1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 #include <linux/pgalloc_tag.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlb.h>
45 #include <asm/pgalloc.h>
46 #include "internal.h"
47 #include "swap.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/thp.h>
51
52 /*
53 * By default, transparent hugepage support is disabled in order to avoid
54 * risking an increased memory footprint for applications that are not
55 * guaranteed to benefit from it. When transparent hugepage support is
56 * enabled, it is for all mappings, and khugepaged scans all mappings.
57 * Defrag is invoked by khugepaged hugepage allocations and by page faults
58 * for all hugepage allocations.
59 */
60 unsigned long transparent_hugepage_flags __read_mostly =
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
62 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
63 #endif
64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
66 #endif
67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
70
71 static struct shrinker *deferred_split_shrinker;
72 static unsigned long deferred_split_count(struct shrinker *shrink,
73 struct shrink_control *sc);
74 static unsigned long deferred_split_scan(struct shrinker *shrink,
75 struct shrink_control *sc);
76 static bool split_underused_thp = true;
77
78 static atomic_t huge_zero_refcount;
79 struct folio *huge_zero_folio __read_mostly;
80 unsigned long huge_zero_pfn __read_mostly = ~0UL;
81 unsigned long huge_anon_orders_always __read_mostly;
82 unsigned long huge_anon_orders_madvise __read_mostly;
83 unsigned long huge_anon_orders_inherit __read_mostly;
84 static bool anon_orders_configured __initdata;
85
file_thp_enabled(struct vm_area_struct * vma)86 static inline bool file_thp_enabled(struct vm_area_struct *vma)
87 {
88 struct inode *inode;
89
90 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
91 return false;
92
93 if (!vma->vm_file)
94 return false;
95
96 inode = file_inode(vma->vm_file);
97
98 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
99 }
100
__thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)101 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
102 unsigned long vm_flags,
103 unsigned long tva_flags,
104 unsigned long orders)
105 {
106 bool smaps = tva_flags & TVA_SMAPS;
107 bool in_pf = tva_flags & TVA_IN_PF;
108 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
109 unsigned long supported_orders;
110
111 /* Check the intersection of requested and supported orders. */
112 if (vma_is_anonymous(vma))
113 supported_orders = THP_ORDERS_ALL_ANON;
114 else if (vma_is_special_huge(vma))
115 supported_orders = THP_ORDERS_ALL_SPECIAL;
116 else
117 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
118
119 orders &= supported_orders;
120 if (!orders)
121 return 0;
122
123 if (!vma->vm_mm) /* vdso */
124 return 0;
125
126 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
127 return 0;
128
129 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
130 if (vma_is_dax(vma))
131 return in_pf ? orders : 0;
132
133 /*
134 * khugepaged special VMA and hugetlb VMA.
135 * Must be checked after dax since some dax mappings may have
136 * VM_MIXEDMAP set.
137 */
138 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
139 return 0;
140
141 /*
142 * Check alignment for file vma and size for both file and anon vma by
143 * filtering out the unsuitable orders.
144 *
145 * Skip the check for page fault. Huge fault does the check in fault
146 * handlers.
147 */
148 if (!in_pf) {
149 int order = highest_order(orders);
150 unsigned long addr;
151
152 while (orders) {
153 addr = vma->vm_end - (PAGE_SIZE << order);
154 if (thp_vma_suitable_order(vma, addr, order))
155 break;
156 order = next_order(&orders, order);
157 }
158
159 if (!orders)
160 return 0;
161 }
162
163 /*
164 * Enabled via shmem mount options or sysfs settings.
165 * Must be done before hugepage flags check since shmem has its
166 * own flags.
167 */
168 if (!in_pf && shmem_file(vma->vm_file))
169 return shmem_allowable_huge_orders(file_inode(vma->vm_file),
170 vma, vma->vm_pgoff, 0,
171 !enforce_sysfs);
172
173 if (!vma_is_anonymous(vma)) {
174 /*
175 * Enforce sysfs THP requirements as necessary. Anonymous vmas
176 * were already handled in thp_vma_allowable_orders().
177 */
178 if (enforce_sysfs &&
179 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
180 !hugepage_global_always())))
181 return 0;
182
183 /*
184 * Trust that ->huge_fault() handlers know what they are doing
185 * in fault path.
186 */
187 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
188 return orders;
189 /* Only regular file is valid in collapse path */
190 if (((!in_pf || smaps)) && file_thp_enabled(vma))
191 return orders;
192 return 0;
193 }
194
195 if (vma_is_temporary_stack(vma))
196 return 0;
197
198 /*
199 * THPeligible bit of smaps should show 1 for proper VMAs even
200 * though anon_vma is not initialized yet.
201 *
202 * Allow page fault since anon_vma may be not initialized until
203 * the first page fault.
204 */
205 if (!vma->anon_vma)
206 return (smaps || in_pf) ? orders : 0;
207
208 return orders;
209 }
210
get_huge_zero_page(void)211 static bool get_huge_zero_page(void)
212 {
213 struct folio *zero_folio;
214 retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 return true;
217
218 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_folio) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return false;
223 }
224 /* Ensure zero folio won't have large_rmappable flag set. */
225 folio_clear_large_rmappable(zero_folio);
226 preempt_disable();
227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 preempt_enable();
229 folio_put(zero_folio);
230 goto retry;
231 }
232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233
234 /* We take additional reference here. It will be put back by shrinker */
235 atomic_set(&huge_zero_refcount, 2);
236 preempt_enable();
237 count_vm_event(THP_ZERO_PAGE_ALLOC);
238 return true;
239 }
240
put_huge_zero_page(void)241 static void put_huge_zero_page(void)
242 {
243 /*
244 * Counter should never go to zero here. Only shrinker can put
245 * last reference.
246 */
247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249
mm_get_huge_zero_folio(struct mm_struct * mm)250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
253 return READ_ONCE(huge_zero_folio);
254
255 if (!get_huge_zero_page())
256 return NULL;
257
258 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
259 put_huge_zero_page();
260
261 return READ_ONCE(huge_zero_folio);
262 }
263
mm_put_huge_zero_folio(struct mm_struct * mm)264 void mm_put_huge_zero_folio(struct mm_struct *mm)
265 {
266 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
267 put_huge_zero_page();
268 }
269
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)270 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
271 struct shrink_control *sc)
272 {
273 /* we can free zero page only if last reference remains */
274 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
275 }
276
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)277 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
278 struct shrink_control *sc)
279 {
280 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
281 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
282 BUG_ON(zero_folio == NULL);
283 WRITE_ONCE(huge_zero_pfn, ~0UL);
284 folio_put(zero_folio);
285 return HPAGE_PMD_NR;
286 }
287
288 return 0;
289 }
290
291 static struct shrinker *huge_zero_page_shrinker;
292
293 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)294 static ssize_t enabled_show(struct kobject *kobj,
295 struct kobj_attribute *attr, char *buf)
296 {
297 const char *output;
298
299 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
300 output = "[always] madvise never";
301 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
302 &transparent_hugepage_flags))
303 output = "always [madvise] never";
304 else
305 output = "always madvise [never]";
306
307 return sysfs_emit(buf, "%s\n", output);
308 }
309
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)310 static ssize_t enabled_store(struct kobject *kobj,
311 struct kobj_attribute *attr,
312 const char *buf, size_t count)
313 {
314 ssize_t ret = count;
315
316 if (sysfs_streq(buf, "always")) {
317 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
318 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
319 } else if (sysfs_streq(buf, "madvise")) {
320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
321 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
322 } else if (sysfs_streq(buf, "never")) {
323 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
324 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
325 } else
326 ret = -EINVAL;
327
328 if (ret > 0) {
329 int err = start_stop_khugepaged();
330 if (err)
331 ret = err;
332 }
333 return ret;
334 }
335
336 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
337
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)338 ssize_t single_hugepage_flag_show(struct kobject *kobj,
339 struct kobj_attribute *attr, char *buf,
340 enum transparent_hugepage_flag flag)
341 {
342 return sysfs_emit(buf, "%d\n",
343 !!test_bit(flag, &transparent_hugepage_flags));
344 }
345
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)346 ssize_t single_hugepage_flag_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t count,
349 enum transparent_hugepage_flag flag)
350 {
351 unsigned long value;
352 int ret;
353
354 ret = kstrtoul(buf, 10, &value);
355 if (ret < 0)
356 return ret;
357 if (value > 1)
358 return -EINVAL;
359
360 if (value)
361 set_bit(flag, &transparent_hugepage_flags);
362 else
363 clear_bit(flag, &transparent_hugepage_flags);
364
365 return count;
366 }
367
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)368 static ssize_t defrag_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370 {
371 const char *output;
372
373 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
374 &transparent_hugepage_flags))
375 output = "[always] defer defer+madvise madvise never";
376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
377 &transparent_hugepage_flags))
378 output = "always [defer] defer+madvise madvise never";
379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
380 &transparent_hugepage_flags))
381 output = "always defer [defer+madvise] madvise never";
382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
383 &transparent_hugepage_flags))
384 output = "always defer defer+madvise [madvise] never";
385 else
386 output = "always defer defer+madvise madvise [never]";
387
388 return sysfs_emit(buf, "%s\n", output);
389 }
390
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)391 static ssize_t defrag_store(struct kobject *kobj,
392 struct kobj_attribute *attr,
393 const char *buf, size_t count)
394 {
395 if (sysfs_streq(buf, "always")) {
396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
400 } else if (sysfs_streq(buf, "defer+madvise")) {
401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405 } else if (sysfs_streq(buf, "defer")) {
406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
409 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
410 } else if (sysfs_streq(buf, "madvise")) {
411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 } else if (sysfs_streq(buf, "never")) {
416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
420 } else
421 return -EINVAL;
422
423 return count;
424 }
425 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
426
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)427 static ssize_t use_zero_page_show(struct kobject *kobj,
428 struct kobj_attribute *attr, char *buf)
429 {
430 return single_hugepage_flag_show(kobj, attr, buf,
431 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
432 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)433 static ssize_t use_zero_page_store(struct kobject *kobj,
434 struct kobj_attribute *attr, const char *buf, size_t count)
435 {
436 return single_hugepage_flag_store(kobj, attr, buf, count,
437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
439 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
440
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)441 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
442 struct kobj_attribute *attr, char *buf)
443 {
444 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
445 }
446 static struct kobj_attribute hpage_pmd_size_attr =
447 __ATTR_RO(hpage_pmd_size);
448
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)449 static ssize_t split_underused_thp_show(struct kobject *kobj,
450 struct kobj_attribute *attr, char *buf)
451 {
452 return sysfs_emit(buf, "%d\n", split_underused_thp);
453 }
454
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)455 static ssize_t split_underused_thp_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458 {
459 int err = kstrtobool(buf, &split_underused_thp);
460
461 if (err < 0)
462 return err;
463
464 return count;
465 }
466
467 static struct kobj_attribute split_underused_thp_attr = __ATTR(
468 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
469
470 static struct attribute *hugepage_attr[] = {
471 &enabled_attr.attr,
472 &defrag_attr.attr,
473 &use_zero_page_attr.attr,
474 &hpage_pmd_size_attr.attr,
475 #ifdef CONFIG_SHMEM
476 &shmem_enabled_attr.attr,
477 #endif
478 &split_underused_thp_attr.attr,
479 NULL,
480 };
481
482 static const struct attribute_group hugepage_attr_group = {
483 .attrs = hugepage_attr,
484 };
485
486 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
487 static void thpsize_release(struct kobject *kobj);
488 static DEFINE_SPINLOCK(huge_anon_orders_lock);
489 static LIST_HEAD(thpsize_list);
490
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)491 static ssize_t anon_enabled_show(struct kobject *kobj,
492 struct kobj_attribute *attr, char *buf)
493 {
494 int order = to_thpsize(kobj)->order;
495 const char *output;
496
497 if (test_bit(order, &huge_anon_orders_always))
498 output = "[always] inherit madvise never";
499 else if (test_bit(order, &huge_anon_orders_inherit))
500 output = "always [inherit] madvise never";
501 else if (test_bit(order, &huge_anon_orders_madvise))
502 output = "always inherit [madvise] never";
503 else
504 output = "always inherit madvise [never]";
505
506 return sysfs_emit(buf, "%s\n", output);
507 }
508
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)509 static ssize_t anon_enabled_store(struct kobject *kobj,
510 struct kobj_attribute *attr,
511 const char *buf, size_t count)
512 {
513 int order = to_thpsize(kobj)->order;
514 ssize_t ret = count;
515
516 if (sysfs_streq(buf, "always")) {
517 spin_lock(&huge_anon_orders_lock);
518 clear_bit(order, &huge_anon_orders_inherit);
519 clear_bit(order, &huge_anon_orders_madvise);
520 set_bit(order, &huge_anon_orders_always);
521 spin_unlock(&huge_anon_orders_lock);
522 } else if (sysfs_streq(buf, "inherit")) {
523 spin_lock(&huge_anon_orders_lock);
524 clear_bit(order, &huge_anon_orders_always);
525 clear_bit(order, &huge_anon_orders_madvise);
526 set_bit(order, &huge_anon_orders_inherit);
527 spin_unlock(&huge_anon_orders_lock);
528 } else if (sysfs_streq(buf, "madvise")) {
529 spin_lock(&huge_anon_orders_lock);
530 clear_bit(order, &huge_anon_orders_always);
531 clear_bit(order, &huge_anon_orders_inherit);
532 set_bit(order, &huge_anon_orders_madvise);
533 spin_unlock(&huge_anon_orders_lock);
534 } else if (sysfs_streq(buf, "never")) {
535 spin_lock(&huge_anon_orders_lock);
536 clear_bit(order, &huge_anon_orders_always);
537 clear_bit(order, &huge_anon_orders_inherit);
538 clear_bit(order, &huge_anon_orders_madvise);
539 spin_unlock(&huge_anon_orders_lock);
540 } else
541 ret = -EINVAL;
542
543 if (ret > 0) {
544 int err;
545
546 err = start_stop_khugepaged();
547 if (err)
548 ret = err;
549 }
550 return ret;
551 }
552
553 static struct kobj_attribute anon_enabled_attr =
554 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
555
556 static struct attribute *anon_ctrl_attrs[] = {
557 &anon_enabled_attr.attr,
558 NULL,
559 };
560
561 static const struct attribute_group anon_ctrl_attr_grp = {
562 .attrs = anon_ctrl_attrs,
563 };
564
565 static struct attribute *file_ctrl_attrs[] = {
566 #ifdef CONFIG_SHMEM
567 &thpsize_shmem_enabled_attr.attr,
568 #endif
569 NULL,
570 };
571
572 static const struct attribute_group file_ctrl_attr_grp = {
573 .attrs = file_ctrl_attrs,
574 };
575
576 static struct attribute *any_ctrl_attrs[] = {
577 NULL,
578 };
579
580 static const struct attribute_group any_ctrl_attr_grp = {
581 .attrs = any_ctrl_attrs,
582 };
583
584 static const struct kobj_type thpsize_ktype = {
585 .release = &thpsize_release,
586 .sysfs_ops = &kobj_sysfs_ops,
587 };
588
589 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
590
sum_mthp_stat(int order,enum mthp_stat_item item)591 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
592 {
593 unsigned long sum = 0;
594 int cpu;
595
596 for_each_possible_cpu(cpu) {
597 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
598
599 sum += this->stats[order][item];
600 }
601
602 return sum;
603 }
604
605 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \
606 static ssize_t _name##_show(struct kobject *kobj, \
607 struct kobj_attribute *attr, char *buf) \
608 { \
609 int order = to_thpsize(kobj)->order; \
610 \
611 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
612 } \
613 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
614
615 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
617 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
618 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
619 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
620 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
621 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
622 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
623 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
624 #ifdef CONFIG_SHMEM
625 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
626 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
627 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
628 #endif
629 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
630 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
631 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
632 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
633 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
634
635 static struct attribute *anon_stats_attrs[] = {
636 &anon_fault_alloc_attr.attr,
637 &anon_fault_fallback_attr.attr,
638 &anon_fault_fallback_charge_attr.attr,
639 #ifndef CONFIG_SHMEM
640 &zswpout_attr.attr,
641 &swpin_attr.attr,
642 &swpin_fallback_attr.attr,
643 &swpin_fallback_charge_attr.attr,
644 &swpout_attr.attr,
645 &swpout_fallback_attr.attr,
646 #endif
647 &split_deferred_attr.attr,
648 &nr_anon_attr.attr,
649 &nr_anon_partially_mapped_attr.attr,
650 NULL,
651 };
652
653 static struct attribute_group anon_stats_attr_grp = {
654 .name = "stats",
655 .attrs = anon_stats_attrs,
656 };
657
658 static struct attribute *file_stats_attrs[] = {
659 #ifdef CONFIG_SHMEM
660 &shmem_alloc_attr.attr,
661 &shmem_fallback_attr.attr,
662 &shmem_fallback_charge_attr.attr,
663 #endif
664 NULL,
665 };
666
667 static struct attribute_group file_stats_attr_grp = {
668 .name = "stats",
669 .attrs = file_stats_attrs,
670 };
671
672 static struct attribute *any_stats_attrs[] = {
673 #ifdef CONFIG_SHMEM
674 &zswpout_attr.attr,
675 &swpin_attr.attr,
676 &swpin_fallback_attr.attr,
677 &swpin_fallback_charge_attr.attr,
678 &swpout_attr.attr,
679 &swpout_fallback_attr.attr,
680 #endif
681 &split_attr.attr,
682 &split_failed_attr.attr,
683 NULL,
684 };
685
686 static struct attribute_group any_stats_attr_grp = {
687 .name = "stats",
688 .attrs = any_stats_attrs,
689 };
690
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)691 static int sysfs_add_group(struct kobject *kobj,
692 const struct attribute_group *grp)
693 {
694 int ret = -ENOENT;
695
696 /*
697 * If the group is named, try to merge first, assuming the subdirectory
698 * was already created. This avoids the warning emitted by
699 * sysfs_create_group() if the directory already exists.
