1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is a module to test the HMM (Heterogeneous Memory Management)
4 * mirror and zone device private memory migration APIs of the kernel.
5 * Userspace programs can register with the driver to mirror their own address
6 * space and can use the device to read/write any valid virtual address.
7 */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32
33 #include "test_hmm_uapi.h"
34
35 #define DMIRROR_NDEVICES 4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT 1000
37 #define DEVMEM_CHUNK_SIZE (256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE 16
39
40 /*
41 * For device_private pages, dpage is just a dummy struct page
42 * representing a piece of device memory. dmirror_devmem_alloc_page
43 * allocates a real system memory page as backing storage to fake a
44 * real device. zone_device_data points to that backing page. But
45 * for device_coherent memory, the struct page represents real
46 * physical CPU-accessible memory that we can use directly.
47 */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49 (page)->zone_device_data : (page))
50
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54 "Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59 "Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64
65 struct dmirror_device;
66
67 struct dmirror_bounce {
68 void *ptr;
69 unsigned long size;
70 unsigned long addr;
71 unsigned long cpages;
72 };
73
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76
77 /*
78 * Data structure to track address ranges and register for mmu interval
79 * notifier updates.
80 */
81 struct dmirror_interval {
82 struct mmu_interval_notifier notifier;
83 struct dmirror *dmirror;
84 };
85
86 /*
87 * Data attached to the open device file.
88 * Note that it might be shared after a fork().
89 */
90 struct dmirror {
91 struct dmirror_device *mdevice;
92 struct xarray pt;
93 struct mmu_interval_notifier notifier;
94 struct mutex mutex;
95 };
96
97 /*
98 * ZONE_DEVICE pages for migration and simulating device memory.
99 */
100 struct dmirror_chunk {
101 struct dev_pagemap pagemap;
102 struct dmirror_device *mdevice;
103 bool remove;
104 };
105
106 /*
107 * Per device data.
108 */
109 struct dmirror_device {
110 struct cdev cdevice;
111 unsigned int zone_device_type;
112 struct device device;
113
114 unsigned int devmem_capacity;
115 unsigned int devmem_count;
116 struct dmirror_chunk **devmem_chunks;
117 struct mutex devmem_lock; /* protects the above */
118
119 unsigned long calloc;
120 unsigned long cfree;
121 struct page *free_pages;
122 spinlock_t lock; /* protects the above */
123 };
124
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126
dmirror_bounce_init(struct dmirror_bounce * bounce,unsigned long addr,unsigned long size)127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128 unsigned long addr,
129 unsigned long size)
130 {
131 bounce->addr = addr;
132 bounce->size = size;
133 bounce->cpages = 0;
134 bounce->ptr = vmalloc(size);
135 if (!bounce->ptr)
136 return -ENOMEM;
137 return 0;
138 }
139
dmirror_is_private_zone(struct dmirror_device * mdevice)140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141 {
142 return (mdevice->zone_device_type ==
143 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144 }
145
146 static enum migrate_vma_direction
dmirror_select_device(struct dmirror * dmirror)147 dmirror_select_device(struct dmirror *dmirror)
148 {
149 return (dmirror->mdevice->zone_device_type ==
150 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151 MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152 MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153 }
154
dmirror_bounce_fini(struct dmirror_bounce * bounce)155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156 {
157 vfree(bounce->ptr);
158 }
159
dmirror_fops_open(struct inode * inode,struct file * filp)160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
161 {
162 struct cdev *cdev = inode->i_cdev;
163 struct dmirror *dmirror;
164 int ret;
165
166 /* Mirror this process address space */
167 dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168 if (dmirror == NULL)
169 return -ENOMEM;
170
171 dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172 mutex_init(&dmirror->mutex);
173 xa_init(&dmirror->pt);
174
175 ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177 if (ret) {
178 kfree(dmirror);
179 return ret;
180 }
181
182 filp->private_data = dmirror;
183 return 0;
184 }
185
dmirror_fops_release(struct inode * inode,struct file * filp)186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
187 {
188 struct dmirror *dmirror = filp->private_data;
189
190 mmu_interval_notifier_remove(&dmirror->notifier);
191 xa_destroy(&dmirror->pt);
192 kfree(dmirror);
193 return 0;
194 }
195
dmirror_page_to_chunk(struct page * page)196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197 {
198 return container_of(page_pgmap(page), struct dmirror_chunk,
199 pagemap);
200 }
201
dmirror_page_to_device(struct page * page)202 static struct dmirror_device *dmirror_page_to_device(struct page *page)
203
204 {
205 return dmirror_page_to_chunk(page)->mdevice;
206 }
207
dmirror_do_fault(struct dmirror * dmirror,struct hmm_range * range)208 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
209 {
210 unsigned long *pfns = range->hmm_pfns;
211 unsigned long pfn;
212
213 for (pfn = (range->start >> PAGE_SHIFT);
214 pfn < (range->end >> PAGE_SHIFT);
215 pfn++, pfns++) {
216 struct page *page;
217 void *entry;
218
219 /*
220 * Since we asked for hmm_range_fault() to populate pages,
221 * it shouldn't return an error entry on success.
222 */
223 WARN_ON(*pfns & HMM_PFN_ERROR);
224 WARN_ON(!(*pfns & HMM_PFN_VALID));
225
226 page = hmm_pfn_to_page(*pfns);
227 WARN_ON(!page);
228
229 entry = page;
230 if (*pfns & HMM_PFN_WRITE)
231 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
232 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
233 return -EFAULT;
234 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
235 if (xa_is_err(entry))
236 return xa_err(entry);
237 }
238
239 return 0;
240 }
241
dmirror_do_update(struct dmirror * dmirror,unsigned long start,unsigned long end)242 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
243 unsigned long end)
244 {
245 unsigned long pfn;
246 void *entry;
247
248 /*
249 * The XArray doesn't hold references to pages since it relies on
250 * the mmu notifier to clear page pointers when they become stale.
