
6995 goto out;
6996 }
6997 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6998 folio_put(*foliop);
6999 *foliop = NULL;
7000 if (ret) {
7001 folio_put(folio);
7002 goto out;
7003 }
7004 }
7005
7006 /*
7007 * If we just allocated a new page, we need a memory barrier to ensure
7008 * that preceding stores to the page become visible before the
7009 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
7010 * is what we need.
7011 *
7012 * In the case where we have not allocated a new page (is_continue),
7013 * the page must already be uptodate. UFFDIO_CONTINUE already includes
7014 * an earlier smp_wmb() to ensure that prior stores will be visible
7015 * before the set_pte_at() write.
7016 */
7017 if (!is_continue)
7018 __folio_mark_uptodate(folio);
7019 else
7020 WARN_ON_ONCE(!folio_test_uptodate(folio));
7021
7022 /* Add shared, newly allocated pages to the page cache. */
7023 if (vm_shared && !is_continue) {
7024 ret = -EFAULT;
7025 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7026 goto out_release_nounlock;
7027
7028 /*
7029 * Serialization between remove_inode_hugepages() and
7030 * hugetlb_add_to_page_cache() below happens through the
7031 * hugetlb_fault_mutex_table that here must be hold by
7032 * the caller.
7033 */
7034 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7035 if (ret)
7036 goto out_release_nounlock;
7037 folio_in_pagecache = true;
7038 }
7039
7040 ptl = huge_pte_lock(h, dst_mm, dst_pte);
7041
7042 ret = -EIO;
7043 if (folio_test_hwpoison(folio))
7044 goto out_release_unlock;
7045
7046 /*
7047 * We allow to overwrite a pte marker: consider when both MISSING|WP
7048 * registered, we firstly wr-protect a none pte which has no page cache
7049 * page backing it, then access the page.
7050 */
7051 ret = -EEXIST;
7052 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7053 goto out_release_unlock;
7054
7055 if (folio_in_pagecache)
7056 hugetlb_add_file_rmap(folio);
7057 else
7058 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7059
7060 /*
7061 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7062 * with wp flag set, don't set pte write bit.
7063 */
7064 _dst_pte = make_huge_pte(dst_vma, &folio->page,
7065 !wp_enabled && !(is_continue && !vm_shared));
7066 /*
7067 * Always mark UFFDIO_COPY page dirty; note that this may not be
7068 * extremely important for hugetlbfs for now since swapping is not
7069 * supported, but we should still be clear in that this page cannot be
7070 * thrown away at will, even if write bit not set.
7071 */
7072 _dst_pte = huge_pte_mkdirty(_dst_pte);
7073 _dst_pte = pte_mkyoung(_dst_pte);
7074
7075 if (wp_enabled)
7076 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7077
7078 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7079
7080 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7081
7082 /* No need to invalidate - it was non-present before */
7083 update_mmu_cache(dst_vma, dst_addr, dst_pte);
7084
7085 spin_unlock(ptl);
7086 if (!is_continue)
7087 folio_set_hugetlb_migratable(folio);
7088 if (vm_shared || is_continue)
7089 folio_unlock(folio);
7090 ret = 0;
7091 out:
7092 return ret;
7093 out_release_unlock:
7094 spin_unlock(ptl);
7095 if (vm_shared || is_continue)
7096 folio_unlock(folio);
7097 out_release_nounlock:
7098 if (!folio_in_pagecache)
7099 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7100 folio_put(folio);
7101 goto out;
7102 }
7103 #endif /* CONFIG_USERFAULTFD */
7104
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7105 long hugetlb_change_protection(struct vm_area_struct *vma,
7106 unsigned long address, unsigned long end,
7107 pgprot_t newprot, unsigned long cp_flags)
7108 {
7109 struct mm_struct *mm = vma->vm_mm;
7110 unsigned long start = address;
7111 pte_t *ptep;
7112 pte_t pte;
7113 struct hstate *h = hstate_vma(vma);
7114 long pages = 0, psize = huge_page_size(h);
7115 bool shared_pmd = false;
7116 struct mmu_notifier_range range;
7117 unsigned long last_addr_mask;
7118 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7119 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7120
7121 /*
7122 * In the case of shared PMDs, the area to flush could be beyond
7123 * start/end. Set range.start/range.end to cover the maximum possible
7124 * range if PMD sharing is possible.
