1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27
28 #include "internal.h"
29
30 struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
33 };
34
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)35 static inline void sanity_check_pinned_pages(struct page **pages,
36 unsigned long npages)
37 {
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 return;
40
41 /*
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
45 *
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
52 */
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio;
56
57 if (!page)
58 continue;
59
60 folio = page_folio(page);
61
62 if (is_zero_page(page) ||
63 !folio_test_anon(folio))
64 continue;
65 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
66 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
67 else
68 /* Either a PTE-mapped or a PMD-mapped THP. */
69 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
70 !PageAnonExclusive(page), page);
71 }
72 }
73
74 /*
75 * Return the folio with ref appropriately incremented,
76 * or NULL if that failed.
77 */
try_get_folio(struct page * page,int refs)78 static inline struct folio *try_get_folio(struct page *page, int refs)
79 {
80 struct folio *folio;
81
82 retry:
83 folio = page_folio(page);
84 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
85 return NULL;
86 if (unlikely(!folio_ref_try_add(folio, refs)))
87 return NULL;
88
89 /*
90 * At this point we have a stable reference to the folio; but it
91 * could be that between calling page_folio() and the refcount
92 * increment, the folio was split, in which case we'd end up
93 * holding a reference on a folio that has nothing to do with the page
94 * we were given anymore.
95 * So now that the folio is stable, recheck that the page still
96 * belongs to this folio.
97 */
98 if (unlikely(page_folio(page) != folio)) {
99 folio_put_refs(folio, refs);
100 goto retry;
101 }
102
103 return folio;
104 }
105
gup_put_folio(struct folio * folio,int refs,unsigned int flags)106 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
107 {
108 if (flags & FOLL_PIN) {
109 if (is_zero_folio(folio))
110 return;
111 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
112 if (folio_has_pincount(folio))
113 atomic_sub(refs, &folio->_pincount);
114 else
115 refs *= GUP_PIN_COUNTING_BIAS;
116 }
117
118 folio_put_refs(folio, refs);
119 }
120
121 /**
122 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
123 * @folio: pointer to folio to be grabbed
124 * @refs: the value to (effectively) add to the folio's refcount
125 * @flags: gup flags: these are the FOLL_* flag values
126 *
127 * This might not do anything at all, depending on the flags argument.
128 *
129 * "grab" names in this file mean, "look at flags to decide whether to use
130 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
131 *
132 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
133 * time.
134 *
135 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
136 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
137 *
138 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
139 * be grabbed.
140 *
141 * It is called when we have a stable reference for the folio, typically in
142 * GUP slow path.
143 */
try_grab_folio(struct folio * folio,int refs,unsigned int flags)144 int __must_check try_grab_folio(struct folio *folio, int refs,
145 unsigned int flags)
146 {
147 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
148 return -ENOMEM;
149
150 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
151 return -EREMOTEIO;
152
153 if (flags & FOLL_GET)
154 folio_ref_add(folio, refs);
155 else if (flags & FOLL_PIN) {
156 /*
157 * Don't take a pin on the zero page - it's not going anywhere
158 * and it is used in a *lot* of places.
159 */
160 if (is_zero_folio(folio))
161 return 0;
162
163 /*
164 * Increment the normal page refcount field at least once,
165 * so that the page really is pinned.
166 */
167 if (folio_has_pincount(folio)) {
168 folio_ref_add(folio, refs);
169 atomic_add(refs, &folio->_pincount);
170 } else {
171 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
172 }
173
174 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
175 }
176
177 return 0;
178 }
179
180 /**
181 * unpin_user_page() - release a dma-pinned page
182 * @page: pointer to page to be released
183 *
184 * Pages that were pinned via pin_user_pages*() must be released via either
185 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
186 * that such pages can be separately tracked and uniquely handled. In
187 * particular, interactions with RDMA and filesystems need special handling.
188 */
unpin_user_page(struct page * page)189 void unpin_user_page(struct page *page)
190 {
191 sanity_check_pinned_pages(&page, 1);
192 gup_put_folio(page_folio(page), 1, FOLL_PIN);
193 }
194 EXPORT_SYMBOL(unpin_user_page);
195
196 /**
197 * unpin_folio() - release a dma-pinned folio
198 * @folio: pointer to folio to be released
199 *
200 * Folios that were pinned via memfd_pin_folios() or other similar routines
201 * must be released either using unpin_folio() or unpin_folios().
202 */
unpin_folio(struct folio * folio)203 void unpin_folio(struct folio *folio)
204 {
205 gup_put_folio(folio, 1, FOLL_PIN);
206 }
207 EXPORT_SYMBOL_GPL(unpin_folio);
208
209 /**
210 * folio_add_pin - Try to get an additional pin on a pinned folio
211 * @folio: The folio to be pinned
212 *
213 * Get an additional pin on a folio we already have a pin on. Makes no change
214 * if the folio is a zero_page.
215 */
folio_add_pin(struct folio * folio)216 void folio_add_pin(struct folio *folio)
217 {
218 if (is_zero_folio(folio))
219 return;
220
221 /*
222 * Similar to try_grab_folio(): be sure to *also* increment the normal
223 * page refcount field at least once, so that the page really is
224 * pinned.
225 */
226 if (folio_has_pincount(folio)) {
227 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
228 folio_ref_inc(folio);
229 atomic_inc(&folio->_pincount);
230 } else {
231 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
232 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
233 }
234 }
235
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)236 static inline struct folio *gup_folio_range_next(struct page *start,
237 unsigned long npages, unsigned long i, unsigned int *ntails)
238 {
239 struct page *next = nth_page(start, i);
240 struct folio *folio = page_folio(next);
241 unsigned int nr = 1;
242
243 if (folio_test_large(folio))
244 nr = min_t(unsigned int, npages - i,
245 folio_nr_pages(folio) - folio_page_idx(folio, next));
246
247 *ntails = nr;
248 return folio;
249 }
250
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)251 static inline struct folio *gup_folio_next(struct page **list,
252 unsigned long npages, unsigned long i, unsigned int *ntails)
253 {
254 struct folio *folio = page_folio(list[i]);
255 unsigned int nr;
256
257 for (nr = i + 1; nr < npages; nr++) {
258 if (page_folio(list[nr]) != folio)
259 break;
260 }
261
262 *ntails = nr - i;
263 return folio;
264 }
265
266 /**
267 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
268 * @pages: array of pages to be maybe marked dirty, and definitely released.
269 * @npages: number of pages in the @pages array.
270 * @make_dirty: whether to mark the pages dirty
271 *
272 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
273 * variants called on that page.
274 *
275 * For each page in the @pages array, make that page (or its head page, if a
276 * compound page) dirty, if @make_dirty is true, and if the page was previously
277 * listed as clean. In any case, releases all pages using unpin_user_page(),
278 * possibly via unpin_user_pages(), for the non-dirty case.
279 *
280 * Please see the unpin_user_page() documentation for details.
281 *
282 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
283 * required, then the caller should a) verify that this is really correct,
284 * because _lock() is usually required, and b) hand code it:
285 * set_page_dirty_lock(), unpin_user_page().
286 *
287 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)288 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
289 bool make_dirty)
290 {
291 unsigned long i;
292 struct folio *folio;
293 unsigned int nr;
294
295 if (!make_dirty) {
296 unpin_user_pages(pages, npages);
297 return;
298 }
299
300 sanity_check_pinned_pages(pages, npages);
301 for (i = 0; i < npages; i += nr) {
302 folio = gup_folio_next(pages, npages, i, &nr);
303 /*
304 * Checking PageDirty at this point may race with
305 * clear_page_dirty_for_io(), but that's OK. Two key
306 * cases:
307 *
308 * 1) This code sees the page as already dirty, so it
309 * skips the call to set_page_dirty(). That could happen
310 * because clear_page_dirty_for_io() called
311 * folio_mkclean(), followed by set_page_dirty().
312 * However, now the page is going to get written back,
313 * which meets the original intention of setting it
314 * dirty, so all is well: clear_page_dirty_for_io() goes
315 * on to call TestClearPageDirty(), and write the page
316 * back.
317 *
318 * 2) This code sees the page as clean, so it calls
319 * set_page_dirty(). The page stays dirty, despite being
320 * written back, so it gets written back again in the
321 * next writeback cycle. This is harmless.
322 */
323 if (!folio_test_dirty(folio)) {
324 folio_lock(folio);
325 folio_mark_dirty(folio);
326 folio_unlock(folio);
327 }
328 gup_put_folio(folio, nr, FOLL_PIN);
329 }
330 }
331 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
332
333 /**
334 * unpin_user_page_range_dirty_lock() - release and optionally dirty
335 * gup-pinned page range
336 *
337 * @page: the starting page of a range maybe marked dirty, and definitely released.
338 * @npages: number of consecutive pages to release.
339 * @make_dirty: whether to mark the pages dirty
340 *
341 * "gup-pinned page range" refers to a range of pages that has had one of the
342 * pin_user_pages() variants called on that page.
343 *
344 * For the page ranges defined by [page .. page+npages], make that range (or
345 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
346 * page range was previously listed as clean.
347 *
348 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
349 * required, then the caller should a) verify that this is really correct,
350 * because _lock() is usually required, and b) hand code it:
351 * set_page_dirty_lock(), unpin_user_page().
352 *
353 */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)354 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
355 bool make_dirty)
356 {
357 unsigned long i;
358 struct folio *folio;
359 unsigned int nr;
360
361 for (i = 0; i < npages; i += nr) {
362 folio = gup_folio_range_next(page, npages, i, &nr);
363 if (make_dirty && !folio_test_dirty(folio)) {
364 folio_lock(folio);
365 folio_mark_dirty(folio);
366 folio_unlock(folio);
367 }
368 gup_put_folio(folio, nr, FOLL_PIN);
369 }
370 }
371 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
372
gup_fast_unpin_user_pages(struct page ** pages,unsigned long npages)373 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
374 {
375 unsigned long i;
376 struct folio *folio;
377 unsigned int nr;
378
379 /*
380 * Don't perform any sanity checks because we might have raced with
381 * fork() and some anonymous pages might now actually be shared --
382 * which is why we're unpinning after all.
383 */
384 for (i = 0; i < npages; i += nr) {
385 folio = gup_folio_next(pages, npages, i, &nr);
386 gup_put_folio(folio, nr, FOLL_PIN);
387 }
388 }
389
390 /**
391 * unpin_user_pages() - release an array of gup-pinned pages.
392 * @pages: array of pages to be marked dirty and released.
393 * @npages: number of pages in the @pages array.
394 *
395 * For each page in the @pages array, release the page using unpin_user_page().
396 *
397 * Please see the unpin_user_page() documentation for details.
398 */
unpin_user_pages(struct page ** pages,unsigned long npages)399 void unpin_user_pages(struct page **pages, unsigned long npages)
400 {
401 unsigned long i;
402 struct folio *folio;
403 unsigned int nr;
404
405 /*
406 * If this WARN_ON() fires, then the system *might* be leaking pages (by
407 * leaving them pinned), but probably not. More likely, gup/pup returned
408 * a hard -ERRNO error to the caller, who erroneously passed it here.
409 */
410 if (WARN_ON(IS_ERR_VALUE(npages)))
411 return;
412
413 sanity_check_pinned_pages(pages, npages);
414 for (i = 0; i < npages; i += nr) {
415 if (!pages[i]) {
416 nr = 1;
417 continue;
418 }
419 folio = gup_folio_next(pages, npages, i, &nr);
420 gup_put_folio(folio, nr, FOLL_PIN);
421 }
422 }
423 EXPORT_SYMBOL(unpin_user_pages);
424
425 /**
426 * unpin_user_folio() - release pages of a folio
427 * @folio: pointer to folio to be released
428 * @npages: number of pages of same folio
429 *
430 * Release npages of the folio
431 */
unpin_user_folio(struct folio * folio,unsigned long npages)432 void unpin_user_folio(struct folio *folio, unsigned long npages)
433 {
434 gup_put_folio(folio, npages, FOLL_PIN);
435 }
436 EXPORT_SYMBOL(unpin_user_folio);
437
438 /**
439 * unpin_folios() - release an array of gup-pinned folios.
440 * @folios: array of folios to be marked dirty and released.
441 * @nfolios: number of folios in the @folios array.
442 *
443 * For each folio in the @folios array, release the folio using gup_put_folio.
444 *
445 * Please see the unpin_folio() documentation for details.
446 */
unpin_folios(struct folio ** folios,unsigned long nfolios)447 void unpin_folios(struct folio **folios, unsigned long nfolios)
448 {
449 unsigned long i = 0, j;
450
451 /*
452 * If this WARN_ON() fires, then the system *might* be leaking folios
453 * (by leaving them pinned), but probably not. More likely, gup/pup
454 * returned a hard -ERRNO error to the caller, who erroneously passed
455 * it here.
456 */
457 if (WARN_ON(IS_ERR_VALUE(nfolios)))
458 return;
459
460 while (i < nfolios) {
461 for (j = i + 1; j < nfolios; j++)
462 if (folios[i] != folios[j])
463 break;
464
465 if (folios[i])
466 gup_put_folio(folios[i], j - i, FOLL_PIN);
467 i = j;
468 }
469 }
470 EXPORT_SYMBOL_GPL(unpin_folios);
471
472 /*
473 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
474 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
475 * cache bouncing on large SMP machines for concurrent pinned gups.
476 */
mm_set_has_pinned_flag(unsigned long * mm_flags)477 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
478 {
479 if (!test_bit(MMF_HAS_PINNED, mm_flags))
480 set_bit(MMF_HAS_PINNED, mm_flags);
481 }
482
483 #ifdef CONFIG_MMU
484
485 #ifdef CONFIG_HAVE_GUP_FAST
record_subpages(struct page * page,unsigned long sz,unsigned long addr,unsigned long end,struct page ** pages)486 static int record_subpages(struct page *page, unsigned long sz,
487 unsigned long addr, unsigned long end,
488 struct page **pages)
489 {
490 struct page *start_page;
491 int nr;
492
493 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
494 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
495 pages[nr] = nth_page(start_page, nr);
496
497 return nr;
498 }
499
500 /**
501 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
502 * @page: pointer to page to be grabbed
503 * @refs: the value to (effectively) add to the folio's refcount
504 * @flags: gup flags: these are the FOLL_* flag values.