251 * Therefore, it is OK to just clear the entry.
252 */
253 xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
254 end >> PAGE_SHIFT)
255 xa_erase(&dmirror->pt, pfn);
256 }
257
dmirror_interval_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)258 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
259 const struct mmu_notifier_range *range,
260 unsigned long cur_seq)
261 {
262 struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
263
264 /*
265 * Ignore invalidation callbacks for device private pages since
266 * the invalidation is handled as part of the migration process.
267 */
268 if (range->event == MMU_NOTIFY_MIGRATE &&
269 range->owner == dmirror->mdevice)
270 return true;
271
272 if (mmu_notifier_range_blockable(range))
273 mutex_lock(&dmirror->mutex);
274 else if (!mutex_trylock(&dmirror->mutex))
275 return false;
276
277 mmu_interval_set_seq(mni, cur_seq);
278 dmirror_do_update(dmirror, range->start, range->end);
279
280 mutex_unlock(&dmirror->mutex);
281 return true;
282 }
283
284 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
285 .invalidate = dmirror_interval_invalidate,
286 };
287
dmirror_range_fault(struct dmirror * dmirror,struct hmm_range * range)288 static int dmirror_range_fault(struct dmirror *dmirror,
289 struct hmm_range *range)
290 {
291 struct mm_struct *mm = dmirror->notifier.mm;
292 unsigned long timeout =
293 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
294 int ret;
295
296 while (true) {
297 if (time_after(jiffies, timeout)) {
298 ret = -EBUSY;
299 goto out;
300 }
301
302 range->notifier_seq = mmu_interval_read_begin(range->notifier);
303 mmap_read_lock(mm);
304 ret = hmm_range_fault(range);
305 mmap_read_unlock(mm);
306 if (ret) {
307 if (ret == -EBUSY)
308 continue;
309 goto out;
310 }
311
312 mutex_lock(&dmirror->mutex);
313 if (mmu_interval_read_retry(range->notifier,
314 range->notifier_seq)) {
315 mutex_unlock(&dmirror->mutex);
316 continue;
317 }
318 break;
319 }
320
321 ret = dmirror_do_fault(dmirror, range);
322
323 mutex_unlock(&dmirror->mutex);
324 out:
325 return ret;
326 }
327
dmirror_fault(struct dmirror * dmirror,unsigned long start,unsigned long end,bool write)328 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
329 unsigned long end, bool write)
330 {
331 struct mm_struct *mm = dmirror->notifier.mm;
332 unsigned long addr;
333 unsigned long pfns[64];
334 struct hmm_range range = {
335 .notifier = &dmirror->notifier,
336 .hmm_pfns = pfns,
337 .pfn_flags_mask = 0,
338 .default_flags =
339 HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
340 .dev_private_owner = dmirror->mdevice,
341 };
342 int ret = 0;
343
344 /* Since the mm is for the mirrored process, get a reference first. */
345 if (!mmget_not_zero(mm))
346 return 0;
347
348 for (addr = start; addr < end; addr = range.end) {
349 range.start = addr;
350 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
351
352 ret = dmirror_range_fault(dmirror, &range);
353 if (ret)
354 break;
355 }
356
357 mmput(mm);
358 return ret;
359 }
360
dmirror_do_read(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)361 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
362 unsigned long end, struct dmirror_bounce *bounce)
363 {
364 unsigned long pfn;
365 void *ptr;
366
367 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
368
369 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
370 void *entry;
371 struct page *page;
372
373 entry = xa_load(&dmirror->pt, pfn);
374 page = xa_untag_pointer(entry);
375 if (!page)
376 return -ENOENT;
377
378 memcpy_from_page(ptr, page, 0, PAGE_SIZE);
379
380 ptr += PAGE_SIZE;
381 bounce->cpages++;
382 }
383
384 return 0;
385 }
386
dmirror_read(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)387 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
388 {
389 struct dmirror_bounce bounce;
390 unsigned long start, end;
391 unsigned long size = cmd->npages << PAGE_SHIFT;
392 int ret;
393
394 start = cmd->addr;
395 end = start + size;
396 if (end < start)
397 return -EINVAL;
398
399 ret = dmirror_bounce_init(&bounce, start, size);
400 if (ret)
401 return ret;
402
403 while (1) {
404 mutex_lock(&dmirror->mutex);
405 ret = dmirror_do_read(dmirror, start, end, &bounce);
406 mutex_unlock(&dmirror->mutex);
407 if (ret != -ENOENT)
408 break;
409
410 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
411 ret = dmirror_fault(dmirror, start, end, false);
412 if (ret)
413 break;
414 cmd->faults++;
415 }
416
417 if (ret == 0) {
418 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
419 bounce.size))
420 ret = -EFAULT;
421 }
422 cmd->cpages = bounce.cpages;
423 dmirror_bounce_fini(&bounce);
424 return ret;
425 }
426
dmirror_do_write(struct dmirror * dmirror,unsigned long start,unsigned long end,struct dmirror_bounce * bounce)427 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
428 unsigned long end, struct dmirror_bounce *bounce)
429 {
430 unsigned long pfn;
431 void *ptr;
432
433 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
434
435 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
436 void *entry;
437 struct page *page;
438
439 entry = xa_load(&dmirror->pt, pfn);
440 page = xa_untag_pointer(entry);
441 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
442 return -ENOENT;
443
444 memcpy_to_page(page, 0, ptr, PAGE_SIZE);
445
446 ptr += PAGE_SIZE;
447 bounce->cpages++;
448 }
449
450 return 0;
451 }
452
dmirror_write(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)453 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
454 {
455 struct dmirror_bounce bounce;
456 unsigned long start, end;
457 unsigned long size = cmd->npages << PAGE_SHIFT;
458 int ret;