7125 */
7126 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7127 0, mm, start, end);
7128 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7129
7130 BUG_ON(address >= end);
7131 flush_cache_range(vma, range.start, range.end);
7132
7133 mmu_notifier_invalidate_range_start(&range);
7134 hugetlb_vma_lock_write(vma);
7135 i_mmap_lock_write(vma->vm_file->f_mapping);
7136 last_addr_mask = hugetlb_mask_last_page(h);
7137 for (; address < end; address += psize) {
7138 spinlock_t *ptl;
7139 ptep = hugetlb_walk(vma, address, psize);
7140 if (!ptep) {
7141 if (!uffd_wp) {
7142 address |= last_addr_mask;
7143 continue;
7144 }
7145 /*
7146 * Userfaultfd wr-protect requires pgtable
7147 * pre-allocations to install pte markers.
7148 */
7149 ptep = huge_pte_alloc(mm, vma, address, psize);
7150 if (!ptep) {
7151 pages = -ENOMEM;
7152 break;
7153 }
7154 }
7155 ptl = huge_pte_lock(h, mm, ptep);
7156 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7157 /*
7158 * When uffd-wp is enabled on the vma, unshare
7159 * shouldn't happen at all. Warn about it if it
7160 * happened due to some reason.
7161 */
7162 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7163 pages++;
7164 spin_unlock(ptl);
7165 shared_pmd = true;
7166 address |= last_addr_mask;
7167 continue;
7168 }
7169 pte = huge_ptep_get(mm, address, ptep);
7170 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7171 /* Nothing to do. */
7172 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7173 swp_entry_t entry = pte_to_swp_entry(pte);
7174 struct page *page = pfn_swap_entry_to_page(entry);
7175 pte_t newpte = pte;
7176
7177 if (is_writable_migration_entry(entry)) {
7178 if (PageAnon(page))
7179 entry = make_readable_exclusive_migration_entry(
7180 swp_offset(entry));
7181 else
7182 entry = make_readable_migration_entry(
7183 swp_offset(entry));
7184 newpte = swp_entry_to_pte(entry);
7185 pages++;
7186 }
7187
7188 if (uffd_wp)
7189 newpte = pte_swp_mkuffd_wp(newpte);
7190 else if (uffd_wp_resolve)
7191 newpte = pte_swp_clear_uffd_wp(newpte);
7192 if (!pte_same(pte, newpte))
7193 set_huge_pte_at(mm, address, ptep, newpte, psize);
7194 } else if (unlikely(is_pte_marker(pte))) {
7195 /*
7196 * Do nothing on a poison marker; page is
7197 * corrupted, permissons do not apply. Here
7198 * pte_marker_uffd_wp()==true implies !poison
7199 * because they're mutual exclusive.
7200 */
7201 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7202 /* Safe to modify directly (non-present->none). */
7203 huge_pte_clear(mm, address, ptep, psize);
7204 } else if (!huge_pte_none(pte)) {
7205 pte_t old_pte;
7206 unsigned int shift = huge_page_shift(hstate_vma(vma));
7207
7208 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7209 pte = huge_pte_modify(old_pte, newprot);
7210 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7211 if (uffd_wp)
7212 pte = huge_pte_mkuffd_wp(pte);
7213 else if (uffd_wp_resolve)
7214 pte = huge_pte_clear_uffd_wp(pte);
7215 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7216 pages++;
7217 } else {
7218 /* None pte */
7219 if (unlikely(uffd_wp))
7220 /* Safe to modify directly (none->non-present). */
7221 set_huge_pte_at(mm, address, ptep,
7222 make_pte_marker(PTE_MARKER_UFFD_WP),
7223 psize);
7224 }
7225 spin_unlock(ptl);
7226 }
7227 /*
7228 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7229 * may have cleared our pud entry and done put_page on the page table:
7230 * once we release i_mmap_rwsem, another task can do the final put_page
7231 * and that page table be reused and filled with junk. If we actually
7232 * did unshare a page of pmds, flush the range corresponding to the pud.