700 */
701 if (grp->name)
702 ret = sysfs_merge_group(kobj, grp);
703 if (ret)
704 ret = sysfs_create_group(kobj, grp);
705
706 return ret;
707 }
708
thpsize_create(int order,struct kobject * parent)709 static struct thpsize *thpsize_create(int order, struct kobject *parent)
710 {
711 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
712 struct thpsize *thpsize;
713 int ret = -ENOMEM;
714
715 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
716 if (!thpsize)
717 goto err;
718
719 thpsize->order = order;
720
721 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
722 "hugepages-%lukB", size);
723 if (ret) {
724 kfree(thpsize);
725 goto err;
726 }
727
728
729 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
730 if (ret)
731 goto err_put;
732
733 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
734 if (ret)
735 goto err_put;
736
737 if (BIT(order) & THP_ORDERS_ALL_ANON) {
738 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
739 if (ret)
740 goto err_put;
741
742 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
743 if (ret)
744 goto err_put;
745 }
746
747 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
748 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
749 if (ret)
750 goto err_put;
751
752 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
753 if (ret)
754 goto err_put;
755 }
756
757 return thpsize;
758 err_put:
759 kobject_put(&thpsize->kobj);
760 err:
761 return ERR_PTR(ret);
762 }
763
thpsize_release(struct kobject * kobj)764 static void thpsize_release(struct kobject *kobj)
765 {
766 kfree(to_thpsize(kobj));
767 }
768
hugepage_init_sysfs(struct kobject ** hugepage_kobj)769 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
770 {
771 int err;
772 struct thpsize *thpsize;
773 unsigned long orders;
774 int order;
775
776 /*
777 * Default to setting PMD-sized THP to inherit the global setting and
778 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
779 * constant so we have to do this here.
780 */
781 if (!anon_orders_configured)
782 huge_anon_orders_inherit = BIT(PMD_ORDER);
783
784 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
785 if (unlikely(!*hugepage_kobj)) {
786 pr_err("failed to create transparent hugepage kobject\n");
787 return -ENOMEM;
788 }
789
790 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
791 if (err) {
792 pr_err("failed to register transparent hugepage group\n");
793 goto delete_obj;
794 }
795
796 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
797 if (err) {
798 pr_err("failed to register transparent hugepage group\n");
799 goto remove_hp_group;
800 }
801
802 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
803 order = highest_order(orders);
804 while (orders) {
805 thpsize = thpsize_create(order, *hugepage_kobj);
806 if (IS_ERR(thpsize)) {
807 pr_err("failed to create thpsize for order %d\n", order);
808 err = PTR_ERR(thpsize);
809 goto remove_all;
810 }
811 list_add(&thpsize->node, &thpsize_list);
812 order = next_order(&orders, order);
813 }
814
815 return 0;
816
817 remove_all:
818 hugepage_exit_sysfs(*hugepage_kobj);
819 return err;
820 remove_hp_group:
821 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
822 delete_obj:
823 kobject_put(*hugepage_kobj);
824 return err;
825 }
826
hugepage_exit_sysfs(struct kobject * hugepage_kobj)827 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
828 {
829 struct thpsize *thpsize, *tmp;
830
831 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
832 list_del(&thpsize->node);
833 kobject_put(&thpsize->kobj);
834 }
835
836 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
837 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
838 kobject_put(hugepage_kobj);
839 }
840 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)841 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
842 {
843 return 0;
844 }
845
hugepage_exit_sysfs(struct kobject * hugepage_kobj)846 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
847 {
848 }
849 #endif /* CONFIG_SYSFS */
850
thp_shrinker_init(void)851 static int __init thp_shrinker_init(void)
852 {
853 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
854 if (!huge_zero_page_shrinker)
855 return -ENOMEM;
856
857 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
858 SHRINKER_MEMCG_AWARE |
859 SHRINKER_NONSLAB,
860 "thp-deferred_split");
861 if (!deferred_split_shrinker) {
862 shrinker_free(huge_zero_page_shrinker);
863 return -ENOMEM;
864 }
865
866 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
867 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
868 shrinker_register(huge_zero_page_shrinker);
869
870 deferred_split_shrinker->count_objects = deferred_split_count;
871 deferred_split_shrinker->scan_objects = deferred_split_scan;
872 shrinker_register(deferred_split_shrinker);
873
874 return 0;
875 }
876
thp_shrinker_exit(void)877 static void __init thp_shrinker_exit(void)
878 {
879 shrinker_free(huge_zero_page_shrinker);
880 shrinker_free(deferred_split_shrinker);
881 }
882
hugepage_init(void)883 static int __init hugepage_init(void)
884 {
885 int err;
886 struct kobject *hugepage_kobj;
887
888 if (!has_transparent_hugepage()) {
889 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
890 return -EINVAL;
891 }
892
893 /*
894 * hugepages can't be allocated by the buddy allocator
895 */
896 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
897
898 err = hugepage_init_sysfs(&hugepage_kobj);
899 if (err)
900 goto err_sysfs;
901
902 err = khugepaged_init();
903 if (err)
904 goto err_slab;
905
906 err = thp_shrinker_init();
907 if (err)
908 goto err_shrinker;
909
910 /*
911 * By default disable transparent hugepages on smaller systems,
912 * where the extra memory used could hurt more than TLB overhead
913 * is likely to save. The admin can still enable it through /sys.
914 */
915 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
916 transparent_hugepage_flags = 0;
917 return 0;
918 }
919
920 err = start_stop_khugepaged();
921 if (err)
922 goto err_khugepaged;
923
924 return 0;
925 err_khugepaged:
926 thp_shrinker_exit();
927 err_shrinker:
928 khugepaged_destroy();
929 err_slab:
930 hugepage_exit_sysfs(hugepage_kobj);
931 err_sysfs:
932 return err;
933 }
934 subsys_initcall(hugepage_init);
935
setup_transparent_hugepage(char * str)936 static int __init setup_transparent_hugepage(char *str)
937 {
938 int ret = 0;
939 if (!str)
940 goto out;
941 if (!strcmp(str, "always")) {
942 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
943 &transparent_hugepage_flags);
944 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
945 &transparent_hugepage_flags);
946 ret = 1;
947 } else if (!strcmp(str, "madvise")) {
948 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
949 &transparent_hugepage_flags);
950 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
951 &transparent_hugepage_flags);
952 ret = 1;
953 } else if (!strcmp(str, "never")) {
954 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
955 &transparent_hugepage_flags);
956 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
957 &transparent_hugepage_flags);
958 ret = 1;
959 }
960 out:
961 if (!ret)
962 pr_warn("transparent_hugepage= cannot parse, ignored\n");
963 return ret;
964 }
965 __setup("transparent_hugepage=", setup_transparent_hugepage);
966
967 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)968 static int __init setup_thp_anon(char *str)
969 {
970 char *token, *range, *policy, *subtoken;
971 unsigned long always, inherit, madvise;
972 char *start_size, *end_size;
973 int start, end, nr;
974 char *p;
975
976 if (!str || strlen(str) + 1 > PAGE_SIZE)
977 goto err;
978 strscpy(str_dup, str);
979
980 always = huge_anon_orders_always;
981 madvise = huge_anon_orders_madvise;
982 inherit = huge_anon_orders_inherit;
983 p = str_dup;
984 while ((token = strsep(&p, ";")) != NULL) {
985 range = strsep(&token, ":");
986 policy = token;
987
988 if (!policy)
989 goto err;
990
991 while ((subtoken = strsep(&range, ",")) != NULL) {
992 if (strchr(subtoken, '-')) {
993 start_size = strsep(&subtoken, "-");
994 end_size = subtoken;
995
996 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
997 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
998 } else {
999 start_size = end_size = subtoken;
1000 start = end = get_order_from_str(subtoken,
1001 THP_ORDERS_ALL_ANON);
1002 }
1003
1004 if (start == -EINVAL) {
1005 pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1006 goto err;
1007 }
1008
1009 if (end == -EINVAL) {
1010 pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1011 goto err;
1012 }
1013
1014 if (start < 0 || end < 0 || start > end)
1015 goto err;
1016
1017 nr = end - start + 1;
1018 if (!strcmp(policy, "always")) {
1019 bitmap_set(&always, start, nr);
1020 bitmap_clear(&inherit, start, nr);
1021 bitmap_clear(&madvise, start, nr);
1022 } else if (!strcmp(policy, "madvise")) {
1023 bitmap_set(&madvise, start, nr);
1024 bitmap_clear(&inherit, start, nr);
1025 bitmap_clear(&always, start, nr);
1026 } else if (!strcmp(policy, "inherit")) {
1027 bitmap_set(&inherit, start, nr);
1028 bitmap_clear(&madvise, start, nr);
1029 bitmap_clear(&always, start, nr);
1030 } else if (!strcmp(policy, "never")) {
1031 bitmap_clear(&inherit, start, nr);
1032 bitmap_clear(&madvise, start, nr);
1033 bitmap_clear(&always, start, nr);
1034 } else {
1035 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1036 goto err;
1037 }
1038 }
1039 }
1040
1041 huge_anon_orders_always = always;
1042 huge_anon_orders_madvise = madvise;
1043 huge_anon_orders_inherit = inherit;
1044 anon_orders_configured = true;
1045 return 1;
1046
1047 err:
1048 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1049 return 0;
1050 }
1051 __setup("thp_anon=", setup_thp_anon);
1052
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1053 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1054 {
1055 if (likely(vma->vm_flags & VM_WRITE))
1056 pmd = pmd_mkwrite(pmd, vma);
1057 return pmd;
1058 }
1059
1060 #ifdef CONFIG_MEMCG
1061 static inline
get_deferred_split_queue(struct folio * folio)1062 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1063 {
1064 struct mem_cgroup *memcg = folio_memcg(folio);
1065 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1066
1067 if (memcg)
1068 return &memcg->deferred_split_queue;
1069 else
1070 return &pgdat->deferred_split_queue;
1071 }
1072 #else
1073 static inline
get_deferred_split_queue(struct folio * folio)1074 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1075 {
1076 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1077
1078 return &pgdat->deferred_split_queue;
1079 }
1080 #endif
1081
is_transparent_hugepage(const struct folio * folio)1082 static inline bool is_transparent_hugepage(const struct folio *folio)
1083 {
1084 if (!folio_test_large(folio))
1085 return false;
1086
1087 return is_huge_zero_folio(folio) ||
1088 folio_test_large_rmappable(folio);
1089 }
1090
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1091 static unsigned long __thp_get_unmapped_area(struct file *filp,
1092 unsigned long addr, unsigned long len,
1093 loff_t off, unsigned long flags, unsigned long size,
1094 vm_flags_t vm_flags)
1095 {
1096 loff_t off_end = off + len;
1097 loff_t off_align = round_up(off, size);
1098 unsigned long len_pad, ret, off_sub;
1099
1100 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1101 return 0;
1102
1103 if (off_end <= off_align || (off_end - off_align) < size)
1104 return 0;
1105
1106 len_pad = len + size;
1107 if (len_pad < len || (off + len_pad) < off)
1108 return 0;
1109
1110 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1111 off >> PAGE_SHIFT, flags, vm_flags);
1112
1113 /*
1114 * The failure might be due to length padding. The caller will retry
1115 * without the padding.
1116 */
1117 if (IS_ERR_VALUE(ret))
1118 return 0;
1119
1120 /*
1121 * Do not try to align to THP boundary if allocation at the address
1122 * hint succeeds.
1123 */
1124 if (ret == addr)
1125 return addr;
1126
1127 off_sub = (off - ret) & (size - 1);
1128
1129 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub)
1130 return ret + size;
1131
1132 ret += off_sub;
1133 return ret;
1134 }
1135
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1136 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1137 unsigned long len, unsigned long pgoff, unsigned long flags,
1138 vm_flags_t vm_flags)
1139 {
1140 unsigned long ret;
1141 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1142
1143 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1144 if (ret)
1145 return ret;
1146
1147 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1148 vm_flags);
1149 }
1150
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1151 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1152 unsigned long len, unsigned long pgoff, unsigned long flags)
1153 {
1154 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1155 }
1156 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1157
vma_alloc_anon_folio_pmd(struct vm_area_struct * vma,unsigned long addr)1158 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1159 unsigned long addr)
1160 {
1161 gfp_t gfp = vma_thp_gfp_mask(vma);
1162 const int order = HPAGE_PMD_ORDER;
1163 struct folio *folio;
1164
1165 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1166
1167 if (unlikely(!folio)) {
1168 count_vm_event(THP_FAULT_FALLBACK);
1169 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1170 return NULL;
1171 }
1172
1173 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1174 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1175 folio_put(folio);
1176 count_vm_event(THP_FAULT_FALLBACK);
1177 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1178 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1179 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1180 return NULL;
1181 }
1182 folio_throttle_swaprate(folio, gfp);
1183
1184 /*
1185 * When a folio is not zeroed during allocation (__GFP_ZERO not used)
1186 * or user folios require special handling, folio_zero_user() is used to
1187 * make sure that the page corresponding to the faulting address will be
1188 * hot in the cache after zeroing.
1189 */
1190 if (user_alloc_needs_zeroing())
1191 folio_zero_user(folio, addr);
1192 /*
1193 * The memory barrier inside __folio_mark_uptodate makes sure that
1194 * folio_zero_user writes become visible before the set_pmd_at()
1195 * write.
1196 */
1197 __folio_mark_uptodate(folio);
1198 return folio;
1199 }
1200
map_anon_folio_pmd(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1201 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1202 struct vm_area_struct *vma, unsigned long haddr)
1203 {
1204 pmd_t entry;
1205
1206 entry = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1207 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1208 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1209 folio_add_lru_vma(folio, vma);
1210 set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1211 update_mmu_cache_pmd(vma, haddr, pmd);
1212 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1213 count_vm_event(THP_FAULT_ALLOC);
1214 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1215 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1216 }
1217
__do_huge_pmd_anonymous_page(struct vm_fault * vmf)1218 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1219 {
1220 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1221 struct vm_area_struct *vma = vmf->vma;
1222 struct folio *folio;
1223 pgtable_t pgtable;
1224 vm_fault_t ret = 0;
1225
1226 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1227 if (unlikely(!folio))
1228 return VM_FAULT_FALLBACK;
1229
1230 pgtable = pte_alloc_one(vma->vm_mm);
1231 if (unlikely(!pgtable)) {
1232 ret = VM_FAULT_OOM;
1233 goto release;
1234 }
1235
1236 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1237 if (unlikely(!pmd_none(*vmf->pmd))) {
1238 goto unlock_release;
1239 } else {
1240 ret = check_stable_address_space(vma->vm_mm);
1241 if (ret)
1242 goto unlock_release;
1243
1244 /* Deliver the page fault to userland */
1245 if (userfaultfd_missing(vma)) {
1246 spin_unlock(vmf->ptl);
1247 folio_put(folio);
1248 pte_free(vma->vm_mm, pgtable);
1249 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1250 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1251 return ret;
1252 }
1253 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1254 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1255 mm_inc_nr_ptes(vma->vm_mm);
1256 deferred_split_folio(folio, false);
1257 spin_unlock(vmf->ptl);
1258 }
1259
1260 return 0;
1261 unlock_release:
1262 spin_unlock(vmf->ptl);
1263 release:
1264 if (pgtable)
1265 pte_free(vma->vm_mm, pgtable);
1266 folio_put(folio);
1267 return ret;
1268
1269 }
1270
1271 /*
1272 * always: directly stall for all thp allocations
1273 * defer: wake kswapd and fail if not immediately available
1274 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1275 * fail if not immediately available
1276 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1277 * available
1278 * never: never stall for any thp allocation
1279 */
vma_thp_gfp_mask(struct vm_area_struct * vma)1280 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1281 {
1282 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1283
1284 /* Always do synchronous compaction */
1285 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1286 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1287
1288 /* Kick kcompactd and fail quickly */
1289 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1290 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1291
1292 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1293 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1294 return GFP_TRANSHUGE_LIGHT |
1295 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1296 __GFP_KSWAPD_RECLAIM);
1297
1298 /* Only do synchronous compaction if madvised */
1299 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1300 return GFP_TRANSHUGE_LIGHT |
1301 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1302
1303 return GFP_TRANSHUGE_LIGHT;
1304 }
1305
1306 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1307 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1308 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1309 struct folio *zero_folio)
1310 {
1311 pmd_t entry;
1312 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1313 entry = pmd_mkhuge(entry);
1314 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1315 set_pmd_at(mm, haddr, pmd, entry);
1316 mm_inc_nr_ptes(mm);
1317 }
1318
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1319 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1320 {
1321 struct vm_area_struct *vma = vmf->vma;
1322 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1323 vm_fault_t ret;
1324
1325 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1326 return VM_FAULT_FALLBACK;
1327 ret = vmf_anon_prepare(vmf);
1328 if (ret)
1329 return ret;
1330 khugepaged_enter_vma(vma, vma->vm_flags);
1331
1332 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1333 !mm_forbids_zeropage(vma->vm_mm) &&
1334 transparent_hugepage_use_zero_page()) {
1335 pgtable_t pgtable;
1336 struct folio *zero_folio;
1337 vm_fault_t ret;
1338
1339 pgtable = pte_alloc_one(vma->vm_mm);
1340 if (unlikely(!pgtable))
1341 return VM_FAULT_OOM;
1342 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1343 if (unlikely(!zero_folio)) {
1344 pte_free(vma->vm_mm, pgtable);
1345 count_vm_event(THP_FAULT_FALLBACK);
1346 return VM_FAULT_FALLBACK;
1347 }
1348 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1349 ret = 0;
1350 if (pmd_none(*vmf->pmd)) {
1351 ret = check_stable_address_space(vma->vm_mm);
1352 if (ret) {
1353 spin_unlock(vmf->ptl);
1354 pte_free(vma->vm_mm, pgtable);
1355 } else if (userfaultfd_missing(vma)) {
1356 spin_unlock(vmf->ptl);
1357 pte_free(vma->vm_mm, pgtable);
1358 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1359 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1360 } else {
1361 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1362 haddr, vmf->pmd, zero_folio);
1363 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1364 spin_unlock(vmf->ptl);
1365 }
1366 } else {
1367 spin_unlock(vmf->ptl);
1368 pte_free(vma->vm_mm, pgtable);
1369 }
1370 return ret;
1371 }
1372
1373 return __do_huge_pmd_anonymous_page(vmf);
1374 }
1375
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)1376 static int insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1377 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1378 pgtable_t pgtable)
1379 {
1380 struct mm_struct *mm = vma->vm_mm;
1381 pmd_t entry;
1382
1383 lockdep_assert_held(pmd_lockptr(mm, pmd));
1384
1385 if (!pmd_none(*pmd)) {
1386 if (write) {
1387 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1388 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1389 return -EEXIST;
1390 }
1391 entry = pmd_mkyoung(*pmd);
1392 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1393 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1394 update_mmu_cache_pmd(vma, addr, pmd);
1395 }
1396
1397 return -EEXIST;
1398 }
1399
1400 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1401 if (pfn_t_devmap(pfn))
1402 entry = pmd_mkdevmap(entry);
1403 else
1404 entry = pmd_mkspecial(entry);
1405 if (write) {
1406 entry = pmd_mkyoung(pmd_mkdirty(entry));
1407 entry = maybe_pmd_mkwrite(entry, vma);
1408 }
1409
1410 if (pgtable) {
1411 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1412 mm_inc_nr_ptes(mm);
1413 }
1414
1415 set_pmd_at(mm, addr, pmd, entry);
1416 update_mmu_cache_pmd(vma, addr, pmd);
1417 return 0;
1418 }
1419
1420 /**
1421 * vmf_insert_pfn_pmd - insert a pmd size pfn
1422 * @vmf: Structure describing the fault
1423 * @pfn: pfn to insert
1424 * @write: whether it's a write fault
1425 *
1426 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1427 *
1428 * Return: vm_fault_t value.