459
460 start = cmd->addr;
461 end = start + size;
462 if (end < start)
463 return -EINVAL;
464
465 ret = dmirror_bounce_init(&bounce, start, size);
466 if (ret)
467 return ret;
468 if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
469 bounce.size)) {
470 ret = -EFAULT;
471 goto fini;
472 }
473
474 while (1) {
475 mutex_lock(&dmirror->mutex);
476 ret = dmirror_do_write(dmirror, start, end, &bounce);
477 mutex_unlock(&dmirror->mutex);
478 if (ret != -ENOENT)
479 break;
480
481 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
482 ret = dmirror_fault(dmirror, start, end, true);
483 if (ret)
484 break;
485 cmd->faults++;
486 }
487
488 fini:
489 cmd->cpages = bounce.cpages;
490 dmirror_bounce_fini(&bounce);
491 return ret;
492 }
493
dmirror_allocate_chunk(struct dmirror_device * mdevice,struct page ** ppage)494 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
495 struct page **ppage)
496 {
497 struct dmirror_chunk *devmem;
498 struct resource *res = NULL;
499 unsigned long pfn;
500 unsigned long pfn_first;
501 unsigned long pfn_last;
502 void *ptr;
503 int ret = -ENOMEM;
504
505 devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
506 if (!devmem)
507 return ret;
508
509 switch (mdevice->zone_device_type) {
510 case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
511 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
512 "hmm_dmirror");
513 if (IS_ERR_OR_NULL(res))
514 goto err_devmem;
515 devmem->pagemap.range.start = res->start;
516 devmem->pagemap.range.end = res->end;
517 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
518 break;
519 case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
520 devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
521 spm_addr_dev0 :
522 spm_addr_dev1;
523 devmem->pagemap.range.end = devmem->pagemap.range.start +
524 DEVMEM_CHUNK_SIZE - 1;
525 devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
526 break;
527 default:
528 ret = -EINVAL;
529 goto err_devmem;
530 }
531
532 devmem->pagemap.nr_range = 1;
533 devmem->pagemap.ops = &dmirror_devmem_ops;
534 devmem->pagemap.owner = mdevice;
535
536 mutex_lock(&mdevice->devmem_lock);
537
538 if (mdevice->devmem_count == mdevice->devmem_capacity) {
539 struct dmirror_chunk **new_chunks;
540 unsigned int new_capacity;
541
542 new_capacity = mdevice->devmem_capacity +
543 DEVMEM_CHUNKS_RESERVE;
544 new_chunks = krealloc(mdevice->devmem_chunks,
545 sizeof(new_chunks[0]) * new_capacity,
546 GFP_KERNEL);
547 if (!new_chunks)
548 goto err_release;
549 mdevice->devmem_capacity = new_capacity;
550 mdevice->devmem_chunks = new_chunks;
551 }
552 ptr = memremap_pages(&devmem->pagemap, numa_node_id());
553 if (IS_ERR_OR_NULL(ptr)) {
554 if (ptr)
555 ret = PTR_ERR(ptr);
556 else
557 ret = -EFAULT;
558 goto err_release;
559 }
560
561 devmem->mdevice = mdevice;
562 pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
563 pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
564 mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
565
566 mutex_unlock(&mdevice->devmem_lock);
567
568 pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
569 DEVMEM_CHUNK_SIZE / (1024 * 1024),
570 mdevice->devmem_count,
571 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
572 pfn_first, pfn_last);
573
574 spin_lock(&mdevice->lock);
575 for (pfn = pfn_first; pfn < pfn_last; pfn++) {
576 struct page *page = pfn_to_page(pfn);
577
578 page->zone_device_data = mdevice->free_pages;
579 mdevice->free_pages = page;
580 }
581 if (ppage) {
582 *ppage = mdevice->free_pages;
583 mdevice->free_pages = (*ppage)->zone_device_data;
584 mdevice->calloc++;
585 }
586 spin_unlock(&mdevice->lock);
587
588 return 0;
589
590 err_release:
591 mutex_unlock(&mdevice->devmem_lock);
592 if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
593 release_mem_region(devmem->pagemap.range.start,
594 range_len(&devmem->pagemap.range));
595 err_devmem:
596 kfree(devmem);
597
598 return ret;
599 }
600
dmirror_devmem_alloc_page(struct dmirror_device * mdevice)601 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
602 {
603 struct page *dpage = NULL;
604 struct page *rpage = NULL;
605
606 /*
607 * For ZONE_DEVICE private type, this is a fake device so we allocate
608 * real system memory to store our device memory.
609 * For ZONE_DEVICE coherent type we use the actual dpage to store the
610 * data and ignore rpage.
611 */
612 if (dmirror_is_private_zone(mdevice)) {
613 rpage = alloc_page(GFP_HIGHUSER);
614 if (!rpage)
615 return NULL;
616 }
617 spin_lock(&mdevice->lock);
618
619 if (mdevice->free_pages) {
620 dpage = mdevice->free_pages;
621 mdevice->free_pages = dpage->zone_device_data;
622 mdevice->calloc++;
623 spin_unlock(&mdevice->lock);
624 } else {
625 spin_unlock(&mdevice->lock);
626 if (dmirror_allocate_chunk(mdevice, &dpage))
627 goto error;
628 }
629
630 zone_device_page_init(dpage);
631 dpage->zone_device_data = rpage;
632 return dpage;
633
634 error:
635 if (rpage)
636 __free_page(rpage);
637 return NULL;
638 }
639
dmirror_migrate_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)640 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
641 struct dmirror *dmirror)
642 {
643 struct dmirror_device *mdevice = dmirror->mdevice;
644 const unsigned long *src = args->src;
645 unsigned long *dst = args->dst;
646 unsigned long addr;
647
648 for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
649 src++, dst++) {
650 struct page *spage;
651 struct page *dpage;
652 struct page *rpage;
653
654 if (!(*src & MIGRATE_PFN_MIGRATE))
655 continue;
656
657 /*
658 * Note that spage might be NULL which is OK since it is an
659 * unallocated pte_none() or read-only zero page.
