1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 /*
68  * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69  * pointers get hashed to arbitrary values.
70  *
71  * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72  * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73  *
74  * Userland doesn't know about %px so also use %p there.
75  */
76 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77 #define PTR_FMT "%px"
78 #else
79 #define PTR_FMT "%p"
80 #endif
81 
82 #define MA_ROOT_PARENT 1
83 
84 /*
85  * Maple state flags
86  * * MA_STATE_BULK		- Bulk insert mode
87  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
88  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
89  */
90 #define MA_STATE_BULK		1
91 #define MA_STATE_REBALANCE	2
92 #define MA_STATE_PREALLOC	4
93 
94 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
97 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
98 static struct kmem_cache *maple_node_cache;
99 
100 #ifdef CONFIG_DEBUG_MAPLE_TREE
101 static const unsigned long mt_max[] = {
102 	[maple_dense]		= MAPLE_NODE_SLOTS,
103 	[maple_leaf_64]		= ULONG_MAX,
104 	[maple_range_64]	= ULONG_MAX,
105 	[maple_arange_64]	= ULONG_MAX,
106 };
107 #define mt_node_max(x) mt_max[mte_node_type(x)]
108 #endif
109 
110 static const unsigned char mt_slots[] = {
111 	[maple_dense]		= MAPLE_NODE_SLOTS,
112 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
113 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
114 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
115 };
116 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
117 
118 static const unsigned char mt_pivots[] = {
119 	[maple_dense]		= 0,
120 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
121 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
122 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
123 };
124 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125 
126 static const unsigned char mt_min_slots[] = {
127 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
128 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
129 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
130 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
131 };
132 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133 
134 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
135 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
136 
137 struct maple_big_node {
138 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 	union {
140 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 		struct {
142 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 		};
145 	};
146 	unsigned char b_end;
147 	enum maple_type type;
148 };
149 
150 /*
151  * The maple_subtree_state is used to build a tree to replace a segment of an
152  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
153  * dead node and restart on updates.
154  */
155 struct maple_subtree_state {
156 	struct ma_state *orig_l;	/* Original left side of subtree */
157 	struct ma_state *orig_r;	/* Original right side of subtree */
158 	struct ma_state *l;		/* New left side of subtree */
159 	struct ma_state *m;		/* New middle of subtree (rare) */
160 	struct ma_state *r;		/* New right side of subtree */
161 	struct ma_topiary *free;	/* nodes to be freed */
162 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
163 	struct maple_big_node *bn;
164 };
165 
166 #ifdef CONFIG_KASAN_STACK
167 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168 #define noinline_for_kasan noinline_for_stack
169 #else
170 #define noinline_for_kasan inline
171 #endif
172 
173 /* Functions */
mt_alloc_one(gfp_t gfp)174 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175 {
176 	return kmem_cache_alloc(maple_node_cache, gfp);
177 }
178 
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)179 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180 {
181 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182 }
183 
mt_free_one(struct maple_node * node)184 static inline void mt_free_one(struct maple_node *node)
185 {
186 	kmem_cache_free(maple_node_cache, node);
187 }
188 
mt_free_bulk(size_t size,void __rcu ** nodes)189 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190 {
191 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192 }
193 
mt_free_rcu(struct rcu_head * head)194 static void mt_free_rcu(struct rcu_head *head)
195 {
196 	struct maple_node *node = container_of(head, struct maple_node, rcu);
197 
198 	kmem_cache_free(maple_node_cache, node);
199 }
200 
201 /*
202  * ma_free_rcu() - Use rcu callback to free a maple node
203  * @node: The node to free
204  *
205  * The maple tree uses the parent pointer to indicate this node is no longer in
206  * use and will be freed.
207  */
ma_free_rcu(struct maple_node * node)208 static void ma_free_rcu(struct maple_node *node)
209 {
210 	WARN_ON(node->parent != ma_parent_ptr(node));
211 	call_rcu(&node->rcu, mt_free_rcu);
212 }
213 
mas_set_height(struct ma_state * mas)214 static void mas_set_height(struct ma_state *mas)
215 {
216 	unsigned int new_flags = mas->tree->ma_flags;
217 
218 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
220 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
221 	mas->tree->ma_flags = new_flags;
222 }
223 
mas_mt_height(struct ma_state * mas)224 static unsigned int mas_mt_height(struct ma_state *mas)
225 {
226 	return mt_height(mas->tree);
227 }
228 
mt_attr(struct maple_tree * mt)229 static inline unsigned int mt_attr(struct maple_tree *mt)
230 {
231 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232 }
233 
mte_node_type(const struct maple_enode * entry)234 static __always_inline enum maple_type mte_node_type(
235 		const struct maple_enode *entry)
236 {
237 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 		MAPLE_NODE_TYPE_MASK;
239 }
240 
ma_is_dense(const enum maple_type type)241 static __always_inline bool ma_is_dense(const enum maple_type type)
242 {
243 	return type < maple_leaf_64;
244 }
245 
ma_is_leaf(const enum maple_type type)246 static __always_inline bool ma_is_leaf(const enum maple_type type)
247 {
248 	return type < maple_range_64;
249 }
250 
mte_is_leaf(const struct maple_enode * entry)251 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252 {
253 	return ma_is_leaf(mte_node_type(entry));
254 }
255 
256 /*
257  * We also reserve values with the bottom two bits set to '10' which are
258  * below 4096
259  */
mt_is_reserved(const void * entry)260 static __always_inline bool mt_is_reserved(const void *entry)
261 {
262 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 		xa_is_internal(entry);
264 }
265 
mas_set_err(struct ma_state * mas,long err)266 static __always_inline void mas_set_err(struct ma_state *mas, long err)
267 {
268 	mas->node = MA_ERROR(err);
269 	mas->status = ma_error;
270 }
271 
mas_is_ptr(const struct ma_state * mas)272 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273 {
274 	return mas->status == ma_root;
275 }
276 
mas_is_start(const struct ma_state * mas)277 static __always_inline bool mas_is_start(const struct ma_state *mas)
278 {
279 	return mas->status == ma_start;
280 }
281 
mas_is_none(const struct ma_state * mas)282 static __always_inline bool mas_is_none(const struct ma_state *mas)
283 {
284 	return mas->status == ma_none;
285 }
286 
mas_is_paused(const struct ma_state * mas)287 static __always_inline bool mas_is_paused(const struct ma_state *mas)
288 {
289 	return mas->status == ma_pause;
290 }
291 
mas_is_overflow(struct ma_state * mas)292 static __always_inline bool mas_is_overflow(struct ma_state *mas)
293 {
294 	return mas->status == ma_overflow;
295 }
296 
mas_is_underflow(struct ma_state * mas)297 static inline bool mas_is_underflow(struct ma_state *mas)
298 {
299 	return mas->status == ma_underflow;
300 }
301 
mte_to_node(const struct maple_enode * entry)302 static __always_inline struct maple_node *mte_to_node(
303 		const struct maple_enode *entry)
304 {
305 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306 }
307 
308 /*
309  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310  * @entry: The maple encoded node
311  *
312  * Return: a maple topiary pointer
313  */
mte_to_mat(const struct maple_enode * entry)314 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315 {
316 	return (struct maple_topiary *)
317 		((unsigned long)entry & ~MAPLE_NODE_MASK);
318 }
319 
320 /*
321  * mas_mn() - Get the maple state node.
322  * @mas: The maple state
323  *
324  * Return: the maple node (not encoded - bare pointer).
325  */
mas_mn(const struct ma_state * mas)326 static inline struct maple_node *mas_mn(const struct ma_state *mas)
327 {
328 	return mte_to_node(mas->node);
329 }
330 
331 /*
332  * mte_set_node_dead() - Set a maple encoded node as dead.
333  * @mn: The maple encoded node.
334  */
mte_set_node_dead(struct maple_enode * mn)335 static inline void mte_set_node_dead(struct maple_enode *mn)
336 {
337 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 	smp_wmb(); /* Needed for RCU */
339 }
340 
341 /* Bit 1 indicates the root is a node */
342 #define MAPLE_ROOT_NODE			0x02
343 /* maple_type stored bit 3-6 */
344 #define MAPLE_ENODE_TYPE_SHIFT		0x03
345 /* Bit 2 means a NULL somewhere below */
346 #define MAPLE_ENODE_NULL		0x04
347 
mt_mk_node(const struct maple_node * node,enum maple_type type)348 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 					     enum maple_type type)
350 {
351 	return (void *)((unsigned long)node |
352 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353 }
354 
mte_mk_root(const struct maple_enode * node)355 static inline void *mte_mk_root(const struct maple_enode *node)
356 {
357 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358 }
359 
mte_safe_root(const struct maple_enode * node)360 static inline void *mte_safe_root(const struct maple_enode *node)
361 {
362 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363 }
364 
mte_set_full(const struct maple_enode * node)365 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366 {
367 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368 }
369 
mte_clear_full(const struct maple_enode * node)370 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371 {
372 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373 }
374 
mte_has_null(const struct maple_enode * node)375 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376 {
377 	return (unsigned long)node & MAPLE_ENODE_NULL;
378 }
379 
ma_is_root(struct maple_node * node)380 static __always_inline bool ma_is_root(struct maple_node *node)
381 {
382 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
383 }
384 
mte_is_root(const struct maple_enode * node)385 static __always_inline bool mte_is_root(const struct maple_enode *node)
386 {
387 	return ma_is_root(mte_to_node(node));
388 }
389 
mas_is_root_limits(const struct ma_state * mas)390 static inline bool mas_is_root_limits(const struct ma_state *mas)
391 {
392 	return !mas->min && mas->max == ULONG_MAX;
393 }
394 
mt_is_alloc(struct maple_tree * mt)395 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396 {
397 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398 }
399 
400 /*
401  * The Parent Pointer
402  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
404  * bit values need an extra bit to store the offset.  This extra bit comes from
405  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
406  * indicate if bit 2 is part of the type or the slot.
407  *
408  * Note types:
409  *  0x??1 = Root
410  *  0x?00 = 16 bit nodes
411  *  0x010 = 32 bit nodes
412  *  0x110 = 64 bit nodes
413  *
414  * Slot size and alignment
415  *  0b??1 : Root
416  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
417  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
418  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
419  */
420 
421 #define MAPLE_PARENT_ROOT		0x01
422 
423 #define MAPLE_PARENT_SLOT_SHIFT		0x03
424 #define MAPLE_PARENT_SLOT_MASK		0xF8
425 
426 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
427 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
428 
429 #define MAPLE_PARENT_RANGE64		0x06
430 #define MAPLE_PARENT_RANGE32		0x04
431 #define MAPLE_PARENT_NOT_RANGE16	0x02
432 
433 /*
434  * mte_parent_shift() - Get the parent shift for the slot storage.
435  * @parent: The parent pointer cast as an unsigned long
436  * Return: The shift into that pointer to the star to of the slot
437  */
mte_parent_shift(unsigned long parent)438 static inline unsigned long mte_parent_shift(unsigned long parent)
439 {
440 	/* Note bit 1 == 0 means 16B */
441 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 		return MAPLE_PARENT_SLOT_SHIFT;
443 
444 	return MAPLE_PARENT_16B_SLOT_SHIFT;
445 }
446 
447 /*
448  * mte_parent_slot_mask() - Get the slot mask for the parent.
449  * @parent: The parent pointer cast as an unsigned long.
450  * Return: The slot mask for that parent.
451  */
mte_parent_slot_mask(unsigned long parent)452 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453 {
454 	/* Note bit 1 == 0 means 16B */
455 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 		return MAPLE_PARENT_SLOT_MASK;
457 
458 	return MAPLE_PARENT_16B_SLOT_MASK;
459 }
460 
461 /*
462  * mas_parent_type() - Return the maple_type of the parent from the stored
463  * parent type.
464  * @mas: The maple state
465  * @enode: The maple_enode to extract the parent's enum
466  * Return: The node->parent maple_type
467  */
468 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)469 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470 {
471 	unsigned long p_type;
472 
473 	p_type = (unsigned long)mte_to_node(enode)->parent;
474 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 		return 0;
476 
477 	p_type &= MAPLE_NODE_MASK;
478 	p_type &= ~mte_parent_slot_mask(p_type);
479 	switch (p_type) {
480 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 		if (mt_is_alloc(mas->tree))
482 			return maple_arange_64;
483 		return maple_range_64;
484 	}
485 
486 	return 0;
487 }
488 
489 /*
490  * mas_set_parent() - Set the parent node and encode the slot
491  * @mas: The maple state
492  * @enode: The encoded maple node.
493  * @parent: The encoded maple node that is the parent of @enode.
494  * @slot: The slot that @enode resides in @parent.
495  *
496  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497  * parent type.
498  */
499 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)500 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 		    const struct maple_enode *parent, unsigned char slot)
502 {
503 	unsigned long val = (unsigned long)parent;
504 	unsigned long shift;
505 	unsigned long type;
506 	enum maple_type p_type = mte_node_type(parent);
507 
508 	MAS_BUG_ON(mas, p_type == maple_dense);
509 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
510 
511 	switch (p_type) {
512 	case maple_range_64:
513 	case maple_arange_64:
514 		shift = MAPLE_PARENT_SLOT_SHIFT;
515 		type = MAPLE_PARENT_RANGE64;
516 		break;
517 	default:
518 	case maple_dense:
519 	case maple_leaf_64:
520 		shift = type = 0;
521 		break;
522 	}
523 
524 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 	val |= (slot << shift) | type;
526 	mte_to_node(enode)->parent = ma_parent_ptr(val);
527 }
528 
529 /*
530  * mte_parent_slot() - get the parent slot of @enode.
531  * @enode: The encoded maple node.
532  *
533  * Return: The slot in the parent node where @enode resides.
534  */
535 static __always_inline
mte_parent_slot(const struct maple_enode * enode)536 unsigned int mte_parent_slot(const struct maple_enode *enode)
537 {
538 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539 
540 	if (unlikely(val & MA_ROOT_PARENT))
541 		return 0;
542 
543 	/*
544 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 	 */
547 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548 }
549 
550 /*
551  * mte_parent() - Get the parent of @node.
552  * @enode: The encoded maple node.
553  *
554  * Return: The parent maple node.
555  */
556 static __always_inline
mte_parent(const struct maple_enode * enode)557 struct maple_node *mte_parent(const struct maple_enode *enode)
558 {
559 	return (void *)((unsigned long)
560 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561 }
562 
563 /*
564  * ma_dead_node() - check if the @enode is dead.
565  * @enode: The encoded maple node
566  *
567  * Return: true if dead, false otherwise.
568  */
ma_dead_node(const struct maple_node * node)569 static __always_inline bool ma_dead_node(const struct maple_node *node)
570 {
571 	struct maple_node *parent;
572 
573 	/* Do not reorder reads from the node prior to the parent check */
574 	smp_rmb();
575 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 	return (parent == node);
577 }
578 
579 /*
580  * mte_dead_node() - check if the @enode is dead.
581  * @enode: The encoded maple node
582  *
583  * Return: true if dead, false otherwise.
584  */
mte_dead_node(const struct maple_enode * enode)585 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586 {
587 	struct maple_node *node;
588 
589 	node = mte_to_node(enode);
590 	return ma_dead_node(node);
591 }
592 
593 /*
594  * mas_allocated() - Get the number of nodes allocated in a maple state.
595  * @mas: The maple state
596  *
597  * The ma_state alloc member is overloaded to hold a pointer to the first
598  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
599  * set, then the alloc contains the number of requested nodes.  If there is an
600  * allocated node, then the total allocated nodes is in that node.
601  *
602  * Return: The total number of nodes allocated
603  */
mas_allocated(const struct ma_state * mas)604 static inline unsigned long mas_allocated(const struct ma_state *mas)
605 {
606 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
607 		return 0;
608 
609 	return mas->alloc->total;
610 }
611 
612 /*
613  * mas_set_alloc_req() - Set the requested number of allocations.
614  * @mas: the maple state
615  * @count: the number of allocations.
616  *
617  * The requested number of allocations is either in the first allocated node,
618  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
619  * no allocated node.  Set the request either in the node or do the necessary
620  * encoding to store in @mas->alloc directly.
621  */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)622 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
623 {
624 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
625 		if (!count)
626 			mas->alloc = NULL;
627 		else
628 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
629 		return;
630 	}
631 
632 	mas->alloc->request_count = count;
633 }
634 
635 /*
636  * mas_alloc_req() - get the requested number of allocations.
637  * @mas: The maple state
638  *
639  * The alloc count is either stored directly in @mas, or in
640  * @mas->alloc->request_count if there is at least one node allocated.  Decode
641  * the request count if it's stored directly in @mas->alloc.
642  *
643  * Return: The allocation request count.
644  */
mas_alloc_req(const struct ma_state * mas)645 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
646 {
647 	if ((unsigned long)mas->alloc & 0x1)
648 		return (unsigned long)(mas->alloc) >> 1;
649 	else if (mas->alloc)
650 		return mas->alloc->request_count;
651 	return 0;
652 }
653 
654 /*
655  * ma_pivots() - Get a pointer to the maple node pivots.
656  * @node: the maple node
657  * @type: the node type
658  *
659  * In the event of a dead node, this array may be %NULL
660  *
661  * Return: A pointer to the maple node pivots
662  */
ma_pivots(struct maple_node * node,enum maple_type type)663 static inline unsigned long *ma_pivots(struct maple_node *node,
664 					   enum maple_type type)
665 {
666 	switch (type) {
667 	case maple_arange_64:
668 		return node->ma64.pivot;
669 	case maple_range_64:
670 	case maple_leaf_64:
671 		return node->mr64.pivot;
672 	case maple_dense:
673 		return NULL;
674 	}
675 	return NULL;
676 }
677 
678 /*
679  * ma_gaps() - Get a pointer to the maple node gaps.
680  * @node: the maple node
681  * @type: the node type
682  *
683  * Return: A pointer to the maple node gaps
684  */
ma_gaps(struct maple_node * node,enum maple_type type)685 static inline unsigned long *ma_gaps(struct maple_node *node,
686 				     enum maple_type type)
687 {
688 	switch (type) {
689 	case maple_arange_64:
690 		return node->ma64.gap;
691 	case maple_range_64:
692 	case maple_leaf_64:
693 	case maple_dense:
694 		return NULL;
695 	}
696 	return NULL;
697 }
698 
699 /*
700  * mas_safe_pivot() - get the pivot at @piv or mas->max.
701  * @mas: The maple state
702  * @pivots: The pointer to the maple node pivots
703  * @piv: The pivot to fetch
704  * @type: The maple node type
705  *
706  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
707  * otherwise.
708  */
709 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)710 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
711 	       unsigned char piv, enum maple_type type)
712 {
713 	if (piv >= mt_pivots[type])
714 		return mas->max;
715 
716 	return pivots[piv];
717 }
718 
719 /*
720  * mas_safe_min() - Return the minimum for a given offset.
721  * @mas: The maple state
722  * @pivots: The pointer to the maple node pivots
723  * @offset: The offset into the pivot array
724  *
725  * Return: The minimum range value that is contained in @offset.
726  */
727 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)728 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
729 {
730 	if (likely(offset))
731 		return pivots[offset - 1] + 1;
732 
733 	return mas->min;
734 }
735 
736 /*
737  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
738  * @mn: The encoded maple node
739  * @piv: The pivot offset
740  * @val: The value of the pivot
741  */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)742 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
743 				unsigned long val)
744 {
745 	struct maple_node *node = mte_to_node(mn);
746 	enum maple_type type = mte_node_type(mn);
747 
748 	BUG_ON(piv >= mt_pivots[type]);
749 	switch (type) {
750 	case maple_range_64:
751 	case maple_leaf_64:
752 		node->mr64.pivot[piv] = val;
753 		break;
754 	case maple_arange_64:
755 		node->ma64.pivot[piv] = val;
756 		break;
757 	case maple_dense:
758 		break;
759 	}
760 
761 }
762 
763 /*
764  * ma_slots() - Get a pointer to the maple node slots.
765  * @mn: The maple node
766  * @mt: The maple node type
767  *
768  * Return: A pointer to the maple node slots
769  */
ma_slots(struct maple_node * mn,enum maple_type mt)770 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
771 {
772 	switch (mt) {
773 	case maple_arange_64:
774 		return mn->ma64.slot;
775 	case maple_range_64:
776 	case maple_leaf_64:
777 		return mn->mr64.slot;
778 	case maple_dense:
779 		return mn->slot;
780 	}
781 
782 	return NULL;
783 }
784 
mt_write_locked(const struct maple_tree * mt)785 static inline bool mt_write_locked(const struct maple_tree *mt)
786 {
787 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
788 		lockdep_is_held(&mt->ma_lock);
789 }
790 
mt_locked(const struct maple_tree * mt)791 static __always_inline bool mt_locked(const struct maple_tree *mt)
792 {
793 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
794 		lockdep_is_held(&mt->ma_lock);
795 }
796 
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)797 static __always_inline void *mt_slot(const struct maple_tree *mt,
798 		void __rcu **slots, unsigned char offset)
799 {
800 	return rcu_dereference_check(slots[offset], mt_locked(mt));
801 }
802 
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)803 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
804 		void __rcu **slots, unsigned char offset)
805 {
806 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
807 }
808 /*
809  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
810  * @mas: The maple state
811  * @slots: The pointer to the slots
812  * @offset: The offset into the slots array to fetch
813  *
814  * Return: The entry stored in @slots at the @offset.
815  */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)816 static __always_inline void *mas_slot_locked(struct ma_state *mas,
817 		void __rcu **slots, unsigned char offset)
818 {
819 	return mt_slot_locked(mas->tree, slots, offset);
820 }
821 
822 /*
823  * mas_slot() - Get the slot value when not holding the maple tree lock.
824  * @mas: The maple state
825  * @slots: The pointer to the slots
826  * @offset: The offset into the slots array to fetch
827  *
828  * Return: The entry stored in @slots at the @offset
829  */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)830 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
831 		unsigned char offset)
832 {
833 	return mt_slot(mas->tree, slots, offset);
834 }
835 
836 /*
837  * mas_root() - Get the maple tree root.
838  * @mas: The maple state.
839  *
840  * Return: The pointer to the root of the tree
841  */
mas_root(struct ma_state * mas)842 static __always_inline void *mas_root(struct ma_state *mas)
843 {
844 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
845 }
846 
mt_root_locked(struct maple_tree * mt)847 static inline void *mt_root_locked(struct maple_tree *mt)
848 {
849 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
850 }
851 
852 /*
853  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
854  * @mas: The maple state.
855  *
856  * Return: The pointer to the root of the tree
857  */
mas_root_locked(struct ma_state * mas)858 static inline void *mas_root_locked(struct ma_state *mas)
859 {
860 	return mt_root_locked(mas->tree);
861 }
862 
ma_meta(struct maple_node * mn,enum maple_type mt)863 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
864 					     enum maple_type mt)
865 {
866 	switch (mt) {
867 	case maple_arange_64:
868 		return &mn->ma64.meta;
869 	default:
870 		return &mn->mr64.meta;
871 	}
872 }
873 
874 /*
875  * ma_set_meta() - Set the metadata information of a node.
876  * @mn: The maple node
877  * @mt: The maple node type
878  * @offset: The offset of the highest sub-gap in this node.
879  * @end: The end of the data in this node.
880  */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)881 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
882 			       unsigned char offset, unsigned char end)
883 {
884 	struct maple_metadata *meta = ma_meta(mn, mt);
885 
886 	meta->gap = offset;
887 	meta->end = end;
888 }
889 
890 /*
891  * mt_clear_meta() - clear the metadata information of a node, if it exists
892  * @mt: The maple tree
893  * @mn: The maple node
894  * @type: The maple node type
895  */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)896 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
897 				  enum maple_type type)
898 {
899 	struct maple_metadata *meta;
900 	unsigned long *pivots;
901 	void __rcu **slots;
902 	void *next;
903 
904 	switch (type) {
905 	case maple_range_64:
906 		pivots = mn->mr64.pivot;
907 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
908 			slots = mn->mr64.slot;
909 			next = mt_slot_locked(mt, slots,
910 					      MAPLE_RANGE64_SLOTS - 1);
911 			if (unlikely((mte_to_node(next) &&
912 				      mte_node_type(next))))
913 				return; /* no metadata, could be node */
914 		}
915 		fallthrough;
916 	case maple_arange_64:
917 		meta = ma_meta(mn, type);
918 		break;
919 	default:
920 		return;
921 	}
922 
923 	meta->gap = 0;
924 	meta->end = 0;
925 }
926 
927 /*
928  * ma_meta_end() - Get the data end of a node from the metadata
929  * @mn: The maple node
930  * @mt: The maple node type
931  */
ma_meta_end(struct maple_node * mn,enum maple_type mt)932 static inline unsigned char ma_meta_end(struct maple_node *mn,
933 					enum maple_type mt)
934 {
935 	struct maple_metadata *meta = ma_meta(mn, mt);
936 
937 	return meta->end;
938 }
939 
940 /*
941  * ma_meta_gap() - Get the largest gap location of a node from the metadata
942  * @mn: The maple node
943  */
ma_meta_gap(struct maple_node * mn)944 static inline unsigned char ma_meta_gap(struct maple_node *mn)
945 {
946 	return mn->ma64.meta.gap;
947 }
948 
949 /*
950  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
951  * @mn: The maple node
952  * @mt: The maple node type
953  * @offset: The location of the largest gap.
954  */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)955 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
956 				   unsigned char offset)
957 {
958 
959 	struct maple_metadata *meta = ma_meta(mn, mt);
960 
961 	meta->gap = offset;
962 }
963 
964 /*
965  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
966  * @mat: the ma_topiary, a linked list of dead nodes.
967  * @dead_enode: the node to be marked as dead and added to the tail of the list
968  *
969  * Add the @dead_enode to the linked list in @mat.
970  */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)971 static inline void mat_add(struct ma_topiary *mat,
972 			   struct maple_enode *dead_enode)
973 {
974 	mte_set_node_dead(dead_enode);
975 	mte_to_mat(dead_enode)->next = NULL;
976 	if (!mat->tail) {
977 		mat->tail = mat->head = dead_enode;
978 		return;
979 	}
980 
981 	mte_to_mat(mat->tail)->next = dead_enode;
982 	mat->tail = dead_enode;
983 }
984 
985 static void mt_free_walk(struct rcu_head *head);
986 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
987 			    bool free);
988 /*
989  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
990  * @mas: the maple state
991  * @mat: the ma_topiary linked list of dead nodes to free.
992  *
993  * Destroy walk a dead list.
994  */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)995 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
996 {
997 	struct maple_enode *next;
998 	struct maple_node *node;
999 	bool in_rcu = mt_in_rcu(mas->tree);
1000 
1001 	while (mat->head) {
1002 		next = mte_to_mat(mat->head)->next;
1003 		node = mte_to_node(mat->head);
1004 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1005 		if (in_rcu)
1006 			call_rcu(&node->rcu, mt_free_walk);
1007 		mat->head = next;
1008 	}
1009 }
1010 /*
1011  * mas_descend() - Descend into the slot stored in the ma_state.
1012  * @mas: the maple state.
1013  *
1014  * Note: Not RCU safe, only use in write side or debug code.
1015  */
mas_descend(struct ma_state * mas)1016 static inline void mas_descend(struct ma_state *mas)
1017 {
1018 	enum maple_type type;
1019 	unsigned long *pivots;
1020 	struct maple_node *node;
1021 	void __rcu **slots;
1022 
1023 	node = mas_mn(mas);
1024 	type = mte_node_type(mas->node);
1025 	pivots = ma_pivots(node, type);
1026 	slots = ma_slots(node, type);
1027 
1028 	if (mas->offset)
1029 		mas->min = pivots[mas->offset - 1] + 1;
1030 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1031 	mas->node = mas_slot(mas, slots, mas->offset);
1032 }
1033 
1034 /*
1035  * mte_set_gap() - Set a maple node gap.
1036  * @mn: The encoded maple node
1037  * @gap: The offset of the gap to set
1038  * @val: The gap value
1039  */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1040 static inline void mte_set_gap(const struct maple_enode *mn,
1041 				 unsigned char gap, unsigned long val)
1042 {
1043 	switch (mte_node_type(mn)) {
1044 	default:
1045 		break;
1046 	case maple_arange_64:
1047 		mte_to_node(mn)->ma64.gap[gap] = val;
1048 		break;
1049 	}
1050 }
1051 
1052 /*
1053  * mas_ascend() - Walk up a level of the tree.
1054  * @mas: The maple state
1055  *
1056  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1057  * may cause several levels of walking up to find the correct min and max.
1058  * May find a dead node which will cause a premature return.