1429 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)1430 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1431 {
1432 unsigned long addr = vmf->address & PMD_MASK;
1433 struct vm_area_struct *vma = vmf->vma;
1434 pgprot_t pgprot = vma->vm_page_prot;
1435 pgtable_t pgtable = NULL;
1436 spinlock_t *ptl;
1437 int error;
1438
1439 /*
1440 * If we had pmd_special, we could avoid all these restrictions,
1441 * but we need to be consistent with PTEs and architectures that
1442 * can't support a 'special' bit.
1443 */
1444 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1445 !pfn_t_devmap(pfn));
1446 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1447 (VM_PFNMAP|VM_MIXEDMAP));
1448 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1449
1450 if (addr < vma->vm_start || addr >= vma->vm_end)
1451 return VM_FAULT_SIGBUS;
1452
1453 if (arch_needs_pgtable_deposit()) {
1454 pgtable = pte_alloc_one(vma->vm_mm);
1455 if (!pgtable)
1456 return VM_FAULT_OOM;
1457 }
1458
1459 track_pfn_insert(vma, &pgprot, pfn);
1460 ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1461 error = insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write,
1462 pgtable);
1463 spin_unlock(ptl);
1464 if (error && pgtable)
1465 pte_free(vma->vm_mm, pgtable);
1466
1467 return VM_FAULT_NOPAGE;
1468 }
1469 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1470
vmf_insert_folio_pmd(struct vm_fault * vmf,struct folio * folio,bool write)1471 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1472 bool write)
1473 {
1474 struct vm_area_struct *vma = vmf->vma;
1475 unsigned long addr = vmf->address & PMD_MASK;
1476 struct mm_struct *mm = vma->vm_mm;
1477 spinlock_t *ptl;
1478 pgtable_t pgtable = NULL;
1479 int error;
1480
1481 if (addr < vma->vm_start || addr >= vma->vm_end)
1482 return VM_FAULT_SIGBUS;
1483
1484 if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1485 return VM_FAULT_SIGBUS;
1486
1487 if (arch_needs_pgtable_deposit()) {
1488 pgtable = pte_alloc_one(vma->vm_mm);
1489 if (!pgtable)
1490 return VM_FAULT_OOM;
1491 }
1492
1493 ptl = pmd_lock(mm, vmf->pmd);
1494 if (pmd_none(*vmf->pmd)) {
1495 folio_get(folio);
1496 folio_add_file_rmap_pmd(folio, &folio->page, vma);
1497 add_mm_counter(mm, mm_counter_file(folio), HPAGE_PMD_NR);
1498 }
1499 error = insert_pfn_pmd(vma, addr, vmf->pmd,
1500 pfn_to_pfn_t(folio_pfn(folio)), vma->vm_page_prot,
1501 write, pgtable);
1502 spin_unlock(ptl);
1503 if (error && pgtable)
1504 pte_free(mm, pgtable);
1505
1506 return VM_FAULT_NOPAGE;
1507 }
1508 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1509
1510 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1511 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1512 {
1513 if (likely(vma->vm_flags & VM_WRITE))
1514 pud = pud_mkwrite(pud);
1515 return pud;
1516 }
1517
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)1518 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1519 pud_t *pud, pfn_t pfn, bool write)
1520 {
1521 struct mm_struct *mm = vma->vm_mm;
1522 pgprot_t prot = vma->vm_page_prot;
1523 pud_t entry;
1524
1525 if (!pud_none(*pud)) {
1526 if (write) {
1527 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1528 return;
1529 entry = pud_mkyoung(*pud);
1530 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1531 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1532 update_mmu_cache_pud(vma, addr, pud);
1533 }
1534 return;
1535 }
1536
1537 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1538 if (pfn_t_devmap(pfn))
1539 entry = pud_mkdevmap(entry);
1540 else
1541 entry = pud_mkspecial(entry);
1542 if (write) {
1543 entry = pud_mkyoung(pud_mkdirty(entry));
1544 entry = maybe_pud_mkwrite(entry, vma);
1545 }
1546 set_pud_at(mm, addr, pud, entry);
1547 update_mmu_cache_pud(vma, addr, pud);
1548 }
1549
1550 /**
1551 * vmf_insert_pfn_pud - insert a pud size pfn
1552 * @vmf: Structure describing the fault
1553 * @pfn: pfn to insert
1554 * @write: whether it's a write fault
1555 *
1556 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1557 *
1558 * Return: vm_fault_t value.
1559 */
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)1560 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1561 {
1562 unsigned long addr = vmf->address & PUD_MASK;
1563 struct vm_area_struct *vma = vmf->vma;
1564 pgprot_t pgprot = vma->vm_page_prot;
1565 spinlock_t *ptl;
1566
1567 /*
1568 * If we had pud_special, we could avoid all these restrictions,
1569 * but we need to be consistent with PTEs and architectures that
1570 * can't support a 'special' bit.
1571 */
1572 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1573 !pfn_t_devmap(pfn));
1574 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1575 (VM_PFNMAP|VM_MIXEDMAP));
1576 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1577
1578 if (addr < vma->vm_start || addr >= vma->vm_end)
1579 return VM_FAULT_SIGBUS;
1580
1581 track_pfn_insert(vma, &pgprot, pfn);
1582
1583 ptl = pud_lock(vma->vm_mm, vmf->pud);
1584 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1585 spin_unlock(ptl);
1586
1587 return VM_FAULT_NOPAGE;
1588 }
1589 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1590
1591 /**
1592 * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1593 * @vmf: Structure describing the fault
1594 * @folio: folio to insert
1595 * @write: whether it's a write fault
1596 *
1597 * Return: vm_fault_t value.
1598 */
vmf_insert_folio_pud(struct vm_fault * vmf,struct folio * folio,bool write)1599 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1600 bool write)
1601 {
1602 struct vm_area_struct *vma = vmf->vma;
1603 unsigned long addr = vmf->address & PUD_MASK;
1604 pud_t *pud = vmf->pud;
1605 struct mm_struct *mm = vma->vm_mm;
1606 spinlock_t *ptl;
1607
1608 if (addr < vma->vm_start || addr >= vma->vm_end)
1609 return VM_FAULT_SIGBUS;
1610
1611 if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1612 return VM_FAULT_SIGBUS;
1613
1614 ptl = pud_lock(mm, pud);
1615
1616 /*
1617 * If there is already an entry present we assume the folio is
1618 * already mapped, hence no need to take another reference. We
1619 * still call insert_pfn_pud() though in case the mapping needs
1620 * upgrading to writeable.
1621 */
1622 if (pud_none(*vmf->pud)) {
1623 folio_get(folio);
1624 folio_add_file_rmap_pud(folio, &folio->page, vma);
1625 add_mm_counter(mm, mm_counter_file(folio), HPAGE_PUD_NR);
1626 }
1627 insert_pfn_pud(vma, addr, vmf->pud, pfn_to_pfn_t(folio_pfn(folio)),
1628 write);
1629 spin_unlock(ptl);
1630
1631 return VM_FAULT_NOPAGE;
1632 }
1633 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1634 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1635
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1636 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1637 pmd_t *pmd, bool write)
1638 {
1639 pmd_t _pmd;
1640
1641 _pmd = pmd_mkyoung(*pmd);
1642 if (write)
1643 _pmd = pmd_mkdirty(_pmd);
1644 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1645 pmd, _pmd, write))
1646 update_mmu_cache_pmd(vma, addr, pmd);
1647 }
1648
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1649 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1650 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1651 {
1652 unsigned long pfn = pmd_pfn(*pmd);
1653 struct mm_struct *mm = vma->vm_mm;
1654 struct page *page;
1655 int ret;
1656
1657 assert_spin_locked(pmd_lockptr(mm, pmd));
1658
1659 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1660 return NULL;
1661
1662 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1663 /* pass */;
1664 else
1665 return NULL;
1666
1667 if (flags & FOLL_TOUCH)
1668 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1669
1670 /*
1671 * device mapped pages can only be returned if the
1672 * caller will manage the page reference count.
1673 */
1674 if (!(flags & (FOLL_GET | FOLL_PIN)))
1675 return ERR_PTR(-EEXIST);
1676
1677 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1678 *pgmap = get_dev_pagemap(pfn, *pgmap);
1679 if (!*pgmap)
1680 return ERR_PTR(-EFAULT);
1681 page = pfn_to_page(pfn);
1682 ret = try_grab_folio(page_folio(page), 1, flags);
1683 if (ret)
1684 page = ERR_PTR(ret);
1685
1686 return page;
1687 }
1688
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1689 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1690 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1691 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1692 {
1693 spinlock_t *dst_ptl, *src_ptl;
1694 struct page *src_page;
1695 struct folio *src_folio;
1696 pmd_t pmd;
1697 pgtable_t pgtable = NULL;
1698 int ret = -ENOMEM;
1699
1700 pmd = pmdp_get_lockless(src_pmd);
1701 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1702 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1703 src_ptl = pmd_lockptr(src_mm, src_pmd);
1704 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1705 /*
1706 * No need to recheck the pmd, it can't change with write
1707 * mmap lock held here.
1708 *
1709 * Meanwhile, making sure it's not a CoW VMA with writable
1710 * mapping, otherwise it means either the anon page wrongly
1711 * applied special bit, or we made the PRIVATE mapping be
1712 * able to wrongly write to the backend MMIO.
1713 */
1714 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1715 goto set_pmd;
1716 }
1717
1718 /* Skip if can be re-fill on fault */
1719 if (!vma_is_anonymous(dst_vma))
1720 return 0;
1721
1722 pgtable = pte_alloc_one(dst_mm);
1723 if (unlikely(!pgtable))
1724 goto out;
1725
1726 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1727 src_ptl = pmd_lockptr(src_mm, src_pmd);
1728 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1729
1730 ret = -EAGAIN;
1731 pmd = *src_pmd;
1732
1733 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1734 if (unlikely(is_swap_pmd(pmd))) {
1735 swp_entry_t entry = pmd_to_swp_entry(pmd);
1736
1737 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1738 if (!is_readable_migration_entry(entry)) {
1739 entry = make_readable_migration_entry(
1740 swp_offset(entry));
1741 pmd = swp_entry_to_pmd(entry);
1742 if (pmd_swp_soft_dirty(*src_pmd))
1743 pmd = pmd_swp_mksoft_dirty(pmd);
1744 if (pmd_swp_uffd_wp(*src_pmd))
1745 pmd = pmd_swp_mkuffd_wp(pmd);
1746 set_pmd_at(src_mm, addr, src_pmd, pmd);
1747 }
1748 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1749 mm_inc_nr_ptes(dst_mm);
1750 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1751 if (!userfaultfd_wp(dst_vma))
1752 pmd = pmd_swp_clear_uffd_wp(pmd);
1753 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1754 ret = 0;
1755 goto out_unlock;
1756 }
1757 #endif
1758
1759 if (unlikely(!pmd_trans_huge(pmd))) {
1760 pte_free(dst_mm, pgtable);
1761 goto out_unlock;
1762 }
1763 /*
1764 * When page table lock is held, the huge zero pmd should not be
1765 * under splitting since we don't split the page itself, only pmd to
1766 * a page table.
1767 */
1768 if (is_huge_zero_pmd(pmd)) {
1769 /*
1770 * mm_get_huge_zero_folio() will never allocate a new
1771 * folio here, since we already have a zero page to
1772 * copy. It just takes a reference.
1773 */
1774 mm_get_huge_zero_folio(dst_mm);
1775 goto out_zero_page;
1776 }
1777
1778 src_page = pmd_page(pmd);
1779 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1780 src_folio = page_folio(src_page);
1781
1782 folio_get(src_folio);
1783 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1784 /* Page maybe pinned: split and retry the fault on PTEs. */
1785 folio_put(src_folio);
1786 pte_free(dst_mm, pgtable);
1787 spin_unlock(src_ptl);
1788 spin_unlock(dst_ptl);
1789 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1790 return -EAGAIN;
1791 }
1792 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1793 out_zero_page:
1794 mm_inc_nr_ptes(dst_mm);
1795 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1796 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1797 if (!userfaultfd_wp(dst_vma))
1798 pmd = pmd_clear_uffd_wp(pmd);
1799 pmd = pmd_wrprotect(pmd);
1800 set_pmd:
1801 pmd = pmd_mkold(pmd);
1802 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1803
1804 ret = 0;
1805 out_unlock:
1806 spin_unlock(src_ptl);
1807 spin_unlock(dst_ptl);
1808 out:
1809 return ret;
1810 }
1811
1812 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1813 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1814 pud_t *pud, bool write)
1815 {
1816 pud_t _pud;
1817
1818 _pud = pud_mkyoung(*pud);
1819 if (write)
1820 _pud = pud_mkdirty(_pud);
1821 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1822 pud, _pud, write))
1823 update_mmu_cache_pud(vma, addr, pud);
1824 }
1825
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1826 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1827 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1828 struct vm_area_struct *vma)
1829 {
1830 spinlock_t *dst_ptl, *src_ptl;
1831 pud_t pud;
1832 int ret;
1833
1834 dst_ptl = pud_lock(dst_mm, dst_pud);
1835 src_ptl = pud_lockptr(src_mm, src_pud);
1836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1837
1838 ret = -EAGAIN;
1839 pud = *src_pud;
1840 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1841 goto out_unlock;
1842
1843 /*
1844 * TODO: once we support anonymous pages, use
1845 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1846 */
1847 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1848 pudp_set_wrprotect(src_mm, addr, src_pud);
1849 pud = pud_wrprotect(pud);
1850 }
1851 pud = pud_mkold(pud);
1852 set_pud_at(dst_mm, addr, dst_pud, pud);
1853
1854 ret = 0;
1855 out_unlock:
1856 spin_unlock(src_ptl);
1857 spin_unlock(dst_ptl);
1858 return ret;
1859 }
1860
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1861 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1862 {
1863 bool write = vmf->flags & FAULT_FLAG_WRITE;
1864
1865 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1866 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1867 goto unlock;
1868
1869 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1870 unlock:
1871 spin_unlock(vmf->ptl);
1872 }
1873 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1874
huge_pmd_set_accessed(struct vm_fault * vmf)1875 void huge_pmd_set_accessed(struct vm_fault *vmf)
1876 {
1877 bool write = vmf->flags & FAULT_FLAG_WRITE;
1878
1879 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1880 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1881 goto unlock;
1882
1883 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1884
1885 unlock:
1886 spin_unlock(vmf->ptl);
1887 }
1888
do_huge_zero_wp_pmd(struct vm_fault * vmf)1889 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1890 {
1891 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1892 struct vm_area_struct *vma = vmf->vma;
1893 struct mmu_notifier_range range;
1894 struct folio *folio;
1895 vm_fault_t ret = 0;
1896
1897 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1898 if (unlikely(!folio))
1899 return VM_FAULT_FALLBACK;
1900
1901 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1902 haddr + HPAGE_PMD_SIZE);
1903 mmu_notifier_invalidate_range_start(&range);
1904 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1905 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1906 goto release;
1907 ret = check_stable_address_space(vma->vm_mm);
1908 if (ret)
1909 goto release;
1910 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1911 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1912 goto unlock;
1913 release:
1914 folio_put(folio);
1915 unlock:
1916 spin_unlock(vmf->ptl);
1917 mmu_notifier_invalidate_range_end(&range);
1918 return ret;
1919 }
1920
do_huge_pmd_wp_page(struct vm_fault * vmf)1921 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1922 {
1923 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1924 struct vm_area_struct *vma = vmf->vma;
1925 struct folio *folio;
1926 struct page *page;
1927 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1928 pmd_t orig_pmd = vmf->orig_pmd;
1929
1930 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1931 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1932
1933 if (is_huge_zero_pmd(orig_pmd)) {
1934 vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1935
1936 if (!(ret & VM_FAULT_FALLBACK))
1937 return ret;
1938
1939 /* Fallback to splitting PMD if THP cannot be allocated */
1940 goto fallback;
1941 }
1942
1943 spin_lock(vmf->ptl);
1944
1945 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1946 spin_unlock(vmf->ptl);
1947 return 0;
1948 }
1949
1950 page = pmd_page(orig_pmd);
1951 folio = page_folio(page);
1952 VM_BUG_ON_PAGE(!PageHead(page), page);
1953
1954 /* Early check when only holding the PT lock. */
1955 if (PageAnonExclusive(page))
1956 goto reuse;
1957
1958 if (!folio_trylock(folio)) {
1959 folio_get(folio);
1960 spin_unlock(vmf->ptl);
1961 folio_lock(folio);
1962 spin_lock(vmf->ptl);
1963 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1964 spin_unlock(vmf->ptl);
1965 folio_unlock(folio);
1966 folio_put(folio);
1967 return 0;
1968 }
1969 folio_put(folio);
1970 }
1971
1972 /* Recheck after temporarily dropping the PT lock. */
1973 if (PageAnonExclusive(page)) {
1974 folio_unlock(folio);
1975 goto reuse;
1976 }
1977
1978 /*
1979 * See do_wp_page(): we can only reuse the folio exclusively if
1980 * there are no additional references. Note that we always drain
1981 * the LRU cache immediately after adding a THP.