505 *
506 * "grab" names in this file mean, "look at flags to decide whether to use
507 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
508 *
509 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
510 * same time. (That's true throughout the get_user_pages*() and
511 * pin_user_pages*() APIs.) Cases:
512 *
513 * FOLL_GET: folio's refcount will be incremented by @refs.
514 *
515 * FOLL_PIN on large folios: folio's refcount will be incremented by
516 * @refs, and its pincount will be incremented by @refs.
517 *
518 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
519 * @refs * GUP_PIN_COUNTING_BIAS.
520 *
521 * Return: The folio containing @page (with refcount appropriately
522 * incremented) for success, or NULL upon failure. If neither FOLL_GET
523 * nor FOLL_PIN was set, that's considered failure, and furthermore,
524 * a likely bug in the caller, so a warning is also emitted.
525 *
526 * It uses add ref unless zero to elevate the folio refcount and must be called
527 * in fast path only.
528 */
try_grab_folio_fast(struct page * page,int refs,unsigned int flags)529 static struct folio *try_grab_folio_fast(struct page *page, int refs,
530 unsigned int flags)
531 {
532 struct folio *folio;
533
534 /* Raise warn if it is not called in fast GUP */
535 VM_WARN_ON_ONCE(!irqs_disabled());
536
537 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
538 return NULL;
539
540 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
541 return NULL;
542
543 if (flags & FOLL_GET)
544 return try_get_folio(page, refs);
545
546 /* FOLL_PIN is set */
547
548 /*
549 * Don't take a pin on the zero page - it's not going anywhere
550 * and it is used in a *lot* of places.
551 */
552 if (is_zero_page(page))
553 return page_folio(page);
554
555 folio = try_get_folio(page, refs);
556 if (!folio)
557 return NULL;
558
559 /*
560 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
561 * right zone, so fail and let the caller fall back to the slow
562 * path.
563 */
564 if (unlikely((flags & FOLL_LONGTERM) &&
565 !folio_is_longterm_pinnable(folio))) {
566 folio_put_refs(folio, refs);
567 return NULL;
568 }
569
570 /*
571 * When pinning a large folio, use an exact count to track it.
572 *
573 * However, be sure to *also* increment the normal folio
574 * refcount field at least once, so that the folio really
575 * is pinned. That's why the refcount from the earlier
576 * try_get_folio() is left intact.
577 */
578 if (folio_has_pincount(folio))
579 atomic_add(refs, &folio->_pincount);
580 else
581 folio_ref_add(folio,
582 refs * (GUP_PIN_COUNTING_BIAS - 1));
583 /*
584 * Adjust the pincount before re-checking the PTE for changes.
585 * This is essentially a smp_mb() and is paired with a memory
586 * barrier in folio_try_share_anon_rmap_*().
587 */
588 smp_mb__after_atomic();
589
590 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
591
592 return folio;
593 }
594 #endif /* CONFIG_HAVE_GUP_FAST */
595
596 /* Common code for can_follow_write_* */
can_follow_write_common(struct page * page,struct vm_area_struct * vma,unsigned int flags)597 static inline bool can_follow_write_common(struct page *page,
598 struct vm_area_struct *vma, unsigned int flags)
599 {
600 /* Maybe FOLL_FORCE is set to override it? */
601 if (!(flags & FOLL_FORCE))
602 return false;
603
604 /* But FOLL_FORCE has no effect on shared mappings */
605 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
606 return false;
607
608 /* ... or read-only private ones */
609 if (!(vma->vm_flags & VM_MAYWRITE))
610 return false;
611
612 /* ... or already writable ones that just need to take a write fault */
613 if (vma->vm_flags & VM_WRITE)
614 return false;
615
616 /*
617 * See can_change_pte_writable(): we broke COW and could map the page
618 * writable if we have an exclusive anonymous page ...
619 */
620 return page && PageAnon(page) && PageAnonExclusive(page);
621 }
622
no_page_table(struct vm_area_struct * vma,unsigned int flags,unsigned long address)623 static struct page *no_page_table(struct vm_area_struct *vma,
624 unsigned int flags, unsigned long address)
625 {
626 if (!(flags & FOLL_DUMP))
627 return NULL;
628
629 /*
630 * When core dumping, we don't want to allocate unnecessary pages or
631 * page tables. Return error instead of NULL to skip handle_mm_fault,
632 * then get_dump_page() will return NULL to leave a hole in the dump.
633 * But we can only make this optimization where a hole would surely
634 * be zero-filled if handle_mm_fault() actually did handle it.
635 */
636 if (is_vm_hugetlb_page(vma)) {
637 struct hstate *h = hstate_vma(vma);
638
639 if (!hugetlbfs_pagecache_present(h, vma, address))
640 return ERR_PTR(-EFAULT);
641 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
642 return ERR_PTR(-EFAULT);
643 }
644
645 return NULL;
646 }
647
648 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
649 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
can_follow_write_pud(pud_t pud,struct page * page,struct vm_area_struct * vma,unsigned int flags)650 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
651 struct vm_area_struct *vma,
652 unsigned int flags)
653 {
654 /* If the pud is writable, we can write to the page. */
655 if (pud_write(pud))
656 return true;
657
658 return can_follow_write_common(page, vma, flags);
659 }
660
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)661 static struct page *follow_huge_pud(struct vm_area_struct *vma,
662 unsigned long addr, pud_t *pudp,
663 int flags, struct follow_page_context *ctx)
664 {
665 struct mm_struct *mm = vma->vm_mm;
666 struct page *page;
667 pud_t pud = *pudp;
668 unsigned long pfn = pud_pfn(pud);
669 int ret;
670
671 assert_spin_locked(pud_lockptr(mm, pudp));
672
673 if (!pud_present(pud))
674 return NULL;
675
676 if ((flags & FOLL_WRITE) &&
677 !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
678 return NULL;
679
680 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
681
682 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
683 pud_devmap(pud)) {
684 /*
685 * device mapped pages can only be returned if the caller
686 * will manage the page reference count.
687 *
688 * At least one of FOLL_GET | FOLL_PIN must be set, so
689 * assert that here:
690 */
691 if (!(flags & (FOLL_GET | FOLL_PIN)))
692 return ERR_PTR(-EEXIST);
693
694 if (flags & FOLL_TOUCH)
695 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
696
697 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
698 if (!ctx->pgmap)
699 return ERR_PTR(-EFAULT);
700 }
701
702 page = pfn_to_page(pfn);
703
704 if (!pud_devmap(pud) && !pud_write(pud) &&
705 gup_must_unshare(vma, flags, page))
706 return ERR_PTR(-EMLINK);
707
708 ret = try_grab_folio(page_folio(page), 1, flags);
709 if (ret)
710 page = ERR_PTR(ret);
711 else
712 ctx->page_mask = HPAGE_PUD_NR - 1;
713
714 return page;
715 }
716
717 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)718 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
719 struct vm_area_struct *vma,
720 unsigned int flags)
721 {
722 /* If the pmd is writable, we can write to the page. */
723 if (pmd_write(pmd))
724 return true;
725
726 if (!can_follow_write_common(page, vma, flags))
727 return false;
728
729 /* ... and a write-fault isn't required for other reasons. */
730 if (pmd_needs_soft_dirty_wp(vma, pmd))
731 return false;
732 return !userfaultfd_huge_pmd_wp(vma, pmd);
733 }
734
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)735 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
736 unsigned long addr, pmd_t *pmd,
737 unsigned int flags,
738 struct follow_page_context *ctx)
739 {
740 struct mm_struct *mm = vma->vm_mm;
741 pmd_t pmdval = *pmd;
742 struct page *page;
743 int ret;
744
745 assert_spin_locked(pmd_lockptr(mm, pmd));
746
747 page = pmd_page(pmdval);
748 if ((flags & FOLL_WRITE) &&
749 !can_follow_write_pmd(pmdval, page, vma, flags))
750 return NULL;
751
752 /* Avoid dumping huge zero page */
753 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
754 return ERR_PTR(-EFAULT);
755
756 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
757 return NULL;
758
759 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
760 return ERR_PTR(-EMLINK);
761
762 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
763 !PageAnonExclusive(page), page);
764
765 ret = try_grab_folio(page_folio(page), 1, flags);
766 if (ret)
767 return ERR_PTR(ret);
768
769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
770 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
771 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
772 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
773
774 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
775 ctx->page_mask = HPAGE_PMD_NR - 1;
776
777 return page;
778 }
779
780 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)781 static struct page *follow_huge_pud(struct vm_area_struct *vma,
782 unsigned long addr, pud_t *pudp,
783 int flags, struct follow_page_context *ctx)
784 {
785 return NULL;
786 }
787
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)788 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
789 unsigned long addr, pmd_t *pmd,
790 unsigned int flags,
791 struct follow_page_context *ctx)
792 {
793 return NULL;
794 }
795 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
796
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)797 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
798 pte_t *pte, unsigned int flags)
799 {
800 if (flags & FOLL_TOUCH) {
801 pte_t orig_entry = ptep_get(pte);
802 pte_t entry = orig_entry;
803
804 if (flags & FOLL_WRITE)
805 entry = pte_mkdirty(entry);
806 entry = pte_mkyoung(entry);
807
808 if (!pte_same(orig_entry, entry)) {
809 set_pte_at(vma->vm_mm, address, pte, entry);
810 update_mmu_cache(vma, address, pte);
811 }
812 }
813
814 /* Proper page table entry exists, but no corresponding struct page */
815 return -EEXIST;
816 }
817
818 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)819 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
820 struct vm_area_struct *vma,
821 unsigned int flags)
822 {
823 /* If the pte is writable, we can write to the page. */
824 if (pte_write(pte))
825 return true;
826
827 if (!can_follow_write_common(page, vma, flags))
828 return false;
829
830 /* ... and a write-fault isn't required for other reasons. */
831 if (pte_needs_soft_dirty_wp(vma, pte))
832 return false;
833 return !userfaultfd_pte_wp(vma, pte);
834 }
835
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)836 static struct page *follow_page_pte(struct vm_area_struct *vma,
837 unsigned long address, pmd_t *pmd, unsigned int flags,
838 struct dev_pagemap **pgmap)
839 {
840 struct mm_struct *mm = vma->vm_mm;
841 struct folio *folio;
842 struct page *page;
843 spinlock_t *ptl;
844 pte_t *ptep, pte;
845 int ret;
846
847 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
848 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
849 (FOLL_PIN | FOLL_GET)))
850 return ERR_PTR(-EINVAL);
851
852 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
853 if (!ptep)
854 return no_page_table(vma, flags, address);
855 pte = ptep_get(ptep);
856 if (!pte_present(pte))
857 goto no_page;
858 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
859 goto no_page;
860
861 page = vm_normal_page(vma, address, pte);
862
863 /*
864 * We only care about anon pages in can_follow_write_pte() and don't
865 * have to worry about pte_devmap() because they are never anon.
866 */
867 if ((flags & FOLL_WRITE) &&
868 !can_follow_write_pte(pte, page, vma, flags)) {
869 page = NULL;
870 goto out;
871 }
872
873 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
874 /*
875 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
876 * case since they are only valid while holding the pgmap
877 * reference.
878 */
879 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
880 if (*pgmap)
881 page = pte_page(pte);
882 else
883 goto no_page;
884 } else if (unlikely(!page)) {
885 if (flags & FOLL_DUMP) {
886 /* Avoid special (like zero) pages in core dumps */
887 page = ERR_PTR(-EFAULT);
888 goto out;
889 }
890
891 if (is_zero_pfn(pte_pfn(pte))) {
892 page = pte_page(pte);
893 } else {
894 ret = follow_pfn_pte(vma, address, ptep, flags);
895 page = ERR_PTR(ret);
896 goto out;
897 }
898 }
899 folio = page_folio(page);
900
901 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
902 page = ERR_PTR(-EMLINK);
903 goto out;
904 }
905
906 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
907 !PageAnonExclusive(page), page);
908
909 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
910 ret = try_grab_folio(folio, 1, flags);
911 if (unlikely(ret)) {
912 page = ERR_PTR(ret);
913 goto out;
914 }
915
916 /*
917 * We need to make the page accessible if and only if we are going
918 * to access its content (the FOLL_PIN case). Please see
919 * Documentation/core-api/pin_user_pages.rst for details.
920 */
921 if (flags & FOLL_PIN) {
922 ret = arch_make_folio_accessible(folio);
923 if (ret) {
924 unpin_user_page(page);
925 page = ERR_PTR(ret);
926 goto out;
927 }
928 }
929 if (flags & FOLL_TOUCH) {
930 if ((flags & FOLL_WRITE) &&
931 !pte_dirty(pte) && !folio_test_dirty(folio))
932 folio_mark_dirty(folio);
933 /*
934 * pte_mkyoung() would be more correct here, but atomic care
935 * is needed to avoid losing the dirty bit: it is easier to use
936 * folio_mark_accessed().
