1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4 *
5 * Scatterlist handling helpers.
6 */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12 #include <linux/bvec.h>
13 #include <linux/uio.h>
14 #include <linux/folio_queue.h>
15
16 /**
17 * sg_next - return the next scatterlist entry in a list
18 * @sg: The current sg entry
19 *
20 * Description:
21 * Usually the next entry will be @sg@ + 1, but if this sg element is part
22 * of a chained scatterlist, it could jump to the start of a new
23 * scatterlist array.
24 *
25 **/
sg_next(struct scatterlist * sg)26 struct scatterlist *sg_next(struct scatterlist *sg)
27 {
28 if (sg_is_last(sg))
29 return NULL;
30
31 sg++;
32 if (unlikely(sg_is_chain(sg)))
33 sg = sg_chain_ptr(sg);
34
35 return sg;
36 }
37 EXPORT_SYMBOL(sg_next);
38
39 /**
40 * sg_nents - return total count of entries in scatterlist
41 * @sg: The scatterlist
42 *
43 * Description:
44 * Allows to know how many entries are in sg, taking into account
45 * chaining as well
46 *
47 **/
sg_nents(struct scatterlist * sg)48 int sg_nents(struct scatterlist *sg)
49 {
50 int nents;
51 for (nents = 0; sg; sg = sg_next(sg))
52 nents++;
53 return nents;
54 }
55 EXPORT_SYMBOL(sg_nents);
56
57 /**
58 * sg_nents_for_len - return total count of entries in scatterlist
59 * needed to satisfy the supplied length
60 * @sg: The scatterlist
61 * @len: The total required length
62 *
63 * Description:
64 * Determines the number of entries in sg that are required to meet
65 * the supplied length, taking into account chaining as well
66 *
67 * Returns:
68 * the number of sg entries needed, negative error on failure
69 *
70 **/
sg_nents_for_len(struct scatterlist * sg,u64 len)71 int sg_nents_for_len(struct scatterlist *sg, u64 len)
72 {
73 int nents;
74 u64 total;
75
76 if (!len)
77 return 0;
78
79 for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
80 nents++;
81 total += sg->length;
82 if (total >= len)
83 return nents;
84 }
85
86 return -EINVAL;
87 }
88 EXPORT_SYMBOL(sg_nents_for_len);
89
90 /**
91 * sg_last - return the last scatterlist entry in a list
92 * @sgl: First entry in the scatterlist
93 * @nents: Number of entries in the scatterlist
94 *
95 * Description:
96 * Should only be used casually, it (currently) scans the entire list
97 * to get the last entry.
98 *
99 * Note that the @sgl@ pointer passed in need not be the first one,
100 * the important bit is that @nents@ denotes the number of entries that
101 * exist from @sgl@.
102 *
103 **/
sg_last(struct scatterlist * sgl,unsigned int nents)104 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
105 {
106 struct scatterlist *sg, *ret = NULL;
107 unsigned int i;
108
109 for_each_sg(sgl, sg, nents, i)
110 ret = sg;
111
112 BUG_ON(!sg_is_last(ret));
113 return ret;
114 }
115 EXPORT_SYMBOL(sg_last);
116
117 /**
118 * sg_init_table - Initialize SG table
119 * @sgl: The SG table
120 * @nents: Number of entries in table
121 *
122 * Notes:
123 * If this is part of a chained sg table, sg_mark_end() should be
124 * used only on the last table part.
125 *
126 **/
sg_init_table(struct scatterlist * sgl,unsigned int nents)127 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
128 {
129 memset(sgl, 0, sizeof(*sgl) * nents);
130 sg_init_marker(sgl, nents);
131 }
132 EXPORT_SYMBOL(sg_init_table);
133
134 /**
135 * sg_init_one - Initialize a single entry sg list
136 * @sg: SG entry
137 * @buf: Virtual address for IO
138 * @buflen: IO length
139 *
140 **/
sg_init_one(struct scatterlist * sg,const void * buf,unsigned int buflen)141 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
142 {
143 sg_init_table(sg, 1);
144 sg_set_buf(sg, buf, buflen);
145 }
146 EXPORT_SYMBOL(sg_init_one);
147
148 /*
149 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
150 * helpers.
151 */
sg_kmalloc(unsigned int nents,gfp_t gfp_mask)152 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
153 {
154 if (nents == SG_MAX_SINGLE_ALLOC) {
155 /*
156 * Kmemleak doesn't track page allocations as they are not
157 * commonly used (in a raw form) for kernel data structures.
158 * As we chain together a list of pages and then a normal
159 * kmalloc (tracked by kmemleak), in order to for that last
160 * allocation not to become decoupled (and thus a
161 * false-positive) we need to inform kmemleak of all the
162 * intermediate allocations.
163 */
164 void *ptr = (void *) __get_free_page(gfp_mask);
165 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
166 return ptr;
167 } else
168 return kmalloc_array(nents, sizeof(struct scatterlist),
169 gfp_mask);
170 }
171
sg_kfree(struct scatterlist * sg,unsigned int nents)172 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
173 {
174 if (nents == SG_MAX_SINGLE_ALLOC) {
175 kmemleak_free(sg);
176 free_page((unsigned long) sg);
177 } else
178 kfree(sg);
179 }
180
181 /**
182 * __sg_free_table - Free a previously mapped sg table
183 * @table: The sg table header to use
184 * @max_ents: The maximum number of entries per single scatterlist
185 * @nents_first_chunk: Number of entries int the (preallocated) first
186 * scatterlist chunk, 0 means no such preallocated first chunk
187 * @free_fn: Free function
188 * @num_ents: Number of entries in the table
189 *
190 * Description:
191 * Free an sg table previously allocated and setup with
192 * __sg_alloc_table(). The @max_ents value must be identical to
193 * that previously used with __sg_alloc_table().
194 *
195 **/
__sg_free_table(struct sg_table * table,unsigned int max_ents,unsigned int nents_first_chunk,sg_free_fn * free_fn,unsigned int num_ents)196 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
197 unsigned int nents_first_chunk, sg_free_fn *free_fn,
198 unsigned int num_ents)
199 {
200 struct scatterlist *sgl, *next;
201 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
202
203 if (unlikely(!table->sgl))
204 return;
205
206 sgl = table->sgl;
207 while (num_ents) {
208 unsigned int alloc_size = num_ents;
209 unsigned int sg_size;
210
211 /*
212 * If we have more than max_ents segments left,
213 * then assign 'next' to the sg table after the current one.