660 */
661 spage = migrate_pfn_to_page(*src);
662 if (WARN(spage && is_zone_device_page(spage),
663 "page already in device spage pfn: 0x%lx\n",
664 page_to_pfn(spage)))
665 continue;
666
667 dpage = dmirror_devmem_alloc_page(mdevice);
668 if (!dpage)
669 continue;
670
671 rpage = BACKING_PAGE(dpage);
672 if (spage)
673 copy_highpage(rpage, spage);
674 else
675 clear_highpage(rpage);
676
677 /*
678 * Normally, a device would use the page->zone_device_data to
679 * point to the mirror but here we use it to hold the page for
680 * the simulated device memory and that page holds the pointer
681 * to the mirror.
682 */
683 rpage->zone_device_data = dmirror;
684
685 pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
686 page_to_pfn(spage), page_to_pfn(dpage));
687 *dst = migrate_pfn(page_to_pfn(dpage));
688 if ((*src & MIGRATE_PFN_WRITE) ||
689 (!spage && args->vma->vm_flags & VM_WRITE))
690 *dst |= MIGRATE_PFN_WRITE;
691 }
692 }
693
dmirror_check_atomic(struct dmirror * dmirror,unsigned long start,unsigned long end)694 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
695 unsigned long end)
696 {
697 unsigned long pfn;
698
699 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
700 void *entry;
701
702 entry = xa_load(&dmirror->pt, pfn);
703 if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
704 return -EPERM;
705 }
706
707 return 0;
708 }
709
dmirror_atomic_map(unsigned long addr,struct page * page,struct dmirror * dmirror)710 static int dmirror_atomic_map(unsigned long addr, struct page *page,
711 struct dmirror *dmirror)
712 {
713 void *entry;
714
715 /* Map the migrated pages into the device's page tables. */
716 mutex_lock(&dmirror->mutex);
717
718 entry = xa_tag_pointer(page, DPT_XA_TAG_ATOMIC);
719 entry = xa_store(&dmirror->pt, addr >> PAGE_SHIFT, entry, GFP_ATOMIC);
720 if (xa_is_err(entry)) {
721 mutex_unlock(&dmirror->mutex);
722 return xa_err(entry);
723 }
724
725 mutex_unlock(&dmirror->mutex);
726 return 0;
727 }
728
dmirror_migrate_finalize_and_map(struct migrate_vma * args,struct dmirror * dmirror)729 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
730 struct dmirror *dmirror)
731 {
732 unsigned long start = args->start;
733 unsigned long end = args->end;
734 const unsigned long *src = args->src;
735 const unsigned long *dst = args->dst;
736 unsigned long pfn;
737
738 /* Map the migrated pages into the device's page tables. */
739 mutex_lock(&dmirror->mutex);
740
741 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
742 src++, dst++) {
743 struct page *dpage;
744 void *entry;
745
746 if (!(*src & MIGRATE_PFN_MIGRATE))
747 continue;
748
749 dpage = migrate_pfn_to_page(*dst);
750 if (!dpage)
751 continue;
752
753 entry = BACKING_PAGE(dpage);
754 if (*dst & MIGRATE_PFN_WRITE)
755 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
756 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
757 if (xa_is_err(entry)) {
758 mutex_unlock(&dmirror->mutex);
759 return xa_err(entry);
760 }
761 }
762
763 mutex_unlock(&dmirror->mutex);
764 return 0;
765 }
766
dmirror_exclusive(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)767 static int dmirror_exclusive(struct dmirror *dmirror,
768 struct hmm_dmirror_cmd *cmd)
769 {
770 unsigned long start, end, addr;
771 unsigned long size = cmd->npages << PAGE_SHIFT;
772 struct mm_struct *mm = dmirror->notifier.mm;
773 struct dmirror_bounce bounce;
774 int ret = 0;
775
776 start = cmd->addr;
777 end = start + size;
778 if (end < start)
779 return -EINVAL;
780
781 /* Since the mm is for the mirrored process, get a reference first. */
782 if (!mmget_not_zero(mm))
783 return -EINVAL;
784
785 mmap_read_lock(mm);
786 for (addr = start; !ret && addr < end; addr += PAGE_SIZE) {
787 struct folio *folio;
788 struct page *page;
789
790 page = make_device_exclusive(mm, addr, NULL, &folio);
791 if (IS_ERR(page)) {
792 ret = PTR_ERR(page);
793 break;
794 }
795
796 ret = dmirror_atomic_map(addr, page, dmirror);
797 folio_unlock(folio);
798 folio_put(folio);
799 }
800 mmap_read_unlock(mm);
801 mmput(mm);
802
803 if (ret)
804 return ret;
805
806 /* Return the migrated data for verification. */
807 ret = dmirror_bounce_init(&bounce, start, size);
808 if (ret)
809 return ret;
810 mutex_lock(&dmirror->mutex);
811 ret = dmirror_do_read(dmirror, start, end, &bounce);
812 mutex_unlock(&dmirror->mutex);
813 if (ret == 0) {
814 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
815 bounce.size))
816 ret = -EFAULT;
817 }
818
819 cmd->cpages = bounce.cpages;
820 dmirror_bounce_fini(&bounce);
821 return ret;
822 }
823
dmirror_devmem_fault_alloc_and_copy(struct migrate_vma * args,struct dmirror * dmirror)824 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
825 struct dmirror *dmirror)