937 */
938 folio_mark_accessed(folio);
939 }
940 out:
941 pte_unmap_unlock(ptep, ptl);
942 return page;
943 no_page:
944 pte_unmap_unlock(ptep, ptl);
945 if (!pte_none(pte))
946 return NULL;
947 return no_page_table(vma, flags, address);
948 }
949
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)950 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
951 unsigned long address, pud_t *pudp,
952 unsigned int flags,
953 struct follow_page_context *ctx)
954 {
955 pmd_t *pmd, pmdval;
956 spinlock_t *ptl;
957 struct page *page;
958 struct mm_struct *mm = vma->vm_mm;
959
960 pmd = pmd_offset(pudp, address);
961 pmdval = pmdp_get_lockless(pmd);
962 if (pmd_none(pmdval))
963 return no_page_table(vma, flags, address);
964 if (!pmd_present(pmdval))
965 return no_page_table(vma, flags, address);
966 if (pmd_devmap(pmdval)) {
967 ptl = pmd_lock(mm, pmd);
968 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
969 spin_unlock(ptl);
970 if (page)
971 return page;
972 return no_page_table(vma, flags, address);
973 }
974 if (likely(!pmd_leaf(pmdval)))
975 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
976
977 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
978 return no_page_table(vma, flags, address);
979
980 ptl = pmd_lock(mm, pmd);
981 pmdval = *pmd;
982 if (unlikely(!pmd_present(pmdval))) {
983 spin_unlock(ptl);
984 return no_page_table(vma, flags, address);
985 }
986 if (unlikely(!pmd_leaf(pmdval))) {
987 spin_unlock(ptl);
988 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
989 }
990 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
991 spin_unlock(ptl);
992 split_huge_pmd(vma, pmd, address);
993 /* If pmd was left empty, stuff a page table in there quickly */
994 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
995 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
996 }
997 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
998 spin_unlock(ptl);
999 return page;
1000 }
1001
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)1002 static struct page *follow_pud_mask(struct vm_area_struct *vma,
1003 unsigned long address, p4d_t *p4dp,
1004 unsigned int flags,
1005 struct follow_page_context *ctx)
1006 {
1007 pud_t *pudp, pud;
1008 spinlock_t *ptl;
1009 struct page *page;
1010 struct mm_struct *mm = vma->vm_mm;
1011
1012 pudp = pud_offset(p4dp, address);
1013 pud = READ_ONCE(*pudp);
1014 if (!pud_present(pud))
1015 return no_page_table(vma, flags, address);
1016 if (pud_leaf(pud)) {
1017 ptl = pud_lock(mm, pudp);
1018 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1019 spin_unlock(ptl);
1020 if (page)
1021 return page;
1022 return no_page_table(vma, flags, address);
1023 }
1024 if (unlikely(pud_bad(pud)))
1025 return no_page_table(vma, flags, address);
1026
1027 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1028 }
1029
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)1030 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1031 unsigned long address, pgd_t *pgdp,
1032 unsigned int flags,
1033 struct follow_page_context *ctx)
1034 {
1035 p4d_t *p4dp, p4d;
1036
1037 p4dp = p4d_offset(pgdp, address);
1038 p4d = READ_ONCE(*p4dp);
1039 BUILD_BUG_ON(p4d_leaf(p4d));
1040
1041 if (!p4d_present(p4d) || p4d_bad(p4d))
1042 return no_page_table(vma, flags, address);
1043
1044 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1045 }
1046
1047 /**
1048 * follow_page_mask - look up a page descriptor from a user-virtual address
1049 * @vma: vm_area_struct mapping @address
1050 * @address: virtual address to look up
1051 * @flags: flags modifying lookup behaviour
1052 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1053 * pointer to output page_mask
1054 *
1055 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1056 *
1057 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1058 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1059 *
1060 * When getting an anonymous page and the caller has to trigger unsharing
1061 * of a shared anonymous page first, -EMLINK is returned. The caller should
1062 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1063 * relevant with FOLL_PIN and !FOLL_WRITE.
1064 *
1065 * On output, the @ctx->page_mask is set according to the size of the page.
1066 *
1067 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1068 * an error pointer if there is a mapping to something not represented
1069 * by a page descriptor (see also vm_normal_page()).
1070 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)1071 static struct page *follow_page_mask(struct vm_area_struct *vma,
1072 unsigned long address, unsigned int flags,
1073 struct follow_page_context *ctx)
1074 {
1075 pgd_t *pgd;
1076 struct mm_struct *mm = vma->vm_mm;
1077 struct page *page;
1078
1079 vma_pgtable_walk_begin(vma);
1080
1081 ctx->page_mask = 0;
1082 pgd = pgd_offset(mm, address);
1083
1084 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1085 page = no_page_table(vma, flags, address);
1086 else
1087 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1088
1089 vma_pgtable_walk_end(vma);
1090
1091 return page;
1092 }
1093
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)1094 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1095 unsigned int gup_flags, struct vm_area_struct **vma,
1096 struct page **page)
1097 {
1098 pgd_t *pgd;
1099 p4d_t *p4d;
1100 pud_t *pud;
1101 pmd_t *pmd;
1102 pte_t *pte;
1103 pte_t entry;
1104 int ret = -EFAULT;
1105
1106 /* user gate pages are read-only */
1107 if (gup_flags & FOLL_WRITE)
1108 return -EFAULT;
1109 if (address > TASK_SIZE)
1110 pgd = pgd_offset_k(address);
1111 else
1112 pgd = pgd_offset_gate(mm, address);
1113 if (pgd_none(*pgd))
1114 return -EFAULT;
1115 p4d = p4d_offset(pgd, address);
1116 if (p4d_none(*p4d))
1117 return -EFAULT;
1118 pud = pud_offset(p4d, address);
1119 if (pud_none(*pud))
1120 return -EFAULT;
1121 pmd = pmd_offset(pud, address);
1122 if (!pmd_present(*pmd))
1123 return -EFAULT;
1124 pte = pte_offset_map(pmd, address);
1125 if (!pte)
1126 return -EFAULT;
1127 entry = ptep_get(pte);
1128 if (pte_none(entry))
1129 goto unmap;
1130 *vma = get_gate_vma(mm);
1131 if (!page)
1132 goto out;
1133 *page = vm_normal_page(*vma, address, entry);
1134 if (!*page) {
1135 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1136 goto unmap;
1137 *page = pte_page(entry);
1138 }
1139 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1140 if (unlikely(ret))
1141 goto unmap;
1142 out:
1143 ret = 0;
1144 unmap:
1145 pte_unmap(pte);
1146 return ret;
1147 }
1148
1149 /*
1150 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1151 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1152 * to 0 and -EBUSY returned.
1153 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags,bool unshare,int * locked)1154 static int faultin_page(struct vm_area_struct *vma,
1155 unsigned long address, unsigned int flags, bool unshare,
1156 int *locked)
1157 {
1158 unsigned int fault_flags = 0;
1159 vm_fault_t ret;
1160
1161 if (flags & FOLL_NOFAULT)
1162 return -EFAULT;
1163 if (flags & FOLL_WRITE)
1164 fault_flags |= FAULT_FLAG_WRITE;
1165 if (flags & FOLL_REMOTE)
1166 fault_flags |= FAULT_FLAG_REMOTE;
1167 if (flags & FOLL_UNLOCKABLE) {
1168 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1169 /*
1170 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1171 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1172 * That's because some callers may not be prepared to
1173 * handle early exits caused by non-fatal signals.
1174 */
1175 if (flags & FOLL_INTERRUPTIBLE)
1176 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1177 }
1178 if (flags & FOLL_NOWAIT)
1179 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1180 if (flags & FOLL_TRIED) {
1181 /*
1182 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1183 * can co-exist
1184 */
1185 fault_flags |= FAULT_FLAG_TRIED;
1186 }
1187 if (unshare) {
1188 fault_flags |= FAULT_FLAG_UNSHARE;
1189 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1190 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1191 }
1192
1193 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1194
1195 if (ret & VM_FAULT_COMPLETED) {
1196 /*
1197 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1198 * mmap lock in the page fault handler. Sanity check this.
1199 */
1200 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1201 *locked = 0;
1202
1203 /*
1204 * We should do the same as VM_FAULT_RETRY, but let's not
1205 * return -EBUSY since that's not reflecting the reality of
1206 * what has happened - we've just fully completed a page
1207 * fault, with the mmap lock released. Use -EAGAIN to show
1208 * that we want to take the mmap lock _again_.
1209 */
1210 return -EAGAIN;
1211 }
1212
1213 if (ret & VM_FAULT_ERROR) {
1214 int err = vm_fault_to_errno(ret, flags);
1215
1216 if (err)
1217 return err;
1218 BUG();
1219 }
1220
1221 if (ret & VM_FAULT_RETRY) {
1222 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1223 *locked = 0;
1224 return -EBUSY;
1225 }
1226
1227 return 0;
1228 }
1229
1230 /*
1231 * Writing to file-backed mappings which require folio dirty tracking using GUP
1232 * is a fundamentally broken operation, as kernel write access to GUP mappings
1233 * do not adhere to the semantics expected by a file system.
1234 *
1235 * Consider the following scenario:-
1236 *
1237 * 1. A folio is written to via GUP which write-faults the memory, notifying
1238 * the file system and dirtying the folio.
1239 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1240 * the PTE being marked read-only.
1241 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1242 * direct mapping.
1243 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1244 * (though it does not have to).
1245 *
1246 * This results in both data being written to a folio without writenotify, and
1247 * the folio being dirtied unexpectedly (if the caller decides to do so).
1248 */
writable_file_mapping_allowed(struct vm_area_struct * vma,unsigned long gup_flags)1249 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1250 unsigned long gup_flags)
1251 {
1252 /*
1253 * If we aren't pinning then no problematic write can occur. A long term
1254 * pin is the most egregious case so this is the case we disallow.
1255 */
1256 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1257 (FOLL_PIN | FOLL_LONGTERM))
1258 return true;
1259
1260 /*
1261 * If the VMA does not require dirty tracking then no problematic write
1262 * can occur either.
1263 */
1264 return !vma_needs_dirty_tracking(vma);
1265 }
1266
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1267 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1268 {
1269 vm_flags_t vm_flags = vma->vm_flags;
1270 int write = (gup_flags & FOLL_WRITE);
1271 int foreign = (gup_flags & FOLL_REMOTE);
1272 bool vma_anon = vma_is_anonymous(vma);
1273
1274 if (vm_flags & (VM_IO | VM_PFNMAP))
1275 return -EFAULT;
1276
1277 if ((gup_flags & FOLL_ANON) && !vma_anon)
1278 return -EFAULT;
1279
1280 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1281 return -EOPNOTSUPP;
1282
1283 if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1284 return -EOPNOTSUPP;
1285
1286 if (vma_is_secretmem(vma))
1287 return -EFAULT;
1288
1289 if (write) {
1290 if (!vma_anon &&
1291 !writable_file_mapping_allowed(vma, gup_flags))
1292 return -EFAULT;
1293
1294 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1295 if (!(gup_flags & FOLL_FORCE))
1296 return -EFAULT;
1297 /*
1298 * We used to let the write,force case do COW in a
1299 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1300 * set a breakpoint in a read-only mapping of an
1301 * executable, without corrupting the file (yet only
1302 * when that file had been opened for writing!).
1303 * Anon pages in shared mappings are surprising: now
1304 * just reject it.
1305 */
1306 if (!is_cow_mapping(vm_flags))
1307 return -EFAULT;
1308 }
1309 } else if (!(vm_flags & VM_READ)) {
1310 if (!(gup_flags & FOLL_FORCE))
1311 return -EFAULT;
1312 /*
1313 * Is there actually any vma we can reach here which does not
1314 * have VM_MAYREAD set?
1315 */
1316 if (!(vm_flags & VM_MAYREAD))
1317 return -EFAULT;
1318 }
1319 /*
1320 * gups are always data accesses, not instruction
1321 * fetches, so execute=false here
1322 */
1323 if (!arch_vma_access_permitted(vma, write, false, foreign))
1324 return -EFAULT;
1325 return 0;
1326 }
1327
1328 /*
1329 * This is "vma_lookup()", but with a warning if we would have
1330 * historically expanded the stack in the GUP code.
1331 */
gup_vma_lookup(struct mm_struct * mm,unsigned long addr)1332 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1333 unsigned long addr)
1334 {
1335 #ifdef CONFIG_STACK_GROWSUP
1336 return vma_lookup(mm, addr);
1337 #else
1338 static volatile unsigned long next_warn;
1339 struct vm_area_struct *vma;
1340 unsigned long now, next;
1341
1342 vma = find_vma(mm, addr);
1343 if (!vma || (addr >= vma->vm_start))
1344 return vma;
1345
1346 /* Only warn for half-way relevant accesses */
1347 if (!(vma->vm_flags & VM_GROWSDOWN))
1348 return NULL;
1349 if (vma->vm_start - addr > 65536)
1350 return NULL;
1351
1352 /* Let's not warn more than once an hour.. */
1353 now = jiffies; next = next_warn;
1354 if (next && time_before(now, next))
1355 return NULL;
1356 next_warn = now + 60*60*HZ;
1357
1358 /* Let people know things may have changed. */
1359 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1360 current->comm, task_pid_nr(current),
1361 vma->vm_start, vma->vm_end, addr);
1362 dump_stack();
1363 return NULL;
1364 #endif
1365 }
1366
1367 /**
1368 * __get_user_pages() - pin user pages in memory
1369 * @mm: mm_struct of target mm
1370 * @start: starting user address
1371 * @nr_pages: number of pages from start to pin
1372 * @gup_flags: flags modifying pin behaviour
1373 * @pages: array that receives pointers to the pages pinned.
1374 * Should be at least nr_pages long. Or NULL, if caller
1375 * only intends to ensure the pages are faulted in.
1376 * @locked: whether we're still with the mmap_lock held
1377 *
1378 * Returns either number of pages pinned (which may be less than the
1379 * number requested), or an error. Details about the return value:
1380 *
1381 * -- If nr_pages is 0, returns 0.
1382 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1383 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1384 * pages pinned. Again, this may be less than nr_pages.
1385 * -- 0 return value is possible when the fault would need to be retried.
1386 *
1387 * The caller is responsible for releasing returned @pages, via put_page().
1388 *
1389 * Must be called with mmap_lock held. It may be released. See below.
1390 *
1391 * __get_user_pages walks a process's page tables and takes a reference to
1392 * each struct page that each user address corresponds to at a given
1393 * instant. That is, it takes the page that would be accessed if a user
1394 * thread accesses the given user virtual address at that instant.
1395 *
1396 * This does not guarantee that the page exists in the user mappings when
1397 * __get_user_pages returns, and there may even be a completely different
1398 * page there in some cases (eg. if mmapped pagecache has been invalidated
1399 * and subsequently re-faulted). However it does guarantee that the page
1400 * won't be freed completely. And mostly callers simply care that the page
1401 * contains data that was valid *at some point in time*. Typically, an IO
1402 * or similar operation cannot guarantee anything stronger anyway because
1403 * locks can't be held over the syscall boundary.
1404 *
1405 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1406 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1407 * appropriate) must be called after the page is finished with, and
1408 * before put_page is called.
1409 *
1410 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1411 * be released. If this happens *@locked will be set to 0 on return.
1412 *
1413 * A caller using such a combination of @gup_flags must therefore hold the
1414 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1415 * it must be held for either reading or writing and will not be released.
1416 *
1417 * In most cases, get_user_pages or get_user_pages_fast should be used
1418 * instead of __get_user_pages. __get_user_pages should be used only if
1419 * you need some special @gup_flags.