1982 */
1983 if (folio_ref_count(folio) >
1984 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1985 goto unlock_fallback;
1986 if (folio_test_swapcache(folio))
1987 folio_free_swap(folio);
1988 if (folio_ref_count(folio) == 1) {
1989 pmd_t entry;
1990
1991 folio_move_anon_rmap(folio, vma);
1992 SetPageAnonExclusive(page);
1993 folio_unlock(folio);
1994 reuse:
1995 if (unlikely(unshare)) {
1996 spin_unlock(vmf->ptl);
1997 return 0;
1998 }
1999 entry = pmd_mkyoung(orig_pmd);
2000 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2001 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
2002 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2003 spin_unlock(vmf->ptl);
2004 return 0;
2005 }
2006
2007 unlock_fallback:
2008 folio_unlock(folio);
2009 spin_unlock(vmf->ptl);
2010 fallback:
2011 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
2012 return VM_FAULT_FALLBACK;
2013 }
2014
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)2015 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
2016 unsigned long addr, pmd_t pmd)
2017 {
2018 struct page *page;
2019
2020 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
2021 return false;
2022
2023 /* Don't touch entries that are not even readable (NUMA hinting). */
2024 if (pmd_protnone(pmd))
2025 return false;
2026
2027 /* Do we need write faults for softdirty tracking? */
2028 if (pmd_needs_soft_dirty_wp(vma, pmd))
2029 return false;
2030
2031 /* Do we need write faults for uffd-wp tracking? */
2032 if (userfaultfd_huge_pmd_wp(vma, pmd))
2033 return false;
2034
2035 if (!(vma->vm_flags & VM_SHARED)) {
2036 /* See can_change_pte_writable(). */
2037 page = vm_normal_page_pmd(vma, addr, pmd);
2038 return page && PageAnon(page) && PageAnonExclusive(page);
2039 }
2040
2041 /* See can_change_pte_writable(). */
2042 return pmd_dirty(pmd);
2043 }
2044
2045 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)2046 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2047 {
2048 struct vm_area_struct *vma = vmf->vma;
2049 struct folio *folio;
2050 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2051 int nid = NUMA_NO_NODE;
2052 int target_nid, last_cpupid;
2053 pmd_t pmd, old_pmd;
2054 bool writable = false;
2055 int flags = 0;
2056
2057 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2058 old_pmd = pmdp_get(vmf->pmd);
2059
2060 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2061 spin_unlock(vmf->ptl);
2062 return 0;
2063 }
2064
2065 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2066
2067 /*
2068 * Detect now whether the PMD could be writable; this information
2069 * is only valid while holding the PT lock.
2070 */
2071 writable = pmd_write(pmd);
2072 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2073 can_change_pmd_writable(vma, vmf->address, pmd))
2074 writable = true;
2075
2076 folio = vm_normal_folio_pmd(vma, haddr, pmd);
2077 if (!folio)
2078 goto out_map;
2079
2080 nid = folio_nid(folio);
2081
2082 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2083 &last_cpupid);
2084 if (target_nid == NUMA_NO_NODE)
2085 goto out_map;
2086 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2087 flags |= TNF_MIGRATE_FAIL;
2088 goto out_map;
2089 }
2090 /* The folio is isolated and isolation code holds a folio reference. */
2091 spin_unlock(vmf->ptl);
2092 writable = false;
2093
2094 if (!migrate_misplaced_folio(folio, target_nid)) {
2095 flags |= TNF_MIGRATED;
2096 nid = target_nid;
2097 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2098 return 0;
2099 }
2100
2101 flags |= TNF_MIGRATE_FAIL;
2102 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2103 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2104 spin_unlock(vmf->ptl);
2105 return 0;
2106 }
2107 out_map:
2108 /* Restore the PMD */
2109 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2110 pmd = pmd_mkyoung(pmd);
2111 if (writable)
2112 pmd = pmd_mkwrite(pmd, vma);
2113 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2114 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2115 spin_unlock(vmf->ptl);
2116
2117 if (nid != NUMA_NO_NODE)
2118 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2119 return 0;
2120 }
2121
2122 /*
2123 * Return true if we do MADV_FREE successfully on entire pmd page.
2124 * Otherwise, return false.
2125 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)2126 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2127 pmd_t *pmd, unsigned long addr, unsigned long next)
2128 {
2129 spinlock_t *ptl;
2130 pmd_t orig_pmd;
2131 struct folio *folio;
2132 struct mm_struct *mm = tlb->mm;
2133 bool ret = false;
2134
2135 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2136
2137 ptl = pmd_trans_huge_lock(pmd, vma);
2138 if (!ptl)
2139 goto out_unlocked;
2140
2141 orig_pmd = *pmd;
2142 if (is_huge_zero_pmd(orig_pmd))
2143 goto out;
2144
2145 if (unlikely(!pmd_present(orig_pmd))) {
2146 VM_BUG_ON(thp_migration_supported() &&
2147 !is_pmd_migration_entry(orig_pmd));
2148 goto out;
2149 }
2150
2151 folio = pmd_folio(orig_pmd);
2152 /*
2153 * If other processes are mapping this folio, we couldn't discard
2154 * the folio unless they all do MADV_FREE so let's skip the folio.
2155 */
2156 if (folio_maybe_mapped_shared(folio))
2157 goto out;
2158
2159 if (!folio_trylock(folio))
2160 goto out;
2161
2162 /*
2163 * If user want to discard part-pages of THP, split it so MADV_FREE
2164 * will deactivate only them.
2165 */
2166 if (next - addr != HPAGE_PMD_SIZE) {
2167 folio_get(folio);
2168 spin_unlock(ptl);
2169 split_folio(folio);
2170 folio_unlock(folio);
2171 folio_put(folio);
2172 goto out_unlocked;
2173 }
2174
2175 if (folio_test_dirty(folio))
2176 folio_clear_dirty(folio);
2177 folio_unlock(folio);
2178
2179 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2180 pmdp_invalidate(vma, addr, pmd);
2181 orig_pmd = pmd_mkold(orig_pmd);
2182 orig_pmd = pmd_mkclean(orig_pmd);
2183
2184 set_pmd_at(mm, addr, pmd, orig_pmd);
2185 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2186 }
2187
2188 folio_mark_lazyfree(folio);
2189 ret = true;
2190 out:
2191 spin_unlock(ptl);
2192 out_unlocked:
2193 return ret;
2194 }
2195
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2196 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2197 {
2198 pgtable_t pgtable;
2199
2200 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2201 pte_free(mm, pgtable);
2202 mm_dec_nr_ptes(mm);
2203 }
2204
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2205 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2206 pmd_t *pmd, unsigned long addr)
2207 {
2208 pmd_t orig_pmd;
2209 spinlock_t *ptl;
2210
2211 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2212
2213 ptl = __pmd_trans_huge_lock(pmd, vma);
2214 if (!ptl)
2215 return 0;
2216 /*
2217 * For architectures like ppc64 we look at deposited pgtable
2218 * when calling pmdp_huge_get_and_clear. So do the
2219 * pgtable_trans_huge_withdraw after finishing pmdp related
2220 * operations.
2221 */
2222 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2223 tlb->fullmm);
2224 arch_check_zapped_pmd(vma, orig_pmd);
2225 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2226 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2227 if (arch_needs_pgtable_deposit())
2228 zap_deposited_table(tlb->mm, pmd);
2229 spin_unlock(ptl);
2230 } else if (is_huge_zero_pmd(orig_pmd)) {
2231 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2232 zap_deposited_table(tlb->mm, pmd);
2233 spin_unlock(ptl);
2234 } else {
2235 struct folio *folio = NULL;
2236 int flush_needed = 1;
2237
2238 if (pmd_present(orig_pmd)) {
2239 struct page *page = pmd_page(orig_pmd);
2240
2241 folio = page_folio(page);
2242 folio_remove_rmap_pmd(folio, page, vma);
2243 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2244 VM_BUG_ON_PAGE(!PageHead(page), page);
2245 } else if (thp_migration_supported()) {
2246 swp_entry_t entry;
2247
2248 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2249 entry = pmd_to_swp_entry(orig_pmd);
2250 folio = pfn_swap_entry_folio(entry);
2251 flush_needed = 0;
2252 } else
2253 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2254
2255 if (folio_test_anon(folio)) {
2256 zap_deposited_table(tlb->mm, pmd);
2257 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2258 } else {
2259 if (arch_needs_pgtable_deposit())
2260 zap_deposited_table(tlb->mm, pmd);
2261 add_mm_counter(tlb->mm, mm_counter_file(folio),
2262 -HPAGE_PMD_NR);
2263 }
2264
2265 spin_unlock(ptl);
2266 if (flush_needed)
2267 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2268 }
2269 return 1;
2270 }
2271
2272 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2273 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2274 spinlock_t *old_pmd_ptl,
2275 struct vm_area_struct *vma)
2276 {
2277 /*
2278 * With split pmd lock we also need to move preallocated
2279 * PTE page table if new_pmd is on different PMD page table.
2280 *
2281 * We also don't deposit and withdraw tables for file pages.
2282 */
2283 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2284 }
2285 #endif
2286
move_soft_dirty_pmd(pmd_t pmd)2287 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2288 {
2289 #ifdef CONFIG_MEM_SOFT_DIRTY
2290 if (unlikely(is_pmd_migration_entry(pmd)))
2291 pmd = pmd_swp_mksoft_dirty(pmd);
2292 else if (pmd_present(pmd))
2293 pmd = pmd_mksoft_dirty(pmd);
2294 #endif
2295 return pmd;
2296 }
2297
clear_uffd_wp_pmd(pmd_t pmd)2298 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2299 {
2300 if (pmd_present(pmd))
2301 pmd = pmd_clear_uffd_wp(pmd);
2302 else if (is_swap_pmd(pmd))
2303 pmd = pmd_swp_clear_uffd_wp(pmd);
2304
2305 return pmd;
2306 }
2307
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2308 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2309 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2310 {
2311 spinlock_t *old_ptl, *new_ptl;
2312 pmd_t pmd;
2313 struct mm_struct *mm = vma->vm_mm;
2314 bool force_flush = false;
2315
2316 /*
2317 * The destination pmd shouldn't be established, free_pgtables()
2318 * should have released it; but move_page_tables() might have already
2319 * inserted a page table, if racing against shmem/file collapse.
2320 */
2321 if (!pmd_none(*new_pmd)) {
2322 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2323 return false;
2324 }
2325
2326 /*
2327 * We don't have to worry about the ordering of src and dst
2328 * ptlocks because exclusive mmap_lock prevents deadlock.
2329 */
2330 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2331 if (old_ptl) {
2332 new_ptl = pmd_lockptr(mm, new_pmd);
2333 if (new_ptl != old_ptl)
2334 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2335 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2336 if (pmd_present(pmd))
2337 force_flush = true;
2338 VM_BUG_ON(!pmd_none(*new_pmd));
2339
2340 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2341 pgtable_t pgtable;
2342 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2343 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2344 }
2345 pmd = move_soft_dirty_pmd(pmd);
2346 if (vma_has_uffd_without_event_remap(vma))
2347 pmd = clear_uffd_wp_pmd(pmd);
2348 set_pmd_at(mm, new_addr, new_pmd, pmd);
2349 if (force_flush)
2350 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2351 if (new_ptl != old_ptl)
2352 spin_unlock(new_ptl);
2353 spin_unlock(old_ptl);
2354 return true;
2355 }
2356 return false;
2357 }
2358
2359 /*
2360 * Returns
2361 * - 0 if PMD could not be locked
2362 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2363 * or if prot_numa but THP migration is not supported
2364 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2365 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2366 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2367 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2368 unsigned long cp_flags)
2369 {
2370 struct mm_struct *mm = vma->vm_mm;
2371 spinlock_t *ptl;
2372 pmd_t oldpmd, entry;
2373 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2374 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2375 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2376 int ret = 1;
2377
2378 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2379
2380 if (prot_numa && !thp_migration_supported())
2381 return 1;
2382
2383 ptl = __pmd_trans_huge_lock(pmd, vma);
2384 if (!ptl)
2385 return 0;
2386
2387 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2388 if (is_swap_pmd(*pmd)) {
2389 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2390 struct folio *folio = pfn_swap_entry_folio(entry);
2391 pmd_t newpmd;
2392
2393 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2394 if (is_writable_migration_entry(entry)) {
2395 /*
2396 * A protection check is difficult so
2397 * just be safe and disable write
2398 */
2399 if (folio_test_anon(folio))
2400 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2401 else
2402 entry = make_readable_migration_entry(swp_offset(entry));
2403 newpmd = swp_entry_to_pmd(entry);
2404 if (pmd_swp_soft_dirty(*pmd))
2405 newpmd = pmd_swp_mksoft_dirty(newpmd);
2406 } else {
2407 newpmd = *pmd;
2408 }
2409
2410 if (uffd_wp)
2411 newpmd = pmd_swp_mkuffd_wp(newpmd);
2412 else if (uffd_wp_resolve)
2413 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2414 if (!pmd_same(*pmd, newpmd))
2415 set_pmd_at(mm, addr, pmd, newpmd);
2416 goto unlock;
2417 }
2418 #endif
2419
2420 if (prot_numa) {
2421 struct folio *folio;
2422 bool toptier;
2423 /*
2424 * Avoid trapping faults against the zero page. The read-only
2425 * data is likely to be read-cached on the local CPU and
2426 * local/remote hits to the zero page are not interesting.
2427 */
2428 if (is_huge_zero_pmd(*pmd))
2429 goto unlock;
2430
2431 if (pmd_protnone(*pmd))
2432 goto unlock;
2433
2434 folio = pmd_folio(*pmd);
2435 toptier = node_is_toptier(folio_nid(folio));
2436 /*
2437 * Skip scanning top tier node if normal numa
2438 * balancing is disabled
2439 */
2440 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2441 toptier)
2442 goto unlock;
2443
2444 if (folio_use_access_time(folio))
2445 folio_xchg_access_time(folio,
2446 jiffies_to_msecs(jiffies));
2447 }
2448 /*
2449 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2450 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2451 * which is also under mmap_read_lock(mm):
2452 *
2453 * CPU0: CPU1:
2454 * change_huge_pmd(prot_numa=1)
2455 * pmdp_huge_get_and_clear_notify()
2456 * madvise_dontneed()
2457 * zap_pmd_range()
2458 * pmd_trans_huge(*pmd) == 0 (without ptl)
2459 * // skip the pmd
2460 * set_pmd_at();
2461 * // pmd is re-established
2462 *
2463 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2464 * which may break userspace.
2465 *
2466 * pmdp_invalidate_ad() is required to make sure we don't miss
2467 * dirty/young flags set by hardware.
2468 */
2469 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2470
2471 entry = pmd_modify(oldpmd, newprot);
2472 if (uffd_wp)
2473 entry = pmd_mkuffd_wp(entry);
2474 else if (uffd_wp_resolve)
2475 /*
2476 * Leave the write bit to be handled by PF interrupt
2477 * handler, then things like COW could be properly
2478 * handled.
