1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32 
33 #include "test_hmm_uapi.h"
34 
35 #define DMIRROR_NDEVICES		4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT	1000
37 #define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE		16
39 
40 /*
41  * For device_private pages, dpage is just a dummy struct page
42  * representing a piece of device memory. dmirror_devmem_alloc_page
43  * allocates a real system memory page as backing storage to fake a
44  * real device. zone_device_data points to that backing page. But
45  * for device_coherent memory, the struct page represents real
46  * physical CPU-accessible memory that we can use directly.
47  */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49 			   (page)->zone_device_data : (page))
50 
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54 		"Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55 
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59 		"Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60 
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64 
65 struct dmirror_device;
66 
67 struct dmirror_bounce {
68 	void			*ptr;
69 	unsigned long		size;
70 	unsigned long		addr;
71 	unsigned long		cpages;
72 };
73 
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76 
77 /*
78  * Data structure to track address ranges and register for mmu interval
79  * notifier updates.
80  */
81 struct dmirror_interval {
82 	struct mmu_interval_notifier	notifier;
83 	struct dmirror			*dmirror;
84 };
85 
86 /*
87  * Data attached to the open device file.
88  * Note that it might be shared after a fork().
89  */
90 struct dmirror {
91 	struct dmirror_device		*mdevice;
92 	struct xarray			pt;
93 	struct mmu_interval_notifier	notifier;
94 	struct mutex			mutex;
95 };
96 
97 /*
98  * ZONE_DEVICE pages for migration and simulating device memory.
99  */
100 struct dmirror_chunk {
101 	struct dev_pagemap	pagemap;
102 	struct dmirror_device	*mdevice;
103 	bool remove;
104 };
105 
106 /*
107  * Per device data.
108  */
109 struct dmirror_device {
110 	struct cdev		cdevice;
111 	unsigned int            zone_device_type;
112 	struct device		device;
113 
114 	unsigned int		devmem_capacity;
115 	unsigned int		devmem_count;
116 	struct dmirror_chunk	**devmem_chunks;
117 	struct mutex		devmem_lock;	/* protects the above */
118 
119 	unsigned long		calloc;
120 	unsigned long		cfree;
121 	struct page		*free_pages;
122 	spinlock_t		lock;		/* protects the above */
123 };
124 
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126 
dmirror_bounce_init(struct dmirror_bounce * bounce,unsigned long addr,unsigned long size)127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128 			       unsigned long addr,
129 			       unsigned long size)
130 {
131 	bounce->addr = addr;
132 	bounce->size = size;
133 	bounce->cpages = 0;
134 	bounce->ptr = vmalloc(size);
135 	if (!bounce->ptr)
136 		return -ENOMEM;
137 	return 0;
138 }
139 
dmirror_is_private_zone(struct dmirror_device * mdevice)140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141 {
142 	return (mdevice->zone_device_type ==
143 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144 }
145 
146 static enum migrate_vma_direction
dmirror_select_device(struct dmirror * dmirror)147 dmirror_select_device(struct dmirror *dmirror)
148 {
149 	return (dmirror->mdevice->zone_device_type ==
150 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151 		MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152 		MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153 }
154 
dmirror_bounce_fini(struct dmirror_bounce * bounce)155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156 {
157 	vfree(bounce->ptr);
158 }
159 
dmirror_fops_open(struct inode * inode,struct file * filp)160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
161 {
162 	struct cdev *cdev = inode->i_cdev;
163 	struct dmirror *dmirror;
164 	int ret;
165 
166 	/* Mirror this process address space */
167 	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168 	if (dmirror == NULL)
169 		return -ENOMEM;
170 
171 	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172 	mutex_init(&dmirror->mutex);
173 	xa_init(&dmirror->pt);
174 
175 	ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176 				0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177 	if (ret) {
178 		kfree(dmirror);
179 		return ret;
180 	}
181 
182 	filp->private_data = dmirror;
183 	return 0;
184 }
185 
dmirror_fops_release(struct inode * inode,struct file * filp)186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
187 {
188 	struct dmirror *dmirror = filp->private_data;
189 
190 	mmu_interval_notifier_remove(&dmirror->notifier);
191 	xa_destroy(&dmirror->pt);
192 	kfree(dmirror);
193 	return 0;
194 }
195 
dmirror_page_to_chunk(struct page * page)196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197 {
198 	return container_of(page_pgmap(page), struct dmirror_chunk,
199 			    pagemap);
200 }
201 
dmirror_page_to_device(struct page * page)202 static struct dmirror_device *dmirror_page_to_device(struct page *page)
203 
204 {
205 	return dmirror_page_to_chunk(page)->mdevice;
206 }
207 
dmirror_do_fault(struct dmirror * dmirror,struct hmm_range * range)208 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
209 {
210 	unsigned long *pfns = range->hmm_pfns;
211 	unsigned long pfn;
212 
213 	for (pfn = (range->start >> PAGE_SHIFT);
214 	     pfn < (range->end >> PAGE_SHIFT);
215 	     pfn++, pfns++) {
216 		struct page *page;
217 		void *entry;
218 
219 		/*
220 		 * Since we asked for hmm_range_fault() to populate pages,
221 		 * it shouldn't return an error entry on success.
222 		 */
223 		WARN_ON(*pfns & HMM_PFN_ERROR);
224 		WARN_ON(!(*pfns & HMM_PFN_VALID));
225 
226 		page = hmm_pfn_to_page(*pfns);
227 		WARN_ON(!page);
228 
229 		entry = page;
230 		if (*pfns & HMM_PFN_WRITE)
231 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
232 		else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
233 			return -EFAULT;
234 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
235 		if (xa_is_err(entry))
236 			return xa_err(entry);
237 	}
238 
239 	return 0;
240 }
241 
dmirror_do_update(struct dmirror * dmirror,unsigned long start,unsigned long end)242 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
243 			      unsigned long end)
244 {
245 	unsigned long pfn;
246 	void *entry;
247 
248 	/*
249 	 * The XArray doesn't hold references to pages since it relies on
250 	 * the mmu notifier to clear page pointers when they become stale.
251 	 * Therefore, it is OK to just clear the entry.