1420 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1421 static long __get_user_pages(struct mm_struct *mm,
1422 unsigned long start, unsigned long nr_pages,
1423 unsigned int gup_flags, struct page **pages,
1424 int *locked)
1425 {
1426 long ret = 0, i = 0;
1427 struct vm_area_struct *vma = NULL;
1428 struct follow_page_context ctx = { NULL };
1429
1430 if (!nr_pages)
1431 return 0;
1432
1433 start = untagged_addr_remote(mm, start);
1434
1435 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1436
1437 do {
1438 struct page *page;
1439 unsigned int page_increm;
1440
1441 /* first iteration or cross vma bound */
1442 if (!vma || start >= vma->vm_end) {
1443 /*
1444 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1445 * lookups+error reporting differently.
1446 */
1447 if (gup_flags & FOLL_MADV_POPULATE) {
1448 vma = vma_lookup(mm, start);
1449 if (!vma) {
1450 ret = -ENOMEM;
1451 goto out;
1452 }
1453 if (check_vma_flags(vma, gup_flags)) {
1454 ret = -EINVAL;
1455 goto out;
1456 }
1457 goto retry;
1458 }
1459 vma = gup_vma_lookup(mm, start);
1460 if (!vma && in_gate_area(mm, start)) {
1461 ret = get_gate_page(mm, start & PAGE_MASK,
1462 gup_flags, &vma,
1463 pages ? &page : NULL);
1464 if (ret)
1465 goto out;
1466 ctx.page_mask = 0;
1467 goto next_page;
1468 }
1469
1470 if (!vma) {
1471 ret = -EFAULT;
1472 goto out;
1473 }
1474 ret = check_vma_flags(vma, gup_flags);
1475 if (ret)
1476 goto out;
1477 }
1478 retry:
1479 /*
1480 * If we have a pending SIGKILL, don't keep faulting pages and
1481 * potentially allocating memory.
1482 */
1483 if (fatal_signal_pending(current)) {
1484 ret = -EINTR;
1485 goto out;
1486 }
1487 cond_resched();
1488
1489 page = follow_page_mask(vma, start, gup_flags, &ctx);
1490 if (!page || PTR_ERR(page) == -EMLINK) {
1491 ret = faultin_page(vma, start, gup_flags,
1492 PTR_ERR(page) == -EMLINK, locked);
1493 switch (ret) {
1494 case 0:
1495 goto retry;
1496 case -EBUSY:
1497 case -EAGAIN:
1498 ret = 0;
1499 fallthrough;
1500 case -EFAULT:
1501 case -ENOMEM:
1502 case -EHWPOISON:
1503 goto out;
1504 }
1505 BUG();
1506 } else if (PTR_ERR(page) == -EEXIST) {
1507 /*
1508 * Proper page table entry exists, but no corresponding
1509 * struct page. If the caller expects **pages to be
1510 * filled in, bail out now, because that can't be done
1511 * for this page.
1512 */
1513 if (pages) {
1514 ret = PTR_ERR(page);
1515 goto out;
1516 }
1517 } else if (IS_ERR(page)) {
1518 ret = PTR_ERR(page);
1519 goto out;
1520 }
1521 next_page:
1522 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1523 if (page_increm > nr_pages)
1524 page_increm = nr_pages;
1525
1526 if (pages) {
1527 struct page *subpage;
1528 unsigned int j;
1529
1530 /*
1531 * This must be a large folio (and doesn't need to
1532 * be the whole folio; it can be part of it), do
1533 * the refcount work for all the subpages too.
1534 *
1535 * NOTE: here the page may not be the head page
1536 * e.g. when start addr is not thp-size aligned.
1537 * try_grab_folio() should have taken care of tail
1538 * pages.
1539 */
1540 if (page_increm > 1) {
1541 struct folio *folio = page_folio(page);
1542
1543 /*
1544 * Since we already hold refcount on the
1545 * large folio, this should never fail.
1546 */
1547 if (try_grab_folio(folio, page_increm - 1,
1548 gup_flags)) {
1549 /*
1550 * Release the 1st page ref if the
1551 * folio is problematic, fail hard.
1552 */
1553 gup_put_folio(folio, 1, gup_flags);
1554 ret = -EFAULT;
1555 goto out;
1556 }
1557 }
1558
1559 for (j = 0; j < page_increm; j++) {
1560 subpage = nth_page(page, j);
1561 pages[i + j] = subpage;
1562 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1563 flush_dcache_page(subpage);
1564 }
1565 }
1566
1567 i += page_increm;
1568 start += page_increm * PAGE_SIZE;
1569 nr_pages -= page_increm;
1570 } while (nr_pages);
1571 out:
1572 if (ctx.pgmap)
1573 put_dev_pagemap(ctx.pgmap);
1574 return i ? i : ret;
1575 }
1576
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1577 static bool vma_permits_fault(struct vm_area_struct *vma,
1578 unsigned int fault_flags)
1579 {
1580 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1581 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1582 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1583
1584 if (!(vm_flags & vma->vm_flags))
1585 return false;
1586
1587 /*
1588 * The architecture might have a hardware protection
1589 * mechanism other than read/write that can deny access.
1590 *
1591 * gup always represents data access, not instruction
1592 * fetches, so execute=false here:
1593 */
1594 if (!arch_vma_access_permitted(vma, write, false, foreign))
1595 return false;
1596
1597 return true;
1598 }
1599
1600 /**
1601 * fixup_user_fault() - manually resolve a user page fault
1602 * @mm: mm_struct of target mm
1603 * @address: user address
1604 * @fault_flags:flags to pass down to handle_mm_fault()
1605 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1606 * does not allow retry. If NULL, the caller must guarantee
1607 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1608 *
1609 * This is meant to be called in the specific scenario where for locking reasons
1610 * we try to access user memory in atomic context (within a pagefault_disable()
1611 * section), this returns -EFAULT, and we want to resolve the user fault before
1612 * trying again.
1613 *
1614 * Typically this is meant to be used by the futex code.
1615 *
1616 * The main difference with get_user_pages() is that this function will
1617 * unconditionally call handle_mm_fault() which will in turn perform all the
1618 * necessary SW fixup of the dirty and young bits in the PTE, while
1619 * get_user_pages() only guarantees to update these in the struct page.
1620 *
1621 * This is important for some architectures where those bits also gate the
1622 * access permission to the page because they are maintained in software. On
1623 * such architectures, gup() will not be enough to make a subsequent access
1624 * succeed.
1625 *
1626 * This function will not return with an unlocked mmap_lock. So it has not the
1627 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1628 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1629 int fixup_user_fault(struct mm_struct *mm,
1630 unsigned long address, unsigned int fault_flags,
1631 bool *unlocked)
1632 {
1633 struct vm_area_struct *vma;
1634 vm_fault_t ret;
1635
1636 address = untagged_addr_remote(mm, address);
1637
1638 if (unlocked)
1639 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1640
1641 retry:
1642 vma = gup_vma_lookup(mm, address);
1643 if (!vma)
1644 return -EFAULT;
1645
1646 if (!vma_permits_fault(vma, fault_flags))
1647 return -EFAULT;
1648
1649 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1650 fatal_signal_pending(current))
1651 return -EINTR;
1652
1653 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1654
1655 if (ret & VM_FAULT_COMPLETED) {
1656 /*
1657 * NOTE: it's a pity that we need to retake the lock here
1658 * to pair with the unlock() in the callers. Ideally we
1659 * could tell the callers so they do not need to unlock.
1660 */
1661 mmap_read_lock(mm);
1662 *unlocked = true;
1663 return 0;
1664 }
1665
1666 if (ret & VM_FAULT_ERROR) {
1667 int err = vm_fault_to_errno(ret, 0);
1668
1669 if (err)
1670 return err;
1671 BUG();
1672 }
1673
1674 if (ret & VM_FAULT_RETRY) {
1675 mmap_read_lock(mm);
1676 *unlocked = true;
1677 fault_flags |= FAULT_FLAG_TRIED;
1678 goto retry;
1679 }
1680
1681 return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(fixup_user_fault);
1684
1685 /*
1686 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1687 * specified, it'll also respond to generic signals. The caller of GUP
1688 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1689 */
gup_signal_pending(unsigned int flags)1690 static bool gup_signal_pending(unsigned int flags)
1691 {
1692 if (fatal_signal_pending(current))
1693 return true;
1694
1695 if (!(flags & FOLL_INTERRUPTIBLE))
1696 return false;
1697
1698 return signal_pending(current);
1699 }
1700
1701 /*
1702 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1703 * the caller. This function may drop the mmap_lock. If it does so, then it will
1704 * set (*locked = 0).
1705 *
1706 * (*locked == 0) means that the caller expects this function to acquire and
1707 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1708 * the function returns, even though it may have changed temporarily during
1709 * function execution.
1710 *
1711 * Please note that this function, unlike __get_user_pages(), will not return 0
1712 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1713 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int flags)1714 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1715 unsigned long start,
1716 unsigned long nr_pages,
1717 struct page **pages,
1718 int *locked,
1719 unsigned int flags)
1720 {
1721 long ret, pages_done;
1722 bool must_unlock = false;
1723
1724 if (!nr_pages)
1725 return 0;
1726
1727 /*
1728 * The internal caller expects GUP to manage the lock internally and the
1729 * lock must be released when this returns.
1730 */
1731 if (!*locked) {
1732 if (mmap_read_lock_killable(mm))
1733 return -EAGAIN;
1734 must_unlock = true;
1735 *locked = 1;
1736 }
1737 else
1738 mmap_assert_locked(mm);
1739
1740 if (flags & FOLL_PIN)
1741 mm_set_has_pinned_flag(&mm->flags);
1742
1743 /*
1744 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1745 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1746 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1747 * for FOLL_GET, not for the newer FOLL_PIN.
1748 *
1749 * FOLL_PIN always expects pages to be non-null, but no need to assert
1750 * that here, as any failures will be obvious enough.
1751 */
1752 if (pages && !(flags & FOLL_PIN))
1753 flags |= FOLL_GET;
1754
1755 pages_done = 0;
1756 for (;;) {
1757 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1758 locked);
1759 if (!(flags & FOLL_UNLOCKABLE)) {
1760 /* VM_FAULT_RETRY couldn't trigger, bypass */
1761 pages_done = ret;
1762 break;
1763 }
1764
1765 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1766 if (!*locked) {
1767 BUG_ON(ret < 0);
1768 BUG_ON(ret >= nr_pages);
1769 }
1770
1771 if (ret > 0) {
1772 nr_pages -= ret;
1773 pages_done += ret;
1774 if (!nr_pages)
1775 break;
1776 }
1777 if (*locked) {
1778 /*
1779 * VM_FAULT_RETRY didn't trigger or it was a
1780 * FOLL_NOWAIT.
1781 */
1782 if (!pages_done)
1783 pages_done = ret;
1784 break;
1785 }
1786 /*
1787 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1788 * For the prefault case (!pages) we only update counts.
1789 */
1790 if (likely(pages))
1791 pages += ret;
1792 start += ret << PAGE_SHIFT;
1793
1794 /* The lock was temporarily dropped, so we must unlock later */
1795 must_unlock = true;
1796
1797 retry:
1798 /*
1799 * Repeat on the address that fired VM_FAULT_RETRY
1800 * with both FAULT_FLAG_ALLOW_RETRY and
1801 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1802 * by fatal signals of even common signals, depending on
1803 * the caller's request. So we need to check it before we
1804 * start trying again otherwise it can loop forever.
1805 */
1806 if (gup_signal_pending(flags)) {
1807 if (!pages_done)
1808 pages_done = -EINTR;
1809 break;
1810 }
1811
1812 ret = mmap_read_lock_killable(mm);
1813 if (ret) {
1814 BUG_ON(ret > 0);
1815 if (!pages_done)
1816 pages_done = ret;
1817 break;
1818 }
1819
1820 *locked = 1;
1821 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1822 pages, locked);
1823 if (!*locked) {
1824 /* Continue to retry until we succeeded */
1825 BUG_ON(ret != 0);
1826 goto retry;
1827 }
1828 if (ret != 1) {
1829 BUG_ON(ret > 1);
1830 if (!pages_done)
1831 pages_done = ret;
1832 break;
1833 }
1834 nr_pages--;
1835 pages_done++;
1836 if (!nr_pages)
1837 break;
1838 if (likely(pages))
1839 pages++;
1840 start += PAGE_SIZE;
1841 }
1842 if (must_unlock && *locked) {
1843 /*
1844 * We either temporarily dropped the lock, or the caller
1845 * requested that we both acquire and drop the lock. Either way,
1846 * we must now unlock, and notify the caller of that state.
1847 */
1848 mmap_read_unlock(mm);
1849 *locked = 0;
1850 }
1851
1852 /*
1853 * Failing to pin anything implies something has gone wrong (except when
1854 * FOLL_NOWAIT is specified).
1855 */
1856 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1857 return -EFAULT;
1858
1859 return pages_done;
1860 }
1861
1862 /**
1863 * populate_vma_page_range() - populate a range of pages in the vma.
1864 * @vma: target vma
1865 * @start: start address
1866 * @end: end address
1867 * @locked: whether the mmap_lock is still held
1868 *
1869 * This takes care of mlocking the pages too if VM_LOCKED is set.
1870 *
1871 * Return either number of pages pinned in the vma, or a negative error
1872 * code on error.
1873 *
1874 * vma->vm_mm->mmap_lock must be held.
1875 *
1876 * If @locked is NULL, it may be held for read or write and will
1877 * be unperturbed.
1878 *
1879 * If @locked is non-NULL, it must held for read only and may be
1880 * released. If it's released, *@locked will be set to 0.
1881 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1882 long populate_vma_page_range(struct vm_area_struct *vma,
1883 unsigned long start, unsigned long end, int *locked)
1884 {
1885 struct mm_struct *mm = vma->vm_mm;
1886 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1887 int local_locked = 1;
1888 int gup_flags;
1889 long ret;
1890
1891 VM_BUG_ON(!PAGE_ALIGNED(start));
1892 VM_BUG_ON(!PAGE_ALIGNED(end));
1893 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1894 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1895 mmap_assert_locked(mm);
1896
1897 /*
1898 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1899 * faultin_page() to break COW, so it has no work to do here.
1900 */
1901 if (vma->vm_flags & VM_LOCKONFAULT)
1902 return nr_pages;
1903
1904 /* ... similarly, we've never faulted in PROT_NONE pages */
1905 if (!vma_is_accessible(vma))
1906 return -EFAULT;
1907
1908 gup_flags = FOLL_TOUCH;
1909 /*
1910 * We want to touch writable mappings with a write fault in order
1911 * to break COW, except for shared mappings because these don't COW
1912 * and we would not want to dirty them for nothing.