214 * sg_size is then one less than alloc size, since the last
215 * element is the chain pointer.
216 */
217 if (alloc_size > curr_max_ents) {
218 next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
219 alloc_size = curr_max_ents;
220 sg_size = alloc_size - 1;
221 } else {
222 sg_size = alloc_size;
223 next = NULL;
224 }
225
226 num_ents -= sg_size;
227 if (nents_first_chunk)
228 nents_first_chunk = 0;
229 else
230 free_fn(sgl, alloc_size);
231 sgl = next;
232 curr_max_ents = max_ents;
233 }
234
235 table->sgl = NULL;
236 }
237 EXPORT_SYMBOL(__sg_free_table);
238
239 /**
240 * sg_free_append_table - Free a previously allocated append sg table.
241 * @table: The mapped sg append table header
242 *
243 **/
sg_free_append_table(struct sg_append_table * table)244 void sg_free_append_table(struct sg_append_table *table)
245 {
246 __sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
247 table->total_nents);
248 }
249 EXPORT_SYMBOL(sg_free_append_table);
250
251
252 /**
253 * sg_free_table - Free a previously allocated sg table
254 * @table: The mapped sg table header
255 *
256 **/
sg_free_table(struct sg_table * table)257 void sg_free_table(struct sg_table *table)
258 {
259 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
260 table->orig_nents);
261 }
262 EXPORT_SYMBOL(sg_free_table);
263
264 /**
265 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
266 * @table: The sg table header to use
267 * @nents: Number of entries in sg list
268 * @max_ents: The maximum number of entries the allocator returns per call
269 * @first_chunk: first SGL if preallocated (may be %NULL)
270 * @nents_first_chunk: Number of entries in the (preallocated) first
271 * scatterlist chunk, 0 means no such preallocated chunk provided by user
272 * @gfp_mask: GFP allocation mask
273 * @alloc_fn: Allocator to use
274 *
275 * Description:
276 * This function returns a @table @nents long. The allocator is
277 * defined to return scatterlist chunks of maximum size @max_ents.
278 * Thus if @nents is bigger than @max_ents, the scatterlists will be
279 * chained in units of @max_ents.
280 *
281 * Notes:
282 * If this function returns non-0 (eg failure), the caller must call
283 * __sg_free_table() to cleanup any leftover allocations.
284 *
285 **/
__sg_alloc_table(struct sg_table * table,unsigned int nents,unsigned int max_ents,struct scatterlist * first_chunk,unsigned int nents_first_chunk,gfp_t gfp_mask,sg_alloc_fn * alloc_fn)286 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
287 unsigned int max_ents, struct scatterlist *first_chunk,
288 unsigned int nents_first_chunk, gfp_t gfp_mask,
289 sg_alloc_fn *alloc_fn)
290 {
291 struct scatterlist *sg, *prv;
292 unsigned int left;
293 unsigned curr_max_ents = nents_first_chunk ?: max_ents;
294 unsigned prv_max_ents;
295
296 memset(table, 0, sizeof(*table));
297
298 if (nents == 0)
299 return -EINVAL;
300 #ifdef CONFIG_ARCH_NO_SG_CHAIN
301 if (WARN_ON_ONCE(nents > max_ents))
302 return -EINVAL;
303 #endif
304
305 left = nents;
306 prv = NULL;
307 do {
308 unsigned int sg_size, alloc_size = left;
309
310 if (alloc_size > curr_max_ents) {
311 alloc_size = curr_max_ents;
312 sg_size = alloc_size - 1;
313 } else
314 sg_size = alloc_size;
315
316 left -= sg_size;
317
318 if (first_chunk) {
319 sg = first_chunk;
320 first_chunk = NULL;
321 } else {
322 sg = alloc_fn(alloc_size, gfp_mask);
323 }
324 if (unlikely(!sg)) {
325 /*
326 * Adjust entry count to reflect that the last
327 * entry of the previous table won't be used for
328 * linkage. Without this, sg_kfree() may get
329 * confused.
330 */
331 if (prv)
332 table->nents = ++table->orig_nents;
333
334 return -ENOMEM;
335 }
336
337 sg_init_table(sg, alloc_size);
338 table->nents = table->orig_nents += sg_size;
339
340 /*
341 * If this is the first mapping, assign the sg table header.
342 * If this is not the first mapping, chain previous part.