7233 */
7234 if (shared_pmd)
7235 flush_hugetlb_tlb_range(vma, range.start, range.end);
7236 else
7237 flush_hugetlb_tlb_range(vma, start, end);
7238 /*
7239 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7240 * downgrading page table protection not changing it to point to a new
7241 * page.
7242 *
7243 * See Documentation/mm/mmu_notifier.rst
7244 */
7245 i_mmap_unlock_write(vma->vm_file->f_mapping);
7246 hugetlb_vma_unlock_write(vma);
7247 mmu_notifier_invalidate_range_end(&range);
7248
7249 return pages > 0 ? (pages << h->order) : pages;
7250 }
7251
7252 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7253 bool hugetlb_reserve_pages(struct inode *inode,
7254 long from, long to,
7255 struct vm_area_struct *vma,
7256 vm_flags_t vm_flags)
7257 {
7258 long chg = -1, add = -1, spool_resv, gbl_resv;
7259 struct hstate *h = hstate_inode(inode);
7260 struct hugepage_subpool *spool = subpool_inode(inode);
7261 struct resv_map *resv_map;
7262 struct hugetlb_cgroup *h_cg = NULL;
7263 long gbl_reserve, regions_needed = 0;
7264
7265 /* This should never happen */
7266 if (from > to) {
7267 VM_WARN(1, "%s called with a negative range\n", __func__);
7268 return false;
7269 }
7270
7271 /*
7272 * vma specific semaphore used for pmd sharing and fault/truncation
7273 * synchronization
7274 */
7275 hugetlb_vma_lock_alloc(vma);
7276
7277 /*
7278 * Only apply hugepage reservation if asked. At fault time, an
7279 * attempt will be made for VM_NORESERVE to allocate a page
7280 * without using reserves
7281 */
7282 if (vm_flags & VM_NORESERVE)
7283 return true;
7284
7285 /*
7286 * Shared mappings base their reservation on the number of pages that
7287 * are already allocated on behalf of the file. Private mappings need
7288 * to reserve the full area even if read-only as mprotect() may be
7289 * called to make the mapping read-write. Assume !vma is a shm mapping
7290 */
7291 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7292 /*
7293 * resv_map can not be NULL as hugetlb_reserve_pages is only
7294 * called for inodes for which resv_maps were created (see
7295 * hugetlbfs_get_inode).
7296 */
7297 resv_map = inode_resv_map(inode);
7298
7299 chg = region_chg(resv_map, from, to, ®ions_needed);
7300 } else {
7301 /* Private mapping. */
7302 resv_map = resv_map_alloc();
7303 if (!resv_map)
7304 goto out_err;
7305
7306 chg = to - from;
7307
7308 set_vma_resv_map(vma, resv_map);
7309 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7310 }
7311
7312 if (chg < 0)
7313 goto out_err;
7314
7315 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7316 chg * pages_per_huge_page(h), &h_cg) < 0)
7317 goto out_err;
7318
7319 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7320 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7321 * of the resv_map.
7322 */
7323 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7324 }
7325
7326 /*
7327 * There must be enough pages in the subpool for the mapping. If
7328 * the subpool has a minimum size, there may be some global
7329 * reservations already in place (gbl_reserve).
7330 */
7331 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7332 if (gbl_reserve < 0)
7333 goto out_uncharge_cgroup;
7334
7335 /*
7336 * Check enough hugepages are available for the reservation.