252 	 */
253 	xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
254 			  end >> PAGE_SHIFT)
255 		xa_erase(&dmirror->pt, pfn);
256 }
257 
dmirror_interval_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)258 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
259 				const struct mmu_notifier_range *range,
260 				unsigned long cur_seq)
261 {
262 	struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
263 
264 	/*
265 	 * Ignore invalidation callbacks for device private pages since
266 	 * the invalidation is handled as part of the migration process.
267 	 */
268 	if (range->event == MMU_NOTIFY_MIGRATE &&
269 	    range->owner == dmirror->mdevice)
270 		return true;
271 
272 	if (mmu_notifier_range_blockable(range))
273 		mutex_lock(&dmirror->mutex);
274 	else if (!mutex_trylock(&dmirror->mutex))
275 		return false;
276 
277 	mmu_interval_set_seq(mni, cur_seq);
278 	dmirror_do_update(dmirror, range->start, range->end);
279 
280 	mutex_unlock(&dmirror->mutex);
281 	return true;
282 }
283 
284 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
285 	.invalidate = dmirror_interval_invalidate,
286 };
287 
dmirror_range_fault(struct dmirror * dmirror,struct hmm_range * range)288 static int dmirror_range_fault(struct dmirror *dmirror,
289 				struct hmm_range *range)
290 {
291 	struct mm_struct *mm = dmirror->notifier.mm;
292 	unsigned long timeout =
293 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
294 	int ret;
295 
296 	while (true) {
297 		if (time_after(jiffies, timeout)) {
298 			ret = -EBUSY;
299 			goto out;
300 		}
301 
302 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
303 		mmap_read_lock(mm);
304 		ret = hmm_range_fault(range);
305 		mmap_read_unlock(mm);
306 		if (ret) {
307 			if (ret == -EBUSY)
308 				continue;
309 			goto out;
310 		}
311 
312 		mutex_lock(&dmirror->mutex);
313 		if (mmu_interval_read_retry(range->notifier,
314 					    range->notifier_seq)) {
315 			mutex_unlock(&dmirror->mutex);
316 			continue;
317 		}
318 		break;
319 	}
320 
321 	ret = dmirror_do_fault(dmirror, range);
322 
323 	mutex_unlock(&dmirror->mutex);
324 out:
325 	return ret;
326 }
327 
dmirror_fault(struct dmirror * dmirror,unsigned long start,unsigned long end,bool write)328 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
329 			 unsigned long end, bool write)
330 {
331 	struct mm_struct *mm = dmirror->notifier.mm;
332 	unsigned long addr;
333 	unsigned long pfns[64];
334 	struct hmm_range range = {
335 		.notifier = &dmirror->notifier,
336 		.hmm_pfns = pfns,
337 		.pfn_flags_mask = 0,
338 		.default_flags =
339 			HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
340 		.dev_private_owner = dmirror->mdevice,
341 	};
342 	int ret = 0;
343 
344 	/* Since the mm is for the mirrored process, get a reference first. */
345 	if (!mmget_not_zero(mm))
346 		return 0;
347 
348 	for (addr = start; addr < end; addr = range.end) {
349 		range.start = addr;
350 		range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
351 
352 		ret = dmirror_range_fault(dmirror, &range);
353 		if (ret)
354 			break;
355 	}
356 
357 	mmput(mm);
358 	return ret;
359 }
360 
dmirror_do_read(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)361 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
362 			   unsigned long end, struct dmirror_bounce *bounce)
363 {
364 	unsigned long pfn;
365 	void *ptr;
366 
367 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
368 
369 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
370 		void *entry;
371 		struct page *page;
372 
373 		entry = xa_load(&dmirror->pt, pfn);
374 		page = xa_untag_pointer(entry);
375 		if (!page)
376 			return -ENOENT;
377 
378 		memcpy_from_page(ptr, page, 0, PAGE_SIZE);
379 
380 		ptr += PAGE_SIZE;
381 		bounce->cpages++;
382 	}
383 
384 	return 0;
385 }
386 
dmirror_read(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)387 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
388 {
389 	struct dmirror_bounce bounce;
390 	unsigned long start, end;
391 	unsigned long size = cmd->npages << PAGE_SHIFT;
392 	int ret;
393 
394 	start = cmd->addr;
395 	end = start + size;
396 	if (end < start)
397 		return -EINVAL;
398 
399 	ret = dmirror_bounce_init(&bounce, start, size);
400 	if (ret)
401 		return ret;
402 
403 	while (1) {
404 		mutex_lock(&dmirror->mutex);
405 		ret = dmirror_do_read(dmirror, start, end, &bounce);
406 		mutex_unlock(&dmirror->mutex);
407 		if (ret != -ENOENT)
408 			break;
409 
410 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
411 		ret = dmirror_fault(dmirror, start, end, false);
412 		if (ret)
413 			break;
414 		cmd->faults++;
415 	}
416 
417 	if (ret == 0) {
418 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
419 				 bounce.size))
420 			ret = -EFAULT;
421 	}
422 	cmd->cpages = bounce.cpages;
423 	dmirror_bounce_fini(&bounce);
424 	return ret;
425 }
426 
dmirror_do_write(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)427 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
428 			    unsigned long end, struct dmirror_bounce *bounce)
429 {
430 	unsigned long pfn;
431 	void *ptr;
432 
433 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
434 
435 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
436 		void *entry;
437 		struct page *page;
438 
439 		entry = xa_load(&dmirror->pt, pfn);
440 		page = xa_untag_pointer(entry);
441 		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
442 			return -ENOENT;
443 
444 		memcpy_to_page(page, 0, ptr, PAGE_SIZE);
445 
446 		ptr += PAGE_SIZE;
447 		bounce->cpages++;
448 	}
449 
450 	return 0;
451 }
452 
dmirror_write(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)453 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
454 {
455 	struct dmirror_bounce bounce;
456 	unsigned long start, end;
457 	unsigned long size = cmd->npages << PAGE_SHIFT;
458 	int ret;
459 
460 	start = cmd->addr;
461 	end = start + size;
462 	if (end < start)