343 */
344 if (prv)
345 sg_chain(prv, prv_max_ents, sg);
346 else
347 table->sgl = sg;
348
349 /*
350 * If no more entries after this one, mark the end
351 */
352 if (!left)
353 sg_mark_end(&sg[sg_size - 1]);
354
355 prv = sg;
356 prv_max_ents = curr_max_ents;
357 curr_max_ents = max_ents;
358 } while (left);
359
360 return 0;
361 }
362 EXPORT_SYMBOL(__sg_alloc_table);
363
364 /**
365 * sg_alloc_table - Allocate and initialize an sg table
366 * @table: The sg table header to use
367 * @nents: Number of entries in sg list
368 * @gfp_mask: GFP allocation mask
369 *
370 * Description:
371 * Allocate and initialize an sg table. If @nents@ is larger than
372 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
373 *
374 **/
sg_alloc_table(struct sg_table * table,unsigned int nents,gfp_t gfp_mask)375 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
376 {
377 int ret;
378
379 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
380 NULL, 0, gfp_mask, sg_kmalloc);
381 if (unlikely(ret))
382 sg_free_table(table);
383 return ret;
384 }
385 EXPORT_SYMBOL(sg_alloc_table);
386
get_next_sg(struct sg_append_table * table,struct scatterlist * cur,unsigned long needed_sges,gfp_t gfp_mask)387 static struct scatterlist *get_next_sg(struct sg_append_table *table,
388 struct scatterlist *cur,
389 unsigned long needed_sges,
390 gfp_t gfp_mask)
391 {
392 struct scatterlist *new_sg, *next_sg;
393 unsigned int alloc_size;
394
395 if (cur) {
396 next_sg = sg_next(cur);
397 /* Check if last entry should be keeped for chainning */
398 if (!sg_is_last(next_sg) || needed_sges == 1)
399 return next_sg;
400 }
401
402 alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
403 new_sg = sg_kmalloc(alloc_size, gfp_mask);
404 if (!new_sg)
405 return ERR_PTR(-ENOMEM);
406 sg_init_table(new_sg, alloc_size);
407 if (cur) {
408 table->total_nents += alloc_size - 1;
409 __sg_chain(next_sg, new_sg);
410 } else {
411 table->sgt.sgl = new_sg;
412 table->total_nents = alloc_size;
413 }
414 return new_sg;
415 }
416
pages_are_mergeable(struct page * a,struct page * b)417 static bool pages_are_mergeable(struct page *a, struct page *b)
418 {
419 if (page_to_pfn(a) != page_to_pfn(b) + 1)
420 return false;
421 if (!zone_device_pages_have_same_pgmap(a, b))
422 return false;
423 return true;
424 }
425
426 /**
427 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
428 * table from an array of pages
429 * @sgt_append: The sg append table to use
430 * @pages: Pointer to an array of page pointers
431 * @n_pages: Number of pages in the pages array
432 * @offset: Offset from start of the first page to the start of a buffer
433 * @size: Number of valid bytes in the buffer (after offset)
434 * @max_segment: Maximum size of a scatterlist element in bytes
435 * @left_pages: Left pages caller have to set after this call
436 * @gfp_mask: GFP allocation mask
437 *
438 * Description:
439 * In the first call it allocate and initialize an sg table from a list of
440 * pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
441 * the pages are squashed into a single scatterlist entry up to the maximum
442 * size specified in @max_segment. A user may provide an offset at a start
443 * and a size of valid data in a buffer specified by the page array. The
444 * returned sg table is released by sg_free_append_table
445 *
446 * Returns:
447 * 0 on success, negative error on failure
448 *
449 * Notes:
450 * If this function returns non-0 (eg failure), the caller must call
451 * sg_free_append_table() to cleanup any leftover allocations.
452 *
453 * In the fist call, sgt_append must by initialized.
454 */
sg_alloc_append_table_from_pages(struct sg_append_table * sgt_append,struct page ** pages,unsigned int n_pages,unsigned int offset,unsigned long size,unsigned int max_segment,unsigned int left_pages,gfp_t gfp_mask)455 int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
456 struct page **pages, unsigned int n_pages, unsigned int offset,
457 unsigned long size, unsigned int max_segment,
458 unsigned int left_pages, gfp_t gfp_mask)
459 {
460 unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
461 unsigned int added_nents = 0;
462 struct scatterlist *s = sgt_append->prv;
463 struct page *last_pg;
464
465 /*
466 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
467 * otherwise it can overshoot.
468 */
469 max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
470 if (WARN_ON(max_segment < PAGE_SIZE))
471 return -EINVAL;
472
473 if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
474 return -EOPNOTSUPP;
475
476 if (sgt_append->prv) {
477 unsigned long next_pfn;
478
479 if (WARN_ON(offset))
480 return -EINVAL;
481
482 /* Merge contiguous pages into the last SG */
483 prv_len = sgt_append->prv->length;
484 next_pfn = (sg_phys(sgt_append->prv) + prv_len) / PAGE_SIZE;
485 if (page_to_pfn(pages[0]) == next_pfn) {
486 last_pg = pfn_to_page(next_pfn - 1);
487 while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
488 if (sgt_append->prv->length + PAGE_SIZE > max_segment)
489 break;
490 sgt_append->prv->length += PAGE_SIZE;
491 last_pg = pages[0];
492 pages++;
493 n_pages--;
494 }
495 if (!n_pages)
496 goto out;
497 }
498 }
499
500 /* compute number of contiguous chunks */
501 chunks = 1;
502 seg_len = 0;
503 for (i = 1; i < n_pages; i++) {
504 seg_len += PAGE_SIZE;
505 if (seg_len >= max_segment ||
506 !pages_are_mergeable(pages[i], pages[i - 1])) {
507 chunks++;
508 seg_len = 0;
509 }
510 }
511
512 /* merging chunks and putting them into the scatterlist */
513 cur_page = 0;
514 for (i = 0; i < chunks; i++) {
515 unsigned int j, chunk_size;
516
517 /* look for the end of the current chunk */
518 seg_len = 0;
519 for (j = cur_page + 1; j < n_pages; j++) {
520 seg_len += PAGE_SIZE;
521 if (seg_len >= max_segment ||
522 !pages_are_mergeable(pages[j], pages[j - 1]))
523 break;
524 }
525
526 /* Pass how many chunks might be left */
527 s = get_next_sg(sgt_append, s, chunks - i + left_pages,
528 gfp_mask);
529 if (IS_ERR(s)) {
530 /*
531 * Adjust entry length to be as before function was
532 * called.
533 */
534 if (sgt_append->prv)
535 sgt_append->prv->length = prv_len;
536 return PTR_ERR(s);
537 }
538 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
539 sg_set_page(s, pages[cur_page],
540 min_t(unsigned long, size, chunk_size), offset);
541 added_nents++;
542 size -= chunk_size;
543 offset = 0;
544 cur_page = j;
545 }
546 sgt_append->sgt.nents += added_nents;
547 sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
548 sgt_append->prv = s;
549 out:
550 if (!left_pages)
551 sg_mark_end(s);
552 return 0;
553 }
554 EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
555
556 /**
557 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
558 * an array of pages and given maximum
559 * segment.
560 * @sgt: The sg table header to use
561 * @pages: Pointer to an array of page pointers
562 * @n_pages: Number of pages in the pages array
563 * @offset: Offset from start of the first page to the start of a buffer
564 * @size: Number of valid bytes in the buffer (after offset)
565 * @max_segment: Maximum size of a scatterlist element in bytes
566 * @gfp_mask: GFP allocation mask
567 *
568 * Description:
569 * Allocate and initialize an sg table from a list of pages. Contiguous
570 * ranges of the pages are squashed into a single scatterlist node up to the
571 * maximum size specified in @max_segment. A user may provide an offset at a
572 * start and a size of valid data in a buffer specified by the page array.