7337 * Hand the pages back to the subpool if there are not
7338 */
7339 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7340 goto out_put_pages;
7341
7342 /*
7343 * Account for the reservations made. Shared mappings record regions
7344 * that have reservations as they are shared by multiple VMAs.
7345 * When the last VMA disappears, the region map says how much
7346 * the reservation was and the page cache tells how much of
7347 * the reservation was consumed. Private mappings are per-VMA and
7348 * only the consumed reservations are tracked. When the VMA
7349 * disappears, the original reservation is the VMA size and the
7350 * consumed reservations are stored in the map. Hence, nothing
7351 * else has to be done for private mappings here
7352 */
7353 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7354 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7355
7356 if (unlikely(add < 0)) {
7357 hugetlb_acct_memory(h, -gbl_reserve);
7358 goto out_put_pages;
7359 } else if (unlikely(chg > add)) {
7360 /*
7361 * pages in this range were added to the reserve
7362 * map between region_chg and region_add. This
7363 * indicates a race with alloc_hugetlb_folio. Adjust
7364 * the subpool and reserve counts modified above
7365 * based on the difference.
7366 */
7367 long rsv_adjust;
7368
7369 /*
7370 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7371 * reference to h_cg->css. See comment below for detail.
7372 */
7373 hugetlb_cgroup_uncharge_cgroup_rsvd(
7374 hstate_index(h),
7375 (chg - add) * pages_per_huge_page(h), h_cg);
7376
7377 rsv_adjust = hugepage_subpool_put_pages(spool,
7378 chg - add);
7379 hugetlb_acct_memory(h, -rsv_adjust);
7380 } else if (h_cg) {
7381 /*
7382 * The file_regions will hold their own reference to
7383 * h_cg->css. So we should release the reference held
7384 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7385 * done.
7386 */
7387 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7388 }
7389 }
7390 return true;
7391
7392 out_put_pages:
7393 spool_resv = chg - gbl_reserve;
7394 if (spool_resv) {
7395 /* put sub pool's reservation back, chg - gbl_reserve */
7396 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7397 /*
7398 * subpool's reserved pages can not be put back due to race,
7399 * return to hstate.
7400 */
7401 hugetlb_acct_memory(h, -gbl_resv);
7402 }
7403 out_uncharge_cgroup:
7404 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7405 chg * pages_per_huge_page(h), h_cg);
7406 out_err:
7407 hugetlb_vma_lock_free(vma);
7408 if (!vma || vma->vm_flags & VM_MAYSHARE)
7409 /* Only call region_abort if the region_chg succeeded but the
7410 * region_add failed or didn't run.
7411 */
7412 if (chg >= 0 && add < 0)
7413 region_abort(resv_map, from, to, regions_needed);
7414 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7415 kref_put(&resv_map->refs, resv_map_release);
7416 set_vma_resv_map(vma, NULL);
7417 }
7418 return false;
7419 }
7420
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7421 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7422 long freed)
7423 {
7424 struct hstate *h = hstate_inode(inode);
7425 struct resv_map *resv_map = inode_resv_map(inode);
7426 long chg = 0;
7427 struct hugepage_subpool *spool = subpool_inode(inode);
7428 long gbl_reserve;
7429
7430 /*
7431 * Since this routine can be called in the evict inode path for all
7432 * hugetlbfs inodes, resv_map could be NULL.
7433 */
7434 if (resv_map) {
7435 chg = region_del(resv_map, start, end);
7436 /*
7437 * region_del() can fail in the rare case where a region
7438 * must be split and another region descriptor can not be
7439 * allocated. If end == LONG_MAX, it will not fail.
7440 */
7441 if (chg < 0)
7442 return chg;
7443 }
7444
7445 spin_lock(&inode->i_lock);
7446 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7447 spin_unlock(&inode->i_lock);
7448
7449 /*
7450 * If the subpool has a minimum size, the number of global
7451 * reservations to be released may be adjusted.