826 {
827 const unsigned long *src = args->src;
828 unsigned long *dst = args->dst;
829 unsigned long start = args->start;
830 unsigned long end = args->end;
831 unsigned long addr;
832
833 for (addr = start; addr < end; addr += PAGE_SIZE,
834 src++, dst++) {
835 struct page *dpage, *spage;
836
837 spage = migrate_pfn_to_page(*src);
838 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
839 continue;
840
841 if (WARN_ON(!is_device_private_page(spage) &&
842 !is_device_coherent_page(spage)))
843 continue;
844 spage = BACKING_PAGE(spage);
845 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
846 if (!dpage)
847 continue;
848 pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
849 page_to_pfn(spage), page_to_pfn(dpage));
850
851 lock_page(dpage);
852 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
853 copy_highpage(dpage, spage);
854 *dst = migrate_pfn(page_to_pfn(dpage));
855 if (*src & MIGRATE_PFN_WRITE)
856 *dst |= MIGRATE_PFN_WRITE;
857 }
858 return 0;
859 }
860
861 static unsigned long
dmirror_successful_migrated_pages(struct migrate_vma * migrate)862 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
863 {
864 unsigned long cpages = 0;
865 unsigned long i;
866
867 for (i = 0; i < migrate->npages; i++) {
868 if (migrate->src[i] & MIGRATE_PFN_VALID &&
869 migrate->src[i] & MIGRATE_PFN_MIGRATE)
870 cpages++;
871 }
872 return cpages;
873 }
874
dmirror_migrate_to_system(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)875 static int dmirror_migrate_to_system(struct dmirror *dmirror,
876 struct hmm_dmirror_cmd *cmd)
877 {
878 unsigned long start, end, addr;
879 unsigned long size = cmd->npages << PAGE_SHIFT;
880 struct mm_struct *mm = dmirror->notifier.mm;
881 struct vm_area_struct *vma;
882 unsigned long src_pfns[64] = { 0 };
883 unsigned long dst_pfns[64] = { 0 };
884 struct migrate_vma args = { 0 };
885 unsigned long next;
886 int ret;
887
888 start = cmd->addr;
889 end = start + size;
890 if (end < start)
891 return -EINVAL;
892
893 /* Since the mm is for the mirrored process, get a reference first. */
894 if (!mmget_not_zero(mm))
895 return -EINVAL;
896
897 cmd->cpages = 0;
898 mmap_read_lock(mm);
899 for (addr = start; addr < end; addr = next) {
900 vma = vma_lookup(mm, addr);
901 if (!vma || !(vma->vm_flags & VM_READ)) {
902 ret = -EINVAL;
903 goto out;
904 }
905 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
906 if (next > vma->vm_end)
907 next = vma->vm_end;
908
909 args.vma = vma;
910 args.src = src_pfns;
911 args.dst = dst_pfns;
912 args.start = addr;
913 args.end = next;
914 args.pgmap_owner = dmirror->mdevice;
915 args.flags = dmirror_select_device(dmirror);
916
917 ret = migrate_vma_setup(&args);
918 if (ret)
919 goto out;
920
921 pr_debug("Migrating from device mem to sys mem\n");
922 dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
923
924 migrate_vma_pages(&args);
925 cmd->cpages += dmirror_successful_migrated_pages(&args);
926 migrate_vma_finalize(&args);
927 }
928 out:
929 mmap_read_unlock(mm);
930 mmput(mm);
931
932 return ret;
933 }
934
dmirror_migrate_to_device(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)935 static int dmirror_migrate_to_device(struct dmirror *dmirror,
936 struct hmm_dmirror_cmd *cmd)
937 {
938 unsigned long start, end, addr;
939 unsigned long size = cmd->npages << PAGE_SHIFT;
940 struct mm_struct *mm = dmirror->notifier.mm;
941 struct vm_area_struct *vma;
942 unsigned long src_pfns[64] = { 0 };
943 unsigned long dst_pfns[64] = { 0 };
944 struct dmirror_bounce bounce;
945 struct migrate_vma args = { 0 };
946 unsigned long next;
947 int ret;
948
949 start = cmd->addr;
950 end = start + size;
951 if (end < start)
952 return -EINVAL;
953
954 /* Since the mm is for the mirrored process, get a reference first. */
955 if (!mmget_not_zero(mm))
956 return -EINVAL;
957
958 mmap_read_lock(mm);
959 for (addr = start; addr < end; addr = next) {
960 vma = vma_lookup(mm, addr);
961 if (!vma || !(vma->vm_flags & VM_READ)) {
962 ret = -EINVAL;
963 goto out;
964 }
965 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
966 if (next > vma->vm_end)
967 next = vma->vm_end;
968
969 args.vma = vma;
970 args.src = src_pfns;
971 args.dst = dst_pfns;
972 args.start = addr;
973 args.end = next;
974 args.pgmap_owner = dmirror->mdevice;
975 args.flags = MIGRATE_VMA_SELECT_SYSTEM;
976 ret = migrate_vma_setup(&args);
977 if (ret)
978 goto out;
979
980 pr_debug("Migrating from sys mem to device mem\n");
981 dmirror_migrate_alloc_and_copy(&args, dmirror);
982 migrate_vma_pages(&args);
983 dmirror_migrate_finalize_and_map(&args, dmirror);
984 migrate_vma_finalize(&args);
985 }
986 mmap_read_unlock(mm);
987 mmput(mm);
988
989 /*
990 * Return the migrated data for verification.