1059  * Return: 1 on dead node, 0 otherwise
1060  */
mas_ascend(struct ma_state * mas)1061 static int mas_ascend(struct ma_state *mas)
1062 {
1063 	struct maple_enode *p_enode; /* parent enode. */
1064 	struct maple_enode *a_enode; /* ancestor enode. */
1065 	struct maple_node *a_node; /* ancestor node. */
1066 	struct maple_node *p_node; /* parent node. */
1067 	unsigned char a_slot;
1068 	enum maple_type a_type;
1069 	unsigned long min, max;
1070 	unsigned long *pivots;
1071 	bool set_max = false, set_min = false;
1072 
1073 	a_node = mas_mn(mas);
1074 	if (ma_is_root(a_node)) {
1075 		mas->offset = 0;
1076 		return 0;
1077 	}
1078 
1079 	p_node = mte_parent(mas->node);
1080 	if (unlikely(a_node == p_node))
1081 		return 1;
1082 
1083 	a_type = mas_parent_type(mas, mas->node);
1084 	mas->offset = mte_parent_slot(mas->node);
1085 	a_enode = mt_mk_node(p_node, a_type);
1086 
1087 	/* Check to make sure all parent information is still accurate */
1088 	if (p_node != mte_parent(mas->node))
1089 		return 1;
1090 
1091 	mas->node = a_enode;
1092 
1093 	if (mte_is_root(a_enode)) {
1094 		mas->max = ULONG_MAX;
1095 		mas->min = 0;
1096 		return 0;
1097 	}
1098 
1099 	min = 0;
1100 	max = ULONG_MAX;
1101 	if (!mas->offset) {
1102 		min = mas->min;
1103 		set_min = true;
1104 	}
1105 
1106 	if (mas->max == ULONG_MAX)
1107 		set_max = true;
1108 
1109 	do {
1110 		p_enode = a_enode;
1111 		a_type = mas_parent_type(mas, p_enode);
1112 		a_node = mte_parent(p_enode);
1113 		a_slot = mte_parent_slot(p_enode);
1114 		a_enode = mt_mk_node(a_node, a_type);
1115 		pivots = ma_pivots(a_node, a_type);
1116 
1117 		if (unlikely(ma_dead_node(a_node)))
1118 			return 1;
1119 
1120 		if (!set_min && a_slot) {
1121 			set_min = true;
1122 			min = pivots[a_slot - 1] + 1;
1123 		}
1124 
1125 		if (!set_max && a_slot < mt_pivots[a_type]) {
1126 			set_max = true;
1127 			max = pivots[a_slot];
1128 		}
1129 
1130 		if (unlikely(ma_dead_node(a_node)))
1131 			return 1;
1132 
1133 		if (unlikely(ma_is_root(a_node)))
1134 			break;
1135 
1136 	} while (!set_min || !set_max);
1137 
1138 	mas->max = max;
1139 	mas->min = min;
1140 	return 0;
1141 }
1142 
1143 /*
1144  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1145  * @mas: The maple state
1146  *
1147  * Return: A pointer to a maple node.
1148  */
mas_pop_node(struct ma_state * mas)1149 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1150 {
1151 	struct maple_alloc *ret, *node = mas->alloc;
1152 	unsigned long total = mas_allocated(mas);
1153 	unsigned int req = mas_alloc_req(mas);
1154 
1155 	/* nothing or a request pending. */
1156 	if (WARN_ON(!total))
1157 		return NULL;
1158 
1159 	if (total == 1) {
1160 		/* single allocation in this ma_state */
1161 		mas->alloc = NULL;
1162 		ret = node;
1163 		goto single_node;
1164 	}
1165 
1166 	if (node->node_count == 1) {
1167 		/* Single allocation in this node. */
1168 		mas->alloc = node->slot[0];
1169 		mas->alloc->total = node->total - 1;
1170 		ret = node;
1171 		goto new_head;
1172 	}
1173 	node->total--;
1174 	ret = node->slot[--node->node_count];
1175 	node->slot[node->node_count] = NULL;
1176 
1177 single_node:
1178 new_head:
1179 	if (req) {
1180 		req++;
1181 		mas_set_alloc_req(mas, req);
1182 	}
1183 
1184 	memset(ret, 0, sizeof(*ret));
1185 	return (struct maple_node *)ret;
1186 }
1187 
1188 /*
1189  * mas_push_node() - Push a node back on the maple state allocation.
1190  * @mas: The maple state
1191  * @used: The used maple node
1192  *
1193  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1194  * requested node count as necessary.
1195  */
mas_push_node(struct ma_state * mas,struct maple_node * used)1196 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1197 {
1198 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1199 	struct maple_alloc *head = mas->alloc;
1200 	unsigned long count;
1201 	unsigned int requested = mas_alloc_req(mas);
1202 
1203 	count = mas_allocated(mas);
1204 
1205 	reuse->request_count = 0;
1206 	reuse->node_count = 0;
1207 	if (count) {
1208 		if (head->node_count < MAPLE_ALLOC_SLOTS) {
1209 			head->slot[head->node_count++] = reuse;
1210 			head->total++;
1211 			goto done;
1212 		}
1213 		reuse->slot[0] = head;
1214 		reuse->node_count = 1;
1215 	}
1216 
1217 	reuse->total = count + 1;
1218 	mas->alloc = reuse;
1219 done:
1220 	if (requested > 1)
1221 		mas_set_alloc_req(mas, requested - 1);
1222 }
1223 
1224 /*
1225  * mas_alloc_nodes() - Allocate nodes into a maple state
1226  * @mas: The maple state
1227  * @gfp: The GFP Flags
1228  */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1229 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1230 {
1231 	struct maple_alloc *node;
1232 	unsigned long allocated = mas_allocated(mas);
1233 	unsigned int requested = mas_alloc_req(mas);
1234 	unsigned int count;
1235 	void **slots = NULL;
1236 	unsigned int max_req = 0;
1237 
1238 	if (!requested)
1239 		return;
1240 
1241 	mas_set_alloc_req(mas, 0);
1242 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1243 		if (allocated)
1244 			return;
1245 		WARN_ON(!allocated);
1246 	}
1247 
1248 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1249 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1250 		if (!node)
1251 			goto nomem_one;
1252 
1253 		if (allocated) {
1254 			node->slot[0] = mas->alloc;
1255 			node->node_count = 1;
1256 		} else {
1257 			node->node_count = 0;
1258 		}
1259 
1260 		mas->alloc = node;
1261 		node->total = ++allocated;
1262 		node->request_count = 0;
1263 		requested--;
1264 	}
1265 
1266 	node = mas->alloc;
1267 	while (requested) {
1268 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1269 		slots = (void **)&node->slot[node->node_count];
1270 		max_req = min(requested, max_req);
1271 		count = mt_alloc_bulk(gfp, max_req, slots);
1272 		if (!count)
1273 			goto nomem_bulk;
1274 
1275 		if (node->node_count == 0) {
1276 			node->slot[0]->node_count = 0;
1277 			node->slot[0]->request_count = 0;
1278 		}
1279 
1280 		node->node_count += count;
1281 		allocated += count;
1282 		/* find a non-full node*/
1283 		do {
1284 			node = node->slot[0];
1285 		} while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1286 		requested -= count;
1287 	}
1288 	mas->alloc->total = allocated;
1289 	return;
1290 
1291 nomem_bulk:
1292 	/* Clean up potential freed allocations on bulk failure */
1293 	memset(slots, 0, max_req * sizeof(unsigned long));
1294 	mas->alloc->total = allocated;
1295 nomem_one:
1296 	mas_set_alloc_req(mas, requested);
1297 	mas_set_err(mas, -ENOMEM);
1298 }
1299 
1300 /*
1301  * mas_free() - Free an encoded maple node
1302  * @mas: The maple state
1303  * @used: The encoded maple node to free.
1304  *
1305  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1306  * otherwise.
1307  */
mas_free(struct ma_state * mas,struct maple_enode * used)1308 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1309 {
1310 	struct maple_node *tmp = mte_to_node(used);
1311 
1312 	if (mt_in_rcu(mas->tree))
1313 		ma_free_rcu(tmp);
1314 	else
1315 		mas_push_node(mas, tmp);
1316 }
1317 
1318 /*
1319  * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1320  * if there is not enough nodes.
1321  * @mas: The maple state
1322  * @count: The number of nodes needed
1323  * @gfp: the gfp flags
1324  */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1325 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1326 {
1327 	unsigned long allocated = mas_allocated(mas);
1328 
1329 	if (allocated < count) {
1330 		mas_set_alloc_req(mas, count - allocated);
1331 		mas_alloc_nodes(mas, gfp);
1332 	}
1333 }
1334 
1335 /*
1336  * mas_node_count() - Check if enough nodes are allocated and request more if
1337  * there is not enough nodes.
1338  * @mas: The maple state
1339  * @count: The number of nodes needed
1340  *
1341  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1342  */
mas_node_count(struct ma_state * mas,int count)1343 static void mas_node_count(struct ma_state *mas, int count)
1344 {
1345 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1346 }
1347 
1348 /*
1349  * mas_start() - Sets up maple state for operations.
1350  * @mas: The maple state.
1351  *
1352  * If mas->status == ma_start, then set the min, max and depth to
1353  * defaults.
1354  *
1355  * Return:
1356  * - If mas->node is an error or not mas_start, return NULL.
1357  * - If it's an empty tree:     NULL & mas->status == ma_none
1358  * - If it's a single entry:    The entry & mas->status == ma_root
1359  * - If it's a tree:            NULL & mas->status == ma_active
1360  */
mas_start(struct ma_state * mas)1361 static inline struct maple_enode *mas_start(struct ma_state *mas)
1362 {
1363 	if (likely(mas_is_start(mas))) {
1364 		struct maple_enode *root;
1365 
1366 		mas->min = 0;
1367 		mas->max = ULONG_MAX;
1368 
1369 retry:
1370 		mas->depth = 0;
1371 		root = mas_root(mas);
1372 		/* Tree with nodes */
1373 		if (likely(xa_is_node(root))) {
1374 			mas->depth = 1;
1375 			mas->status = ma_active;
1376 			mas->node = mte_safe_root(root);
1377 			mas->offset = 0;
1378 			if (mte_dead_node(mas->node))
1379 				goto retry;
1380 
1381 			return NULL;
1382 		}
1383 
1384 		mas->node = NULL;
1385 		/* empty tree */
1386 		if (unlikely(!root)) {
1387 			mas->status = ma_none;
1388 			mas->offset = MAPLE_NODE_SLOTS;
1389 			return NULL;
1390 		}
1391 
1392 		/* Single entry tree */
1393 		mas->status = ma_root;
1394 		mas->offset = MAPLE_NODE_SLOTS;
1395 
1396 		/* Single entry tree. */
1397 		if (mas->index > 0)
1398 			return NULL;
1399 
1400 		return root;
1401 	}
1402 
1403 	return NULL;
1404 }
1405 
1406 /*
1407  * ma_data_end() - Find the end of the data in a node.
1408  * @node: The maple node
1409  * @type: The maple node type
1410  * @pivots: The array of pivots in the node
1411  * @max: The maximum value in the node
1412  *
1413  * Uses metadata to find the end of the data when possible.
1414  * Return: The zero indexed last slot with data (may be null).
1415  */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1416 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1417 		enum maple_type type, unsigned long *pivots, unsigned long max)
1418 {
1419 	unsigned char offset;
1420 
1421 	if (!pivots)
1422 		return 0;
1423 
1424 	if (type == maple_arange_64)
1425 		return ma_meta_end(node, type);
1426 
1427 	offset = mt_pivots[type] - 1;
1428 	if (likely(!pivots[offset]))
1429 		return ma_meta_end(node, type);
1430 
1431 	if (likely(pivots[offset] == max))
1432 		return offset;
1433 
1434 	return mt_pivots[type];
1435 }
1436 
1437 /*
1438  * mas_data_end() - Find the end of the data (slot).
1439  * @mas: the maple state
1440  *
1441  * This method is optimized to check the metadata of a node if the node type
1442  * supports data end metadata.
1443  *
1444  * Return: The zero indexed last slot with data (may be null).
1445  */
mas_data_end(struct ma_state * mas)1446 static inline unsigned char mas_data_end(struct ma_state *mas)
1447 {
1448 	enum maple_type type;
1449 	struct maple_node *node;
1450 	unsigned char offset;
1451 	unsigned long *pivots;
1452 
1453 	type = mte_node_type(mas->node);
1454 	node = mas_mn(mas);
1455 	if (type == maple_arange_64)
1456 		return ma_meta_end(node, type);
1457 
1458 	pivots = ma_pivots(node, type);
1459 	if (unlikely(ma_dead_node(node)))
1460 		return 0;
1461 
1462 	offset = mt_pivots[type] - 1;
1463 	if (likely(!pivots[offset]))
1464 		return ma_meta_end(node, type);
1465 
1466 	if (likely(pivots[offset] == mas->max))
1467 		return offset;
1468 
1469 	return mt_pivots[type];
1470 }
1471 
1472 /*
1473  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1474  * @mas: the maple state
1475  *
1476  * Return: The maximum gap in the leaf.
1477  */
mas_leaf_max_gap(struct ma_state * mas)1478 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1479 {
1480 	enum maple_type mt;
1481 	unsigned long pstart, gap, max_gap;
1482 	struct maple_node *mn;
1483 	unsigned long *pivots;
1484 	void __rcu **slots;
1485 	unsigned char i;
1486 	unsigned char max_piv;
1487 
1488 	mt = mte_node_type(mas->node);
1489 	mn = mas_mn(mas);
1490 	slots = ma_slots(mn, mt);
1491 	max_gap = 0;
1492 	if (unlikely(ma_is_dense(mt))) {
1493 		gap = 0;
1494 		for (i = 0; i < mt_slots[mt]; i++) {
1495 			if (slots[i]) {
1496 				if (gap > max_gap)
1497 					max_gap = gap;
1498 				gap = 0;
1499 			} else {
1500 				gap++;
1501 			}
1502 		}
1503 		if (gap > max_gap)
1504 			max_gap = gap;
1505 		return max_gap;
1506 	}
1507 
1508 	/*
1509 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1510 	 * be skipped if there is a gap in slot 0.
1511 	 */
1512 	pivots = ma_pivots(mn, mt);
1513 	if (likely(!slots[0])) {
1514 		max_gap = pivots[0] - mas->min + 1;
1515 		i = 2;
1516 	} else {
1517 		i = 1;
1518 	}
1519 
1520 	/* reduce max_piv as the special case is checked before the loop */
1521 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1522 	/*
1523 	 * Check end implied pivot which can only be a gap on the right most
1524 	 * node.
1525 	 */
1526 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1527 		gap = ULONG_MAX - pivots[max_piv];
1528 		if (gap > max_gap)
1529 			max_gap = gap;
1530 
1531 		if (max_gap > pivots[max_piv] - mas->min)
1532 			return max_gap;
1533 	}
1534 
1535 	for (; i <= max_piv; i++) {
1536 		/* data == no gap. */
1537 		if (likely(slots[i]))
1538 			continue;
1539 
1540 		pstart = pivots[i - 1];
1541 		gap = pivots[i] - pstart;
1542 		if (gap > max_gap)
1543 			max_gap = gap;
1544 
1545 		/* There cannot be two gaps in a row. */
1546 		i++;
1547 	}
1548 	return max_gap;
1549 }
1550 
1551 /*
1552  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1553  * @node: The maple node
1554  * @gaps: The pointer to the gaps
1555  * @mt: The maple node type
1556  * @off: Pointer to store the offset location of the gap.
1557  *
1558  * Uses the metadata data end to scan backwards across set gaps.
1559  *
1560  * Return: The maximum gap value
1561  */
1562 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1563 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1564 	    unsigned char *off)
1565 {
1566 	unsigned char offset, i;
1567 	unsigned long max_gap = 0;
1568 
1569 	i = offset = ma_meta_end(node, mt);
1570 	do {
1571 		if (gaps[i] > max_gap) {
1572 			max_gap = gaps[i];
1573 			offset = i;
1574 		}
1575 	} while (i--);
1576 
1577 	*off = offset;
1578 	return max_gap;
1579 }
1580 
1581 /*
1582  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1583  * @mas: The maple state.
1584  *
1585  * Return: The gap value.
1586  */
mas_max_gap(struct ma_state * mas)1587 static inline unsigned long mas_max_gap(struct ma_state *mas)
1588 {
1589 	unsigned long *gaps;
1590 	unsigned char offset;
1591 	enum maple_type mt;
1592 	struct maple_node *node;
1593 
1594 	mt = mte_node_type(mas->node);
1595 	if (ma_is_leaf(mt))
1596 		return mas_leaf_max_gap(mas);
1597 
1598 	node = mas_mn(mas);
1599 	MAS_BUG_ON(mas, mt != maple_arange_64);
1600 	offset = ma_meta_gap(node);
1601 	gaps = ma_gaps(node, mt);
1602 	return gaps[offset];
1603 }
1604 
1605 /*
1606  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1607  * @mas: The maple state
1608  * @offset: The gap offset in the parent to set
1609  * @new: The new gap value.
1610  *
1611  * Set the parent gap then continue to set the gap upwards, using the metadata
1612  * of the parent to see if it is necessary to check the node above.
1613  */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1614 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1615 		unsigned long new)
1616 {
1617 	unsigned long meta_gap = 0;
1618 	struct maple_node *pnode;
1619 	struct maple_enode *penode;
1620 	unsigned long *pgaps;
1621 	unsigned char meta_offset;
1622 	enum maple_type pmt;
1623 
1624 	pnode = mte_parent(mas->node);
1625 	pmt = mas_parent_type(mas, mas->node);
1626 	penode = mt_mk_node(pnode, pmt);
1627 	pgaps = ma_gaps(pnode, pmt);
1628 
1629 ascend:
1630 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1631 	meta_offset = ma_meta_gap(pnode);
1632 	meta_gap = pgaps[meta_offset];
1633 
1634 	pgaps[offset] = new;
1635 
1636 	if (meta_gap == new)
1637 		return;
1638 
1639 	if (offset != meta_offset) {
1640 		if (meta_gap > new)
1641 			return;
1642 
1643 		ma_set_meta_gap(pnode, pmt, offset);
1644 	} else if (new < meta_gap) {
1645 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1646 		ma_set_meta_gap(pnode, pmt, meta_offset);
1647 	}
1648 
1649 	if (ma_is_root(pnode))
1650 		return;
1651 
1652 	/* Go to the parent node. */
1653 	pnode = mte_parent(penode);
1654 	pmt = mas_parent_type(mas, penode);
1655 	pgaps = ma_gaps(pnode, pmt);
1656 	offset = mte_parent_slot(penode);
1657 	penode = mt_mk_node(pnode, pmt);
1658 	goto ascend;
1659 }
1660 
1661 /*
1662  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1663  * @mas: the maple state.
1664  */
mas_update_gap(struct ma_state * mas)1665 static inline void mas_update_gap(struct ma_state *mas)
1666 {
1667 	unsigned char pslot;
1668 	unsigned long p_gap;
1669 	unsigned long max_gap;
1670 
1671 	if (!mt_is_alloc(mas->tree))
1672 		return;
1673 
1674 	if (mte_is_root(mas->node))
1675 		return;
1676 
1677 	max_gap = mas_max_gap(mas);
1678 
1679 	pslot = mte_parent_slot(mas->node);
1680 	p_gap = ma_gaps(mte_parent(mas->node),
1681 			mas_parent_type(mas, mas->node))[pslot];
1682 
1683 	if (p_gap != max_gap)
1684 		mas_parent_gap(mas, pslot, max_gap);
1685 }
1686 
1687 /*
1688  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1689  * @parent with the slot encoded.
1690  * @mas: the maple state (for the tree)
1691  * @parent: the maple encoded node containing the children.
1692  */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1693 static inline void mas_adopt_children(struct ma_state *mas,
1694 		struct maple_enode *parent)
1695 {
1696 	enum maple_type type = mte_node_type(parent);
1697 	struct maple_node *node = mte_to_node(parent);
1698 	void __rcu **slots = ma_slots(node, type);
1699 	unsigned long *pivots = ma_pivots(node, type);
1700 	struct maple_enode *child;
1701 	unsigned char offset;
1702 
1703 	offset = ma_data_end(node, type, pivots, mas->max);
1704 	do {
1705 		child = mas_slot_locked(mas, slots, offset);
1706 		mas_set_parent(mas, child, parent, offset);
1707 	} while (offset--);
1708 }
1709 
1710 /*
1711  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1712  * node as dead.
1713  * @mas: the maple state with the new node
1714  * @old_enode: The old maple encoded node to replace.
1715  */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode)1716 static inline void mas_put_in_tree(struct ma_state *mas,
1717 		struct maple_enode *old_enode)
1718 	__must_hold(mas->tree->ma_lock)
1719 {
1720 	unsigned char offset;
1721 	void __rcu **slots;
1722 
1723 	if (mte_is_root(mas->node)) {
1724 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1725 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1726 		mas_set_height(mas);
1727 	} else {
1728 
1729 		offset = mte_parent_slot(mas->node);
1730 		slots = ma_slots(mte_parent(mas->node),
1731 				 mas_parent_type(mas, mas->node));
1732 		rcu_assign_pointer(slots[offset], mas->node);
1733 	}
1734 
1735 	mte_set_node_dead(old_enode);
1736 }
1737 
1738 /*
1739  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1740  * dead, and freeing it.
1741  * the parent encoding to locate the maple node in the tree.
1742  * @mas: the ma_state with @mas->node pointing to the new node.
1743  * @old_enode: The old maple encoded node.
1744  */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode)1745 static inline void mas_replace_node(struct ma_state *mas,
1746 		struct maple_enode *old_enode)
1747 	__must_hold(mas->tree->ma_lock)
1748 {
1749 	mas_put_in_tree(mas, old_enode);
1750 	mas_free(mas, old_enode);
1751 }
1752 
1753 /*
1754  * mas_find_child() - Find a child who has the parent @mas->node.
1755  * @mas: the maple state with the parent.
1756  * @child: the maple state to store the child.
1757  */
mas_find_child(struct ma_state * mas,struct ma_state * child)1758 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1759 	__must_hold(mas->tree->ma_lock)
1760 {
1761 	enum maple_type mt;
1762 	unsigned char offset;
1763 	unsigned char end;
1764 	unsigned long *pivots;
1765 	struct maple_enode *entry;
1766 	struct maple_node *node;
1767 	void __rcu **slots;
1768 
1769 	mt = mte_node_type(mas->node);
1770 	node = mas_mn(mas);
1771 	slots = ma_slots(node, mt);
1772 	pivots = ma_pivots(node, mt);
1773 	end = ma_data_end(node, mt, pivots, mas->max);
1774 	for (offset = mas->offset; offset <= end; offset++) {
1775 		entry = mas_slot_locked(mas, slots, offset);
1776 		if (mte_parent(entry) == node) {
1777 			*child = *mas;
1778 			mas->offset = offset + 1;
1779 			child->offset = offset;
1780 			mas_descend(child);
1781 			child->offset = 0;
1782 			return true;
1783 		}
1784 	}
1785 	return false;
1786 }
1787 
1788 /*
1789  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1790  * old data or set b_node->b_end.
1791  * @b_node: the maple_big_node
1792  * @shift: the shift count
1793  */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1794 static inline void mab_shift_right(struct maple_big_node *b_node,
1795 				 unsigned char shift)
1796 {
1797 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1798 
1799 	memmove(b_node->pivot + shift, b_node->pivot, size);
1800 	memmove(b_node->slot + shift, b_node->slot, size);
1801 	if (b_node->type == maple_arange_64)
1802 		memmove(b_node->gap + shift, b_node->gap, size);
1803 }
1804 
1805 /*
1806  * mab_middle_node() - Check if a middle node is needed (unlikely)
1807  * @b_node: the maple_big_node that contains the data.
1808  * @split: the potential split location
1809  * @slot_count: the size that can be stored in a single node being considered.
1810  *
1811  * Return: true if a middle node is required.
1812  */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1813 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1814 				   unsigned char slot_count)
1815 {
1816 	unsigned char size = b_node->b_end;
1817 
1818 	if (size >= 2 * slot_count)
1819 		return true;
1820 
1821 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1822 		return true;
1823 
1824 	return false;
1825 }
1826 
1827 /*
1828  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1829  * @b_node: the maple_big_node with the data
1830  * @split: the suggested split location
1831  * @slot_count: the number of slots in the node being considered.
1832  *
1833  * Return: the split location.
1834  */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1835 static inline int mab_no_null_split(struct maple_big_node *b_node,
1836 				    unsigned char split, unsigned char slot_count)
1837 {
1838 	if (!b_node->slot[split]) {
1839 		/*
1840 		 * If the split is less than the max slot && the right side will
1841 		 * still be sufficient, then increment the split on NULL.
1842 		 */
1843 		if ((split < slot_count - 1) &&
1844 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1845 			split++;
1846 		else
1847 			split--;
1848 	}
1849 	return split;
1850 }
1851 
1852 /*
1853  * mab_calc_split() - Calculate the split location and if there needs to be two
1854  * splits.
1855  * @mas: The maple state
1856  * @bn: The maple_big_node with the data
1857  * @mid_split: The second split, if required.  0 otherwise.
1858  *
1859  * Return: The first split location.  The middle split is set in @mid_split.
1860  */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split)1861 static inline int mab_calc_split(struct ma_state *mas,
1862 	 struct maple_big_node *bn, unsigned char *mid_split)
1863 {
1864 	unsigned char b_end = bn->b_end;
1865 	int split = b_end / 2; /* Assume equal split. */
1866 	unsigned char slot_count = mt_slots[bn->type];
1867 
1868 	/*
1869 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1870 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1871 	 * limitation means that the split of a node must be checked for this condition
1872 	 * and be able to put more data in one direction or the other.
1873 	 */
1874 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1875 		*mid_split = 0;
1876 		split = b_end - mt_min_slots[bn->type];
1877 
1878 		if (!ma_is_leaf(bn->type))
1879 			return split;
1880 
1881 		mas->mas_flags |= MA_STATE_REBALANCE;
1882 		if (!bn->slot[split])
1883 			split--;
1884 		return split;
1885 	}
1886 
1887 	/*
1888 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1889 	 * split scenario.  The 3-way split comes about by means of a store of a range
1890 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1891 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1892 	 * also be located in different parent nodes which are also full.  This can
1893 	 * carry upwards all the way to the root in the worst case.
1894 	 */
1895 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1896 		split = b_end / 3;
1897 		*mid_split = split * 2;
1898 	} else {
1899 		*mid_split = 0;
1900 	}
1901 
1902 	/* Avoid ending a node on a NULL entry */
1903 	split = mab_no_null_split(bn, split, slot_count);
1904 
1905 	if (unlikely(*mid_split))
1906 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1907 
1908 	return split;
1909 }
1910 
1911 /*
1912  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1913  * and set @b_node->b_end to the next free slot.
1914  * @mas: The maple state
1915  * @mas_start: The starting slot to copy
1916  * @mas_end: The end slot to copy (inclusively)
1917  * @b_node: The maple_big_node to place the data
1918  * @mab_start: The starting location in maple_big_node to store the data.
1919  */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1920 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1921 			unsigned char mas_end, struct maple_big_node *b_node,
1922 			unsigned char mab_start)
1923 {
1924 	enum maple_type mt;
1925 	struct maple_node *node;
1926 	void __rcu **slots;
1927 	unsigned long *pivots, *gaps;
1928 	int i = mas_start, j = mab_start;
1929 	unsigned char piv_end;
1930 
1931 	node = mas_mn(mas);
1932 	mt = mte_node_type(mas->node);
1933 	pivots = ma_pivots(node, mt);
1934 	if (!i) {
1935 		b_node->pivot[j] = pivots[i++];
1936 		if (unlikely(i > mas_end))
1937 			goto complete;
1938 		j++;
1939 	}
1940 
1941 	piv_end = min(mas_end, mt_pivots[mt]);
1942 	for (; i < piv_end; i++, j++) {
1943 		b_node->pivot[j] = pivots[i];
1944 		if (unlikely(!b_node->pivot[j]))
1945 			goto complete;
1946 
1947 		if (unlikely(mas->max == b_node->pivot[j]))
1948 			goto complete;
1949 	}
1950 
1951 	b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1952 
1953 complete:
1954 	b_node->b_end = ++j;
1955 	j -= mab_start;
1956 	slots = ma_slots(node, mt);
1957 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1958 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1959 		gaps = ma_gaps(node, mt);
1960 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1961 		       sizeof(unsigned long) * j);
1962 	}
1963 }
1964 
1965 /*
1966  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1967  * @node: The maple node
1968  * @mt: The maple type
1969  * @end: The node end
1970  */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1971 static inline void mas_leaf_set_meta(struct maple_node *node,
1972 		enum maple_type mt, unsigned char end)
1973 {
1974 	if (end < mt_slots[mt] - 1)
1975 		ma_set_meta(node, mt, 0, end);
1976 }
1977 
1978 /*
1979  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1980  * @b_node: the maple_big_node that has the data
1981  * @mab_start: the start location in @b_node.
1982  * @mab_end: The end location in @b_node (inclusively)
1983  * @mas: The maple state with the maple encoded node.
1984  */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)1985 static inline void mab_mas_cp(struct maple_big_node *b_node,
1986 			      unsigned char mab_start, unsigned char mab_end,
1987 			      struct ma_state *mas, bool new_max)
1988 {
1989 	int i, j = 0;
1990 	enum maple_type mt = mte_node_type(mas->node);
1991 	struct maple_node *node = mte_to_node(mas->node);
1992 	void __rcu **slots = ma_slots(node, mt);
1993 	unsigned long *pivots = ma_pivots(node, mt);
1994 	unsigned long *gaps = NULL;
1995 	unsigned char end;
1996 
1997 	if (mab_end - mab_start > mt_pivots[mt])
1998 		mab_end--;
1999 
2000 	if (!pivots[mt_pivots[mt] - 1])
2001 		slots[mt_pivots[mt]] = NULL;
2002 
2003 	i = mab_start;
2004 	do {
2005 		pivots[j++] = b_node->pivot[i++];
2006 	} while (i <= mab_end && likely(b_node->pivot[i]));
2007 
2008 	memcpy(slots, b_node->slot + mab_start,
2009 	       sizeof(void *) * (i - mab_start));
2010 
2011 	if (new_max)
2012 		mas->max = b_node->pivot[i - 1];
2013 
2014 	end = j - 1;
2015 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2016 		unsigned long max_gap = 0;
2017 		unsigned char offset = 0;
2018 
2019 		gaps = ma_gaps(node, mt);
2020 		do {
2021 			gaps[--j] = b_node->gap[--i];
2022 			if (gaps[j] > max_gap) {
2023 				offset = j;
2024 				max_gap = gaps[j];
2025 			}
2026 		} while (j);
2027 
2028 		ma_set_meta(node, mt, offset, end);
2029 	} else {
2030 		mas_leaf_set_meta(node, mt, end);
2031 	}
2032 }
2033 
2034 /*
2035  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2036  * @mas: The maple state
2037  * @end: The maple node end
2038  * @mt: The maple node type
2039  */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2040 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2041 				      enum maple_type mt)
2042 {
2043 	if (!(mas->mas_flags & MA_STATE_BULK))
2044 		return;
2045 
2046 	if (mte_is_root(mas->node))
2047 		return;
2048 
2049 	if (end > mt_min_slots[mt]) {
2050 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2051 		return;
2052 	}
2053 }
2054 
2055 /*
2056  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2057  * data from a maple encoded node.