573 *
574 * The returned sg table is released by sg_free_table.
575 *
576 * Returns:
577 * 0 on success, negative error on failure
578 */
sg_alloc_table_from_pages_segment(struct sg_table * sgt,struct page ** pages,unsigned int n_pages,unsigned int offset,unsigned long size,unsigned int max_segment,gfp_t gfp_mask)579 int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
580 unsigned int n_pages, unsigned int offset,
581 unsigned long size, unsigned int max_segment,
582 gfp_t gfp_mask)
583 {
584 struct sg_append_table append = {};
585 int err;
586
587 err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
588 size, max_segment, 0, gfp_mask);
589 if (err) {
590 sg_free_append_table(&append);
591 return err;
592 }
593 memcpy(sgt, &append.sgt, sizeof(*sgt));
594 WARN_ON(append.total_nents != sgt->orig_nents);
595 return 0;
596 }
597 EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
598
599 #ifdef CONFIG_SGL_ALLOC
600
601 /**
602 * sgl_alloc_order - allocate a scatterlist and its pages
603 * @length: Length in bytes of the scatterlist. Must be at least one
604 * @order: Second argument for alloc_pages()
605 * @chainable: Whether or not to allocate an extra element in the scatterlist
606 * for scatterlist chaining purposes
607 * @gfp: Memory allocation flags
608 * @nent_p: [out] Number of entries in the scatterlist that have pages
609 *
610 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
611 */
sgl_alloc_order(unsigned long long length,unsigned int order,bool chainable,gfp_t gfp,unsigned int * nent_p)612 struct scatterlist *sgl_alloc_order(unsigned long long length,
613 unsigned int order, bool chainable,
614 gfp_t gfp, unsigned int *nent_p)
615 {
616 struct scatterlist *sgl, *sg;
617 struct page *page;
618 unsigned int nent, nalloc;
619 u32 elem_len;
620
621 nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
622 /* Check for integer overflow */
623 if (length > (nent << (PAGE_SHIFT + order)))
624 return NULL;
625 nalloc = nent;
626 if (chainable) {
627 /* Check for integer overflow */
628 if (nalloc + 1 < nalloc)
629 return NULL;
630 nalloc++;
631 }
632 sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
633 gfp & ~GFP_DMA);
634 if (!sgl)
635 return NULL;
636
637 sg_init_table(sgl, nalloc);
638 sg = sgl;
639 while (length) {
640 elem_len = min_t(u64, length, PAGE_SIZE << order);
641 page = alloc_pages(gfp, order);
642 if (!page) {
643 sgl_free_order(sgl, order);
644 return NULL;
645 }
646
647 sg_set_page(sg, page, elem_len, 0);
648 length -= elem_len;
649 sg = sg_next(sg);
650 }
651 WARN_ONCE(length, "length = %lld\n", length);
652 if (nent_p)
653 *nent_p = nent;
654 return sgl;
655 }
656 EXPORT_SYMBOL(sgl_alloc_order);
657
658 /**
659 * sgl_alloc - allocate a scatterlist and its pages
660 * @length: Length in bytes of the scatterlist
661 * @gfp: Memory allocation flags
662 * @nent_p: [out] Number of entries in the scatterlist
663 *
664 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
665 */
sgl_alloc(unsigned long long length,gfp_t gfp,unsigned int * nent_p)666 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
667 unsigned int *nent_p)
668 {
669 return sgl_alloc_order(length, 0, false, gfp, nent_p);
670 }
671 EXPORT_SYMBOL(sgl_alloc);
672
673 /**
674 * sgl_free_n_order - free a scatterlist and its pages
675 * @sgl: Scatterlist with one or more elements
676 * @nents: Maximum number of elements to free
677 * @order: Second argument for __free_pages()
678 *
679 * Notes:
680 * - If several scatterlists have been chained and each chain element is
681 * freed separately then it's essential to set nents correctly to avoid that a
682 * page would get freed twice.
683 * - All pages in a chained scatterlist can be freed at once by setting @nents
684 * to a high number.
685 */
sgl_free_n_order(struct scatterlist * sgl,int nents,int order)686 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
687 {
688 struct scatterlist *sg;
689 struct page *page;
690 int i;
691
692 for_each_sg(sgl, sg, nents, i) {
693 if (!sg)
694 break;
695 page = sg_page(sg);
696 if (page)
697 __free_pages(page, order);
698 }
699 kfree(sgl);
700 }
701 EXPORT_SYMBOL(sgl_free_n_order);
702
703 /**
704 * sgl_free_order - free a scatterlist and its pages
705 * @sgl: Scatterlist with one or more elements
706 * @order: Second argument for __free_pages()
707 */
sgl_free_order(struct scatterlist * sgl,int order)708 void sgl_free_order(struct scatterlist *sgl, int order)
709 {
710 sgl_free_n_order(sgl, INT_MAX, order);
711 }
712 EXPORT_SYMBOL(sgl_free_order);
713
714 /**
715 * sgl_free - free a scatterlist and its pages
716 * @sgl: Scatterlist with one or more elements
717 */
sgl_free(struct scatterlist * sgl)718 void sgl_free(struct scatterlist *sgl)
719 {
720 sgl_free_order(sgl, 0);
721 }
722 EXPORT_SYMBOL(sgl_free);
723
724 #endif /* CONFIG_SGL_ALLOC */
725
__sg_page_iter_start(struct sg_page_iter * piter,struct scatterlist * sglist,unsigned int nents,unsigned long pgoffset)726 void __sg_page_iter_start(struct sg_page_iter *piter,
727 struct scatterlist *sglist, unsigned int nents,
728 unsigned long pgoffset)
729 {
730 piter->__pg_advance = 0;
731 piter->__nents = nents;
732
733 piter->sg = sglist;
734 piter->sg_pgoffset = pgoffset;
735 }
736 EXPORT_SYMBOL(__sg_page_iter_start);
737
sg_page_count(struct scatterlist * sg)738 static int sg_page_count(struct scatterlist *sg)
739 {
740 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
741 }
742
__sg_page_iter_next(struct sg_page_iter * piter)743 bool __sg_page_iter_next(struct sg_page_iter *piter)
744 {
745 if (!piter->__nents || !piter->sg)
746 return false;
747
748 piter->sg_pgoffset += piter->__pg_advance;
749 piter->__pg_advance = 1;
750
751 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
752 piter->sg_pgoffset -= sg_page_count(piter->sg);
753 piter->sg = sg_next(piter->sg);
754 if (!--piter->__nents || !piter->sg)
755 return false;
756 }
757
758 return true;
759 }
760 EXPORT_SYMBOL(__sg_page_iter_next);
761
sg_dma_page_count(struct scatterlist * sg)762 static int sg_dma_page_count(struct scatterlist *sg)
763 {
764 return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
765 }
766
__sg_page_iter_dma_next(struct sg_dma_page_iter * dma_iter)767 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
768 {
769 struct sg_page_iter *piter = &dma_iter->base;
770
771 if (!piter->__nents || !piter->sg)
772 return false;
773
774 piter->sg_pgoffset += piter->__pg_advance;
775 piter->__pg_advance = 1;
776
777 while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
778 piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
779 piter->sg = sg_next(piter->sg);
780 if (!--piter->__nents || !piter->sg)
781 return false;
782 }
783
784 return true;
785 }
786 EXPORT_SYMBOL(__sg_page_iter_dma_next);
787
788 /**
789 * sg_miter_start - start mapping iteration over a sg list
790 * @miter: sg mapping iter to be started
791 * @sgl: sg list to iterate over
792 * @nents: number of sg entries
793 * @flags: sg iterator flags
794 *
795 * Description:
796 * Starts mapping iterator @miter.