991 * Only for pages in device zone
992 */
993 ret = dmirror_bounce_init(&bounce, start, size);
994 if (ret)
995 return ret;
996 mutex_lock(&dmirror->mutex);
997 ret = dmirror_do_read(dmirror, start, end, &bounce);
998 mutex_unlock(&dmirror->mutex);
999 if (ret == 0) {
1000 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1001 bounce.size))
1002 ret = -EFAULT;
1003 }
1004 cmd->cpages = bounce.cpages;
1005 dmirror_bounce_fini(&bounce);
1006 return ret;
1007
1008 out:
1009 mmap_read_unlock(mm);
1010 mmput(mm);
1011 return ret;
1012 }
1013
dmirror_mkentry(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm,unsigned long entry)1014 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1015 unsigned char *perm, unsigned long entry)
1016 {
1017 struct page *page;
1018
1019 if (entry & HMM_PFN_ERROR) {
1020 *perm = HMM_DMIRROR_PROT_ERROR;
1021 return;
1022 }
1023 if (!(entry & HMM_PFN_VALID)) {
1024 *perm = HMM_DMIRROR_PROT_NONE;
1025 return;
1026 }
1027
1028 page = hmm_pfn_to_page(entry);
1029 if (is_device_private_page(page)) {
1030 /* Is the page migrated to this device or some other? */
1031 if (dmirror->mdevice == dmirror_page_to_device(page))
1032 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1033 else
1034 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1035 } else if (is_device_coherent_page(page)) {
1036 /* Is the page migrated to this device or some other? */
1037 if (dmirror->mdevice == dmirror_page_to_device(page))
1038 *perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1039 else
1040 *perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1041 } else if (is_zero_pfn(page_to_pfn(page)))
1042 *perm = HMM_DMIRROR_PROT_ZERO;
1043 else
1044 *perm = HMM_DMIRROR_PROT_NONE;
1045 if (entry & HMM_PFN_WRITE)
1046 *perm |= HMM_DMIRROR_PROT_WRITE;
1047 else
1048 *perm |= HMM_DMIRROR_PROT_READ;
1049 if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1050 *perm |= HMM_DMIRROR_PROT_PMD;
1051 else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1052 *perm |= HMM_DMIRROR_PROT_PUD;
1053 }
1054
dmirror_snapshot_invalidate(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)1055 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1056 const struct mmu_notifier_range *range,
1057 unsigned long cur_seq)
1058 {
1059 struct dmirror_interval *dmi =
1060 container_of(mni, struct dmirror_interval, notifier);
1061 struct dmirror *dmirror = dmi->dmirror;
1062
1063 if (mmu_notifier_range_blockable(range))
1064 mutex_lock(&dmirror->mutex);
1065 else if (!mutex_trylock(&dmirror->mutex))
1066 return false;
1067
1068 /*
1069 * Snapshots only need to set the sequence number since any
1070 * invalidation in the interval invalidates the whole snapshot.
1071 */
1072 mmu_interval_set_seq(mni, cur_seq);
1073
1074 mutex_unlock(&dmirror->mutex);
1075 return true;
1076 }
1077
1078 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1079 .invalidate = dmirror_snapshot_invalidate,
1080 };
1081
dmirror_range_snapshot(struct dmirror * dmirror,struct hmm_range * range,unsigned char * perm)1082 static int dmirror_range_snapshot(struct dmirror *dmirror,
1083 struct hmm_range *range,
1084 unsigned char *perm)
1085 {
1086 struct mm_struct *mm = dmirror->notifier.mm;
1087 struct dmirror_interval notifier;
1088 unsigned long timeout =
1089 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1090 unsigned long i;
1091 unsigned long n;
1092 int ret = 0;
1093
1094 notifier.dmirror = dmirror;
1095 range->notifier = ¬ifier.notifier;
1096
1097 ret = mmu_interval_notifier_insert(range->notifier, mm,
1098 range->start, range->end - range->start,
1099 &dmirror_mrn_ops);
1100 if (ret)
1101 return ret;
1102
1103 while (true) {
1104 if (time_after(jiffies, timeout)) {
1105 ret = -EBUSY;
1106 goto out;
1107 }
1108
1109 range->notifier_seq = mmu_interval_read_begin(range->notifier);
1110
1111 mmap_read_lock(mm);
1112 ret = hmm_range_fault(range);
1113 mmap_read_unlock(mm);
1114 if (ret) {
1115 if (ret == -EBUSY)
1116 continue;
1117 goto out;
1118 }
1119
1120 mutex_lock(&dmirror->mutex);
1121 if (mmu_interval_read_retry(range->notifier,
1122 range->notifier_seq)) {
1123 mutex_unlock(&dmirror->mutex);
1124 continue;
1125 }
1126 break;
1127 }
1128
1129 n = (range->end - range->start) >> PAGE_SHIFT;
1130 for (i = 0; i < n; i++)
1131 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1132
1133 mutex_unlock(&dmirror->mutex);
1134 out:
1135 mmu_interval_notifier_remove(range->notifier);
1136 return ret;
1137 }
1138
dmirror_snapshot(struct dmirror * dmirror,struct hmm_dmirror_cmd * cmd)1139 static int dmirror_snapshot(struct dmirror *dmirror,
1140 struct hmm_dmirror_cmd *cmd)
1141 {
1142 struct mm_struct *mm = dmirror->notifier.mm;
1143 unsigned long start, end;
1144 unsigned long size = cmd->npages << PAGE_SHIFT;
1145 unsigned long addr;
1146 unsigned long next;
1147 unsigned long pfns[64];
1148 unsigned char perm[64];
1149 char __user *uptr;
1150 struct hmm_range range = {
1151 .hmm_pfns = pfns,
1152 .dev_private_owner = dmirror->mdevice,
1153 };
1154 int ret = 0;
1155
1156 start = cmd->addr;
1157 end = start + size;
1158 if (end < start)
1159 return -EINVAL;
1160
1161 /* Since the mm is for the mirrored process, get a reference first. */
1162 if (!mmget_not_zero(mm))
1163 return -EINVAL;
1164
1165 /*
1166 * Register a temporary notifier to detect invalidations even if it
1167 * overlaps with other mmu_interval_notifiers.