2479 */
2480 entry = pmd_clear_uffd_wp(entry);
2481
2482 /* See change_pte_range(). */
2483 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2484 can_change_pmd_writable(vma, addr, entry))
2485 entry = pmd_mkwrite(entry, vma);
2486
2487 ret = HPAGE_PMD_NR;
2488 set_pmd_at(mm, addr, pmd, entry);
2489
2490 if (huge_pmd_needs_flush(oldpmd, entry))
2491 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2492 unlock:
2493 spin_unlock(ptl);
2494 return ret;
2495 }
2496
2497 /*
2498 * Returns:
2499 *
2500 * - 0: if pud leaf changed from under us
2501 * - 1: if pud can be skipped
2502 * - HPAGE_PUD_NR: if pud was successfully processed
2503 */
2504 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2505 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2506 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2507 unsigned long cp_flags)
2508 {
2509 struct mm_struct *mm = vma->vm_mm;
2510 pud_t oldpud, entry;
2511 spinlock_t *ptl;
2512
2513 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2514
2515 /* NUMA balancing doesn't apply to dax */
2516 if (cp_flags & MM_CP_PROT_NUMA)
2517 return 1;
2518
2519 /*
2520 * Huge entries on userfault-wp only works with anonymous, while we
2521 * don't have anonymous PUDs yet.
2522 */
2523 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2524 return 1;
2525
2526 ptl = __pud_trans_huge_lock(pudp, vma);
2527 if (!ptl)
2528 return 0;
2529
2530 /*
2531 * Can't clear PUD or it can race with concurrent zapping. See
2532 * change_huge_pmd().
2533 */
2534 oldpud = pudp_invalidate(vma, addr, pudp);
2535 entry = pud_modify(oldpud, newprot);
2536 set_pud_at(mm, addr, pudp, entry);
2537 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2538
2539 spin_unlock(ptl);
2540 return HPAGE_PUD_NR;
2541 }
2542 #endif
2543
2544 #ifdef CONFIG_USERFAULTFD
2545 /*
2546 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2547 * the caller, but it must return after releasing the page_table_lock.
2548 * Just move the page from src_pmd to dst_pmd if possible.
2549 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2550 * repeated by the caller, or other errors in case of failure.
2551 */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2552 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2553 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2554 unsigned long dst_addr, unsigned long src_addr)
2555 {
2556 pmd_t _dst_pmd, src_pmdval;
2557 struct page *src_page;
2558 struct folio *src_folio;
2559 struct anon_vma *src_anon_vma;
2560 spinlock_t *src_ptl, *dst_ptl;
2561 pgtable_t src_pgtable;
2562 struct mmu_notifier_range range;
2563 int err = 0;
2564
2565 src_pmdval = *src_pmd;
2566 src_ptl = pmd_lockptr(mm, src_pmd);
2567
2568 lockdep_assert_held(src_ptl);
2569 vma_assert_locked(src_vma);
2570 vma_assert_locked(dst_vma);
2571
2572 /* Sanity checks before the operation */
2573 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2574 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2575 spin_unlock(src_ptl);
2576 return -EINVAL;
2577 }
2578
2579 if (!pmd_trans_huge(src_pmdval)) {
2580 spin_unlock(src_ptl);
2581 if (is_pmd_migration_entry(src_pmdval)) {
2582 pmd_migration_entry_wait(mm, &src_pmdval);
2583 return -EAGAIN;
2584 }
2585 return -ENOENT;
2586 }
2587
2588 src_page = pmd_page(src_pmdval);
2589
2590 if (!is_huge_zero_pmd(src_pmdval)) {
2591 if (unlikely(!PageAnonExclusive(src_page))) {
2592 spin_unlock(src_ptl);
2593 return -EBUSY;
2594 }
2595
2596 src_folio = page_folio(src_page);
2597 folio_get(src_folio);
2598 } else
2599 src_folio = NULL;
2600
2601 spin_unlock(src_ptl);
2602
2603 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2604 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2605 src_addr + HPAGE_PMD_SIZE);
2606 mmu_notifier_invalidate_range_start(&range);
2607
2608 if (src_folio) {
2609 folio_lock(src_folio);
2610
2611 /*
2612 * split_huge_page walks the anon_vma chain without the page
2613 * lock. Serialize against it with the anon_vma lock, the page
2614 * lock is not enough.
2615 */
2616 src_anon_vma = folio_get_anon_vma(src_folio);
2617 if (!src_anon_vma) {
2618 err = -EAGAIN;
2619 goto unlock_folio;
2620 }
2621 anon_vma_lock_write(src_anon_vma);
2622 } else
2623 src_anon_vma = NULL;
2624
2625 dst_ptl = pmd_lockptr(mm, dst_pmd);
2626 double_pt_lock(src_ptl, dst_ptl);
2627 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2628 !pmd_same(*dst_pmd, dst_pmdval))) {
2629 err = -EAGAIN;
2630 goto unlock_ptls;
2631 }
2632 if (src_folio) {
2633 if (folio_maybe_dma_pinned(src_folio) ||
2634 !PageAnonExclusive(&src_folio->page)) {
2635 err = -EBUSY;
2636 goto unlock_ptls;
2637 }
2638
2639 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2640 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2641 err = -EBUSY;
2642 goto unlock_ptls;
2643 }
2644
2645 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2646 /* Folio got pinned from under us. Put it back and fail the move. */
2647 if (folio_maybe_dma_pinned(src_folio)) {
2648 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2649 err = -EBUSY;
2650 goto unlock_ptls;
2651 }
2652
2653 folio_move_anon_rmap(src_folio, dst_vma);
2654 src_folio->index = linear_page_index(dst_vma, dst_addr);
2655
2656 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2657 /* Follow mremap() behavior and treat the entry dirty after the move */
2658 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2659 } else {
2660 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2661 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2662 }
2663 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2664
2665 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2666 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2667 unlock_ptls:
2668 double_pt_unlock(src_ptl, dst_ptl);
2669 if (src_anon_vma) {
2670 anon_vma_unlock_write(src_anon_vma);
2671 put_anon_vma(src_anon_vma);
2672 }
2673 unlock_folio:
2674 /* unblock rmap walks */
2675 if (src_folio)
2676 folio_unlock(src_folio);
2677 mmu_notifier_invalidate_range_end(&range);
2678 if (src_folio)
2679 folio_put(src_folio);
2680 return err;
2681 }
2682 #endif /* CONFIG_USERFAULTFD */
2683
2684 /*
2685 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2686 *
2687 * Note that if it returns page table lock pointer, this routine returns without
2688 * unlocking page table lock. So callers must unlock it.
2689 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2690 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2691 {
2692 spinlock_t *ptl;
2693 ptl = pmd_lock(vma->vm_mm, pmd);
2694 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2695 pmd_devmap(*pmd)))
2696 return ptl;
2697 spin_unlock(ptl);
2698 return NULL;
2699 }
2700
2701 /*
2702 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2703 *
2704 * Note that if it returns page table lock pointer, this routine returns without
2705 * unlocking page table lock. So callers must unlock it.
2706 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2707 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2708 {
2709 spinlock_t *ptl;
2710
2711 ptl = pud_lock(vma->vm_mm, pud);
2712 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2713 return ptl;
2714 spin_unlock(ptl);
2715 return NULL;
2716 }
2717
2718 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2719 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2720 pud_t *pud, unsigned long addr)
2721 {
2722 spinlock_t *ptl;
2723 pud_t orig_pud;
2724
2725 ptl = __pud_trans_huge_lock(pud, vma);
2726 if (!ptl)
2727 return 0;
2728
2729 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2730 arch_check_zapped_pud(vma, orig_pud);
2731 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2732 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2733 spin_unlock(ptl);
2734 /* No zero page support yet */
2735 } else {
2736 struct page *page = NULL;
2737 struct folio *folio;
2738
2739 /* No support for anonymous PUD pages or migration yet */
2740 VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2741 !pud_present(orig_pud));
2742
2743 page = pud_page(orig_pud);
2744 folio = page_folio(page);
2745 folio_remove_rmap_pud(folio, page, vma);
2746 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2747
2748 spin_unlock(ptl);
2749 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2750 }
2751 return 1;
2752 }
2753
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2754 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2755 unsigned long haddr)
2756 {
2757 struct folio *folio;
2758 struct page *page;
2759 pud_t old_pud;
2760
2761 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2762 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2763 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2764 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2765
2766 count_vm_event(THP_SPLIT_PUD);
2767
2768 old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2769
2770 if (!vma_is_dax(vma))
2771 return;
2772
2773 page = pud_page(old_pud);
2774 folio = page_folio(page);
2775
2776 if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2777 folio_mark_dirty(folio);
2778 if (!folio_test_referenced(folio) && pud_young(old_pud))
2779 folio_set_referenced(folio);
2780 folio_remove_rmap_pud(folio, page, vma);
2781 folio_put(folio);
2782 add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2783 -HPAGE_PUD_NR);
2784 }
2785
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2786 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2787 unsigned long address)
2788 {
2789 spinlock_t *ptl;
2790 struct mmu_notifier_range range;
2791
2792 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2793 address & HPAGE_PUD_MASK,
2794 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2795 mmu_notifier_invalidate_range_start(&range);
2796 ptl = pud_lock(vma->vm_mm, pud);
2797 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2798 goto out;
2799 __split_huge_pud_locked(vma, pud, range.start);
2800
2801 out:
2802 spin_unlock(ptl);
2803 mmu_notifier_invalidate_range_end(&range);
2804 }
2805 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2806 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2807 unsigned long address)
2808 {
2809 }
2810 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2811
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2812 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2813 unsigned long haddr, pmd_t *pmd)
2814 {
2815 struct mm_struct *mm = vma->vm_mm;
2816 pgtable_t pgtable;
2817 pmd_t _pmd, old_pmd;
2818 unsigned long addr;
2819 pte_t *pte;
2820 int i;
2821
2822 /*
2823 * Leave pmd empty until pte is filled note that it is fine to delay
2824 * notification until mmu_notifier_invalidate_range_end() as we are
2825 * replacing a zero pmd write protected page with a zero pte write
2826 * protected page.
2827 *
2828 * See Documentation/mm/mmu_notifier.rst
2829 */
2830 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2831
2832 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2833 pmd_populate(mm, &_pmd, pgtable);
2834
2835 pte = pte_offset_map(&_pmd, haddr);
2836 VM_BUG_ON(!pte);
2837 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2838 pte_t entry;
2839
2840 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2841 entry = pte_mkspecial(entry);
2842 if (pmd_uffd_wp(old_pmd))
2843 entry = pte_mkuffd_wp(entry);
2844 VM_BUG_ON(!pte_none(ptep_get(pte)));
2845 set_pte_at(mm, addr, pte, entry);
2846 pte++;
2847 }
2848 pte_unmap(pte - 1);
2849 smp_wmb(); /* make pte visible before pmd */
2850 pmd_populate(mm, pmd, pgtable);
2851 }
2852
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2853 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2854 unsigned long haddr, bool freeze)
2855 {
2856 struct mm_struct *mm = vma->vm_mm;
2857 struct folio *folio;
2858 struct page *page;
2859 pgtable_t pgtable;
2860 pmd_t old_pmd, _pmd;
2861 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2862 bool anon_exclusive = false, dirty = false;
2863 unsigned long addr;
2864 pte_t *pte;
2865 int i;
2866
2867 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2868 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2869 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2870 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2871 && !pmd_devmap(*pmd));
2872
2873 count_vm_event(THP_SPLIT_PMD);
2874
2875 if (!vma_is_anonymous(vma)) {
2876 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2877 /*
2878 * We are going to unmap this huge page. So
2879 * just go ahead and zap it
2880 */
2881 if (arch_needs_pgtable_deposit())
2882 zap_deposited_table(mm, pmd);
2883 if (!vma_is_dax(vma) && vma_is_special_huge(vma))
2884 return;
2885 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2886 swp_entry_t entry;
2887
2888 entry = pmd_to_swp_entry(old_pmd);
2889 folio = pfn_swap_entry_folio(entry);
2890 } else if (is_huge_zero_pmd(old_pmd)) {
2891 return;
2892 } else {
2893 page = pmd_page(old_pmd);
2894 folio = page_folio(page);
2895 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2896 folio_mark_dirty(folio);
2897 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2898 folio_set_referenced(folio);
2899 folio_remove_rmap_pmd(folio, page, vma);
2900 folio_put(folio);
2901 }
2902 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2903 return;
2904 }
2905
2906 if (is_huge_zero_pmd(*pmd)) {
2907 /*
2908 * FIXME: Do we want to invalidate secondary mmu by calling
2909 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2910 * inside __split_huge_pmd() ?
2911 *
2912 * We are going from a zero huge page write protected to zero
2913 * small page also write protected so it does not seems useful
2914 * to invalidate secondary mmu at this time.
2915 */
2916 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2917 }
2918
2919 pmd_migration = is_pmd_migration_entry(*pmd);
2920 if (unlikely(pmd_migration)) {
2921 swp_entry_t entry;
2922
2923 old_pmd = *pmd;
2924 entry = pmd_to_swp_entry(old_pmd);
2925 page = pfn_swap_entry_to_page(entry);
2926 write = is_writable_migration_entry(entry);
2927 if (PageAnon(page))
2928 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2929 young = is_migration_entry_young(entry);
2930 dirty = is_migration_entry_dirty(entry);
2931 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2932 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2933 } else {
2934 /*
2935 * Up to this point the pmd is present and huge and userland has
2936 * the whole access to the hugepage during the split (which
2937 * happens in place). If we overwrite the pmd with the not-huge
2938 * version pointing to the pte here (which of course we could if
2939 * all CPUs were bug free), userland could trigger a small page
2940 * size TLB miss on the small sized TLB while the hugepage TLB
2941 * entry is still established in the huge TLB. Some CPU doesn't
2942 * like that. See
2943 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2944 * 383 on page 105. Intel should be safe but is also warns that
2945 * it's only safe if the permission and cache attributes of the
2946 * two entries loaded in the two TLB is identical (which should
2947 * be the case here). But it is generally safer to never allow
2948 * small and huge TLB entries for the same virtual address to be
2949 * loaded simultaneously. So instead of doing "pmd_populate();
2950 * flush_pmd_tlb_range();" we first mark the current pmd
2951 * notpresent (atomically because here the pmd_trans_huge must
2952 * remain set at all times on the pmd until the split is
2953 * complete for this pmd), then we flush the SMP TLB and finally
2954 * we write the non-huge version of the pmd entry with
2955 * pmd_populate.
2956 */
2957 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2958 page = pmd_page(old_pmd);
2959 folio = page_folio(page);
2960 if (pmd_dirty(old_pmd)) {
2961 dirty = true;
2962 folio_set_dirty(folio);
2963 }
2964 write = pmd_write(old_pmd);
2965 young = pmd_young(old_pmd);
2966 soft_dirty = pmd_soft_dirty(old_pmd);
2967 uffd_wp = pmd_uffd_wp(old_pmd);
2968
2969 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2970 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2971
2972 /*
2973 * Without "freeze", we'll simply split the PMD, propagating the
2974 * PageAnonExclusive() flag for each PTE by setting it for
2975 * each subpage -- no need to (temporarily) clear.
2976 *
2977 * With "freeze" we want to replace mapped pages by
2978 * migration entries right away. This is only possible if we
2979 * managed to clear PageAnonExclusive() -- see
2980 * set_pmd_migration_entry().
2981 *
2982 * In case we cannot clear PageAnonExclusive(), split the PMD
2983 * only and let try_to_migrate_one() fail later.
2984 *
2985 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2986 */
2987 anon_exclusive = PageAnonExclusive(page);
2988 if (freeze && anon_exclusive &&
2989 folio_try_share_anon_rmap_pmd(folio, page))
2990 freeze = false;
2991 if (!freeze) {
2992 rmap_t rmap_flags = RMAP_NONE;
2993
2994 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2995 if (anon_exclusive)
2996 rmap_flags |= RMAP_EXCLUSIVE;
2997 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2998 vma, haddr, rmap_flags);
2999 }
3000 }
3001
3002 /*
3003 * Withdraw the table only after we mark the pmd entry invalid.
3004 * This's critical for some architectures (Power).
3005 */
3006 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3007 pmd_populate(mm, &_pmd, pgtable);
3008
3009 pte = pte_offset_map(&_pmd, haddr);
3010 VM_BUG_ON(!pte);
3011
3012 /*
3013 * Note that NUMA hinting access restrictions are not transferred to
3014 * avoid any possibility of altering permissions across VMAs.
3015 */
3016 if (freeze || pmd_migration) {
3017 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3018 pte_t entry;
3019 swp_entry_t swp_entry;
3020
3021 if (write)
3022 swp_entry = make_writable_migration_entry(
3023 page_to_pfn(page + i));
3024 else if (anon_exclusive)
3025 swp_entry = make_readable_exclusive_migration_entry(
3026 page_to_pfn(page + i));
3027 else
3028 swp_entry = make_readable_migration_entry(
3029 page_to_pfn(page + i));
3030 if (young)
3031 swp_entry = make_migration_entry_young(swp_entry);
3032 if (dirty)
3033 swp_entry = make_migration_entry_dirty(swp_entry);
3034 entry = swp_entry_to_pte(swp_entry);
3035 if (soft_dirty)
3036 entry = pte_swp_mksoft_dirty(entry);
3037 if (uffd_wp)
3038 entry = pte_swp_mkuffd_wp(entry);
3039
3040 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3041 set_pte_at(mm, addr, pte + i, entry);
3042 }
3043 } else {
3044 pte_t entry;
3045
3046 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3047 if (write)
3048 entry = pte_mkwrite(entry, vma);
3049 if (!young)
3050 entry = pte_mkold(entry);
3051 /* NOTE: this may set soft-dirty too on some archs */
3052 if (dirty)
3053 entry = pte_mkdirty(entry);
3054 if (soft_dirty)
3055 entry = pte_mksoft_dirty(entry);
3056 if (uffd_wp)
3057 entry = pte_mkuffd_wp(entry);
3058
3059 for (i = 0; i < HPAGE_PMD_NR; i++)
3060 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3061
3062 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3063 }
3064 pte_unmap(pte);
3065
3066 if (!pmd_migration)
3067 folio_remove_rmap_pmd(folio, page, vma);
3068 if (freeze)
3069 put_page(page);
3070
3071 smp_wmb(); /* make pte visible before pmd */
3072 pmd_populate(mm, pmd, pgtable);
3073 }
3074
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze,struct folio * folio)3075 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3076 pmd_t *pmd, bool freeze, struct folio *folio)
3077 {
3078 bool pmd_migration = is_pmd_migration_entry(*pmd);
3079
3080 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
3081 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3082 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
3083 VM_BUG_ON(freeze && !folio);
3084
3085 /*
3086 * When the caller requests to set up a migration entry, we
3087 * require a folio to check the PMD against. Otherwise, there
3088 * is a risk of replacing the wrong folio.