797 *
798 * Context:
799 * Don't care.
800 */
sg_miter_start(struct sg_mapping_iter * miter,struct scatterlist * sgl,unsigned int nents,unsigned int flags)801 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
802 unsigned int nents, unsigned int flags)
803 {
804 memset(miter, 0, sizeof(struct sg_mapping_iter));
805
806 __sg_page_iter_start(&miter->piter, sgl, nents, 0);
807 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
808 miter->__flags = flags;
809 }
810 EXPORT_SYMBOL(sg_miter_start);
811
sg_miter_get_next_page(struct sg_mapping_iter * miter)812 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
813 {
814 if (!miter->__remaining) {
815 struct scatterlist *sg;
816
817 if (!__sg_page_iter_next(&miter->piter))
818 return false;
819
820 sg = miter->piter.sg;
821
822 miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
823 miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
824 miter->__offset &= PAGE_SIZE - 1;
825 miter->__remaining = sg->offset + sg->length -
826 (miter->piter.sg_pgoffset << PAGE_SHIFT) -
827 miter->__offset;
828 miter->__remaining = min_t(unsigned long, miter->__remaining,
829 PAGE_SIZE - miter->__offset);
830 }
831
832 return true;
833 }
834
835 /**
836 * sg_miter_skip - reposition mapping iterator
837 * @miter: sg mapping iter to be skipped
838 * @offset: number of bytes to plus the current location
839 *
840 * Description:
841 * Sets the offset of @miter to its current location plus @offset bytes.
842 * If mapping iterator @miter has been proceeded by sg_miter_next(), this
843 * stops @miter.
844 *
845 * Context:
846 * Don't care.
847 *
848 * Returns:
849 * true if @miter contains the valid mapping. false if end of sg
850 * list is reached.
851 */
sg_miter_skip(struct sg_mapping_iter * miter,off_t offset)852 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
853 {
854 sg_miter_stop(miter);
855
856 while (offset) {
857 off_t consumed;
858
859 if (!sg_miter_get_next_page(miter))
860 return false;
861
862 consumed = min_t(off_t, offset, miter->__remaining);
863 miter->__offset += consumed;
864 miter->__remaining -= consumed;
865 offset -= consumed;
866 }
867
868 return true;
869 }
870 EXPORT_SYMBOL(sg_miter_skip);
871
872 /**
873 * sg_miter_next - proceed mapping iterator to the next mapping
874 * @miter: sg mapping iter to proceed
875 *
876 * Description:
877 * Proceeds @miter to the next mapping. @miter should have been started
878 * using sg_miter_start(). On successful return, @miter->page,
879 * @miter->addr and @miter->length point to the current mapping.
880 *
881 * Context:
882 * May sleep if !SG_MITER_ATOMIC && !SG_MITER_LOCAL.
883 *
884 * Returns:
885 * true if @miter contains the next mapping. false if end of sg
886 * list is reached.
887 */
sg_miter_next(struct sg_mapping_iter * miter)888 bool sg_miter_next(struct sg_mapping_iter *miter)
889 {
890 sg_miter_stop(miter);
891
892 /*
893 * Get to the next page if necessary.
894 * __remaining, __offset is adjusted by sg_miter_stop
895 */
896 if (!sg_miter_get_next_page(miter))
897 return false;
898
899 miter->page = sg_page_iter_page(&miter->piter);
900 miter->consumed = miter->length = miter->__remaining;
901
902 if (miter->__flags & SG_MITER_ATOMIC)
903 miter->addr = kmap_atomic(miter->page) + miter->__offset;
904 else if (miter->__flags & SG_MITER_LOCAL)
905 miter->addr = kmap_local_page(miter->page) + miter->__offset;
906 else
907 miter->addr = kmap(miter->page) + miter->__offset;
908
909 return true;
910 }
911 EXPORT_SYMBOL(sg_miter_next);
912
913 /**
914 * sg_miter_stop - stop mapping iteration
915 * @miter: sg mapping iter to be stopped
916 *
917 * Description:
918 * Stops mapping iterator @miter. @miter should have been started
919 * using sg_miter_start(). A stopped iteration can be resumed by
920 * calling sg_miter_next() on it. This is useful when resources (kmap)
921 * need to be released during iteration.
922 *
923 * Context:
924 * Don't care otherwise.