463 		return -EINVAL;
464 
465 	ret = dmirror_bounce_init(&bounce, start, size);
466 	if (ret)
467 		return ret;
468 	if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
469 			   bounce.size)) {
470 		ret = -EFAULT;
471 		goto fini;
472 	}
473 
474 	while (1) {
475 		mutex_lock(&dmirror->mutex);
476 		ret = dmirror_do_write(dmirror, start, end, &bounce);
477 		mutex_unlock(&dmirror->mutex);
478 		if (ret != -ENOENT)
479 			break;
480 
481 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
482 		ret = dmirror_fault(dmirror, start, end, true);
483 		if (ret)
484 			break;
485 		cmd->faults++;
486 	}
487 
488 fini:
489 	cmd->cpages = bounce.cpages;
490 	dmirror_bounce_fini(&bounce);
491 	return ret;
492 }
493 
dmirror_allocate_chunk(struct dmirror_device * mdevice,struct page ** ppage)494 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
495 				   struct page **ppage)
496 {
497 	struct dmirror_chunk *devmem;
498 	struct resource *res = NULL;
499 	unsigned long pfn;
500 	unsigned long pfn_first;
501 	unsigned long pfn_last;
502 	void *ptr;
503 	int ret = -ENOMEM;
504 
505 	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
506 	if (!devmem)
507 		return ret;
508 
509 	switch (mdevice->zone_device_type) {
510 	case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
511 		res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
512 					      "hmm_dmirror");
513 		if (IS_ERR_OR_NULL(res))
514 			goto err_devmem;
515 		devmem->pagemap.range.start = res->start;
516 		devmem->pagemap.range.end = res->end;
517 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
518 		break;
519 	case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
520 		devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
521 							spm_addr_dev0 :
522 							spm_addr_dev1;
523 		devmem->pagemap.range.end = devmem->pagemap.range.start +
524 					    DEVMEM_CHUNK_SIZE - 1;
525 		devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
526 		break;
527 	default:
528 		ret = -EINVAL;
529 		goto err_devmem;
530 	}
531 
532 	devmem->pagemap.nr_range = 1;
533 	devmem->pagemap.ops = &dmirror_devmem_ops;
534 	devmem->pagemap.owner = mdevice;
535 
536 	mutex_lock(&mdevice->devmem_lock);
537 
538 	if (mdevice->devmem_count == mdevice->devmem_capacity) {
539 		struct dmirror_chunk **new_chunks;
540 		unsigned int new_capacity;
541 
542 		new_capacity = mdevice->devmem_capacity +
543 				DEVMEM_CHUNKS_RESERVE;
544 		new_chunks = krealloc(mdevice->devmem_chunks,
545 				sizeof(new_chunks[0]) * new_capacity,
546 				GFP_KERNEL);
547 		if (!new_chunks)
548 			goto err_release;
549 		mdevice->devmem_capacity = new_capacity;
550 		mdevice->devmem_chunks = new_chunks;
551 	}
552 	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
553 	if (IS_ERR_OR_NULL(ptr)) {
554 		if (ptr)
555 			ret = PTR_ERR(ptr);
556 		else
557 			ret = -EFAULT;
558 		goto err_release;
559 	}
560 
561 	devmem->mdevice = mdevice;
562 	pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
563 	pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
564 	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
565 
566 	mutex_unlock(&mdevice->devmem_lock);
567 
568 	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
569 		DEVMEM_CHUNK_SIZE / (1024 * 1024),
570 		mdevice->devmem_count,
571 		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
572 		pfn_first, pfn_last);
573 
574 	spin_lock(&mdevice->lock);
575 	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
576 		struct page *page = pfn_to_page(pfn);
577 
578 		page->zone_device_data = mdevice->free_pages;
579 		mdevice->free_pages = page;
580 	}
581 	if (ppage) {
582 		*ppage = mdevice->free_pages;
583 		mdevice->free_pages = (*ppage)->zone_device_data;
584 		mdevice->calloc++;
585 	}
586 	spin_unlock(&mdevice->lock);
587 
588 	return 0;
589 
590 err_release:
591 	mutex_unlock(&mdevice->devmem_lock);
592 	if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
593 		release_mem_region(devmem->pagemap.range.start,
594 				   range_len(&devmem->pagemap.range));
595 err_devmem:
596 	kfree(devmem);
597 
598 	return ret;
599 }
600 
dmirror_devmem_alloc_page(struct dmirror_device * mdevice)601 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
602 {
603 	struct page *dpage = NULL;
604 	struct page *rpage = NULL;
605 
606 	/*
607 	 * For ZONE_DEVICE private type, this is a fake device so we allocate
608 	 * real system memory to store our device memory.
609 	 * For ZONE_DEVICE coherent type we use the actual dpage to store the
610 	 * data and ignore rpage.
611 	 */
612 	if (dmirror_is_private_zone(mdevice)) {
613 		rpage = alloc_page(GFP_HIGHUSER);
614 		if (!rpage)
615 			return NULL;
616 	}
617 	spin_lock(&mdevice->lock);
618 
619 	if (mdevice->free_pages) {
620 		dpage = mdevice->free_pages;
621 		mdevice->free_pages = dpage->zone_device_data;
622 		mdevice->calloc++;
623 		spin_unlock(&mdevice->lock);
624 	} else {
625 		spin_unlock(&mdevice->lock);
626 		if (dmirror_allocate_chunk(mdevice, &dpage))
627 			goto error;
628 	}
629 
630 	zone_device_page_init(dpage);
631 	dpage->zone_device_data = rpage;
632 	return dpage;
633 
634 error:
635 	if (rpage)
636 		__free_page(rpage);
637 	return NULL;
638 }
639 
dmirror_migrate_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)640 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
641 					   struct dmirror *dmirror)
642 {
643 	struct dmirror_device *mdevice = dmirror->mdevice;
644 	const unsigned long *src = args->src;
645 	unsigned long *dst = args->dst;
646 	unsigned long addr;
647 
648 	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
649 						   src++, dst++) {
650 		struct page *spage;
651 		struct page *dpage;
652 		struct page *rpage;
653 
654 		if (!(*src & MIGRATE_PFN_MIGRATE))
655 			continue;
656 
657 		/*
658 		 * Note that spage might be NULL which is OK since it is an
659 		 * unallocated pte_none() or read-only zero page.