1913 *
1914 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1915 * readable (ie write-only or executable).
1916 */
1917 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1918 gup_flags |= FOLL_WRITE;
1919 else
1920 gup_flags |= FOLL_FORCE;
1921
1922 if (locked)
1923 gup_flags |= FOLL_UNLOCKABLE;
1924
1925 /*
1926 * We made sure addr is within a VMA, so the following will
1927 * not result in a stack expansion that recurses back here.
1928 */
1929 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1930 NULL, locked ? locked : &local_locked);
1931 lru_add_drain();
1932 return ret;
1933 }
1934
1935 /*
1936 * faultin_page_range() - populate (prefault) page tables inside the
1937 * given range readable/writable
1938 *
1939 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1940 *
1941 * @mm: the mm to populate page tables in
1942 * @start: start address
1943 * @end: end address
1944 * @write: whether to prefault readable or writable
1945 * @locked: whether the mmap_lock is still held
1946 *
1947 * Returns either number of processed pages in the MM, or a negative error
1948 * code on error (see __get_user_pages()). Note that this function reports
1949 * errors related to VMAs, such as incompatible mappings, as expected by
1950 * MADV_POPULATE_(READ|WRITE).
1951 *
1952 * The range must be page-aligned.
1953 *
1954 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1955 */
faultin_page_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool write,int * locked)1956 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1957 unsigned long end, bool write, int *locked)
1958 {
1959 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1960 int gup_flags;
1961 long ret;
1962
1963 VM_BUG_ON(!PAGE_ALIGNED(start));
1964 VM_BUG_ON(!PAGE_ALIGNED(end));
1965 mmap_assert_locked(mm);
1966
1967 /*
1968 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1969 * the page dirty with FOLL_WRITE -- which doesn't make a
1970 * difference with !FOLL_FORCE, because the page is writable
1971 * in the page table.
1972 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1973 * a poisoned page.
1974 * !FOLL_FORCE: Require proper access permissions.
1975 */
1976 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1977 FOLL_MADV_POPULATE;
1978 if (write)
1979 gup_flags |= FOLL_WRITE;
1980
1981 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1982 gup_flags);
1983 lru_add_drain();
1984 return ret;
1985 }
1986
1987 /*
1988 * __mm_populate - populate and/or mlock pages within a range of address space.
1989 *
1990 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1991 * flags. VMAs must be already marked with the desired vm_flags, and
1992 * mmap_lock must not be held.
1993 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1994 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1995 {
1996 struct mm_struct *mm = current->mm;
1997 unsigned long end, nstart, nend;
1998 struct vm_area_struct *vma = NULL;
1999 int locked = 0;
2000 long ret = 0;
2001
2002 end = start + len;
2003
2004 for (nstart = start; nstart < end; nstart = nend) {
2005 /*
2006 * We want to fault in pages for [nstart; end) address range.
2007 * Find first corresponding VMA.
2008 */
2009 if (!locked) {
2010 locked = 1;
2011 mmap_read_lock(mm);
2012 vma = find_vma_intersection(mm, nstart, end);
2013 } else if (nstart >= vma->vm_end)
2014 vma = find_vma_intersection(mm, vma->vm_end, end);
2015
2016 if (!vma)
2017 break;
2018 /*
2019 * Set [nstart; nend) to intersection of desired address
2020 * range with the first VMA. Also, skip undesirable VMA types.
2021 */
2022 nend = min(end, vma->vm_end);
2023 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2024 continue;
2025 if (nstart < vma->vm_start)
2026 nstart = vma->vm_start;
2027 /*
2028 * Now fault in a range of pages. populate_vma_page_range()
2029 * double checks the vma flags, so that it won't mlock pages
2030 * if the vma was already munlocked.
2031 */
2032 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2033 if (ret < 0) {
2034 if (ignore_errors) {
2035 ret = 0;
2036 continue; /* continue at next VMA */
2037 }
2038 break;
2039 }
2040 nend = nstart + ret * PAGE_SIZE;
2041 ret = 0;
2042 }
2043 if (locked)
2044 mmap_read_unlock(mm);
2045 return ret; /* 0 or negative error code */
2046 }
2047 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int foll_flags)2048 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2049 unsigned long nr_pages, struct page **pages,
2050 int *locked, unsigned int foll_flags)
2051 {
2052 struct vm_area_struct *vma;
2053 bool must_unlock = false;
2054 unsigned long vm_flags;
2055 long i;
2056
2057 if (!nr_pages)
2058 return 0;
2059
2060 /*
2061 * The internal caller expects GUP to manage the lock internally and the
2062 * lock must be released when this returns.
2063 */
2064 if (!*locked) {
2065 if (mmap_read_lock_killable(mm))
2066 return -EAGAIN;
2067 must_unlock = true;
2068 *locked = 1;
2069 }
2070
2071 /* calculate required read or write permissions.
2072 * If FOLL_FORCE is set, we only require the "MAY" flags.
2073 */
2074 vm_flags = (foll_flags & FOLL_WRITE) ?
2075 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2076 vm_flags &= (foll_flags & FOLL_FORCE) ?
2077 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2078
2079 for (i = 0; i < nr_pages; i++) {
2080 vma = find_vma(mm, start);
2081 if (!vma)
2082 break;
2083
2084 /* protect what we can, including chardevs */
2085 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2086 !(vm_flags & vma->vm_flags))
2087 break;
2088
2089 if (pages) {
2090 pages[i] = virt_to_page((void *)start);
2091 if (pages[i])
2092 get_page(pages[i]);
2093 }
2094
2095 start = (start + PAGE_SIZE) & PAGE_MASK;
2096 }
2097
2098 if (must_unlock && *locked) {
2099 mmap_read_unlock(mm);
2100 *locked = 0;
2101 }
2102
2103 return i ? : -EFAULT;
2104 }
2105 #endif /* !CONFIG_MMU */
2106
2107 /**
2108 * fault_in_writeable - fault in userspace address range for writing
2109 * @uaddr: start of address range
2110 * @size: size of address range
2111 *
2112 * Returns the number of bytes not faulted in (like copy_to_user() and
2113 * copy_from_user()).
2114 */
fault_in_writeable(char __user * uaddr,size_t size)2115 size_t fault_in_writeable(char __user *uaddr, size_t size)
2116 {
2117 char __user *start = uaddr, *end;
2118
2119 if (unlikely(size == 0))
2120 return 0;
2121 if (!user_write_access_begin(uaddr, size))
2122 return size;
2123 if (!PAGE_ALIGNED(uaddr)) {
2124 unsafe_put_user(0, uaddr, out);
2125 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2126 }
2127 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2128 if (unlikely(end < start))
2129 end = NULL;
2130 while (uaddr != end) {
2131 unsafe_put_user(0, uaddr, out);
2132 uaddr += PAGE_SIZE;
2133 }
2134
2135 out:
2136 user_write_access_end();
2137 if (size > uaddr - start)
2138 return size - (uaddr - start);
2139 return 0;
2140 }
2141 EXPORT_SYMBOL(fault_in_writeable);
2142
2143 /**
2144 * fault_in_subpage_writeable - fault in an address range for writing
2145 * @uaddr: start of address range
2146 * @size: size of address range
2147 *
2148 * Fault in a user address range for writing while checking for permissions at
2149 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2150 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2151 *
2152 * Returns the number of bytes not faulted in (like copy_to_user() and
2153 * copy_from_user()).
2154 */
fault_in_subpage_writeable(char __user * uaddr,size_t size)2155 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2156 {
2157 size_t faulted_in;
2158
2159 /*
2160 * Attempt faulting in at page granularity first for page table
2161 * permission checking. The arch-specific probe_subpage_writeable()
2162 * functions may not check for this.
2163 */
2164 faulted_in = size - fault_in_writeable(uaddr, size);
2165 if (faulted_in)
2166 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2167
2168 return size - faulted_in;
2169 }
2170 EXPORT_SYMBOL(fault_in_subpage_writeable);
2171
2172 /*
2173 * fault_in_safe_writeable - fault in an address range for writing
2174 * @uaddr: start of address range
2175 * @size: length of address range
2176 *
2177 * Faults in an address range for writing. This is primarily useful when we
2178 * already know that some or all of the pages in the address range aren't in
2179 * memory.
2180 *
2181 * Unlike fault_in_writeable(), this function is non-destructive.
2182 *
2183 * Note that we don't pin or otherwise hold the pages referenced that we fault
2184 * in. There's no guarantee that they'll stay in memory for any duration of
2185 * time.
2186 *
2187 * Returns the number of bytes not faulted in, like copy_to_user() and
2188 * copy_from_user().
2189 */
fault_in_safe_writeable(const char __user * uaddr,size_t size)2190 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2191 {
2192 unsigned long start = (unsigned long)uaddr, end;
2193 struct mm_struct *mm = current->mm;
2194 bool unlocked = false;
2195
2196 if (unlikely(size == 0))
2197 return 0;
2198 end = PAGE_ALIGN(start + size);
2199 if (end < start)
2200 end = 0;
2201
2202 mmap_read_lock(mm);
2203 do {
2204 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2205 break;
2206 start = (start + PAGE_SIZE) & PAGE_MASK;
2207 } while (start != end);
2208 mmap_read_unlock(mm);
2209
2210 if (size > start - (unsigned long)uaddr)
2211 return size - (start - (unsigned long)uaddr);
2212 return 0;
2213 }
2214 EXPORT_SYMBOL(fault_in_safe_writeable);
2215
2216 /**
2217 * fault_in_readable - fault in userspace address range for reading
2218 * @uaddr: start of user address range
2219 * @size: size of user address range
2220 *
2221 * Returns the number of bytes not faulted in (like copy_to_user() and
2222 * copy_from_user()).
2223 */
fault_in_readable(const char __user * uaddr,size_t size)2224 size_t fault_in_readable(const char __user *uaddr, size_t size)
2225 {
2226 const char __user *start = uaddr, *end;
2227 volatile char c;
2228
2229 if (unlikely(size == 0))
2230 return 0;
2231 if (!user_read_access_begin(uaddr, size))
2232 return size;
2233 if (!PAGE_ALIGNED(uaddr)) {
2234 unsafe_get_user(c, uaddr, out);
2235 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2236 }
2237 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2238 if (unlikely(end < start))
2239 end = NULL;
2240 while (uaddr != end) {
2241 unsafe_get_user(c, uaddr, out);
2242 uaddr += PAGE_SIZE;
2243 }
2244
2245 out:
2246 user_read_access_end();
2247 (void)c;
2248 if (size > uaddr - start)
2249 return size - (uaddr - start);
2250 return 0;
2251 }
2252 EXPORT_SYMBOL(fault_in_readable);
2253
2254 /**
2255 * get_dump_page() - pin user page in memory while writing it to core dump
2256 * @addr: user address
2257 * @locked: a pointer to an int denoting whether the mmap sem is held
2258 *
2259 * Returns struct page pointer of user page pinned for dump,
2260 * to be freed afterwards by put_page().
2261 *
2262 * Returns NULL on any kind of failure - a hole must then be inserted into
2263 * the corefile, to preserve alignment with its headers; and also returns
2264 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2265 * allowing a hole to be left in the corefile to save disk space.
2266 *
2267 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2268 */
2269 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr,int * locked)2270 struct page *get_dump_page(unsigned long addr, int *locked)
2271 {
2272 struct page *page;
2273 int ret;
2274
2275 ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2276 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2277 return (ret == 1) ? page : NULL;
2278 }
2279 #endif /* CONFIG_ELF_CORE */
2280
2281 #ifdef CONFIG_MIGRATION
2282
2283 /*
2284 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2285 * avoid this complication, by simply interpreting a list of folios as a list of
2286 * pages, that approach won't work in the longer term, because eventually the
2287 * layouts of struct page and struct folio will become completely different.
2288 * Furthermore, this pof approach avoids excessive page_folio() calls.
2289 */
2290 struct pages_or_folios {
2291 union {
2292 struct page **pages;
2293 struct folio **folios;
2294 void **entries;
2295 };
2296 bool has_folios;
2297 long nr_entries;
2298 };
2299
pofs_get_folio(struct pages_or_folios * pofs,long i)2300 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2301 {
2302 if (pofs->has_folios)
2303 return pofs->folios[i];
2304 return page_folio(pofs->pages[i]);
2305 }
2306
pofs_clear_entry(struct pages_or_folios * pofs,long i)2307 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2308 {
2309 pofs->entries[i] = NULL;
2310 }
2311
pofs_unpin(struct pages_or_folios * pofs)2312 static void pofs_unpin(struct pages_or_folios *pofs)
2313 {
2314 if (pofs->has_folios)
2315 unpin_folios(pofs->folios, pofs->nr_entries);
2316 else
2317 unpin_user_pages(pofs->pages, pofs->nr_entries);
2318 }
2319
2320 /*
2321 * Returns the number of collected folios. Return value is always >= 0.
2322 */
collect_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2323 static void collect_longterm_unpinnable_folios(
2324 struct list_head *movable_folio_list,
2325 struct pages_or_folios *pofs)
2326 {
2327 struct folio *prev_folio = NULL;
2328 bool drain_allow = true;
2329 unsigned long i;
2330
2331 for (i = 0; i < pofs->nr_entries; i++) {
2332 struct folio *folio = pofs_get_folio(pofs, i);
2333
2334 if (folio == prev_folio)
2335 continue;
2336 prev_folio = folio;
2337
2338 if (folio_is_longterm_pinnable(folio))
2339 continue;
2340
2341 if (folio_is_device_coherent(folio))
2342 continue;
2343
2344 if (folio_test_hugetlb(folio)) {
2345 folio_isolate_hugetlb(folio, movable_folio_list);
2346 continue;
2347 }
2348
2349 if (!folio_test_lru(folio) && drain_allow) {
2350 lru_add_drain_all();
2351 drain_allow = false;
2352 }
2353
2354 if (!folio_isolate_lru(folio))
2355 continue;
2356
2357 list_add_tail(&folio->lru, movable_folio_list);
2358 node_stat_mod_folio(folio,
2359 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2360 folio_nr_pages(folio));
2361 }
2362 }
2363
2364 /*
2365 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2366 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2367 * failure (or partial success).