2058  * @wr_mas: the maple write state
2059  * @b_node: the maple_big_node to fill with data
2060  * @offset_end: the offset to end copying
2061  *
2062  * Return: The actual end of the data stored in @b_node
2063  */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2064 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2065 		struct maple_big_node *b_node, unsigned char offset_end)
2066 {
2067 	unsigned char slot;
2068 	unsigned char b_end;
2069 	/* Possible underflow of piv will wrap back to 0 before use. */
2070 	unsigned long piv;
2071 	struct ma_state *mas = wr_mas->mas;
2072 
2073 	b_node->type = wr_mas->type;
2074 	b_end = 0;
2075 	slot = mas->offset;
2076 	if (slot) {
2077 		/* Copy start data up to insert. */
2078 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2079 		b_end = b_node->b_end;
2080 		piv = b_node->pivot[b_end - 1];
2081 	} else
2082 		piv = mas->min - 1;
2083 
2084 	if (piv + 1 < mas->index) {
2085 		/* Handle range starting after old range */
2086 		b_node->slot[b_end] = wr_mas->content;
2087 		if (!wr_mas->content)
2088 			b_node->gap[b_end] = mas->index - 1 - piv;
2089 		b_node->pivot[b_end++] = mas->index - 1;
2090 	}
2091 
2092 	/* Store the new entry. */
2093 	mas->offset = b_end;
2094 	b_node->slot[b_end] = wr_mas->entry;
2095 	b_node->pivot[b_end] = mas->last;
2096 
2097 	/* Appended. */
2098 	if (mas->last >= mas->max)
2099 		goto b_end;
2100 
2101 	/* Handle new range ending before old range ends */
2102 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2103 	if (piv > mas->last) {
2104 		if (piv == ULONG_MAX)
2105 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2106 
2107 		if (offset_end != slot)
2108 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2109 							  offset_end);
2110 
2111 		b_node->slot[++b_end] = wr_mas->content;
2112 		if (!wr_mas->content)
2113 			b_node->gap[b_end] = piv - mas->last + 1;
2114 		b_node->pivot[b_end] = piv;
2115 	}
2116 
2117 	slot = offset_end + 1;
2118 	if (slot > mas->end)
2119 		goto b_end;
2120 
2121 	/* Copy end data to the end of the node. */
2122 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2123 	b_node->b_end--;
2124 	return;
2125 
2126 b_end:
2127 	b_node->b_end = b_end;
2128 }
2129 
2130 /*
2131  * mas_prev_sibling() - Find the previous node with the same parent.
2132  * @mas: the maple state
2133  *
2134  * Return: True if there is a previous sibling, false otherwise.
2135  */
mas_prev_sibling(struct ma_state * mas)2136 static inline bool mas_prev_sibling(struct ma_state *mas)
2137 {
2138 	unsigned int p_slot = mte_parent_slot(mas->node);
2139 
2140 	/* For root node, p_slot is set to 0 by mte_parent_slot(). */
2141 	if (!p_slot)
2142 		return false;
2143 
2144 	mas_ascend(mas);
2145 	mas->offset = p_slot - 1;
2146 	mas_descend(mas);
2147 	return true;
2148 }
2149 
2150 /*
2151  * mas_next_sibling() - Find the next node with the same parent.
2152  * @mas: the maple state
2153  *
2154  * Return: true if there is a next sibling, false otherwise.
2155  */
mas_next_sibling(struct ma_state * mas)2156 static inline bool mas_next_sibling(struct ma_state *mas)
2157 {
2158 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2159 
2160 	if (mte_is_root(mas->node))
2161 		return false;
2162 
2163 	parent = *mas;
2164 	mas_ascend(&parent);
2165 	parent.offset = mte_parent_slot(mas->node) + 1;
2166 	if (parent.offset > mas_data_end(&parent))
2167 		return false;
2168 
2169 	*mas = parent;
2170 	mas_descend(mas);
2171 	return true;
2172 }
2173 
2174 /*
2175  * mas_node_or_none() - Set the enode and state.
2176  * @mas: the maple state
2177  * @enode: The encoded maple node.
2178  *
2179  * Set the node to the enode and the status.
2180  */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)2181 static inline void mas_node_or_none(struct ma_state *mas,
2182 		struct maple_enode *enode)
2183 {
2184 	if (enode) {
2185 		mas->node = enode;
2186 		mas->status = ma_active;
2187 	} else {
2188 		mas->node = NULL;
2189 		mas->status = ma_none;
2190 	}
2191 }
2192 
2193 /*
2194  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2195  *                      If @mas->index cannot be found within the containing
2196  *                      node, we traverse to the last entry in the node.
2197  * @wr_mas: The maple write state
2198  *
2199  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2200  */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2201 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2202 {
2203 	struct ma_state *mas = wr_mas->mas;
2204 	unsigned char count, offset;
2205 
2206 	if (unlikely(ma_is_dense(wr_mas->type))) {
2207 		wr_mas->r_max = wr_mas->r_min = mas->index;
2208 		mas->offset = mas->index = mas->min;
2209 		return;
2210 	}
2211 
2212 	wr_mas->node = mas_mn(wr_mas->mas);
2213 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2214 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2215 				       wr_mas->pivots, mas->max);
2216 	offset = mas->offset;
2217 
2218 	while (offset < count && mas->index > wr_mas->pivots[offset])
2219 		offset++;
2220 
2221 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2222 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2223 	wr_mas->offset_end = mas->offset = offset;
2224 }
2225 
2226 /*
2227  * mast_rebalance_next() - Rebalance against the next node
2228  * @mast: The maple subtree state
2229  */
mast_rebalance_next(struct maple_subtree_state * mast)2230 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2231 {
2232 	unsigned char b_end = mast->bn->b_end;
2233 
2234 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2235 		   mast->bn, b_end);
2236 	mast->orig_r->last = mast->orig_r->max;
2237 }
2238 
2239 /*
2240  * mast_rebalance_prev() - Rebalance against the previous node
2241  * @mast: The maple subtree state
2242  */
mast_rebalance_prev(struct maple_subtree_state * mast)2243 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2244 {
2245 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2246 	unsigned char b_end = mast->bn->b_end;
2247 
2248 	mab_shift_right(mast->bn, end);
2249 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2250 	mast->l->min = mast->orig_l->min;
2251 	mast->orig_l->index = mast->orig_l->min;
2252 	mast->bn->b_end = end + b_end;
2253 	mast->l->offset += end;
2254 }
2255 
2256 /*
2257  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2258  * the node to the right.  Checking the nodes to the right then the left at each
2259  * level upwards until root is reached.
2260  * Data is copied into the @mast->bn.
2261  * @mast: The maple_subtree_state.
2262  */
2263 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2264 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2265 {
2266 	struct ma_state r_tmp = *mast->orig_r;
2267 	struct ma_state l_tmp = *mast->orig_l;
2268 	unsigned char depth = 0;
2269 
2270 	do {
2271 		mas_ascend(mast->orig_r);
2272 		mas_ascend(mast->orig_l);
2273 		depth++;
2274 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2275 			mast->orig_r->offset++;
2276 			do {
2277 				mas_descend(mast->orig_r);
2278 				mast->orig_r->offset = 0;
2279 			} while (--depth);
2280 
2281 			mast_rebalance_next(mast);
2282 			*mast->orig_l = l_tmp;
2283 			return true;
2284 		} else if (mast->orig_l->offset != 0) {
2285 			mast->orig_l->offset--;
2286 			do {
2287 				mas_descend(mast->orig_l);
2288 				mast->orig_l->offset =
2289 					mas_data_end(mast->orig_l);
2290 			} while (--depth);
2291 
2292 			mast_rebalance_prev(mast);
2293 			*mast->orig_r = r_tmp;
2294 			return true;
2295 		}
2296 	} while (!mte_is_root(mast->orig_r->node));
2297 
2298 	*mast->orig_r = r_tmp;
2299 	*mast->orig_l = l_tmp;
2300 	return false;
2301 }
2302 
2303 /*
2304  * mast_ascend() - Ascend the original left and right maple states.
2305  * @mast: the maple subtree state.
2306  *
2307  * Ascend the original left and right sides.  Set the offsets to point to the
2308  * data already in the new tree (@mast->l and @mast->r).
2309  */
mast_ascend(struct maple_subtree_state * mast)2310 static inline void mast_ascend(struct maple_subtree_state *mast)
2311 {
2312 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2313 	mas_ascend(mast->orig_l);
2314 	mas_ascend(mast->orig_r);
2315 
2316 	mast->orig_r->offset = 0;
2317 	mast->orig_r->index = mast->r->max;
2318 	/* last should be larger than or equal to index */
2319 	if (mast->orig_r->last < mast->orig_r->index)
2320 		mast->orig_r->last = mast->orig_r->index;
2321 
2322 	wr_mas.type = mte_node_type(mast->orig_r->node);
2323 	mas_wr_node_walk(&wr_mas);
2324 	/* Set up the left side of things */
2325 	mast->orig_l->offset = 0;
2326 	mast->orig_l->index = mast->l->min;
2327 	wr_mas.mas = mast->orig_l;
2328 	wr_mas.type = mte_node_type(mast->orig_l->node);
2329 	mas_wr_node_walk(&wr_mas);
2330 
2331 	mast->bn->type = wr_mas.type;
2332 }
2333 
2334 /*
2335  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2336  * @mas: the maple state with the allocations.
2337  * @b_node: the maple_big_node with the type encoding.
2338  *
2339  * Use the node type from the maple_big_node to allocate a new node from the
2340  * ma_state.  This function exists mainly for code readability.
2341  *
2342  * Return: A new maple encoded node
2343  */
2344 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2345 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2346 {
2347 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2348 }
2349 
2350 /*
2351  * mas_mab_to_node() - Set up right and middle nodes
2352  *
2353  * @mas: the maple state that contains the allocations.
2354  * @b_node: the node which contains the data.
2355  * @left: The pointer which will have the left node
2356  * @right: The pointer which may have the right node
2357  * @middle: the pointer which may have the middle node (rare)
2358  * @mid_split: the split location for the middle node
2359  *
2360  * Return: the split of left.
2361  */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split)2362 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2363 	struct maple_big_node *b_node, struct maple_enode **left,
2364 	struct maple_enode **right, struct maple_enode **middle,
2365 	unsigned char *mid_split)
2366 {
2367 	unsigned char split = 0;
2368 	unsigned char slot_count = mt_slots[b_node->type];
2369 
2370 	*left = mas_new_ma_node(mas, b_node);
2371 	*right = NULL;
2372 	*middle = NULL;
2373 	*mid_split = 0;
2374 
2375 	if (b_node->b_end < slot_count) {
2376 		split = b_node->b_end;
2377 	} else {
2378 		split = mab_calc_split(mas, b_node, mid_split);
2379 		*right = mas_new_ma_node(mas, b_node);
2380 	}
2381 
2382 	if (*mid_split)
2383 		*middle = mas_new_ma_node(mas, b_node);
2384 
2385 	return split;
2386 
2387 }
2388 
2389 /*
2390  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2391  * pointer.
2392  * @b_node: the big node to add the entry
2393  * @mas: the maple state to get the pivot (mas->max)
2394  * @entry: the entry to add, if NULL nothing happens.
2395  */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2396 static inline void mab_set_b_end(struct maple_big_node *b_node,
2397 				 struct ma_state *mas,
2398 				 void *entry)
2399 {
2400 	if (!entry)
2401 		return;
2402 
2403 	b_node->slot[b_node->b_end] = entry;
2404 	if (mt_is_alloc(mas->tree))
2405 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2406 	b_node->pivot[b_node->b_end++] = mas->max;
2407 }
2408 
2409 /*
2410  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2411  * of @mas->node to either @left or @right, depending on @slot and @split
2412  *
2413  * @mas: the maple state with the node that needs a parent
2414  * @left: possible parent 1
2415  * @right: possible parent 2
2416  * @slot: the slot the mas->node was placed
2417  * @split: the split location between @left and @right
2418  */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2419 static inline void mas_set_split_parent(struct ma_state *mas,
2420 					struct maple_enode *left,
2421 					struct maple_enode *right,
2422 					unsigned char *slot, unsigned char split)
2423 {
2424 	if (mas_is_none(mas))
2425 		return;
2426 
2427 	if ((*slot) <= split)
2428 		mas_set_parent(mas, mas->node, left, *slot);
2429 	else if (right)
2430 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2431 
2432 	(*slot)++;
2433 }
2434 
2435 /*
2436  * mte_mid_split_check() - Check if the next node passes the mid-split
2437  * @l: Pointer to left encoded maple node.
2438  * @m: Pointer to middle encoded maple node.
2439  * @r: Pointer to right encoded maple node.
2440  * @slot: The offset
2441  * @split: The split location.
2442  * @mid_split: The middle split.
2443  */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2444 static inline void mte_mid_split_check(struct maple_enode **l,
2445 				       struct maple_enode **r,
2446 				       struct maple_enode *right,
2447 				       unsigned char slot,
2448 				       unsigned char *split,
2449 				       unsigned char mid_split)
2450 {
2451 	if (*r == right)
2452 		return;
2453 
2454 	if (slot < mid_split)
2455 		return;
2456 
2457 	*l = *r;
2458 	*r = right;
2459 	*split = mid_split;
2460 }
2461 
2462 /*
2463  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2464  * is taken from @mast->l.
2465  * @mast: the maple subtree state
2466  * @left: the left node
2467  * @right: the right node
2468  * @split: the split location.
2469  */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2470 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2471 					  struct maple_enode *left,
2472 					  struct maple_enode *middle,
2473 					  struct maple_enode *right,
2474 					  unsigned char split,
2475 					  unsigned char mid_split)
2476 {
2477 	unsigned char slot;
2478 	struct maple_enode *l = left;
2479 	struct maple_enode *r = right;
2480 
2481 	if (mas_is_none(mast->l))
2482 		return;
2483 
2484 	if (middle)
2485 		r = middle;
2486 
2487 	slot = mast->l->offset;
2488 
2489 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2490 	mas_set_split_parent(mast->l, l, r, &slot, split);
2491 
2492 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2493 	mas_set_split_parent(mast->m, l, r, &slot, split);
2494 
2495 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2496 	mas_set_split_parent(mast->r, l, r, &slot, split);
2497 }
2498 
2499 /*
2500  * mas_topiary_node() - Dispose of a single node
2501  * @mas: The maple state for pushing nodes
2502  * @in_rcu: If the tree is in rcu mode
2503  *
2504  * The node will either be RCU freed or pushed back on the maple state.
2505  */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2506 static inline void mas_topiary_node(struct ma_state *mas,
2507 		struct ma_state *tmp_mas, bool in_rcu)
2508 {
2509 	struct maple_node *tmp;
2510 	struct maple_enode *enode;
2511 
2512 	if (mas_is_none(tmp_mas))
2513 		return;
2514 
2515 	enode = tmp_mas->node;
2516 	tmp = mte_to_node(enode);
2517 	mte_set_node_dead(enode);
2518 	if (in_rcu)
2519 		ma_free_rcu(tmp);
2520 	else
2521 		mas_push_node(mas, tmp);
2522 }
2523 
2524 /*
2525  * mas_topiary_replace() - Replace the data with new data, then repair the
2526  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2527  * the dead subtrees and topiary the nodes that are no longer of use.
2528  *
2529  * The new tree will have up to three children with the correct parent.  Keep
2530  * track of the new entries as they need to be followed to find the next level
2531  * of new entries.
2532  *
2533  * The old tree will have up to three children with the old parent.  Keep track
2534  * of the old entries as they may have more nodes below replaced.  Nodes within
2535  * [index, last] are dead subtrees, others need to be freed and followed.
2536  *
2537  * @mas: The maple state pointing at the new data
2538  * @old_enode: The maple encoded node being replaced
2539  *
2540  */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode)2541 static inline void mas_topiary_replace(struct ma_state *mas,
2542 		struct maple_enode *old_enode)
2543 {
2544 	struct ma_state tmp[3], tmp_next[3];
2545 	MA_TOPIARY(subtrees, mas->tree);
2546 	bool in_rcu;
2547 	int i, n;
2548 
2549 	/* Place data in tree & then mark node as old */
2550 	mas_put_in_tree(mas, old_enode);
2551 
2552 	/* Update the parent pointers in the tree */
2553 	tmp[0] = *mas;
2554 	tmp[0].offset = 0;
2555 	tmp[1].status = ma_none;
2556 	tmp[2].status = ma_none;
2557 	while (!mte_is_leaf(tmp[0].node)) {
2558 		n = 0;
2559 		for (i = 0; i < 3; i++) {
2560 			if (mas_is_none(&tmp[i]))
2561 				continue;
2562 
2563 			while (n < 3) {
2564 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2565 					break;
2566 				n++;
2567 			}
2568 
2569 			mas_adopt_children(&tmp[i], tmp[i].node);
2570 		}
2571 
2572 		if (MAS_WARN_ON(mas, n == 0))
2573 			break;
2574 
2575 		while (n < 3)
2576 			tmp_next[n++].status = ma_none;
2577 
2578 		for (i = 0; i < 3; i++)
2579 			tmp[i] = tmp_next[i];
2580 	}
2581 
2582 	/* Collect the old nodes that need to be discarded */
2583 	if (mte_is_leaf(old_enode))
2584 		return mas_free(mas, old_enode);
2585 
2586 	tmp[0] = *mas;
2587 	tmp[0].offset = 0;
2588 	tmp[0].node = old_enode;
2589 	tmp[1].status = ma_none;
2590 	tmp[2].status = ma_none;
2591 	in_rcu = mt_in_rcu(mas->tree);
2592 	do {
2593 		n = 0;
2594 		for (i = 0; i < 3; i++) {
2595 			if (mas_is_none(&tmp[i]))
2596 				continue;
2597 
2598 			while (n < 3) {
2599 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2600 					break;
2601 
2602 				if ((tmp_next[n].min >= tmp_next->index) &&
2603 				    (tmp_next[n].max <= tmp_next->last)) {
2604 					mat_add(&subtrees, tmp_next[n].node);
2605 					tmp_next[n].status = ma_none;
2606 				} else {
2607 					n++;
2608 				}
2609 			}
2610 		}
2611 
2612 		if (MAS_WARN_ON(mas, n == 0))
2613 			break;
2614 
2615 		while (n < 3)
2616 			tmp_next[n++].status = ma_none;
2617 
2618 		for (i = 0; i < 3; i++) {
2619 			mas_topiary_node(mas, &tmp[i], in_rcu);
2620 			tmp[i] = tmp_next[i];
2621 		}
2622 	} while (!mte_is_leaf(tmp[0].node));
2623 
2624 	for (i = 0; i < 3; i++)
2625 		mas_topiary_node(mas, &tmp[i], in_rcu);
2626 
2627 	mas_mat_destroy(mas, &subtrees);
2628 }
2629 
2630 /*
2631  * mas_wmb_replace() - Write memory barrier and replace
2632  * @mas: The maple state
2633  * @old_enode: The old maple encoded node that is being replaced.
2634  *
2635  * Updates gap as necessary.
2636  */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode)2637 static inline void mas_wmb_replace(struct ma_state *mas,
2638 		struct maple_enode *old_enode)
2639 {
2640 	/* Insert the new data in the tree */
2641 	mas_topiary_replace(mas, old_enode);
2642 
2643 	if (mte_is_leaf(mas->node))
2644 		return;
2645 
2646 	mas_update_gap(mas);
2647 }
2648 
2649 /*
2650  * mast_cp_to_nodes() - Copy data out to nodes.
2651  * @mast: The maple subtree state
2652  * @left: The left encoded maple node
2653  * @middle: The middle encoded maple node
2654  * @right: The right encoded maple node
2655  * @split: The location to split between left and (middle ? middle : right)
2656  * @mid_split: The location to split between middle and right.
2657  */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2658 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2659 	struct maple_enode *left, struct maple_enode *middle,
2660 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2661 {
2662 	bool new_lmax = true;
2663 
2664 	mas_node_or_none(mast->l, left);
2665 	mas_node_or_none(mast->m, middle);
2666 	mas_node_or_none(mast->r, right);
2667 
2668 	mast->l->min = mast->orig_l->min;
2669 	if (split == mast->bn->b_end) {
2670 		mast->l->max = mast->orig_r->max;
2671 		new_lmax = false;
2672 	}
2673 
2674 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2675 
2676 	if (middle) {
2677 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2678 		mast->m->min = mast->bn->pivot[split] + 1;
2679 		split = mid_split;
2680 	}
2681 
2682 	mast->r->max = mast->orig_r->max;
2683 	if (right) {
2684 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2685 		mast->r->min = mast->bn->pivot[split] + 1;
2686 	}
2687 }
2688 
2689 /*
2690  * mast_combine_cp_left - Copy in the original left side of the tree into the
2691  * combined data set in the maple subtree state big node.
2692  * @mast: The maple subtree state
2693  */
mast_combine_cp_left(struct maple_subtree_state * mast)2694 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2695 {
2696 	unsigned char l_slot = mast->orig_l->offset;
2697 
2698 	if (!l_slot)
2699 		return;
2700 
2701 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2702 }
2703 
2704 /*
2705  * mast_combine_cp_right: Copy in the original right side of the tree into the
2706  * combined data set in the maple subtree state big node.
2707  * @mast: The maple subtree state
2708  */
mast_combine_cp_right(struct maple_subtree_state * mast)2709 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2710 {
2711 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2712 		return;
2713 
2714 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2715 		   mt_slot_count(mast->orig_r->node), mast->bn,
2716 		   mast->bn->b_end);
2717 	mast->orig_r->last = mast->orig_r->max;
2718 }
2719 
2720 /*
2721  * mast_sufficient: Check if the maple subtree state has enough data in the big
2722  * node to create at least one sufficient node
2723  * @mast: the maple subtree state
2724  */
mast_sufficient(struct maple_subtree_state * mast)2725 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2726 {
2727 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2728 		return true;
2729 
2730 	return false;
2731 }
2732 
2733 /*
2734  * mast_overflow: Check if there is too much data in the subtree state for a
2735  * single node.
2736  * @mast: The maple subtree state
2737  */
mast_overflow(struct maple_subtree_state * mast)2738 static inline bool mast_overflow(struct maple_subtree_state *mast)
2739 {
2740 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2741 		return true;
2742 
2743 	return false;
2744 }
2745 
mtree_range_walk(struct ma_state * mas)2746 static inline void *mtree_range_walk(struct ma_state *mas)
2747 {
2748 	unsigned long *pivots;
2749 	unsigned char offset;
2750 	struct maple_node *node;
2751 	struct maple_enode *next, *last;
2752 	enum maple_type type;
2753 	void __rcu **slots;
2754 	unsigned char end;
2755 	unsigned long max, min;
2756 	unsigned long prev_max, prev_min;
2757 
2758 	next = mas->node;
2759 	min = mas->min;
2760 	max = mas->max;
2761 	do {
2762 		last = next;
2763 		node = mte_to_node(next);
2764 		type = mte_node_type(next);
2765 		pivots = ma_pivots(node, type);
2766 		end = ma_data_end(node, type, pivots, max);
2767 		prev_min = min;
2768 		prev_max = max;
2769 		if (pivots[0] >= mas->index) {
2770 			offset = 0;
2771 			max = pivots[0];
2772 			goto next;
2773 		}
2774 
2775 		offset = 1;
2776 		while (offset < end) {
2777 			if (pivots[offset] >= mas->index) {
2778 				max = pivots[offset];
2779 				break;
2780 			}
2781 			offset++;
2782 		}
2783 
2784 		min = pivots[offset - 1] + 1;
2785 next:
2786 		slots = ma_slots(node, type);
2787 		next = mt_slot(mas->tree, slots, offset);
2788 		if (unlikely(ma_dead_node(node)))
2789 			goto dead_node;
2790 	} while (!ma_is_leaf(type));
2791 
2792 	mas->end = end;
2793 	mas->offset = offset;
2794 	mas->index = min;
2795 	mas->last = max;
2796 	mas->min = prev_min;
2797 	mas->max = prev_max;
2798 	mas->node = last;
2799 	return (void *)next;
2800 
2801 dead_node:
2802 	mas_reset(mas);
2803 	return NULL;
2804 }
2805 
2806 /*
2807  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2808  * @mas: The starting maple state
2809  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2810  * @count: The estimated count of iterations needed.
2811  *
2812  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2813  * is hit.  First @b_node is split into two entries which are inserted into the
2814  * next iteration of the loop.  @b_node is returned populated with the final
2815  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2816  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2817  * to account of what has been copied into the new sub-tree.  The update of
2818  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2819  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2820  * the new sub-tree in case the sub-tree becomes the full tree.
2821  */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2822 static void mas_spanning_rebalance(struct ma_state *mas,
2823 		struct maple_subtree_state *mast, unsigned char count)
2824 {
2825 	unsigned char split, mid_split;
2826 	unsigned char slot = 0;
2827 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2828 	struct maple_enode *old_enode;
2829 
2830 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2831 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2832 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2833 
2834 	/*
2835 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2836 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2837 	 */
2838 	mast->l = &l_mas;
2839 	mast->m = &m_mas;
2840 	mast->r = &r_mas;
2841 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2842 
2843 	/* Check if this is not root and has sufficient data.  */
2844 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2845 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2846 		mast_spanning_rebalance(mast);
2847 
2848 	l_mas.depth = 0;
2849 
2850 	/*
2851 	 * Each level of the tree is examined and balanced, pushing data to the left or
2852 	 * right, or rebalancing against left or right nodes is employed to avoid
2853 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2854 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2855 	 * will have the incorrect parent pointers and currently be in two trees: the
2856 	 * original tree and the partially new tree.  To remedy the parent pointers in
2857 	 * the old tree, the new data is swapped into the active tree and a walk down
2858 	 * the tree is performed and the parent pointers are updated.
2859 	 * See mas_topiary_replace() for more information.
2860 	 */
2861 	while (count--) {
2862 		mast->bn->b_end--;
2863 		mast->bn->type = mte_node_type(mast->orig_l->node);
2864 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2865 					&mid_split);
2866 		mast_set_split_parents(mast, left, middle, right, split,
2867 				       mid_split);
2868 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2869 
2870 		/*
2871 		 * Copy data from next level in the tree to mast->bn from next
2872 		 * iteration
2873 		 */
2874 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2875 		mast->bn->type = mte_node_type(left);
2876 		l_mas.depth++;
2877 
2878 		/* Root already stored in l->node. */
2879 		if (mas_is_root_limits(mast->l))
2880 			goto new_root;
2881 
2882 		mast_ascend(mast);
2883 		mast_combine_cp_left(mast);
2884 		l_mas.offset = mast->bn->b_end;
2885 		mab_set_b_end(mast->bn, &l_mas, left);
2886 		mab_set_b_end(mast->bn, &m_mas, middle);
2887 		mab_set_b_end(mast->bn, &r_mas, right);
2888 
2889 		/* Copy anything necessary out of the right node. */
2890 		mast_combine_cp_right(mast);
2891 		mast->orig_l->last = mast->orig_l->max;
2892 
2893 		if (mast_sufficient(mast))
2894 			continue;
2895 
2896 		if (mast_overflow(mast))
2897 			continue;
2898 
2899 		/* May be a new root stored in mast->bn */
2900 		if (mas_is_root_limits(mast->orig_l))
2901 			break;
2902 
2903 		mast_spanning_rebalance(mast);
2904 
2905 		/* rebalancing from other nodes may require another loop. */
2906 		if (!count)
2907 			count++;
2908 	}
2909 
2910 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2911 				mte_node_type(mast->orig_l->node));
2912 	l_mas.depth++;
2913 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2914 	mas_set_parent(mas, left, l_mas.node, slot);
2915 	if (middle)
2916 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2917 
2918 	if (right)
2919 		mas_set_parent(mas, right, l_mas.node, ++slot);
2920 
2921 	if (mas_is_root_limits(mast->l)) {
2922 new_root:
2923 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2924 		while (!mte_is_root(mast->orig_l->node))
2925 			mast_ascend(mast);
2926 	} else {
2927 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2928 	}
2929 
2930 	old_enode = mast->orig_l->node;
2931 	mas->depth = l_mas.depth;
2932 	mas->node = l_mas.node;
2933 	mas->min = l_mas.min;
2934 	mas->max = l_mas.max;
2935 	mas->offset = l_mas.offset;
2936 	mas_wmb_replace(mas, old_enode);
2937 	mtree_range_walk(mas);
2938 	return;
2939 }
2940 
2941 /*
2942  * mas_rebalance() - Rebalance a given node.
2943  * @mas: The maple state
2944  * @b_node: The big maple node.
2945  *
2946  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2947  * Continue upwards until tree is sufficient.
2948  */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2949 static inline void mas_rebalance(struct ma_state *mas,
2950 				struct maple_big_node *b_node)
2951 {
2952 	char empty_count = mas_mt_height(mas);
2953 	struct maple_subtree_state mast;
2954 	unsigned char shift, b_end = ++b_node->b_end;
2955 
2956 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2957 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2958 
2959 	trace_ma_op(__func__, mas);
2960 
2961 	/*
2962 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2963 	 * against the node to the right if it exists, otherwise the node to the
2964 	 * left of this node is rebalanced against this node.  If rebalancing
2965 	 * causes just one node to be produced instead of two, then the parent
2966 	 * is also examined and rebalanced if it is insufficient.  Every level
2967 	 * tries to combine the data in the same way.  If one node contains the
2968 	 * entire range of the tree, then that node is used as a new root node.