660 		 */
661 		spage = migrate_pfn_to_page(*src);
662 		if (WARN(spage && is_zone_device_page(spage),
663 		     "page already in device spage pfn: 0x%lx\n",
664 		     page_to_pfn(spage)))
665 			continue;
666 
667 		dpage = dmirror_devmem_alloc_page(mdevice);
668 		if (!dpage)
669 			continue;
670 
671 		rpage = BACKING_PAGE(dpage);
672 		if (spage)
673 			copy_highpage(rpage, spage);
674 		else
675 			clear_highpage(rpage);
676 
677 		/*
678 		 * Normally, a device would use the page->zone_device_data to
679 		 * point to the mirror but here we use it to hold the page for
680 		 * the simulated device memory and that page holds the pointer
681 		 * to the mirror.
682 		 */
683 		rpage->zone_device_data = dmirror;
684 
685 		pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
686 			 page_to_pfn(spage), page_to_pfn(dpage));
687 		*dst = migrate_pfn(page_to_pfn(dpage));
688 		if ((*src & MIGRATE_PFN_WRITE) ||
689 		    (!spage && args->vma->vm_flags & VM_WRITE))
690 			*dst |= MIGRATE_PFN_WRITE;
691 	}
692 }
693 
dmirror_check_atomic(struct dmirror * dmirror,unsigned long start,unsigned long end)694 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
695 			     unsigned long end)
696 {
697 	unsigned long pfn;
698 
699 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
700 		void *entry;
701 
702 		entry = xa_load(&dmirror->pt, pfn);
703 		if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
704 			return -EPERM;
705 	}
706 
707 	return 0;
708 }
709 
dmirror_atomic_map(unsigned long addr,struct page * page,struct dmirror * dmirror)710 static int dmirror_atomic_map(unsigned long addr, struct page *page,
711 		struct dmirror *dmirror)
712 {
713 	void *entry;
714 
715 	/* Map the migrated pages into the device's page tables. */
716 	mutex_lock(&dmirror->mutex);
717 
718 	entry = xa_tag_pointer(page, DPT_XA_TAG_ATOMIC);
719 	entry = xa_store(&dmirror->pt, addr >> PAGE_SHIFT, entry, GFP_ATOMIC);
720 	if (xa_is_err(entry)) {
721 		mutex_unlock(&dmirror->mutex);
722 		return xa_err(entry);
723 	}
724 
725 	mutex_unlock(&dmirror->mutex);
726 	return 0;
727 }
728 
dmirror_migrate_finalize_and_map(struct migrate_vma * args,struct dmirror * dmirror)729 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
730 					    struct dmirror *dmirror)
731 {
732 	unsigned long start = args->start;
733 	unsigned long end = args->end;
734 	const unsigned long *src = args->src;
735 	const unsigned long *dst = args->dst;
736 	unsigned long pfn;
737 
738 	/* Map the migrated pages into the device's page tables. */
739 	mutex_lock(&dmirror->mutex);
740 
741 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
742 								src++, dst++) {
743 		struct page *dpage;
744 		void *entry;
745 
746 		if (!(*src & MIGRATE_PFN_MIGRATE))
747 			continue;
748 
749 		dpage = migrate_pfn_to_page(*dst);
750 		if (!dpage)
751 			continue;
752 
753 		entry = BACKING_PAGE(dpage);
754 		if (*dst & MIGRATE_PFN_WRITE)
755 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
756 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
757 		if (xa_is_err(entry)) {
758 			mutex_unlock(&dmirror->mutex);
759 			return xa_err(entry);
760 		}
761 	}
762 
763 	mutex_unlock(&dmirror->mutex);
764 	return 0;
765 }
766 
dmirror_exclusive(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)767 static int dmirror_exclusive(struct dmirror *dmirror,
768 			     struct hmm_dmirror_cmd *cmd)
769 {
770 	unsigned long start, end, addr;
771 	unsigned long size = cmd->npages << PAGE_SHIFT;
772 	struct mm_struct *mm = dmirror->notifier.mm;
773 	struct dmirror_bounce bounce;
774 	int ret = 0;
775 
776 	start = cmd->addr;
777 	end = start + size;
778 	if (end < start)
779 		return -EINVAL;
780 
781 	/* Since the mm is for the mirrored process, get a reference first. */
782 	if (!mmget_not_zero(mm))
783 		return -EINVAL;
784 
785 	mmap_read_lock(mm);
786 	for (addr = start; !ret && addr < end; addr += PAGE_SIZE) {
787 		struct folio *folio;
788 		struct page *page;
789 
790 		page = make_device_exclusive(mm, addr, NULL, &folio);
791 		if (IS_ERR(page)) {
792 			ret = PTR_ERR(page);
793 			break;
794 		}
795 
796 		ret = dmirror_atomic_map(addr, page, dmirror);
797 		folio_unlock(folio);
798 		folio_put(folio);
799 	}
800 	mmap_read_unlock(mm);
801 	mmput(mm);
802 
803 	if (ret)
804 		return ret;
805 
806 	/* Return the migrated data for verification. */
807 	ret = dmirror_bounce_init(&bounce, start, size);
808 	if (ret)
809 		return ret;
810 	mutex_lock(&dmirror->mutex);
811 	ret = dmirror_do_read(dmirror, start, end, &bounce);
812 	mutex_unlock(&dmirror->mutex);
813 	if (ret == 0) {
814 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
815 				 bounce.size))
816 			ret = -EFAULT;
817 	}
818 
819 	cmd->cpages = bounce.cpages;
820 	dmirror_bounce_fini(&bounce);
821 	return ret;
822 }
823 
dmirror_devmem_fault_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)824 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
825 						      struct dmirror *dmirror)