2368 */
2369 static int
migrate_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2370 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2371 struct pages_or_folios *pofs)
2372 {
2373 int ret;
2374 unsigned long i;
2375
2376 for (i = 0; i < pofs->nr_entries; i++) {
2377 struct folio *folio = pofs_get_folio(pofs, i);
2378
2379 if (folio_is_device_coherent(folio)) {
2380 /*
2381 * Migration will fail if the folio is pinned, so
2382 * convert the pin on the source folio to a normal
2383 * reference.
2384 */
2385 pofs_clear_entry(pofs, i);
2386 folio_get(folio);
2387 gup_put_folio(folio, 1, FOLL_PIN);
2388
2389 if (migrate_device_coherent_folio(folio)) {
2390 ret = -EBUSY;
2391 goto err;
2392 }
2393
2394 continue;
2395 }
2396
2397 /*
2398 * We can't migrate folios with unexpected references, so drop
2399 * the reference obtained by __get_user_pages_locked().
2400 * Migrating folios have been added to movable_folio_list after
2401 * calling folio_isolate_lru() which takes a reference so the
2402 * folio won't be freed if it's migrating.
2403 */
2404 unpin_folio(folio);
2405 pofs_clear_entry(pofs, i);
2406 }
2407
2408 if (!list_empty(movable_folio_list)) {
2409 struct migration_target_control mtc = {
2410 .nid = NUMA_NO_NODE,
2411 .gfp_mask = GFP_USER | __GFP_NOWARN,
2412 .reason = MR_LONGTERM_PIN,
2413 };
2414
2415 if (migrate_pages(movable_folio_list, alloc_migration_target,
2416 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2417 MR_LONGTERM_PIN, NULL)) {
2418 ret = -ENOMEM;
2419 goto err;
2420 }
2421 }
2422
2423 putback_movable_pages(movable_folio_list);
2424
2425 return -EAGAIN;
2426
2427 err:
2428 pofs_unpin(pofs);
2429 putback_movable_pages(movable_folio_list);
2430
2431 return ret;
2432 }
2433
2434 static long
check_and_migrate_movable_pages_or_folios(struct pages_or_folios * pofs)2435 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2436 {
2437 LIST_HEAD(movable_folio_list);
2438
2439 collect_longterm_unpinnable_folios(&movable_folio_list, pofs);
2440 if (list_empty(&movable_folio_list))
2441 return 0;
2442
2443 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2444 }
2445
2446 /*
2447 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2448 * Rather confusingly, all folios in the range are required to be pinned via
2449 * FOLL_PIN, before calling this routine.
2450 *
2451 * Return values:
2452 *
2453 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2454 * then this routine leaves all folios pinned and returns zero for success.
2455 *
2456 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2457 * routine will migrate those folios away, unpin all the folios in the range. If
2458 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2459 * caller should re-pin the entire range with FOLL_PIN and then call this
2460 * routine again.
2461 *
2462 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2463 * indicates a migration failure. The caller should give up, and propagate the
2464 * error back up the call stack. The caller does not need to unpin any folios in
2465 * that case, because this routine will do the unpinning.
2466 */
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2467 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2468 struct folio **folios)
2469 {
2470 struct pages_or_folios pofs = {
2471 .folios = folios,
2472 .has_folios = true,
2473 .nr_entries = nr_folios,
2474 };
2475
2476 return check_and_migrate_movable_pages_or_folios(&pofs);
2477 }
2478
2479 /*
2480 * Return values and behavior are the same as those for
2481 * check_and_migrate_movable_folios().
2482 */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2483 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2484 struct page **pages)
2485 {
2486 struct pages_or_folios pofs = {
2487 .pages = pages,
2488 .has_folios = false,
2489 .nr_entries = nr_pages,
2490 };
2491
2492 return check_and_migrate_movable_pages_or_folios(&pofs);
2493 }
2494 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2495 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2496 struct page **pages)
2497 {
2498 return 0;
2499 }
2500
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2501 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2502 struct folio **folios)
2503 {
2504 return 0;
2505 }
2506 #endif /* CONFIG_MIGRATION */
2507
2508 /*
2509 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2510 * allows us to process the FOLL_LONGTERM flag.
2511 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int gup_flags)2512 static long __gup_longterm_locked(struct mm_struct *mm,
2513 unsigned long start,
2514 unsigned long nr_pages,
2515 struct page **pages,
2516 int *locked,
2517 unsigned int gup_flags)
2518 {
2519 unsigned int flags;
2520 long rc, nr_pinned_pages;
2521
2522 if (!(gup_flags & FOLL_LONGTERM))
2523 return __get_user_pages_locked(mm, start, nr_pages, pages,
2524 locked, gup_flags);
2525
2526 flags = memalloc_pin_save();
2527 do {
2528 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2529 pages, locked,
2530 gup_flags);
2531 if (nr_pinned_pages <= 0) {
2532 rc = nr_pinned_pages;
2533 break;
2534 }
2535
2536 /* FOLL_LONGTERM implies FOLL_PIN */
2537 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2538 } while (rc == -EAGAIN);
2539 memalloc_pin_restore(flags);
2540 return rc ? rc : nr_pinned_pages;
2541 }
2542
2543 /*
2544 * Check that the given flags are valid for the exported gup/pup interface, and
2545 * update them with the required flags that the caller must have set.
2546 */
is_valid_gup_args(struct page ** pages,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2547 static bool is_valid_gup_args(struct page **pages, int *locked,
2548 unsigned int *gup_flags_p, unsigned int to_set)
2549 {
2550 unsigned int gup_flags = *gup_flags_p;
2551
2552 /*
2553 * These flags not allowed to be specified externally to the gup
2554 * interfaces:
2555 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2556 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2557 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2558 */
2559 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2560 return false;
2561
2562 gup_flags |= to_set;
2563 if (locked) {
2564 /* At the external interface locked must be set */
2565 if (WARN_ON_ONCE(*locked != 1))
2566 return false;
2567
2568 gup_flags |= FOLL_UNLOCKABLE;
2569 }
2570
2571 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2572 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2573 (FOLL_PIN | FOLL_GET)))
2574 return false;
2575
2576 /* LONGTERM can only be specified when pinning */
2577 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2578 return false;
2579
2580 /* Pages input must be given if using GET/PIN */
2581 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2582 return false;
2583
2584 /* We want to allow the pgmap to be hot-unplugged at all times */
2585 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2586 (gup_flags & FOLL_PCI_P2PDMA)))
2587 return false;
2588
2589 *gup_flags_p = gup_flags;
2590 return true;
2591 }
2592
2593 #ifdef CONFIG_MMU
2594 /**
2595 * get_user_pages_remote() - pin user pages in memory
2596 * @mm: mm_struct of target mm
2597 * @start: starting user address
2598 * @nr_pages: number of pages from start to pin
2599 * @gup_flags: flags modifying lookup behaviour
2600 * @pages: array that receives pointers to the pages pinned.
2601 * Should be at least nr_pages long. Or NULL, if caller
2602 * only intends to ensure the pages are faulted in.
2603 * @locked: pointer to lock flag indicating whether lock is held and
2604 * subsequently whether VM_FAULT_RETRY functionality can be
2605 * utilised. Lock must initially be held.
2606 *
2607 * Returns either number of pages pinned (which may be less than the
2608 * number requested), or an error. Details about the return value:
2609 *
2610 * -- If nr_pages is 0, returns 0.
2611 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2612 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2613 * pages pinned. Again, this may be less than nr_pages.
2614 *
2615 * The caller is responsible for releasing returned @pages, via put_page().
2616 *
2617 * Must be called with mmap_lock held for read or write.
2618 *
2619 * get_user_pages_remote walks a process's page tables and takes a reference
2620 * to each struct page that each user address corresponds to at a given
2621 * instant. That is, it takes the page that would be accessed if a user
2622 * thread accesses the given user virtual address at that instant.
2623 *
2624 * This does not guarantee that the page exists in the user mappings when
2625 * get_user_pages_remote returns, and there may even be a completely different
2626 * page there in some cases (eg. if mmapped pagecache has been invalidated
2627 * and subsequently re-faulted). However it does guarantee that the page
2628 * won't be freed completely. And mostly callers simply care that the page
2629 * contains data that was valid *at some point in time*. Typically, an IO
2630 * or similar operation cannot guarantee anything stronger anyway because
2631 * locks can't be held over the syscall boundary.
2632 *
2633 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2634 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2635 * be called after the page is finished with, and before put_page is called.
2636 *
2637 * get_user_pages_remote is typically used for fewer-copy IO operations,
2638 * to get a handle on the memory by some means other than accesses
2639 * via the user virtual addresses. The pages may be submitted for
2640 * DMA to devices or accessed via their kernel linear mapping (via the
2641 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2642 *
2643 * See also get_user_pages_fast, for performance critical applications.
2644 *
2645 * get_user_pages_remote should be phased out in favor of
2646 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2647 * should use get_user_pages_remote because it cannot pass
2648 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2649 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2650 long get_user_pages_remote(struct mm_struct *mm,
2651 unsigned long start, unsigned long nr_pages,
2652 unsigned int gup_flags, struct page **pages,
2653 int *locked)
2654 {
2655 int local_locked = 1;
2656
2657 if (!is_valid_gup_args(pages, locked, &gup_flags,
2658 FOLL_TOUCH | FOLL_REMOTE))
2659 return -EINVAL;
2660
2661 return __get_user_pages_locked(mm, start, nr_pages, pages,
2662 locked ? locked : &local_locked,
2663 gup_flags);
2664 }
2665 EXPORT_SYMBOL(get_user_pages_remote);
2666
2667 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2668 long get_user_pages_remote(struct mm_struct *mm,
2669 unsigned long start, unsigned long nr_pages,
2670 unsigned int gup_flags, struct page **pages,
2671 int *locked)
2672 {
2673 return 0;
2674 }
2675 #endif /* !CONFIG_MMU */
2676
2677 /**
2678 * get_user_pages() - pin user pages in memory
2679 * @start: starting user address
2680 * @nr_pages: number of pages from start to pin
2681 * @gup_flags: flags modifying lookup behaviour
2682 * @pages: array that receives pointers to the pages pinned.
2683 * Should be at least nr_pages long. Or NULL, if caller
2684 * only intends to ensure the pages are faulted in.
2685 *
2686 * This is the same as get_user_pages_remote(), just with a less-flexible
2687 * calling convention where we assume that the mm being operated on belongs to
2688 * the current task, and doesn't allow passing of a locked parameter. We also
2689 * obviously don't pass FOLL_REMOTE in here.
2690 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2691 long get_user_pages(unsigned long start, unsigned long nr_pages,
2692 unsigned int gup_flags, struct page **pages)
2693 {
2694 int locked = 1;
2695
2696 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2697 return -EINVAL;
2698
2699 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2700 &locked, gup_flags);
2701 }
2702 EXPORT_SYMBOL(get_user_pages);
2703
2704 /*
2705 * get_user_pages_unlocked() is suitable to replace the form:
2706 *
2707 * mmap_read_lock(mm);
2708 * get_user_pages(mm, ..., pages, NULL);
2709 * mmap_read_unlock(mm);
2710 *
2711 * with:
2712 *
2713 * get_user_pages_unlocked(mm, ..., pages);
2714 *
2715 * It is functionally equivalent to get_user_pages_fast so
2716 * get_user_pages_fast should be used instead if specific gup_flags
2717 * (e.g. FOLL_FORCE) are not required.
2718 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2719 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2720 struct page **pages, unsigned int gup_flags)
2721 {
2722 int locked = 0;
2723
2724 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2725 FOLL_TOUCH | FOLL_UNLOCKABLE))
2726 return -EINVAL;
2727
2728 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2729 &locked, gup_flags);
2730 }
2731 EXPORT_SYMBOL(get_user_pages_unlocked);
2732
2733 /*
2734 * GUP-fast
2735 *
2736 * get_user_pages_fast attempts to pin user pages by walking the page
2737 * tables directly and avoids taking locks. Thus the walker needs to be
2738 * protected from page table pages being freed from under it, and should
2739 * block any THP splits.
2740 *
2741 * One way to achieve this is to have the walker disable interrupts, and
2742 * rely on IPIs from the TLB flushing code blocking before the page table
2743 * pages are freed. This is unsuitable for architectures that do not need
2744 * to broadcast an IPI when invalidating TLBs.
2745 *
2746 * Another way to achieve this is to batch up page table containing pages
2747 * belonging to more than one mm_user, then rcu_sched a callback to free those
2748 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2749 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2750 * (which is a relatively rare event). The code below adopts this strategy.
2751 *
2752 * Before activating this code, please be aware that the following assumptions
2753 * are currently made:
2754 *
2755 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2756 * free pages containing page tables or TLB flushing requires IPI broadcast.
2757 *
2758 * *) ptes can be read atomically by the architecture.
2759 *
2760 * *) valid user addesses are below TASK_MAX_SIZE
2761 *
2762 * The last two assumptions can be relaxed by the addition of helper functions.
2763 *
2764 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2765 */
2766 #ifdef CONFIG_HAVE_GUP_FAST
2767 /*
2768 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2769 * a specific folio.
2770 *
2771 * This call assumes the caller has pinned the folio, that the lowest page table
2772 * level still points to this folio, and that interrupts have been disabled.
2773 *
2774 * GUP-fast must reject all secretmem folios.
2775 *
2776 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2777 * (see comment describing the writable_file_mapping_allowed() function). We
2778 * therefore try to avoid the most egregious case of a long-term mapping doing
2779 * so.
2780 *
2781 * This function cannot be as thorough as that one as the VMA is not available
2782 * in the fast path, so instead we whitelist known good cases and if in doubt,
2783 * fall back to the slow path.
2784 */
gup_fast_folio_allowed(struct folio * folio,unsigned int flags)2785 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2786 {
2787 bool reject_file_backed = false;
2788 struct address_space *mapping;
2789 bool check_secretmem = false;
2790 unsigned long mapping_flags;
2791
2792 /*
2793 * If we aren't pinning then no problematic write can occur. A long term
2794 * pin is the most egregious case so this is the one we disallow.