2969 	 */
2970 
2971 	mast.orig_l = &l_mas;
2972 	mast.orig_r = &r_mas;
2973 	mast.bn = b_node;
2974 	mast.bn->type = mte_node_type(mas->node);
2975 
2976 	l_mas = r_mas = *mas;
2977 
2978 	if (mas_next_sibling(&r_mas)) {
2979 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2980 		r_mas.last = r_mas.index = r_mas.max;
2981 	} else {
2982 		mas_prev_sibling(&l_mas);
2983 		shift = mas_data_end(&l_mas) + 1;
2984 		mab_shift_right(b_node, shift);
2985 		mas->offset += shift;
2986 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2987 		b_node->b_end = shift + b_end;
2988 		l_mas.index = l_mas.last = l_mas.min;
2989 	}
2990 
2991 	return mas_spanning_rebalance(mas, &mast, empty_count);
2992 }
2993 
2994 /*
2995  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
2996  * state.
2997  * @mas: The maple state
2998  * @end: The end of the left-most node.
2999  *
3000  * During a mass-insert event (such as forking), it may be necessary to
3001  * rebalance the left-most node when it is not sufficient.
3002  */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)3003 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3004 {
3005 	enum maple_type mt = mte_node_type(mas->node);
3006 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3007 	struct maple_enode *eparent, *old_eparent;
3008 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3009 	void __rcu **l_slots, **slots;
3010 	unsigned long *l_pivs, *pivs, gap;
3011 	bool in_rcu = mt_in_rcu(mas->tree);
3012 
3013 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3014 
3015 	l_mas = *mas;
3016 	mas_prev_sibling(&l_mas);
3017 
3018 	/* set up node. */
3019 	if (in_rcu) {
3020 		newnode = mas_pop_node(mas);
3021 	} else {
3022 		newnode = &reuse;
3023 	}
3024 
3025 	node = mas_mn(mas);
3026 	newnode->parent = node->parent;
3027 	slots = ma_slots(newnode, mt);
3028 	pivs = ma_pivots(newnode, mt);
3029 	left = mas_mn(&l_mas);
3030 	l_slots = ma_slots(left, mt);
3031 	l_pivs = ma_pivots(left, mt);
3032 	if (!l_slots[split])
3033 		split++;
3034 	tmp = mas_data_end(&l_mas) - split;
3035 
3036 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3037 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3038 	pivs[tmp] = l_mas.max;
3039 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3040 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3041 
3042 	l_mas.max = l_pivs[split];
3043 	mas->min = l_mas.max + 1;
3044 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3045 			     mas_parent_type(&l_mas, l_mas.node));
3046 	tmp += end;
3047 	if (!in_rcu) {
3048 		unsigned char max_p = mt_pivots[mt];
3049 		unsigned char max_s = mt_slots[mt];
3050 
3051 		if (tmp < max_p)
3052 			memset(pivs + tmp, 0,
3053 			       sizeof(unsigned long) * (max_p - tmp));
3054 
3055 		if (tmp < mt_slots[mt])
3056 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3057 
3058 		memcpy(node, newnode, sizeof(struct maple_node));
3059 		ma_set_meta(node, mt, 0, tmp - 1);
3060 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3061 			      l_pivs[split]);
3062 
3063 		/* Remove data from l_pivs. */
3064 		tmp = split + 1;
3065 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3066 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3067 		ma_set_meta(left, mt, 0, split);
3068 		eparent = old_eparent;
3069 
3070 		goto done;
3071 	}
3072 
3073 	/* RCU requires replacing both l_mas, mas, and parent. */
3074 	mas->node = mt_mk_node(newnode, mt);
3075 	ma_set_meta(newnode, mt, 0, tmp);
3076 
3077 	new_left = mas_pop_node(mas);
3078 	new_left->parent = left->parent;
3079 	mt = mte_node_type(l_mas.node);
3080 	slots = ma_slots(new_left, mt);
3081 	pivs = ma_pivots(new_left, mt);
3082 	memcpy(slots, l_slots, sizeof(void *) * split);
3083 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3084 	ma_set_meta(new_left, mt, 0, split);
3085 	l_mas.node = mt_mk_node(new_left, mt);
3086 
3087 	/* replace parent. */
3088 	offset = mte_parent_slot(mas->node);
3089 	mt = mas_parent_type(&l_mas, l_mas.node);
3090 	parent = mas_pop_node(mas);
3091 	slots = ma_slots(parent, mt);
3092 	pivs = ma_pivots(parent, mt);
3093 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3094 	rcu_assign_pointer(slots[offset], mas->node);
3095 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3096 	pivs[offset - 1] = l_mas.max;
3097 	eparent = mt_mk_node(parent, mt);
3098 done:
3099 	gap = mas_leaf_max_gap(mas);
3100 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3101 	gap = mas_leaf_max_gap(&l_mas);
3102 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3103 	mas_ascend(mas);
3104 
3105 	if (in_rcu) {
3106 		mas_replace_node(mas, old_eparent);
3107 		mas_adopt_children(mas, mas->node);
3108 	}
3109 
3110 	mas_update_gap(mas);
3111 }
3112 
3113 /*
3114  * mas_split_final_node() - Split the final node in a subtree operation.
3115  * @mast: the maple subtree state
3116  * @mas: The maple state
3117  * @height: The height of the tree in case it's a new root.
3118  */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas,int height)3119 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3120 					struct ma_state *mas, int height)
3121 {
3122 	struct maple_enode *ancestor;
3123 
3124 	if (mte_is_root(mas->node)) {
3125 		if (mt_is_alloc(mas->tree))
3126 			mast->bn->type = maple_arange_64;
3127 		else
3128 			mast->bn->type = maple_range_64;
3129 		mas->depth = height;
3130 	}
3131 	/*
3132 	 * Only a single node is used here, could be root.
3133 	 * The Big_node data should just fit in a single node.
3134 	 */
3135 	ancestor = mas_new_ma_node(mas, mast->bn);
3136 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3137 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3138 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3139 
3140 	mast->l->node = ancestor;
3141 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3142 	mas->offset = mast->bn->b_end - 1;
3143 }
3144 
3145 /*
3146  * mast_fill_bnode() - Copy data into the big node in the subtree state
3147  * @mast: The maple subtree state
3148  * @mas: the maple state
3149  * @skip: The number of entries to skip for new nodes insertion.
3150  */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3151 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3152 					 struct ma_state *mas,
3153 					 unsigned char skip)
3154 {
3155 	bool cp = true;
3156 	unsigned char split;
3157 
3158 	memset(mast->bn, 0, sizeof(struct maple_big_node));
3159 
3160 	if (mte_is_root(mas->node)) {
3161 		cp = false;
3162 	} else {
3163 		mas_ascend(mas);
3164 		mas->offset = mte_parent_slot(mas->node);
3165 	}
3166 
3167 	if (cp && mast->l->offset)
3168 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3169 
3170 	split = mast->bn->b_end;
3171 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3172 	mast->r->offset = mast->bn->b_end;
3173 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3174 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3175 		cp = false;
3176 
3177 	if (cp)
3178 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3179 			   mast->bn, mast->bn->b_end);
3180 
3181 	mast->bn->b_end--;
3182 	mast->bn->type = mte_node_type(mas->node);
3183 }
3184 
3185 /*
3186  * mast_split_data() - Split the data in the subtree state big node into regular
3187  * nodes.
3188  * @mast: The maple subtree state
3189  * @mas: The maple state
3190  * @split: The location to split the big node
3191  */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3192 static inline void mast_split_data(struct maple_subtree_state *mast,
3193 	   struct ma_state *mas, unsigned char split)
3194 {
3195 	unsigned char p_slot;
3196 
3197 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3198 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3199 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3200 	mast->l->offset = mte_parent_slot(mas->node);
3201 	mast->l->max = mast->bn->pivot[split];
3202 	mast->r->min = mast->l->max + 1;
3203 	if (mte_is_leaf(mas->node))
3204 		return;
3205 
3206 	p_slot = mast->orig_l->offset;
3207 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3208 			     &p_slot, split);
3209 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3210 			     &p_slot, split);
3211 }
3212 
3213 /*
3214  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3215  * data to the right or left node if there is room.
3216  * @mas: The maple state
3217  * @height: The current height of the maple state
3218  * @mast: The maple subtree state
3219  * @left: Push left or not.
3220  *
3221  * Keeping the height of the tree low means faster lookups.
3222  *
3223  * Return: True if pushed, false otherwise.
3224  */
mas_push_data(struct ma_state * mas,int height,struct maple_subtree_state * mast,bool left)3225 static inline bool mas_push_data(struct ma_state *mas, int height,
3226 				 struct maple_subtree_state *mast, bool left)
3227 {
3228 	unsigned char slot_total = mast->bn->b_end;
3229 	unsigned char end, space, split;
3230 
3231 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3232 	tmp_mas = *mas;
3233 	tmp_mas.depth = mast->l->depth;
3234 
3235 	if (left && !mas_prev_sibling(&tmp_mas))
3236 		return false;
3237 	else if (!left && !mas_next_sibling(&tmp_mas))
3238 		return false;
3239 
3240 	end = mas_data_end(&tmp_mas);
3241 	slot_total += end;
3242 	space = 2 * mt_slot_count(mas->node) - 2;
3243 	/* -2 instead of -1 to ensure there isn't a triple split */
3244 	if (ma_is_leaf(mast->bn->type))
3245 		space--;
3246 
3247 	if (mas->max == ULONG_MAX)
3248 		space--;
3249 
3250 	if (slot_total >= space)
3251 		return false;
3252 
3253 	/* Get the data; Fill mast->bn */
3254 	mast->bn->b_end++;
3255 	if (left) {
3256 		mab_shift_right(mast->bn, end + 1);
3257 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3258 		mast->bn->b_end = slot_total + 1;
3259 	} else {
3260 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3261 	}
3262 
3263 	/* Configure mast for splitting of mast->bn */
3264 	split = mt_slots[mast->bn->type] - 2;
3265 	if (left) {
3266 		/*  Switch mas to prev node  */
3267 		*mas = tmp_mas;
3268 		/* Start using mast->l for the left side. */
3269 		tmp_mas.node = mast->l->node;
3270 		*mast->l = tmp_mas;
3271 	} else {
3272 		tmp_mas.node = mast->r->node;
3273 		*mast->r = tmp_mas;
3274 		split = slot_total - split;
3275 	}
3276 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3277 	/* Update parent slot for split calculation. */
3278 	if (left)
3279 		mast->orig_l->offset += end + 1;
3280 
3281 	mast_split_data(mast, mas, split);
3282 	mast_fill_bnode(mast, mas, 2);
3283 	mas_split_final_node(mast, mas, height + 1);
3284 	return true;
3285 }
3286 
3287 /*
3288  * mas_split() - Split data that is too big for one node into two.
3289  * @mas: The maple state
3290  * @b_node: The maple big node
3291  */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3292 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3293 {
3294 	struct maple_subtree_state mast;
3295 	int height = 0;
3296 	unsigned char mid_split, split = 0;
3297 	struct maple_enode *old;
3298 
3299 	/*
3300 	 * Splitting is handled differently from any other B-tree; the Maple
3301 	 * Tree splits upwards.  Splitting up means that the split operation
3302 	 * occurs when the walk of the tree hits the leaves and not on the way
3303 	 * down.  The reason for splitting up is that it is impossible to know
3304 	 * how much space will be needed until the leaf is (or leaves are)
3305 	 * reached.  Since overwriting data is allowed and a range could
3306 	 * overwrite more than one range or result in changing one entry into 3
3307 	 * entries, it is impossible to know if a split is required until the
3308 	 * data is examined.
3309 	 *
3310 	 * Splitting is a balancing act between keeping allocations to a minimum
3311 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3312 	 * for an entry followed by a contraction when the entry is removed.  To
3313 	 * accomplish the balance, there are empty slots remaining in both left
3314 	 * and right nodes after a split.
3315 	 */
3316 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3317 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3318 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3319 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3320 
3321 	trace_ma_op(__func__, mas);
3322 	mas->depth = mas_mt_height(mas);
3323 
3324 	mast.l = &l_mas;
3325 	mast.r = &r_mas;
3326 	mast.orig_l = &prev_l_mas;
3327 	mast.orig_r = &prev_r_mas;
3328 	mast.bn = b_node;
3329 
3330 	while (height++ <= mas->depth) {
3331 		if (mt_slots[b_node->type] > b_node->b_end) {
3332 			mas_split_final_node(&mast, mas, height);
3333 			break;
3334 		}
3335 
3336 		l_mas = r_mas = *mas;
3337 		l_mas.node = mas_new_ma_node(mas, b_node);
3338 		r_mas.node = mas_new_ma_node(mas, b_node);
3339 		/*
3340 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3341 		 * left or right node has space to spare.  This is referred to as "pushing left"
3342 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3343 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3344 		 * is a significant savings.
3345 		 */
3346 		/* Try to push left. */
3347 		if (mas_push_data(mas, height, &mast, true))
3348 			break;
3349 		/* Try to push right. */
3350 		if (mas_push_data(mas, height, &mast, false))
3351 			break;
3352 
3353 		split = mab_calc_split(mas, b_node, &mid_split);
3354 		mast_split_data(&mast, mas, split);
3355 		/*
3356 		 * Usually correct, mab_mas_cp in the above call overwrites
3357 		 * r->max.
3358 		 */
3359 		mast.r->max = mas->max;
3360 		mast_fill_bnode(&mast, mas, 1);
3361 		prev_l_mas = *mast.l;
3362 		prev_r_mas = *mast.r;
3363 	}
3364 
3365 	/* Set the original node as dead */
3366 	old = mas->node;
3367 	mas->node = l_mas.node;
3368 	mas_wmb_replace(mas, old);
3369 	mtree_range_walk(mas);
3370 	return;
3371 }
3372 
3373 /*
3374  * mas_commit_b_node() - Commit the big node into the tree.
3375  * @wr_mas: The maple write state
3376  * @b_node: The maple big node
3377  */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3378 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3379 			    struct maple_big_node *b_node)
3380 {
3381 	enum store_type type = wr_mas->mas->store_type;
3382 
3383 	WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3384 
3385 	if (type == wr_rebalance)
3386 		return mas_rebalance(wr_mas->mas, b_node);
3387 
3388 	return mas_split(wr_mas->mas, b_node);
3389 }
3390 
3391 /*
3392  * mas_root_expand() - Expand a root to a node
3393  * @mas: The maple state
3394  * @entry: The entry to store into the tree
3395  */
mas_root_expand(struct ma_state * mas,void * entry)3396 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3397 {
3398 	void *contents = mas_root_locked(mas);
3399 	enum maple_type type = maple_leaf_64;
3400 	struct maple_node *node;
3401 	void __rcu **slots;
3402 	unsigned long *pivots;
3403 	int slot = 0;
3404 
3405 	node = mas_pop_node(mas);
3406 	pivots = ma_pivots(node, type);
3407 	slots = ma_slots(node, type);
3408 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3409 	mas->node = mt_mk_node(node, type);
3410 	mas->status = ma_active;
3411 
3412 	if (mas->index) {
3413 		if (contents) {
3414 			rcu_assign_pointer(slots[slot], contents);
3415 			if (likely(mas->index > 1))
3416 				slot++;
3417 		}
3418 		pivots[slot++] = mas->index - 1;
3419 	}
3420 
3421 	rcu_assign_pointer(slots[slot], entry);
3422 	mas->offset = slot;
3423 	pivots[slot] = mas->last;
3424 	if (mas->last != ULONG_MAX)
3425 		pivots[++slot] = ULONG_MAX;
3426 
3427 	mas->depth = 1;
3428 	mas_set_height(mas);
3429 	ma_set_meta(node, maple_leaf_64, 0, slot);
3430 	/* swap the new root into the tree */
3431 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3432 	return;
3433 }
3434 
3435 /*
3436  * mas_store_root() - Storing value into root.
3437  * @mas: The maple state
3438  * @entry: The entry to store.
3439  *
3440  * There is no root node now and we are storing a value into the root - this
3441  * function either assigns the pointer or expands into a node.
3442  */
mas_store_root(struct ma_state * mas,void * entry)3443 static inline void mas_store_root(struct ma_state *mas, void *entry)
3444 {
3445 	if (!entry) {
3446 		if (!mas->index)
3447 			rcu_assign_pointer(mas->tree->ma_root, NULL);
3448 	} else if (likely((mas->last != 0) || (mas->index != 0)))
3449 		mas_root_expand(mas, entry);
3450 	else if (((unsigned long) (entry) & 3) == 2)
3451 		mas_root_expand(mas, entry);
3452 	else {
3453 		rcu_assign_pointer(mas->tree->ma_root, entry);
3454 		mas->status = ma_start;
3455 	}
3456 }
3457 
3458 /*
3459  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3460  * spans the node.
3461  * @wr_mas: The maple write state
3462  *
3463  * Spanning writes are writes that start in one node and end in another OR if
3464  * the write of a %NULL will cause the node to end with a %NULL.
3465  *
3466  * Return: True if this is a spanning write, false otherwise.
3467  */
mas_is_span_wr(struct ma_wr_state * wr_mas)3468 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3469 {
3470 	unsigned long max = wr_mas->r_max;
3471 	unsigned long last = wr_mas->mas->last;
3472 	enum maple_type type = wr_mas->type;
3473 	void *entry = wr_mas->entry;
3474 
3475 	/* Contained in this pivot, fast path */
3476 	if (last < max)
3477 		return false;
3478 
3479 	if (ma_is_leaf(type)) {
3480 		max = wr_mas->mas->max;
3481 		if (last < max)
3482 			return false;
3483 	}
3484 
3485 	if (last == max) {
3486 		/*
3487 		 * The last entry of leaf node cannot be NULL unless it is the
3488 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3489 		 */
3490 		if (entry || last == ULONG_MAX)
3491 			return false;
3492 	}
3493 
3494 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3495 	return true;
3496 }
3497 
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3498 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3499 {
3500 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3501 	mas_wr_node_walk(wr_mas);
3502 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3503 }
3504 
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3505 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3506 {
3507 	wr_mas->mas->max = wr_mas->r_max;
3508 	wr_mas->mas->min = wr_mas->r_min;
3509 	wr_mas->mas->node = wr_mas->content;
3510 	wr_mas->mas->offset = 0;
3511 	wr_mas->mas->depth++;
3512 }
3513 /*
3514  * mas_wr_walk() - Walk the tree for a write.
3515  * @wr_mas: The maple write state
3516  *
3517  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3518  *
3519  * Return: True if it's contained in a node, false on spanning write.
3520  */
mas_wr_walk(struct ma_wr_state * wr_mas)3521 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3522 {
3523 	struct ma_state *mas = wr_mas->mas;
3524 
3525 	while (true) {
3526 		mas_wr_walk_descend(wr_mas);
3527 		if (unlikely(mas_is_span_wr(wr_mas)))
3528 			return false;
3529 
3530 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3531 						  mas->offset);
3532 		if (ma_is_leaf(wr_mas->type))
3533 			return true;
3534 
3535 		mas_wr_walk_traverse(wr_mas);
3536 	}
3537 
3538 	return true;
3539 }
3540 
mas_wr_walk_index(struct ma_wr_state * wr_mas)3541 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3542 {
3543 	struct ma_state *mas = wr_mas->mas;
3544 
3545 	while (true) {
3546 		mas_wr_walk_descend(wr_mas);
3547 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3548 						  mas->offset);
3549 		if (ma_is_leaf(wr_mas->type))
3550 			return;
3551 		mas_wr_walk_traverse(wr_mas);
3552 	}
3553 }
3554 /*
3555  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3556  * @l_wr_mas: The left maple write state
3557  * @r_wr_mas: The right maple write state
3558  */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3559 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3560 					    struct ma_wr_state *r_wr_mas)
3561 {
3562 	struct ma_state *r_mas = r_wr_mas->mas;
3563 	struct ma_state *l_mas = l_wr_mas->mas;
3564 	unsigned char l_slot;
3565 
3566 	l_slot = l_mas->offset;
3567 	if (!l_wr_mas->content)
3568 		l_mas->index = l_wr_mas->r_min;
3569 
3570 	if ((l_mas->index == l_wr_mas->r_min) &&
3571 		 (l_slot &&
3572 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3573 		if (l_slot > 1)
3574 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3575 		else
3576 			l_mas->index = l_mas->min;
3577 
3578 		l_mas->offset = l_slot - 1;
3579 	}
3580 
3581 	if (!r_wr_mas->content) {
3582 		if (r_mas->last < r_wr_mas->r_max)
3583 			r_mas->last = r_wr_mas->r_max;
3584 		r_mas->offset++;
3585 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3586 	    (r_mas->last < r_mas->max) &&
3587 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3588 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3589 					     r_wr_mas->type, r_mas->offset + 1);
3590 		r_mas->offset++;
3591 	}
3592 }
3593 
mas_state_walk(struct ma_state * mas)3594 static inline void *mas_state_walk(struct ma_state *mas)
3595 {
3596 	void *entry;
3597 
3598 	entry = mas_start(mas);
3599 	if (mas_is_none(mas))
3600 		return NULL;
3601 
3602 	if (mas_is_ptr(mas))
3603 		return entry;
3604 
3605 	return mtree_range_walk(mas);
3606 }
3607 
3608 /*
3609  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3610  * to date.
3611  *
3612  * @mas: The maple state.
3613  *
3614  * Note: Leaves mas in undesirable state.
3615  * Return: The entry for @mas->index or %NULL on dead node.
3616  */
mtree_lookup_walk(struct ma_state * mas)3617 static inline void *mtree_lookup_walk(struct ma_state *mas)
3618 {
3619 	unsigned long *pivots;
3620 	unsigned char offset;
3621 	struct maple_node *node;
3622 	struct maple_enode *next;
3623 	enum maple_type type;
3624 	void __rcu **slots;
3625 	unsigned char end;
3626 
3627 	next = mas->node;
3628 	do {
3629 		node = mte_to_node(next);
3630 		type = mte_node_type(next);
3631 		pivots = ma_pivots(node, type);
3632 		end = mt_pivots[type];
3633 		offset = 0;
3634 		do {
3635 			if (pivots[offset] >= mas->index)
3636 				break;
3637 		} while (++offset < end);
3638 
3639 		slots = ma_slots(node, type);
3640 		next = mt_slot(mas->tree, slots, offset);
3641 		if (unlikely(ma_dead_node(node)))
3642 			goto dead_node;
3643 	} while (!ma_is_leaf(type));
3644 
3645 	return (void *)next;
3646 
3647 dead_node:
3648 	mas_reset(mas);
3649 	return NULL;
3650 }
3651 
3652 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3653 /*
3654  * mas_new_root() - Create a new root node that only contains the entry passed
3655  * in.
3656  * @mas: The maple state
3657  * @entry: The entry to store.
3658  *
3659  * Only valid when the index == 0 and the last == ULONG_MAX
3660  */
mas_new_root(struct ma_state * mas,void * entry)3661 static inline void mas_new_root(struct ma_state *mas, void *entry)
3662 {
3663 	struct maple_enode *root = mas_root_locked(mas);
3664 	enum maple_type type = maple_leaf_64;
3665 	struct maple_node *node;
3666 	void __rcu **slots;
3667 	unsigned long *pivots;
3668 
3669 	WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3670 
3671 	if (!entry) {
3672 		mas->depth = 0;
3673 		mas_set_height(mas);
3674 		rcu_assign_pointer(mas->tree->ma_root, entry);
3675 		mas->status = ma_start;
3676 		goto done;
3677 	}
3678 
3679 	node = mas_pop_node(mas);
3680 	pivots = ma_pivots(node, type);
3681 	slots = ma_slots(node, type);
3682 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3683 	mas->node = mt_mk_node(node, type);
3684 	mas->status = ma_active;
3685 	rcu_assign_pointer(slots[0], entry);
3686 	pivots[0] = mas->last;
3687 	mas->depth = 1;
3688 	mas_set_height(mas);
3689 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3690 
3691 done:
3692 	if (xa_is_node(root))
3693 		mte_destroy_walk(root, mas->tree);
3694 
3695 	return;
3696 }
3697 /*
3698  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3699  * and new nodes where necessary, then place the sub-tree in the actual tree.
3700  * Note that mas is expected to point to the node which caused the store to
3701  * span.
3702  * @wr_mas: The maple write state
3703  */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3704 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3705 {
3706 	struct maple_subtree_state mast;
3707 	struct maple_big_node b_node;
3708 	struct ma_state *mas;
3709 	unsigned char height;
3710 
3711 	/* Left and Right side of spanning store */
3712 	MA_STATE(l_mas, NULL, 0, 0);
3713 	MA_STATE(r_mas, NULL, 0, 0);
3714 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3715 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3716 
3717 	/*
3718 	 * A store operation that spans multiple nodes is called a spanning
3719 	 * store and is handled early in the store call stack by the function
3720 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3721 	 * state is duplicated.  The first maple state walks the left tree path
3722 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3723 	 * The data in the two nodes are combined into a single node, two nodes,
3724 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3725 	 * written to the last entry of a node is considered a spanning store as
3726 	 * a rebalance is required for the operation to complete and an overflow
3727 	 * of data may happen.
3728 	 */
3729 	mas = wr_mas->mas;
3730 	trace_ma_op(__func__, mas);
3731 
3732 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3733 		return mas_new_root(mas, wr_mas->entry);
3734 	/*
3735 	 * Node rebalancing may occur due to this store, so there may be three new
3736 	 * entries per level plus a new root.
3737 	 */
3738 	height = mas_mt_height(mas);
3739 
3740 	/*
3741 	 * Set up right side.  Need to get to the next offset after the spanning
3742 	 * store to ensure it's not NULL and to combine both the next node and
3743 	 * the node with the start together.
3744 	 */
3745 	r_mas = *mas;
3746 	/* Avoid overflow, walk to next slot in the tree. */
3747 	if (r_mas.last + 1)
3748 		r_mas.last++;
3749 
3750 	r_mas.index = r_mas.last;
3751 	mas_wr_walk_index(&r_wr_mas);
3752 	r_mas.last = r_mas.index = mas->last;
3753 
3754 	/* Set up left side. */
3755 	l_mas = *mas;
3756 	mas_wr_walk_index(&l_wr_mas);
3757 
3758 	if (!wr_mas->entry) {
3759 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3760 		mas->offset = l_mas.offset;
3761 		mas->index = l_mas.index;
3762 		mas->last = l_mas.last = r_mas.last;
3763 	}
3764 
3765 	/* expanding NULLs may make this cover the entire range */
3766 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3767 		mas_set_range(mas, 0, ULONG_MAX);
3768 		return mas_new_root(mas, wr_mas->entry);
3769 	}
3770 
3771 	memset(&b_node, 0, sizeof(struct maple_big_node));
3772 	/* Copy l_mas and store the value in b_node. */
3773 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3774 	/* Copy r_mas into b_node if there is anything to copy. */
3775 	if (r_mas.max > r_mas.last)
3776 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3777 			   &b_node, b_node.b_end + 1);
3778 	else
3779 		b_node.b_end++;
3780 
3781 	/* Stop spanning searches by searching for just index. */
3782 	l_mas.index = l_mas.last = mas->index;
3783 
3784 	mast.bn = &b_node;
3785 	mast.orig_l = &l_mas;
3786 	mast.orig_r = &r_mas;
3787 	/* Combine l_mas and r_mas and split them up evenly again. */
3788 	return mas_spanning_rebalance(mas, &mast, height + 1);
3789 }
3790 
3791 /*
3792  * mas_wr_node_store() - Attempt to store the value in a node
3793  * @wr_mas: The maple write state
3794  *
3795  * Attempts to reuse the node, but may allocate.
3796  */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3797 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3798 				     unsigned char new_end)
3799 {
3800 	struct ma_state *mas = wr_mas->mas;
3801 	void __rcu **dst_slots;
3802 	unsigned long *dst_pivots;
3803 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3804 	struct maple_node reuse, *newnode;
3805 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3806 	bool in_rcu = mt_in_rcu(mas->tree);
3807 
3808 	if (mas->last == wr_mas->end_piv)
3809 		offset_end++; /* don't copy this offset */
3810 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3811 		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3812 
3813 	/* set up node. */
3814 	if (in_rcu) {
3815 		newnode = mas_pop_node(mas);
3816 	} else {
3817 		memset(&reuse, 0, sizeof(struct maple_node));
3818 		newnode = &reuse;
3819 	}
3820 
3821 	newnode->parent = mas_mn(mas)->parent;
3822 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3823 	dst_slots = ma_slots(newnode, wr_mas->type);
3824 	/* Copy from start to insert point */
3825 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3826 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3827 
3828 	/* Handle insert of new range starting after old range */
3829 	if (wr_mas->r_min < mas->index) {
3830 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3831 		dst_pivots[mas->offset++] = mas->index - 1;
3832 	}
3833 
3834 	/* Store the new entry and range end. */
3835 	if (mas->offset < node_pivots)
3836 		dst_pivots[mas->offset] = mas->last;
3837 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3838 
3839 	/*
3840 	 * this range wrote to the end of the node or it overwrote the rest of
3841 	 * the data
3842 	 */
3843 	if (offset_end > mas->end)
3844 		goto done;
3845 
3846 	dst_offset = mas->offset + 1;
3847 	/* Copy to the end of node if necessary. */
3848 	copy_size = mas->end - offset_end + 1;
3849 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3850 	       sizeof(void *) * copy_size);
3851 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3852 	       sizeof(unsigned long) * (copy_size - 1));
3853 
3854 	if (new_end < node_pivots)
3855 		dst_pivots[new_end] = mas->max;
3856 
3857 done:
3858 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3859 	if (in_rcu) {
3860 		struct maple_enode *old_enode = mas->node;
3861 
3862 		mas->node = mt_mk_node(newnode, wr_mas->type);
3863 		mas_replace_node(mas, old_enode);
3864 	} else {
3865 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3866 	}
3867 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3868 	mas_update_gap(mas);
3869 	mas->end = new_end;
3870 	return;
3871 }
3872 
3873 /*
3874  * mas_wr_slot_store: Attempt to store a value in a slot.