3089 */
3090 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || pmd_migration) {
3091 /*
3092 * Do not apply pmd_folio() to a migration entry; and folio lock
3093 * guarantees that it must be of the wrong folio anyway.
3094 */
3095 if (folio && (pmd_migration || folio != pmd_folio(*pmd)))
3096 return;
3097 __split_huge_pmd_locked(vma, pmd, address, freeze);
3098 }
3099 }
3100
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)3101 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3102 unsigned long address, bool freeze, struct folio *folio)
3103 {
3104 spinlock_t *ptl;
3105 struct mmu_notifier_range range;
3106
3107 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3108 address & HPAGE_PMD_MASK,
3109 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3110 mmu_notifier_invalidate_range_start(&range);
3111 ptl = pmd_lock(vma->vm_mm, pmd);
3112 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
3113 spin_unlock(ptl);
3114 mmu_notifier_invalidate_range_end(&range);
3115 }
3116
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)3117 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3118 bool freeze, struct folio *folio)
3119 {
3120 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3121
3122 if (!pmd)
3123 return;
3124
3125 __split_huge_pmd(vma, pmd, address, freeze, folio);
3126 }
3127
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)3128 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3129 {
3130 /*
3131 * If the new address isn't hpage aligned and it could previously
3132 * contain an hugepage: check if we need to split an huge pmd.
3133 */
3134 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3135 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3136 ALIGN(address, HPAGE_PMD_SIZE)))
3137 split_huge_pmd_address(vma, address, false, NULL);
3138 }
3139
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct vm_area_struct * next)3140 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3141 unsigned long start,
3142 unsigned long end,
3143 struct vm_area_struct *next)
3144 {
3145 /* Check if we need to split start first. */
3146 split_huge_pmd_if_needed(vma, start);
3147
3148 /* Check if we need to split end next. */
3149 split_huge_pmd_if_needed(vma, end);
3150
3151 /* If we're incrementing next->vm_start, we might need to split it. */
3152 if (next)
3153 split_huge_pmd_if_needed(next, end);
3154 }
3155
unmap_folio(struct folio * folio)3156 static void unmap_folio(struct folio *folio)
3157 {
3158 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3159 TTU_BATCH_FLUSH;
3160
3161 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3162
3163 if (folio_test_pmd_mappable(folio))
3164 ttu_flags |= TTU_SPLIT_HUGE_PMD;
3165
3166 /*
3167 * Anon pages need migration entries to preserve them, but file
3168 * pages can simply be left unmapped, then faulted back on demand.
3169 * If that is ever changed (perhaps for mlock), update remap_page().
3170 */
3171 if (folio_test_anon(folio))
3172 try_to_migrate(folio, ttu_flags);
3173 else
3174 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3175
3176 try_to_unmap_flush();
3177 }
3178
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3179 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3180 unsigned long addr, pmd_t *pmdp,
3181 struct folio *folio)
3182 {
3183 struct mm_struct *mm = vma->vm_mm;
3184 int ref_count, map_count;
3185 pmd_t orig_pmd = *pmdp;
3186
3187 if (pmd_dirty(orig_pmd))
3188 folio_set_dirty(folio);
3189 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3190 folio_set_swapbacked(folio);
3191 return false;
3192 }
3193
3194 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3195
3196 /*
3197 * Syncing against concurrent GUP-fast:
3198 * - clear PMD; barrier; read refcount
3199 * - inc refcount; barrier; read PMD
3200 */
3201 smp_mb();
3202
3203 ref_count = folio_ref_count(folio);
3204 map_count = folio_mapcount(folio);
3205
3206 /*
3207 * Order reads for folio refcount and dirty flag
3208 * (see comments in __remove_mapping()).
3209 */
3210 smp_rmb();
3211
3212 /*
3213 * If the folio or its PMD is redirtied at this point, or if there
3214 * are unexpected references, we will give up to discard this folio
3215 * and remap it.
3216 *
3217 * The only folio refs must be one from isolation plus the rmap(s).
3218 */
3219 if (pmd_dirty(orig_pmd))
3220 folio_set_dirty(folio);
3221 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3222 folio_set_swapbacked(folio);
3223 set_pmd_at(mm, addr, pmdp, orig_pmd);
3224 return false;
3225 }
3226
3227 if (ref_count != map_count + 1) {
3228 set_pmd_at(mm, addr, pmdp, orig_pmd);
3229 return false;
3230 }
3231
3232 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3233 zap_deposited_table(mm, pmdp);
3234 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3235 if (vma->vm_flags & VM_LOCKED)
3236 mlock_drain_local();
3237 folio_put(folio);
3238
3239 return true;
3240 }
3241
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3242 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3243 pmd_t *pmdp, struct folio *folio)
3244 {
3245 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3246 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3247 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3248 VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3249 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3250
3251 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3252 }
3253
remap_page(struct folio * folio,unsigned long nr,int flags)3254 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3255 {
3256 int i = 0;
3257
3258 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3259 if (!folio_test_anon(folio))
3260 return;
3261 for (;;) {
3262 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3263 i += folio_nr_pages(folio);
3264 if (i >= nr)
3265 break;
3266 folio = folio_next(folio);
3267 }
3268 }
3269
lru_add_split_folio(struct folio * folio,struct folio * new_folio,struct lruvec * lruvec,struct list_head * list)3270 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3271 struct lruvec *lruvec, struct list_head *list)
3272 {
3273 VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3274 lockdep_assert_held(&lruvec->lru_lock);
3275
3276 if (list) {
3277 /* page reclaim is reclaiming a huge page */
3278 VM_WARN_ON(folio_test_lru(folio));
3279 folio_get(new_folio);
3280 list_add_tail(&new_folio->lru, list);
3281 } else {
3282 /* head is still on lru (and we have it frozen) */
3283 VM_WARN_ON(!folio_test_lru(folio));
3284 if (folio_test_unevictable(folio))
3285 new_folio->mlock_count = 0;
3286 else
3287 list_add_tail(&new_folio->lru, &folio->lru);
3288 folio_set_lru(new_folio);
3289 }
3290 }
3291
3292 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3293 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3294 {
3295 int extra_pins;
3296
3297 /* Additional pins from page cache */
3298 if (folio_test_anon(folio))
3299 extra_pins = folio_test_swapcache(folio) ?
3300 folio_nr_pages(folio) : 0;
3301 else
3302 extra_pins = folio_nr_pages(folio);
3303 if (pextra_pins)
3304 *pextra_pins = extra_pins;
3305 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3306 caller_pins;
3307 }
3308
3309 /*
3310 * It splits @folio into @new_order folios and copies the @folio metadata to
3311 * all the resulting folios.
3312 */
__split_folio_to_order(struct folio * folio,int old_order,int new_order)3313 static void __split_folio_to_order(struct folio *folio, int old_order,
3314 int new_order)
3315 {
3316 long new_nr_pages = 1 << new_order;
3317 long nr_pages = 1 << old_order;
3318 long i;
3319
3320 /*
3321 * Skip the first new_nr_pages, since the new folio from them have all
3322 * the flags from the original folio.
3323 */
3324 for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3325 struct page *new_head = &folio->page + i;
3326
3327 /*
3328 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3329 * Don't pass it around before clear_compound_head().
3330 */
3331 struct folio *new_folio = (struct folio *)new_head;
3332
3333 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3334
3335 /*
3336 * Clone page flags before unfreezing refcount.
3337 *
3338 * After successful get_page_unless_zero() might follow flags change,
3339 * for example lock_page() which set PG_waiters.
3340 *
3341 * Note that for mapped sub-pages of an anonymous THP,
3342 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3343 * the migration entry instead from where remap_page() will restore it.
3344 * We can still have PG_anon_exclusive set on effectively unmapped and
3345 * unreferenced sub-pages of an anonymous THP: we can simply drop
3346 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3347 */
3348 new_folio->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3349 new_folio->flags |= (folio->flags &
3350 ((1L << PG_referenced) |
3351 (1L << PG_swapbacked) |
3352 (1L << PG_swapcache) |
3353 (1L << PG_mlocked) |
3354 (1L << PG_uptodate) |
3355 (1L << PG_active) |
3356 (1L << PG_workingset) |
3357 (1L << PG_locked) |
3358 (1L << PG_unevictable) |
3359 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3360 (1L << PG_arch_2) |
3361 #endif
3362 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3363 (1L << PG_arch_3) |
3364 #endif
3365 (1L << PG_dirty) |
3366 LRU_GEN_MASK | LRU_REFS_MASK));
3367
3368 new_folio->mapping = folio->mapping;
3369 new_folio->index = folio->index + i;
3370
3371 /*
3372 * page->private should not be set in tail pages. Fix up and warn once
3373 * if private is unexpectedly set.
3374 */
3375 if (unlikely(new_folio->private)) {
3376 VM_WARN_ON_ONCE_PAGE(true, new_head);
3377 new_folio->private = NULL;
3378 }
3379
3380 if (folio_test_swapcache(folio))
3381 new_folio->swap.val = folio->swap.val + i;
3382
3383 /* Page flags must be visible before we make the page non-compound. */
3384 smp_wmb();
3385
3386 /*
3387 * Clear PageTail before unfreezing page refcount.
3388 *
3389 * After successful get_page_unless_zero() might follow put_page()
3390 * which needs correct compound_head().
3391 */
3392 clear_compound_head(new_head);
3393 if (new_order) {
3394 prep_compound_page(new_head, new_order);
3395 folio_set_large_rmappable(new_folio);
3396 }
3397
3398 if (folio_test_young(folio))
3399 folio_set_young(new_folio);
3400 if (folio_test_idle(folio))
3401 folio_set_idle(new_folio);
3402 #ifdef CONFIG_MEMCG
3403 new_folio->memcg_data = folio->memcg_data;
3404 #endif
3405
3406 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3407 }
3408
3409 if (new_order)
3410 folio_set_order(folio, new_order);
3411 else
3412 ClearPageCompound(&folio->page);
3413 }
3414
3415 /*
3416 * It splits an unmapped @folio to lower order smaller folios in two ways.
3417 * @folio: the to-be-split folio
3418 * @new_order: the smallest order of the after split folios (since buddy
3419 * allocator like split generates folios with orders from @folio's
3420 * order - 1 to new_order).
3421 * @split_at: in buddy allocator like split, the folio containing @split_at
3422 * will be split until its order becomes @new_order.
3423 * @lock_at: the folio containing @lock_at is left locked for caller.
3424 * @list: the after split folios will be added to @list if it is not NULL,
3425 * otherwise to LRU lists.
3426 * @end: the end of the file @folio maps to. -1 if @folio is anonymous memory.
3427 * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3428 * @mapping: @folio->mapping
3429 * @uniform_split: if the split is uniform or not (buddy allocator like split)
3430 *
3431 *
3432 * 1. uniform split: the given @folio into multiple @new_order small folios,
3433 * where all small folios have the same order. This is done when
3434 * uniform_split is true.
3435 * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3436 * half and one of the half (containing the given page) is split into half
3437 * until the given @page's order becomes @new_order. This is done when
3438 * uniform_split is false.
3439 *
3440 * The high level flow for these two methods are:
3441 * 1. uniform split: a single __split_folio_to_order() is called to split the
3442 * @folio into @new_order, then we traverse all the resulting folios one by
3443 * one in PFN ascending order and perform stats, unfreeze, adding to list,
3444 * and file mapping index operations.
3445 * 2. non-uniform split: in general, folio_order - @new_order calls to
3446 * __split_folio_to_order() are made in a for loop to split the @folio
3447 * to one lower order at a time. The resulting small folios are processed
3448 * like what is done during the traversal in 1, except the one containing
3449 * @page, which is split in next for loop.
3450 *
3451 * After splitting, the caller's folio reference will be transferred to the
3452 * folio containing @page. The other folios may be freed if they are not mapped.
3453 *
3454 * In terms of locking, after splitting,
3455 * 1. uniform split leaves @page (or the folio contains it) locked;
3456 * 2. buddy allocator like (non-uniform) split leaves @folio locked.
3457 *
3458 *
3459 * For !uniform_split, when -ENOMEM is returned, the original folio might be
3460 * split. The caller needs to check the input folio.
3461 */
__split_unmapped_folio(struct folio * folio,int new_order,struct page * split_at,struct page * lock_at,struct list_head * list,pgoff_t end,struct xa_state * xas,struct address_space * mapping,bool uniform_split)3462 static int __split_unmapped_folio(struct folio *folio, int new_order,
3463 struct page *split_at, struct page *lock_at,
3464 struct list_head *list, pgoff_t end,
3465 struct xa_state *xas, struct address_space *mapping,
3466 bool uniform_split)
3467 {
3468 struct lruvec *lruvec;
3469 struct address_space *swap_cache = NULL;
3470 struct folio *origin_folio = folio;
3471 struct folio *next_folio = folio_next(folio);
3472 struct folio *new_folio;
3473 struct folio *next;
3474 int order = folio_order(folio);
3475 int split_order;
3476 int start_order = uniform_split ? new_order : order - 1;
3477 int nr_dropped = 0;
3478 int ret = 0;
3479 bool stop_split = false;
3480
3481 if (folio_test_swapcache(folio)) {
3482 VM_BUG_ON(mapping);
3483
3484 /* a swapcache folio can only be uniformly split to order-0 */
3485 if (!uniform_split || new_order != 0)
3486 return -EINVAL;
3487
3488 swap_cache = swap_address_space(folio->swap);
3489 xa_lock(&swap_cache->i_pages);
3490 }
3491
3492 if (folio_test_anon(folio))
3493 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3494
3495 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3496 lruvec = folio_lruvec_lock(folio);
3497
3498 folio_clear_has_hwpoisoned(folio);
3499
3500 /*
3501 * split to new_order one order at a time. For uniform split,
3502 * folio is split to new_order directly.
3503 */
3504 for (split_order = start_order;
3505 split_order >= new_order && !stop_split;
3506 split_order--) {
3507 int old_order = folio_order(folio);
3508 struct folio *release;
3509 struct folio *end_folio = folio_next(folio);
3510
3511 /* order-1 anonymous folio is not supported */
3512 if (folio_test_anon(folio) && split_order == 1)
3513 continue;
3514 if (uniform_split && split_order != new_order)
3515 continue;
3516
3517 if (mapping) {
3518 /*
3519 * uniform split has xas_split_alloc() called before
3520 * irq is disabled to allocate enough memory, whereas
3521 * non-uniform split can handle ENOMEM.
3522 */
3523 if (uniform_split)
3524 xas_split(xas, folio, old_order);
3525 else {
3526 xas_set_order(xas, folio->index, split_order);
3527 xas_try_split(xas, folio, old_order);
3528 if (xas_error(xas)) {
3529 ret = xas_error(xas);
3530 stop_split = true;
3531 goto after_split;
3532 }
3533 }
3534 }
3535
3536 folio_split_memcg_refs(folio, old_order, split_order);
3537 split_page_owner(&folio->page, old_order, split_order);
3538 pgalloc_tag_split(folio, old_order, split_order);
3539
3540 __split_folio_to_order(folio, old_order, split_order);
3541
3542 after_split:
3543 /*
3544 * Iterate through after-split folios and perform related
3545 * operations. But in buddy allocator like split, the folio
3546 * containing the specified page is skipped until its order
3547 * is new_order, since the folio will be worked on in next
3548 * iteration.
3549 */
3550 for (release = folio; release != end_folio; release = next) {
3551 next = folio_next(release);
3552 /*
3553 * for buddy allocator like split, the folio containing
3554 * page will be split next and should not be released,
3555 * until the folio's order is new_order or stop_split
3556 * is set to true by the above xas_split() failure.
3557 */
3558 if (release == page_folio(split_at)) {
3559 folio = release;
3560 if (split_order != new_order && !stop_split)
3561 continue;
3562 }
3563 if (folio_test_anon(release)) {
3564 mod_mthp_stat(folio_order(release),
3565 MTHP_STAT_NR_ANON, 1);
3566 }
3567
3568 /*
3569 * origin_folio should be kept frozon until page cache
3570 * entries are updated with all the other after-split
3571 * folios to prevent others seeing stale page cache
3572 * entries.
3573 */
3574 if (release == origin_folio)
3575 continue;
3576
3577 folio_ref_unfreeze(release, 1 +
3578 ((mapping || swap_cache) ?