826 {
827 	const unsigned long *src = args->src;
828 	unsigned long *dst = args->dst;
829 	unsigned long start = args->start;
830 	unsigned long end = args->end;
831 	unsigned long addr;
832 
833 	for (addr = start; addr < end; addr += PAGE_SIZE,
834 				       src++, dst++) {
835 		struct page *dpage, *spage;
836 
837 		spage = migrate_pfn_to_page(*src);
838 		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
839 			continue;
840 
841 		if (WARN_ON(!is_device_private_page(spage) &&
842 			    !is_device_coherent_page(spage)))
843 			continue;
844 		spage = BACKING_PAGE(spage);
845 		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
846 		if (!dpage)
847 			continue;
848 		pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
849 			 page_to_pfn(spage), page_to_pfn(dpage));
850 
851 		lock_page(dpage);
852 		xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
853 		copy_highpage(dpage, spage);
854 		*dst = migrate_pfn(page_to_pfn(dpage));
855 		if (*src & MIGRATE_PFN_WRITE)
856 			*dst |= MIGRATE_PFN_WRITE;
857 	}
858 	return 0;
859 }
860 
861 static unsigned long
dmirror_successful_migrated_pages(struct migrate_vma * migrate)862 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
863 {
864 	unsigned long cpages = 0;
865 	unsigned long i;
866 
867 	for (i = 0; i < migrate->npages; i++) {
868 		if (migrate->src[i] & MIGRATE_PFN_VALID &&
869 		    migrate->src[i] & MIGRATE_PFN_MIGRATE)
870 			cpages++;
871 	}
872 	return cpages;
873 }
874 
dmirror_migrate_to_system(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)875 static int dmirror_migrate_to_system(struct dmirror *dmirror,
876 				     struct hmm_dmirror_cmd *cmd)
877 {
878 	unsigned long start, end, addr;
879 	unsigned long size = cmd->npages << PAGE_SHIFT;
880 	struct mm_struct *mm = dmirror->notifier.mm;
881 	struct vm_area_struct *vma;
882 	unsigned long src_pfns[64] = { 0 };
883 	unsigned long dst_pfns[64] = { 0 };
884 	struct migrate_vma args = { 0 };
885 	unsigned long next;
886 	int ret;
887 
888 	start = cmd->addr;
889 	end = start + size;
890 	if (end < start)
891 		return -EINVAL;
892 
893 	/* Since the mm is for the mirrored process, get a reference first. */
894 	if (!mmget_not_zero(mm))
895 		return -EINVAL;
896 
897 	cmd->cpages = 0;
898 	mmap_read_lock(mm);
899 	for (addr = start; addr < end; addr = next) {
900 		vma = vma_lookup(mm, addr);
901 		if (!vma || !(vma->vm_flags & VM_READ)) {
902 			ret = -EINVAL;
903 			goto out;
904 		}
905 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
906 		if (next > vma->vm_end)
907 			next = vma->vm_end;
908 
909 		args.vma = vma;
910 		args.src = src_pfns;
911 		args.dst = dst_pfns;
912 		args.start = addr;
913 		args.end = next;
914 		args.pgmap_owner = dmirror->mdevice;
915 		args.flags = dmirror_select_device(dmirror);
916 
917 		ret = migrate_vma_setup(&args);
918 		if (ret)
919 			goto out;
920 
921 		pr_debug("Migrating from device mem to sys mem\n");
922 		dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
923 
924 		migrate_vma_pages(&args);
925 		cmd->cpages += dmirror_successful_migrated_pages(&args);
926 		migrate_vma_finalize(&args);
927 	}
928 out:
929 	mmap_read_unlock(mm);
930 	mmput(mm);
931 
932 	return ret;
933 }
934 
dmirror_migrate_to_device(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)935 static int dmirror_migrate_to_device(struct dmirror *dmirror,
936 				struct hmm_dmirror_cmd *cmd)
937 {
938 	unsigned long start, end, addr;
939 	unsigned long size = cmd->npages << PAGE_SHIFT;
940 	struct mm_struct *mm = dmirror->notifier.mm;
941 	struct vm_area_struct *vma;
942 	unsigned long src_pfns[64] = { 0 };
943 	unsigned long dst_pfns[64] = { 0 };
944 	struct dmirror_bounce bounce;
945 	struct migrate_vma args = { 0 };
946 	unsigned long next;
947 	int ret;
948 
949 	start = cmd->addr;
950 	end = start + size;
951 	if (end < start)
952 		return -EINVAL;
953 
954 	/* Since the mm is for the mirrored process, get a reference first. */
955 	if (!mmget_not_zero(mm))
956 		return -EINVAL;
957 
958 	mmap_read_lock(mm);
959 	for (addr = start; addr < end; addr = next) {
960 		vma = vma_lookup(mm, addr);
961 		if (!vma || !(vma->vm_flags & VM_READ)) {
962 			ret = -EINVAL;
963 			goto out;
964 		}
965 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
966 		if (next > vma->vm_end)
967 			next = vma->vm_end;
968 
969 		args.vma = vma;
970 		args.src = src_pfns;
971 		args.dst = dst_pfns;
972 		args.start = addr;
973 		args.end = next;
974 		args.pgmap_owner = dmirror->mdevice;
975 		args.flags = MIGRATE_VMA_SELECT_SYSTEM;
976 		ret = migrate_vma_setup(&args);
977 		if (ret)
978 			goto out;
979 
980 		pr_debug("Migrating from sys mem to device mem\n");
981 		dmirror_migrate_alloc_and_copy(&args, dmirror);
982 		migrate_vma_pages(&args);
983 		dmirror_migrate_finalize_and_map(&args, dmirror);
984 		migrate_vma_finalize(&args);
985 	}
986 	mmap_read_unlock(mm);
987 	mmput(mm);
988 
989 	/*
990 	 * Return the migrated data for verification.