3875  * @wr_mas: the maple write state
3876  */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3877 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3878 {
3879 	struct ma_state *mas = wr_mas->mas;
3880 	unsigned char offset = mas->offset;
3881 	void __rcu **slots = wr_mas->slots;
3882 	bool gap = false;
3883 
3884 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3885 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3886 
3887 	if (wr_mas->offset_end - offset == 1) {
3888 		if (mas->index == wr_mas->r_min) {
3889 			/* Overwriting the range and a part of the next one */
3890 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3891 			wr_mas->pivots[offset] = mas->last;
3892 		} else {
3893 			/* Overwriting a part of the range and the next one */
3894 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3895 			wr_mas->pivots[offset] = mas->index - 1;
3896 			mas->offset++; /* Keep mas accurate. */
3897 		}
3898 	} else {
3899 		WARN_ON_ONCE(mt_in_rcu(mas->tree));
3900 		/*
3901 		 * Expand the range, only partially overwriting the previous and
3902 		 * next ranges
3903 		 */
3904 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3905 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3906 		wr_mas->pivots[offset] = mas->index - 1;
3907 		wr_mas->pivots[offset + 1] = mas->last;
3908 		mas->offset++; /* Keep mas accurate. */
3909 	}
3910 
3911 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3912 	/*
3913 	 * Only update gap when the new entry is empty or there is an empty
3914 	 * entry in the original two ranges.
3915 	 */
3916 	if (!wr_mas->entry || gap)
3917 		mas_update_gap(mas);
3918 
3919 	return;
3920 }
3921 
mas_wr_extend_null(struct ma_wr_state * wr_mas)3922 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3923 {
3924 	struct ma_state *mas = wr_mas->mas;
3925 
3926 	if (!wr_mas->slots[wr_mas->offset_end]) {
3927 		/* If this one is null, the next and prev are not */
3928 		mas->last = wr_mas->end_piv;
3929 	} else {
3930 		/* Check next slot(s) if we are overwriting the end */
3931 		if ((mas->last == wr_mas->end_piv) &&
3932 		    (mas->end != wr_mas->offset_end) &&
3933 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
3934 			wr_mas->offset_end++;
3935 			if (wr_mas->offset_end == mas->end)
3936 				mas->last = mas->max;
3937 			else
3938 				mas->last = wr_mas->pivots[wr_mas->offset_end];
3939 			wr_mas->end_piv = mas->last;
3940 		}
3941 	}
3942 
3943 	if (!wr_mas->content) {
3944 		/* If this one is null, the next and prev are not */
3945 		mas->index = wr_mas->r_min;
3946 	} else {
3947 		/* Check prev slot if we are overwriting the start */
3948 		if (mas->index == wr_mas->r_min && mas->offset &&
3949 		    !wr_mas->slots[mas->offset - 1]) {
3950 			mas->offset--;
3951 			wr_mas->r_min = mas->index =
3952 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
3953 			wr_mas->r_max = wr_mas->pivots[mas->offset];
3954 		}
3955 	}
3956 }
3957 
mas_wr_end_piv(struct ma_wr_state * wr_mas)3958 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3959 {
3960 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
3961 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3962 		wr_mas->offset_end++;
3963 
3964 	if (wr_mas->offset_end < wr_mas->mas->end)
3965 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3966 	else
3967 		wr_mas->end_piv = wr_mas->mas->max;
3968 }
3969 
mas_wr_new_end(struct ma_wr_state * wr_mas)3970 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3971 {
3972 	struct ma_state *mas = wr_mas->mas;
3973 	unsigned char new_end = mas->end + 2;
3974 
3975 	new_end -= wr_mas->offset_end - mas->offset;
3976 	if (wr_mas->r_min == mas->index)
3977 		new_end--;
3978 
3979 	if (wr_mas->end_piv == mas->last)
3980 		new_end--;
3981 
3982 	return new_end;
3983 }
3984 
3985 /*
3986  * mas_wr_append: Attempt to append
3987  * @wr_mas: the maple write state
3988  * @new_end: The end of the node after the modification
3989  *
3990  * This is currently unsafe in rcu mode since the end of the node may be cached
3991  * by readers while the node contents may be updated which could result in
3992  * inaccurate information.
3993  */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)3994 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3995 		unsigned char new_end)
3996 {
3997 	struct ma_state *mas = wr_mas->mas;
3998 	void __rcu **slots;
3999 	unsigned char end = mas->end;
4000 
4001 	if (new_end < mt_pivots[wr_mas->type]) {
4002 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4003 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4004 	}
4005 
4006 	slots = wr_mas->slots;
4007 	if (new_end == end + 1) {
4008 		if (mas->last == wr_mas->r_max) {
4009 			/* Append to end of range */
4010 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4011 			wr_mas->pivots[end] = mas->index - 1;
4012 			mas->offset = new_end;
4013 		} else {
4014 			/* Append to start of range */
4015 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4016 			wr_mas->pivots[end] = mas->last;
4017 			rcu_assign_pointer(slots[end], wr_mas->entry);
4018 		}
4019 	} else {
4020 		/* Append to the range without touching any boundaries. */
4021 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4022 		wr_mas->pivots[end + 1] = mas->last;
4023 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4024 		wr_mas->pivots[end] = mas->index - 1;
4025 		mas->offset = end + 1;
4026 	}
4027 
4028 	if (!wr_mas->content || !wr_mas->entry)
4029 		mas_update_gap(mas);
4030 
4031 	mas->end = new_end;
4032 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4033 	return;
4034 }
4035 
4036 /*
4037  * mas_wr_bnode() - Slow path for a modification.
4038  * @wr_mas: The write maple state
4039  *
4040  * This is where split, rebalance end up.
4041  */
mas_wr_bnode(struct ma_wr_state * wr_mas)4042 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4043 {
4044 	struct maple_big_node b_node;
4045 
4046 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4047 	memset(&b_node, 0, sizeof(struct maple_big_node));
4048 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4049 	mas_commit_b_node(wr_mas, &b_node);
4050 }
4051 
4052 /*
4053  * mas_wr_store_entry() - Internal call to store a value
4054  * @wr_mas: The maple write state
4055  */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4056 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4057 {
4058 	struct ma_state *mas = wr_mas->mas;
4059 	unsigned char new_end = mas_wr_new_end(wr_mas);
4060 
4061 	switch (mas->store_type) {
4062 	case wr_invalid:
4063 		MT_BUG_ON(mas->tree, 1);
4064 		return;
4065 	case wr_new_root:
4066 		mas_new_root(mas, wr_mas->entry);
4067 		break;
4068 	case wr_store_root:
4069 		mas_store_root(mas, wr_mas->entry);
4070 		break;
4071 	case wr_exact_fit:
4072 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4073 		if (!!wr_mas->entry ^ !!wr_mas->content)
4074 			mas_update_gap(mas);
4075 		break;
4076 	case wr_append:
4077 		mas_wr_append(wr_mas, new_end);
4078 		break;
4079 	case wr_slot_store:
4080 		mas_wr_slot_store(wr_mas);
4081 		break;
4082 	case wr_node_store:
4083 		mas_wr_node_store(wr_mas, new_end);
4084 		break;
4085 	case wr_spanning_store:
4086 		mas_wr_spanning_store(wr_mas);
4087 		break;
4088 	case wr_split_store:
4089 	case wr_rebalance:
4090 		mas_wr_bnode(wr_mas);
4091 		break;
4092 	}
4093 
4094 	return;
4095 }
4096 
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)4097 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4098 {
4099 	struct ma_state *mas = wr_mas->mas;
4100 
4101 	if (!mas_is_active(mas)) {
4102 		if (mas_is_start(mas))
4103 			goto set_content;
4104 
4105 		if (unlikely(mas_is_paused(mas)))
4106 			goto reset;
4107 
4108 		if (unlikely(mas_is_none(mas)))
4109 			goto reset;
4110 
4111 		if (unlikely(mas_is_overflow(mas)))
4112 			goto reset;
4113 
4114 		if (unlikely(mas_is_underflow(mas)))
4115 			goto reset;
4116 	}
4117 
4118 	/*
4119 	 * A less strict version of mas_is_span_wr() where we allow spanning
4120 	 * writes within this node.  This is to stop partial walks in
4121 	 * mas_prealloc() from being reset.
4122 	 */
4123 	if (mas->last > mas->max)
4124 		goto reset;
4125 
4126 	if (wr_mas->entry)
4127 		goto set_content;
4128 
4129 	if (mte_is_leaf(mas->node) && mas->last == mas->max)
4130 		goto reset;
4131 
4132 	goto set_content;
4133 
4134 reset:
4135 	mas_reset(mas);
4136 set_content:
4137 	wr_mas->content = mas_start(mas);
4138 }
4139 
4140 /**
4141  * mas_prealloc_calc() - Calculate number of nodes needed for a
4142  * given store oepration
4143  * @mas: The maple state
4144  * @entry: The entry to store into the tree
4145  *
4146  * Return: Number of nodes required for preallocation.
4147  */
mas_prealloc_calc(struct ma_state * mas,void * entry)4148 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4149 {
4150 	int ret = mas_mt_height(mas) * 3 + 1;
4151 
4152 	switch (mas->store_type) {
4153 	case wr_invalid:
4154 		WARN_ON_ONCE(1);
4155 		break;
4156 	case wr_new_root:
4157 		ret = 1;
4158 		break;
4159 	case wr_store_root:
4160 		if (likely((mas->last != 0) || (mas->index != 0)))
4161 			ret = 1;
4162 		else if (((unsigned long) (entry) & 3) == 2)
4163 			ret = 1;
4164 		else
4165 			ret = 0;
4166 		break;
4167 	case wr_spanning_store:
4168 		ret =  mas_mt_height(mas) * 3 + 1;
4169 		break;
4170 	case wr_split_store:
4171 		ret =  mas_mt_height(mas) * 2 + 1;
4172 		break;
4173 	case wr_rebalance:
4174 		ret =  mas_mt_height(mas) * 2 - 1;
4175 		break;
4176 	case wr_node_store:
4177 		ret = mt_in_rcu(mas->tree) ? 1 : 0;
4178 		break;
4179 	case wr_append:
4180 	case wr_exact_fit:
4181 	case wr_slot_store:
4182 		ret = 0;
4183 	}
4184 
4185 	return ret;
4186 }
4187 
4188 /*
4189  * mas_wr_store_type() - Determine the store type for a given
4190  * store operation.
4191  * @wr_mas: The maple write state
4192  *
4193  * Return: the type of store needed for the operation
4194  */
mas_wr_store_type(struct ma_wr_state * wr_mas)4195 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4196 {
4197 	struct ma_state *mas = wr_mas->mas;
4198 	unsigned char new_end;
4199 
4200 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4201 		return wr_store_root;
4202 
4203 	if (unlikely(!mas_wr_walk(wr_mas)))
4204 		return wr_spanning_store;
4205 
4206 	/* At this point, we are at the leaf node that needs to be altered. */
4207 	mas_wr_end_piv(wr_mas);
4208 	if (!wr_mas->entry)
4209 		mas_wr_extend_null(wr_mas);
4210 
4211 	if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4212 		return wr_exact_fit;
4213 
4214 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
4215 		return wr_new_root;
4216 
4217 	new_end = mas_wr_new_end(wr_mas);
4218 	/* Potential spanning rebalance collapsing a node */
4219 	if (new_end < mt_min_slots[wr_mas->type]) {
4220 		if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4221 			return  wr_rebalance;
4222 		return wr_node_store;
4223 	}
4224 
4225 	if (new_end >= mt_slots[wr_mas->type])
4226 		return wr_split_store;
4227 
4228 	if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4229 		return wr_append;
4230 
4231 	if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4232 		(wr_mas->offset_end - mas->offset == 1)))
4233 		return wr_slot_store;
4234 
4235 	return wr_node_store;
4236 }
4237 
4238 /**
4239  * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4240  * @wr_mas: The maple write state
4241  * @entry: The entry that will be stored
4242  *
4243  */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)4244 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4245 {
4246 	struct ma_state *mas = wr_mas->mas;
4247 	int request;
4248 
4249 	mas_wr_prealloc_setup(wr_mas);
4250 	mas->store_type = mas_wr_store_type(wr_mas);
4251 	request = mas_prealloc_calc(mas, entry);
4252 	if (!request)
4253 		return;
4254 
4255 	mas_node_count(mas, request);
4256 }
4257 
4258 /**
4259  * mas_insert() - Internal call to insert a value
4260  * @mas: The maple state
4261  * @entry: The entry to store
4262  *
4263  * Return: %NULL or the contents that already exists at the requested index
4264  * otherwise.  The maple state needs to be checked for error conditions.
4265  */
mas_insert(struct ma_state * mas,void * entry)4266 static inline void *mas_insert(struct ma_state *mas, void *entry)
4267 {
4268 	MA_WR_STATE(wr_mas, mas, entry);
4269 
4270 	/*
4271 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4272 	 * tree.  If the insert fits exactly into an existing gap with a value
4273 	 * of NULL, then the slot only needs to be written with the new value.
4274 	 * If the range being inserted is adjacent to another range, then only a
4275 	 * single pivot needs to be inserted (as well as writing the entry).  If
4276 	 * the new range is within a gap but does not touch any other ranges,
4277 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4278 	 * usual, the entry must be written.  Most operations require a new node
4279 	 * to be allocated and replace an existing node to ensure RCU safety,
4280 	 * when in RCU mode.  The exception to requiring a newly allocated node
4281 	 * is when inserting at the end of a node (appending).  When done
4282 	 * carefully, appending can reuse the node in place.
4283 	 */
4284 	wr_mas.content = mas_start(mas);
4285 	if (wr_mas.content)
4286 		goto exists;
4287 
4288 	mas_wr_preallocate(&wr_mas, entry);
4289 	if (mas_is_err(mas))
4290 		return NULL;
4291 
4292 	/* spanning writes always overwrite something */
4293 	if (mas->store_type == wr_spanning_store)
4294 		goto exists;
4295 
4296 	/* At this point, we are at the leaf node that needs to be altered. */
4297 	if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4298 		wr_mas.offset_end = mas->offset;
4299 		wr_mas.end_piv = wr_mas.r_max;
4300 
4301 		if (wr_mas.content || (mas->last > wr_mas.r_max))
4302 			goto exists;
4303 	}
4304 
4305 	mas_wr_store_entry(&wr_mas);
4306 	return wr_mas.content;
4307 
4308 exists:
4309 	mas_set_err(mas, -EEXIST);
4310 	return wr_mas.content;
4311 
4312 }
4313 
4314 /**
4315  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4316  * @mas: The maple state.
4317  * @startp: Pointer to ID.
4318  * @range_lo: Lower bound of range to search.
4319  * @range_hi: Upper bound of range to search.
4320  * @entry: The entry to store.
4321  * @next: Pointer to next ID to allocate.
4322  * @gfp: The GFP_FLAGS to use for allocations.
4323  *
4324  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4325  * allocation succeeded after wrapping, or -EBUSY if there are no
4326  * free entries.
4327  */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4328 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4329 		void *entry, unsigned long range_lo, unsigned long range_hi,
4330 		unsigned long *next, gfp_t gfp)
4331 {
4332 	unsigned long min = range_lo;
4333 	int ret = 0;
4334 
4335 	range_lo = max(min, *next);
4336 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4337 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4338 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4339 		ret = 1;
4340 	}
4341 	if (ret < 0 && range_lo > min) {
4342 		mas_reset(mas);
4343 		ret = mas_empty_area(mas, min, range_hi, 1);
4344 		if (ret == 0)
4345 			ret = 1;
4346 	}
4347 	if (ret < 0)
4348 		return ret;
4349 
4350 	do {
4351 		mas_insert(mas, entry);
4352 	} while (mas_nomem(mas, gfp));
4353 	if (mas_is_err(mas))
4354 		return xa_err(mas->node);
4355 
4356 	*startp = mas->index;
4357 	*next = *startp + 1;
4358 	if (*next == 0)
4359 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4360 
4361 	mas_destroy(mas);
4362 	return ret;
4363 }
4364 EXPORT_SYMBOL(mas_alloc_cyclic);
4365 
mas_rewalk(struct ma_state * mas,unsigned long index)4366 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4367 {
4368 retry:
4369 	mas_set(mas, index);
4370 	mas_state_walk(mas);
4371 	if (mas_is_start(mas))
4372 		goto retry;
4373 }
4374 
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4375 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4376 		struct maple_node *node, const unsigned long index)
4377 {
4378 	if (unlikely(ma_dead_node(node))) {
4379 		mas_rewalk(mas, index);
4380 		return true;
4381 	}
4382 	return false;
4383 }
4384 
4385 /*
4386  * mas_prev_node() - Find the prev non-null entry at the same level in the
4387  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4388  * ma_none.
4389  * @mas: The maple state
4390  * @min: The lower limit to search
4391  *
4392  * The prev node value will be mas->node[mas->offset] or the status will be
4393  * ma_none.
4394  * Return: 1 if the node is dead, 0 otherwise.
4395  */
mas_prev_node(struct ma_state * mas,unsigned long min)4396 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4397 {
4398 	enum maple_type mt;
4399 	int offset, level;
4400 	void __rcu **slots;
4401 	struct maple_node *node;
4402 	unsigned long *pivots;
4403 	unsigned long max;
4404 
4405 	node = mas_mn(mas);
4406 	if (!mas->min)
4407 		goto no_entry;
4408 
4409 	max = mas->min - 1;
4410 	if (max < min)
4411 		goto no_entry;
4412 
4413 	level = 0;
4414 	do {
4415 		if (ma_is_root(node))
4416 			goto no_entry;
4417 
4418 		/* Walk up. */
4419 		if (unlikely(mas_ascend(mas)))
4420 			return 1;
4421 		offset = mas->offset;
4422 		level++;
4423 		node = mas_mn(mas);
4424 	} while (!offset);
4425 
4426 	offset--;
4427 	mt = mte_node_type(mas->node);
4428 	while (level > 1) {
4429 		level--;
4430 		slots = ma_slots(node, mt);
4431 		mas->node = mas_slot(mas, slots, offset);
4432 		if (unlikely(ma_dead_node(node)))
4433 			return 1;
4434 
4435 		mt = mte_node_type(mas->node);
4436 		node = mas_mn(mas);
4437 		pivots = ma_pivots(node, mt);
4438 		offset = ma_data_end(node, mt, pivots, max);
4439 		if (unlikely(ma_dead_node(node)))
4440 			return 1;
4441 	}
4442 
4443 	slots = ma_slots(node, mt);
4444 	mas->node = mas_slot(mas, slots, offset);
4445 	pivots = ma_pivots(node, mt);
4446 	if (unlikely(ma_dead_node(node)))
4447 		return 1;
4448 
4449 	if (likely(offset))
4450 		mas->min = pivots[offset - 1] + 1;
4451 	mas->max = max;
4452 	mas->offset = mas_data_end(mas);
4453 	if (unlikely(mte_dead_node(mas->node)))
4454 		return 1;
4455 
4456 	mas->end = mas->offset;
4457 	return 0;
4458 
4459 no_entry:
4460 	if (unlikely(ma_dead_node(node)))
4461 		return 1;
4462 
4463 	mas->status = ma_underflow;
4464 	return 0;
4465 }
4466 
4467 /*
4468  * mas_prev_slot() - Get the entry in the previous slot
4469  *
4470  * @mas: The maple state
4471  * @min: The minimum starting range
4472  * @empty: Can be empty
4473  *
4474  * Return: The entry in the previous slot which is possibly NULL
4475  */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4476 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4477 {
4478 	void *entry;
4479 	void __rcu **slots;
4480 	unsigned long pivot;
4481 	enum maple_type type;
4482 	unsigned long *pivots;
4483 	struct maple_node *node;
4484 	unsigned long save_point = mas->index;
4485 
4486 retry:
4487 	node = mas_mn(mas);
4488 	type = mte_node_type(mas->node);
4489 	pivots = ma_pivots(node, type);
4490 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4491 		goto retry;
4492 
4493 	if (mas->min <= min) {
4494 		pivot = mas_safe_min(mas, pivots, mas->offset);
4495 
4496 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4497 			goto retry;
4498 
4499 		if (pivot <= min)
4500 			goto underflow;
4501 	}
4502 
4503 again:
4504 	if (likely(mas->offset)) {
4505 		mas->offset--;
4506 		mas->last = mas->index - 1;
4507 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4508 	} else  {
4509 		if (mas->index <= min)
4510 			goto underflow;
4511 
4512 		if (mas_prev_node(mas, min)) {
4513 			mas_rewalk(mas, save_point);
4514 			goto retry;
4515 		}
4516 
4517 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4518 			return NULL;
4519 
4520 		mas->last = mas->max;
4521 		node = mas_mn(mas);
4522 		type = mte_node_type(mas->node);
4523 		pivots = ma_pivots(node, type);
4524 		mas->index = pivots[mas->offset - 1] + 1;
4525 	}
4526 
4527 	slots = ma_slots(node, type);
4528 	entry = mas_slot(mas, slots, mas->offset);
4529 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4530 		goto retry;
4531 
4532 
4533 	if (likely(entry))
4534 		return entry;
4535 
4536 	if (!empty) {
4537 		if (mas->index <= min) {
4538 			mas->status = ma_underflow;
4539 			return NULL;
4540 		}
4541 
4542 		goto again;
4543 	}
4544 
4545 	return entry;
4546 
4547 underflow:
4548 	mas->status = ma_underflow;
4549 	return NULL;
4550 }
4551 
4552 /*
4553  * mas_next_node() - Get the next node at the same level in the tree.
4554  * @mas: The maple state
4555  * @node: The maple node
4556  * @max: The maximum pivot value to check.
4557  *
4558  * The next value will be mas->node[mas->offset] or the status will have
4559  * overflowed.
4560  * Return: 1 on dead node, 0 otherwise.
4561  */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4562 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4563 		unsigned long max)
4564 {
4565 	unsigned long min;
4566 	unsigned long *pivots;
4567 	struct maple_enode *enode;
4568 	struct maple_node *tmp;
4569 	int level = 0;
4570 	unsigned char node_end;
4571 	enum maple_type mt;
4572 	void __rcu **slots;
4573 
4574 	if (mas->max >= max)
4575 		goto overflow;
4576 
4577 	min = mas->max + 1;
4578 	level = 0;
4579 	do {
4580 		if (ma_is_root(node))
4581 			goto overflow;
4582 
4583 		/* Walk up. */
4584 		if (unlikely(mas_ascend(mas)))
4585 			return 1;
4586 
4587 		level++;
4588 		node = mas_mn(mas);
4589 		mt = mte_node_type(mas->node);
4590 		pivots = ma_pivots(node, mt);
4591 		node_end = ma_data_end(node, mt, pivots, mas->max);
4592 		if (unlikely(ma_dead_node(node)))
4593 			return 1;
4594 
4595 	} while (unlikely(mas->offset == node_end));
4596 
4597 	slots = ma_slots(node, mt);
4598 	mas->offset++;
4599 	enode = mas_slot(mas, slots, mas->offset);
4600 	if (unlikely(ma_dead_node(node)))
4601 		return 1;
4602 
4603 	if (level > 1)
4604 		mas->offset = 0;
4605 
4606 	while (unlikely(level > 1)) {
4607 		level--;
4608 		mas->node = enode;
4609 		node = mas_mn(mas);
4610 		mt = mte_node_type(mas->node);
4611 		slots = ma_slots(node, mt);
4612 		enode = mas_slot(mas, slots, 0);
4613 		if (unlikely(ma_dead_node(node)))
4614 			return 1;
4615 	}
4616 
4617 	if (!mas->offset)
4618 		pivots = ma_pivots(node, mt);
4619 
4620 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4621 	tmp = mte_to_node(enode);
4622 	mt = mte_node_type(enode);
4623 	pivots = ma_pivots(tmp, mt);
4624 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4625 	if (unlikely(ma_dead_node(node)))
4626 		return 1;
4627 
4628 	mas->node = enode;
4629 	mas->min = min;
4630 	return 0;
4631 
4632 overflow:
4633 	if (unlikely(ma_dead_node(node)))
4634 		return 1;
4635 
4636 	mas->status = ma_overflow;
4637 	return 0;
4638 }
4639 
4640 /*
4641  * mas_next_slot() - Get the entry in the next slot
4642  *
4643  * @mas: The maple state
4644  * @max: The maximum starting range
4645  * @empty: Can be empty
4646  *
4647  * Return: The entry in the next slot which is possibly NULL
4648  */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4649 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4650 {
4651 	void __rcu **slots;
4652 	unsigned long *pivots;
4653 	unsigned long pivot;
4654 	enum maple_type type;
4655 	struct maple_node *node;
4656 	unsigned long save_point = mas->last;
4657 	void *entry;
4658 
4659 retry:
4660 	node = mas_mn(mas);
4661 	type = mte_node_type(mas->node);
4662 	pivots = ma_pivots(node, type);
4663 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4664 		goto retry;
4665 
4666 	if (mas->max >= max) {
4667 		if (likely(mas->offset < mas->end))
4668 			pivot = pivots[mas->offset];
4669 		else
4670 			pivot = mas->max;
4671 
4672 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4673 			goto retry;
4674 
4675 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4676 			mas->status = ma_overflow;
4677 			return NULL;
4678 		}
4679 	}
4680 
4681 	if (likely(mas->offset < mas->end)) {
4682 		mas->index = pivots[mas->offset] + 1;
4683 again:
4684 		mas->offset++;
4685 		if (likely(mas->offset < mas->end))
4686 			mas->last = pivots[mas->offset];
4687 		else
4688 			mas->last = mas->max;
4689 	} else  {
4690 		if (mas->last >= max) {
4691 			mas->status = ma_overflow;
4692 			return NULL;
4693 		}
4694 
4695 		if (mas_next_node(mas, node, max)) {
4696 			mas_rewalk(mas, save_point);
4697 			goto retry;
4698 		}
4699 
4700 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4701 			return NULL;
4702 
4703 		mas->offset = 0;
4704 		mas->index = mas->min;
4705 		node = mas_mn(mas);
4706 		type = mte_node_type(mas->node);
4707 		pivots = ma_pivots(node, type);
4708 		mas->last = pivots[0];
4709 	}
4710 
4711 	slots = ma_slots(node, type);
4712 	entry = mt_slot(mas->tree, slots, mas->offset);
4713 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4714 		goto retry;
4715 
4716 	if (entry)
4717 		return entry;
4718 
4719 
4720 	if (!empty) {
4721 		if (mas->last >= max) {
4722 			mas->status = ma_overflow;
4723 			return NULL;
4724 		}
4725 
4726 		mas->index = mas->last + 1;
4727 		goto again;
4728 	}
4729 
4730 	return entry;
4731 }
4732 
4733 /*
4734  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4735  * highest gap address of a given size in a given node and descend.
4736  * @mas: The maple state
4737  * @size: The needed size.
4738  *
4739  * Return: True if found in a leaf, false otherwise.