925 */
sg_miter_stop(struct sg_mapping_iter * miter)926 void sg_miter_stop(struct sg_mapping_iter *miter)
927 {
928 WARN_ON(miter->consumed > miter->length);
929
930 /* drop resources from the last iteration */
931 if (miter->addr) {
932 miter->__offset += miter->consumed;
933 miter->__remaining -= miter->consumed;
934
935 if (miter->__flags & SG_MITER_TO_SG)
936 flush_dcache_page(miter->page);
937
938 if (miter->__flags & SG_MITER_ATOMIC) {
939 WARN_ON_ONCE(!pagefault_disabled());
940 kunmap_atomic(miter->addr);
941 } else if (miter->__flags & SG_MITER_LOCAL)
942 kunmap_local(miter->addr);
943 else
944 kunmap(miter->page);
945
946 miter->page = NULL;
947 miter->addr = NULL;
948 miter->length = 0;
949 miter->consumed = 0;
950 }
951 }
952 EXPORT_SYMBOL(sg_miter_stop);
953
954 /**
955 * sg_copy_buffer - Copy data between a linear buffer and an SG list
956 * @sgl: The SG list
957 * @nents: Number of SG entries
958 * @buf: Where to copy from
959 * @buflen: The number of bytes to copy
960 * @skip: Number of bytes to skip before copying
961 * @to_buffer: transfer direction (true == from an sg list to a
962 * buffer, false == from a buffer to an sg list)
963 *
964 * Returns the number of copied bytes.
965 *
966 **/
sg_copy_buffer(struct scatterlist * sgl,unsigned int nents,void * buf,size_t buflen,off_t skip,bool to_buffer)967 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
968 size_t buflen, off_t skip, bool to_buffer)
969 {
970 unsigned int offset = 0;
971 struct sg_mapping_iter miter;
972 unsigned int sg_flags = SG_MITER_LOCAL;
973
974 if (to_buffer)
975 sg_flags |= SG_MITER_FROM_SG;
976 else
977 sg_flags |= SG_MITER_TO_SG;
978
979 sg_miter_start(&miter, sgl, nents, sg_flags);
980
981 if (!sg_miter_skip(&miter, skip))
982 return 0;
983
984 while ((offset < buflen) && sg_miter_next(&miter)) {
985 unsigned int len;
986
987 len = min(miter.length, buflen - offset);
988
989 if (to_buffer)
990 memcpy(buf + offset, miter.addr, len);
991 else
992 memcpy(miter.addr, buf + offset, len);
993
994 offset += len;
995 }
996
997 sg_miter_stop(&miter);
998
999 return offset;
1000 }
1001 EXPORT_SYMBOL(sg_copy_buffer);
1002
1003 /**
1004 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
1005 * @sgl: The SG list
1006 * @nents: Number of SG entries
1007 * @buf: Where to copy from
1008 * @buflen: The number of bytes to copy
1009 *
1010 * Returns the number of copied bytes.
1011 *
1012 **/
sg_copy_from_buffer(struct scatterlist * sgl,unsigned int nents,const void * buf,size_t buflen)1013 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1014 const void *buf, size_t buflen)
1015 {
1016 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1017 }
1018 EXPORT_SYMBOL(sg_copy_from_buffer);
1019
1020 /**
1021 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1022 * @sgl: The SG list
1023 * @nents: Number of SG entries
1024 * @buf: Where to copy to
1025 * @buflen: The number of bytes to copy
1026 *
1027 * Returns the number of copied bytes.
1028 *
1029 **/
sg_copy_to_buffer(struct scatterlist * sgl,unsigned int nents,void * buf,size_t buflen)1030 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1031 void *buf, size_t buflen)
1032 {
1033 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1034 }
1035 EXPORT_SYMBOL(sg_copy_to_buffer);
1036
1037 /**
1038 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1039 * @sgl: The SG list
1040 * @nents: Number of SG entries
1041 * @buf: Where to copy from
1042 * @buflen: The number of bytes to copy
1043 * @skip: Number of bytes to skip before copying
1044 *
1045 * Returns the number of copied bytes.
1046 *
1047 **/
sg_pcopy_from_buffer(struct scatterlist * sgl,unsigned int nents,const void * buf,size_t buflen,off_t skip)1048 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1049 const void *buf, size_t buflen, off_t skip)
1050 {
1051 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1052 }
1053 EXPORT_SYMBOL(sg_pcopy_from_buffer);
1054
1055 /**
1056 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1057 * @sgl: The SG list
1058 * @nents: Number of SG entries
1059 * @buf: Where to copy to
1060 * @buflen: The number of bytes to copy
1061 * @skip: Number of bytes to skip before copying
1062 *
1063 * Returns the number of copied bytes.
1064 *
1065 **/
sg_pcopy_to_buffer(struct scatterlist * sgl,unsigned int nents,void * buf,size_t buflen,off_t skip)1066 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1067 void *buf, size_t buflen, off_t skip)
1068 {
1069 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1070 }
1071 EXPORT_SYMBOL(sg_pcopy_to_buffer);
1072
1073 /**
1074 * sg_zero_buffer - Zero-out a part of a SG list
1075 * @sgl: The SG list
1076 * @nents: Number of SG entries
1077 * @buflen: The number of bytes to zero out
1078 * @skip: Number of bytes to skip before zeroing
1079 *
1080 * Returns the number of bytes zeroed.
1081 **/
sg_zero_buffer(struct scatterlist * sgl,unsigned int nents,size_t buflen,off_t skip)1082 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1083 size_t buflen, off_t skip)
1084 {
1085 unsigned int offset = 0;
1086 struct sg_mapping_iter miter;
1087 unsigned int sg_flags = SG_MITER_LOCAL | SG_MITER_TO_SG;
1088
1089 sg_miter_start(&miter, sgl, nents, sg_flags);
1090
1091 if (!sg_miter_skip(&miter, skip))
1092 return false;
1093
1094 while (offset < buflen && sg_miter_next(&miter)) {
1095 unsigned int len;
1096
1097 len = min(miter.length, buflen - offset);
1098 memset(miter.addr, 0, len);
1099
1100 offset += len;
1101 }
1102
1103 sg_miter_stop(&miter);
1104 return offset;
1105 }
1106 EXPORT_SYMBOL(sg_zero_buffer);
1107
1108 /*
1109 * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class
1110 * iterators, and add them to the scatterlist.