2795 */
2796 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2797 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2798 reject_file_backed = true;
2799
2800 /* We hold a folio reference, so we can safely access folio fields. */
2801
2802 /* secretmem folios are always order-0 folios. */
2803 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2804 check_secretmem = true;
2805
2806 if (!reject_file_backed && !check_secretmem)
2807 return true;
2808
2809 if (WARN_ON_ONCE(folio_test_slab(folio)))
2810 return false;
2811
2812 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2813 if (folio_test_hugetlb(folio))
2814 return true;
2815
2816 /*
2817 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2818 * cannot proceed, which means no actions performed under RCU can
2819 * proceed either.
2820 *
2821 * inodes and thus their mappings are freed under RCU, which means the
2822 * mapping cannot be freed beneath us and thus we can safely dereference
2823 * it.
2824 */
2825 lockdep_assert_irqs_disabled();
2826
2827 /*
2828 * However, there may be operations which _alter_ the mapping, so ensure
2829 * we read it once and only once.
2830 */
2831 mapping = READ_ONCE(folio->mapping);
2832
2833 /*
2834 * The mapping may have been truncated, in any case we cannot determine
2835 * if this mapping is safe - fall back to slow path to determine how to
2836 * proceed.
2837 */
2838 if (!mapping)
2839 return false;
2840
2841 /* Anonymous folios pose no problem. */
2842 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2843 if (mapping_flags)
2844 return mapping_flags & PAGE_MAPPING_ANON;
2845
2846 /*
2847 * At this point, we know the mapping is non-null and points to an
2848 * address_space object.
2849 */
2850 if (check_secretmem && secretmem_mapping(mapping))
2851 return false;
2852 /* The only remaining allowed file system is shmem. */
2853 return !reject_file_backed || shmem_mapping(mapping);
2854 }
2855
gup_fast_undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2856 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2857 unsigned int flags, struct page **pages)
2858 {
2859 while ((*nr) - nr_start) {
2860 struct folio *folio = page_folio(pages[--(*nr)]);
2861
2862 folio_clear_referenced(folio);
2863 gup_put_folio(folio, 1, flags);
2864 }
2865 }
2866
2867 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2868 /*
2869 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2870 * operations.
2871 *
2872 * To pin the page, GUP-fast needs to do below in order:
2873 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2874 *
2875 * For the rest of pgtable operations where pgtable updates can be racy
2876 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2877 * is pinned.
2878 *
2879 * Above will work for all pte-level operations, including THP split.
2880 *
2881 * For THP collapse, it's a bit more complicated because GUP-fast may be
2882 * walking a pgtable page that is being freed (pte is still valid but pmd
2883 * can be cleared already). To avoid race in such condition, we need to
2884 * also check pmd here to make sure pmd doesn't change (corresponds to
2885 * pmdp_collapse_flush() in the THP collapse code path).
2886 */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2887 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2888 unsigned long end, unsigned int flags, struct page **pages,
2889 int *nr)
2890 {
2891 struct dev_pagemap *pgmap = NULL;
2892 int nr_start = *nr, ret = 0;
2893 pte_t *ptep, *ptem;
2894
2895 ptem = ptep = pte_offset_map(&pmd, addr);
2896 if (!ptep)
2897 return 0;
2898 do {
2899 pte_t pte = ptep_get_lockless(ptep);
2900 struct page *page;
2901 struct folio *folio;
2902
2903 /*
2904 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2905 * pte_access_permitted() better should reject these pages
2906 * either way: otherwise, GUP-fast might succeed in
2907 * cases where ordinary GUP would fail due to VMA access
2908 * permissions.
2909 */
2910 if (pte_protnone(pte))
2911 goto pte_unmap;
2912
2913 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2914 goto pte_unmap;
2915
2916 if (pte_devmap(pte)) {
2917 if (unlikely(flags & FOLL_LONGTERM))
2918 goto pte_unmap;
2919
2920 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2921 if (unlikely(!pgmap)) {
2922 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2923 goto pte_unmap;
2924 }
2925 } else if (pte_special(pte))
2926 goto pte_unmap;
2927
2928 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2929 page = pte_page(pte);
2930
2931 folio = try_grab_folio_fast(page, 1, flags);
2932 if (!folio)
2933 goto pte_unmap;
2934
2935 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2936 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2937 gup_put_folio(folio, 1, flags);
2938 goto pte_unmap;
2939 }
2940
2941 if (!gup_fast_folio_allowed(folio, flags)) {
2942 gup_put_folio(folio, 1, flags);
2943 goto pte_unmap;
2944 }
2945
2946 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2947 gup_put_folio(folio, 1, flags);
2948 goto pte_unmap;
2949 }
2950
2951 /*
2952 * We need to make the page accessible if and only if we are
2953 * going to access its content (the FOLL_PIN case). Please
2954 * see Documentation/core-api/pin_user_pages.rst for
2955 * details.
2956 */
2957 if (flags & FOLL_PIN) {
2958 ret = arch_make_folio_accessible(folio);
2959 if (ret) {
2960 gup_put_folio(folio, 1, flags);
2961 goto pte_unmap;
2962 }
2963 }
2964 folio_set_referenced(folio);
2965 pages[*nr] = page;
2966 (*nr)++;
2967 } while (ptep++, addr += PAGE_SIZE, addr != end);
2968
2969 ret = 1;
2970
2971 pte_unmap:
2972 if (pgmap)
2973 put_dev_pagemap(pgmap);
2974 pte_unmap(ptem);
2975 return ret;
2976 }
2977 #else
2978
2979 /*
2980 * If we can't determine whether or not a pte is special, then fail immediately
2981 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2982 * to be special.
2983 *
2984 * For a futex to be placed on a THP tail page, get_futex_key requires a
2985 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2986 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2987 */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2988 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2989 unsigned long end, unsigned int flags, struct page **pages,
2990 int *nr)
2991 {
2992 return 0;
2993 }
2994 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2995
2996 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
gup_fast_devmap_leaf(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2997 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2998 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2999 {
3000 int nr_start = *nr;
3001 struct dev_pagemap *pgmap = NULL;
3002
3003 do {
3004 struct folio *folio;
3005 struct page *page = pfn_to_page(pfn);
3006
3007 pgmap = get_dev_pagemap(pfn, pgmap);
3008 if (unlikely(!pgmap)) {
3009 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3010 break;
3011 }
3012
3013 folio = try_grab_folio_fast(page, 1, flags);
3014 if (!folio) {
3015 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3016 break;
3017 }
3018 folio_set_referenced(folio);
3019 pages[*nr] = page;
3020 (*nr)++;
3021 pfn++;
3022 } while (addr += PAGE_SIZE, addr != end);
3023
3024 put_dev_pagemap(pgmap);
3025 return addr == end;
3026 }
3027
gup_fast_devmap_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3028 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3029 unsigned long end, unsigned int flags, struct page **pages,
3030 int *nr)
3031 {
3032 unsigned long fault_pfn;
3033 int nr_start = *nr;
3034
3035 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3036 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3037 return 0;
3038
3039 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3040 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3041 return 0;
3042 }
3043 return 1;
3044 }
3045
gup_fast_devmap_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3046 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3047 unsigned long end, unsigned int flags, struct page **pages,
3048 int *nr)
3049 {
3050 unsigned long fault_pfn;
3051 int nr_start = *nr;
3052
3053 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3054 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3055 return 0;
3056
3057 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3058 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3059 return 0;
3060 }
3061 return 1;
3062 }
3063 #else
gup_fast_devmap_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3064 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3065 unsigned long end, unsigned int flags, struct page **pages,
3066 int *nr)
3067 {
3068 BUILD_BUG();
3069 return 0;
3070 }
3071
gup_fast_devmap_pud_leaf(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3072 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3073 unsigned long end, unsigned int flags, struct page **pages,
3074 int *nr)
3075 {
3076 BUILD_BUG();
3077 return 0;
3078 }
3079 #endif
3080
gup_fast_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3081 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3082 unsigned long end, unsigned int flags, struct page **pages,
3083 int *nr)
3084 {
3085 struct page *page;
3086 struct folio *folio;
3087 int refs;
3088
3089 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3090 return 0;
3091
3092 if (pmd_special(orig))
3093 return 0;
3094
3095 if (pmd_devmap(orig)) {
3096 if (unlikely(flags & FOLL_LONGTERM))
3097 return 0;
3098 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3099 pages, nr);
3100 }
3101
3102 page = pmd_page(orig);
3103 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3104
3105 folio = try_grab_folio_fast(page, refs, flags);
3106 if (!folio)
3107 return 0;
3108
3109 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3110 gup_put_folio(folio, refs, flags);
3111 return 0;
3112 }
3113
3114 if (!gup_fast_folio_allowed(folio, flags)) {
3115 gup_put_folio(folio, refs, flags);
3116 return 0;
3117 }
3118 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3119 gup_put_folio(folio, refs, flags);
3120 return 0;
3121 }
3122
3123 *nr += refs;
3124 folio_set_referenced(folio);
3125 return 1;
3126 }
3127
gup_fast_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3128 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3129 unsigned long end, unsigned int flags, struct page **pages,
3130 int *nr)
3131 {
3132 struct page *page;
3133 struct folio *folio;
3134 int refs;
3135
3136 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3137 return 0;
3138
3139 if (pud_special(orig))
3140 return 0;
3141
3142 if (pud_devmap(orig)) {
3143 if (unlikely(flags & FOLL_LONGTERM))
3144 return 0;
3145 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3146 pages, nr);
3147 }
3148
3149 page = pud_page(orig);
3150 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3151
3152 folio = try_grab_folio_fast(page, refs, flags);
3153 if (!folio)
3154 return 0;
3155
3156 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3157 gup_put_folio(folio, refs, flags);
3158 return 0;
3159 }
3160
3161 if (!gup_fast_folio_allowed(folio, flags)) {
3162 gup_put_folio(folio, refs, flags);
3163 return 0;
3164 }
3165
3166 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3167 gup_put_folio(folio, refs, flags);
3168 return 0;
3169 }
3170
3171 *nr += refs;
3172 folio_set_referenced(folio);
3173 return 1;
3174 }
3175
gup_fast_pgd_leaf(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3176 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3177 unsigned long end, unsigned int flags, struct page **pages,
3178 int *nr)
3179 {
3180 int refs;
3181 struct page *page;
3182 struct folio *folio;
3183
3184 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3185 return 0;
3186
3187 BUILD_BUG_ON(pgd_devmap(orig));
3188
3189 page = pgd_page(orig);
3190 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3191
3192 folio = try_grab_folio_fast(page, refs, flags);
3193 if (!folio)
3194 return 0;
3195
3196 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3197 gup_put_folio(folio, refs, flags);
3198 return 0;
3199 }
3200
3201 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3202 gup_put_folio(folio, refs, flags);
3203 return 0;
3204 }
3205
3206 if (!gup_fast_folio_allowed(folio, flags)) {
3207 gup_put_folio(folio, refs, flags);
3208 return 0;
3209 }
3210
3211 *nr += refs;
3212 folio_set_referenced(folio);
3213 return 1;
3214 }
3215
gup_fast_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3216 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3217 unsigned long end, unsigned int flags, struct page **pages,
3218 int *nr)
3219 {
3220 unsigned long next;
3221 pmd_t *pmdp;
3222
3223 pmdp = pmd_offset_lockless(pudp, pud, addr);
3224 do {
3225 pmd_t pmd = pmdp_get_lockless(pmdp);
3226
3227 next = pmd_addr_end(addr, end);
3228 if (!pmd_present(pmd))
3229 return 0;
3230
3231 if (unlikely(pmd_leaf(pmd))) {
3232 /* See gup_fast_pte_range() */
3233 if (pmd_protnone(pmd))
3234 return 0;
3235
3236 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3237 pages, nr))
3238 return 0;
3239
3240 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3241 pages, nr))
3242 return 0;
3243 } while (pmdp++, addr = next, addr != end);
3244
3245 return 1;
3246 }
3247
gup_fast_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3248 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3249 unsigned long end, unsigned int flags, struct page **pages,
3250 int *nr)
3251 {
3252 unsigned long next;
3253 pud_t *pudp;
3254
3255 pudp = pud_offset_lockless(p4dp, p4d, addr);
3256 do {
3257 pud_t pud = READ_ONCE(*pudp);
3258
3259 next = pud_addr_end(addr, end);
3260 if (unlikely(!pud_present(pud)))
3261 return 0;
3262 if (unlikely(pud_leaf(pud))) {
3263 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3264 pages, nr))
3265 return 0;
3266 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3267 pages, nr))
3268 return 0;
3269 } while (pudp++, addr = next, addr != end);
3270
3271 return 1;
3272 }
3273
gup_fast_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3274 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3275 unsigned long end, unsigned int flags, struct page **pages,
3276 int *nr)
3277 {
3278 unsigned long next;
3279 p4d_t *p4dp;
3280
3281 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3282 do {
3283 p4d_t p4d = READ_ONCE(*p4dp);
3284
3285 next = p4d_addr_end(addr, end);
3286 if (!p4d_present(p4d))
3287 return 0;
3288 BUILD_BUG_ON(p4d_leaf(p4d));
3289 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3290 pages, nr))
3291 return 0;
3292 } while (p4dp++, addr = next, addr != end);
3293
3294 return 1;
3295 }
3296
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3297 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3298 unsigned int flags, struct page **pages, int *nr)
3299 {
3300 unsigned long next;
3301 pgd_t *pgdp;
3302
3303 pgdp = pgd_offset(current->mm, addr);
3304 do {
3305 pgd_t pgd = READ_ONCE(*pgdp);
3306
3307 next = pgd_addr_end(addr, end);
3308 if (pgd_none(pgd))
3309 return;
3310 if (unlikely(pgd_leaf(pgd))) {
3311 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3312 pages, nr))
3313 return;
3314 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3315 pages, nr))
3316 return;
3317 } while (pgdp++, addr = next, addr != end);
3318 }
3319 #else
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3320 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3321 unsigned int flags, struct page **pages, int *nr)
3322 {
3323 }
3324 #endif /* CONFIG_HAVE_GUP_FAST */
3325
3326 #ifndef gup_fast_permitted
3327 /*
3328 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3329 * we need to fall back to the slow version:
3330 */
gup_fast_permitted(unsigned long start,unsigned long end)3331 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3332 {
3333 return true;
3334 }
3335 #endif
3336
gup_fast(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)3337 static unsigned long gup_fast(unsigned long start, unsigned long end,
3338 unsigned int gup_flags, struct page **pages)
3339 {
3340 unsigned long flags;
3341 int nr_pinned = 0;
3342 unsigned seq;
3343
3344 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3345 !gup_fast_permitted(start, end))
3346 return 0;
3347
3348 if (gup_flags & FOLL_PIN) {
3349 if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq))
3350 return 0;
3351 }
3352
3353 /*
3354 * Disable interrupts. The nested form is used, in order to allow full,
3355 * general purpose use of this routine.