4740  *
4741  */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4742 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4743 		unsigned long *gap_min, unsigned long *gap_max)
4744 {
4745 	enum maple_type type = mte_node_type(mas->node);
4746 	struct maple_node *node = mas_mn(mas);
4747 	unsigned long *pivots, *gaps;
4748 	void __rcu **slots;
4749 	unsigned long gap = 0;
4750 	unsigned long max, min;
4751 	unsigned char offset;
4752 
4753 	if (unlikely(mas_is_err(mas)))
4754 		return true;
4755 
4756 	if (ma_is_dense(type)) {
4757 		/* dense nodes. */
4758 		mas->offset = (unsigned char)(mas->index - mas->min);
4759 		return true;
4760 	}
4761 
4762 	pivots = ma_pivots(node, type);
4763 	slots = ma_slots(node, type);
4764 	gaps = ma_gaps(node, type);
4765 	offset = mas->offset;
4766 	min = mas_safe_min(mas, pivots, offset);
4767 	/* Skip out of bounds. */
4768 	while (mas->last < min)
4769 		min = mas_safe_min(mas, pivots, --offset);
4770 
4771 	max = mas_safe_pivot(mas, pivots, offset, type);
4772 	while (mas->index <= max) {
4773 		gap = 0;
4774 		if (gaps)
4775 			gap = gaps[offset];
4776 		else if (!mas_slot(mas, slots, offset))
4777 			gap = max - min + 1;
4778 
4779 		if (gap) {
4780 			if ((size <= gap) && (size <= mas->last - min + 1))
4781 				break;
4782 
4783 			if (!gaps) {
4784 				/* Skip the next slot, it cannot be a gap. */
4785 				if (offset < 2)
4786 					goto ascend;
4787 
4788 				offset -= 2;
4789 				max = pivots[offset];
4790 				min = mas_safe_min(mas, pivots, offset);
4791 				continue;
4792 			}
4793 		}
4794 
4795 		if (!offset)
4796 			goto ascend;
4797 
4798 		offset--;
4799 		max = min - 1;
4800 		min = mas_safe_min(mas, pivots, offset);
4801 	}
4802 
4803 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4804 		goto no_space;
4805 
4806 	if (unlikely(ma_is_leaf(type))) {
4807 		mas->offset = offset;
4808 		*gap_min = min;
4809 		*gap_max = min + gap - 1;
4810 		return true;
4811 	}
4812 
4813 	/* descend, only happens under lock. */
4814 	mas->node = mas_slot(mas, slots, offset);
4815 	mas->min = min;
4816 	mas->max = max;
4817 	mas->offset = mas_data_end(mas);
4818 	return false;
4819 
4820 ascend:
4821 	if (!mte_is_root(mas->node))
4822 		return false;
4823 
4824 no_space:
4825 	mas_set_err(mas, -EBUSY);
4826 	return false;
4827 }
4828 
mas_anode_descend(struct ma_state * mas,unsigned long size)4829 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4830 {
4831 	enum maple_type type = mte_node_type(mas->node);
4832 	unsigned long pivot, min, gap = 0;
4833 	unsigned char offset, data_end;
4834 	unsigned long *gaps, *pivots;
4835 	void __rcu **slots;
4836 	struct maple_node *node;
4837 	bool found = false;
4838 
4839 	if (ma_is_dense(type)) {
4840 		mas->offset = (unsigned char)(mas->index - mas->min);
4841 		return true;
4842 	}
4843 
4844 	node = mas_mn(mas);
4845 	pivots = ma_pivots(node, type);
4846 	slots = ma_slots(node, type);
4847 	gaps = ma_gaps(node, type);
4848 	offset = mas->offset;
4849 	min = mas_safe_min(mas, pivots, offset);
4850 	data_end = ma_data_end(node, type, pivots, mas->max);
4851 	for (; offset <= data_end; offset++) {
4852 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4853 
4854 		/* Not within lower bounds */
4855 		if (mas->index > pivot)
4856 			goto next_slot;
4857 
4858 		if (gaps)
4859 			gap = gaps[offset];
4860 		else if (!mas_slot(mas, slots, offset))
4861 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4862 		else
4863 			goto next_slot;
4864 
4865 		if (gap >= size) {
4866 			if (ma_is_leaf(type)) {
4867 				found = true;
4868 				break;
4869 			}
4870 
4871 			mas->node = mas_slot(mas, slots, offset);
4872 			mas->min = min;
4873 			mas->max = pivot;
4874 			offset = 0;
4875 			break;
4876 		}
4877 next_slot:
4878 		min = pivot + 1;
4879 		if (mas->last <= pivot) {
4880 			mas_set_err(mas, -EBUSY);
4881 			return true;
4882 		}
4883 	}
4884 
4885 	mas->offset = offset;
4886 	return found;
4887 }
4888 
4889 /**
4890  * mas_walk() - Search for @mas->index in the tree.
4891  * @mas: The maple state.
4892  *
4893  * mas->index and mas->last will be set to the range if there is a value.  If
4894  * mas->status is ma_none, reset to ma_start
4895  *
4896  * Return: the entry at the location or %NULL.
4897  */
mas_walk(struct ma_state * mas)4898 void *mas_walk(struct ma_state *mas)
4899 {
4900 	void *entry;
4901 
4902 	if (!mas_is_active(mas) || !mas_is_start(mas))
4903 		mas->status = ma_start;
4904 retry:
4905 	entry = mas_state_walk(mas);
4906 	if (mas_is_start(mas)) {
4907 		goto retry;
4908 	} else if (mas_is_none(mas)) {
4909 		mas->index = 0;
4910 		mas->last = ULONG_MAX;
4911 	} else if (mas_is_ptr(mas)) {
4912 		if (!mas->index) {
4913 			mas->last = 0;
4914 			return entry;
4915 		}
4916 
4917 		mas->index = 1;
4918 		mas->last = ULONG_MAX;
4919 		mas->status = ma_none;
4920 		return NULL;
4921 	}
4922 
4923 	return entry;
4924 }
4925 EXPORT_SYMBOL_GPL(mas_walk);
4926 
mas_rewind_node(struct ma_state * mas)4927 static inline bool mas_rewind_node(struct ma_state *mas)
4928 {
4929 	unsigned char slot;
4930 
4931 	do {
4932 		if (mte_is_root(mas->node)) {
4933 			slot = mas->offset;
4934 			if (!slot)
4935 				return false;
4936 		} else {
4937 			mas_ascend(mas);
4938 			slot = mas->offset;
4939 		}
4940 	} while (!slot);
4941 
4942 	mas->offset = --slot;
4943 	return true;
4944 }
4945 
4946 /*
4947  * mas_skip_node() - Internal function.  Skip over a node.
4948  * @mas: The maple state.
4949  *
4950  * Return: true if there is another node, false otherwise.
4951  */
mas_skip_node(struct ma_state * mas)4952 static inline bool mas_skip_node(struct ma_state *mas)
4953 {
4954 	if (mas_is_err(mas))
4955 		return false;
4956 
4957 	do {
4958 		if (mte_is_root(mas->node)) {
4959 			if (mas->offset >= mas_data_end(mas)) {
4960 				mas_set_err(mas, -EBUSY);
4961 				return false;
4962 			}
4963 		} else {
4964 			mas_ascend(mas);
4965 		}
4966 	} while (mas->offset >= mas_data_end(mas));
4967 
4968 	mas->offset++;
4969 	return true;
4970 }
4971 
4972 /*
4973  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
4974  * @size
4975  * @mas: The maple state
4976  * @size: The size of the gap required
4977  *
4978  * Search between @mas->index and @mas->last for a gap of @size.
4979  */
mas_awalk(struct ma_state * mas,unsigned long size)4980 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4981 {
4982 	struct maple_enode *last = NULL;
4983 
4984 	/*
4985 	 * There are 4 options:
4986 	 * go to child (descend)
4987 	 * go back to parent (ascend)
4988 	 * no gap found. (return, error == -EBUSY)
4989 	 * found the gap. (return)
4990 	 */
4991 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4992 		if (last == mas->node)
4993 			mas_skip_node(mas);
4994 		else
4995 			last = mas->node;
4996 	}
4997 }
4998 
4999 /*
5000  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5001  * searching for a gap in an empty tree.
5002  * @mas: The maple state
5003  * @min: the minimum range
5004  * @max: The maximum range
5005  * @size: The size of the gap
5006  * @fwd: Searching forward or back
5007  */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)5008 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5009 				unsigned long max, unsigned long size, bool fwd)
5010 {
5011 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5012 		min++;
5013 		/*
5014 		 * At this time, min is increased, we need to recheck whether
5015 		 * the size is satisfied.
5016 		 */
5017 		if (min > max || max - min + 1 < size)
5018 			return -EBUSY;
5019 	}
5020 	/* mas_is_ptr */
5021 
5022 	if (fwd) {
5023 		mas->index = min;
5024 		mas->last = min + size - 1;
5025 	} else {
5026 		mas->last = max;
5027 		mas->index = max - size + 1;
5028 	}
5029 	return 0;
5030 }
5031 
5032 /*
5033  * mas_empty_area() - Get the lowest address within the range that is
5034  * sufficient for the size requested.
5035  * @mas: The maple state
5036  * @min: The lowest value of the range
5037  * @max: The highest value of the range
5038  * @size: The size needed
5039  */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5040 int mas_empty_area(struct ma_state *mas, unsigned long min,
5041 		unsigned long max, unsigned long size)
5042 {
5043 	unsigned char offset;
5044 	unsigned long *pivots;
5045 	enum maple_type mt;
5046 	struct maple_node *node;
5047 
5048 	if (min > max)
5049 		return -EINVAL;
5050 
5051 	if (size == 0 || max - min < size - 1)
5052 		return -EINVAL;
5053 
5054 	if (mas_is_start(mas))
5055 		mas_start(mas);
5056 	else if (mas->offset >= 2)
5057 		mas->offset -= 2;
5058 	else if (!mas_skip_node(mas))
5059 		return -EBUSY;
5060 
5061 	/* Empty set */
5062 	if (mas_is_none(mas) || mas_is_ptr(mas))
5063 		return mas_sparse_area(mas, min, max, size, true);
5064 
5065 	/* The start of the window can only be within these values */
5066 	mas->index = min;
5067 	mas->last = max;
5068 	mas_awalk(mas, size);
5069 
5070 	if (unlikely(mas_is_err(mas)))
5071 		return xa_err(mas->node);
5072 
5073 	offset = mas->offset;
5074 	node = mas_mn(mas);
5075 	mt = mte_node_type(mas->node);
5076 	pivots = ma_pivots(node, mt);
5077 	min = mas_safe_min(mas, pivots, offset);
5078 	if (mas->index < min)
5079 		mas->index = min;
5080 	mas->last = mas->index + size - 1;
5081 	mas->end = ma_data_end(node, mt, pivots, mas->max);
5082 	return 0;
5083 }
5084 EXPORT_SYMBOL_GPL(mas_empty_area);
5085 
5086 /*
5087  * mas_empty_area_rev() - Get the highest address within the range that is
5088  * sufficient for the size requested.
5089  * @mas: The maple state
5090  * @min: The lowest value of the range
5091  * @max: The highest value of the range
5092  * @size: The size needed
5093  */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5094 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5095 		unsigned long max, unsigned long size)
5096 {
5097 	struct maple_enode *last = mas->node;
5098 
5099 	if (min > max)
5100 		return -EINVAL;
5101 
5102 	if (size == 0 || max - min < size - 1)
5103 		return -EINVAL;
5104 
5105 	if (mas_is_start(mas))
5106 		mas_start(mas);
5107 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5108 		return -EBUSY;
5109 
5110 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5111 		return mas_sparse_area(mas, min, max, size, false);
5112 	else if (mas->offset >= 2)
5113 		mas->offset -= 2;
5114 	else
5115 		mas->offset = mas_data_end(mas);
5116 
5117 
5118 	/* The start of the window can only be within these values. */
5119 	mas->index = min;
5120 	mas->last = max;
5121 
5122 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5123 		if (last == mas->node) {
5124 			if (!mas_rewind_node(mas))
5125 				return -EBUSY;
5126 		} else {
5127 			last = mas->node;
5128 		}
5129 	}
5130 
5131 	if (mas_is_err(mas))
5132 		return xa_err(mas->node);
5133 
5134 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5135 		return -EBUSY;
5136 
5137 	/* Trim the upper limit to the max. */
5138 	if (max < mas->last)
5139 		mas->last = max;
5140 
5141 	mas->index = mas->last - size + 1;
5142 	mas->end = mas_data_end(mas);
5143 	return 0;
5144 }
5145 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5146 
5147 /*
5148  * mte_dead_leaves() - Mark all leaves of a node as dead.
5149  * @enode: the encoded node
5150  * @mt: the maple tree
5151  * @slots: Pointer to the slot array
5152  *
5153  * Must hold the write lock.
5154  *
5155  * Return: The number of leaves marked as dead.
5156  */
5157 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5158 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5159 			      void __rcu **slots)
5160 {
5161 	struct maple_node *node;
5162 	enum maple_type type;
5163 	void *entry;
5164 	int offset;
5165 
5166 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5167 		entry = mt_slot(mt, slots, offset);
5168 		type = mte_node_type(entry);
5169 		node = mte_to_node(entry);
5170 		/* Use both node and type to catch LE & BE metadata */
5171 		if (!node || !type)
5172 			break;
5173 
5174 		mte_set_node_dead(entry);
5175 		node->type = type;
5176 		rcu_assign_pointer(slots[offset], node);
5177 	}
5178 
5179 	return offset;
5180 }
5181 
5182 /**
5183  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5184  * @enode: The maple encoded node
5185  * @offset: The starting offset
5186  *
5187  * Note: This can only be used from the RCU callback context.
5188  */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5189 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5190 {
5191 	struct maple_node *node, *next;
5192 	void __rcu **slots = NULL;
5193 
5194 	next = mte_to_node(*enode);
5195 	do {
5196 		*enode = ma_enode_ptr(next);
5197 		node = mte_to_node(*enode);
5198 		slots = ma_slots(node, node->type);
5199 		next = rcu_dereference_protected(slots[offset],
5200 					lock_is_held(&rcu_callback_map));
5201 		offset = 0;
5202 	} while (!ma_is_leaf(next->type));
5203 
5204 	return slots;
5205 }
5206 
5207 /**
5208  * mt_free_walk() - Walk & free a tree in the RCU callback context
5209  * @head: The RCU head that's within the node.
5210  *
5211  * Note: This can only be used from the RCU callback context.
5212  */
mt_free_walk(struct rcu_head * head)5213 static void mt_free_walk(struct rcu_head *head)
5214 {
5215 	void __rcu **slots;
5216 	struct maple_node *node, *start;
5217 	struct maple_enode *enode;
5218 	unsigned char offset;
5219 	enum maple_type type;
5220 
5221 	node = container_of(head, struct maple_node, rcu);
5222 
5223 	if (ma_is_leaf(node->type))
5224 		goto free_leaf;
5225 
5226 	start = node;
5227 	enode = mt_mk_node(node, node->type);
5228 	slots = mte_dead_walk(&enode, 0);
5229 	node = mte_to_node(enode);
5230 	do {
5231 		mt_free_bulk(node->slot_len, slots);
5232 		offset = node->parent_slot + 1;
5233 		enode = node->piv_parent;
5234 		if (mte_to_node(enode) == node)
5235 			goto free_leaf;
5236 
5237 		type = mte_node_type(enode);
5238 		slots = ma_slots(mte_to_node(enode), type);
5239 		if ((offset < mt_slots[type]) &&
5240 		    rcu_dereference_protected(slots[offset],
5241 					      lock_is_held(&rcu_callback_map)))
5242 			slots = mte_dead_walk(&enode, offset);
5243 		node = mte_to_node(enode);
5244 	} while ((node != start) || (node->slot_len < offset));
5245 
5246 	slots = ma_slots(node, node->type);
5247 	mt_free_bulk(node->slot_len, slots);
5248 
5249 free_leaf:
5250 	mt_free_rcu(&node->rcu);
5251 }
5252 
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5253 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5254 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5255 {
5256 	struct maple_node *node;
5257 	struct maple_enode *next = *enode;
5258 	void __rcu **slots = NULL;
5259 	enum maple_type type;
5260 	unsigned char next_offset = 0;
5261 
5262 	do {
5263 		*enode = next;
5264 		node = mte_to_node(*enode);
5265 		type = mte_node_type(*enode);
5266 		slots = ma_slots(node, type);
5267 		next = mt_slot_locked(mt, slots, next_offset);
5268 		if ((mte_dead_node(next)))
5269 			next = mt_slot_locked(mt, slots, ++next_offset);
5270 
5271 		mte_set_node_dead(*enode);
5272 		node->type = type;
5273 		node->piv_parent = prev;
5274 		node->parent_slot = offset;
5275 		offset = next_offset;
5276 		next_offset = 0;
5277 		prev = *enode;
5278 	} while (!mte_is_leaf(next));
5279 
5280 	return slots;
5281 }
5282 
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5283 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5284 			    bool free)
5285 {
5286 	void __rcu **slots;
5287 	struct maple_node *node = mte_to_node(enode);
5288 	struct maple_enode *start;
5289 
5290 	if (mte_is_leaf(enode)) {
5291 		node->type = mte_node_type(enode);
5292 		goto free_leaf;
5293 	}
5294 
5295 	start = enode;
5296 	slots = mte_destroy_descend(&enode, mt, start, 0);
5297 	node = mte_to_node(enode); // Updated in the above call.
5298 	do {
5299 		enum maple_type type;
5300 		unsigned char offset;
5301 		struct maple_enode *parent, *tmp;
5302 
5303 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5304 		if (free)
5305 			mt_free_bulk(node->slot_len, slots);
5306 		offset = node->parent_slot + 1;
5307 		enode = node->piv_parent;
5308 		if (mte_to_node(enode) == node)
5309 			goto free_leaf;
5310 
5311 		type = mte_node_type(enode);
5312 		slots = ma_slots(mte_to_node(enode), type);
5313 		if (offset >= mt_slots[type])
5314 			goto next;
5315 
5316 		tmp = mt_slot_locked(mt, slots, offset);
5317 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5318 			parent = enode;
5319 			enode = tmp;
5320 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5321 		}
5322 next:
5323 		node = mte_to_node(enode);
5324 	} while (start != enode);
5325 
5326 	node = mte_to_node(enode);
5327 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5328 	if (free)
5329 		mt_free_bulk(node->slot_len, slots);
5330 
5331 free_leaf:
5332 	if (free)
5333 		mt_free_rcu(&node->rcu);
5334 	else
5335 		mt_clear_meta(mt, node, node->type);
5336 }
5337 
5338 /*
5339  * mte_destroy_walk() - Free a tree or sub-tree.
5340  * @enode: the encoded maple node (maple_enode) to start
5341  * @mt: the tree to free - needed for node types.
5342  *
5343  * Must hold the write lock.
5344  */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5345 static inline void mte_destroy_walk(struct maple_enode *enode,
5346 				    struct maple_tree *mt)
5347 {
5348 	struct maple_node *node = mte_to_node(enode);
5349 
5350 	if (mt_in_rcu(mt)) {
5351 		mt_destroy_walk(enode, mt, false);
5352 		call_rcu(&node->rcu, mt_free_walk);
5353 	} else {
5354 		mt_destroy_walk(enode, mt, true);
5355 	}
5356 }
5357 /* Interface */
5358 
5359 /**
5360  * mas_store() - Store an @entry.
5361  * @mas: The maple state.
5362  * @entry: The entry to store.
5363  *
5364  * The @mas->index and @mas->last is used to set the range for the @entry.
5365  *
5366  * Return: the first entry between mas->index and mas->last or %NULL.
5367  */
mas_store(struct ma_state * mas,void * entry)5368 void *mas_store(struct ma_state *mas, void *entry)
5369 {
5370 	int request;
5371 	MA_WR_STATE(wr_mas, mas, entry);
5372 
5373 	trace_ma_write(__func__, mas, 0, entry);
5374 #ifdef CONFIG_DEBUG_MAPLE_TREE
5375 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5376 		pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5377 		       entry);
5378 
5379 	if (mas->index > mas->last) {
5380 		mas_set_err(mas, -EINVAL);
5381 		return NULL;
5382 	}
5383 
5384 #endif
5385 
5386 	/*
5387 	 * Storing is the same operation as insert with the added caveat that it
5388 	 * can overwrite entries.  Although this seems simple enough, one may
5389 	 * want to examine what happens if a single store operation was to
5390 	 * overwrite multiple entries within a self-balancing B-Tree.
5391 	 */
5392 	mas_wr_prealloc_setup(&wr_mas);
5393 	mas->store_type = mas_wr_store_type(&wr_mas);
5394 	if (mas->mas_flags & MA_STATE_PREALLOC) {
5395 		mas_wr_store_entry(&wr_mas);
5396 		MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5397 		return wr_mas.content;
5398 	}
5399 
5400 	request = mas_prealloc_calc(mas, entry);
5401 	if (!request)
5402 		goto store;
5403 
5404 	mas_node_count(mas, request);
5405 	if (mas_is_err(mas))
5406 		return NULL;
5407 
5408 store:
5409 	mas_wr_store_entry(&wr_mas);
5410 	mas_destroy(mas);
5411 	return wr_mas.content;
5412 }
5413 EXPORT_SYMBOL_GPL(mas_store);
5414 
5415 /**
5416  * mas_store_gfp() - Store a value into the tree.
5417  * @mas: The maple state
5418  * @entry: The entry to store
5419  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5420  *
5421  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5422  * be allocated.
5423  */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5424 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5425 {
5426 	unsigned long index = mas->index;
5427 	unsigned long last = mas->last;
5428 	MA_WR_STATE(wr_mas, mas, entry);
5429 	int ret = 0;
5430 
5431 retry:
5432 	mas_wr_preallocate(&wr_mas, entry);
5433 	if (unlikely(mas_nomem(mas, gfp))) {
5434 		if (!entry)
5435 			__mas_set_range(mas, index, last);
5436 		goto retry;
5437 	}
5438 
5439 	if (mas_is_err(mas)) {
5440 		ret = xa_err(mas->node);
5441 		goto out;
5442 	}
5443 
5444 	mas_wr_store_entry(&wr_mas);
5445 out:
5446 	mas_destroy(mas);
5447 	return ret;
5448 }
5449 EXPORT_SYMBOL_GPL(mas_store_gfp);
5450 
5451 /**
5452  * mas_store_prealloc() - Store a value into the tree using memory
5453  * preallocated in the maple state.
5454  * @mas: The maple state
5455  * @entry: The entry to store.
5456  */
mas_store_prealloc(struct ma_state * mas,void * entry)5457 void mas_store_prealloc(struct ma_state *mas, void *entry)
5458 {
5459 	MA_WR_STATE(wr_mas, mas, entry);
5460 
5461 	if (mas->store_type == wr_store_root) {
5462 		mas_wr_prealloc_setup(&wr_mas);
5463 		goto store;
5464 	}
5465 
5466 	mas_wr_walk_descend(&wr_mas);
5467 	if (mas->store_type != wr_spanning_store) {
5468 		/* set wr_mas->content to current slot */
5469 		wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5470 		mas_wr_end_piv(&wr_mas);
5471 	}
5472 
5473 store:
5474 	trace_ma_write(__func__, mas, 0, entry);
5475 	mas_wr_store_entry(&wr_mas);
5476 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5477 	mas_destroy(mas);
5478 }
5479 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5480 
5481 /**
5482  * mas_preallocate() - Preallocate enough nodes for a store operation
5483  * @mas: The maple state
5484  * @entry: The entry that will be stored
5485  * @gfp: The GFP_FLAGS to use for allocations.
5486  *
5487  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5488  */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5489 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5490 {
5491 	MA_WR_STATE(wr_mas, mas, entry);
5492 	int ret = 0;
5493 	int request;
5494 
5495 	mas_wr_prealloc_setup(&wr_mas);
5496 	mas->store_type = mas_wr_store_type(&wr_mas);
5497 	request = mas_prealloc_calc(mas, entry);
5498 	if (!request)
5499 		return ret;
5500 
5501 	mas_node_count_gfp(mas, request, gfp);
5502 	if (mas_is_err(mas)) {
5503 		mas_set_alloc_req(mas, 0);
5504 		ret = xa_err(mas->node);
5505 		mas_destroy(mas);
5506 		mas_reset(mas);
5507 		return ret;
5508 	}
5509 
5510 	mas->mas_flags |= MA_STATE_PREALLOC;
5511 	return ret;
5512 }
5513 EXPORT_SYMBOL_GPL(mas_preallocate);
5514 
5515 /*
5516  * mas_destroy() - destroy a maple state.
5517  * @mas: The maple state
5518  *
5519  * Upon completion, check the left-most node and rebalance against the node to
5520  * the right if necessary.  Frees any allocated nodes associated with this maple
5521  * state.
5522  */
mas_destroy(struct ma_state * mas)5523 void mas_destroy(struct ma_state *mas)
5524 {
5525 	struct maple_alloc *node;
5526 	unsigned long total;
5527 
5528 	/*
5529 	 * When using mas_for_each() to insert an expected number of elements,
5530 	 * it is possible that the number inserted is less than the expected
5531 	 * number.  To fix an invalid final node, a check is performed here to
5532 	 * rebalance the previous node with the final node.
5533 	 */
5534 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5535 		unsigned char end;
5536 		if (mas_is_err(mas))
5537 			mas_reset(mas);
5538 		mas_start(mas);
5539 		mtree_range_walk(mas);
5540 		end = mas->end + 1;
5541 		if (end < mt_min_slot_count(mas->node) - 1)
5542 			mas_destroy_rebalance(mas, end);
5543 
5544 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5545 	}
5546 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5547 
5548 	total = mas_allocated(mas);
5549 	while (total) {
5550 		node = mas->alloc;
5551 		mas->alloc = node->slot[0];
5552 		if (node->node_count > 1) {
5553 			size_t count = node->node_count - 1;
5554 
5555 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5556 			total -= count;
5557 		}
5558 		mt_free_one(ma_mnode_ptr(node));
5559 		total--;
5560 	}
5561 
5562 	mas->alloc = NULL;
5563 }
5564 EXPORT_SYMBOL_GPL(mas_destroy);
5565 
5566 /*
5567  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5568  * @mas: The maple state
5569  * @nr_entries: The number of expected entries.
5570  *
5571  * This will attempt to pre-allocate enough nodes to store the expected number
5572  * of entries.  The allocations will occur using the bulk allocator interface
5573  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5574  * to ensure any unused nodes are freed.
5575  *
5576  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5577  */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5578 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5579 {
5580 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5581 	struct maple_enode *enode = mas->node;
5582 	int nr_nodes;
5583 	int ret;
5584 
5585 	/*
5586 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5587 	 * forking a process and duplicating the VMAs from one tree to a new
5588 	 * tree.  When such a situation arises, it is known that the new tree is
5589 	 * not going to be used until the entire tree is populated.  For
5590 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5591 	 * This allows for optimistic splitting that favours the left and reuse
5592 	 * of nodes during the operation.
5593 	 */
5594 
5595 	/* Optimize splitting for bulk insert in-order */
5596 	mas->mas_flags |= MA_STATE_BULK;
5597 
5598 	/*
5599 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5600 	 * If this is wrong, it just means allocation can happen during
5601 	 * insertion of entries.
5602 	 */
5603 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5604 	if (!mt_is_alloc(mas->tree))
5605 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5606 
5607 	/* Leaves; reduce slots to keep space for expansion */
5608 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5609 	/* Internal nodes */
5610 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5611 	/* Add working room for split (2 nodes) + new parents */
5612 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5613 
5614 	/* Detect if allocations run out */
5615 	mas->mas_flags |= MA_STATE_PREALLOC;
5616 
5617 	if (!mas_is_err(mas))
5618 		return 0;
5619 
5620 	ret = xa_err(mas->node);
5621 	mas->node = enode;
5622 	mas_destroy(mas);
5623 	return ret;
5624 
5625 }
5626 EXPORT_SYMBOL_GPL(mas_expected_entries);
5627 
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5628 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5629 		void **entry)
5630 {
5631 	bool was_none = mas_is_none(mas);
5632 
5633 	if (unlikely(mas->last >= max)) {
5634 		mas->status = ma_overflow;
5635 		return true;
5636 	}
5637 
5638 	switch (mas->status) {
5639 	case ma_active:
5640 		return false;
5641 	case ma_none:
5642 		fallthrough;
5643 	case ma_pause:
5644 		mas->status = ma_start;
5645 		fallthrough;
5646 	case ma_start:
5647 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5648 		break;
5649 	case ma_overflow:
5650 		/* Overflowed before, but the max changed */
5651 		mas->status = ma_active;
5652 		break;
5653 	case ma_underflow:
5654 		/* The user expects the mas to be one before where it is */
5655 		mas->status = ma_active;
5656 		*entry = mas_walk(mas);
5657 		if (*entry)
5658 			return true;
5659 		break;
5660 	case ma_root:
5661 		break;
5662 	case ma_error:
5663 		return true;
5664 	}
5665 
5666 	if (likely(mas_is_active(mas))) /* Fast path */
5667 		return false;
5668 
5669 	if (mas_is_ptr(mas)) {
5670 		*entry = NULL;
5671 		if (was_none && mas->index == 0) {
5672 			mas->index = mas->last = 0;
5673 			return true;
5674 		}
5675 		mas->index = 1;
5676 		mas->last = ULONG_MAX;
5677 		mas->status = ma_none;
5678 		return true;
5679 	}
5680 
5681 	if (mas_is_none(mas))
5682 		return true;
5683 
5684 	return false;
5685 }
5686 
5687 /**
5688  * mas_next() - Get the next entry.
5689  * @mas: The maple state
5690  * @max: The maximum index to check.
5691  *
5692  * Returns the next entry after @mas->index.
5693  * Must hold rcu_read_lock or the write lock.
5694  * Can return the zero entry.
5695  *
5696  * Return: The next entry or %NULL
5697  */
mas_next(struct ma_state * mas,unsigned long max)5698 void *mas_next(struct ma_state *mas, unsigned long max)
5699 {
5700 	void *entry = NULL;
5701 
5702 	if (mas_next_setup(mas, max, &entry))
5703 		return entry;
5704 
5705 	/* Retries on dead nodes handled by mas_next_slot */
5706 	return mas_next_slot(mas, max, false);
5707 }
5708 EXPORT_SYMBOL_GPL(mas_next);
5709 
5710 /**
5711  * mas_next_range() - Advance the maple state to the next range
5712  * @mas: The maple state
5713  * @max: The maximum index to check.
5714  *
5715  * Sets @mas->index and @mas->last to the range.
5716  * Must hold rcu_read_lock or the write lock.
5717  * Can return the zero entry.
5718  *
5719  * Return: The next entry or %NULL
5720  */
mas_next_range(struct ma_state * mas,unsigned long max)5721 void *mas_next_range(struct ma_state *mas, unsigned long max)
5722 {
5723 	void *entry = NULL;
5724 
5725 	if (mas_next_setup(mas, max, &entry))
5726 		return entry;
5727 
5728 	/* Retries on dead nodes handled by mas_next_slot */
5729 	return mas_next_slot(mas, max, true);
5730 }
5731 EXPORT_SYMBOL_GPL(mas_next_range);
5732 
5733 /**
5734  * mt_next() - get the next value in the maple tree
5735  * @mt: The maple tree
5736  * @index: The start index
5737  * @max: The maximum index to check
5738  *
5739  * Takes RCU read lock internally to protect the search, which does not
5740  * protect the returned pointer after dropping RCU read lock.
5741  * See also: Documentation/core-api/maple_tree.rst
5742  *
5743  * Return: The entry higher than @index or %NULL if nothing is found.