991 	 * Only for pages in device zone
992 	 */
993 	ret = dmirror_bounce_init(&bounce, start, size);
994 	if (ret)
995 		return ret;
996 	mutex_lock(&dmirror->mutex);
997 	ret = dmirror_do_read(dmirror, start, end, &bounce);
998 	mutex_unlock(&dmirror->mutex);
999 	if (ret == 0) {
1000 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1001 				 bounce.size))
1002 			ret = -EFAULT;
1003 	}
1004 	cmd->cpages = bounce.cpages;
1005 	dmirror_bounce_fini(&bounce);
1006 	return ret;
1007 
1008 out:
1009 	mmap_read_unlock(mm);
1010 	mmput(mm);
1011 	return ret;
1012 }
1013 
dmirror_mkentry(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm,unsigned long entry)1014 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1015 			    unsigned char *perm, unsigned long entry)
1016 {
1017 	struct page *page;
1018 
1019 	if (entry & HMM_PFN_ERROR) {
1020 		*perm = HMM_DMIRROR_PROT_ERROR;
1021 		return;
1022 	}
1023 	if (!(entry & HMM_PFN_VALID)) {
1024 		*perm = HMM_DMIRROR_PROT_NONE;
1025 		return;
1026 	}
1027 
1028 	page = hmm_pfn_to_page(entry);
1029 	if (is_device_private_page(page)) {
1030 		/* Is the page migrated to this device or some other? */
1031 		if (dmirror->mdevice == dmirror_page_to_device(page))
1032 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1033 		else
1034 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1035 	} else if (is_device_coherent_page(page)) {
1036 		/* Is the page migrated to this device or some other? */
1037 		if (dmirror->mdevice == dmirror_page_to_device(page))
1038 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1039 		else
1040 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1041 	} else if (is_zero_pfn(page_to_pfn(page)))
1042 		*perm = HMM_DMIRROR_PROT_ZERO;
1043 	else
1044 		*perm = HMM_DMIRROR_PROT_NONE;
1045 	if (entry & HMM_PFN_WRITE)
1046 		*perm |= HMM_DMIRROR_PROT_WRITE;
1047 	else
1048 		*perm |= HMM_DMIRROR_PROT_READ;
1049 	if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1050 		*perm |= HMM_DMIRROR_PROT_PMD;
1051 	else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1052 		*perm |= HMM_DMIRROR_PROT_PUD;
1053 }
1054 
dmirror_snapshot_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)1055 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1056 				const struct mmu_notifier_range *range,
1057 				unsigned long cur_seq)
1058 {
1059 	struct dmirror_interval *dmi =
1060 		container_of(mni, struct dmirror_interval, notifier);
1061 	struct dmirror *dmirror = dmi->dmirror;
1062 
1063 	if (mmu_notifier_range_blockable(range))
1064 		mutex_lock(&dmirror->mutex);
1065 	else if (!mutex_trylock(&dmirror->mutex))
1066 		return false;
1067 
1068 	/*
1069 	 * Snapshots only need to set the sequence number since any
1070 	 * invalidation in the interval invalidates the whole snapshot.
1071 	 */
1072 	mmu_interval_set_seq(mni, cur_seq);
1073 
1074 	mutex_unlock(&dmirror->mutex);
1075 	return true;
1076 }
1077 
1078 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1079 	.invalidate = dmirror_snapshot_invalidate,
1080 };
1081 
dmirror_range_snapshot(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm)1082 static int dmirror_range_snapshot(struct dmirror *dmirror,
1083 				  struct hmm_range *range,
1084 				  unsigned char *perm)
1085 {
1086 	struct mm_struct *mm = dmirror->notifier.mm;
1087 	struct dmirror_interval notifier;
1088 	unsigned long timeout =
1089 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1090 	unsigned long i;
1091 	unsigned long n;
1092 	int ret = 0;
1093 
1094 	notifier.dmirror = dmirror;
1095 	range->notifier = &notifier.notifier;
1096 
1097 	ret = mmu_interval_notifier_insert(range->notifier, mm,
1098 			range->start, range->end - range->start,
1099 			&dmirror_mrn_ops);
1100 	if (ret)
1101 		return ret;
1102 
1103 	while (true) {
1104 		if (time_after(jiffies, timeout)) {
1105 			ret = -EBUSY;
1106 			goto out;
1107 		}
1108 
1109 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
1110 
1111 		mmap_read_lock(mm);
1112 		ret = hmm_range_fault(range);
1113 		mmap_read_unlock(mm);
1114 		if (ret) {
1115 			if (ret == -EBUSY)
1116 				continue;
1117 			goto out;
1118 		}
1119 
1120 		mutex_lock(&dmirror->mutex);
1121 		if (mmu_interval_read_retry(range->notifier,
1122 					    range->notifier_seq)) {
1123 			mutex_unlock(&dmirror->mutex);
1124 			continue;
1125 		}
1126 		break;
1127 	}
1128 
1129 	n = (range->end - range->start) >> PAGE_SHIFT;
1130 	for (i = 0; i < n; i++)
1131 		dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1132 
1133 	mutex_unlock(&dmirror->mutex);
1134 out:
1135 	mmu_interval_notifier_remove(range->notifier);
1136 	return ret;
1137 }
1138 
dmirror_snapshot(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)1139 static int dmirror_snapshot(struct dmirror *dmirror,
1140 			    struct hmm_dmirror_cmd *cmd)
1141 {
1142 	struct mm_struct *mm = dmirror->notifier.mm;
1143 	unsigned long start, end;
1144 	unsigned long size = cmd->npages << PAGE_SHIFT;
1145 	unsigned long addr;
1146 	unsigned long next;
1147 	unsigned long pfns[64];
1148 	unsigned char perm[64];
1149 	char __user *uptr;
1150 	struct hmm_range range = {
1151 		.hmm_pfns = pfns,
1152 		.dev_private_owner = dmirror->mdevice,
1153 	};
1154 	int ret = 0;
1155 
1156 	start = cmd->addr;
1157 	end = start + size;
1158 	if (end < start)
1159 		return -EINVAL;
1160 
1161 	/* Since the mm is for the mirrored process, get a reference first. */
1162 	if (!mmget_not_zero(mm))
1163 		return -EINVAL;
1164 
1165 	/*
1166 	 * Register a temporary notifier to detect invalidations even if it
1167 	 * overlaps with other mmu_interval_notifiers.