3579 folio_nr_pages(release) : 0));
3580
3581 lru_add_split_folio(origin_folio, release, lruvec,
3582 list);
3583
3584 /* Some pages can be beyond EOF: drop them from cache */
3585 if (release->index >= end) {
3586 if (shmem_mapping(mapping))
3587 nr_dropped += folio_nr_pages(release);
3588 else if (folio_test_clear_dirty(release))
3589 folio_account_cleaned(release,
3590 inode_to_wb(mapping->host));
3591 __filemap_remove_folio(release, NULL);
3592 folio_put_refs(release, folio_nr_pages(release));
3593 } else if (mapping) {
3594 __xa_store(&mapping->i_pages,
3595 release->index, release, 0);
3596 } else if (swap_cache) {
3597 __xa_store(&swap_cache->i_pages,
3598 swap_cache_index(release->swap),
3599 release, 0);
3600 }
3601 }
3602 }
3603
3604 /*
3605 * Unfreeze origin_folio only after all page cache entries, which used
3606 * to point to it, have been updated with new folios. Otherwise,
3607 * a parallel folio_try_get() can grab origin_folio and its caller can
3608 * see stale page cache entries.
3609 */
3610 folio_ref_unfreeze(origin_folio, 1 +
3611 ((mapping || swap_cache) ? folio_nr_pages(origin_folio) : 0));
3612
3613 unlock_page_lruvec(lruvec);
3614
3615 if (swap_cache)
3616 xa_unlock(&swap_cache->i_pages);
3617 if (mapping)
3618 xa_unlock(&mapping->i_pages);
3619
3620 /* Caller disabled irqs, so they are still disabled here */
3621 local_irq_enable();
3622
3623 if (nr_dropped)
3624 shmem_uncharge(mapping->host, nr_dropped);
3625
3626 remap_page(origin_folio, 1 << order,
3627 folio_test_anon(origin_folio) ?
3628 RMP_USE_SHARED_ZEROPAGE : 0);
3629
3630 /*
3631 * At this point, folio should contain the specified page.
3632 * For uniform split, it is left for caller to unlock.
3633 * For buddy allocator like split, the first after-split folio is left
3634 * for caller to unlock.
3635 */
3636 for (new_folio = origin_folio; new_folio != next_folio; new_folio = next) {
3637 next = folio_next(new_folio);
3638 if (new_folio == page_folio(lock_at))
3639 continue;
3640
3641 folio_unlock(new_folio);
3642 /*
3643 * Subpages may be freed if there wasn't any mapping
3644 * like if add_to_swap() is running on a lru page that
3645 * had its mapping zapped. And freeing these pages
3646 * requires taking the lru_lock so we do the put_page
3647 * of the tail pages after the split is complete.
3648 */
3649 free_page_and_swap_cache(&new_folio->page);
3650 }
3651 return ret;
3652 }
3653
non_uniform_split_supported(struct folio * folio,unsigned int new_order,bool warns)3654 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order,
3655 bool warns)
3656 {
3657 if (folio_test_anon(folio)) {
3658 /* order-1 is not supported for anonymous THP. */
3659 VM_WARN_ONCE(warns && new_order == 1,
3660 "Cannot split to order-1 folio");
3661 return new_order != 1;
3662 } else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3663 !mapping_large_folio_support(folio->mapping)) {
3664 /*
3665 * No split if the file system does not support large folio.
3666 * Note that we might still have THPs in such mappings due to
3667 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3668 * does not actually support large folios properly.
3669 */
3670 VM_WARN_ONCE(warns,
3671 "Cannot split file folio to non-0 order");
3672 return false;
3673 }
3674
3675 /* Only swapping a whole PMD-mapped folio is supported */
3676 if (folio_test_swapcache(folio)) {
3677 VM_WARN_ONCE(warns,
3678 "Cannot split swapcache folio to non-0 order");
3679 return false;
3680 }
3681
3682 return true;
3683 }
3684
3685 /* See comments in non_uniform_split_supported() */
uniform_split_supported(struct folio * folio,unsigned int new_order,bool warns)3686 bool uniform_split_supported(struct folio *folio, unsigned int new_order,
3687 bool warns)
3688 {
3689 if (folio_test_anon(folio)) {
3690 VM_WARN_ONCE(warns && new_order == 1,
3691 "Cannot split to order-1 folio");
3692 return new_order != 1;
3693 } else if (new_order) {
3694 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3695 !mapping_large_folio_support(folio->mapping)) {
3696 VM_WARN_ONCE(warns,
3697 "Cannot split file folio to non-0 order");
3698 return false;
3699 }
3700 }
3701
3702 if (new_order && folio_test_swapcache(folio)) {
3703 VM_WARN_ONCE(warns,
3704 "Cannot split swapcache folio to non-0 order");
3705 return false;
3706 }
3707
3708 return true;
3709 }
3710
3711 /*
3712 * __folio_split: split a folio at @split_at to a @new_order folio
3713 * @folio: folio to split
3714 * @new_order: the order of the new folio
3715 * @split_at: a page within the new folio
3716 * @lock_at: a page within @folio to be left locked to caller
3717 * @list: after-split folios will be put on it if non NULL
3718 * @uniform_split: perform uniform split or not (non-uniform split)
3719 *
3720 * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3721 * It is in charge of checking whether the split is supported or not and
3722 * preparing @folio for __split_unmapped_folio().
3723 *
3724 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3725 * split but not to @new_order, the caller needs to check)
3726 */
__folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct page * lock_at,struct list_head * list,bool uniform_split)3727 static int __folio_split(struct folio *folio, unsigned int new_order,
3728 struct page *split_at, struct page *lock_at,
3729 struct list_head *list, bool uniform_split)
3730 {
3731 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3732 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3733 bool is_anon = folio_test_anon(folio);
3734 struct address_space *mapping = NULL;
3735 struct anon_vma *anon_vma = NULL;
3736 int order = folio_order(folio);
3737 int extra_pins, ret;
3738 pgoff_t end;
3739 bool is_hzp;
3740
3741 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3742 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3743
3744 if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3745 return -EINVAL;
3746
3747 if (new_order >= folio_order(folio))
3748 return -EINVAL;
3749
3750 if (uniform_split && !uniform_split_supported(folio, new_order, true))
3751 return -EINVAL;
3752
3753 if (!uniform_split &&
3754 !non_uniform_split_supported(folio, new_order, true))
3755 return -EINVAL;
3756
3757 is_hzp = is_huge_zero_folio(folio);
3758 if (is_hzp) {
3759 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3760 return -EBUSY;
3761 }
3762
3763 if (folio_test_writeback(folio))
3764 return -EBUSY;
3765
3766 if (is_anon) {
3767 /*
3768 * The caller does not necessarily hold an mmap_lock that would
3769 * prevent the anon_vma disappearing so we first we take a
3770 * reference to it and then lock the anon_vma for write. This
3771 * is similar to folio_lock_anon_vma_read except the write lock
3772 * is taken to serialise against parallel split or collapse
3773 * operations.
3774 */
3775 anon_vma = folio_get_anon_vma(folio);
3776 if (!anon_vma) {
3777 ret = -EBUSY;
3778 goto out;
3779 }
3780 end = -1;
3781 mapping = NULL;
3782 anon_vma_lock_write(anon_vma);
3783 } else {
3784 unsigned int min_order;
3785 gfp_t gfp;
3786
3787 mapping = folio->mapping;
3788
3789 /* Truncated ? */
3790 /*
3791 * TODO: add support for large shmem folio in swap cache.
3792 * When shmem is in swap cache, mapping is NULL and
3793 * folio_test_swapcache() is true.
3794 */
3795 if (!mapping) {
3796 ret = -EBUSY;
3797 goto out;
3798 }
3799
3800 min_order = mapping_min_folio_order(folio->mapping);
3801 if (new_order < min_order) {
3802 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3803 min_order);
3804 ret = -EINVAL;
3805 goto out;
3806 }
3807
3808 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3809 GFP_RECLAIM_MASK);
3810
3811 if (!filemap_release_folio(folio, gfp)) {
3812 ret = -EBUSY;
3813 goto out;
3814 }
3815
3816 if (uniform_split) {
3817 xas_set_order(&xas, folio->index, new_order);
3818 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3819 if (xas_error(&xas)) {
3820 ret = xas_error(&xas);
3821 goto out;
3822 }
3823 }
3824
3825 anon_vma = NULL;
3826 i_mmap_lock_read(mapping);
3827
3828 /*
3829 *__split_unmapped_folio() may need to trim off pages beyond
3830 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
3831 * seqlock, which cannot be nested inside the page tree lock.
3832 * So note end now: i_size itself may be changed at any moment,
3833 * but folio lock is good enough to serialize the trimming.
3834 */
3835 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3836 if (shmem_mapping(mapping))
3837 end = shmem_fallocend(mapping->host, end);
3838 }
3839
3840 /*
3841 * Racy check if we can split the page, before unmap_folio() will
3842 * split PMDs
3843 */
3844 if (!can_split_folio(folio, 1, &extra_pins)) {
3845 ret = -EAGAIN;
3846 goto out_unlock;
3847 }
3848
3849 unmap_folio(folio);
3850
3851 /* block interrupt reentry in xa_lock and spinlock */
3852 local_irq_disable();
3853 if (mapping) {
3854 /*
3855 * Check if the folio is present in page cache.
3856 * We assume all tail are present too, if folio is there.
3857 */
3858 xas_lock(&xas);
3859 xas_reset(&xas);
3860 if (xas_load(&xas) != folio)
3861 goto fail;
3862 }
3863
3864 /* Prevent deferred_split_scan() touching ->_refcount */
3865 spin_lock(&ds_queue->split_queue_lock);
3866 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3867 if (folio_order(folio) > 1 &&
3868 !list_empty(&folio->_deferred_list)) {
3869 ds_queue->split_queue_len--;
3870 if (folio_test_partially_mapped(folio)) {
3871 folio_clear_partially_mapped(folio);
3872 mod_mthp_stat(folio_order(folio),
3873 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3874 }
3875 /*
3876 * Reinitialize page_deferred_list after removing the
3877 * page from the split_queue, otherwise a subsequent
3878 * split will see list corruption when checking the
3879 * page_deferred_list.
3880 */
3881 list_del_init(&folio->_deferred_list);
3882 }
3883 spin_unlock(&ds_queue->split_queue_lock);
3884 if (mapping) {
3885 int nr = folio_nr_pages(folio);
3886
3887 if (folio_test_pmd_mappable(folio) &&
3888 new_order < HPAGE_PMD_ORDER) {
3889 if (folio_test_swapbacked(folio)) {
3890 __lruvec_stat_mod_folio(folio,
3891 NR_SHMEM_THPS, -nr);
3892 } else {
3893 __lruvec_stat_mod_folio(folio,
3894 NR_FILE_THPS, -nr);
3895 filemap_nr_thps_dec(mapping);
3896 }
3897 }
3898 }
3899
3900 ret = __split_unmapped_folio(folio, new_order,
3901 split_at, lock_at, list, end, &xas, mapping,
3902 uniform_split);
3903 } else {
3904 spin_unlock(&ds_queue->split_queue_lock);
3905 fail:
3906 if (mapping)
3907 xas_unlock(&xas);
3908 local_irq_enable();
3909 remap_page(folio, folio_nr_pages(folio), 0);
3910 ret = -EAGAIN;
3911 }
3912
3913 out_unlock:
3914 if (anon_vma) {
3915 anon_vma_unlock_write(anon_vma);
3916 put_anon_vma(anon_vma);
3917 }
3918 if (mapping)
3919 i_mmap_unlock_read(mapping);
3920 out:
3921 xas_destroy(&xas);
3922 if (order == HPAGE_PMD_ORDER)
3923 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3924 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3925 return ret;
3926 }
3927
3928 /*
3929 * This function splits a large folio into smaller folios of order @new_order.
3930 * @page can point to any page of the large folio to split. The split operation
3931 * does not change the position of @page.
3932 *
3933 * Prerequisites:
3934 *
3935 * 1) The caller must hold a reference on the @page's owning folio, also known
3936 * as the large folio.
3937 *
3938 * 2) The large folio must be locked.
3939 *
3940 * 3) The folio must not be pinned. Any unexpected folio references, including
3941 * GUP pins, will result in the folio not getting split; instead, the caller
3942 * will receive an -EAGAIN.
3943 *
3944 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3945 * supported for non-file-backed folios, because folio->_deferred_list, which
3946 * is used by partially mapped folios, is stored in subpage 2, but an order-1
3947 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3948 * since they do not use _deferred_list.
3949 *
3950 * After splitting, the caller's folio reference will be transferred to @page,
3951 * resulting in a raised refcount of @page after this call. The other pages may
3952 * be freed if they are not mapped.
3953 *
3954 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3955 *
3956 * Pages in @new_order will inherit the mapping, flags, and so on from the
3957 * huge page.
3958 *
3959 * Returns 0 if the huge page was split successfully.
3960 *
3961 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3962 * the folio was concurrently removed from the page cache.
3963 *
3964 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3965 * under writeback, if fs-specific folio metadata cannot currently be
3966 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3967 * truncation).
3968 *
3969 * Callers should ensure that the order respects the address space mapping
3970 * min-order if one is set for non-anonymous folios.
3971 *
3972 * Returns -EINVAL when trying to split to an order that is incompatible
3973 * with the folio. Splitting to order 0 is compatible with all folios.
3974 */
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)3975 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3976 unsigned int new_order)
3977 {
3978 struct folio *folio = page_folio(page);
3979
3980 return __folio_split(folio, new_order, &folio->page, page, list, true);
3981 }
3982
3983 /*
3984 * folio_split: split a folio at @split_at to a @new_order folio
3985 * @folio: folio to split
3986 * @new_order: the order of the new folio
3987 * @split_at: a page within the new folio
3988 *
3989 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3990 * split but not to @new_order, the caller needs to check)
3991 *
3992 * It has the same prerequisites and returns as
3993 * split_huge_page_to_list_to_order().
3994 *
3995 * Split a folio at @split_at to a new_order folio, leave the
3996 * remaining subpages of the original folio as large as possible. For example,
3997 * in the case of splitting an order-9 folio at its third order-3 subpages to
3998 * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
3999 * After the split, there will be a group of folios with different orders and
4000 * the new folio containing @split_at is marked in bracket:
4001 * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
4002 *
4003 * After split, folio is left locked for caller.
4004 */
folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct list_head * list)4005 int folio_split(struct folio *folio, unsigned int new_order,
4006 struct page *split_at, struct list_head *list)
4007 {
4008 return __folio_split(folio, new_order, split_at, &folio->page, list,
4009 false);
4010 }
4011
min_order_for_split(struct folio * folio)4012 int min_order_for_split(struct folio *folio)
4013 {
4014 if (folio_test_anon(folio))
4015 return 0;
4016
4017 if (!folio->mapping) {
4018 if (folio_test_pmd_mappable(folio))
4019 count_vm_event(THP_SPLIT_PAGE_FAILED);
4020 return -EBUSY;
4021 }
4022
4023 return mapping_min_folio_order(folio->mapping);
4024 }
4025
split_folio_to_list(struct folio * folio,struct list_head * list)4026 int split_folio_to_list(struct folio *folio, struct list_head *list)
4027 {
4028 int ret = min_order_for_split(folio);
4029
4030 if (ret < 0)
4031 return ret;
4032
4033 return split_huge_page_to_list_to_order(&folio->page, list, ret);
4034 }
4035
4036 /*
4037 * __folio_unqueue_deferred_split() is not to be called directly:
4038 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4039 * limits its calls to those folios which may have a _deferred_list for
4040 * queueing THP splits, and that list is (racily observed to be) non-empty.
4041 *
4042 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4043 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4044 * might be in use on deferred_split_scan()'s unlocked on-stack list.
4045 *
4046 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4047 * therefore important to unqueue deferred split before changing folio memcg.
4048 */
__folio_unqueue_deferred_split(struct folio * folio)4049 bool __folio_unqueue_deferred_split(struct folio *folio)
4050 {
4051 struct deferred_split *ds_queue;
4052 unsigned long flags;
4053 bool unqueued = false;
4054
4055 WARN_ON_ONCE(folio_ref_count(folio));
4056 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
4057
4058 ds_queue = get_deferred_split_queue(folio);
4059 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4060 if (!list_empty(&folio->_deferred_list)) {
4061 ds_queue->split_queue_len--;
4062 if (folio_test_partially_mapped(folio)) {
4063 folio_clear_partially_mapped(folio);
4064 mod_mthp_stat(folio_order(folio),
4065 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4066 }
4067 list_del_init(&folio->_deferred_list);
4068 unqueued = true;
4069 }
4070 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4071
4072 return unqueued; /* useful for debug warnings */
4073 }
4074
4075 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)4076 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4077 {
4078 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
4079 #ifdef CONFIG_MEMCG
4080 struct mem_cgroup *memcg = folio_memcg(folio);
4081 #endif
4082 unsigned long flags;
4083
4084 /*
4085 * Order 1 folios have no space for a deferred list, but we also
4086 * won't waste much memory by not adding them to the deferred list.
4087 */
4088 if (folio_order(folio) <= 1)
4089 return;
4090
4091 if (!partially_mapped && !split_underused_thp)
4092 return;
4093
4094 /*
4095 * Exclude swapcache: originally to avoid a corrupt deferred split
4096 * queue. Nowadays that is fully prevented by memcg1_swapout();
4097 * but if page reclaim is already handling the same folio, it is
4098 * unnecessary to handle it again in the shrinker, so excluding
4099 * swapcache here may still be a useful optimization.