5744  */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5745 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5746 {
5747 	void *entry = NULL;
5748 	MA_STATE(mas, mt, index, index);
5749 
5750 	rcu_read_lock();
5751 	entry = mas_next(&mas, max);
5752 	rcu_read_unlock();
5753 	return entry;
5754 }
5755 EXPORT_SYMBOL_GPL(mt_next);
5756 
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5757 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5758 {
5759 	if (unlikely(mas->index <= min)) {
5760 		mas->status = ma_underflow;
5761 		return true;
5762 	}
5763 
5764 	switch (mas->status) {
5765 	case ma_active:
5766 		return false;
5767 	case ma_start:
5768 		break;
5769 	case ma_none:
5770 		fallthrough;
5771 	case ma_pause:
5772 		mas->status = ma_start;
5773 		break;
5774 	case ma_underflow:
5775 		/* underflowed before but the min changed */
5776 		mas->status = ma_active;
5777 		break;
5778 	case ma_overflow:
5779 		/* User expects mas to be one after where it is */
5780 		mas->status = ma_active;
5781 		*entry = mas_walk(mas);
5782 		if (*entry)
5783 			return true;
5784 		break;
5785 	case ma_root:
5786 		break;
5787 	case ma_error:
5788 		return true;
5789 	}
5790 
5791 	if (mas_is_start(mas))
5792 		mas_walk(mas);
5793 
5794 	if (unlikely(mas_is_ptr(mas))) {
5795 		if (!mas->index) {
5796 			mas->status = ma_none;
5797 			return true;
5798 		}
5799 		mas->index = mas->last = 0;
5800 		*entry = mas_root(mas);
5801 		return true;
5802 	}
5803 
5804 	if (mas_is_none(mas)) {
5805 		if (mas->index) {
5806 			/* Walked to out-of-range pointer? */
5807 			mas->index = mas->last = 0;
5808 			mas->status = ma_root;
5809 			*entry = mas_root(mas);
5810 			return true;
5811 		}
5812 		return true;
5813 	}
5814 
5815 	return false;
5816 }
5817 
5818 /**
5819  * mas_prev() - Get the previous entry
5820  * @mas: The maple state
5821  * @min: The minimum value to check.
5822  *
5823  * Must hold rcu_read_lock or the write lock.
5824  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5825  * searchable nodes.
5826  *
5827  * Return: the previous value or %NULL.
5828  */
mas_prev(struct ma_state * mas,unsigned long min)5829 void *mas_prev(struct ma_state *mas, unsigned long min)
5830 {
5831 	void *entry = NULL;
5832 
5833 	if (mas_prev_setup(mas, min, &entry))
5834 		return entry;
5835 
5836 	return mas_prev_slot(mas, min, false);
5837 }
5838 EXPORT_SYMBOL_GPL(mas_prev);
5839 
5840 /**
5841  * mas_prev_range() - Advance to the previous range
5842  * @mas: The maple state
5843  * @min: The minimum value to check.
5844  *
5845  * Sets @mas->index and @mas->last to the range.
5846  * Must hold rcu_read_lock or the write lock.
5847  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5848  * searchable nodes.
5849  *
5850  * Return: the previous value or %NULL.
5851  */
mas_prev_range(struct ma_state * mas,unsigned long min)5852 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5853 {
5854 	void *entry = NULL;
5855 
5856 	if (mas_prev_setup(mas, min, &entry))
5857 		return entry;
5858 
5859 	return mas_prev_slot(mas, min, true);
5860 }
5861 EXPORT_SYMBOL_GPL(mas_prev_range);
5862 
5863 /**
5864  * mt_prev() - get the previous value in the maple tree
5865  * @mt: The maple tree
5866  * @index: The start index
5867  * @min: The minimum index to check
5868  *
5869  * Takes RCU read lock internally to protect the search, which does not
5870  * protect the returned pointer after dropping RCU read lock.
5871  * See also: Documentation/core-api/maple_tree.rst
5872  *
5873  * Return: The entry before @index or %NULL if nothing is found.
5874  */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5875 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5876 {
5877 	void *entry = NULL;
5878 	MA_STATE(mas, mt, index, index);
5879 
5880 	rcu_read_lock();
5881 	entry = mas_prev(&mas, min);
5882 	rcu_read_unlock();
5883 	return entry;
5884 }
5885 EXPORT_SYMBOL_GPL(mt_prev);
5886 
5887 /**
5888  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5889  * @mas: The maple state to pause
5890  *
5891  * Some users need to pause a walk and drop the lock they're holding in
5892  * order to yield to a higher priority thread or carry out an operation
5893  * on an entry.  Those users should call this function before they drop
5894  * the lock.  It resets the @mas to be suitable for the next iteration
5895  * of the loop after the user has reacquired the lock.  If most entries
5896  * found during a walk require you to call mas_pause(), the mt_for_each()
5897  * iterator may be more appropriate.
5898  *
5899  */
mas_pause(struct ma_state * mas)5900 void mas_pause(struct ma_state *mas)
5901 {
5902 	mas->status = ma_pause;
5903 	mas->node = NULL;
5904 }
5905 EXPORT_SYMBOL_GPL(mas_pause);
5906 
5907 /**
5908  * mas_find_setup() - Internal function to set up mas_find*().
5909  * @mas: The maple state
5910  * @max: The maximum index
5911  * @entry: Pointer to the entry
5912  *
5913  * Returns: True if entry is the answer, false otherwise.
5914  */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5915 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5916 {
5917 	switch (mas->status) {
5918 	case ma_active:
5919 		if (mas->last < max)
5920 			return false;
5921 		return true;
5922 	case ma_start:
5923 		break;
5924 	case ma_pause:
5925 		if (unlikely(mas->last >= max))
5926 			return true;
5927 
5928 		mas->index = ++mas->last;
5929 		mas->status = ma_start;
5930 		break;
5931 	case ma_none:
5932 		if (unlikely(mas->last >= max))
5933 			return true;
5934 
5935 		mas->index = mas->last;
5936 		mas->status = ma_start;
5937 		break;
5938 	case ma_underflow:
5939 		/* mas is pointing at entry before unable to go lower */
5940 		if (unlikely(mas->index >= max)) {
5941 			mas->status = ma_overflow;
5942 			return true;
5943 		}
5944 
5945 		mas->status = ma_active;
5946 		*entry = mas_walk(mas);
5947 		if (*entry)
5948 			return true;
5949 		break;
5950 	case ma_overflow:
5951 		if (unlikely(mas->last >= max))
5952 			return true;
5953 
5954 		mas->status = ma_active;
5955 		*entry = mas_walk(mas);
5956 		if (*entry)
5957 			return true;
5958 		break;
5959 	case ma_root:
5960 		break;
5961 	case ma_error:
5962 		return true;
5963 	}
5964 
5965 	if (mas_is_start(mas)) {
5966 		/* First run or continue */
5967 		if (mas->index > max)
5968 			return true;
5969 
5970 		*entry = mas_walk(mas);
5971 		if (*entry)
5972 			return true;
5973 
5974 	}
5975 
5976 	if (unlikely(mas_is_ptr(mas)))
5977 		goto ptr_out_of_range;
5978 
5979 	if (unlikely(mas_is_none(mas)))
5980 		return true;
5981 
5982 	if (mas->index == max)
5983 		return true;
5984 
5985 	return false;
5986 
5987 ptr_out_of_range:
5988 	mas->status = ma_none;
5989 	mas->index = 1;
5990 	mas->last = ULONG_MAX;
5991 	return true;
5992 }
5993 
5994 /**
5995  * mas_find() - On the first call, find the entry at or after mas->index up to
5996  * %max.  Otherwise, find the entry after mas->index.
5997  * @mas: The maple state
5998  * @max: The maximum value to check.
5999  *
6000  * Must hold rcu_read_lock or the write lock.
6001  * If an entry exists, last and index are updated accordingly.
6002  * May set @mas->status to ma_overflow.
6003  *
6004  * Return: The entry or %NULL.
6005  */
mas_find(struct ma_state * mas,unsigned long max)6006 void *mas_find(struct ma_state *mas, unsigned long max)
6007 {
6008 	void *entry = NULL;
6009 
6010 	if (mas_find_setup(mas, max, &entry))
6011 		return entry;
6012 
6013 	/* Retries on dead nodes handled by mas_next_slot */
6014 	entry = mas_next_slot(mas, max, false);
6015 	/* Ignore overflow */
6016 	mas->status = ma_active;
6017 	return entry;
6018 }
6019 EXPORT_SYMBOL_GPL(mas_find);
6020 
6021 /**
6022  * mas_find_range() - On the first call, find the entry at or after
6023  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6024  * @mas: The maple state
6025  * @max: The maximum value to check.
6026  *
6027  * Must hold rcu_read_lock or the write lock.
6028  * If an entry exists, last and index are updated accordingly.
6029  * May set @mas->status to ma_overflow.
6030  *
6031  * Return: The entry or %NULL.
6032  */
mas_find_range(struct ma_state * mas,unsigned long max)6033 void *mas_find_range(struct ma_state *mas, unsigned long max)
6034 {
6035 	void *entry = NULL;
6036 
6037 	if (mas_find_setup(mas, max, &entry))
6038 		return entry;
6039 
6040 	/* Retries on dead nodes handled by mas_next_slot */
6041 	return mas_next_slot(mas, max, true);
6042 }
6043 EXPORT_SYMBOL_GPL(mas_find_range);
6044 
6045 /**
6046  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6047  * @mas: The maple state
6048  * @min: The minimum index
6049  * @entry: Pointer to the entry
6050  *
6051  * Returns: True if entry is the answer, false otherwise.
6052  */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6053 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6054 		void **entry)
6055 {
6056 
6057 	switch (mas->status) {
6058 	case ma_active:
6059 		goto active;
6060 	case ma_start:
6061 		break;
6062 	case ma_pause:
6063 		if (unlikely(mas->index <= min)) {
6064 			mas->status = ma_underflow;
6065 			return true;
6066 		}
6067 		mas->last = --mas->index;
6068 		mas->status = ma_start;
6069 		break;
6070 	case ma_none:
6071 		if (mas->index <= min)
6072 			goto none;
6073 
6074 		mas->last = mas->index;
6075 		mas->status = ma_start;
6076 		break;
6077 	case ma_overflow: /* user expects the mas to be one after where it is */
6078 		if (unlikely(mas->index <= min)) {
6079 			mas->status = ma_underflow;
6080 			return true;
6081 		}
6082 
6083 		mas->status = ma_active;
6084 		break;
6085 	case ma_underflow: /* user expects the mas to be one before where it is */
6086 		if (unlikely(mas->index <= min))
6087 			return true;
6088 
6089 		mas->status = ma_active;
6090 		break;
6091 	case ma_root:
6092 		break;
6093 	case ma_error:
6094 		return true;
6095 	}
6096 
6097 	if (mas_is_start(mas)) {
6098 		/* First run or continue */
6099 		if (mas->index < min)
6100 			return true;
6101 
6102 		*entry = mas_walk(mas);
6103 		if (*entry)
6104 			return true;
6105 	}
6106 
6107 	if (unlikely(mas_is_ptr(mas)))
6108 		goto none;
6109 
6110 	if (unlikely(mas_is_none(mas))) {
6111 		/*
6112 		 * Walked to the location, and there was nothing so the previous
6113 		 * location is 0.
6114 		 */
6115 		mas->last = mas->index = 0;
6116 		mas->status = ma_root;
6117 		*entry = mas_root(mas);
6118 		return true;
6119 	}
6120 
6121 active:
6122 	if (mas->index < min)
6123 		return true;
6124 
6125 	return false;
6126 
6127 none:
6128 	mas->status = ma_none;
6129 	return true;
6130 }
6131 
6132 /**
6133  * mas_find_rev: On the first call, find the first non-null entry at or below
6134  * mas->index down to %min.  Otherwise find the first non-null entry below
6135  * mas->index down to %min.
6136  * @mas: The maple state
6137  * @min: The minimum value to check.
6138  *
6139  * Must hold rcu_read_lock or the write lock.
6140  * If an entry exists, last and index are updated accordingly.
6141  * May set @mas->status to ma_underflow.
6142  *
6143  * Return: The entry or %NULL.
6144  */
mas_find_rev(struct ma_state * mas,unsigned long min)6145 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6146 {
6147 	void *entry = NULL;
6148 
6149 	if (mas_find_rev_setup(mas, min, &entry))
6150 		return entry;
6151 
6152 	/* Retries on dead nodes handled by mas_prev_slot */
6153 	return mas_prev_slot(mas, min, false);
6154 
6155 }
6156 EXPORT_SYMBOL_GPL(mas_find_rev);
6157 
6158 /**
6159  * mas_find_range_rev: On the first call, find the first non-null entry at or
6160  * below mas->index down to %min.  Otherwise advance to the previous slot after
6161  * mas->index down to %min.
6162  * @mas: The maple state
6163  * @min: The minimum value to check.
6164  *
6165  * Must hold rcu_read_lock or the write lock.
6166  * If an entry exists, last and index are updated accordingly.
6167  * May set @mas->status to ma_underflow.
6168  *
6169  * Return: The entry or %NULL.
6170  */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6171 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6172 {
6173 	void *entry = NULL;
6174 
6175 	if (mas_find_rev_setup(mas, min, &entry))
6176 		return entry;
6177 
6178 	/* Retries on dead nodes handled by mas_prev_slot */
6179 	return mas_prev_slot(mas, min, true);
6180 }
6181 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6182 
6183 /**
6184  * mas_erase() - Find the range in which index resides and erase the entire
6185  * range.
6186  * @mas: The maple state
6187  *
6188  * Must hold the write lock.
6189  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6190  * erases that range.
6191  *
6192  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6193  */
mas_erase(struct ma_state * mas)6194 void *mas_erase(struct ma_state *mas)
6195 {
6196 	void *entry;
6197 	unsigned long index = mas->index;
6198 	MA_WR_STATE(wr_mas, mas, NULL);
6199 
6200 	if (!mas_is_active(mas) || !mas_is_start(mas))
6201 		mas->status = ma_start;
6202 
6203 write_retry:
6204 	entry = mas_state_walk(mas);
6205 	if (!entry)
6206 		return NULL;
6207 
6208 	/* Must reset to ensure spanning writes of last slot are detected */
6209 	mas_reset(mas);
6210 	mas_wr_preallocate(&wr_mas, NULL);
6211 	if (mas_nomem(mas, GFP_KERNEL)) {
6212 		/* in case the range of entry changed when unlocked */
6213 		mas->index = mas->last = index;
6214 		goto write_retry;
6215 	}
6216 
6217 	if (mas_is_err(mas))
6218 		goto out;
6219 
6220 	mas_wr_store_entry(&wr_mas);
6221 out:
6222 	mas_destroy(mas);
6223 	return entry;
6224 }
6225 EXPORT_SYMBOL_GPL(mas_erase);
6226 
6227 /**
6228  * mas_nomem() - Check if there was an error allocating and do the allocation
6229  * if necessary If there are allocations, then free them.
6230  * @mas: The maple state
6231  * @gfp: The GFP_FLAGS to use for allocations
6232  * Return: true on allocation, false otherwise.
6233  */
mas_nomem(struct ma_state * mas,gfp_t gfp)6234 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6235 	__must_hold(mas->tree->ma_lock)
6236 {
6237 	if (likely(mas->node != MA_ERROR(-ENOMEM)))
6238 		return false;
6239 
6240 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6241 		mtree_unlock(mas->tree);
6242 		mas_alloc_nodes(mas, gfp);
6243 		mtree_lock(mas->tree);
6244 	} else {
6245 		mas_alloc_nodes(mas, gfp);
6246 	}
6247 
6248 	if (!mas_allocated(mas))
6249 		return false;
6250 
6251 	mas->status = ma_start;
6252 	return true;
6253 }
6254 
maple_tree_init(void)6255 void __init maple_tree_init(void)
6256 {
6257 	maple_node_cache = kmem_cache_create("maple_node",
6258 			sizeof(struct maple_node), sizeof(struct maple_node),
6259 			SLAB_PANIC, NULL);
6260 }
6261 
6262 /**
6263  * mtree_load() - Load a value stored in a maple tree
6264  * @mt: The maple tree
6265  * @index: The index to load
6266  *
6267  * Return: the entry or %NULL
6268  */
mtree_load(struct maple_tree * mt,unsigned long index)6269 void *mtree_load(struct maple_tree *mt, unsigned long index)
6270 {
6271 	MA_STATE(mas, mt, index, index);
6272 	void *entry;
6273 
6274 	trace_ma_read(__func__, &mas);
6275 	rcu_read_lock();
6276 retry:
6277 	entry = mas_start(&mas);
6278 	if (unlikely(mas_is_none(&mas)))
6279 		goto unlock;
6280 
6281 	if (unlikely(mas_is_ptr(&mas))) {
6282 		if (index)
6283 			entry = NULL;
6284 
6285 		goto unlock;
6286 	}
6287 
6288 	entry = mtree_lookup_walk(&mas);
6289 	if (!entry && unlikely(mas_is_start(&mas)))
6290 		goto retry;
6291 unlock:
6292 	rcu_read_unlock();
6293 	if (xa_is_zero(entry))
6294 		return NULL;
6295 
6296 	return entry;
6297 }
6298 EXPORT_SYMBOL(mtree_load);
6299 
6300 /**
6301  * mtree_store_range() - Store an entry at a given range.
6302  * @mt: The maple tree
6303  * @index: The start of the range
6304  * @last: The end of the range
6305  * @entry: The entry to store
6306  * @gfp: The GFP_FLAGS to use for allocations
6307  *
6308  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6309  * be allocated.
6310  */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6311 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6312 		unsigned long last, void *entry, gfp_t gfp)
6313 {
6314 	MA_STATE(mas, mt, index, last);
6315 	int ret = 0;
6316 
6317 	trace_ma_write(__func__, &mas, 0, entry);
6318 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6319 		return -EINVAL;
6320 
6321 	if (index > last)
6322 		return -EINVAL;
6323 
6324 	mtree_lock(mt);
6325 	ret = mas_store_gfp(&mas, entry, gfp);
6326 	mtree_unlock(mt);
6327 
6328 	return ret;
6329 }
6330 EXPORT_SYMBOL(mtree_store_range);
6331 
6332 /**
6333  * mtree_store() - Store an entry at a given index.
6334  * @mt: The maple tree
6335  * @index: The index to store the value
6336  * @entry: The entry to store
6337  * @gfp: The GFP_FLAGS to use for allocations
6338  *
6339  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6340  * be allocated.
6341  */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6342 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6343 		 gfp_t gfp)
6344 {
6345 	return mtree_store_range(mt, index, index, entry, gfp);
6346 }
6347 EXPORT_SYMBOL(mtree_store);
6348 
6349 /**
6350  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6351  * @mt: The maple tree
6352  * @first: The start of the range
6353  * @last: The end of the range
6354  * @entry: The entry to store
6355  * @gfp: The GFP_FLAGS to use for allocations.
6356  *
6357  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6358  * request, -ENOMEM if memory could not be allocated.
6359  */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6360 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6361 		unsigned long last, void *entry, gfp_t gfp)
6362 {
6363 	MA_STATE(ms, mt, first, last);
6364 	int ret = 0;
6365 
6366 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6367 		return -EINVAL;
6368 
6369 	if (first > last)
6370 		return -EINVAL;
6371 
6372 	mtree_lock(mt);
6373 retry:
6374 	mas_insert(&ms, entry);
6375 	if (mas_nomem(&ms, gfp))
6376 		goto retry;
6377 
6378 	mtree_unlock(mt);
6379 	if (mas_is_err(&ms))
6380 		ret = xa_err(ms.node);
6381 
6382 	mas_destroy(&ms);
6383 	return ret;
6384 }
6385 EXPORT_SYMBOL(mtree_insert_range);
6386 
6387 /**
6388  * mtree_insert() - Insert an entry at a given index if there is no value.
6389  * @mt: The maple tree
6390  * @index : The index to store the value
6391  * @entry: The entry to store
6392  * @gfp: The GFP_FLAGS to use for allocations.
6393  *
6394  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6395  * request, -ENOMEM if memory could not be allocated.
6396  */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6397 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6398 		 gfp_t gfp)
6399 {
6400 	return mtree_insert_range(mt, index, index, entry, gfp);
6401 }
6402 EXPORT_SYMBOL(mtree_insert);
6403 
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6404 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6405 		void *entry, unsigned long size, unsigned long min,
6406 		unsigned long max, gfp_t gfp)
6407 {
6408 	int ret = 0;
6409 
6410 	MA_STATE(mas, mt, 0, 0);
6411 	if (!mt_is_alloc(mt))
6412 		return -EINVAL;
6413 
6414 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6415 		return -EINVAL;
6416 
6417 	mtree_lock(mt);
6418 retry:
6419 	ret = mas_empty_area(&mas, min, max, size);
6420 	if (ret)
6421 		goto unlock;
6422 
6423 	mas_insert(&mas, entry);
6424 	/*
6425 	 * mas_nomem() may release the lock, causing the allocated area
6426 	 * to be unavailable, so try to allocate a free area again.
6427 	 */
6428 	if (mas_nomem(&mas, gfp))
6429 		goto retry;
6430 
6431 	if (mas_is_err(&mas))
6432 		ret = xa_err(mas.node);
6433 	else
6434 		*startp = mas.index;
6435 
6436 unlock:
6437 	mtree_unlock(mt);
6438 	mas_destroy(&mas);
6439 	return ret;
6440 }
6441 EXPORT_SYMBOL(mtree_alloc_range);
6442 
6443 /**
6444  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6445  * @mt: The maple tree.
6446  * @startp: Pointer to ID.
6447  * @range_lo: Lower bound of range to search.
6448  * @range_hi: Upper bound of range to search.
6449  * @entry: The entry to store.
6450  * @next: Pointer to next ID to allocate.
6451  * @gfp: The GFP_FLAGS to use for allocations.
6452  *
6453  * Finds an empty entry in @mt after @next, stores the new index into
6454  * the @id pointer, stores the entry at that index, then updates @next.
6455  *
6456  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6457  *
6458  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6459  * the @gfp flags permit.
6460  *
6461  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6462  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6463  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6464  * free entries.
6465  */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6466 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6467 		void *entry, unsigned long range_lo, unsigned long range_hi,
6468 		unsigned long *next, gfp_t gfp)
6469 {
6470 	int ret;
6471 
6472 	MA_STATE(mas, mt, 0, 0);
6473 
6474 	if (!mt_is_alloc(mt))
6475 		return -EINVAL;
6476 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6477 		return -EINVAL;
6478 	mtree_lock(mt);
6479 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6480 			       next, gfp);
6481 	mtree_unlock(mt);
6482 	return ret;
6483 }
6484 EXPORT_SYMBOL(mtree_alloc_cyclic);
6485 
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6486 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6487 		void *entry, unsigned long size, unsigned long min,
6488 		unsigned long max, gfp_t gfp)
6489 {
6490 	int ret = 0;
6491 
6492 	MA_STATE(mas, mt, 0, 0);
6493 	if (!mt_is_alloc(mt))
6494 		return -EINVAL;
6495 
6496 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6497 		return -EINVAL;
6498 
6499 	mtree_lock(mt);
6500 retry:
6501 	ret = mas_empty_area_rev(&mas, min, max, size);
6502 	if (ret)
6503 		goto unlock;
6504 
6505 	mas_insert(&mas, entry);
6506 	/*
6507 	 * mas_nomem() may release the lock, causing the allocated area
6508 	 * to be unavailable, so try to allocate a free area again.
6509 	 */
6510 	if (mas_nomem(&mas, gfp))
6511 		goto retry;
6512 
6513 	if (mas_is_err(&mas))
6514 		ret = xa_err(mas.node);
6515 	else
6516 		*startp = mas.index;
6517 
6518 unlock:
6519 	mtree_unlock(mt);
6520 	mas_destroy(&mas);
6521 	return ret;
6522 }
6523 EXPORT_SYMBOL(mtree_alloc_rrange);
6524 
6525 /**
6526  * mtree_erase() - Find an index and erase the entire range.
6527  * @mt: The maple tree
6528  * @index: The index to erase
6529  *
6530  * Erasing is the same as a walk to an entry then a store of a NULL to that
6531  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6532  *
6533  * Return: The entry stored at the @index or %NULL
6534  */
mtree_erase(struct maple_tree * mt,unsigned long index)6535 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6536 {
6537 	void *entry = NULL;
6538 
6539 	MA_STATE(mas, mt, index, index);
6540 	trace_ma_op(__func__, &mas);
6541 
6542 	mtree_lock(mt);
6543 	entry = mas_erase(&mas);
6544 	mtree_unlock(mt);
6545 
6546 	return entry;
6547 }
6548 EXPORT_SYMBOL(mtree_erase);
6549 
6550 /*
6551  * mas_dup_free() - Free an incomplete duplication of a tree.
6552  * @mas: The maple state of a incomplete tree.
6553  *
6554  * The parameter @mas->node passed in indicates that the allocation failed on
6555  * this node. This function frees all nodes starting from @mas->node in the
6556  * reverse order of mas_dup_build(). There is no need to hold the source tree
6557  * lock at this time.
6558  */
mas_dup_free(struct ma_state * mas)6559 static void mas_dup_free(struct ma_state *mas)
6560 {
6561 	struct maple_node *node;
6562 	enum maple_type type;
6563 	void __rcu **slots;
6564 	unsigned char count, i;
6565 
6566 	/* Maybe the first node allocation failed. */
6567 	if (mas_is_none(mas))
6568 		return;
6569 
6570 	while (!mte_is_root(mas->node)) {
6571 		mas_ascend(mas);
6572 		if (mas->offset) {
6573 			mas->offset--;
6574 			do {
6575 				mas_descend(mas);
6576 				mas->offset = mas_data_end(mas);
6577 			} while (!mte_is_leaf(mas->node));
6578 
6579 			mas_ascend(mas);
6580 		}
6581 
6582 		node = mte_to_node(mas->node);
6583 		type = mte_node_type(mas->node);
6584 		slots = ma_slots(node, type);
6585 		count = mas_data_end(mas) + 1;
6586 		for (i = 0; i < count; i++)
6587 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6588 		mt_free_bulk(count, slots);
6589 	}
6590 
6591 	node = mte_to_node(mas->node);
6592 	mt_free_one(node);
6593 }
6594 
6595 /*
6596  * mas_copy_node() - Copy a maple node and replace the parent.
6597  * @mas: The maple state of source tree.
6598  * @new_mas: The maple state of new tree.
6599  * @parent: The parent of the new node.
6600  *
6601  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6602  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6603  */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6604 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6605 		struct maple_pnode *parent)
6606 {
6607 	struct maple_node *node = mte_to_node(mas->node);
6608 	struct maple_node *new_node = mte_to_node(new_mas->node);
6609 	unsigned long val;
6610 
6611 	/* Copy the node completely. */
6612 	memcpy(new_node, node, sizeof(struct maple_node));
6613 	/* Update the parent node pointer. */
6614 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6615 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6616 }
6617 
6618 /*
6619  * mas_dup_alloc() - Allocate child nodes for a maple node.
6620  * @mas: The maple state of source tree.
6621  * @new_mas: The maple state of new tree.
6622  * @gfp: The GFP_FLAGS to use for allocations.
6623  *
6624  * This function allocates child nodes for @new_mas->node during the duplication
6625  * process. If memory allocation fails, @mas is set to -ENOMEM.
6626  */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6627 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6628 		gfp_t gfp)
6629 {
6630 	struct maple_node *node = mte_to_node(mas->node);
6631 	struct maple_node *new_node = mte_to_node(new_mas->node);
6632 	enum maple_type type;
6633 	unsigned char request, count, i;
6634 	void __rcu **slots;
6635 	void __rcu **new_slots;
6636 	unsigned long val;
6637 
6638 	/* Allocate memory for child nodes. */
6639 	type = mte_node_type(mas->node);
6640 	new_slots = ma_slots(new_node, type);
6641 	request = mas_data_end(mas) + 1;
6642 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6643 	if (unlikely(count < request)) {
6644 		memset(new_slots, 0, request * sizeof(void *));
6645 		mas_set_err(mas, -ENOMEM);
6646 		return;
6647 	}
6648 
6649 	/* Restore node type information in slots. */
6650 	slots = ma_slots(node, type);
6651 	for (i = 0; i < count; i++) {
6652 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6653 		val &= MAPLE_NODE_MASK;
6654 		((unsigned long *)new_slots)[i] |= val;
6655 	}
6656 }
6657 
6658 /*
6659  * mas_dup_build() - Build a new maple tree from a source tree
6660  * @mas: The maple state of source tree, need to be in MAS_START state.
6661  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6662  * @gfp: The GFP_FLAGS to use for allocations.
6663  *
6664  * This function builds a new tree in DFS preorder. If the memory allocation
6665  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6666  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6667  *
6668  * Note that the attributes of the two trees need to be exactly the same, and the
6669  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6670  */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6671 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6672 		gfp_t gfp)
6673 {
6674 	struct maple_node *node;
6675 	struct maple_pnode *parent = NULL;
6676 	struct maple_enode *root;
6677 	enum maple_type type;
6678 
6679 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6680 	    unlikely(!mtree_empty(new_mas->tree))) {
6681 		mas_set_err(mas, -EINVAL);
6682 		return;
6683 	}
6684 
6685 	root = mas_start(mas);
6686 	if (mas_is_ptr(mas) || mas_is_none(mas))
6687 		goto set_new_tree;
6688 
6689 	node = mt_alloc_one(gfp);
6690 	if (!node) {
6691 		new_mas->status = ma_none;
6692 		mas_set_err(mas, -ENOMEM);
6693 		return;
6694 	}
6695 
6696 	type = mte_node_type(mas->node);
6697 	root = mt_mk_node(node, type);
6698 	new_mas->node = root;
6699 	new_mas->min = 0;
6700 	new_mas->max = ULONG_MAX;
6701 	root = mte_mk_root(root);
6702 	while (1) {
6703 		mas_copy_node(mas, new_mas, parent);
6704 		if (!mte_is_leaf(mas->node)) {
6705 			/* Only allocate child nodes for non-leaf nodes. */
6706 			mas_dup_alloc(mas, new_mas, gfp);
6707 			if (unlikely(mas_is_err(mas)))
6708 				return;
6709 		} else {
6710 			/*
6711 			 * This is the last leaf node and duplication is
6712 			 * completed.