1111 */
extract_user_to_sg(struct iov_iter * iter,ssize_t maxsize,struct sg_table * sgtable,unsigned int sg_max,iov_iter_extraction_t extraction_flags)1112 static ssize_t extract_user_to_sg(struct iov_iter *iter,
1113 ssize_t maxsize,
1114 struct sg_table *sgtable,
1115 unsigned int sg_max,
1116 iov_iter_extraction_t extraction_flags)
1117 {
1118 struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1119 struct page **pages;
1120 unsigned int npages;
1121 ssize_t ret = 0, res;
1122 size_t len, off;
1123
1124 /* We decant the page list into the tail of the scatterlist */
1125 pages = (void *)sgtable->sgl +
1126 array_size(sg_max, sizeof(struct scatterlist));
1127 pages -= sg_max;
1128
1129 do {
1130 res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max,
1131 extraction_flags, &off);
1132 if (res <= 0)
1133 goto failed;
1134
1135 len = res;
1136 maxsize -= len;
1137 ret += len;
1138 npages = DIV_ROUND_UP(off + len, PAGE_SIZE);
1139 sg_max -= npages;
1140
1141 for (; npages > 0; npages--) {
1142 struct page *page = *pages;
1143 size_t seg = min_t(size_t, PAGE_SIZE - off, len);
1144
1145 *pages++ = NULL;
1146 sg_set_page(sg, page, seg, off);
1147 sgtable->nents++;
1148 sg++;
1149 len -= seg;
1150 off = 0;
1151 }
1152 } while (maxsize > 0 && sg_max > 0);
1153
1154 return ret;
1155
1156 failed:
1157 while (sgtable->nents > sgtable->orig_nents)
1158 unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents]));
1159 return res;
1160 }
1161
1162 /*
1163 * Extract up to sg_max pages from a BVEC-type iterator and add them to the
1164 * scatterlist. The pages are not pinned.
1165 */
extract_bvec_to_sg(struct iov_iter * iter,ssize_t maxsize,struct sg_table * sgtable,unsigned int sg_max,iov_iter_extraction_t extraction_flags)1166 static ssize_t extract_bvec_to_sg(struct iov_iter *iter,
1167 ssize_t maxsize,
1168 struct sg_table *sgtable,
1169 unsigned int sg_max,
1170 iov_iter_extraction_t extraction_flags)
1171 {
1172 const struct bio_vec *bv = iter->bvec;
1173 struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1174 unsigned long start = iter->iov_offset;
1175 unsigned int i;
1176 ssize_t ret = 0;
1177
1178 for (i = 0; i < iter->nr_segs; i++) {
1179 size_t off, len;
1180
1181 len = bv[i].bv_len;
1182 if (start >= len) {
1183 start -= len;
1184 continue;
1185 }
1186
1187 len = min_t(size_t, maxsize, len - start);
1188 off = bv[i].bv_offset + start;
1189
1190 sg_set_page(sg, bv[i].bv_page, len, off);
1191 sgtable->nents++;
1192 sg++;
1193 sg_max--;
1194
1195 ret += len;
1196 maxsize -= len;
1197 if (maxsize <= 0 || sg_max == 0)
1198 break;
1199 start = 0;
1200 }
1201
1202 if (ret > 0)
1203 iov_iter_advance(iter, ret);
1204 return ret;
1205 }
1206
1207 /*
1208 * Extract up to sg_max pages from a KVEC-type iterator and add them to the
1209 * scatterlist. This can deal with vmalloc'd buffers as well as kmalloc'd or
1210 * static buffers. The pages are not pinned.
1211 */
extract_kvec_to_sg(struct iov_iter * iter,ssize_t maxsize,struct sg_table * sgtable,unsigned int sg_max,iov_iter_extraction_t extraction_flags)1212 static ssize_t extract_kvec_to_sg(struct iov_iter *iter,
1213 ssize_t maxsize,
1214 struct sg_table *sgtable,
1215 unsigned int sg_max,
1216 iov_iter_extraction_t extraction_flags)
1217 {
1218 const struct kvec *kv = iter->kvec;
1219 struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1220 unsigned long start = iter->iov_offset;
1221 unsigned int i;
1222 ssize_t ret = 0;
1223
1224 for (i = 0; i < iter->nr_segs; i++) {
1225 struct page *page;
1226 unsigned long kaddr;
1227 size_t off, len, seg;
1228
1229 len = kv[i].iov_len;
1230 if (start >= len) {
1231 start -= len;
1232 continue;
1233 }
1234
1235 kaddr = (unsigned long)kv[i].iov_base + start;
1236 off = kaddr & ~PAGE_MASK;
1237 len = min_t(size_t, maxsize, len - start);
1238 kaddr &= PAGE_MASK;
1239
1240 maxsize -= len;
1241 ret += len;
1242 do {
1243 seg = min_t(size_t, len, PAGE_SIZE - off);
1244 if (is_vmalloc_or_module_addr((void *)kaddr))
1245 page = vmalloc_to_page((void *)kaddr);
1246 else
1247 page = virt_to_page((void *)kaddr);
1248
1249 sg_set_page(sg, page, len, off);
1250 sgtable->nents++;
1251 sg++;
1252 sg_max--;
1253
1254 len -= seg;
1255 kaddr += PAGE_SIZE;
1256 off = 0;
1257 } while (len > 0 && sg_max > 0);
1258
1259 if (maxsize <= 0 || sg_max == 0)
1260 break;
1261 start = 0;
1262 }
1263
1264 if (ret > 0)
1265 iov_iter_advance(iter, ret);
1266 return ret;
1267 }
1268
1269 /*
1270 * Extract up to sg_max folios from an FOLIOQ-type iterator and add them to
1271 * the scatterlist. The pages are not pinned.