3356 *
3357 * With interrupts disabled, we block page table pages from being freed
3358 * from under us. See struct mmu_table_batch comments in
3359 * include/asm-generic/tlb.h for more details.
3360 *
3361 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3362 * that come from THPs splitting.
3363 */
3364 local_irq_save(flags);
3365 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3366 local_irq_restore(flags);
3367
3368 /*
3369 * When pinning pages for DMA there could be a concurrent write protect
3370 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3371 */
3372 if (gup_flags & FOLL_PIN) {
3373 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3374 gup_fast_unpin_user_pages(pages, nr_pinned);
3375 return 0;
3376 } else {
3377 sanity_check_pinned_pages(pages, nr_pinned);
3378 }
3379 }
3380 return nr_pinned;
3381 }
3382
gup_fast_fallback(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3383 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3384 unsigned int gup_flags, struct page **pages)
3385 {
3386 unsigned long len, end;
3387 unsigned long nr_pinned;
3388 int locked = 0;
3389 int ret;
3390
3391 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3392 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3393 FOLL_FAST_ONLY | FOLL_NOFAULT |
3394 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3395 return -EINVAL;
3396
3397 if (gup_flags & FOLL_PIN)
3398 mm_set_has_pinned_flag(¤t->mm->flags);
3399
3400 if (!(gup_flags & FOLL_FAST_ONLY))
3401 might_lock_read(¤t->mm->mmap_lock);
3402
3403 start = untagged_addr(start) & PAGE_MASK;
3404 len = nr_pages << PAGE_SHIFT;
3405 if (check_add_overflow(start, len, &end))
3406 return -EOVERFLOW;
3407 if (end > TASK_SIZE_MAX)
3408 return -EFAULT;
3409
3410 nr_pinned = gup_fast(start, end, gup_flags, pages);
3411 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3412 return nr_pinned;
3413
3414 /* Slow path: try to get the remaining pages with get_user_pages */
3415 start += nr_pinned << PAGE_SHIFT;
3416 pages += nr_pinned;
3417 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3418 pages, &locked,
3419 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3420 if (ret < 0) {
3421 /*
3422 * The caller has to unpin the pages we already pinned so
3423 * returning -errno is not an option
3424 */
3425 if (nr_pinned)
3426 return nr_pinned;
3427 return ret;
3428 }
3429 return ret + nr_pinned;
3430 }
3431
3432 /**
3433 * get_user_pages_fast_only() - pin user pages in memory
3434 * @start: starting user address
3435 * @nr_pages: number of pages from start to pin
3436 * @gup_flags: flags modifying pin behaviour
3437 * @pages: array that receives pointers to the pages pinned.
3438 * Should be at least nr_pages long.
3439 *
3440 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3441 * the regular GUP.
3442 *
3443 * If the architecture does not support this function, simply return with no
3444 * pages pinned.
3445 *
3446 * Careful, careful! COW breaking can go either way, so a non-write
3447 * access can get ambiguous page results. If you call this function without
3448 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3449 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3450 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3451 unsigned int gup_flags, struct page **pages)
3452 {
3453 /*
3454 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3455 * because gup fast is always a "pin with a +1 page refcount" request.
3456 *
3457 * FOLL_FAST_ONLY is required in order to match the API description of
3458 * this routine: no fall back to regular ("slow") GUP.
3459 */
3460 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3461 FOLL_GET | FOLL_FAST_ONLY))
3462 return -EINVAL;
3463
3464 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3465 }
3466 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3467
3468 /**
3469 * get_user_pages_fast() - pin user pages in memory
3470 * @start: starting user address
3471 * @nr_pages: number of pages from start to pin
3472 * @gup_flags: flags modifying pin behaviour
3473 * @pages: array that receives pointers to the pages pinned.
3474 * Should be at least nr_pages long.
3475 *
3476 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3477 * If not successful, it will fall back to taking the lock and
3478 * calling get_user_pages().
3479 *
3480 * Returns number of pages pinned. This may be fewer than the number requested.
3481 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3482 * -errno.
3483 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3484 int get_user_pages_fast(unsigned long start, int nr_pages,
3485 unsigned int gup_flags, struct page **pages)
3486 {
3487 /*
3488 * The caller may or may not have explicitly set FOLL_GET; either way is
3489 * OK. However, internally (within mm/gup.c), gup fast variants must set
3490 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3491 * request.
3492 */
3493 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3494 return -EINVAL;
3495 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3496 }
3497 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3498
3499 /**
3500 * pin_user_pages_fast() - pin user pages in memory without taking locks
3501 *
3502 * @start: starting user address
3503 * @nr_pages: number of pages from start to pin
3504 * @gup_flags: flags modifying pin behaviour
3505 * @pages: array that receives pointers to the pages pinned.
3506 * Should be at least nr_pages long.
3507 *
3508 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3509 * get_user_pages_fast() for documentation on the function arguments, because
3510 * the arguments here are identical.
3511 *
3512 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3513 * see Documentation/core-api/pin_user_pages.rst for further details.
3514 *
3515 * Note that if a zero_page is amongst the returned pages, it will not have
3516 * pins in it and unpin_user_page() will not remove pins from it.
3517 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3518 int pin_user_pages_fast(unsigned long start, int nr_pages,
3519 unsigned int gup_flags, struct page **pages)
3520 {
3521 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3522 return -EINVAL;
3523 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3524 }
3525 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3526
3527 /**
3528 * pin_user_pages_remote() - pin pages of a remote process
3529 *
3530 * @mm: mm_struct of target mm
3531 * @start: starting user address
3532 * @nr_pages: number of pages from start to pin
3533 * @gup_flags: flags modifying lookup behaviour
3534 * @pages: array that receives pointers to the pages pinned.
3535 * Should be at least nr_pages long.
3536 * @locked: pointer to lock flag indicating whether lock is held and
3537 * subsequently whether VM_FAULT_RETRY functionality can be
3538 * utilised. Lock must initially be held.
3539 *
3540 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3541 * get_user_pages_remote() for documentation on the function arguments, because
3542 * the arguments here are identical.
3543 *
3544 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3545 * see Documentation/core-api/pin_user_pages.rst for details.
3546 *
3547 * Note that if a zero_page is amongst the returned pages, it will not have
3548 * pins in it and unpin_user_page*() will not remove pins from it.
3549 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3550 long pin_user_pages_remote(struct mm_struct *mm,
3551 unsigned long start, unsigned long nr_pages,
3552 unsigned int gup_flags, struct page **pages,
3553 int *locked)
3554 {
3555 int local_locked = 1;
3556
3557 if (!is_valid_gup_args(pages, locked, &gup_flags,
3558 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3559 return 0;
3560 return __gup_longterm_locked(mm, start, nr_pages, pages,
3561 locked ? locked : &local_locked,
3562 gup_flags);
3563 }
3564 EXPORT_SYMBOL(pin_user_pages_remote);
3565
3566 /**
3567 * pin_user_pages() - pin user pages in memory for use by other devices
3568 *
3569 * @start: starting user address
3570 * @nr_pages: number of pages from start to pin
3571 * @gup_flags: flags modifying lookup behaviour
3572 * @pages: array that receives pointers to the pages pinned.
3573 * Should be at least nr_pages long.
3574 *
3575 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3576 * FOLL_PIN is set.
3577 *
3578 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3579 * see Documentation/core-api/pin_user_pages.rst for details.
3580 *
3581 * Note that if a zero_page is amongst the returned pages, it will not have
3582 * pins in it and unpin_user_page*() will not remove pins from it.
3583 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3584 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3585 unsigned int gup_flags, struct page **pages)
3586 {
3587 int locked = 1;
3588
3589 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3590 return 0;
3591 return __gup_longterm_locked(current->mm, start, nr_pages,
3592 pages, &locked, gup_flags);
3593 }
3594 EXPORT_SYMBOL(pin_user_pages);
3595
3596 /*
3597 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3598 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3599 * FOLL_PIN and rejects FOLL_GET.
3600 *
3601 * Note that if a zero_page is amongst the returned pages, it will not have
3602 * pins in it and unpin_user_page*() will not remove pins from it.
3603 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3604 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3605 struct page **pages, unsigned int gup_flags)
3606 {
3607 int locked = 0;
3608
3609 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3610 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3611 return 0;
3612
3613 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3614 &locked, gup_flags);
3615 }
3616 EXPORT_SYMBOL(pin_user_pages_unlocked);
3617
3618 /**
3619 * memfd_pin_folios() - pin folios associated with a memfd
3620 * @memfd: the memfd whose folios are to be pinned
3621 * @start: the first memfd offset
3622 * @end: the last memfd offset (inclusive)
3623 * @folios: array that receives pointers to the folios pinned
3624 * @max_folios: maximum number of entries in @folios
3625 * @offset: the offset into the first folio
3626 *
3627 * Attempt to pin folios associated with a memfd in the contiguous range
3628 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3629 * the folios can either be found in the page cache or need to be allocated
3630 * if necessary. Once the folios are located, they are all pinned via
3631 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3632 * And, eventually, these pinned folios must be released either using
3633 * unpin_folios() or unpin_folio().
3634 *
3635 * It must be noted that the folios may be pinned for an indefinite amount
3636 * of time. And, in most cases, the duration of time they may stay pinned
3637 * would be controlled by the userspace. This behavior is effectively the
3638 * same as using FOLL_LONGTERM with other GUP APIs.
3639 *
3640 * Returns number of folios pinned, which could be less than @max_folios
3641 * as it depends on the folio sizes that cover the range [start, end].
3642 * If no folios were pinned, it returns -errno.
3643 */
memfd_pin_folios(struct file * memfd,loff_t start,loff_t end,struct folio ** folios,unsigned int max_folios,pgoff_t * offset)3644 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3645 struct folio **folios, unsigned int max_folios,
3646 pgoff_t *offset)
3647 {
3648 unsigned int flags, nr_folios, nr_found;
3649 unsigned int i, pgshift = PAGE_SHIFT;
3650 pgoff_t start_idx, end_idx, next_idx;
3651 struct folio *folio = NULL;
3652 struct folio_batch fbatch;
3653 struct hstate *h;
3654 long ret = -EINVAL;
3655
3656 if (start < 0 || start > end || !max_folios)
3657 return -EINVAL;
3658
3659 if (!memfd)
3660 return -EINVAL;
3661
3662 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3663 return -EINVAL;
3664
3665 if (end >= i_size_read(file_inode(memfd)))
3666 return -EINVAL;
3667
3668 if (is_file_hugepages(memfd)) {
3669 h = hstate_file(memfd);
3670 pgshift = huge_page_shift(h);
3671 }
3672
3673 flags = memalloc_pin_save();
3674 do {
3675 nr_folios = 0;
3676 start_idx = start >> pgshift;
3677 end_idx = end >> pgshift;
3678 if (is_file_hugepages(memfd)) {
3679 start_idx <<= huge_page_order(h);
3680 end_idx <<= huge_page_order(h);
3681 }
3682
3683 folio_batch_init(&fbatch);
3684 while (start_idx <= end_idx && nr_folios < max_folios) {
3685 /*
3686 * In most cases, we should be able to find the folios
3687 * in the page cache. If we cannot find them for some
3688 * reason, we try to allocate them and add them to the
3689 * page cache.
3690 */
3691 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3692 &start_idx,
3693 end_idx,
3694 &fbatch);
3695 if (folio) {
3696 folio_put(folio);
3697 folio = NULL;
3698 }
3699
3700 next_idx = 0;
3701 for (i = 0; i < nr_found; i++) {
3702 /*
3703 * As there can be multiple entries for a
3704 * given folio in the batch returned by
3705 * filemap_get_folios_contig(), the below
3706 * check is to ensure that we pin and return a
3707 * unique set of folios between start and end.
3708 */
3709 if (next_idx &&
3710 next_idx != folio_index(fbatch.folios[i]))
3711 continue;
3712
3713 folio = page_folio(&fbatch.folios[i]->page);
3714
3715 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3716 folio_batch_release(&fbatch);
3717 ret = -EINVAL;
3718 goto err;
3719 }
3720
3721 if (nr_folios == 0)
3722 *offset = offset_in_folio(folio, start);
3723
3724 folios[nr_folios] = folio;
3725 next_idx = folio_next_index(folio);
3726 if (++nr_folios == max_folios)
3727 break;
3728 }
3729
3730 folio = NULL;
3731 folio_batch_release(&fbatch);
3732 if (!nr_found) {
3733 folio = memfd_alloc_folio(memfd, start_idx);
3734 if (IS_ERR(folio)) {
3735 ret = PTR_ERR(folio);
3736 if (ret != -EEXIST)
3737 goto err;
3738 folio = NULL;
3739 }
3740 }
3741 }
3742
3743 ret = check_and_migrate_movable_folios(nr_folios, folios);
3744 } while (ret == -EAGAIN);
3745
3746 memalloc_pin_restore(flags);
3747 return ret ? ret : nr_folios;
3748 err:
3749 memalloc_pin_restore(flags);
3750 unpin_folios(folios, nr_folios);
3751
3752 return ret;
3753 }
3754 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3755
3756 /**
3757 * folio_add_pins() - add pins to an already-pinned folio
3758 * @folio: the folio to add more pins to
3759 * @pins: number of pins to add
3760 *
3761 * Try to add more pins to an already-pinned folio. The semantics
3762 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3763 * be changed.
3764 *
3765 * This function is helpful when having obtained a pin on a large folio
3766 * using memfd_pin_folios(), but wanting to logically unpin parts
3767 * (e.g., individual pages) of the folio later, for example, using
3768 * unpin_user_page_range_dirty_lock().
3769 *
3770 * This is not the right interface to initially pin a folio.
3771 */
folio_add_pins(struct folio * folio,unsigned int pins)3772 int folio_add_pins(struct folio *folio, unsigned int pins)
3773 {
3774 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3775
3776 return try_grab_folio(folio, pins, FOLL_PIN);
3777 }
3778 EXPORT_SYMBOL_GPL(folio_add_pins);
3779