1168 	 */
1169 	uptr = u64_to_user_ptr(cmd->ptr);
1170 	for (addr = start; addr < end; addr = next) {
1171 		unsigned long n;
1172 
1173 		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1174 		range.start = addr;
1175 		range.end = next;
1176 
1177 		ret = dmirror_range_snapshot(dmirror, &range, perm);
1178 		if (ret)
1179 			break;
1180 
1181 		n = (range.end - range.start) >> PAGE_SHIFT;
1182 		if (copy_to_user(uptr, perm, n)) {
1183 			ret = -EFAULT;
1184 			break;
1185 		}
1186 
1187 		cmd->cpages += n;
1188 		uptr += n;
1189 	}
1190 	mmput(mm);
1191 
1192 	return ret;
1193 }
1194 
dmirror_device_evict_chunk(struct dmirror_chunk * chunk)1195 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1196 {
1197 	unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1198 	unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1199 	unsigned long npages = end_pfn - start_pfn + 1;
1200 	unsigned long i;
1201 	unsigned long *src_pfns;
1202 	unsigned long *dst_pfns;
1203 
1204 	src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL);
1205 	dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL);
1206 
1207 	migrate_device_range(src_pfns, start_pfn, npages);
1208 	for (i = 0; i < npages; i++) {
1209 		struct page *dpage, *spage;
1210 
1211 		spage = migrate_pfn_to_page(src_pfns[i]);
1212 		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1213 			continue;
1214 
1215 		if (WARN_ON(!is_device_private_page(spage) &&
1216 			    !is_device_coherent_page(spage)))
1217 			continue;
1218 		spage = BACKING_PAGE(spage);
1219 		dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1220 		lock_page(dpage);
1221 		copy_highpage(dpage, spage);
1222 		dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1223 		if (src_pfns[i] & MIGRATE_PFN_WRITE)
1224 			dst_pfns[i] |= MIGRATE_PFN_WRITE;
1225 	}
1226 	migrate_device_pages(src_pfns, dst_pfns, npages);
1227 	migrate_device_finalize(src_pfns, dst_pfns, npages);
1228 	kvfree(src_pfns);
1229 	kvfree(dst_pfns);
1230 }
1231 
1232 /* Removes free pages from the free list so they can't be re-allocated */
dmirror_remove_free_pages(struct dmirror_chunk * devmem)1233 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1234 {
1235 	struct dmirror_device *mdevice = devmem->mdevice;
1236 	struct page *page;
1237 
1238 	for (page = mdevice->free_pages; page; page = page->zone_device_data)
1239 		if (dmirror_page_to_chunk(page) == devmem)
1240 			mdevice->free_pages = page->zone_device_data;
1241 }
1242 
dmirror_device_remove_chunks(struct dmirror_device * mdevice)1243 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1244 {
1245 	unsigned int i;
1246 
1247 	mutex_lock(&mdevice->devmem_lock);
1248 	if (mdevice->devmem_chunks) {
1249 		for (i = 0; i < mdevice->devmem_count; i++) {
1250 			struct dmirror_chunk *devmem =
1251 				mdevice->devmem_chunks[i];
1252 
1253 			spin_lock(&mdevice->lock);
1254 			devmem->remove = true;
1255 			dmirror_remove_free_pages(devmem);
1256 			spin_unlock(&mdevice->lock);
1257 
1258 			dmirror_device_evict_chunk(devmem);
1259 			memunmap_pages(&devmem->pagemap);
1260 			if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1261 				release_mem_region(devmem->pagemap.range.start,
1262 						   range_len(&devmem->pagemap.range));
1263 			kfree(devmem);
1264 		}
1265 		mdevice->devmem_count = 0;
1266 		mdevice->devmem_capacity = 0;
1267 		mdevice->free_pages = NULL;
1268 		kfree(mdevice->devmem_chunks);
1269 		mdevice->devmem_chunks = NULL;
1270 	}
1271 	mutex_unlock(&mdevice->devmem_lock);
1272 }
1273 
dmirror_fops_unlocked_ioctl(struct file * filp,unsigned int command,unsigned long arg)1274 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1275 					unsigned int command,
1276 					unsigned long arg)
1277 {
1278 	void __user *uarg = (void __user *)arg;
1279 	struct hmm_dmirror_cmd cmd;
1280 	struct dmirror *dmirror;
1281 	int ret;
1282 
1283 	dmirror = filp->private_data;
1284 	if (!dmirror)
1285 		return -EINVAL;
1286 
1287 	if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1288 		return -EFAULT;
1289 
1290 	if (cmd.addr & ~PAGE_MASK)
1291 		return -EINVAL;
1292 	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1293 		return -EINVAL;
1294 
1295 	cmd.cpages = 0;
1296 	cmd.faults = 0;
1297 
1298 	switch (command) {
1299 	case HMM_DMIRROR_READ:
1300 		ret = dmirror_read(dmirror, &cmd);
1301 		break;
1302 
1303 	case HMM_DMIRROR_WRITE:
1304 		ret = dmirror_write(dmirror, &cmd);
1305 		break;
1306 
1307 	case HMM_DMIRROR_MIGRATE_TO_DEV:
1308 		ret = dmirror_migrate_to_device(dmirror, &cmd);
1309 		break;
1310 
1311 	case HMM_DMIRROR_MIGRATE_TO_SYS:
1312 		ret = dmirror_migrate_to_system(dmirror, &cmd);
1313 		break;
1314 
1315 	case HMM_DMIRROR_EXCLUSIVE:
1316 		ret = dmirror_exclusive(dmirror, &cmd);
1317 		break;
1318 
1319 	case HMM_DMIRROR_CHECK_EXCLUSIVE:
1320 		ret = dmirror_check_atomic(dmirror, cmd.addr,
1321 					cmd.addr + (cmd.npages << PAGE_SHIFT));
1322 		break;
1323 
1324 	case HMM_DMIRROR_SNAPSHOT:
1325 		ret = dmirror_snapshot(dmirror, &cmd);
1326 		break;
1327 
1328 	case HMM_DMIRROR_RELEASE:
1329 		dmirror_device_remove_chunks(dmirror->mdevice);
1330 		ret = 0;
1331 		break;
1332 
1333 	default:
1334 		return -EINVAL;
1335 	}
1336 	if (ret)
1337 		return ret;
1338 
1339 	if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1340 		return -EFAULT;
1341 
1342 	return 0;
1343 }
1344 
dmirror_fops_mmap(struct file * file,struct vm_area_struct * vma)1345 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1346 {
1347 	unsigned long addr;
1348 
1349 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1350 		struct page *page;
1351 		int ret;
1352 
1353 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1354 		if (!page)
1355 			return -ENOMEM;
1356 
1357 		ret = vm_insert_page(vma, addr, page);
1358 		if (ret) {
1359 			__free_page(page);
1360 			return ret;
1361 		}
1362 		put_page(page);
1363 	}
1364 
1365 	return 0;
1366 }
1367 
1368 static const struct file_operations dmirror_fops = {
1369 	.open		= dmirror_fops_open,
1370 	.release	= dmirror_fops_release,
1371 	.mmap		= dmirror_fops_mmap,
1372 	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1373 	.llseek		= default_llseek,
1374 	.owner		= THIS_MODULE,
1375 };
1376 
dmirror_devmem_free(struct page * page)1377 static void dmirror_devmem_free(struct page *page)
1378 {
1379 	struct page *rpage = BACKING_PAGE(page);
1380 	struct dmirror_device *mdevice;
1381 
1382 	if (rpage != page)
1383 		__free_page(rpage);
1384 
1385 	mdevice = dmirror_page_to_device(page);
1386 	spin_lock(&mdevice->lock);
1387 
1388 	/* Return page to our allocator if not freeing the chunk */
1389 	if (!dmirror_page_to_chunk(page)->remove) {
1390 		mdevice->cfree++;
1391 		page->zone_device_data = mdevice->free_pages;
1392 		mdevice->free_pages = page;
1393 	}
1394 	spin_unlock(&mdevice->lock);
1395 }
1396 
dmirror_devmem_fault(struct vm_fault * vmf)1397 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1398 {
1399 	struct migrate_vma args = { 0 };
1400 	unsigned long src_pfns = 0;
1401 	unsigned long dst_pfns = 0;
1402 	struct page *rpage;
1403 	struct dmirror *dmirror;
1404 	vm_fault_t ret;
1405 
1406 	/*
1407 	 * Normally, a device would use the page->zone_device_data to point to
1408 	 * the mirror but here we use it to hold the page for the simulated
1409 	 * device memory and that page holds the pointer to the mirror.