1272 */
extract_folioq_to_sg(struct iov_iter * iter,ssize_t maxsize,struct sg_table * sgtable,unsigned int sg_max,iov_iter_extraction_t extraction_flags)1273 static ssize_t extract_folioq_to_sg(struct iov_iter *iter,
1274 ssize_t maxsize,
1275 struct sg_table *sgtable,
1276 unsigned int sg_max,
1277 iov_iter_extraction_t extraction_flags)
1278 {
1279 const struct folio_queue *folioq = iter->folioq;
1280 struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1281 unsigned int slot = iter->folioq_slot;
1282 ssize_t ret = 0;
1283 size_t offset = iter->iov_offset;
1284
1285 BUG_ON(!folioq);
1286
1287 if (slot >= folioq_nr_slots(folioq)) {
1288 folioq = folioq->next;
1289 if (WARN_ON_ONCE(!folioq))
1290 return 0;
1291 slot = 0;
1292 }
1293
1294 do {
1295 struct folio *folio = folioq_folio(folioq, slot);
1296 size_t fsize = folioq_folio_size(folioq, slot);
1297
1298 if (offset < fsize) {
1299 size_t part = umin(maxsize - ret, fsize - offset);
1300
1301 sg_set_page(sg, folio_page(folio, 0), part, offset);
1302 sgtable->nents++;
1303 sg++;
1304 sg_max--;
1305 offset += part;
1306 ret += part;
1307 }
1308
1309 if (offset >= fsize) {
1310 offset = 0;
1311 slot++;
1312 if (slot >= folioq_nr_slots(folioq)) {
1313 if (!folioq->next) {
1314 WARN_ON_ONCE(ret < iter->count);
1315 break;
1316 }
1317 folioq = folioq->next;
1318 slot = 0;
1319 }
1320 }
1321 } while (sg_max > 0 && ret < maxsize);
1322
1323 iter->folioq = folioq;
1324 iter->folioq_slot = slot;
1325 iter->iov_offset = offset;
1326 iter->count -= ret;
1327 return ret;
1328 }
1329
1330 /*
1331 * Extract up to sg_max folios from an XARRAY-type iterator and add them to
1332 * the scatterlist. The pages are not pinned.
1333 */
extract_xarray_to_sg(struct iov_iter * iter,ssize_t maxsize,struct sg_table * sgtable,unsigned int sg_max,iov_iter_extraction_t extraction_flags)1334 static ssize_t extract_xarray_to_sg(struct iov_iter *iter,
1335 ssize_t maxsize,
1336 struct sg_table *sgtable,
1337 unsigned int sg_max,
1338 iov_iter_extraction_t extraction_flags)
1339 {
1340 struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1341 struct xarray *xa = iter->xarray;
1342 struct folio *folio;
1343 loff_t start = iter->xarray_start + iter->iov_offset;
1344 pgoff_t index = start / PAGE_SIZE;
1345 ssize_t ret = 0;
1346 size_t offset, len;
1347 XA_STATE(xas, xa, index);
1348
1349 rcu_read_lock();
1350
1351 xas_for_each(&xas, folio, ULONG_MAX) {
1352 if (xas_retry(&xas, folio))
1353 continue;
1354 if (WARN_ON(xa_is_value(folio)))
1355 break;
1356 if (WARN_ON(folio_test_hugetlb(folio)))
1357 break;
1358
1359 offset = offset_in_folio(folio, start);
1360 len = min_t(size_t, maxsize, folio_size(folio) - offset);
1361
1362 sg_set_page(sg, folio_page(folio, 0), len, offset);
1363 sgtable->nents++;
1364 sg++;
1365 sg_max--;
1366
1367 maxsize -= len;
1368 ret += len;
1369 if (maxsize <= 0 || sg_max == 0)
1370 break;
1371 }
1372
1373 rcu_read_unlock();
1374 if (ret > 0)
1375 iov_iter_advance(iter, ret);
1376 return ret;
1377 }
1378
1379 /**
1380 * extract_iter_to_sg - Extract pages from an iterator and add to an sglist
1381 * @iter: The iterator to extract from
1382 * @maxsize: The amount of iterator to copy
1383 * @sgtable: The scatterlist table to fill in
1384 * @sg_max: Maximum number of elements in @sgtable that may be filled
1385 * @extraction_flags: Flags to qualify the request
1386 *
1387 * Extract the page fragments from the given amount of the source iterator and
1388 * add them to a scatterlist that refers to all of those bits, to a maximum
1389 * addition of @sg_max elements.
1390 *
1391 * The pages referred to by UBUF- and IOVEC-type iterators are extracted and
1392 * pinned; BVEC-, KVEC-, FOLIOQ- and XARRAY-type are extracted but aren't
1393 * pinned; DISCARD-type is not supported.
1394 *
1395 * No end mark is placed on the scatterlist; that's left to the caller.
1396 *
1397 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1398 * be allowed on the pages extracted.
1399 *
1400 * If successful, @sgtable->nents is updated to include the number of elements
1401 * added and the number of bytes added is returned. @sgtable->orig_nents is
1402 * left unaltered.
1403 *
1404 * The iov_iter_extract_mode() function should be used to query how cleanup
1405 * should be performed.
1406 */
extract_iter_to_sg(struct iov_iter * iter,size_t maxsize,struct sg_table * sgtable,unsigned int sg_max,iov_iter_extraction_t extraction_flags)1407 ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize,
1408 struct sg_table *sgtable, unsigned int sg_max,
1409 iov_iter_extraction_t extraction_flags)
1410 {
1411 if (maxsize == 0)
1412 return 0;
1413
1414 switch (iov_iter_type(iter)) {
1415 case ITER_UBUF:
1416 case ITER_IOVEC:
1417 return extract_user_to_sg(iter, maxsize, sgtable, sg_max,
1418 extraction_flags);
1419 case ITER_BVEC:
1420 return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max,
1421 extraction_flags);
1422 case ITER_KVEC:
1423 return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max,
1424 extraction_flags);
1425 case ITER_FOLIOQ:
1426 return extract_folioq_to_sg(iter, maxsize, sgtable, sg_max,
1427 extraction_flags);
1428 case ITER_XARRAY:
1429 return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max,
1430 extraction_flags);
1431 default:
1432 pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter));
1433 WARN_ON_ONCE(1);
1434 return -EIO;
1435 }
1436 }
1437 EXPORT_SYMBOL_GPL(extract_iter_to_sg);
1438