7452 *
7453 * Note that !resv_map implies freed == 0. So (chg - freed)
7454 * won't go negative.
7455 */
7456 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7457 hugetlb_acct_memory(h, -gbl_reserve);
7458
7459 return 0;
7460 }
7461
7462 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7463 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7464 struct vm_area_struct *vma,
7465 unsigned long addr, pgoff_t idx)
7466 {
7467 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7468 svma->vm_start;
7469 unsigned long sbase = saddr & PUD_MASK;
7470 unsigned long s_end = sbase + PUD_SIZE;
7471
7472 /* Allow segments to share if only one is marked locked */
7473 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7474 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7475
7476 /*
7477 * match the virtual addresses, permission and the alignment of the
7478 * page table page.
7479 *
7480 * Also, vma_lock (vm_private_data) is required for sharing.
7481 */
7482 if (pmd_index(addr) != pmd_index(saddr) ||
7483 vm_flags != svm_flags ||
7484 !range_in_vma(svma, sbase, s_end) ||
7485 !svma->vm_private_data)
7486 return 0;
7487
7488 return saddr;
7489 }
7490
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7491 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7492 {
7493 unsigned long start = addr & PUD_MASK;
7494 unsigned long end = start + PUD_SIZE;
7495
7496 #ifdef CONFIG_USERFAULTFD
7497 if (uffd_disable_huge_pmd_share(vma))
7498 return false;
7499 #endif
7500 /*
7501 * check on proper vm_flags and page table alignment
7502 */
7503 if (!(vma->vm_flags & VM_MAYSHARE))
7504 return false;
7505 if (!vma->vm_private_data) /* vma lock required for sharing */
7506 return false;
7507 if (!range_in_vma(vma, start, end))
7508 return false;
7509 return true;
7510 }
7511
7512 /*
7513 * Determine if start,end range within vma could be mapped by shared pmd.
7514 * If yes, adjust start and end to cover range associated with possible
7515 * shared pmd mappings.
7516 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7517 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7518 unsigned long *start, unsigned long *end)
7519 {
7520 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7521 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7522
7523 /*
7524 * vma needs to span at least one aligned PUD size, and the range
7525 * must be at least partially within in.
7526 */
7527 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7528 (*end <= v_start) || (*start >= v_end))
7529 return;
7530
7531 /* Extend the range to be PUD aligned for a worst case scenario */
7532 if (*start > v_start)
7533 *start = ALIGN_DOWN(*start, PUD_SIZE);
7534
7535 if (*end < v_end)
7536 *end = ALIGN(*end, PUD_SIZE);
7537 }
7538
7539 /*
7540 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7541 * and returns the corresponding pte. While this is not necessary for the
7542 * !shared pmd case because we can allocate the pmd later as well, it makes the
7543 * code much cleaner. pmd allocation is essential for the shared case because
7544 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7545 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7546 * bad pmd for sharing.
7547 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7548 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7549 unsigned long addr, pud_t *pud)
7550 {
7551 struct address_space *mapping = vma->vm_file->f_mapping;
7552 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7553 vma->vm_pgoff;
7554 struct vm_area_struct *svma;
7555 unsigned long saddr;
7556 pte_t *spte = NULL;
7557 pte_t *pte;
7558
7559 i_mmap_lock_read(mapping);
7560 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7561 if (svma == vma)
7562 continue;
7563
7564 saddr = page_table_shareable(svma, vma, addr, idx);
7565 if (saddr) {
7566 spte = hugetlb_walk(svma, saddr,
7567 vma_mmu_pagesize(svma));
7568 if (spte) {
7569 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7570 break;
7571 }
7572 }
7573 }
7574
7575 if (!spte)
7576 goto out;
7577
7578 spin_lock(&mm->page_table_lock);
7579 if (pud_none(*pud)) {
7580 pud_populate(mm, pud,
7581 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7582 mm_inc_nr_pmds(mm);
7583 } else {
7584 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7585 }
7586 spin_unlock(&mm->page_table_lock);
7587 out:
7588 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7589 i_mmap_unlock_read(mapping);
7590 return pte;
7591 }
7592
7593 /*
7594 * unmap huge page backed by shared pte.