1168 */
1169 uptr = u64_to_user_ptr(cmd->ptr);
1170 for (addr = start; addr < end; addr = next) {
1171 unsigned long n;
1172
1173 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1174 range.start = addr;
1175 range.end = next;
1176
1177 ret = dmirror_range_snapshot(dmirror, &range, perm);
1178 if (ret)
1179 break;
1180
1181 n = (range.end - range.start) >> PAGE_SHIFT;
1182 if (copy_to_user(uptr, perm, n)) {
1183 ret = -EFAULT;
1184 break;
1185 }
1186
1187 cmd->cpages += n;
1188 uptr += n;
1189 }
1190 mmput(mm);
1191
1192 return ret;
1193 }
1194
dmirror_device_evict_chunk(struct dmirror_chunk * chunk)1195 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1196 {
1197 unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1198 unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1199 unsigned long npages = end_pfn - start_pfn + 1;
1200 unsigned long i;
1201 unsigned long *src_pfns;
1202 unsigned long *dst_pfns;
1203
1204 src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL);
1205 dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL);
1206
1207 migrate_device_range(src_pfns, start_pfn, npages);
1208 for (i = 0; i < npages; i++) {
1209 struct page *dpage, *spage;
1210
1211 spage = migrate_pfn_to_page(src_pfns[i]);
1212 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1213 continue;
1214
1215 if (WARN_ON(!is_device_private_page(spage) &&
1216 !is_device_coherent_page(spage)))
1217 continue;
1218 spage = BACKING_PAGE(spage);
1219 dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1220 lock_page(dpage);
1221 copy_highpage(dpage, spage);
1222 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1223 if (src_pfns[i] & MIGRATE_PFN_WRITE)
1224 dst_pfns[i] |= MIGRATE_PFN_WRITE;
1225 }
1226 migrate_device_pages(src_pfns, dst_pfns, npages);
1227 migrate_device_finalize(src_pfns, dst_pfns, npages);
1228 kvfree(src_pfns);
1229 kvfree(dst_pfns);
1230 }
1231
1232 /* Removes free pages from the free list so they can't be re-allocated */
dmirror_remove_free_pages(struct dmirror_chunk * devmem)1233 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1234 {
1235 struct dmirror_device *mdevice = devmem->mdevice;
1236 struct page *page;
1237
1238 for (page = mdevice->free_pages; page; page = page->zone_device_data)
1239 if (dmirror_page_to_chunk(page) == devmem)
1240 mdevice->free_pages = page->zone_device_data;
1241 }
1242
dmirror_device_remove_chunks(struct dmirror_device * mdevice)1243 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1244 {
1245 unsigned int i;
1246
1247 mutex_lock(&mdevice->devmem_lock);
1248 if (mdevice->devmem_chunks) {
1249 for (i = 0; i < mdevice->devmem_count; i++) {
1250 struct dmirror_chunk *devmem =
1251 mdevice->devmem_chunks[i];
1252
1253 spin_lock(&mdevice->lock);
1254 devmem->remove = true;
1255 dmirror_remove_free_pages(devmem);
1256 spin_unlock(&mdevice->lock);
1257
1258 dmirror_device_evict_chunk(devmem);
1259 memunmap_pages(&devmem->pagemap);
1260 if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1261 release_mem_region(devmem->pagemap.range.start,
1262 range_len(&devmem->pagemap.range));
1263 kfree(devmem);
1264 }
1265 mdevice->devmem_count = 0;
1266 mdevice->devmem_capacity = 0;
1267 mdevice->free_pages = NULL;
1268 kfree(mdevice->devmem_chunks);
1269 mdevice->devmem_chunks = NULL;
1270 }
1271 mutex_unlock(&mdevice->devmem_lock);
1272 }
1273
dmirror_fops_unlocked_ioctl(struct file * filp,unsigned int command,unsigned long arg)1274 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1275 unsigned int command,
1276 unsigned long arg)
1277 {
1278 void __user *uarg = (void __user *)arg;
1279 struct hmm_dmirror_cmd cmd;
1280 struct dmirror *dmirror;
1281 int ret;
1282
1283 dmirror = filp->private_data;
1284 if (!dmirror)
1285 return -EINVAL;
1286
1287 if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1288 return -EFAULT;
1289
1290 if (cmd.addr & ~PAGE_MASK)
1291 return -EINVAL;
1292 if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1293 return -EINVAL;
1294
1295 cmd.cpages = 0;
1296 cmd.faults = 0;
1297
1298 switch (command) {
1299 case HMM_DMIRROR_READ:
1300 ret = dmirror_read(dmirror, &cmd);
1301 break;
1302
1303 case HMM_DMIRROR_WRITE:
1304 ret = dmirror_write(dmirror, &cmd);
1305 break;
1306
1307 case HMM_DMIRROR_MIGRATE_TO_DEV:
1308 ret = dmirror_migrate_to_device(dmirror, &cmd);
1309 break;
1310
1311 case HMM_DMIRROR_MIGRATE_TO_SYS:
1312 ret = dmirror_migrate_to_system(dmirror, &cmd);
1313 break;
1314
1315 case HMM_DMIRROR_EXCLUSIVE:
1316 ret = dmirror_exclusive(dmirror, &cmd);
1317 break;
1318
1319 case HMM_DMIRROR_CHECK_EXCLUSIVE:
1320 ret = dmirror_check_atomic(dmirror, cmd.addr,
1321 cmd.addr + (cmd.npages << PAGE_SHIFT));
1322 break;
1323
1324 case HMM_DMIRROR_SNAPSHOT:
1325 ret = dmirror_snapshot(dmirror, &cmd);
1326 break;
1327
1328 case HMM_DMIRROR_RELEASE:
1329 dmirror_device_remove_chunks(dmirror->mdevice);
1330 ret = 0;
1331 break;
1332
1333 default:
1334 return -EINVAL;
1335 }
1336 if (ret)
1337 return ret;
1338
1339 if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1340 return -EFAULT;
1341
1342 return 0;
1343 }
1344
dmirror_fops_mmap(struct file * file,struct vm_area_struct * vma)1345 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1346 {
1347 unsigned long addr;
1348
1349 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1350 struct page *page;
1351 int ret;
1352
1353 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1354 if (!page)