1410 	 */
1411 	rpage = vmf->page->zone_device_data;
1412 	dmirror = rpage->zone_device_data;
1413 
1414 	/* FIXME demonstrate how we can adjust migrate range */
1415 	args.vma = vmf->vma;
1416 	args.start = vmf->address;
1417 	args.end = args.start + PAGE_SIZE;
1418 	args.src = &src_pfns;
1419 	args.dst = &dst_pfns;
1420 	args.pgmap_owner = dmirror->mdevice;
1421 	args.flags = dmirror_select_device(dmirror);
1422 	args.fault_page = vmf->page;
1423 
1424 	if (migrate_vma_setup(&args))
1425 		return VM_FAULT_SIGBUS;
1426 
1427 	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1428 	if (ret)
1429 		return ret;
1430 	migrate_vma_pages(&args);
1431 	/*
1432 	 * No device finalize step is needed since
1433 	 * dmirror_devmem_fault_alloc_and_copy() will have already
1434 	 * invalidated the device page table.
1435 	 */
1436 	migrate_vma_finalize(&args);
1437 	return 0;
1438 }
1439 
1440 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1441 	.page_free	= dmirror_devmem_free,
1442 	.migrate_to_ram	= dmirror_devmem_fault,
1443 };
1444 
dmirror_device_init(struct dmirror_device * mdevice,int id)1445 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1446 {
1447 	dev_t dev;
1448 	int ret;
1449 
1450 	dev = MKDEV(MAJOR(dmirror_dev), id);
1451 	mutex_init(&mdevice->devmem_lock);
1452 	spin_lock_init(&mdevice->lock);
1453 
1454 	cdev_init(&mdevice->cdevice, &dmirror_fops);
1455 	mdevice->cdevice.owner = THIS_MODULE;
1456 	device_initialize(&mdevice->device);
1457 	mdevice->device.devt = dev;
1458 
1459 	ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1460 	if (ret)
1461 		return ret;
1462 
1463 	ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1464 	if (ret)
1465 		return ret;
1466 
1467 	/* Build a list of free ZONE_DEVICE struct pages */
1468 	return dmirror_allocate_chunk(mdevice, NULL);
1469 }
1470 
dmirror_device_remove(struct dmirror_device * mdevice)1471 static void dmirror_device_remove(struct dmirror_device *mdevice)
1472 {
1473 	dmirror_device_remove_chunks(mdevice);
1474 	cdev_device_del(&mdevice->cdevice, &mdevice->device);
1475 }
1476 
hmm_dmirror_init(void)1477 static int __init hmm_dmirror_init(void)
1478 {
1479 	int ret;
1480 	int id = 0;
1481 	int ndevices = 0;
1482 
1483 	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1484 				  "HMM_DMIRROR");
1485 	if (ret)
1486 		goto err_unreg;
1487 
1488 	memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1489 	dmirror_devices[ndevices++].zone_device_type =
1490 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1491 	dmirror_devices[ndevices++].zone_device_type =
1492 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1493 	if (spm_addr_dev0 && spm_addr_dev1) {
1494 		dmirror_devices[ndevices++].zone_device_type =
1495 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1496 		dmirror_devices[ndevices++].zone_device_type =
1497 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1498 	}
1499 	for (id = 0; id < ndevices; id++) {
1500 		ret = dmirror_device_init(dmirror_devices + id, id);
1501 		if (ret)
1502 			goto err_chrdev;
1503 	}
1504 
1505 	pr_info("HMM test module loaded. This is only for testing HMM.\n");
1506 	return 0;
1507 
1508 err_chrdev:
1509 	while (--id >= 0)
1510 		dmirror_device_remove(dmirror_devices + id);
1511 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1512 err_unreg:
1513 	return ret;
1514 }
1515 
hmm_dmirror_exit(void)1516 static void __exit hmm_dmirror_exit(void)
1517 {
1518 	int id;
1519 
1520 	for (id = 0; id < DMIRROR_NDEVICES; id++)
1521 		if (dmirror_devices[id].zone_device_type)
1522 			dmirror_device_remove(dmirror_devices + id);
1523 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1524 }
1525 
1526 module_init(hmm_dmirror_init);
1527 module_exit(hmm_dmirror_exit);
1528 MODULE_DESCRIPTION("HMM (Heterogeneous Memory Management) test module");
1529 MODULE_LICENSE("GPL");
1530