7595 *
7596 * Called with page table lock held.
7597 *
7598 * returns: 1 successfully unmapped a shared pte page
7599 * 0 the underlying pte page is not shared, or it is the last user
7600 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7601 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7602 unsigned long addr, pte_t *ptep)
7603 {
7604 unsigned long sz = huge_page_size(hstate_vma(vma));
7605 pgd_t *pgd = pgd_offset(mm, addr);
7606 p4d_t *p4d = p4d_offset(pgd, addr);
7607 pud_t *pud = pud_offset(p4d, addr);
7608
7609 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7610 hugetlb_vma_assert_locked(vma);
7611 if (sz != PMD_SIZE)
7612 return 0;
7613 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7614 return 0;
7615
7616 pud_clear(pud);
7617 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7618 mm_dec_nr_pmds(mm);
7619 return 1;
7620 }
7621
7622 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7623
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7624 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7625 unsigned long addr, pud_t *pud)
7626 {
7627 return NULL;
7628 }
7629
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7630 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7631 unsigned long addr, pte_t *ptep)
7632 {
7633 return 0;
7634 }
7635
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7636 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7637 unsigned long *start, unsigned long *end)
7638 {
7639 }
7640
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7641 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7642 {
7643 return false;
7644 }
7645 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7646
7647 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7648 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7649 unsigned long addr, unsigned long sz)
7650 {
7651 pgd_t *pgd;
7652 p4d_t *p4d;
7653 pud_t *pud;
7654 pte_t *pte = NULL;
7655
7656 pgd = pgd_offset(mm, addr);
7657 p4d = p4d_alloc(mm, pgd, addr);
7658 if (!p4d)
7659 return NULL;
7660 pud = pud_alloc(mm, p4d, addr);
7661 if (pud) {
7662 if (sz == PUD_SIZE) {
7663 pte = (pte_t *)pud;
7664 } else {
7665 BUG_ON(sz != PMD_SIZE);
7666 if (want_pmd_share(vma, addr) && pud_none(*pud))
7667 pte = huge_pmd_share(mm, vma, addr, pud);
7668 else
7669 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7670 }
7671 }
7672
7673 if (pte) {
7674 pte_t pteval = ptep_get_lockless(pte);
7675
7676 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7677 }
7678
7679 return pte;
7680 }
7681
7682 /*
7683 * huge_pte_offset() - Walk the page table to resolve the hugepage
7684 * entry at address @addr
7685 *
7686 * Return: Pointer to page table entry (PUD or PMD) for
7687 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7688 * size @sz doesn't match the hugepage size at this level of the page
7689 * table.
7690 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7691 pte_t *huge_pte_offset(struct mm_struct *mm,
7692 unsigned long addr, unsigned long sz)
7693 {
7694 pgd_t *pgd;
7695 p4d_t *p4d;
7696 pud_t *pud;
7697 pmd_t *pmd;
7698
7699 pgd = pgd_offset(mm, addr);
7700 if (!pgd_present(*pgd))
7701 return NULL;
7702 p4d = p4d_offset(pgd, addr);
7703 if (!p4d_present(*p4d))
7704 return NULL;
7705
7706 pud = pud_offset(p4d, addr);
7707 if (sz == PUD_SIZE)
7708 /* must be pud huge, non-present or none */
7709 return (pte_t *)pud;
7710 if (!pud_present(*pud))
7711 return NULL;
7712 /* must have a valid entry and size to go further */
7713
7714 pmd = pmd_offset(pud, addr);
7715 /* must be pmd huge, non-present or none */
7716 return (pte_t *)pmd;
7717 }
7718
7719 /*
7720 * Return a mask that can be used to update an address to the last huge
7721 * page in a page table page mapping size. Used to skip non-present
7722 * page table entries when linearly scanning address ranges. Architectures
7723 * with unique huge page to page table relationships can define their own
7724 * version of this routine.