4100 */
4101 if (folio_test_swapcache(folio))
4102 return;
4103
4104 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4105 if (partially_mapped) {
4106 if (!folio_test_partially_mapped(folio)) {
4107 folio_set_partially_mapped(folio);
4108 if (folio_test_pmd_mappable(folio))
4109 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4110 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4111 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4112
4113 }
4114 } else {
4115 /* partially mapped folios cannot become non-partially mapped */
4116 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4117 }
4118 if (list_empty(&folio->_deferred_list)) {
4119 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4120 ds_queue->split_queue_len++;
4121 #ifdef CONFIG_MEMCG
4122 if (memcg)
4123 set_shrinker_bit(memcg, folio_nid(folio),
4124 deferred_split_shrinker->id);
4125 #endif
4126 }
4127 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4128 }
4129
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)4130 static unsigned long deferred_split_count(struct shrinker *shrink,
4131 struct shrink_control *sc)
4132 {
4133 struct pglist_data *pgdata = NODE_DATA(sc->nid);
4134 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4135
4136 #ifdef CONFIG_MEMCG
4137 if (sc->memcg)
4138 ds_queue = &sc->memcg->deferred_split_queue;
4139 #endif
4140 return READ_ONCE(ds_queue->split_queue_len);
4141 }
4142
thp_underused(struct folio * folio)4143 static bool thp_underused(struct folio *folio)
4144 {
4145 int num_zero_pages = 0, num_filled_pages = 0;
4146 void *kaddr;
4147 int i;
4148
4149 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4150 return false;
4151
4152 for (i = 0; i < folio_nr_pages(folio); i++) {
4153 kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
4154 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
4155 num_zero_pages++;
4156 if (num_zero_pages > khugepaged_max_ptes_none) {
4157 kunmap_local(kaddr);
4158 return true;
4159 }
4160 } else {
4161 /*
4162 * Another path for early exit once the number
4163 * of non-zero filled pages exceeds threshold.
4164 */
4165 num_filled_pages++;
4166 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
4167 kunmap_local(kaddr);
4168 return false;
4169 }
4170 }
4171 kunmap_local(kaddr);
4172 }
4173 return false;
4174 }
4175
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)4176 static unsigned long deferred_split_scan(struct shrinker *shrink,
4177 struct shrink_control *sc)
4178 {
4179 struct pglist_data *pgdata = NODE_DATA(sc->nid);
4180 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4181 unsigned long flags;
4182 LIST_HEAD(list);
4183 struct folio *folio, *next, *prev = NULL;
4184 int split = 0, removed = 0;
4185
4186 #ifdef CONFIG_MEMCG
4187 if (sc->memcg)
4188 ds_queue = &sc->memcg->deferred_split_queue;
4189 #endif
4190
4191 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4192 /* Take pin on all head pages to avoid freeing them under us */
4193 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4194 _deferred_list) {
4195 if (folio_try_get(folio)) {
4196 list_move(&folio->_deferred_list, &list);
4197 } else {
4198 /* We lost race with folio_put() */
4199 if (folio_test_partially_mapped(folio)) {
4200 folio_clear_partially_mapped(folio);
4201 mod_mthp_stat(folio_order(folio),
4202 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4203 }
4204 list_del_init(&folio->_deferred_list);
4205 ds_queue->split_queue_len--;
4206 }
4207 if (!--sc->nr_to_scan)
4208 break;
4209 }
4210 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4211
4212 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
4213 bool did_split = false;
4214 bool underused = false;
4215
4216 if (!folio_test_partially_mapped(folio)) {
4217 underused = thp_underused(folio);
4218 if (!underused)
4219 goto next;
4220 }
4221 if (!folio_trylock(folio))
4222 goto next;
4223 if (!split_folio(folio)) {
4224 did_split = true;
4225 if (underused)
4226 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4227 split++;
4228 }
4229 folio_unlock(folio);
4230 next:
4231 /*
4232 * split_folio() removes folio from list on success.
4233 * Only add back to the queue if folio is partially mapped.
4234 * If thp_underused returns false, or if split_folio fails
4235 * in the case it was underused, then consider it used and
4236 * don't add it back to split_queue.
4237 */
4238 if (did_split) {
4239 ; /* folio already removed from list */
4240 } else if (!folio_test_partially_mapped(folio)) {
4241 list_del_init(&folio->_deferred_list);
4242 removed++;
4243 } else {
4244 /*
4245 * That unlocked list_del_init() above would be unsafe,
4246 * unless its folio is separated from any earlier folios
4247 * left on the list (which may be concurrently unqueued)
4248 * by one safe folio with refcount still raised.
4249 */
4250 swap(folio, prev);
4251 }
4252 if (folio)
4253 folio_put(folio);
4254 }
4255
4256 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4257 list_splice_tail(&list, &ds_queue->split_queue);
4258 ds_queue->split_queue_len -= removed;
4259 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4260
4261 if (prev)
4262 folio_put(prev);
4263
4264 /*
4265 * Stop shrinker if we didn't split any page, but the queue is empty.
4266 * This can happen if pages were freed under us.
4267 */
4268 if (!split && list_empty(&ds_queue->split_queue))
4269 return SHRINK_STOP;
4270 return split;
4271 }
4272
4273 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)4274 static void split_huge_pages_all(void)
4275 {
4276 struct zone *zone;
4277 struct page *page;
4278 struct folio *folio;
4279 unsigned long pfn, max_zone_pfn;
4280 unsigned long total = 0, split = 0;
4281
4282 pr_debug("Split all THPs\n");
4283 for_each_zone(zone) {
4284 if (!managed_zone(zone))
4285 continue;
4286 max_zone_pfn = zone_end_pfn(zone);
4287 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4288 int nr_pages;
4289
4290 page = pfn_to_online_page(pfn);
4291 if (!page || PageTail(page))
4292 continue;
4293 folio = page_folio(page);
4294 if (!folio_try_get(folio))
4295 continue;
4296
4297 if (unlikely(page_folio(page) != folio))
4298 goto next;
4299
4300 if (zone != folio_zone(folio))
4301 goto next;
4302
4303 if (!folio_test_large(folio)
4304 || folio_test_hugetlb(folio)
4305 || !folio_test_lru(folio))
4306 goto next;
4307
4308 total++;
4309 folio_lock(folio);
4310 nr_pages = folio_nr_pages(folio);
4311 if (!split_folio(folio))
4312 split++;
4313 pfn += nr_pages - 1;
4314 folio_unlock(folio);
4315 next:
4316 folio_put(folio);
4317 cond_resched();
4318 }
4319 }
4320
4321 pr_debug("%lu of %lu THP split\n", split, total);
4322 }
4323
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)4324 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4325 {
4326 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4327 is_vm_hugetlb_page(vma);
4328 }
4329
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order,long in_folio_offset)4330 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4331 unsigned long vaddr_end, unsigned int new_order,
4332 long in_folio_offset)
4333 {
4334 int ret = 0;
4335 struct task_struct *task;
4336 struct mm_struct *mm;
4337 unsigned long total = 0, split = 0;
4338 unsigned long addr;
4339
4340 vaddr_start &= PAGE_MASK;
4341 vaddr_end &= PAGE_MASK;
4342
4343 task = find_get_task_by_vpid(pid);
4344 if (!task) {
4345 ret = -ESRCH;
4346 goto out;
4347 }
4348
4349 /* Find the mm_struct */
4350 mm = get_task_mm(task);
4351 put_task_struct(task);
4352
4353 if (!mm) {
4354 ret = -EINVAL;
4355 goto out;
4356 }
4357
4358 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
4359 pid, vaddr_start, vaddr_end);
4360
4361 mmap_read_lock(mm);
4362 /*
4363 * always increase addr by PAGE_SIZE, since we could have a PTE page
4364 * table filled with PTE-mapped THPs, each of which is distinct.
4365 */
4366 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4367 struct vm_area_struct *vma = vma_lookup(mm, addr);
4368 struct folio_walk fw;
4369 struct folio *folio;
4370 struct address_space *mapping;
4371 unsigned int target_order = new_order;
4372
4373 if (!vma)
4374 break;
4375
4376 /* skip special VMA and hugetlb VMA */
4377 if (vma_not_suitable_for_thp_split(vma)) {
4378 addr = vma->vm_end;
4379 continue;
4380 }
4381
4382 folio = folio_walk_start(&fw, vma, addr, 0);
4383 if (!folio)
4384 continue;
4385
4386 if (!is_transparent_hugepage(folio))
4387 goto next;
4388
4389 if (!folio_test_anon(folio)) {
4390 mapping = folio->mapping;
4391 target_order = max(new_order,
4392 mapping_min_folio_order(mapping));
4393 }
4394
4395 if (target_order >= folio_order(folio))
4396 goto next;
4397
4398 total++;
4399 /*
4400 * For folios with private, split_huge_page_to_list_to_order()
4401 * will try to drop it before split and then check if the folio
4402 * can be split or not. So skip the check here.
4403 */
4404 if (!folio_test_private(folio) &&
4405 !can_split_folio(folio, 0, NULL))
4406 goto next;
4407
4408 if (!folio_trylock(folio))
4409 goto next;
4410 folio_get(folio);
4411 folio_walk_end(&fw, vma);
4412
4413 if (!folio_test_anon(folio) && folio->mapping != mapping)
4414 goto unlock;
4415
4416 if (in_folio_offset < 0 ||
4417 in_folio_offset >= folio_nr_pages(folio)) {
4418 if (!split_folio_to_order(folio, target_order))
4419 split++;
4420 } else {
4421 struct page *split_at = folio_page(folio,
4422 in_folio_offset);
4423 if (!folio_split(folio, target_order, split_at, NULL))
4424 split++;
4425 }
4426
4427 unlock:
4428
4429 folio_unlock(folio);
4430 folio_put(folio);
4431
4432 cond_resched();
4433 continue;
4434 next:
4435 folio_walk_end(&fw, vma);
4436 cond_resched();
4437 }
4438 mmap_read_unlock(mm);
4439 mmput(mm);
4440
4441 pr_debug("%lu of %lu THP split\n", split, total);
4442
4443 out:
4444 return ret;
4445 }
4446
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order,long in_folio_offset)4447 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4448 pgoff_t off_end, unsigned int new_order,
4449 long in_folio_offset)
4450 {
4451 struct filename *file;
4452 struct file *candidate;
4453 struct address_space *mapping;
4454 int ret = -EINVAL;
4455 pgoff_t index;
4456 int nr_pages = 1;
4457 unsigned long total = 0, split = 0;
4458 unsigned int min_order;
4459 unsigned int target_order;
4460
4461 file = getname_kernel(file_path);
4462 if (IS_ERR(file))
4463 return ret;
4464
4465 candidate = file_open_name(file, O_RDONLY, 0);
4466 if (IS_ERR(candidate))
4467 goto out;
4468
4469 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4470 file_path, off_start, off_end);
4471
4472 mapping = candidate->f_mapping;
4473 min_order = mapping_min_folio_order(mapping);
4474 target_order = max(new_order, min_order);
4475
4476 for (index = off_start; index < off_end; index += nr_pages) {
4477 struct folio *folio = filemap_get_folio(mapping, index);
4478
4479 nr_pages = 1;
4480 if (IS_ERR(folio))
4481 continue;
4482
4483 if (!folio_test_large(folio))
4484 goto next;
4485
4486 total++;
4487 nr_pages = folio_nr_pages(folio);
4488
4489 if (target_order >= folio_order(folio))
4490 goto next;
4491
4492 if (!folio_trylock(folio))
4493 goto next;
4494
4495 if (folio->mapping != mapping)
4496 goto unlock;
4497
4498 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4499 if (!split_folio_to_order(folio, target_order))
4500 split++;
4501 } else {
4502 struct page *split_at = folio_page(folio,
4503 in_folio_offset);
4504 if (!folio_split(folio, target_order, split_at, NULL))
4505 split++;
4506 }
4507
4508 unlock:
4509 folio_unlock(folio);
4510 next:
4511 folio_put(folio);
4512 cond_resched();
4513 }
4514
4515 filp_close(candidate, NULL);
4516 ret = 0;
4517
4518 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4519 out:
4520 putname(file);
4521 return ret;
4522 }
4523
4524 #define MAX_INPUT_BUF_SZ 255
4525
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4526 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4527 size_t count, loff_t *ppops)
4528 {
4529 static DEFINE_MUTEX(split_debug_mutex);
4530 ssize_t ret;
4531 /*
4532 * hold pid, start_vaddr, end_vaddr, new_order or
4533 * file_path, off_start, off_end, new_order
4534 */
4535 char input_buf[MAX_INPUT_BUF_SZ];
4536 int pid;
4537 unsigned long vaddr_start, vaddr_end;
4538 unsigned int new_order = 0;
4539 long in_folio_offset = -1;
4540
4541 ret = mutex_lock_interruptible(&split_debug_mutex);
4542 if (ret)
4543 return ret;
4544
4545 ret = -EFAULT;
4546
4547 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4548 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4549 goto out;
4550
4551 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4552
4553 if (input_buf[0] == '/') {
4554 char *tok;
4555 char *tok_buf = input_buf;
4556 char file_path[MAX_INPUT_BUF_SZ];
4557 pgoff_t off_start = 0, off_end = 0;
4558 size_t input_len = strlen(input_buf);
4559
4560 tok = strsep(&tok_buf, ",");
4561 if (tok && tok_buf) {
4562 strscpy(file_path, tok);
4563 } else {
4564 ret = -EINVAL;
4565 goto out;
4566 }
4567
4568 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4569 &new_order, &in_folio_offset);
4570 if (ret != 2 && ret != 3 && ret != 4) {
4571 ret = -EINVAL;
4572 goto out;
4573 }
4574 ret = split_huge_pages_in_file(file_path, off_start, off_end,
4575 new_order, in_folio_offset);
4576 if (!ret)
4577 ret = input_len;
4578
4579 goto out;
4580 }
4581
4582 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4583 &vaddr_end, &new_order, &in_folio_offset);
4584 if (ret == 1 && pid == 1) {
4585 split_huge_pages_all();
4586 ret = strlen(input_buf);
4587 goto out;
4588 } else if (ret != 3 && ret != 4 && ret != 5) {
4589 ret = -EINVAL;
4590 goto out;
4591 }
4592
4593 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4594 in_folio_offset);
4595 if (!ret)
4596 ret = strlen(input_buf);
4597 out:
4598 mutex_unlock(&split_debug_mutex);
4599 return ret;
4600
4601 }
4602
4603 static const struct file_operations split_huge_pages_fops = {
4604 .owner = THIS_MODULE,
4605 .write = split_huge_pages_write,
4606 };
4607
split_huge_pages_debugfs(void)4608 static int __init split_huge_pages_debugfs(void)
4609 {
4610 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4611 &split_huge_pages_fops);
4612 return 0;
4613 }
4614 late_initcall(split_huge_pages_debugfs);
4615 #endif
4616
4617 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4618 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4619 struct page *page)
4620 {
4621 struct folio *folio = page_folio(page);
4622 struct vm_area_struct *vma = pvmw->vma;
4623 struct mm_struct *mm = vma->vm_mm;
4624 unsigned long address = pvmw->address;
4625 bool anon_exclusive;
4626 pmd_t pmdval;
4627 swp_entry_t entry;
4628 pmd_t pmdswp;
4629
4630 if (!(pvmw->pmd && !pvmw->pte))
4631 return 0;
4632
4633 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4634 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4635
4636 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4637 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4638 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4639 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4640 return -EBUSY;
4641 }
4642
4643 if (pmd_dirty(pmdval))
4644 folio_mark_dirty(folio);
4645 if (pmd_write(pmdval))
4646 entry = make_writable_migration_entry(page_to_pfn(page));
4647 else if (anon_exclusive)
4648 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4649 else
4650 entry = make_readable_migration_entry(page_to_pfn(page));
4651 if (pmd_young(pmdval))
4652 entry = make_migration_entry_young(entry);
4653 if (pmd_dirty(pmdval))
4654 entry = make_migration_entry_dirty(entry);
4655 pmdswp = swp_entry_to_pmd(entry);
4656 if (pmd_soft_dirty(pmdval))
4657 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4658 if (pmd_uffd_wp(pmdval))
4659 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4660 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4661 folio_remove_rmap_pmd(folio, page, vma);
4662 folio_put(folio);
4663 trace_set_migration_pmd(address, pmd_val(pmdswp));
4664
4665 return 0;
4666 }
4667
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4668 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4669 {
4670 struct folio *folio = page_folio(new);
4671 struct vm_area_struct *vma = pvmw->vma;
4672 struct mm_struct *mm = vma->vm_mm;
4673 unsigned long address = pvmw->address;
4674 unsigned long haddr = address & HPAGE_PMD_MASK;
4675 pmd_t pmde;
4676 swp_entry_t entry;
4677
4678 if (!(pvmw->pmd && !pvmw->pte))
4679 return;
4680
4681 entry = pmd_to_swp_entry(*pvmw->pmd);
4682 folio_get(folio);
4683 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4684 if (pmd_swp_soft_dirty(*pvmw->pmd))
4685 pmde = pmd_mksoft_dirty(pmde);
4686 if (is_writable_migration_entry(entry))
4687 pmde = pmd_mkwrite(pmde, vma);
4688 if (pmd_swp_uffd_wp(*pvmw->pmd))
4689 pmde = pmd_mkuffd_wp(pmde);
4690 if (!is_migration_entry_young(entry))
4691 pmde = pmd_mkold(pmde);
4692 /* NOTE: this may contain setting soft-dirty on some archs */
4693 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4694 pmde = pmd_mkdirty(pmde);
4695
4696 if (folio_test_anon(folio)) {
4697 rmap_t rmap_flags = RMAP_NONE;
4698
4699 if (!is_readable_migration_entry(entry))
4700 rmap_flags |= RMAP_EXCLUSIVE;
4701
4702 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4703 } else {
4704 folio_add_file_rmap_pmd(folio, new, vma);
4705 }
4706 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4707 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4708
4709 /* No need to invalidate - it was non-present before */
4710 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4711 trace_remove_migration_pmd(address, pmd_val(pmde));
4712 }
4713 #endif
4714