1355 return -ENOMEM;
1356
1357 ret = vm_insert_page(vma, addr, page);
1358 if (ret) {
1359 __free_page(page);
1360 return ret;
1361 }
1362 put_page(page);
1363 }
1364
1365 return 0;
1366 }
1367
1368 static const struct file_operations dmirror_fops = {
1369 .open = dmirror_fops_open,
1370 .release = dmirror_fops_release,
1371 .mmap = dmirror_fops_mmap,
1372 .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1373 .llseek = default_llseek,
1374 .owner = THIS_MODULE,
1375 };
1376
dmirror_devmem_free(struct page * page)1377 static void dmirror_devmem_free(struct page *page)
1378 {
1379 struct page *rpage = BACKING_PAGE(page);
1380 struct dmirror_device *mdevice;
1381
1382 if (rpage != page)
1383 __free_page(rpage);
1384
1385 mdevice = dmirror_page_to_device(page);
1386 spin_lock(&mdevice->lock);
1387
1388 /* Return page to our allocator if not freeing the chunk */
1389 if (!dmirror_page_to_chunk(page)->remove) {
1390 mdevice->cfree++;
1391 page->zone_device_data = mdevice->free_pages;
1392 mdevice->free_pages = page;
1393 }
1394 spin_unlock(&mdevice->lock);
1395 }
1396
dmirror_devmem_fault(struct vm_fault * vmf)1397 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1398 {
1399 struct migrate_vma args = { 0 };
1400 unsigned long src_pfns = 0;
1401 unsigned long dst_pfns = 0;
1402 struct page *rpage;
1403 struct dmirror *dmirror;
1404 vm_fault_t ret;
1405
1406 /*
1407 * Normally, a device would use the page->zone_device_data to point to
1408 * the mirror but here we use it to hold the page for the simulated
1409 * device memory and that page holds the pointer to the mirror.
1410 */
1411 rpage = vmf->page->zone_device_data;
1412 dmirror = rpage->zone_device_data;
1413
1414 /* FIXME demonstrate how we can adjust migrate range */
1415 args.vma = vmf->vma;
1416 args.start = vmf->address;
1417 args.end = args.start + PAGE_SIZE;
1418 args.src = &src_pfns;
1419 args.dst = &dst_pfns;
1420 args.pgmap_owner = dmirror->mdevice;
1421 args.flags = dmirror_select_device(dmirror);
1422 args.fault_page = vmf->page;
1423
1424 if (migrate_vma_setup(&args))
1425 return VM_FAULT_SIGBUS;
1426
1427 ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1428 if (ret)
1429 return ret;
1430 migrate_vma_pages(&args);
1431 /*
1432 * No device finalize step is needed since
1433 * dmirror_devmem_fault_alloc_and_copy() will have already
1434 * invalidated the device page table.
1435 */
1436 migrate_vma_finalize(&args);
1437 return 0;
1438 }
1439
1440 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1441 .page_free = dmirror_devmem_free,
1442 .migrate_to_ram = dmirror_devmem_fault,
1443 };
1444
dmirror_device_init(struct dmirror_device * mdevice,int id)1445 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1446 {
1447 dev_t dev;
1448 int ret;
1449
1450 dev = MKDEV(MAJOR(dmirror_dev), id);
1451 mutex_init(&mdevice->devmem_lock);
1452 spin_lock_init(&mdevice->lock);
1453
1454 cdev_init(&mdevice->cdevice, &dmirror_fops);
1455 mdevice->cdevice.owner = THIS_MODULE;
1456 device_initialize(&mdevice->device);
1457 mdevice->device.devt = dev;
1458
1459 ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1460 if (ret)
1461 return ret;
1462
1463 ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1464 if (ret)
1465 return ret;
1466
1467 /* Build a list of free ZONE_DEVICE struct pages */
1468 return dmirror_allocate_chunk(mdevice, NULL);
1469 }
1470
dmirror_device_remove(struct dmirror_device * mdevice)1471 static void dmirror_device_remove(struct dmirror_device *mdevice)
1472 {
1473 dmirror_device_remove_chunks(mdevice);
1474 cdev_device_del(&mdevice->cdevice, &mdevice->device);
1475 }
1476
hmm_dmirror_init(void)1477 static int __init hmm_dmirror_init(void)
1478 {
1479 int ret;
1480 int id = 0;
1481 int ndevices = 0;
1482
1483 ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1484 "HMM_DMIRROR");
1485 if (ret)
1486 goto err_unreg;
1487
1488 memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1489 dmirror_devices[ndevices++].zone_device_type =
1490 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1491 dmirror_devices[ndevices++].zone_device_type =
1492 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1493 if (spm_addr_dev0 && spm_addr_dev1) {
1494 dmirror_devices[ndevices++].zone_device_type =
1495 HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1496 dmirror_devices[ndevices++].zone_device_type =
1497 HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1498 }
1499 for (id = 0; id < ndevices; id++) {
1500 ret = dmirror_device_init(dmirror_devices + id, id);
1501 if (ret)
1502 goto err_chrdev;
1503 }
1504
1505 pr_info("HMM test module loaded. This is only for testing HMM.\n");
1506 return 0;
1507
1508 err_chrdev:
1509 while (--id >= 0)
1510 dmirror_device_remove(dmirror_devices + id);
1511 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1512 err_unreg:
1513 return ret;
1514 }
1515
hmm_dmirror_exit(void)1516 static void __exit hmm_dmirror_exit(void)
1517 {
1518 int id;
1519
1520 for (id = 0; id < DMIRROR_NDEVICES; id++)
1521 if (dmirror_devices[id].zone_device_type)
1522 dmirror_device_remove(dmirror_devices + id);
1523 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1524 }
1525
1526 module_init(hmm_dmirror_init);
1527 module_exit(hmm_dmirror_exit);
1528 MODULE_DESCRIPTION("HMM (Heterogeneous Memory Management) test module");
1529 MODULE_LICENSE("GPL");
1530