7725 */
hugetlb_mask_last_page(struct hstate * h)7726 unsigned long hugetlb_mask_last_page(struct hstate *h)
7727 {
7728 unsigned long hp_size = huge_page_size(h);
7729
7730 if (hp_size == PUD_SIZE)
7731 return P4D_SIZE - PUD_SIZE;
7732 else if (hp_size == PMD_SIZE)
7733 return PUD_SIZE - PMD_SIZE;
7734 else
7735 return 0UL;
7736 }
7737
7738 #else
7739
7740 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7741 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7742 {
7743 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7744 if (huge_page_size(h) == PMD_SIZE)
7745 return PUD_SIZE - PMD_SIZE;
7746 #endif
7747 return 0UL;
7748 }
7749
7750 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7751
7752 /**
7753 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7754 * @folio: the folio to isolate
7755 * @list: the list to add the folio to on success
7756 *
7757 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7758 * isolated/non-migratable, and moving it from the active list to the
7759 * given list.
7760 *
7761 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7762 * it is already isolated/non-migratable.
7763 *
7764 * On success, an additional folio reference is taken that must be dropped
7765 * using folio_putback_hugetlb() to undo the isolation.
7766 *
7767 * Return: True if isolation worked, otherwise False.
7768 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7769 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7770 {
7771 bool ret = true;
7772
7773 spin_lock_irq(&hugetlb_lock);
7774 if (!folio_test_hugetlb(folio) ||
7775 !folio_test_hugetlb_migratable(folio) ||
7776 !folio_try_get(folio)) {
7777 ret = false;
7778 goto unlock;
7779 }
7780 folio_clear_hugetlb_migratable(folio);
7781 list_move_tail(&folio->lru, list);
7782 unlock:
7783 spin_unlock_irq(&hugetlb_lock);
7784 return ret;
7785 }
7786
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7787 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7788 {
7789 int ret = 0;
7790
7791 *hugetlb = false;
7792 spin_lock_irq(&hugetlb_lock);
7793 if (folio_test_hugetlb(folio)) {
7794 *hugetlb = true;
7795 if (folio_test_hugetlb_freed(folio))
7796 ret = 0;
7797 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7798 ret = folio_try_get(folio);
7799 else
7800 ret = -EBUSY;
7801 }
7802 spin_unlock_irq(&hugetlb_lock);
7803 return ret;
7804 }
7805
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7806 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7807 bool *migratable_cleared)
7808 {
7809 int ret;
7810
7811 spin_lock_irq(&hugetlb_lock);
7812 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7813 spin_unlock_irq(&hugetlb_lock);
7814 return ret;
7815 }
7816
7817 /**
7818 * folio_putback_hugetlb - unisolate a hugetlb folio
7819 * @folio: the isolated hugetlb folio
7820 *
7821 * Putback/un-isolate the hugetlb folio that was previous isolated using
7822 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7823 * back onto the active list.
7824 *
7825 * Will drop the additional folio reference obtained through
7826 * folio_isolate_hugetlb().
7827 */
folio_putback_hugetlb(struct folio * folio)7828 void folio_putback_hugetlb(struct folio *folio)
7829 {
7830 spin_lock_irq(&hugetlb_lock);
7831 folio_set_hugetlb_migratable(folio);
7832 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7833 spin_unlock_irq(&hugetlb_lock);
7834 folio_put(folio);
7835 }
7836
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7837 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7838 {
7839 struct hstate *h = folio_hstate(old_folio);
7840
7841 hugetlb_cgroup_migrate(old_folio, new_folio);
7842 set_page_owner_migrate_reason(&new_folio->page, reason);
7843
7844 /*
7845 * transfer temporary state of the new hugetlb folio. This is
7846 * reverse to other transitions because the newpage is going to
7847 * be final while the old one will be freed so it takes over
7848 * the temporary status.