6713 			 */
6714 			if (mas->max == ULONG_MAX)
6715 				goto done;
6716 
6717 			/* This is not the last leaf node and needs to go up. */
6718 			do {
6719 				mas_ascend(mas);
6720 				mas_ascend(new_mas);
6721 			} while (mas->offset == mas_data_end(mas));
6722 
6723 			/* Move to the next subtree. */
6724 			mas->offset++;
6725 			new_mas->offset++;
6726 		}
6727 
6728 		mas_descend(mas);
6729 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6730 		mas_descend(new_mas);
6731 		mas->offset = 0;
6732 		new_mas->offset = 0;
6733 	}
6734 done:
6735 	/* Specially handle the parent of the root node. */
6736 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6737 set_new_tree:
6738 	/* Make them the same height */
6739 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6740 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6741 }
6742 
6743 /**
6744  * __mt_dup(): Duplicate an entire maple tree
6745  * @mt: The source maple tree
6746  * @new: The new maple tree
6747  * @gfp: The GFP_FLAGS to use for allocations
6748  *
6749  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6750  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6751  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6752  * source node except for all the addresses stored in it. It will be faster than
6753  * traversing all elements in the source tree and inserting them one by one into
6754  * the new tree.
6755  * The user needs to ensure that the attributes of the source tree and the new
6756  * tree are the same, and the new tree needs to be an empty tree, otherwise
6757  * -EINVAL will be returned.
6758  * Note that the user needs to manually lock the source tree and the new tree.
6759  *
6760  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6761  * the attributes of the two trees are different or the new tree is not an empty
6762  * tree.
6763  */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6764 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6765 {
6766 	int ret = 0;
6767 	MA_STATE(mas, mt, 0, 0);
6768 	MA_STATE(new_mas, new, 0, 0);
6769 
6770 	mas_dup_build(&mas, &new_mas, gfp);
6771 	if (unlikely(mas_is_err(&mas))) {
6772 		ret = xa_err(mas.node);
6773 		if (ret == -ENOMEM)
6774 			mas_dup_free(&new_mas);
6775 	}
6776 
6777 	return ret;
6778 }
6779 EXPORT_SYMBOL(__mt_dup);
6780 
6781 /**
6782  * mtree_dup(): Duplicate an entire maple tree
6783  * @mt: The source maple tree
6784  * @new: The new maple tree
6785  * @gfp: The GFP_FLAGS to use for allocations
6786  *
6787  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6788  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6789  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6790  * source node except for all the addresses stored in it. It will be faster than
6791  * traversing all elements in the source tree and inserting them one by one into
6792  * the new tree.
6793  * The user needs to ensure that the attributes of the source tree and the new
6794  * tree are the same, and the new tree needs to be an empty tree, otherwise
6795  * -EINVAL will be returned.
6796  *
6797  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6798  * the attributes of the two trees are different or the new tree is not an empty
6799  * tree.
6800  */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6801 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6802 {
6803 	int ret = 0;
6804 	MA_STATE(mas, mt, 0, 0);
6805 	MA_STATE(new_mas, new, 0, 0);
6806 
6807 	mas_lock(&new_mas);
6808 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6809 	mas_dup_build(&mas, &new_mas, gfp);
6810 	mas_unlock(&mas);
6811 	if (unlikely(mas_is_err(&mas))) {
6812 		ret = xa_err(mas.node);
6813 		if (ret == -ENOMEM)
6814 			mas_dup_free(&new_mas);
6815 	}
6816 
6817 	mas_unlock(&new_mas);
6818 	return ret;
6819 }
6820 EXPORT_SYMBOL(mtree_dup);
6821 
6822 /**
6823  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6824  * @mt: The maple tree
6825  *
6826  * Note: Does not handle locking.
6827  */
__mt_destroy(struct maple_tree * mt)6828 void __mt_destroy(struct maple_tree *mt)
6829 {
6830 	void *root = mt_root_locked(mt);
6831 
6832 	rcu_assign_pointer(mt->ma_root, NULL);
6833 	if (xa_is_node(root))
6834 		mte_destroy_walk(root, mt);
6835 
6836 	mt->ma_flags = mt_attr(mt);
6837 }
6838 EXPORT_SYMBOL_GPL(__mt_destroy);
6839 
6840 /**
6841  * mtree_destroy() - Destroy a maple tree
6842  * @mt: The maple tree
6843  *
6844  * Frees all resources used by the tree.  Handles locking.
6845  */
mtree_destroy(struct maple_tree * mt)6846 void mtree_destroy(struct maple_tree *mt)
6847 {
6848 	mtree_lock(mt);
6849 	__mt_destroy(mt);
6850 	mtree_unlock(mt);
6851 }
6852 EXPORT_SYMBOL(mtree_destroy);
6853 
6854 /**
6855  * mt_find() - Search from the start up until an entry is found.
6856  * @mt: The maple tree
6857  * @index: Pointer which contains the start location of the search
6858  * @max: The maximum value of the search range
6859  *
6860  * Takes RCU read lock internally to protect the search, which does not
6861  * protect the returned pointer after dropping RCU read lock.
6862  * See also: Documentation/core-api/maple_tree.rst
6863  *
6864  * In case that an entry is found @index is updated to point to the next
6865  * possible entry independent whether the found entry is occupying a
6866  * single index or a range if indices.
6867  *
6868  * Return: The entry at or after the @index or %NULL
6869  */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6870 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6871 {
6872 	MA_STATE(mas, mt, *index, *index);
6873 	void *entry;
6874 #ifdef CONFIG_DEBUG_MAPLE_TREE
6875 	unsigned long copy = *index;
6876 #endif
6877 
6878 	trace_ma_read(__func__, &mas);
6879 
6880 	if ((*index) > max)
6881 		return NULL;
6882 
6883 	rcu_read_lock();
6884 retry:
6885 	entry = mas_state_walk(&mas);
6886 	if (mas_is_start(&mas))
6887 		goto retry;
6888 
6889 	if (unlikely(xa_is_zero(entry)))
6890 		entry = NULL;
6891 
6892 	if (entry)
6893 		goto unlock;
6894 
6895 	while (mas_is_active(&mas) && (mas.last < max)) {
6896 		entry = mas_next_slot(&mas, max, false);
6897 		if (likely(entry && !xa_is_zero(entry)))
6898 			break;
6899 	}
6900 
6901 	if (unlikely(xa_is_zero(entry)))
6902 		entry = NULL;
6903 unlock:
6904 	rcu_read_unlock();
6905 	if (likely(entry)) {
6906 		*index = mas.last + 1;
6907 #ifdef CONFIG_DEBUG_MAPLE_TREE
6908 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6909 			pr_err("index not increased! %lx <= %lx\n",
6910 			       *index, copy);
6911 #endif
6912 	}
6913 
6914 	return entry;
6915 }
6916 EXPORT_SYMBOL(mt_find);
6917 
6918 /**
6919  * mt_find_after() - Search from the start up until an entry is found.
6920  * @mt: The maple tree
6921  * @index: Pointer which contains the start location of the search
6922  * @max: The maximum value to check
6923  *
6924  * Same as mt_find() except that it checks @index for 0 before
6925  * searching. If @index == 0, the search is aborted. This covers a wrap
6926  * around of @index to 0 in an iterator loop.
6927  *
6928  * Return: The entry at or after the @index or %NULL
6929  */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6930 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6931 		    unsigned long max)
6932 {
6933 	if (!(*index))
6934 		return NULL;
6935 
6936 	return mt_find(mt, index, max);
6937 }
6938 EXPORT_SYMBOL(mt_find_after);
6939 
6940 #ifdef CONFIG_DEBUG_MAPLE_TREE
6941 atomic_t maple_tree_tests_run;
6942 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6943 atomic_t maple_tree_tests_passed;
6944 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6945 
6946 #ifndef __KERNEL__
6947 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6948 void mt_set_non_kernel(unsigned int val)
6949 {
6950 	kmem_cache_set_non_kernel(maple_node_cache, val);
6951 }
6952 
6953 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6954 		void (*callback)(void *));
mt_set_callback(void (* callback)(void *))6955 void mt_set_callback(void (*callback)(void *))
6956 {
6957 	kmem_cache_set_callback(maple_node_cache, callback);
6958 }
6959 
6960 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)6961 void mt_set_private(void *private)
6962 {
6963 	kmem_cache_set_private(maple_node_cache, private);
6964 }
6965 
6966 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)6967 unsigned long mt_get_alloc_size(void)
6968 {
6969 	return kmem_cache_get_alloc(maple_node_cache);
6970 }
6971 
6972 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)6973 void mt_zero_nr_tallocated(void)
6974 {
6975 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6976 }
6977 
6978 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)6979 unsigned int mt_nr_tallocated(void)
6980 {
6981 	return kmem_cache_nr_tallocated(maple_node_cache);
6982 }
6983 
6984 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)6985 unsigned int mt_nr_allocated(void)
6986 {
6987 	return kmem_cache_nr_allocated(maple_node_cache);
6988 }
6989 
mt_cache_shrink(void)6990 void mt_cache_shrink(void)
6991 {
6992 }
6993 #else
6994 /*
6995  * mt_cache_shrink() - For testing, don't use this.
6996  *
6997  * Certain testcases can trigger an OOM when combined with other memory
6998  * debugging configuration options.  This function is used to reduce the
6999  * possibility of an out of memory even due to kmem_cache objects remaining
7000  * around for longer than usual.
7001  */
mt_cache_shrink(void)7002 void mt_cache_shrink(void)
7003 {
7004 	kmem_cache_shrink(maple_node_cache);
7005 
7006 }
7007 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7008 
7009 #endif /* not defined __KERNEL__ */
7010 /*
7011  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7012  * @mas: The maple state
7013  * @offset: The offset into the slot array to fetch.
7014  *
7015  * Return: The entry stored at @offset.
7016  */
mas_get_slot(struct ma_state * mas,unsigned char offset)7017 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7018 		unsigned char offset)
7019 {
7020 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7021 			offset);
7022 }
7023 
7024 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)7025 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7026 {
7027 
7028 	struct maple_enode *p, *mn = mas->node;
7029 	unsigned long p_min, p_max;
7030 
7031 	mas_next_node(mas, mas_mn(mas), max);
7032 	if (!mas_is_overflow(mas))
7033 		return;
7034 
7035 	if (mte_is_root(mn))
7036 		return;
7037 
7038 	mas->node = mn;
7039 	mas_ascend(mas);
7040 	do {
7041 		p = mas->node;
7042 		p_min = mas->min;
7043 		p_max = mas->max;
7044 		mas_prev_node(mas, 0);
7045 	} while (!mas_is_underflow(mas));
7046 
7047 	mas->node = p;
7048 	mas->max = p_max;
7049 	mas->min = p_min;
7050 }
7051 
7052 /* Tree validations */
7053 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7054 		unsigned long min, unsigned long max, unsigned int depth,
7055 		enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7056 static void mt_dump_range(unsigned long min, unsigned long max,
7057 			  unsigned int depth, enum mt_dump_format format)
7058 {
7059 	static const char spaces[] = "                                ";
7060 
7061 	switch(format) {
7062 	case mt_dump_hex:
7063 		if (min == max)
7064 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7065 		else
7066 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7067 		break;
7068 	case mt_dump_dec:
7069 		if (min == max)
7070 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7071 		else
7072 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7073 	}
7074 }
7075 
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7076 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7077 			  unsigned int depth, enum mt_dump_format format)
7078 {
7079 	mt_dump_range(min, max, depth, format);
7080 
7081 	if (xa_is_value(entry))
7082 		pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7083 			xa_to_value(entry), entry);
7084 	else if (xa_is_zero(entry))
7085 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7086 	else if (mt_is_reserved(entry))
7087 		pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7088 	else
7089 		pr_cont(PTR_FMT "\n", entry);
7090 }
7091 
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7092 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7093 		unsigned long min, unsigned long max, unsigned int depth,
7094 		enum mt_dump_format format)
7095 {
7096 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7097 	bool leaf = mte_is_leaf(entry);
7098 	unsigned long first = min;
7099 	int i;
7100 
7101 	pr_cont(" contents: ");
7102 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7103 		switch(format) {
7104 		case mt_dump_hex:
7105 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7106 			break;
7107 		case mt_dump_dec:
7108 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7109 		}
7110 	}
7111 	pr_cont(PTR_FMT "\n", node->slot[i]);
7112 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7113 		unsigned long last = max;
7114 
7115 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7116 			last = node->pivot[i];
7117 		else if (!node->slot[i] && max != mt_node_max(entry))
7118 			break;
7119 		if (last == 0 && i > 0)
7120 			break;
7121 		if (leaf)
7122 			mt_dump_entry(mt_slot(mt, node->slot, i),
7123 					first, last, depth + 1, format);
7124 		else if (node->slot[i])
7125 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7126 					first, last, depth + 1, format);
7127 
7128 		if (last == max)
7129 			break;
7130 		if (last > max) {
7131 			switch(format) {
7132 			case mt_dump_hex:
7133 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7134 					node, last, max, i);
7135 				break;
7136 			case mt_dump_dec:
7137 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7138 					node, last, max, i);
7139 			}
7140 		}
7141 		first = last + 1;
7142 	}
7143 }
7144 
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7145 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7146 	unsigned long min, unsigned long max, unsigned int depth,
7147 	enum mt_dump_format format)
7148 {
7149 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7150 	unsigned long first = min;
7151 	int i;
7152 
7153 	pr_cont(" contents: ");
7154 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7155 		switch (format) {
7156 		case mt_dump_hex:
7157 			pr_cont("%lx ", node->gap[i]);
7158 			break;
7159 		case mt_dump_dec:
7160 			pr_cont("%lu ", node->gap[i]);
7161 		}
7162 	}
7163 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7164 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7165 		switch (format) {
7166 		case mt_dump_hex:
7167 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7168 			break;
7169 		case mt_dump_dec:
7170 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7171 		}
7172 	}
7173 	pr_cont(PTR_FMT "\n", node->slot[i]);
7174 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7175 		unsigned long last = max;
7176 
7177 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7178 			last = node->pivot[i];
7179 		else if (!node->slot[i])
7180 			break;
7181 		if (last == 0 && i > 0)
7182 			break;
7183 		if (node->slot[i])
7184 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7185 					first, last, depth + 1, format);
7186 
7187 		if (last == max)
7188 			break;
7189 		if (last > max) {
7190 			switch(format) {
7191 			case mt_dump_hex:
7192 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7193 					node, last, max, i);
7194 				break;
7195 			case mt_dump_dec:
7196 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7197 					node, last, max, i);
7198 			}
7199 		}
7200 		first = last + 1;
7201 	}
7202 }
7203 
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7204 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7205 		unsigned long min, unsigned long max, unsigned int depth,
7206 		enum mt_dump_format format)
7207 {
7208 	struct maple_node *node = mte_to_node(entry);
7209 	unsigned int type = mte_node_type(entry);
7210 	unsigned int i;
7211 
7212 	mt_dump_range(min, max, depth, format);
7213 
7214 	pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7215 		depth, type, node ? node->parent : NULL);
7216 	switch (type) {
7217 	case maple_dense:
7218 		pr_cont("\n");
7219 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7220 			if (min + i > max)
7221 				pr_cont("OUT OF RANGE: ");
7222 			mt_dump_entry(mt_slot(mt, node->slot, i),
7223 					min + i, min + i, depth, format);
7224 		}
7225 		break;
7226 	case maple_leaf_64:
7227 	case maple_range_64:
7228 		mt_dump_range64(mt, entry, min, max, depth, format);
7229 		break;
7230 	case maple_arange_64:
7231 		mt_dump_arange64(mt, entry, min, max, depth, format);
7232 		break;
7233 
7234 	default:
7235 		pr_cont(" UNKNOWN TYPE\n");
7236 	}
7237 }
7238 
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)7239 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7240 {
7241 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7242 
7243 	pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7244 		 mt, mt->ma_flags, mt_height(mt), entry);
7245 	if (xa_is_node(entry))
7246 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7247 	else if (entry)
7248 		mt_dump_entry(entry, 0, 0, 0, format);
7249 	else
7250 		pr_info("(empty)\n");
7251 }
7252 EXPORT_SYMBOL_GPL(mt_dump);
7253 
7254 /*
7255  * Calculate the maximum gap in a node and check if that's what is reported in
7256  * the parent (unless root).
7257  */
mas_validate_gaps(struct ma_state * mas)7258 static void mas_validate_gaps(struct ma_state *mas)
7259 {
7260 	struct maple_enode *mte = mas->node;
7261 	struct maple_node *p_mn, *node = mte_to_node(mte);
7262 	enum maple_type mt = mte_node_type(mas->node);
7263 	unsigned long gap = 0, max_gap = 0;
7264 	unsigned long p_end, p_start = mas->min;
7265 	unsigned char p_slot, offset;
7266 	unsigned long *gaps = NULL;
7267 	unsigned long *pivots = ma_pivots(node, mt);
7268 	unsigned int i;
7269 
7270 	if (ma_is_dense(mt)) {
7271 		for (i = 0; i < mt_slot_count(mte); i++) {
7272 			if (mas_get_slot(mas, i)) {
7273 				if (gap > max_gap)
7274 					max_gap = gap;
7275 				gap = 0;
7276 				continue;
7277 			}
7278 			gap++;
7279 		}
7280 		goto counted;
7281 	}
7282 
7283 	gaps = ma_gaps(node, mt);
7284 	for (i = 0; i < mt_slot_count(mte); i++) {
7285 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7286 
7287 		if (!gaps) {
7288 			if (!mas_get_slot(mas, i))
7289 				gap = p_end - p_start + 1;
7290 		} else {
7291 			void *entry = mas_get_slot(mas, i);
7292 
7293 			gap = gaps[i];
7294 			MT_BUG_ON(mas->tree, !entry);
7295 
7296 			if (gap > p_end - p_start + 1) {
7297 				pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7298 				       mas_mn(mas), i, gap, p_end, p_start,
7299 				       p_end - p_start + 1);
7300 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7301 			}
7302 		}
7303 
7304 		if (gap > max_gap)
7305 			max_gap = gap;
7306 
7307 		p_start = p_end + 1;
7308 		if (p_end >= mas->max)
7309 			break;
7310 	}
7311 
7312 counted:
7313 	if (mt == maple_arange_64) {
7314 		MT_BUG_ON(mas->tree, !gaps);
7315 		offset = ma_meta_gap(node);
7316 		if (offset > i) {
7317 			pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7318 			MT_BUG_ON(mas->tree, 1);
7319 		}
7320 
7321 		if (gaps[offset] != max_gap) {
7322 			pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7323 			       node, offset, max_gap);
7324 			MT_BUG_ON(mas->tree, 1);
7325 		}
7326 
7327 		for (i++ ; i < mt_slot_count(mte); i++) {
7328 			if (gaps[i] != 0) {
7329 				pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7330 				       node, i);
7331 				MT_BUG_ON(mas->tree, 1);
7332 			}
7333 		}
7334 	}
7335 
7336 	if (mte_is_root(mte))
7337 		return;
7338 
7339 	p_slot = mte_parent_slot(mas->node);
7340 	p_mn = mte_parent(mte);
7341 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7342 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7343 		pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7344 		mt_dump(mas->tree, mt_dump_hex);
7345 		MT_BUG_ON(mas->tree, 1);
7346 	}
7347 }
7348 
mas_validate_parent_slot(struct ma_state * mas)7349 static void mas_validate_parent_slot(struct ma_state *mas)
7350 {
7351 	struct maple_node *parent;
7352 	struct maple_enode *node;
7353 	enum maple_type p_type;
7354 	unsigned char p_slot;
7355 	void __rcu **slots;
7356 	int i;
7357 
7358 	if (mte_is_root(mas->node))
7359 		return;
7360 
7361 	p_slot = mte_parent_slot(mas->node);
7362 	p_type = mas_parent_type(mas, mas->node);
7363 	parent = mte_parent(mas->node);
7364 	slots = ma_slots(parent, p_type);
7365 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7366 
7367 	/* Check prev/next parent slot for duplicate node entry */
7368 
7369 	for (i = 0; i < mt_slots[p_type]; i++) {
7370 		node = mas_slot(mas, slots, i);
7371 		if (i == p_slot) {
7372 			if (node != mas->node)
7373 				pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7374 					parent, i, mas_mn(mas));
7375 			MT_BUG_ON(mas->tree, node != mas->node);
7376 		} else if (node == mas->node) {
7377 			pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7378 			       mas_mn(mas), parent, i, p_slot);
7379 			MT_BUG_ON(mas->tree, node == mas->node);
7380 		}
7381 	}
7382 }
7383 
mas_validate_child_slot(struct ma_state * mas)7384 static void mas_validate_child_slot(struct ma_state *mas)
7385 {
7386 	enum maple_type type = mte_node_type(mas->node);
7387 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7388 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7389 	struct maple_enode *child;
7390 	unsigned char i;
7391 
7392 	if (mte_is_leaf(mas->node))
7393 		return;
7394 
7395 	for (i = 0; i < mt_slots[type]; i++) {
7396 		child = mas_slot(mas, slots, i);
7397 
7398 		if (!child) {
7399 			pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7400 			       mas_mn(mas), i);
7401 			MT_BUG_ON(mas->tree, 1);
7402 		}
7403 
7404 		if (mte_parent_slot(child) != i) {
7405 			pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7406 			       mas_mn(mas), i, mte_to_node(child),
7407 			       mte_parent_slot(child));
7408 			MT_BUG_ON(mas->tree, 1);
7409 		}
7410 
7411 		if (mte_parent(child) != mte_to_node(mas->node)) {
7412 			pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7413 			       mte_to_node(child), mte_parent(child),
7414 			       mte_to_node(mas->node));
7415 			MT_BUG_ON(mas->tree, 1);
7416 		}
7417 
7418 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7419 			break;
7420 	}
7421 }
7422 
7423 /*
7424  * Validate all pivots are within mas->min and mas->max, check metadata ends
7425  * where the maximum ends and ensure there is no slots or pivots set outside of
7426  * the end of the data.
7427  */
mas_validate_limits(struct ma_state * mas)7428 static void mas_validate_limits(struct ma_state *mas)
7429 {
7430 	int i;
7431 	unsigned long prev_piv = 0;
7432 	enum maple_type type = mte_node_type(mas->node);
7433 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7434 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7435 
7436 	for (i = 0; i < mt_slots[type]; i++) {
7437 		unsigned long piv;
7438 
7439 		piv = mas_safe_pivot(mas, pivots, i, type);
7440 
7441 		if (!piv && (i != 0)) {
7442 			pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7443 			       mas_mn(mas), i);
7444 			MAS_WARN_ON(mas, 1);
7445 		}
7446 
7447 		if (prev_piv > piv) {
7448 			pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7449 				mas_mn(mas), i, piv, prev_piv);
7450 			MAS_WARN_ON(mas, piv < prev_piv);
7451 		}
7452 
7453 		if (piv < mas->min) {
7454 			pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7455 				piv, mas->min);
7456 			MAS_WARN_ON(mas, piv < mas->min);
7457 		}
7458 		if (piv > mas->max) {
7459 			pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7460 				piv, mas->max);
7461 			MAS_WARN_ON(mas, piv > mas->max);
7462 		}
7463 		prev_piv = piv;
7464 		if (piv == mas->max)
7465 			break;
7466 	}
7467 
7468 	if (mas_data_end(mas) != i) {
7469 		pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7470 		       mas_mn(mas), mas_data_end(mas), i);
7471 		MT_BUG_ON(mas->tree, 1);
7472 	}
7473 
7474 	for (i += 1; i < mt_slots[type]; i++) {
7475 		void *entry = mas_slot(mas, slots, i);
7476 
7477 		if (entry && (i != mt_slots[type] - 1)) {
7478 			pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7479 			       mas_mn(mas), i, entry);
7480 			MT_BUG_ON(mas->tree, entry != NULL);
7481 		}
7482 
7483 		if (i < mt_pivots[type]) {
7484 			unsigned long piv = pivots[i];
7485 
7486 			if (!piv)
7487 				continue;
7488 
7489 			pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7490 			       mas_mn(mas), i, piv);
7491 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7492 		}
7493 	}
7494 }
7495 
mt_validate_nulls(struct maple_tree * mt)7496 static void mt_validate_nulls(struct maple_tree *mt)
7497 {
7498 	void *entry, *last = (void *)1;
7499 	unsigned char offset = 0;
7500 	void __rcu **slots;
7501 	MA_STATE(mas, mt, 0, 0);
7502 
7503 	mas_start(&mas);
7504 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7505 		return;
7506 
7507 	while (!mte_is_leaf(mas.node))
7508 		mas_descend(&mas);
7509 
7510 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7511 	do {
7512 		entry = mas_slot(&mas, slots, offset);
7513 		if (!last && !entry) {
7514 			pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7515 				mas_mn(&mas), offset);
7516 		}
7517 		MT_BUG_ON(mt, !last && !entry);
7518 		last = entry;
7519 		if (offset == mas_data_end(&mas)) {
7520 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7521 			if (mas_is_overflow(&mas))
7522 				return;
7523 			offset = 0;
7524 			slots = ma_slots(mte_to_node(mas.node),
7525 					 mte_node_type(mas.node));
7526 		} else {
7527 			offset++;
7528 		}
7529 
7530 	} while (!mas_is_overflow(&mas));
7531 }
7532 
7533 /*
7534  * validate a maple tree by checking:
7535  * 1. The limits (pivots are within mas->min to mas->max)
7536  * 2. The gap is correctly set in the parents
7537  */
mt_validate(struct maple_tree * mt)7538 void mt_validate(struct maple_tree *mt)
7539 	__must_hold(mas->tree->ma_lock)
7540 {
7541 	unsigned char end;
7542 
7543 	MA_STATE(mas, mt, 0, 0);
7544 	mas_start(&mas);
7545 	if (!mas_is_active(&mas))
7546 		return;
7547 
7548 	while (!mte_is_leaf(mas.node))
7549 		mas_descend(&mas);
7550 
7551 	while (!mas_is_overflow(&mas)) {
7552 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7553 		end = mas_data_end(&mas);
7554 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7555 				(!mte_is_root(mas.node)))) {
7556 			pr_err("Invalid size %u of " PTR_FMT "\n",
7557 			       end, mas_mn(&mas));
7558 		}
7559 
7560 		mas_validate_parent_slot(&mas);
7561 		mas_validate_limits(&mas);
7562 		mas_validate_child_slot(&mas);
7563 		if (mt_is_alloc(mt))
7564 			mas_validate_gaps(&mas);
7565 		mas_dfs_postorder(&mas, ULONG_MAX);
7566 	}
7567 	mt_validate_nulls(mt);
7568 }
7569 EXPORT_SYMBOL_GPL(mt_validate);
7570 
mas_dump(const struct ma_state * mas)7571 void mas_dump(const struct ma_state *mas)
7572 {
7573 	pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7574 	       mas->tree, mas->node);
7575 	switch (mas->status) {
7576 	case ma_active:
7577 		pr_err("(ma_active)");
7578 		break;
7579 	case ma_none:
7580 		pr_err("(ma_none)");
7581 		break;
7582 	case ma_root:
7583 		pr_err("(ma_root)");
7584 		break;
7585 	case ma_start:
7586 		pr_err("(ma_start) ");
7587 		break;
7588 	case ma_pause:
7589 		pr_err("(ma_pause) ");
7590 		break;
7591 	case ma_overflow:
7592 		pr_err("(ma_overflow) ");
7593 		break;
7594 	case ma_underflow:
7595 		pr_err("(ma_underflow) ");
7596 		break;
7597 	case ma_error:
7598 		pr_err("(ma_error) ");
7599 		break;
7600 	}
7601 
7602 	pr_err("Store Type: ");
7603 	switch (mas->store_type) {
7604 	case wr_invalid:
7605 		pr_err("invalid store type\n");
7606 		break;
7607 	case wr_new_root:
7608 		pr_err("new_root\n");
7609 		break;
7610 	case wr_store_root:
7611 		pr_err("store_root\n");
7612 		break;
7613 	case wr_exact_fit:
7614 		pr_err("exact_fit\n");
7615 		break;
7616 	case wr_split_store:
7617 		pr_err("split_store\n");
7618 		break;
7619 	case wr_slot_store:
7620 		pr_err("slot_store\n");
7621 		break;
7622 	case wr_append:
7623 		pr_err("append\n");
7624 		break;
7625 	case wr_node_store:
7626 		pr_err("node_store\n");
7627 		break;
7628 	case wr_spanning_store:
7629 		pr_err("spanning_store\n");
7630 		break;
7631 	case wr_rebalance:
7632 		pr_err("rebalance\n");
7633 		break;
7634 	}
7635 
7636 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7637 	       mas->index, mas->last);
7638 	pr_err("     min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7639 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7640 	if (mas->index > mas->last)
7641 		pr_err("Check index & last\n");
7642 }
7643 EXPORT_SYMBOL_GPL(mas_dump);
7644 
mas_wr_dump(const struct ma_wr_state * wr_mas)7645 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7646 {
7647 	pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7648 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7649 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7650 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7651 	       wr_mas->end_piv);
7652 }
7653 EXPORT_SYMBOL_GPL(mas_wr_dump);
7654 
7655 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7656