7849 *
7850 * Also note that we have to transfer the per-node surplus state
7851 * here as well otherwise the global surplus count will not match
7852 * the per-node's.
7853 */
7854 if (folio_test_hugetlb_temporary(new_folio)) {
7855 int old_nid = folio_nid(old_folio);
7856 int new_nid = folio_nid(new_folio);
7857
7858 folio_set_hugetlb_temporary(old_folio);
7859 folio_clear_hugetlb_temporary(new_folio);
7860
7861
7862 /*
7863 * There is no need to transfer the per-node surplus state
7864 * when we do not cross the node.
7865 */
7866 if (new_nid == old_nid)
7867 return;
7868 spin_lock_irq(&hugetlb_lock);
7869 if (h->surplus_huge_pages_node[old_nid]) {
7870 h->surplus_huge_pages_node[old_nid]--;
7871 h->surplus_huge_pages_node[new_nid]++;
7872 }
7873 spin_unlock_irq(&hugetlb_lock);
7874 }
7875
7876 /*
7877 * Our old folio is isolated and has "migratable" cleared until it
7878 * is putback. As migration succeeded, set the new folio "migratable"
7879 * and add it to the active list.
7880 */
7881 spin_lock_irq(&hugetlb_lock);
7882 folio_set_hugetlb_migratable(new_folio);
7883 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7884 spin_unlock_irq(&hugetlb_lock);
7885 }
7886
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7887 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7888 unsigned long start,
7889 unsigned long end)
7890 {
7891 struct hstate *h = hstate_vma(vma);
7892 unsigned long sz = huge_page_size(h);
7893 struct mm_struct *mm = vma->vm_mm;
7894 struct mmu_notifier_range range;
7895 unsigned long address;
7896 spinlock_t *ptl;
7897 pte_t *ptep;
7898
7899 if (!(vma->vm_flags & VM_MAYSHARE))
7900 return;
7901
7902 if (start >= end)
7903 return;
7904
7905 flush_cache_range(vma, start, end);
7906 /*
7907 * No need to call adjust_range_if_pmd_sharing_possible(), because
7908 * we have already done the PUD_SIZE alignment.
7909 */
7910 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7911 start, end);
7912 mmu_notifier_invalidate_range_start(&range);
7913 hugetlb_vma_lock_write(vma);
7914 i_mmap_lock_write(vma->vm_file->f_mapping);
7915 for (address = start; address < end; address += PUD_SIZE) {
7916 ptep = hugetlb_walk(vma, address, sz);
7917 if (!ptep)
7918 continue;
7919 ptl = huge_pte_lock(h, mm, ptep);
7920 huge_pmd_unshare(mm, vma, address, ptep);
7921 spin_unlock(ptl);
7922 }
7923 flush_hugetlb_tlb_range(vma, start, end);
7924 i_mmap_unlock_write(vma->vm_file->f_mapping);
7925 hugetlb_vma_unlock_write(vma);
7926 /*
7927 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7928 * Documentation/mm/mmu_notifier.rst.
7929 */
7930 mmu_notifier_invalidate_range_end(&range);
7931 }
7932
7933 /*
7934 * This function will unconditionally remove all the shared pmd pgtable entries
7935 * within the specific vma for a hugetlbfs memory range.
7936 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7937 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7938 {
7939 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7940 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7941 }
7942
7943 /*
7944 * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7945 * performed, we permit both the old and new VMAs to reference the same
7946 * reservation.
7947 *
7948 * We fix this up after the operation succeeds, or if a newly allocated VMA
7949 * is closed as a result of a failure to allocate memory.
7950 */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7951 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7952 {
7953 if (is_vm_hugetlb_page(vma))
7954 clear_vma_resv_huge_pages(vma);
7955 }
7956